
HETAC Staff Development and Training Program

NetClasses: A lecturer’s web site manager.

Presented for the MSc Degree in Computing

by

Jim Doyle

Department o f Computing,

School of Computing and Mathematics,

Cork Institute o f Technology

December 2004

Abstract

There are a number o f Learning Content Management Systems on the market. All

commercial ones are expensive and all require considerable training to use. A simple

lecturer’s web site management tool, NetClasses, which is both inexpensive and easy to

use, is presented in this thesis.

NetClasses is cross platform. It is largely written from scratch and has a simple menu

driven interface. Free open access and open source middleware is used to deploy the web

pages.

This thesis describes how NetClasses is produced. The ease o f use comes from the menu

interface and the underlying tight control o f progression from one web page to the next.

Acknowledgements

My greatest thanks goes to Derek O Reilly who had a number o f parts to play in this

project. Firstly he lectured one o f the taught modules, Multimedia Programming, that I

took in preparation for this undertaking. Secondly he agreed to be the project supervisor.

Thirdly he came up with the idea for the project and lastly he steered me back on course

whenever things started to go in the wrong direction.

I would also like to thank my wife, Marian, who had to put up with me being absorbed in

the project, sometimes to the detriment o f my role as husband.

Thanks also to Morris Rimbi who proof read the thesis.

Finally, thanks to my colleagues in Cork Institute o f Technology who contributed their

opinions on requirements and on partly completed modules.

Table o f Contents

Chapter 1. Introduction And Overview .. 1

1.1 Introduction.. 2

1.1.1 G oals..2

1.1.2 What The Project Entails............................. 3

1.2 Chapter By Chapter... 5

1.2.1 Chapter 2 .. 5

1.2.2 Chapter 3 ... 5

1.2.3 Chapter 4 ... 5

1.2.4 Chapter 5 ... 6

1.2.5 Chapter 6 ... 6

Chapter 2. Analysis And Specifications ...7

2.1 Analysis... 8

2.1.1 General... 8

2.1.2 User Requirements.. 9

2.1.2.1 Audiences.. 9

2.1.2.1.1 Administrators... 10

2.1.2.1.2 Lecturers.. 11

2.1.2.1.3 Students... 12

2.2 Specifications... 13

2.2.1 Logging O n ... 13

2.2.2 Posting And Accessing Notes..15

2.2.3 Posting And Submitting Assignments.. 16

2.2.4 Creating And Updating A C lass... 18

2.2.5 Handling Quizzes.. 20

2.2.6 Posting M essages.. 21

2.3 Conclusion...22

Chapter 3. Existing Work ...23

3.1 Existing Technologies..24

3.1.1 Web Servers... 24

3.1.2 HTTP... 24

3.1.3 HTML And X M L ... 25

3.1.4 Dynamic Web Pages...25

3.1.5 D B M S...26

3.2 Dynamic Web Pages Technologies.. 26

3.2.1 CGI...27

3.2.2 P H P ... 28

3.2.3 A S P ... 29

3.2.4 JSP..30

3.2.4.1 Java Server Pages Environment...31

3.3 The Database Management System.. 33

3.4 Existing Applications...34

3.4.1 WebCT (www.webct.com)... 35

3.4.2 Moodle (moodle.org)... 37

iv

3.4.3 TopClass LCMS (www.wbtsystems.com/products)......................................40

3.4.4 Blackboard (www.blackboard.com).. 42

3.4.5 Notes (notes.cit.ie)..44

3.4.6 Extranet [RUSSOO]... 45

3.5 Conclusions... 46

Chapter 4. Architecture And D esign ... 47

4.1 Three Tier Architecture... 48

4.2 File Structure... 51

4.3 Site Navigation.. 52

4.4 Restricting Access.. 57

4.4.1 Domain filter... 60

4.5 Flow Control... 62

4.5.1 Conventional Applications...63

4.5.2 Web Accessed Applications... 64

4.5.3 Page-Centric D esign...65

4.5.4 Servlet-Centric Design..68

4.5.4.1 Use-Once token..................... 69

4.5.4.2 Program Flow By N um bers... 70

4.5.5 Java Struts And Flow Control... 73

4.6 Conclusion...74

Chapter 5. Com ponents ...75

5.1 Login....................................... 76

5.2 Lecturers..77

v

I

5.2.1 N otes..77

5.2.2 Assignments..81

5.2.3 C lass... 84

5.2.3.1 Create And Delete C lass...85

5.2.3.2 Populate C lass.. 86

5.2.3.3 Add And Delete Subject.. 90

5.2.4 Q uiz ...91

5.2.5 M essages... 93

5.3 Students..94

5.3.1 N o tes..95

5.3.2 Assignments .. 95

5.3.3 Quiz.. 96

5.3.4 M essages...97

5.4 Administrators...98

5.5 Conclusion.. 99

Chapter 6. Summary And Conclusions .. 100

6.1 Further W ork... 106

Appendix 1 ... 1

Appendix 2 .. 10

Code............................ 10

Login Page Code...11

Class Menu Servlet Code.. 13

Code For Create Class Command 2 ...19

Upload Server Bean Code

Chapter 1 Introduction And Overview

Chapter 1

Introduction And Overview

1

1.1 Introduction

Chapter 1 Introduction And Overview

1.1.1 Goals

The thesis describes the creation of a web site management tool called

NetClasses. NetClasses can be used by both lecturers and students.

Lecturers can use Netclasses to:

• Post notes.

• Assign passwords.

• Post assignment instructions.

• Collect assignments.

• Present multiple choice quizzes.

• Operate a notice board.

Students can use NetClasses to:

• Read notes.

• Read assignment instructions.

• Submit assignments.

• Take multiple choice quizzes.

• Read notices on the notice board.

2

Both lecturers and students can:

• Log on using a password.

• Change a password.

• Log off.

NetClasses is a tool for managing lecturer’s notes, student assignments and

quizzes, and for broadcasting text messages to students. The intended users of

NetClasses are students and lecturers o f a course, therefore, access to the system

is limited through passwords. The lecturer and students could be attached to any

kind o f educational institution. However, this thesis concentrates on a third level

course where the facilities mentioned above are used routinely to exchange work

between students and lecturers.

The system is multi-user in that there can be many lecturers with their own classes

of students using the same web address to access material relevant to the course

they are teaching or studying.

NetClasses is scalable. This means that the number of lecturers and students can

increase without affecting the reliability of the system.

1.1.2 What The Project Entails

It is clear that this project requires web-based database access. This thesis

describes research into technologies and environments that can be used to provide

Chapter 1 Introduction And Overview

3

the service. The chosen technology (Java Server Pages) is examined and decisions

are made as to how the application is deployed.

Chapter 1 Introduction And Overview

The project involves research into the area o f Web Assisted Learning to get

information on what is already available. This information is used in conjunction

with the requirements for the proposed application.

There should not be too many mouse clicks required when performing any

NetClasses task [GALI02]. The page design should be intuitive and, more

importantly, the navigation should be leamable [HOLM02]. There are a number

o f different tasks to be performed by users of NetClasses. The flow control issues

that arise when navigating through a web site that has many different pages are

considered.

Individual components are researched in more detail. All components except the

login are written from scratch. These programs are developed from specifications

rather than by modifying existing code because nothing that meets all the

requirements is available free o f charge. This process helps in gaining an

understanding o f how to develop such programs and makes it easier to get

NetClasses to meet the exact requirements.

4

1.2 Chapter By Chapter

1.2.1 Chapter 2

Sections 2.1.1 and 2.1.2 discuss how the user requirements are arrived at. The

intended audience is identified. Component requirements are discussed in Section

2 . 2 .

1.2.2 Chapter 3

In Section 3.1, Existing Technologies, is the research into various technologies

used to create dynamic web pages and the reasons why Java Server Pages is

chosen as the technology for NetClasses. Section 3.3 discusses the choice of

Database application. Some features from different applications that offer similar

services to NetClasses are compared in Section 3.4.

1.2.3 Chapter 4

Sections 4.2 and 4.3, relate some of the decisions taken about how the site files

are stored and how the web pages look. There is also a description of how access

is restricted to certain parts o f the site in Section 4.4. The final section, Section

4.5, discusses the most challenging aspect of NetClasses; how the progression

from one web page to another is controlled within the site.

Chapter 1 Introduction And Overview

5

1.2.4 Chapter 5

The building o f the major parts o f the NetClasses application is reviewed in this

chapter. Section 5.1 discusses the login component which is the only one not

written from scratch. The login is a standard login program largely taken from

[FEEL02] although it is modified to take account o f the restrictions on site access.

The parts o f NetClasses used by the lecturers are discussed in Section 5.2. Those

used by students are in Section 5.3. Finally Section 5.4 presents the

administrator’s components.

1.2.5 Chapter 6

Chapter 6 concludes the thesis and presents suggestions for improvements and

further work.

Chapter I Introduction And Overview

6

Chapter 2 Analysis And Specifications

Chapter 2

Analysis And Specifications

2.1 Analysis

2.1.1 General

The original broad specification for the project came from the Project Supervisor

who had the idea to create the web site that would provide the facilities listed in

Section 1.1.1. After initial consideration and discussion it was decided that

NetClasses should be cross platform (usable on Windows and Unix based

systems). It was also decided at this stage that the lecturers should be able to use

their existing notes files, regardless of format, when using NetClasses.

For any application to provide web pages to multiple users, a web server is

required. The cross platform web servers are mostly written in the Java

programming language [TAYL98], therefore, NetClasses is developed and

deployed using a Java web server.

Even though the application is cross-platform it was decided to write and test it on

an office PC that runs Windows and then to test it in a Unix environment. If

NetClasses uses Java throughout then it can work on UNIX based machines as

well [COOK03],

The application is meant to be accessible from the Internet as well as the college

intranet. The speed of downloading web pages is slower on a home PC than on a

college PC if the home PC is connected to the internet by a standard modem.

Because o f this network speed consideration, the size o f the web pages should be

Chapter 2 Analysis And Specifications

8

kept small so as not to have unduly long waiting time for pages to change

[NIELOO],

Chapter 2 Analysis And Specifications

NetClasses should be able to run on various different kinds o f machine. As

mentioned before, it should be able to run in both the Unix and Windows

environments. NetClasses is a distributed application; some o f it runs on one

machine and some on another. In practice this means that one machine, the server,

holds the data and forms the web pages and sends them to the user. The users are

on other machines, the clients, which are used to view the pages. It is a sensible

requirement that no particular software is needed on the client machines other

than freely available web browsers [ORFA99]. The industry standards are

NetScape and Internet Explorer for Microsoft Windows and NetScape-Mozilla for

Unix. The modem versions o f those three are called Document Object Model

(DOM) browsers [MARI02] and it is a NetClasses requirement that the client side

should run on any machine with a DOM browser.

2.1.2 User Requirements

2.1.2.1 Audiences

There are three audience types that use the application and they need to be catercd

for in the design. They are administrators, lecturers and students.

9

2.1.2.1.1 Administrators

Initially it was thought that the administrator should have complete responsibility

for creating and deleting class groups o f students. Because o f our personal

experience with class lists and waiting for realistic listings to be available,

NetClasses is now a lecturer based system. Administrators do not need to get

involved in this end of the work. The creation of a college wide student list is not

a trivial task for an institution the size o f Cork Institute o f Technology (CIT)

[DOHE94], The task o f creating class lists is easier if it is spread among the

lecturers concerned. NetClasses allows lecturers to do that.

Administrators should have the job o f adding lecturers to the system. It makes

sense that administrators can also add other administrators. This approach is taken

by the commercial applications reviewed in Section 3.4 (WebCt 3.6 Reference

Manual for Designers - Module 1, page 8). This latter ability needs to be

controlled or there may be more administrators than the original administrator

intends. To control the proliferation o f administrators, NetClasses has the

requirement that there is one administrator who can create lecturers and

administrators. Those administrators, once created, can only create lecturers.

Administrators should be able to delete lecturers and the main administrator

should also have the ability to delete other administrators from the system. Again

this is the approach taken by the commercial applications reviewed in Section

3.4. The main administrator should be able to delete any lecturer but other

Chapter 2 Analysis And Specifications

10

administrators should only be able to delete lecturers created by them. They

should not be able to delete lecturers created by a different administrator. The

same applies to editing lecturer records.

Lecturers can be administrators in real life [BAUER99] so in NetClasses,

administrators also have the functionality o f lecturers.

2.1.2.1.2 Lecturers

NetClasses is specifically aimed at lecturers but students are also a target

audience. This thesis develops a tool used by lecturers to provide services to

students.

Making NetClasses lecturer centred means that lecturers can add courses to the

system. A lecturer might be teaching two different subjects to a class of students

or could be teaching the same subject to two different classes. It is also normal for

several lecturers to be teaching the same class. The combination o f lecturer, class

and subject identifies a course in NetClasses.

NetClasses is designed so that each lecturer is responsible for entering the names

and passwords into their own classes. The task of entering the student details by

hand can be tedious for a large class. NetClasses removes the tedium by allowing

student details to be pasted in from columns in a data file, e.g. a spread sheet or

Chapter 2 Analysis And Specifications

11

text file. The lecturer must also have the ability to get rid o f courses from the

system.

Chapter 2 Analysis And Specifications

Every user should have only one username and password in the system

[JOHN03]. When a lecturer is entering a student into a class, a student ID number

that is unique to that student has to be entered. This is not a difficult thing to do

because colleges like CIT have unique student number for every student that ever

attended the college [CENT04]. If a lecturer enters a student username that is

already in the database, the clash needs to be resolved automatically.

Lecturers must be able to upload files o f notes. As mentioned above, lecture notes

written outside the system e.g. in Microsoft Word should be usable. This means

that some system of transferring the file from the lecturer’s computer to the web

server is needed. The same thing applies for lecturers uploading files describing

student assignments, the assignment instructions.

2.1.2.1.3 Students

Students are users of NetClasses who must be able to upload files from their own

computers. As readers of the course notes and assignment instructions students

need a sensible interface through which to access this material.

Each student should have only one username and password to log on to

NetClasses [JOHN03],

12

2.2 Specifications

The analysis o f user requirements leads to the formulation o f the following

specifications. Following is a list is o f the facilities to be supplied and some

specifics of the functionality required.

2.2.1 Logging On

All users should see the same screen whether they are administrators, lecturers or

students [JOHN03]. This is dictated by the fact that when a user first accesses the

system, NetClasses has no way o f knowing which category o f user they are. As

soon as the username and password are entered, NetClasses can identify his status

and treat him appropriately. To facilitate this, every user should have a username,

password and role.

In order to reduce the workload o f the person logging on it makes sense not to ask

for the user’s role but to deduce it from the username and the course being logged

on to. To ask for the role would be to ask for redundant information [BROW(32].

A NetClasses login screen is shown in Fig. 2.1. The code for the login page is in

the login.jsp file and is included in Appendix 2. All other pages are also stored as

Java Server Pages (JSP) files.

Chapter 2 Analysis And Specifications

13

Chapter 2 Analysis And Specifications

1*3 Lo {du in h e r e - M ic r o so ft In te r n e t E xp lorer - I n i x 1

File Edit View Favorites Tools Help

>J—* Back ▼ -T -) ¿^Search i 1 Favorites j A ddress 1 Links w G o f »

N e tC la sse s C o u rse F a c ility

W elco m e to N e tC la s se s online n o tes and course m ateria l facility

E n te r u sern am e a n d p a ss w o rd , th en login

Y o u r U sernam e: |i

P a ssw o rd : I

I Log In I a l l

S tu d e n ts :-Y o u can acc e ss no tes that
y o u r lec tu re r p o s ts on this site, Y o u can
a lso d o w n lo ad assignm ent instructions,
subm it y o u r assignm ent w o rk , tak e
quizzes a n d re a d m essag es from your
lecturer.

L e c tu r e r s : - Y o u can p o s t y o u r n o tes,
give studen ts individual u sernam es and
p a ss w o rd s , p o s t and collect
assignm ents, s e t quizzes and b ro a d c a s t
m e ssag es to c lasses.

30 In te rnet

Figure 2.1 Login page.

A student would likely want to access material for several different subjects. It is

not sensible to have students choose which subject they want to read notes for or

submit an assignment for each time they choose a menu option [BROW02]. A

more robust method is to have the student choose a specific course (lecturer, class

and subject combination) at login time. Every action they take will then be

directed at that section o f the site. When a student or lecturer is associated with

more than one course in NetClasses they are asked to choose a course to complete

the login process.

When lecturers have no course (when they are first added to the system) they

should still be able to log on so that they can create classes and courses.

14

2.2.2 Posting And Accessing Notes

Both lecturers and students need to have a user-friendly method of accessing

course notes. The lecturer needs to upload them and the student needs to view

them. The web page that the student should see when viewing notes should be as

intuitive as possible. If a person is viewing a web page to access notes then the

web page should have a list o f note names and each notes file should be accessible

by making one selection on the page [BAXL02], To help in selecting notes files,

they should be grouped under logical headings on the page. There should be a

facility for the lecturer to create headings on the notes page and to group files

under these headings. It should be clear to the user o f the notes web page which

page-item is a heading and which is a notes link.

Students may want to read more than one file in a session. Therefore, the page

where the file is opened from should be only one mouse-click away from the page

the file is viewed on i.e. it should be easy to view the next file [BROW02],

When posting notes, the lecturer should be given a view o f what the student will

see when accessing the notes. It should be possible to submit notes o f any type

e.g. Word documents, text files, pictures or even computer programs that the

students can download. It should also be possible to delete notes or overwrite old

notes with updated versions.

Chapter 2 Analysis And Specifications

15

In some circumstances it might be desirable to have all the notes available at the

beginning of a course and allow the students to create individualised programs of

study [SCHR98]. In cases where the lecturer does not want to do that, it should be

possible to hide notes from students until they are relevant. The lecturer can load

up all the notes at the beginning of the year and roll them out as he sees fit. Fig.

2.2 shows the screen for uploading a file.

Chapter 2 Analysis And Specifications

Create a Name - Microsoft Internet Explorer
File Edit View Favorites Tools Help

v-1 Back ▼ ‘v J 41 j$S««cb _ijFavont« ^Meifia ^ ^ J
I A d d r e s s l é] h t tp : / /1 5 7 .1 9 0 6 6 ,2 3 2 /N e tC la s s e s /$ e c u re /le c tu re r / le c tu re rM e n u N o te $ M e n u ? N o te s M e n u ln d e x = 1 & :N o te s M e n u L e v e [= 1 3 (¿Go

NetClasses Course fa c ility

Course = Com l, Programming
Fill in the name and upload a file.

• Introduction

Link name (Student will click on this) [

Select source file to upload | Browse.. |

Target file name, if different |

Visible f"

Hidden

0k| Cancel |

J
' t íj Done ! £ Internet

Figure 2.2 Uploading file page.

2.2.3 Posting And Submitting Assignments

Lecturers need to be able to post assignment instructions to the site. To do this

might require more than one file. It should be possible to add a file to an

assignment that already exists or to create a new assignment for the course. There

16

http://157.190

needs to be a facility to create new assignments and, when doing this, the lecturer

should be able to see the list of assignments that are already attached to the

course. It is also required to have a date and time limit, past which, students

cannot submit assignments. Creating a new assignment should be done on a page

where a deadline can be defined. Uploading the students’ file should be refused

when the time is after the date and time limit set by the lecturer. Students could

have more than one file to upload.

Students need to be able to view the assignment instructions. This involves

selecting an assignment from the list of assignments associated with the course

they are logged on to and then clicking on the file they want to open.

A lecturer should be able to see a page with a list o f students who have submitted

assignment files and should be able to view a file by making a selection on that

page [BAXL02]. The list of available files should still be there, without the

lecturer having to reopen the page, after viewing one file. Fig 2.3 shows the

screen with the list of submitted files.

Chapter 2 Analysis And Specifications

17

Chapter 2 Analysis And Specifications

I-3 View Assliziimt*»' Film * Microsoft lntcint*T txp lo rtr l M - i n] x |

File Edit View Favorites Tool® Help E H
'J-* Back ▼ ;ì ■''if ¿^Search Favorites ^Media ^ - S'*- ! -Ì ~ _±]

Address |ç j http://157 190 66.232/NelClasses/secure/lecUjier/leclure(MemAM!gnn>ertMcnu?Asei5̂ enfMcrKiLovBl*lÌ̂ t*lQiVnwtfMefvu1nd<>»t«5 ¿>Go |

S S j U p L - P . . . N etC lasses C o u rs e Facility

Course — Com 1,Programming
Students who submitted Assignment 1 Files

• Buckley, Elaine, (buckleye)
o Assl doc

• Coughlan, Eamonn, (coughlane)
o Coughlane.doc

• Doyle, Danny, (dyled)
o Analysis.doc
o Design.doc

• Enright, John, (enrightj)
o Chapter 5.doc
o UML.bmp

• Fogarty, Emma, (efogarty)
o Appendix l.doc

Ok|

_i
90 Internet

Figure 2.3 Collecting assignments page.

2.2.4 Creating And Updating A Class

Classes are collections o f students. In the Section 2.2.2 it is stated that the lecturer

has the job of entering the students’ usernames and passwords to create a class.

Some constraints need to be placed on the values that can be entered for student

usernames. It is a requirement that each student username be unique, so the

system has to edit the usernames entered by the lecturer if that username already

exists. NetClasses appends a number on to the end o f a username if there is a

clash and informs the lecturer with a pop-up window.

NetClasses should remember previously entered students. When a lecturer is

adding students to a class they should be asked for the unique student IDs. I f a

student is in the system, but not already in this class, that student should be

18

http://157

automatically added to the class list. The lecturer should only be asked to enter

details for students not already in the database.

It is possible that a lecturer teaches more than one subject to a class, so it should

be possible to add a subject to a class. Similarly it should be possible to delete a

subject. Classes might also need to be deleted. Students need to remain in the

system when the class is deleted because they may be in another class.

A student may leave a class for one reason or another, so NetClasses needs to

cater for that. Fig. 2.4 shows the scrcen for choosing which student to delete.

Chapter 2 Analysis And Specifications

Remove a Student - Microsoft Internet Explorer
i File Edit View Favorites Tools Help

| si-« B a c k ▼ T Q ^ S e a rc h ' » I F a vo rite s jQp M e d ia f w | ' H J R

I Address | e j h t lp : / / 1 5 7 .1 9 0 6 6 .2 3 2 /N e tC la $ $ e s /$ e c u re /le d u re i/!e c tu re rM e n u C la s s M e ru j? C la s s M e n u ln d e x = 3 & C la s s M e n u L e v e M] "3 ^ G°

~ M » NetClasses Course Facility

You ha\
Class = Coml

re chosen to delete a student. All data belonging to the student-will

Select Student to Remove | Buckley, Elaine (buckleye) j

disappear.

Delate Bucklev, Elaine (buckleve)

Doyle, Donny (dyled)
Enright John (enrightj)
Foqorty. Emma (efoqarty)

Figure 2.4 Deleting a student page.

19

2.2.5 Handling Quizzes

Lecturers need to be able to create multiple-choice quizzes and store the correct

answers in the system. They also need to be able to edit, add and delete questions.

Chapter 2 Analysis And Specifications

Students need to be able to take the quizzes and view their score. The marking of

the quizzes should be done by NetClasses based on the answers supplied by the

lecturer. Students should be able to take quizzes either by clicking on a link or by

selecting a menu item. Fig. 2.5 shows the results screen that is shown after a quiz

is marked.

Fie Edit View Favorites Tools Help r

(J) Back - ,x| [¿\ , Search . Favorites Media ^

i http://bcalhost;8û80/NetClasses/securei'student/tâkeQiJ6?Takei3uaievel=I&source=student/student.Jsp v ¿J Go '11
A

m - ■ ' ■__ ,
HI m NetClasses Course Facility

Course = Coml, Programming
Quiz:- CIT. Results

Score = 33%
You sot the following questions wrons:-

(-)
(3)

|Okj

.£J Done » 1 Local Intranet

V

Figure 2.5 Quiz results page.

It should be possible to place links to quizzes on the notes page so that a reader

can review the notes for a particular section of the course and then take a quiz

20

I

http://bcalhost;8%c3%bb80/NetClasses/securei'student/t%c3%a2keQiJ6?Takei3uaievel=I&source=student/student.Jsp

related to that section. It should also be possible to create quizzes and store them

in the system without necessarily putting links to them on the notes page.

Chapter 2 Analysis And Specifications

I f a lecturer decides to put a link to a quiz on a notes page, he may want to hide

the quiz from the students until such time as it becomes relevant to the material

they are learning. There needs to be a facility for hiding quizzes in such cases.

2.2.6 Posting Messages

Lecturers need to be able to type short notes into a web page and the notes should

be available to the students.

When students log on and there are new messages, they should be informed about

them on the welcome page. There should also be a button on the same page to

allow the messages to be read.

A message should be marked as old in the database if a student has read it. There

should also be a facility to allow the student to review all old and new messages.

Lecturers need to be able to delete messages so they are no longer visible to the

students. Fig. 2.6 shows a message screen.

21

Chapter 2 Analysis And Specifications

Read M ossagli M icrosoft Internet Explorer I n l x l

File Edit View Favorites Tools Help o
Back ▼ ' 4^ 11ÜI ¿fcSoarch _±J Favorites Medio ¿Jà fwl ^ Ml iR

Address |^gj http://157 190 66 232/NetCiasses/secure/student/studentMenu?StudenlMenuL0vel-O&SludentMenulndex=5 _rj t^ 130
------- J

^ NetC lasses Course Facility

Course = C o m i, Programming
R ea d M e s s a g e

M es s a g e
I will be on a course tomorrow and will not be able to give a class. Please read chapter 15.

Posted on 07/08/2004
M e s s a g e

Assignment A is proving difficult for some o f you so there is an extension o f on e w eek

P osted on 08/09/2004
Ok|

_ l
fe I Done 00 Internet

Figure 2.6 Reading messages page.

2.3 Conclusion

This chapter analysed the problem area and sets out several requirements that

NetClasses must satisfy. The modules o f the system are identified and the

functionality expected from each module is discussed.

Chapter 3 looks at solutions that are already available and chooses the technologies

that are used to build NetClasses.

22

http://157

Chapter 3 Existing Work

Chapter 3

Existing Work

23

3.1 Existing Technologies

This section is intended for readers who do not have expertise in the area o f web

based applications.

Using the Internet for most people today means opening a web browser on a

computer and using that to read a web page from another computer. To

understand this thesis it is necessary to know a little bit about the technologies

that make web browsing possible.

3.1.1 Web Servers

For web browsing to work as described above, one computer has to be the web

server [ORFA99]. That computer provides the web pages for those other

computers that receive them. A computer that requests the web page from the

server and then displays that page for the user to read is called the client

computer. Any computer can become the web server if the correct program is

running on it. A computer can also be a client if it has a suitable web browser on

it.

3.1.2 HTTP

If the web server is providing the web pages and the clients are receiving those

pages, then there needs to be certain rules about how requests and responses are

exchanged between the computers. The set o f rules that are the industry standard

Chapter 3 Existing Work

24

for exchanging information between computers on the Internet is called Internet

Protocol (IP). The set o f rules specifically for requesting web pages and for

responding to those requests is called Hypertext Transfer Protocol (HTTP)

[FOR003],

3.1.3 HTML And XML

Hypertext Mark-up Language (HTML) is a set o f predefined tags that are used to

describe what a part o f a web page should look like. For example <center> any

text or other page element </center> will put the text between the two <center>

tags in the middle of the section o f page it occurs in. The tags are in the web page

that is sent to the browser and are interpreted by the browser. They do not

themselves appear on the web page but influence how the web page material is

presented to the user. XML is like HTML except that the tags are defined in a

separate file. Without access to the file, the browser will not know the meaning of

the XML tags. For an introduction to HTML and XML see [MORROl].

3.1.4 Dynamic Web Pages

Static web pages are the simplest web pages for a web server to handle. The

information that describes a web page is kept in a file on the web server and when

the client web browser requests that page the file is sent to the client computer.

The web browser interprets the information in the file and creates a page on the

client computer screen.

Chapter 3 Existing Work

25

Chapter 3 Existing Work

Dynamic web pages are different because the data that is sent from the web server

to the client may not be the same every time the web page is requested. For

example, a web page that has today’s date and time as part o f the page would be

different at different times. A page that has variable information put into it at the

time o f request is known as a dynamic web page. NetClasses uses dynamic web

pages.

3.1.5 DBMS

The data that is used to assemble dynamic web pages can be kept in a database.

When there are multiple users reading and writing that data, a Database

Management System (DBMS) is needed. The DBMS is a program that manages

the data in a database and makes it available for other programs to use [ROBPOl].

NetClasses has a DBMS and it runs on the web server.

3.2 Dynamic Web Pages Technologies

Dynamic web pages and a database are needed to implement NetClasses. This

section discusses choosing the technology to provide the dynamic web pages.

There are several environments that can be used to implement dynamic web

pages. The best known are [RAJA02]:

26

• Common Gateway Interface (CGI).

• Personal Home Page (PHP).

• Active Server Pages (ASP).

• Java Server Pages (JSP).

These environments are presented in Sections 3.2.1, 3.2.2, 3.2.3 and 3.2.4.

Chapter 3 Existing Work

3.2.1 CGI

CGI is the oldest o f the technologies listed above. It uses a collection of

environment variables and a few other strategies to provide the gateway between

the language that the application logic is expressed in (often C or Perl) and the

HTTP protocol. This gateway approach is not particularly object-oriented because

o f the use o f environment variables that are in effect global variables. Large

projects can be difficult to manage with this old style o f modelling the data.

In earlier versions o f CGI there was a further drawback. This related to the

scalability of CGI applications. Each HTTP request spawned a new process with

its own memory and other resource requirements [COLEOO]. Any application that

processed a lot o f requests was inefficient as a result.

The two drawbacks mentioned above led to the decline in use o f CGI in favour of

more modem technologies. The problem of having separate processes for every

request has now been addressed [FIEL02], Newer CGI implementations use

27

threads but even this has not helped CGI to regain its position as the technology of

choice for dynamic web page deployment.

Chapter 3 Existing Work

3.2.2 PHP

PHP works by including code script in the web pages. This is known as server

side scripting because the code script is interpreted and executed on the server

side. The effect o f executing the server side script is to generate the HTML stream

that is sent to the client.

PHP is both open-source and cross platform. As a server-side scripting language

PHP must be written in the web page. This means that the application logic is

included in the web page file on the server. A three-tier architecture, presented in

Section 4.1, can still be used because the logical separation of the processing layer

and data layer does not mean that they have to be physically separated. However,

if the job o f page designing is to be separated from that of application

programming, it is better that the scripted logic and the static page layout

descriptors be separated [GANG02], It should be easy for the page designer to see

which parts o f a page have to be altered to get the design and layout required. This

is not possible with a pure server-side scripting language like PHP because the

code and HTML tags are interspersed [MEL003].

28

PHP does everything that needs to be done by NetClasses and would have been

used had a better alternative not been found.

Chapter 3 Existing Work

3.2.3 ASP

ASP is Microsoft’s technology for producing dynamic web pages. As such it is

not cross platform and only works with Microsoft web servers.

ASP supports many server-side scripting languages [MARAOO(a)], of which

Visual Basic Script (VBScript) is the most popular. Used with VBScript the

business logic can be expressed in the script or in ActiveX controls. ActiveX

controls can be referenced in dynamic web pages. This facilitates the separation

between the code describing the page and the code describing the dynamic

content.

Using ActiveX controls, the business logic can be implemented in an Object

Oriented solution.

ASP does everything NetClasses requires in a modem object oriented way but is

not cross platform and so would only be used if nothing else would work.

29

3.2.4 JSP

JSP allows both scripting in Java and referencing Java objects in the web page.

The programmer has access to the complete set o f Java Application Programmer

Interfaces (APIs) for use in accessing databases and processing the data. Of

course all the data processing is done on the server side before the page is created

and sent to the client. The extensive Java Graphical User Interface (GUI) objects

such as are available in javax. swing are of no use to the programmerat in that

case.

HTTP requests and responses are scheduled and dealt with by the Servlet

Container and this runs on the Java Virtual Machine (JVM) on the server side.

The Servlet Container supplied free by Sun Corporation is called Tomcat and

needs no other web server to handle HTTP requests. However Tomcat can be

made to work with several o f the most popular web servers including Microsoft’s

Internet Information Services (IIS) and Sun’s Apache.

XML type tags on the web page that reference Java beans can achieve separation

o f business logic and page descriptors. Beans are simply Java objects that follow

certain naming convention of the get() and set() methods. The logic is

encapsulated in the beans. Very little code appears on the web page other than

tags that access bean methods.

Chapter 3 Existing Work

30

It might be expected that JSP would be slower than the other alternatives because

Java is an interpreted language. Java is compiled to machine independent byte

code and is interpreted by the JVM during the execution phase. PHP, Perl and

VBScript are interpreted also so there is no speed disadvantage against these.

There is a speed problem the first time any JSP page is requested. Every JSP is

compiled into a servlet [FIEL02]. The servlet has both a Java and a .class file.

The first time the page is accessed (assuming it is already interpreted, compiled

and deployed as a servlet) the .class file must be loaded into memory on the

server. This takes a considerable time. All subsequent requests for that page by

any client are answered quickly because the class is either in memory or virtual

memory.

JSP does everything NetClasses requires in a modem object oriented way. It is

also both cross platform and open source so it is used to implement NetClasses.

3.2.4.1 Java Server Pages Environment

Java Server Pages technology is an extension of servlet technology. Both of them

are from Sun Corporation. JSP pages are compiled to produce servlets. According

to [INCE02], “Servlets are snippets o f Java code which are loaded into a Web

server and are executed when an HTTP command is processed by the server”.

Chapter 3 Existing Work

31

The JSP pages contain Java code and can contain references to Java objects that

are defined in other Java code files in the same application. The Java code is

separated from the rest of the page material by surrounding the Java section with

<% and %> markers. The creator of a JSP page has access to all the facilities in

the Java programming language. Good web based application design dictates that

the amount of Java code in a Java Server page is kept to a minimum [FIEL02],

The code that prepares the information to go on the web page is kept in other Java

files in the application. The prepared information is passed to the JSP page before

it is sent to the client. A certain amount of Java coding is required in the page to

collect the information and put it on the page.

For JSP to work there must be a Java servlet container running on the web server.

The one supplied free by Sun Corporation, Tomcat, works well for NctClasses.

Each JSP page is compiled to produce a corresponding servlet. This is done by the

Java servlet container and needs no input from the application developer. The

Java servlet container looks after all the scheduling of HTTP requests and

responses for the application. An advantage of servlet technology is that the

container keeps information about the HTTP session on the server side. The

information is available within the application from the time the client opens the

browser and makes the first request until the user logs off or closes the browser

session [FIEL02], This facility was not available with older technologies and

developers had to use cookies or other strategies to keep track o f the session

information on the client side and continually sent it to the server. The Java

Chapter 3 Existing Work

32

servlet container used to develop NetClasses can even resume a session after

shutting down and restarting the web server.

Chapter 3 Existing Work

3.3 The Database Management System

The data server and the web page server need to be both Java based applications

so that they are cross platform. If the classes that make up the DBMS application

are made available to the servlet container, then NetClasses can use the facilities

directly. This method of using the DBMS classes is called running in embedded

mode. One widely used Java database is Cloudscape but this is no longer

available free of charge. Therefore, another DBMS that supports both Structured

Query Language (SQL) and Java Database Connectivity (JDBC) is used. It is

called McKoi, is free, open source and is available at http://mckoi.com/database/.

It can also be embedded in another Java application.

Not all DBMSs are entirely thread safe. However, as long as an instance o f the

Resultset or Statement objects are used by only one thread at a time they will not

interfere with different ResultsSet or Statement objects used in another thread.

This can be achieved by using a Statement as synchronised and opening and

closing the ResultSet in the same thread. The ResultSet objects can also be

created in insensitive mode, that is the results are a snapshot of the data at the time

of reading and do not change when the database is updated.

33

http://mckoi.com/database/

Any database supporting SQL and JDBC can be used in NetClasses. If it not used

in embedded mode then it must support client-server architecture. McKoi supports

client-server architecture but not in embedded mode. In NetClasses, it is used in

embedded mode but not in a client-server architecture. This might seem strange at

first because NetClasses is essentially a client-server application. The Java Servlet

container, however, is the actual application that accesses the database facilities

supplied by the DBMS. Therefore, the clients o f NetClasses are clients o f Tomcat

and not of the DBMS. The design of NetClasses ensures that there are only two

connections to the database opened at any time by Tomcat. One connection is for

group transactions that must all be completed before the changes are committed to

the database and the other one is for simple transactions. There can be several

SQL statements requesting access to the database at the same time but each SQL

statement is synchronised so there can be only one instance of each SQL

Statement accessing the data at any time.

3.4 Existing Applications

This section looks at some o f the big commercial web content management tools,

one free open source application and two custom built applications used in CIT

and University College, Cork.

Chapter 3 Existing Work

34

3.4.1 WebCT (www.webct.com)

WebCT is a commercial e-leaming tool used in several third level colleges. CIT

has this system on campus. There are facilities in the enterprise edition for

integrating with the college Student Records and other college wide applications.

It is also possible for students to modify their view of the notes and even to

annotate them. The functionality of WebCT that falls within the specifications of

NetClasses is considered in this thesis. Figs. 3.1a and 3.1b show some of the

options available to a lecturer using WebCT and NetClasses.

Chapter 3 Existing Work

WfebCTVista™
Custom ize Manage TeachI Build

C ourse Map j Com ponents | - Select -

My OSU Online Help Log out

Atom ic Learning M olecule Building Team s - team

H è ï | S e le c tiv e R elease Map j S3 Jfü

C ontent Tools

® C o n te n t Page
Create new content by
uploading files or using the
HTML editor.

S Learning Module.
Arrange course components
in a table of contents tha t
guides students through a
learning path,

Local Content
Specify a directory structure
fo r local content referenced in
a course.

C om m unication Tools

Media Library
Create entries to build a
glossary or collections of
image and media files.

11 C alendar
View and add public or private
entries to the course Calendar.

• Chat and W hiteboard
Create, modify, and delete
rooms, and view room logs.

$
M D iscu ss ion s

Create and manage discussion
areas and topics; read and post
messages to topics.

Evaluation Tools

^ Assessm ents
Create and edit quizzes, self-
tests, and surveys.

© Assignm ents
Create and edit assignments
fo r individuals and groups.

Q uestion D a tab a se
Build or im port a repository o f
questions fo r use in
Assessments,

R esou rces
Create a bibliography of
books, articles, and URLs tha t

Figure. 3.1a Some of the WebCT options.

35

http://www.webct.com

Chapter 3 Existing Work

13 Welcome Menu - Microsoft Internet Explorer H0DJ
File Edit View Favorites Tools Help

■^Back. ▼ ' J 4) ¿^Search +1 Favorites ¿fMedia StÌ ÏT J '.I <DJll ta

A d d ress |ô j http://157.190.66.232/’NetCla$$es/secu[e/welcome ¡$p Ü
J

■ » NetClasses Course Facility

Home I Lecturer Menu

Course = Com l, Programming

| Another Course | Administrator | Logout | Change Password

Class Menu

Assignment Menu

Motes Menu

Ouiz Menu

Message Menu

Welcome to NetClasses. To proceed, click any menu item.

J
¿1 http://157.190.66.232/NetClasses/secure/lecluref/lecturer.jsp "C Internet

Figure. 3.1b Some of the NetClasses options.

Assignment uploading and lecturer notes uploading have much the same

functionality in both systems.

In the matter o f students joining a course there is a major difference between the

NetClasses approach and that taken by WebCT. NetClasses allows lecturers to

create class groups and populate their classes with students. The administrators

for the site can only do student entry in WebCT courses.

WebCT instructions on using the application say:-

“Warning: Avoid using your browser’s Back and Forward buttons to navigate

through WebCT CE. Instead, use the Course Menu, Control Panel, Menu Bar and

36

http://157.190.66.232/%e2%80%99NetCla$$es/secu%5be/welcome
http://157.190.66.232/NetClasses/secure/lecluref/lecturer.jsp

breadcrumbs” . The forward and back buttons can be used in NetClasses without

adverse effect (see Section 4.5).

Chapter 3 Existing Work

3.4.2 Moodle (moodle.org)

Moodle is a free, open source course management system for online learning. It is

written in PHP and requires the client to have session cookies enabled.

The Moodle notes page allows users to view single files or to click on folders to

see a list o f files. A Moodle page showing a link to a lecturer’s notes folder is

shown in Fig 3.2 .

'3 Course: Programming 1 - Microsoft Internet Explorer EEJ
File Edit View Favorites Tools Help a
Q s a c k * ;xj tZ\ y Search Favorites ▼

I a M- -- h ttp ://bca lhosVm oodle/course/vie \v.php?id=2&edit=off v ¿3 Go
»

P r o g r a m m i n g 1
You are logged in as Admin User (Logout)

A

ComlP » COComlP T u rn ed itin g on

People Topic outline Latest News

ÿï] P a rt ic ip a n ts Add a new topic...

Groups
J Edit profile *

i t News forum (No news has been posted yet)

Activities

Forums

1 Repetition !
_Ll files

Upcoming Events

There are no upcom ing
events

Î L Resources J u m p to... v Go to calendar...
New Event..,

Search V

-fed * -J Local intranet

Figure 3.2 Moodle notes page.

37

http://bcalhosVmoodle/course/vie/v.php?id=2&edit=off

Moodle can be set up to allow users to register themselves in the system. The user

must supply an email address and a key is sent to that address so that the user can

be registered. Administrators can also enter students into the system. Lecturers

can enrol students in their course who are already in the database. NetClasses

allows lecturers who are not administrators to enter students into the system and

so is different to Moodle in that respect.

In Moodle, any user who is already in the system can enrol themselves on a

course. If the lecturer does not want any user enrolling on a course then the course

can be protected by a password so that only those who have the password can

enrol themselves.

Submitting assignments is much the same in both NetClasses and Moodle except

that Moodle only allows one file to be submitted whereas NetClasses users can

submit multiple files.

Security is a bit slacker in Moodle than in Netclasses. The current version at time

of writing, 1.4.3, allows a student who is enrolled on a course to view a file

submitted by another student o f the course simply by pointing the browser at that

file. The student who does that would have to know the name o f the target file and

also the user number o f the student whose file he is targeting. The user numbers

are generated by Moodle at the time the users are entered into the system and are

assigned sequentially. Fig. 3.3 shows a student viewing his own submitted file

Chapter 3 Existing Work

38

and Fig. 3.4 shows the same student viewing the file submitted by another

student. The folder was changed from 12 to 11 and the file name changed from

Test_file_2.doc to Test_file_l.doc in the address bar to achieve this.

Chapter 3 Existing Work

E S 0 : J
1

Back * . j | k] [¿] '¡} y . ' search Favorites £ ;▼ B T

■ Addtess hcip://bcalhoso'moo<lle/mocl/a5signmenyview.php?ld=6

if

. J &
V J G O ”

b
|<| Jump to... v

ComlP » b Assignments » Assignment

Assignment

Maximum grade: 100

Submit a file

Your submission:

Last m od ified : Friday, 7 January 2005. 06:07 PM

T e s t_ f ile _ 2 .d o c

V

-fe] * J Local intranet

«5 a a i t a i

-J [*] \s\ -,ii P Search ^ F a v o r i t e s & 0 * ^ m _ J ■%
•ir

Addi e •¿1 http://localltost/inoodte/fiie.php/4/nioddata/as5ig n n ie n t/ i/ l2iTestJ iie_2.doc v 0 6 o .inks ”
u 3. I-2- 1. J. i.J?. n- 1-2-1.3. t-4 - i-5. i-6< i-7 - i-8- 1-9- • •J0' <11- i -12- ' '13- ■ 14i • •!& i -17. i 1» A

1 (i«t fitt: --'
H

■ ta m!;® <1 J .
w

►r
-taj Unknown Zone

Figure 3.3 A Moodle student viewing his own file.

39

http://localltost/inoodte/fiie.php/4/nioddata/as5ignnient/i/l2iTestJiie_2.doc

Chapter 3 Existing Work

;■

Q Back - x] Z\ ! ■ Search Favorites [wj -

e j http://localhost/m oodle/m od/assignm ent/vle’.7.php?ld=6 ~ (¿3 Go

t
A

<| Jump to ... v

Com lP »> b >• Assignments » Assignment

Assignment

M a x im u m g ra d e : 100

S u b m it a f i le

Your submission:

Last modified: Friday, 7 January 2005, 06:07 PM

S . T e s t_ f ile _ 2 .d o c

V

-t£i » J Local intranet

4 1 http://loca 1 host/m oodle/file.php/4/moddata/assignnrvent/1 /11/T le_1.doc - Ml — ft! [¡T l]]
File Edit View Insert Format Tools Table Go To Favorites Help ff

Back - x] Z) , / Search Favorites g j) ■» • J Ü

e) http ://toca lhost/'m ood le/n ie .php/4/m oddata /assignn ien t/l/ll/Test_flle_ l.doc

L 3 • > ■ 2 ■ ' • 1 • ' 1 1 • i ■ 2 ■ > • 3 ■ i -4-1 -5-1 • S ■ i - 7 i • S • ' ■ 9 " -10- I -H i -12- i -13- '

IDiscussj i .. . »

-14- 1 -1̂ 1 -16- 1 -17- 1 '181 “

 ̂ I |Tesifile] 1 ;
■ a ■ m] » i | I.M

-•¿¿i Unknown Zone

Figure 3.4 A Moodle student viewing another student’s file.

3.4.3 TopClass LCMS (www.wbtsystems.com/products)

Another commercial application, TopClass Learning Content Management

System does a lot more than NetClasses. For example it can dynamically deliver

courses based on learners’ individual knowledge level. Fig. 3.5 shows the wide

range of capabilities of this product.

40

http://localhost/moodle/mod/assignment/vle%e2%80%99.7.php?ld=6
http://loca
http://tocalhost/'moodle/nie.php/4/moddata/assignnient/l/ll/Test_flle_l.doc
http://www.wbtsystems.com/products

Chapter 3 Existing Work

TopCbss e-Learning Suits'“

TopC lass . Mobio luoiTiny ■ m m ■■
M o b ile '“

* i L « i r t f

h ii

TopC lass C aM bg&Rsgitm tbn — ^ 1LT M atw ^irvu t
L M S ,u

TopC lass S W IG jp M in i i — ™ [C m ji* t* i*Y ii'DiJflgicnari'i,
C o m p lia n c ie s " '

Virtual “ C d U x iB lw , - “ " IrsduWjy
1

M *S P » I ■ l . w iw 4 Catluiil Mimfl|]cu(wrtl * JW iiC P I WJ »

S f i l im i ■
U*anry} 0 bjsd Lilimiy

■

Cwilonl Publtling — AJCC

I I | I
ILTiCxhlng Contali Cuilnn Corion I Oil-Ufi-End I extent

\VU1. Ue Ur*jH.ta,Hc

Figure 3.5 TopClass overview.

Different approaches are taken by TopClass and NetClasses with regards to the

storage o f course notes. NetClasses notes are stored in a folder for the individual

subject, which is a subfolder of the class folder, which is itself a subfolder of the

lecturer’s folder. TopClass has a single Learning Objects library where lecturers

can access learning objects to associate with their courses. Lecturers can add new

learning object to the library. A learning object is a file e.g notes, picture or

sound. TopClass has a more flexible system than NetClasses in that regard

because TopClass learning objects are reusable whereas NetClasses notes files are

only accessible to students o f the course they are stored in.

TopClass provides a Graphical User Interface that is customizable by the lecturer

and can be used by the student to access notes and other course material.

41

TopClass has a number o f methods o f registering students. One o f these even

allows learners to register themselves. It does not necessarily depend on a central

administrator to enrol students. NetClasses allows only lecturers to register

students and so is more restrictive than TopClass.

3.4.4 Blackboard (www.blackboard.com)

Blackboard is another commercial application and again is more powerful than

NetClasses, for example there is a resource repository where instructors can log

on and download teaching material to include in their course. Fig. 3.6 shows the

options available to a lecturer building a course.

Chapter 3 Existing Work

42

http://www.blackboard.com

Chapter 3 Existing Work

Building a Learning Unit in Blackboard Learning System (Re,

1 1 1 ? £ d l t l i l e » r a v o c i c e s l o o l a f i e lp

Acc e s a [g l http://loehind.blackboard.cDm/docs/LearningServlce3/Relea3e6/Learning Units viewl j^Go

Links jJChrnt.ei Guide gjcuaeusiiM LiaVj yJTree Hotmail ¿J Inten.et 5:arc
tV f l l_ V ltW L t lS : V iew let building Course - Vlewlet Builder Builder (instructor)

Content Areas

Course Information

Course Documents

Course Tools

Announcements

Course Calendar

Staff Information

Tasks

Assiiimnents

Fxternal Links

Discussion Boards

Send E-mail

Collaboration

Diuital Dron Box

User Management

List / Modify Users

Create User

Batch Create Users for Course

Enroll User

Remove Us

Manage Gr

Assessment

Test Manager

Survey Manager

Pool Manager

Gradebnok

Course Stai

Course Options

Manane Course Menu

Archive Course

Recycle Comse

Manaue Tools

Ininoit Course Cartridue

Imnort Packacie

Resources

Course Copy

Support

Support

Manual

Contact System Administrator

I hUp://bbttaining. blackboard. conv,bjn/cofnmon/'5taif.pl?action=LIST&cours0jd= 4 1 & re n d e r_ ty p e = E D IT A B L E

IT— V-
Internet

I * l» t £ >

Figure 3.6 Blackboard course building options page.

Blackboard provides a Graphical User Interface that is customizable by the

lecturer and can be used by the student to access notes and other course material.

This application takes the same approach as NetClasses in adding students to a

course. Lecturers can create courses and add students to them.

43

http://loehind.blackboard.cDm/docs/LearningServlce3/Relea3e6/Learning

3.4.5 Notes (notes.cit.ie)

This notes posting facility is used in CIT to cater for lecturers who do not want

the full functionality of WebCT but who simply want to make their notes

available to students without having to learn to use a complicated interface. It was

built by Digital Crew (www.digital-crew.com) at the request of CIT.

Notes has similar functionality to NetClasses for uploading course notes. The

interface for viewing notes is veiy different. Notes has a flat list of the files

whereas NetClasses can group files under a heading so as to keep files in logical

bundles. Fig. 3.7 shows the Notes file viewing interface.

Chapter 3 Existing Work

3 CIT Lecturer Hôtes - PM1004 Class06 - <*maJ_L>Kathiyn Hoynihoj
'J-* B a c k ^ ^ d l I 3 S e a r c h ♦ I F a v o r i t e s j j H e d l a ^ | ^ » I Q J R ffili o
Zi le Edit ïiew favorites Jools iielp

“3 f>cA d d r e s s j ^] h t t p : / / n o t e s . c i t . . i e / i n d e x . c £ it i

Links •&]Channel Guide Customize Links ^]Free Hotmail Internet Start

CORK INSTITUTE OF TECHNOLOGY
IN S T IT IU ID T E IC N E O I A lO CM TA C H O R C A l

L ogged in s u ccess fu lly to Kathryn M oynjhan 's notes - "PM 1004 C la ss0 6"

O C la ss N otes

® Log Off

P M 1 0 0 4 C lass06 - K a th ryn M oynihan

!> PM1004 C lass06

Files in "PM1004 C lass06"

H om e & Log in

lla m e ^7 Size ^7 D e s c r ip t i o n

1 A b o lit fo r n i f ie ld s 70 Kb No D e sc rip tio n

2 class o u tlin e 54 Kb No D e scrip tio n

3 e xam ine s 50 Kb No D e sc rip tio n

4 F o im s FAO 31 Kb No D e sc rip tio n

5 S] F m tlie i R e íiílin íi 25 Kb No D e sc rip tio n

Built by P lf lili l CrtVY L iî t Updlt«d: 07/07/2004

Qp Internethttp ://notes. cit.ie/index.c£m#top
3 8 s t .« t | || & ÇJ yJ¡ > E* II £ > . . J l-j; 1B¡33

Figure. 3.7 Notes file viewing page.

44

http://www.digital-crew.com

Notes is not meant to be an assignment manager as well, so it does not have

student uploading or individual passwords for students.

Chapter 3 Existing Work

3.4.6 Extranet [RUSSOO]

Extranet is the product of an MSc. project in UCC. The project was carried out by

Gavin Russell and Jannejte van Leeuwen in 2000 as part o f their thesis for an

MSc. in Multimedia Technology.

The authors designed and produced a site that provides links to various freeware

applications (in all cases modified to make them have the right look and feel).

They wrote the file upload facility from scratch.

This product does not use a DBMS and so is not comparable to NetClasses. The

idea was to research suitable freeware products and to gather them together in one

site. The suite o f applications can provide access to notes, assignment uploading

and reporting and a bulletin board. It does not have online administrative

functions like NetClasses has. Extranet does not use a login that allows access to

the whole site but has separate login pages for different tasks.

The technology used in Extranet is CGI and the dynamic web pages are written in

Perl.

45

Extranet is fundamentally different to NetClasses in that it is built for a single

course i.e. one class with several lecturers whereas NetClasses is for multiple

courses hosted by multiple lecturers.

3.5 Conclusions

This chapter reviewed various technologies used in the field o f web content

management and some of the available applications. Some aspects o f the existing

solutions are compared to the facilities offered by NetClasses.

NetClasses cannot compete with the three big commercial applications on every

front. The notes uploading facility in NetClasses is similar in functionality to all

the applications reviewed. The NetClasses interface to the course notes and

submitted assignments is different from those reviewed. NetClasses has an

interface for course material access that is intuitive to use and easy to learn. The

NetClasses method o f adding students is as useful as any for institutions such as

CIT.

Chapter 4 presents theoretical issues behind NetClasses design and some of the

decisions made about site architecture and deployment.

Chapter 3 Existing Work

46

Chapter 4 Architecture And Design

Chapter 4

Architecture And Design

47

4.1 Three Tier Architecture

Darrel Ince [INCE02], in his book, Developing Distributed and E-Commerce

Applications, introduces the three-tier architecture for distributed systems with a

database layer.

When web pages are not dynamic, two-tier architecture is often used. This

consists o f one layer with the presentation and logic elements o f the system and

the second layer with the data. The HTML code in the pages is both the

presentation and logic layer where the only logic is deciding which page to show

next and the data (web pages or other data such as animations or sound) is stored

as files on the web server.

When using dynamic web pages there is more processing to be done on the data

before it is presented. In that case it is no longer convenient to have the logic layer

in the code that the client uses to display the pages. Either each client would have

to maintain the data processing code or the code would have to be sent by the

server along with the web page. Having data processing code on the client side

can be problematic because the enterprise logic tends to change over time. The

three-tier architecture, shown in Fig. 4.1, adds an extra processing layer between

the presentation layer and the data layer. So before the presentation data is sent to

the client, it is processed on the server side to reflect the dynamic situation.

Chapter 4 Architecture And Design

48

Chapter 4 Architecture And Design

Figure 4.1 Three tier architecture for dynamic web pages.

The three-tier architecture as applied to dynamic web pages has the presentation

layer in the HTML code sent to the browser, as well as the browser itself. The

processing layer is encapsulated in the business objects. The data layer is the files

that describe the web pages plus the relational database. The data in the database

are used by the business objects either to create the pages or to decide which

pages to create.

The processing layer needs more explanation. The business objects that

implement the processing layer contain the logic o f the application. User input, in

the form of browser HTTP requests, signals one o f the business objects. This

happens by the action of intermediate software known as middleware. The

business objects collect the data required and create the HTML code that will

eventually create the web page on the client side. Again, because of middleware,

49

the business objects are able to give an HTTP response with the dynamically

created HTML coded web page to the client.

Chapter 4 Architecture And Design

With Java Server Pages, the platform used to implement NetClasses, the servlet

container (Tomcat in this case) provides the middleware that handles request and

response scheduling. The servlet container allows the programmer to use

HttpServletRequest and HttpServletResponse objects in the business object code.

The application logic can be applied to any user input attached to the

HttpServletRequest and the Java Server Pages can then be dynamically created

using the data made available by the business objects.

HttpServlet is a class in the Java Server Page platform. Any object that is created

to extend HttpServlet can use doGet(), doPost() or service(). Each of these

methods have HttpServletRequest and HttpServletResponse objects as parameters

and that is the interface between the HTTP protocol and the business logic o f any

application using Java Server Pages [FIEL02].

The NetClasses application uses the three-tier architecture because it fits well with

this type o f application. For the system to be flexible in its deployment, each user

should not be required to have NetClasses application logic on their terminals.

Users can then use the application from anywhere once they can get access to a

web browser. For the same reason of flexibility, cookies are not used. Without

cookies the behaviour o f NetClasses is the same no matter which terminal the user

is accessing from. The web browser presenting web pages, matches the

50

presentation layer very well in that it is only used to facilitate the user interaction

with the system. Some processing logic can be sent to the client computer in the

form of Java Script embedded in the web pages. The modem browsers understand

Java Script and so it is used in NetClasses to control and check user input.

The boundary between the business logic and data layer is not so clearly

paralleled in the physical deployment of NetClasses files. The data held in the

relational database is separated from the business objects but some o f the Java

Server Pages (which are data) contain references to business objects and even

some Java code. However, the logical separation is there even when both logic

and data exist on the same page. The logic is used on the server side before

sending to the client. Only the presentation code gets sent.

4.2 File Structure

There are quite a number of files in NetClasses and some structure needs to be

imposed on the files both to make maintenance o f the system easier and to allow

access to parts o f the system to be controlled. The file structure for NetClasses is

shown below in Fig 4.2.

Chapter 4 Architecture And Design

51

Chapter 4 Architecture And Design

 I NetClasses

i | banner

I beans

H _ J filters

!+! _ J lecturers

t-i]_ | secure

(+] L_J administrator

1 I banner

!_ | beans

l+l '_] lecturer

! I servlets

1+] i | student

i+l (I servlets

Figure 4.2 Netclasse file Structure.

Inside the secure section there is one folder for each of the three user types;

administrator, lecturer and student. The lecturers folder outside the secure area is

designed to hold all the lecturer notes and the assignment files. It is put outside

the secure area because it could be left unsecured if the lecturer decided that there

should be open access to the notes. Open access is not implemented in that way in

NetClasses but the file structure is there.

4.3 Site Navigation.

The web is a navigational system, navigation is difficult and it becomes necessary

to provide the user with navigational support beyond the simple hyperlinks

[NIELOO], With this in mind, NetClasses pages other than the logon page and file

viewing page, are designed to be o f two types. One with a menu bar so that the

user can jump to different sections o f the site without going back to a menu page.

The other type is one where the user can only choose to go ahead with the task at

52

hand or to cancel. The navigation of the site is mainly menu driven. The jump

menu bar is meant to be for situations where the user wants to shortcut to the main

menu or to carry out tasks that should logically be done from any position where

the user is free to choose what to do next.

Chapter 4 Architecture And Design

The type of page with menu bar is shown in Fig. 4.3 and the type of page with a

decision to go on or to cancel is shown in Fig. 4.4.

Notes Menu - Microsoft Internet Explorer
1 j File Edit View Favorites Tools Help m

1 1 si-» B a c k ▼ v ^Search ¡¿JFavorites Media ^ | ¡Sr] ▼ i^] Ê

1 Address I ¿ j hup://157,190 66 2 3 2 /N e tC !a s s e s /s e c u re /le c tu re r / le c tu fe ;M e n u ? in d e K = 2

_±,

, s = O u > ,
NetClasses Course Facility

Course = Com l, Programming

Home | Lecturer M enu | Another Course | Administrator | Logout | Chanse Password

Class Menu
Assignment Menu
Notes Menu
Quiz Menu
Message Menu

| N ates M enu |
Insert Heading
Insert File Link
Delete Heading

Delete Link
Add Quiz Link

View Notes Page
Edit Link Visibility

ZJ
Done [qP Internet

Figure 4.3 The type of page with menu bar

53

Chapter 4 Architecture And Design

13 Add new Class - Microsoft Internet Explorer höüe] I
File Edit View Favorites Tools Help i n

B a c k ▼ J ¿ ¡^ S e a rc h F a v o rite s ^ jM e d i a iwfl ▼ >j)R

A d d ress j ¿y h t lp : / / 1 5 7 ,1 9 0 ,6 6 2 3 2 / lN e tC la s s e $ /$ e c u re / le c ti ire r/ le c U jre [M e n u C la s s M e riu ? C la s s M e n u ln d e x = 0 & C la $ s M e n u L e v e l= û 3 I
j

NetClasses Course Facility

This class and subject will become the current course
Already have : Coml : Com2

New Class Name: |

There must be a subject to go with the class. If you teach more than one subject, you can add another
subject with the Add Subject choice in this menu.

Subject for New Class: |

Create | Cancel |

j
fej Done •0 Internet

Figure 4.4 The type of page with decision buttons

Each user has a main menu that is designed to cater for that user’s requirements.

Depending on the role o f the user, different menus present themselves. An

administrator can access two menus, the administrator menu and the lecturer

menu. Lecturers and students can access the lecturer and student menus

respectively.

In [NIELOO] Jakob Nielsen identifies the three most important questions to be

able to answer when browsing a web site as:

1. Where am I?
2. Where have I been?
3. Where can I go?

He goes on to say that the first question should refer both to the Internet as a

whole and to the particular site being browsed. NetClasses provides global

information by including the site banner on the top o f each page. The question of

54

local whereabouts in the site is answered when a user is in a page like Fig. 4.3

because the name o f the menu is given on the page. The whole o f the NetClasses

site, except the pages for logging in, viewing course notes and reading assignment

files are administrative. Administrative pages perform some task that changes

information in the database. The architecture o f most o f the site is meant to be

task oriented and is menu driven. The menu pages have clickable menu options

and when any task is finished, the next page presented is the menu page again. In

some intermediate pages, when a task requires more than one page to complete,

the question of “where am I locally?” is not always answered directly on the page.

The second question can be answered by using the back button in the case of the

task-oriented pages. This is acceptable and normal according to Nielson

[NIELOO]. Special care is taken in NetClasses to ensure that the back button does

not cause any trouble by resubmitting information that has already been dealt with

(see Section 4.5). When viewing the notes files the question “which notes have

already been read?” is taken care o f by the browser colouring those links

differently to the unvisited ones.

In the type of page shown in Fig. 4.3, the information necessary to answer the

third question is available in the jump menu in blue at the top of the page below

the banner and in the menu items themselves. NetClasses provides a short

description o f what each menu item does in a little text box that pops up when the

mouse rests over the menu item. When the user is on an intermediate task page, it

Chapter 4 Architecture And Design

55

is desirable that they finish the task rather than jump to anther part o f the site.

Even though NetClasses discourages jumping out o f such pages the design

ensures that it is safe to do so.

When a user is reading the notes page or an assignment file there is no jump menu

provided. Files are viewed in a new window, so when the user is finished reading

the notes file, for example, they can close the window and resume the NetClasses

session. That design feature is there because the notes file could contain links to

sites outside of NetClasses and it is safer if such visiting is done in a separate

window. Another reason for using a separate window is that some browsers open

files like Word document files in such a way that they take up the whole window

and the temptation is to close the window when finished reading the file. That

would end the NetClasses session by mistake. The sites visited from links on a

notes file would probably not have the same look and feel as NetClasses pages

and sites are sometimes configured so that you cannot get out o f them with the

back button. Fig. 4.5 shows a notes file page being opened in a new window.

Chapter 4 Architecture And Design

56

Chapter 4 Architecture And Design

: «^Back ▼ -4 * [¿1 -^Search _*]Favorites #M eda ^ ¿ J 0 * LI f i

' Address | ç | htlp://157190.66,^2/NdCÌ3tieìAeci,*ej1si:i!ufirVk-ctuici!̂ erdiJôie:Merw7fioi«Mcfd nibf»54NQteiMeovjLovd'C ”3

aj

NetClasses Course Facility

Comi Programming Notes.
9 http://157.19Q.66.232/NetClasses/lecturers/jdoyle/Coml JProgrammlngJnotes/ForLoop.itf - Microsoft Inter... H H □
I File Edit View Insert Format Tools Table Go To Favorite g Help

1- - ■» - fé] 41 ' ^ S e a r c h _*J Favorites ;$ M e d a ^ | ?3 ^ ¿¡fr 0 2] fi
I Address J e j h H p :/y i5 7 190 66 232/N etO asses/'tectiie rs/jdoÿle /C orT i1_ /P rograrriiiiing_ /notes/FofLoop rtf

L J . » •!> I . J . l>R- « • 1 • I • 2 • I *3 • I -4 • I • 5 • I • I -7 • t • 8 ■ 1*9 • I 10- I I *12-1 -13' I -14- i -1% ^3ÌÙ 01È0M É3

■ Ufsh

[For loop.

The third and last o f the three repetition
control structures is the for b o p . As can
be seen from the flow chart on the right,
it follows the same form as a counter
controlled while loop.

The first box ftom the top is initializing
the control variable (or counter) and the
last box in the loop is refreshing the
control variable

Note that the whife loop and the do.. while loop can be reduced to or« decision and one

4

Figure 4.5 A notes viewing page in a new window.

4.4 Restricting Access

The login process is a big part of NetClasses. Once the user is logged in, it is

important to control their access rights to various pages.

Depending on what role a user has they should be allowed or denied access to

various section o f the application. A naive approach to this would be to code the

access rules into the pages and servlets that are being requested. A distinct

disadvantage to this is that the access code would have to be scattered around the

57

http://157.19Q.66.232/NetClasses/lecturers/jdoyle/Coml

application. The writer would have to be continually checking to see which user is

allowed to do what.

Chapter 4 Architecture And Design

The pseudocode for such a denial segment in a page meant for lecturers might

look like: -

I f N O T user.hasrole(Lecturer)

Forward to access_denied.jsp

A more informed approach, that allows separation of this type o f barring from the

functional logic o f the job in hand, is to apply filters [FIEL02]. Filters allow

developers to layer new functionality on top of web-based resources. For

NetClasses, this means that requests and responses can be intercepted and

processed in filters. The filters can decide whether a request is going to be passed

on to the intended target or whether some other action (logging in for instance) is

more appropriate. The filters, then, can encapsulate the barring activity so that it

does not have to be coded into each page or servlet. The filters can be mapped to

apply to requests where the web address or Universal Resource Locator (URL)

matches a certain pattern.

For Java Server Pages and servlets, mapping filters can be done in the “web.xml”

file. This type of mapping means that the entire URL pattern after the context is

required. Contexts are defined in “server.xml” in the “conf ’ folder of the Tomcat

58

Servlet Container. The context for NetClasses is the part o f the web address up to

and including NetClasses e.g. http;//.. ./NetClasses”. Trying to control the

behaviour o f the application with this type o f mapping proves to be unworkable

because the entire structure o f the URL is needed at the time o f writing the filter

map. I f a change in directory structure is applied to the project at some stage, then

these mappings become invalid.

In practice, it is easier to have filters mapped to trap all requests and responses

rather than to try and list in advance the exact URL patterns that should get

caught. In that way, NetClasses can have the rule, for instance, in the student filter

that any user who does not have the role “student” will be directed away from any

page with “/student/” as part of the request URL.

Besides the student filter, NetClasses needs a lecturer filter, a login filter and a

domain filter. The lecturer filter is similar to the student filter. In fact it uses the

same code with different parameters.

The login filter is required because there needs to be an area o f the site that a user

who is not logged in should be allowed to go. One such area is the login page. The

filter needs to intercept requests from users that are not logged in and are

attempting to access secure areas. In NetClasses there are two areas where the

user needs to be logged in for access. These are the secure folder and the lecturers

folder.

Chapter 4 Architecture And Design

59

4.4.1 Domain filter

The domain filter is needed for security reasons. It comes into play when a user

who is correctly logged in to one lecturer’s area tries to migrate to another

lecturer’s area. They might attempt this by changing the request URL in their

browser. This would only happen if a user were deliberately trying to shortcut the

login process that is required if changing from one lecturers page to another. The

lecturer’s login ID is called the domain in NetClasses. The user is associated with

a domain when the course is decided during the login process.

The original approach in NetClasses to this was to have a directory structure that

had the lecturer’s ID at the head. The users would then enter that directory and

access pages from that branch only. This type o f layout is shown in Fig. 4.6.

!-] i_J NetClasses
Ltl |_J Lecturerl
IB L J Lecturer2
1 + 1

Figure 4.6 Lecturers as branches o f tree.

This is workable and easy to code but means that there is duplication o f pages.

With this method there are pages that are the same for each lecturer where only

data depending on the lecturer ID differ. Now the pages that are common to all

lecturers are in the secure/lecturer directory. Some servlets and pages are outside

the secure area because they are needed before login (see Fig. 4.2).

Chapter 4 Architecture And Design

Lecturer3

60

Effecting this change makes it obvious that the domain filter cannot be mapped in

the usual way e.g.

Chapter 4 Architecture And Design

<fi1ter-mapping>
<filter-name>domainlecturel</filter-name>
<url-pattern>/lecturerl/*</url-pattern>

</fi1ter-mapping>

It means rewriting the web.xml file anytime a new lecturer is added and also

creating a new filter instance (the same filter - different parameters). The servlet

container (Tomcat) needs to be restarted after this modification of the web.xml

file so that the new filter gets registered. Although adding a lecturer is a rare event

and is only done by an administrator, NetClasses should be started once and left

running for ever. Therefore, this method o f filtering access to a lecturer’s section

of the NetClasses site is unsuitable.

In order to make the domain filter work even for domains that don’t exist when

the web.xml file is written, a different kind o f mapping is needed. The mapping

needs to be general. The code in the filter must be able to know both the domain

the user is attempting to access and the domain the user is logged in under. The

login domain is easy to determine at login time and this becomes an attribute of

the user object. To get the name o f the domain the user is trying to access, the

domain filter needs to parse the request URL to extract the domain folder name. If

the two are the same the filter passes on the request and response objects to the

61

next filter. If the user attribute, lecturer, is not the same as the domain that the user

is attempting to access, then the request and response are passed on to the login

page.

The use of filters for processing HTTP requests and responses in NetClasses is

versatile. It allows for greater separation of logic and page design than does the

coding of the logic governing access to a page in the page itself. The file

permissions o f the host machine operating system cannot be employed to restrict

access. This is because the only user that the operating system is aware o f is the

NetClasses application no matter who is logged in to that application.

4.5 Flow Control

A three-tier architecture is presented in Section 4.1. There are the three layers;

Presentation, Processing and Database. The logic o f the application is

encapsulated in the processing layer. The logic can be further broken down to

business logic and control logic.

The business logic looks after processing the data. For a web application, the

control logic decides which page to show next. Duane K. Fields et al highlight

this separation in their book: - Web Development with Java Server Pages

[FIEL02], They introduce an extra layer (see Fig. 4.7) between the presentation

layer and the business logic.

Chapter 4 Architecture And Design

62

Chapter 4 Architecture And Design

Presentation
layer

Control layer fc;
Business logic

layer

Figure 4.7 Control layer.

The requirement for a control layer becomes apparent when the inherent

difference between web-accessed applications and conventional off-line

applications is considered.

The Model-View-Controller design pattern [BUSC96] is applicable here. The

Presentation layer is the View. The Control layer is the Controller and the

Business Logic layer along with the database is the Model. The rest o f this chapter

is about implementing the Control layer.

4.5.1 Conventional Applications

Conventional applications either have no user choice, in which case there is no

flow control problem, or the user effectively chooses from a menu. If the user

selects one item from a menu, the flow control manages a return to the menu after

that item has been dealt with. Even if the user choice is to go to a sub menu, flow

control can manage to return execution to the original menu after exiting the sub

menu. The pseudocode for such a standard flow control problem is shown below.

63

Chapter 4 Architecture And Design

Repeat

DisplayMenu()

Read user choice

Case user choice o f

1: jo b l ()

2: jo b 2 ()

3: submenu()

Until user choice = 4

Execution follows a path that is bound by the constraints o f the repeat loop. Users

select a choice and the process associated with the choice is executed. When the

job is finished the user will be presented with the menu again. The cycle of

choosing, executing and choosing again continues until exit (4 in the example) is

chosen. It works because of the built-in flow control in programming languages

[DEIT02]. The user’s choice is not read before the menu is displayed in the

example. After the user’s choice is read, it is examined and a selection is made

depending on its value.

4.5.2 Web Accessed Applications

Like conventional off-line applications, web accessed applications can use

sequence, selection and repetition to manage flow control. The essential

64

difference is that user input is in the form of HTTP requests and these are handled

as soon as they are received. The web server is never waiting for a specific user

input as a response to a specific prompt. Instead, the web server is always

listening for any HTTP request. Indeed that request can be from any user and the

web application has the job o f recognising which user is sending the signal.

In the previous example, flow control is facilitated by the fact that execution waits

for user input and then continues where it left off in the same thread. With web-

accessed applications, the user input is serviced immediately on the server side in

a new thread. The thread that sent the web page to the user, asking for input, is not

aware o f when that input arrives. Instead, a new thread is created to handle the

new request independently o f the requesting thread. It is clear that the solution

expressed in the pseudocode example, cannot work for web-accessed

applications. Each HTTP request is unconnected to what went on previously.

There are two strategies to implement flow control in JSP applications; Page-

Centric Design and Servlet-Centric Design.

4.5.3 Page-Centric Design

All control decisions about which page to visit next are written into the JSP pages

themselves, or accessed in the JSPs through referenced objects.

Chapter 4 Architecture And Design

65

Chapter 4 Architecture And Design

An example from NetClasses illustrates the point. A menu is presented that gives

the choice o f creating a new class of students, deleting a class, populating a class,

removing a student, adding a subject or removing a subject. This menu is shown

in Fig. 4.8.

¡ 3 Class Menu - Microsoft Internet Explorer H 0 Q

File Edit View Favorites Tools Help n

sJ-'Back ▼ ' J _£| 4 t Search 4-1 Favorites 0 Media ^ @ » _d f i
, A d d ress Jè] http://! 57190 66 232/NetClasses/secuæ/!ecturer/lectureiMenu?index=0 fv>Go

NetClasses Course Facility

Course = Com l, Programming

Home | Lecturer M enu | Another Course | Administrator | Logout | Change Password

Class Menu

Assignment Menu

Notes Menu

Quiz Menu

Message Menu

Class M enu

Create Class

Delete Class

Populate Class

Remove Student

Add Subject

Remove Subject

a) Internet

F ig u re 4.8 Class Menu page.

The menu should be continually presented until the user jumps to another part of

the site. I f the user clicks on Create Class, then a new class should be created and

the menu presented again. Similarly with Delete Class and Populate Class and the

others, the menu should be presented again when these jobs are done.

66

With page-centric design [FIEL02], a menu item would typically be a link to the

JSP page that looks after that job. The individual pages would then direct the user

back to see the menu page again. This is quite easy to control with each page

directing where flow should go next.

Things get a little more complicated when jobs require more than one page. An

example is the Create Class menu item. First o f all the user should be asked for a

name o f the class to create. This means another intermediate web page is needed

to ask the question and read the answer. The answer has to be compared to class

names that are already there. I f the class name exists already, then the user must

get an error page and then the menu should be presented again. If the new class

name is valid, the user could be informed with an intermediate page. If the user

wants to proceed, the class should be created, and the user informed with another

intermediate page, that everything went according to plan. Finally the menu is

presented again. The user should also be given a chance to cancel instead of

providing input if that is what the user wants.

Still this is no more difficult than, and is indeed analogous to, providing structured

programming without repeat structures. It is like using combinations o f if...goto to

provide the functionality o f repeat.. .until. The goto is like the part o f the JSP page

that redirects to the next page.

Chapter 4 Architecture And Design

67

The real difficulty comes from the fact that users can use the back and forward

button to access any of the intermediate pages. Without careful programming, this

can lead to a breakdown in more complicated applications.

“Since each segment of a page-centric JSP application is its own page represented

by its own URL, there is really nothing to stop a user from executing the pages

out o f order. Each page o f your application must check for valid request

parameters, verify open connections, watch for changing conditions, and

generally take an assume-nothing approach with regard to the order o f operations

o f your pages. As you can imagine, this quickly becomes unmanageable for all

but the simplest applications.” [FIEL02],

4.5.4 Servlet-Centric Design

With Servlet-Centric design [FIEL02], the flow control logic is encapsulated in

servlets (the application objects, that extend HttpServlet, and so have access to

HttpServletRequest and HttpServletResponse).

The servlets then redirect the requests to the required pages. Server side

redirecting with JSP does not create a new HTTP request but keeps the old one

along with all its parameters. Information can also be added to the request in the

form o f Parameters or Attributes (Parameters for strings and Attributes for Java

objects). This information can be used in the JSP page, for instance the

information could contain the address o f the next page or servlet to activate.

Chapter 4 Architecture And Design

68

Where there are intermediate pages that the user should not be able to activate by

refreshing the web browser, then some system of validating the HTTP request is

needed. One such system of validating http requests centres on a use-once token.

4.5.4.1 Use-On ce token

Use-once tokens are a servlet-centric solution to the problem of users refreshing

pages [FIEL02]. Each page that raises a request by user action will be serviced

only once. Any attempt to refresh the page or to resend the request will fail

because the token will not be current.

The lifecycle of the HttpSession object and the HttpRequest object are different.

A session object is created when a user first access the application and dies when

the browser is closed or the connection lost. The request object is created any time

the user requests a page or submits a form and dies when the request is serviced.

Typically any request is finished being serviced when a new page is presented to

the user.

The use-once token is attached as an attribute to both the request and session

objects. Commands are only executed if the token is the same in both the session

and request. Each time a new request is raised, the current token is changed.

When a user resubmits a form that has already been serviced, the token attached

to that request will be stale. The token attached to the request object for a page is

sent as part o f the page after being put there by server-side JSP scripting. So the

Chapter 4 Architecture And Design

69

token becomes a hidden part o f the page the first time it is requested and if it is

refreshed, the same token is sent back with the new request.

Chapter 4 Architecture And Design

The use-once token does not put a flow control regime in place, it is merely a

devise to prevent users bypassing whatever flow control is in effect.

4.S.4.2 Program Flow By Numbers

The NetClasses solution to the flow control problem is presented in this section.

Each menu item is assigned an index number. If a command has many parts, as

with the Create Class example in Section 4.5.3, each part is assigned a level

number.

The HTTP request object is made to carry three special parameters with this

system. Continuing with the example they are:

1. ClassMenuIndex.
2. ClassMenuLevel.
3. status.

All requests to do with servicing the Class Menu are directed to the

lecturerMenuClassMenu servlet, Appendix 2. When writing the JSP pages, there is

no need to be aware o f any flow control issues as all forms and pages request the

same servlet. Using a servlet in this way is normal for a servlet-centric approach

[FIEL02].

70

The servlet directs flow to a command and passes the HttpRequest and

HttpResponse to that command. Each level o f command has its own Java code.

The command forwards the request to the JSP page to create the user view. This is

also usual for servlet-centric solutions.

The NetClasses control servlets read the request parameters index and level and

decides whether the request comes from a menu command or an intermediate

page. Menu levels have the value 0. I f the request comes from a menu command,

then the session index attribute is set accordingly. The level is raised by one in

either case because the next part o f a multi-part command will have a level

number, one greater that the previous part. The session attribute, level, is then set.

The session attribute, index, remains the same until a new choice is selected from

the menu. Both request attributes (index and level) are set as well. The commands

are stored in arrays and the index and level determine which command is called

next.

The command knows which level and index it is at in this method because it is set

at initialization. It then checks its own level and index against the session level

and index. I f they are the same, execution will go ahead and the appropriate JSP

page is called, otherwise control is handed back to the menu page.

With the NetClasses method, the request attributes, index and level, are used to

control flow and the JSP writer does not need to know at what level and index the

Chapter 4 Architecture And Design

71

page fits in the system. In fact, the same JSP page can be used in two different

places. The JSP page has the request level and index embedded into it as part of

the dynamic content and merely passes those same values back to the server when

the user submits the request.

The third parameter, status, is set to either “ok” or “cancel” in the JSP pages and

depending on which value it has, the command code decides whether to go ahead

or not.

The code for LecturerMenuClassMenuServlet.java is given in Appendix 2 as is the

code for LecturerCreateClassCommand_2.java.

This system is easy to operate. It solves the flow control problem by always

flowing back to the handling servlet after every command is executed, except in

the case of cancel or error. In these special cases, it is the command execute()

method that decides which page to show next. When writing the JSP pages, no

attention is given to flow control. When writing the controlling servlet, the flow

control is determined by the index and the level. O f course the servlet has to be

initialized so that arrays with the correct commands at the correct indices exist.

When writing the command execution methods, only the exceptional cases need

to be considered. These will return control to an error page or back to the menu

page.

Chapter 4 Architecture And Design

72

The refresh problem is also solved by this method o f flow control. A second

advantage is that the menu level values can be manipulated to break the regular

flow if needed. One example o f this is the case of a user trying to create an

assignment that is already there. The expected error page comes up, but then,

instead of going back to the menu page, flow is directed back to the page where

the error was made so that it can be corrected.

4.5.5 Java Struts And Flow Control

Struts is from the Jakarta Project (freeware suppliers and developers o f Tomcat

Servlet container). It is a development framework for Java servlet applications

based upon the Model-View-Controller (MVC) design paradigm [SPIE03].

The flow control in a struts project is managed by a controller servlet and

configuration file combination. The configuration file can be changed, so it is a

reusable solution.

As the NetClasses flow control regime solves the problem and it could be made

configurable by the use of initialization parameters in the controller servlet, the

application does not to use the Struts framework. NetClasses implements the

MVC design patem.

Chapter 4 Architecture And Design

73

4.6 Conclusion

This chapter addresses the problems o f site access, flow control and accessing

pages out o f order.

Site access is controlled in a sophisticated manner by using filters. Both the flow

control and refresh problems are solved by an original solution developed for this

thesis. NetClasses is a secure and robust application as a result of these solutions

being implemented.

Chapter 5 presents the NetClasses components.

Chapter 4 Architecture And Design

74

Chapter 5 Components

Chapter 5

Components

75

A calendar that is used in the assignment component is taken from freeware code.

The basic login procedure is taken from [FIEL02] but is heavily modified to cater

for requirements o f this particular project. All other code is written from scratch.

5.1 Login

As outlined in Section 2.2.2, all users have the same logon page. Users do not

have to indicate which role they have in the system.

The minimum amount o f information that NetClasses needs to logon a student is

the student’s username, password and course. A course is identifiable by the

lecturer, class and subject. The user must choose from the list o f courses if they

are associated with more than one course.

If a student tries to login when they are not in a class then they are refused.

Lecturers and administrators are allowed to login when they have no course to

select.

The code for the login page and servlet were developed from a standard login

page in [FIEL02].

Fig. 5.1 shows a page asking the lecturer to choose between two courses taught by

that lecturer.

Chapter 5 Components

76

Chapter 5 Components

1*51 Loßiii iii here - M icrosoft Internet Explorer BEIEZ]
! File Edit View Favorites Toole Help U P I
: sj-* Back ▼ -v * . J Search i I Favorites .0? Media ^ .
Address |^ j http:/V157 190 GG 232/NetClasses/chooseCourse2 jsp zJ í^ 130

--------------------- -------------- 1zi

é j Done O Internet

Figure 5.1 Choose course page.

5.2 Lecturers

5.2.1 Notes

One o f the most interesting parts o f the project is the implementation o f the file

uploading module for lecturers to post their notes on the site and for students to

upload their assignment work.

Java’s Remote Method Interface (RMI) was at first considered to implement this

part o f the project. In the end a commonly used method o f uploading files from

forms on web pages using

enctype=" MULTIPART/FORM-DATA"

77

as part o f the form descriptor was employed. A Java RMI solution has the

disadvantage that some of the application code has to be on the client machine.

An advantage o f an RMI solution is that whole folders can be uploaded instead of

just single files. Although little enough is written about MULTIPART/FORM-

DATA (RFC2388) in Java Server Pages textbooks, it is the normal way to upload

files using HTTP. [FIEL02] has no reference to this at all. [YANK03] has a PHP

example. There are a number o f commercial JSP upload servlets on the web and a

small number o f free offerings as well. A few o f the free ones were examined but

it was found to be easier to develop one from scratch. The NetClasses uploader is

a java class that is not a servlet (does not have access to HttpRequest and Http

Response) and that class is used in servlets when required. The solution is general

and can be used when the file uploading button is anywhere in the web page form.

It is called UploadServerBean.java and is given in Appendix 2.3.

NetClasses has a web page that gives the students access to the uploaded files.

Many lecturers have their own web pages with access to their notes. Indeed this

project was conceived partly so that it would be easier for a lecturer without good

IT skills to create web pages for notes. NetClasses produces a notes page that

looks like one that might be produced by a course lecturer to make their notes

available to students.

The NetClasses interface is a web page where all the files of notes are grouped

under various headings. The page (Fig. 5.2) looks like a context page of a book

Chapter 5 Components

78

and the headings are like chapter names. The various clickable file links below the

headings are like sections in a chapter. When the student clicks on any of the

sections the relevant file opens so that that section can be read.

Chapter 5 Components

3 Notes Page - Microsoft Internet Explorer B S D

; Filo Edit View Favorites Tools Help n

N-1 Back ▼ ' ' J J i l ¿^Search jJFavoiites ^Media ^ J @ ' j S

! Address |ê j http://157.190 66 232/NetClass0s/secufe/lecturer/lectuierMenuNotesMenu?NotesMenu1ndex=5&NotesMenulevel=O

J

, NetClasses Course Facility

Coml Programming Notes.

• Starting Off

• First Dav
• What you will le am

• Problem Solving

• General Problem solvms
• Problem solving for Machines

Ok |

j
fe] Done 1 £ Internet

Figure 5.2 The notes viewing page

The notes page works by a system o f unique numbers that belong to the headings

and links and that identify where they should all appear in the list. The numbers

are called parent and serial. Each link belongs to a heading and each heading has a

serial number. The parent of a link is the heading that the link belongs to. The

headings are made to have parent o f 0. When the names o f all the headings and

links are retrieved from the database, the parent and serial numbers can be used to

decide where they go on the page. For example, the link ‘General Problem

79

http://157.190

Solving’ in Fig. 5.2 will have a parent o f 2 and a serial o f 1. No other item on the

page will have the same parent and serial numbers.

Chapter 5 Components

In order for lecturers to be able to put the links in the correct place on the page,

there are similar interfaces provided for them to click on the page item (header or

link) below which their new link will appear.

Deleting links and heading is also provided for and the lecturer is not allowed to

delete a heading unless there are no links still attached. This rule is there because

the links need to have a heading and would attach themselves to the previous

heading if their own heading was deleted.

A disadvantage o f the NetClasses system o f ordering the links on the page is that

every link has to be under a heading and so no link can stand alone.

Links to quizzes can be put on the notes page in the same way as links to files are.

This is because it makes sense to take a quiz after reading notes or to take a quiz

about one section before moving on to the next section.

All link items on a notes page can be made visible or hidden. Among the

attributes o f a page item stored in the database is ‘visible’ and it takes the value 1

or 0. Items with a visible of 0 are not shown to the student.

80

5.2.2 Assignments

Submission o f assignments has always been a thorny problem in CIT and in other

colleges as well [JONE97]. Traditionally students used to print out their

assignments and hand the scripts to the lecturer or put them in an assignment post

box before a certain date. A number o f lecturers still work this way. It seems

hardly appropriate for computing courses where the assignment work is an

application or presentation that is meant to run on computer anyway. Where the

paper version will not do, there are a number o f alternatives.

The student can hand disks up. This is better than printouts for material that need

to be checked on a computer but there is the problem of corrupted disks and it is

not unknown for disks to get lost. Floppy disks seem to be particularly prone to

corruption. Often the material on the disk needs to be copied to another place to

be used. There is no automatic recording o f the receipt o f the assignment material.

A common method in CIT is for the student to email the assignments. This has the

drawback that the students use a variety o f different email providers and the mail,

or its attachment, does not always get to the lecturer. There is also the slight

inconvenience o f the lecturer having to save the attachment in a suitable folder

and to acknowledge receipt of the assignment.

Another method is for the college to provide a folder with the appropriate access

rights where the student can copy their files over from another college machine

Chapter 5 Components

81

and the lecturer can collect them. The biggest drawback with this system is that

the student must be in college when transferring the files. It also requires the

cooperation o f a third party to set up the repository folder correctly.

A fourth method is the use o f File Transfer Protocol (FTP) to upload the files

from any machine. This allows the student to transfer files from their home

machines as well as from college. It presupposes a certain amount o f computer

expertise on the part of the students and not every college is happy about

providing FTP sites for this purpose.

Uploading files to a web site like NetClasses does not give rise to any problems

like those listed above. Permission to upload does not require any programming

by a third party. The lecturer does not have to acknowledge or save files. There is

very little computing skill needed to use the facility and it can be done from

anywhere.

The files are all stored in appropriate folders on the web server machine. In order

to separate the files o f one student from those of another, NetClasses creates

suitable folders. There is one folder for each assignment created by the lecturer. In

that folder will be a sub-folder for each student who submits work for that

assignment. The code of NetClasses is easily available and the file structure is

deducible from the code. A clever student who wanted to cheat could point their

browser at the submitted file of another student after working out where that file

Chapter 5 Components

82

is stored. To prevent such behaviour NetClasses has a domain filter that deflects

any such requests, see Section 4.4.1 Each student who is logged-in has access to

any notes files or assignment description files that are in the folder associated with

the course they are logged-in to. The subfolders where the submitted assignment

files are stored are only accessible by the lecturer and by the student for whom the

particular subfolder is created.

When a lecturer is creating an assignment, one o f the boxes to fill in is for the date

the assignment is due. The lecturer clicks on a calendar logo and a clickable

calendar appears. The code for this calendar was found on the web. It is freeware

and credit is given to the writer in the code. It seems only fair to include a credit

to the author here as well:-

A uthor: Lea Smart

Source : www.totallysmartit.com.

Fig. 5.3 shows the page for creating a new assignment.

Chapter 5 Components

83

http://www.totallysmartit.com

Chapter 5 Components

|<9 Create a New Assignment - Microsoft Internet Explorer H E I D I

! File Edit View Favorites Tools Help

¿•Back » ■ J jD ¿J '£1 Search ¿¿JFavodet ¿j?M ed ia

Address | é j http://157.190 66 232/NetDase/$ecure/lectur6f/leclurerMenuAssignmentMenu?AssignmerilMenulndej<>08AssigniYientMenuLevel=0 JJ ¿¿Go

□

NetClasses Course h acility

Course = Com i, Programming
Create a N ew Assignment

New Assignment name (e.g) Assignment!: |Assignment1

Date (dd/mm/yyyy) assignment is due: |15/09/2004 4 S « p le r r ib e f ^ 4 2 0 0 4 ^

Time assignment is due: 124:00 7 0 9 1 0 11

1 2 1 3 1 4 1 5 1 6 1 7 1 0

Add Assignment Cancel | 1 9 2 0 21 2 2 2 3 2 4 2 5

2 8 2 / 2 0 2 9 3 0

J ___ J
fe] ’C Internet

Figure 5.3 Creating assignment page.

5.2.3 Class

The concept of a group of students forming a class is central to NetClasses. It is

how NetClasses is structured. Classes have subjects and lecturers teach subjects to

classes. Students log in to a lecturer, class and subject. The NetClasses method of

managing a class is designed around the idea that the classes should be entirely

managed by the lecturer, see Section 2.2.4. The lecturer using this application

does not need to have permission from anybody to create, populate or delete

classes.

To enable the class information to be managed, there are some menu choices

available to the lecturer in Class Menu. These are discussed in the sections below.

84

http://157.190

5.2.3.1 Create A n d Delete Class

When a class is added to the system, a sub folder in the lecturer’s folder is also

created. This folder is intended to hold all the notes and assignment material. The

lecturer can choose any class name except a name of a class that particular

lecturer already has in the system. Windows does not allow any folder to be

named Com l, Com2 or Com3. It would seem that this operating system cannot

understand the difference between Coml folder and Coml communications port.

To get around this bug NetClasses makes the folder name associated with the

class to have the same name as the class plus For example Coml has a folder

Coml_. This came to light because there is a class is called Coml within CIT. For

safety sake the same thing is done for any folder created by NetClasses except the

folder with the same name as the lecturer. That folder is created when a lecturer is

added to the system. Two lecturers can have the same class name describing two

different classes in the system. The two classes may be the same in real life but

NetClasses treats them as two different groupings.

Deleting a class means that the class name will disappear from the database but

also that all folders, quizzes, notes, assignments and messages associated with that

class will go. Students remain in the system in case they belong to another course.

Chapter 5 Components

85

5.23.2 Populate Class

The web page that is presented to the lecturer when choosing to populate a class

contains a lot o f JavaScript. The script describes client side processing that is

done on the list o f names and passwords that the user enters.

Because the input of a long list o f names is precisely the kind of work that is

supposed to be made easier by computers, this interface in NetClasses is made so

that the names can be pasted from another file. In CIT the class lists become

available before the students register. This list is usually heavily edited to reflect

the actual number registered after registration day. Editing can take a few days

and the updated class may not be published until well after the students are in

class. It may be peculiar to CIT, but some change in the student population always

occurs during the first few weeks o f term. If the class lists are available online the

lecturer can copy and paste columns from there to the Populate Class page in

NetClasses.

The code that implements the populating of the class is interesting in that a lot of

the input checking is done on the client side to make the job o f the server easier.

The main piece of checking that is needed is to make sure that all student

usernames are unique within the class. This means checking the usernames

against the rest o f the students that are being added and against the students that

are already in the class. The last piece of processing is an example o f distributed

processing. NetClasses is essentially an application where the processing is done

Chapter 5 Components

86

on the web server and the client computer is used to show the information or

accept user responses. In this case there is a bit more than that done on the client

side.

Section 4.1 refers to the fact that no NetClasses logic code is kept on the client

machines. In cases like this the code needed is incorporated in the web page as

JavaScript. All DOM browsers understand JavaScript in the same way so we can

have this kind o f simple processing that does not write to the database, on the

client side. This saves the number of HTML requests and hence the number of

pages to download from the server.

The student details are later checked against all users already in the system, but

that is done on the server side. No student in a class can have the same username

as the lecturer either. It is also necessary to check that each student has a first

name, last name, username and password. Checking that all students have each

field filled is done by counting the number o f entries in each column, see Fig. 5.5.

When adding students to a class, NetClasses should be aware if the students are

already in the system. This is managed by having a unique student ID stored in

the database for each student. The lecturer is asked to enter the student IDs of the

students to be entered in the class, see Fig. 5.4. NetClasses then looks in the list of

existing students to see if they already exist. If they do, they are added to the class

without further input from the lecturer. I f they are not in the system then the

Chapter 5 Components

87

lecturer is asked to enter the details. The job o f checking whether students exist

already is done on the server side because o f the potentially large number of

students involved. Even though the client side processing checks that usernames

are unique among students being entered, further checking is required on the

server side to check that usernames are unique in the system. I f the usernames are

not unique in the system NetClasses automatically adds a number on to the

username to make it unique. The lecturer is made aware o f the change by a popup

message.

Chapter 5 Components

O Populate Class - Microsoft Internet Explorer H0E3I
| F i le E d i t V ie w F a v o r i t e s T o o ls H e lp

n-« B a c k ▼ •* - ¿ 2 4 1 ¿ ^ S e a r c h '¿IF a v o rite s ^ M e d i a ^ |w] f > l ,*R .

j A d d r e s s | a] h t t p : / / 1 5 7 -1 90.GG 2 3 2 / 'N e tC la s s e s /s e c u re / le c tu re r/ le c (u re rM e n u C la s s M e n u ? C la s s M e n u ln d e « = 2 S tC la s s M e n u L e v e l= 0 »I
~3

___________ _l
£] Dona I 1 r i i ® Internet

Figure 5.4 Entering Student ID page.

88

http://157-190.GG

Chapter 5 Components

9 Populate Class • Microsoft Internet Explorer
File Edit View Favoriten Tool« Help

v-1 Back ▼ J J] jj^Saafch 4-] Favorite» 0 Media ^ ^ ¡ iv j ' _^J „

- In ixI

A d d re s s | t ì j hUp://15 7 19Û6S 232^elDacMSf/«0CuraA^li«wAtH^iJ&MwHOattMwiM^a4tM*r,Mrtd<*it"2%ClaiiM;iMiul.ovcl»1 *| Ĝo

N e tC l a s s e s (. J o l i r s e F a c i 11 ty

Populate class, Coml
Paste new student's details in their correct columns below

Student
IDs F irst N am es L ast N am es U ser N am es Passsw ords

J KlOltlO _ l B uckley .J etowrfciley —J 040001 -J
Adtun Cciugih lati ncouQhlnit 0 ‘10002

_ l _ l _J
Add S tu d e n ts | C a n ce l

40 Internet

Figure 5.5 Entering Student Details page.

As well as populating a class NetClasses provides the facility to modify a

student’s details. Administrators only are allowed do this. Only the first name, last

name and password can be changed. NetClasses does not allow alteration of a

username because the student might already have folders stored within the system

under the old username. Another reason is that the uniqueness of the new

username would have to be checked again.

Because students may leave the course for one reason or another, there is the

facility in NetClasses to remove a student. The student reference is taken from the

class and the student’s folders are removed but the details remain in the system.

89

5.2.3.3 Add And Delete Subject

Lecturers can teach more than one subject to a class and lecturers sometimes

change courses. A method of removing a subject from the system is needed and

similarly a method to add an extra subject to a class is required. Because of the

design of the user interaction with NetClasses, the user is always considered to be

logged in to a lecturer, class and subject. I f a subject is added then that subject

becomes the current one i.e. the user is considered to be logged in to that new

subject.

When the lecturer chooses to delete a subject, NetClasses assumes that it is the

current subject that is being deleted. That is to avoid the often unnecessary step of

choosing from a list o f subjects. If it is not the current subject that is to be deleted

then the user must go to Another Course on the top menu to make a different

subject current. A slight difficulty arises when the subject is deleted: which

subject will now be current? The lecturer is not considered to be accessing any

course until another one is chosen.

Every Class must have a subject in NetClasses, otherwise there is no reason for

the class to be in the system. For this reason it is not possible to delete the only

subject in a class (unless the class is being removed from the system). If the

lecturer attempts to remove the only subject for a class then an error screen

appears and the deletion is cancelled.

Chapter 5 Components

90

5.2.4 Quiz

Lecturers need to create quizzes and add questions to them. In the quiz section

NetClasses’ flow control system is exercised and it implements the following

algorithm;

Create Quiz

Repeat

Add Question and Answers fo r that Question

Until No More Questions is selected.

The system o f index, level and status attributes, Section 4.5.4.2, works well to put

the design into effect. Implementing the repeat...until section required two pages.

One page is to enter the question and multiple-choice answers along with the

correct answer, see Fig. 5.7. The other page is to ask the user whether there are

more question or not see Fig. 5.6. If there are more questions then the level

attribute is decreased by one so that flow goes back to the previous task (adding a

question) instead of finishing. If the user migrates back to the ‘add question’ page

and submits a question that has already been submitted or cancelled, NetClasses

catches it and diverts the request to the quiz menu.

Chapter 5 Components

91

Chapter 5 Components

13 A dd Question to Qui2 - Microsoft Internet Explorer H0QJ
File Edit View Favorites Tools Help ¡T al

Back ▼ - J ¡tf) Q Search 'jjFavorites 0 Media ^ jvy] -

Address | è] http://157.190.66.232/NetClasse$/$ecure/leduier/lectuferMenuQuizMenu?QuizMenulndex=2&QuizMenuLevel=2 J f^Go ;

J

m N etC lasses Course Facility

Course = C o m l, Programming
Quiz:- Quiz 1

Add another question?

Yes | No|
J

fej Done £ Internet

Figure 5.6 Page asking if another question is to be added.

13 Add Question to Quiz - M icrosoft In ternet Explorer ■ _in]x)
File Edit View Favorites Tools Help n
s}-* Back ▼ *-> 4} ¿ ^ S e a c h _±j Favorites ^ M e c S a ^ {'.vj - U l (D_£J ILÌ

A d d r e s s | hU p://157J3066,232/NelC lasses/$ectfe/leclwer/tectuferM erH$wzM erHJ?QuizM eriulndex=2&QiizM enuLeve)=1 jJ ¿>Go
Q u iz ;- Q u iz 1 - j 3
Question 1

"What are assignments?

(1) Money assigned to you, [false]
(2) Work to be submitted for grading [true [
(3) Arranged meetings [false]

New Question Leave answer blank if not used
Question 2

Who g rad es ass ig n m en ts? _ j

J
Answer(l) |lhe County C ouncil. d r
Answer(2) | l i in i3 te r f o r to u rism . d r
Answer(3) ¡Your l e c tu r e r . d r?

Answer(4) ¡'The d i r e c to r o f the c o l le g e , d r

Answer(5) | “ 3 r

Answer(6) | d r
Answer(7) | d r
Answer(8) | d r
Answer(9) f d r

Answer(lO) f d r
I A d d Q u e s t io n | C a n c e l

Figure 5.7 Page for inputting questions and answers.

92

http://157.190.66.232/NetClasse$/$ecure/leduier/lectuferMenuQuizMenu?QuizMenulndex=2&QuizMenuLevel=2

Questions can be added later to a quiz by clicking Add Question on the Quiz

Menu. It is also possible to delete questions and edit them.

Chapter 5 Components

A quiz can be taken either from the student menu or from a quiz link on the notes

page. See Section 5.3.3.

Quizzes are created in either activated or hidden mode. A hidden quiz cannot be

accessed by the student from the student menu. Quiz links can also be visible or

hidden. A hidden quiz link will not be seen and so the quiz cannot be taken by the

student. When a quiz link is made visible then the quiz itself becomes active and

can be taken either from the notes page or from the student menu. Similarly when

a quiz link is hidden the quiz becomes hidden and is not available from the

student menu either.

Quizzes can only be changcd from hidden to active by changing the visibility of

the link.

5.2.5 Messages

This is the simplest module in NetClasses. When a lecturer chooses to post a

message it is collected in a text box and stored with a time stamp in the database.

When a lecturer chooses to delete a message it is removed from the database.

There are no consequences for any other module.

93

Chapter 5 Components

When adding a message, the lecturer sees a list o f the previous messages. Fig. 5.8

shows a message being added.

| 3 Add M essage - Microsoft Internet Explorer ■ J n l x l

1 File Edit View Favorites Tools Help WM
'J-'Back ▼ -v J ^ 41 S S « * _*] Favorites $ Media ^ J ¡S] ▼ ß

Address | é j hUp://15719Q.66-232/NelClasses/secure/lecturer/lertuierMenuMe$$ageMenu?Me$sageMenulndex=0&MessageMenuLeve!=0 3

□
r

► NetClasses Course Facility

Course = Com l, Programming
Add M essage.

M essage
I will be on a course tomorrow and will not be able to give a class. Please read chapter 15.

Posted on 07/08/2004
M essage

Assignment 4 is proving difficult for some of you so there is an extension of on e week.

Posted on 08/09/2004
N ew Message.

I w i l l be p la y in g g o lf on Chursdny) —I

J
Add Message Cancel |

Figure 5.8 Adding a message page.

5.3 Students

The student menu is less complex than the lecturers menu because the student

only accesses the system to read notes messages and assignment, to take quizzes

and to submit assignments.

94

5.3.1 Notes

In Fig. 5.2, the notes viewing page. I f the student clicks on a link on the notes

page a new browser window will open with that file in it. This interface is

provided for the student to make navigating through the notes a simple task where

the architecture o f the NetClasses site need not be remembered. I f the user

chooses to click on a link on the notes page and then, after reading the resulting

page, closes the window they will arrive back at the notes page. Pressing “ok”

will return the user to the Student Menu.

5.3.2 Assignments

Students can read the assignment instructions in much the same way that they can

read the notes. Any link from the Assignment page is on a new window so the

session will not be inadvertently closed.

Uploading of assignment files is described in the lecturers Section 5.2.2. When a

student is uploading, the time of attempted upload is compared to the deadline

stored in the database. If the assignment is still on time then uploading is allowed.

Students can overwrite their files before the deadline and students can upload

more than one file to the server.

Chapter 5 Components

95

5.3.3 Quiz

Students can take quizzes from two different places in the site. One place is from

an option on their menu and the other is from a link on the notes page.

Quizzes can be accessed from both places, partly to prove the flexibility o f the

NetClasses design and partly because the lecturer may prefer not to have the quiz

linked from the notes page. There is a slight difference between the two methods

of taking the quiz. Accessing the quiz from the menu requires the student to first

choose from the list o f quizzes and then take the chosen quiz. Accessing the quiz

from a link on the notes page means that the quiz is already chosen so control

passes to the part o f the system that presents and grades the quiz.

Either way, the student will be presented with the quiz as in Fig. 5.9. Control must

pass back to the student menu in one case and the notes page in the other case.

This is implemented by passing a parameter called ‘source’ to the takeQuiz

servlet. Control reverts back to the source when the quiz is finished.

Chapter 5 Components

96

Chapter 5 Components

S I
F ilo E d it V ie w F a v o rite s T o o ls H e lp MM
■¿-■Back ■» ■* J j] ¿ ¡) i Search jy F a w n * u j (J ’ M e d s j j @ " 0 £

¡Address | ^ J w i p / / 1 5 7 ! l 9 f t i G ? 5 ^ e 5 « i ^ ^ c u c M j d e n i / t i u d o n t W « r ^ — D <?s °

 □
l i ^ N p t n i a s f t p s C m i r s p . F a c i l i t y

Course = Coml, Programming
Quit- Quiz 1

Q uestion 1
What arc assignments?

(1) M oney assigned to you. C

(2) W ork to be submitted for grading. C

(3) Airanged meetags C
Q uestion 2

Who grades assignments?

(1) The Count? Council. C

(2) Minister for tourism. C

(3) Your lecturer C

(4) The director of the college. C

Subnrul | Cancel J

j
!^)Done Itf Internet

Figure 5.9 Student quiz page.

5.3.4 Messages

When a student reads a message, that fact is recorded in the database. When a

student logs in, NetClasses checks to see if there is a message in the database that

has not been read by that student. I f there is, an alert message is put on the

welcome screen. Fig. 5.10 shows the welcome screen where there are unread

messages.

<3 Take a Quiz - Microsoft internet Explorer

97

Chapter 5 Components

Welcome Menu - Microsoft Internet Explorer HHÖI
; File Edit View Favorites Tools Help

ÿ^Back T T J j] Q Search *1 Favorites Media i >> J -1 J R
! Address |é] hUp://157,190 G6.232/NelC!asse$/secure/welcome.isp jJ ;

□

N etU asses C ou is6 l-acility

Course = Com l, Programming

Home | Student Menu | Logout | Change Password

Read Assignment

Submit Assignment

View Motes

Take Quiz

Read Messages

You have a new message from your lecturer. Read

"Welcome to NetClasses. To proceed, click any menu item

J
SJ 5C Internet

Fig 5.10 Welcome page with new message.

5.4 Administrators

Administrators have the dual role of administrator and lecturer. In NetClasses it is

the job of the administrator to create, delete and edit lecturers. Editing a lecturer

can involve changing the first name, last name, password and role. Administrators

can add lecturers who have the role o f administrator. NetClasses differentiates

between the main administrator who is programmed into NetClasses and the

administrators who are created by the main administrator. If an administrator is

not the main administrator then he may only add, delete and edit lecturers who are

not administrators. Administrators may only edit and delete lecturers that they

created themselves. When the main administrator is editing a lecturer the choice

98

o f role that can be entered is limited to two (lecturer and administrator) by using a

selection box.

Chapter 5 Components

5.5 Conclusion

This chapter examines various components o f NetClasses. The workings o f some of

tiie components are explained. An account o f how some implementation is

facilitated by the flexibility o f the flow control mechanism built inlo NetClasses is

given.

Chapter 6 examines the success o f NetClasses in meeting the requirements.

99

Chapter 6 Summary And Conclusions

Chapter 6

Summary And Conclusions

100

It is possible to produce a usable web based course material facility as described in

Section 1.1 with good site access control using JSP and free middleware. There were no

ready-made solutions available that were free o f charge.

We have produced one and learned a lot about client side and server side web based

technologies along the way.

A thorough test o f NetClasses is outside the scope o f this thesis. It is a multi user client

server application and a meaningful test would require a team of testers checking for

volume o f traffic capabilities. The functionality o f each menu has been tested while the

server side was running on both Windows 2000 and Red Hat 7 operating systems.

Here the requirements from Section 1.1 are reviewed to see if they are adequately

satisfied in NetClasses:

• Lecturer to post notes. This requirement is met with the user able to upload files

of any type in an orderly fashion. Additionally any link on the page can be made

visible or hidden both at the time o f creation and later from a menu option

There is a security risk, though, in allowing files o f any type to be uploaded. A

devious user could upload a JSP file as part of the notes. If that JSP file contained

code, it would be executed when the notes are viewed. The student reading the

Chapter 6 Summary And Conclusions

101

notes would not see the JSP file as written, but instead, the file would be executed

and the student would see any output.

Chapter 6 Summary And Conclusions

• Lecturer to assign passwords to students. This works. When lecturers populate

a class they can, and must, assign a password to every student. When developing

this module it was thought that the passwords would be the student numbers that

are normally available from the same college file as the student names.

Students can change their own passwords. Every user has access to the jump

menu that has a Change Password option. As well as that, NetClasses caters for

students who forget their password. Administrators can change a student’s

password. This facility might also be useful if the administrator wanted to

withdraw a particular student’s right to use the system.

No method is included for having a visitor to the system. I f a lecturer wants to

make the notes available to the public, it should be possible to do so. This could

be done by having a student with username ‘visitor’ programmed into every class

and that student would be able to log on with no password or with any password.

When a lecturer did not want the notes to be public that lecturer could simply

remove visitor student from the class. The visitor student would not be able to

upload files.

102

• Lecturer to post assignment instructions. The requirement here is met. A

lecturer can post as many files as he wants to describe an assignment. The same

problem applies here to JSP files as in the post notes section. The JSP file cannot

be viewed and if it contains code, the code will be executed.

• Lecturer to collect assignments. Lecturers can only view files submitted by

students. If the lecturer needs to collect the files on their own machine (assuming

the server is a different machine) then they must choose to save the file again.

This means that the lecturer can collect the assignments, but collect them file-by-

file instead o f all together. This slightly different outcome still fulfils the

requirement. The files are collected together on the server. Links to all the files

submitted by students can be seen by the lecturer on one page. In that sense the

lecturer can collect the assignments.

• Lecturer to present multiple-choice quizzes. The requirement here is met. The

lecturer can create quizzes. The quizzes can be made available from the student

menu or from links on the notes page, or from both. In addition quizzes can be

modified by adding, deleting and editing questions.

Quizzes can be hidden from the student until such time as the lecturer activates

them.

Chapter 6 Summary And Conclusions

103

• Lecturer to operate a notice board. Messages can be added to the system for the

students o f any class. The messages can be deleted as well. This fulfils the

message board requirement. In addition, individual students only see a warning

that new messages exist if there are messages that they have not read.

• Student to read notes. This works well. There is a web page where the student

can see the links to the lecturer’s notes. The web page is laid out logically with the

links grouped together under chapter headings. When the student is finished

reading a notes file, the page can be closed and the NetClasses session resumes.

• Student to read assignment instructions. Like the notes, the student has a web

page where there are links to the assignment instructions. The requirement is met.

• Student to submit assignments. This requirement is met in NetClasses. A

student can submit as many files as required. The system is open to attack here in

that an upper limit on the total size of files submitted by a student is not included.

This is not too difficult to implement because the size is easily obtained from the

uploading code. The size needs to be recorded in the database so that the total size

of previous files plus the file being uploaded can be calculated. If the size is over

a predefined limit, then the uploading can be aborted.

Chapter 6 Summary And Conclusions

104

The problem noted above about JSP files being uploaded applies here too. JSP

files can be uploaded by the student as part o f the assignment files and that file

could contain JSP code that would be executed on the server.

• Student to take multiple-choice quizzes. This works. Students can take a quiz

from either the student menu or from links on the notes page. The quiz is graded

immediately it is submitted and the student gets back a mark out o f 100 and a list

of questions incorrectly answered. The mark is not recorded in the database so it

works only as a self test for the student.

• Student to read notices on the notice board. This requirement is met. In

addition students are alerted about new messages when they log on. As soon as a

student reads a message, that fact is stored in the database. The next time the user

logs on previously read messages are not treated as new.

• A requirement in the original project proposal is that all pages within the

system have the same look and feel. This is achieved, not by using cascading

style sheets as might be supposed, but by including at the top of each JSP file

another file that contains most o f the layout descriptors for the page. Each page

has a border around it and a logo and a message on the top. It was intended that

the logo and message could be changed by the administrator but that has not yet

been implemented. It was also proposed that pages belonging to one lecturer

would be especially homogonous with regard to look and feel. In the present

Chapter 6 Summary And Conclusions

105

implementation there is no differentiation between the pages o f one lecturer and

another i.e. they all look the same and the lecturer cannot alter the appearance.

Chapter 6 Summary And Conclusions

6.1 Further Work

The biggest thing lacking in NetClasses is the ability to empty a class o f students.

That would need to be done at the end o f an academic year when the names o f the

students would change. At the moment a lecturer can delete a class but this gets

rid o f the notes as well as the students. This development o f the project would

take a small amount o f work as the code for deleting a single student from a class

is already there

Another related improvement would be to provide a facility for the main

administrators to be able to delete students from the system if they are not

members of a class group. At the moment students are added to the system every

time they are added to a class and are not in the system already, but they are never

deleted.

The next most glaring omission is that the administrator cannot change the

appearance o f the pages. This is a must-do because at the moment the logo is

peculiar to CIT. It would be a matter o f uploading the logo file to the correct

folder. At the moment there are two copies o f the two images that are used to

form the top o f the web pages. There was a problem in Internet Explorer that

resulted in the pictures not being shown on a web page under some conditions

106

when the page is revisited. The problem does not occur in NetScape. A quick fix

is to have two copies o f the files in the system. Relative addressing to a sub folder

with the files in it is used. I f absolute addressing within the NetClasses context is

used, the pictures sometimes do not appear. Even with that less than perfect

architecture, it is still possible to code for the administrator to change the pictures.

It would take some further work to solve the multiple storage problem.

Without the facility to change the logo and message through the web interface, it

has to be done manually i.e. logo.jpg and message.jpg must be copied in to the

correct places in the file structure.

In the notes module there is room for improvement by providing a facility to put

links to other web pages on the notes page. At the moment such links can be put

in any file uploaded to the notes folder but not directly on the notes page. The

only links on the notes page now are links to files and links to quizzes.

Chapter 6 Summary And Conclusions

107

Appendix 1 Bibliography

Appendix 1

Bibliography

1

Appendix 1 Bibliography

BAUE99 Bauer, Marian et al.

Transforming Universities.

Jessica Kingsley Publishers, 1999. Page 238.

BAXL02 Baxley, Bob.

Making the Web Work: Designing Effective Web

Applications.

New Rider, 2002. Page 223.

BELL03 Bell, John T. and Lambros, James and Ng, Stan.

J2EE Open Source Toolkit: Building an Enterprise

Platform with Open Source Toolkit.

Wiley, 2003.

BERGOO Bergsten, Hans.

Java Server Pages.

O ’Reilly, 2000.

BUSC96 Buschmann, Frank et al.

Pattern-Oriented Software Architecture, Volume 1: A

System of Patterns.

Wiley 1996. Page 125.

BROWQ2 Brown, Jeffrey and Thomas, Susan L. and Bruzzese,

Peter J.

Site and E-Commerce Design.

Sybex, 2002. Pages 50 and 501.

2

Appendix 1 Bibliography

CARE02 Carey, Patrick.

New Perspectives on Creating Web Pages with HTML

and XML.

Course Technology, 2002.

CENT03 Central Applications Office.

CAO Handbook,

Irish Government Stationary Office, 2003.

COLEOO Coleman, Pat et al, eds.

Perl, CGI and Java Script Complete.

Sybex, 2000. Page 209.

COOKO3 Cook, Todd.

Mastering JSP.

Sybex, 2003. Page 7.

DEIT02 Deitel, H.M. and Deitel, P.J. and Neito,T.R.

Internet & World Wide, Web How to Program.

Prentice Hall, 2002. Chapter 8.

DOHE94 Doherty, Geoffrey D.

Developing Quality Systems in Education.

Routledge, 1994. Page 181.

FIEL02 Fields, Duane K. and Kolb, Mark A. and Bayern, Shawn.

Web Development with Java Server Pages.

Manning Publications Co., 2002.

3

Appendix 1 Bibliography

FOR003 Forouzan, Behrouz A.

TCP/IP Protocol Suite.

McGraw-Hill, 2003. Chapter 8.

GALI02 Galitz, Wilbert 0 .

The Essential Guide to User Interface Design,

2nd Edition.

Wiley, 2002. Page 259.

GANG02 Ganguli, Madhushree.

Making Use of JSP.

Wiley, 2002. Page 24.

GOODO2 Goodwill, Janies.

Pure JSP: Java Server Pages.

Sams, 2002.

HALL03 Hall, Marty and Brown, Larry.

Core Servlets and JavaServer Pages,

Vol. 1, Second Edition.

Prentice Hall PTR, 2003.

HOLM02 Holmes, Merlyn.

Web Usability & Navigation.

McGraw Hill/Osbome, 2002. Page 11.

HOLZOl Holzshalag, Molly E.

XML, HTML, XHTML Magic.

New Riders, 2001.

4

Appendix 1 Bibliography

INCE02 Ince, Darrel.

Developing Distributed and E-Commerce Applications.

Pearson Education, 2002. Pages 54 and 134.

ISAA01 Isaacs, Ellen and Walendowski, Alan.

Designing from Both Sides o f The Screen.

New Riders, 2001.

JOHN03 Johnson, Jeff.

Web Bloopers: 60 Common Web Design Mistakes.

Morgan Kaufmann, 2003. Page 53.

JONE97 Jones, David and Jamieson, Bruce.

Three Generations o f Online Assignment Management.

Proceedings of ASCILITE’97, Perth, Australia.

Kevil, Rod and Oliver, Ron and Phillips, Rob, eds. 1997.

Page 317.

LIUM03 Liu M.L.

Distributed Computing: Principles and Applications.

Pearson Education, 2003.

MARAOO(a) Maran, Ruth.

Active Server Pages 3.0.

IDG Books Worldwide, 2000. Page 40.

5

Appendix 1 Bibliography

MARAOO(b) Maran, Ruth.

HTML,

Your visual blueprint for designing effective Web pages.

IDG Books Worldwide, 2000.

MARI02 Marini, Joe.

Document Object Model:

Processing Structured Documents.

Osborne/McGraw-Hill, 2002.

M EL003 Meloni, Julie.

PHP Essentials, 2nd Edition.

Premier Press, 2003. Page 22.

MISR01 Misra, Jayadev.

A Discipline of Multi Programming:

Programming Theory for Distributed Applications.

Springer-Verlag, 2001.

MORROl Morrison, Michael.

HTML & XML for Beginners.

Microsoft Press, 2001.

NIELOO Nielson, Jakob.

Designing Web Usability: The Practice o f Simplicity.

New Riders, 2000. Pages 48 and 188.

6

Appendix 1 Bibliography

ORFA99 Orfali, Robert and Harkey, Dan and Edwards, Jeri.

Client/Server Survival Guide, 3rd Edition.

Wiley, 1999. Page 105.

PFAFOO Pfaffenberger, Bryan and Karrow, Bill.

HTML 4 Bible.

Wiley, 2000.

POWEOl Powell, Thomas A.

HTML: The Complete Reference, Third Edition.

Osborne/McGraw-Hill, 2001.

PREE02 Preece, Jenny and Rogers, Yvonne and Sharp, Helen.

Interaction Design.

Wiley, 2002.

RAJA02 Rajagopolan, Suresh et al.

Java Servlet Programming Bible.

Wiley, 2002. Page 6.

ROBPOl Rob, Peter and Coronel, Carlos.

Database Systems: Design,

Implementation and Management, Fifth Edition.

Course Technology, 2001.

RUDI96 Rudisill, Marianne et al.

Human-Computer Interface.

Morgan Kaufmann, 1996.

7

Appendix 1 Bibliography

RUSSOO Russell, Gavin and van Leeuwen, Jannetje.

Extranet and Courseware for the MSc in Multimedia

Technology.

UCC, 2000.

SACH96 Sachs, David and Stair, Henry.

The 7 Keys to Effective Web Sites.

Prentice Hall, 1996.

SCHR98 Schreiber, Deborah A. and Berge, Zane L., eds.

Distance Training.

Jossey-Bass Inc., 1998. Page 145.

SPEI03 Speilman, Sue.

The Struts Framework:

Practical Guide for Java Programmers.

Morgan Kaufmann, 2003.

SPOLOl Spolsky, Joel.

User Interface Design for Programmers.

Apress, 2001.

STEROO Sterling, Scott M.

Java Server Pages Application Development.

Sams, 2000.

TANE03 Tanenbaum, Andrew S.

Computer Networks, Fourth Edition.

Prentice Hall PTR, 2003.

8

Appendix 1 Bibliography

TAYL98 Taylor, Christopher and Kimmett, Timothy.

Core Java Web Server.

Prenice Hall, 1998.

TOGN92 Tognazzini, Bruce.

Tog on Interface.

Addison-Wesley Longman, 1992.

VALE99 Valesky, Thomas.

Enterprise Java Beans (TM):

Developing Component-Based Distributed Applications.

Addison-Wesley, 1999.

WATS97 Watson, Mark.

Creating Java Beans:

Components for Distributed Applications.

Morgan Kaufmann, 1997.

WILL99 Williamson, Alan R.

Java Servlets by Example.

Manning Publications, 1999.

YANK03 Yank, Kevin.

Build Your Own Database Driven Website Using PHP &

MySQL, Second Edition.

Sitepoint, 2003. Page 173.

9

Appendix 2 Code

Appendix 2

Code

10

Appendix 2 Code

Login Page Code

<jsp:useBean id="lecturerbean" scope="request"
class="NetClasses.beans.UserBean">
</j sp:useBean>

<%
String lecturer_firstName = new String("");
String lecturer_lastName = new String
String lecturer_username = new String(" ");
String oldUsername = request.getParameter("username");
if(oldUsername == null)
{

oldUsername = "";
}

//This bit gives an error message if the previous
//login atttempt was faulty
boolean retry = false;
if (request.getParameter("retry") != null)
{

retry = true;

<html>
<headXtitle>Login in here</title>
</head>
<script>
function prepare()
{

if(<%= retry %>)
{

document.getElementByld("headline").innerHTML="Incorrect
user/password combination . Try again.";

}
}
</script>
<body onload="prepare();">
<center>
<jsp:include page="banner.jsp" flush="false"/>
<form name="loginForm"

action='<%= response.encodeURL(request.getContextPath() +
"/servlets/login") %>'

method="POST"
>

11

Appendix 2 Code

<tr>
<td width="90%" valign=top style="padding :10px">
<table cellspacing=0 cellpadding=0 width="100%">
<tr>

<tdXspan id="headline"> Welcome to NetClasses online notes and
course material facility</spanX/td>

</tr>
</table>

<input type="hidden" name="loginTarget" value="welcomePage">
Cinput type="hidden" name="status" value="ok">

<table cellpadding=10 cellspacing=0 border=0 width="100%">
<trXtd width="320" valign=top>

<table cellpadding=5 cellspacing=0 border=0 bgcolor="#FFFFFF"
style="border:lpx solid black;" align=center>

<tr>
<td style="color:black;background-color:#FFCCCC;border-bottom:ipx

solid black;">
Enter username and password, then login
</td>

</tr>
<tr>

<td>
<table cellpadding=5 cellspacing=0 border=0 width="300"

align=center>
<trXtdXspan style="width: 40%">Your Username :

<input type="text" name="username" align="left"
style="width:50%;background-color:#FEFFBB;"
size="20" value="<%= oldUsername %>">

</td></tr>
<trXtdXspan style="width: 40%">Password:

<input type="password" name="password" align="left"
style="width:50%;background-color:#FEFFBB;"
size="20">

</tdx/tr>
CtrXtd width="100%" align="center"Xtable>
<trXtd width="50%" align="right">

<input type="submit" value="Log In">
</td>
<td width="50%" align="left">
<input type="submit" value="Cancel"

onClick="document.loginForm.status.value='cancel'">
</td>

</tdX/tr>
</tableX/tdX/tr>

12

Appendix 2 Code

</table>
</tdX/tr>
</table>
</td>
</td>
<tdXpXb>Students : —You can access notes that your lecturer posts on
this site. You can also download assignment instructions, submit your
assignment work, take quizzes and read messages from your lecturer.</p>

<pXb>Lecturers : -You can post your notes, give students
individual usernames and passwords, post and collect assignments, set
quizzes and broadcast messages to classes.</p>

</td>
</tr>
</table>
</form>
</tr>
</table>
</center>
</body>
</html>

Class Menu Servlet Code

package NetClasses.secure.servlets;
import j ava.io.*;
import j avax.servlet.*;
import javax.servlet.http.*;
import j ava.util.*;
import java.lang.Integer.*;
import NetClasses.beans.*;
public class LecturerMenuClassMenuServlet extends HttpServlet
{

private Vector commands = new Vector();
private Vector secondCommands = new Vector();
private Vector thirdCommands = new Vector();

13

Appendix 2 Code

private UserBean user;
private DatabaseListBean list_maker;
private String next;
private Command default_command;
private String errorPage = "lecturer/classMenu/error.jsp";
public void init(ServletConfig config) throws ServletException
{

super.init(config);
default_command = new ForwardCommand(

"lecturer/classMenu/classMenu.jsp");

try
{

listmaker = new DatabaseListBean();
}
catch(Exception e)
{

list_maker = null;
}

/////////////////////////First Commands//////////////////////
commands.add(0,
new LecturerCreateClassCommand_l(
"lecturer/classMenu/lecturerCreateClassl.jsp", 1, 0)) ;

commands.add(1,
new LecturerDeleteClassCommand_JL (
"lecturer/classMenu/lecturerDeleteClassl.jsp", 1, 1));

commands.add(2,
new LecturerPopulateClassCommand_l(
"lecturer/classMenu/lecturerPopulateClassl.jsp", 1, 2));

commands.add(3,
new LecturerPopulateClassCommand_l(
"lecturer/classMenu/lecturerRemoveStudentl.jsp", 1, 3));

commands.add(4,
new LecturerPopulateClassCommand_l(
"lecturer/classMenu/lecturerEditStudentl.jsp", 1, 4));

commands.add(5,
new LecturerAddSubjectCommand_l(
"lecturer/classMenu/lecturerAddSubjectl.jsp",1, 5));
commands.add(6,
new LecturerDeleteSubjectCommand_l(
"lecturer/classMenu/lecturerDeleteSubjectl.jsp",1, 6));
/////////////////////////Second Commands ///////////////////////
secondCommands.add(0,
new LecturerCreateClassCommand_2(
"lecturer/classMenu/lecturerCreateClass2.jsp", 2, 0));

14

Appendix 2 Code

secondCommands.add(17
new LecturerDeleteClassCommand_2(
Mlecturer/classMenu/lecturerDeleteClass2.jsp", 2, 1));

secondCommands.add(2,
new LecturerPopulateClassCommand_2 (
Mlecturer/classMenu/lecturerPopulateClass2.jsp", 2, 2)) ;

secondCommands.add(3,
new LecturerRemoveStudentCommand_2(
Mlecturer/classMenu/lecturerRemoveStudent2.jsp", 2, 3));

secondCommands.add(4,
new LecturerEditStudentCommand_2(
"lecturer/classMenu/lecturerEditStudent2.jsp", 2, 4));

secondCommands.add(5,
new LecturerAddSubjectCommand_2(
Mlecturer/classMenu/lecturerAddSubject2.jsp",2, 5));

secondCommands.add(6,
new LecturerDeleteSubjectCommand_2(
"lecturer/classMenu/lecturerDeleteSubject2.jsp",2, 6));
////////////////////// Third Commands///////////////////////////
thirdCommands.add(0, default_command);
thirdCommands.add(1, default command);

thirdCommands.add(2, new LecturerPopulateClassCommand_3(
"lecturer/classMenu/lecturerPopulateClass3.jsp", 3, 2));

thirdCommands.add(3, default_command);
thirdCommands.add(4, default_command);
thirdCommands.add(5, default_command);
thirdCommands.add(6, default command);

public void service(HttpServletRequest req, HttpServletResponse res)
{

if(list_maker == null)
{

next = errorPage + "?message=";
String error = "There is no Database Connection";
next = next + error;
gotoNextPage(req, res);

15

Appendix 2 Code

return;
}

String temp_string = req.getParameter("ClassMenuIndex");
int index;
try
{
index = Integer.parselnt(temp_string,10);

}
catch(NumberFormatException e)
{

//There was no good index in the request Parameter
index = -1;

}

Integer next_index = new Integer(index);
temp_string = (String)req.getParameter("ClassMenuLevel");
int level;
Integer next_level;

try
{
level = Integer.parselnt(temp_string,10);

}
catch(NumberFormatException e)
{

//There was not a good level in the request Parameter
level = -1;

level++;
//To avoid getting stuck in a rut we should get out now if the
//level is still error (0)
if(level == 0)
{

try
{

next = default_command.execute(req,res);
}
catch(CommandException e)
{

//do nothing because we will be able to get out later
//This code is here to stop the error of having no classes
//selected resulting in a flow control infinite loop.

}
gotoNextPage(req, res);
return;

//We should not service a request to do anything with Class Menu
//unless the lecturer is focused on a course.

16

Appendix 2 Code

//If there are no courses stored for this lecturer then they must
//be told that there are no courses and they should create one
//if index = 1 (Create a class) then execution is allowed
HttpSession session = req.getSession(true);
String className = (String)session.getAttribute("className");
String subject = (String)session.getAttribute("subject");

if((className == null || className.equals("")) && index != 0)
{

user = (UserBean)session.getAttribute("user");
String user_name = user.getUsername();
Vector list = list_maker.createClassesList(user_name);

if (list. size () == 0)
{

next = errorPage + "?message=";
String error = "There is no course (class + subject) " +

"in the\n database for " + user_name +
".\n You can create one by going to "
"Create Class\n in the current menu.";

next = next + error;
}
else
{

next = errorPage + "?message=";
String error = "There is no course (class + subject) " +

"selected\n " +
"You can select one by going to Another " +
"Course on the Main Menu.";

next = next + error;
}

gotoNextPage(req, res);
return;

}

next_level = new Integer(level);
if(next_level.intValue() == 1) //then the request came from a

//menu click
{ session.setAttribute("ClassMenuLevel",next_level);

session.setAttribute("ClassMenuIndex", next_index);
}
else //the request came from an intermediate command
{

//We just increment the session level and leave
//the index alone
Integer session_level = (Integer)session.getAttribute(

"ClassMenuLevel");
int temp = session_level.intValue();
temp++;
Integer session_level_plus_l = new Integer(temp);

17

Appendix 2 Code

session.setAttribute("ClassMenuLevel",session_level_j)lus_l);
}

//either way, the request Attributes will show this index and
//the next level
req.setAttribute("ClassMenuLevel", Integer.toString(level));
req.setAttribute("ClassMenuIndex", Integer.toString(index));
//System.out.println("ClassMenuLevel = " + level);
try
{

if(level == 1)
next = ((Command)commands.get(index)).execute(req, res);

else if(level == 2)
next = ((Command)secondCommands.get(index)).execute(

req, res);
else if(level == 3)

next = ((Command)thirdCommands.get(index)).execute(
req, res);

else
next = default_command.execute(req,res);

}
catch(CommandException e)
{

req.setAttribute("exception", e);
next = errorPage;

gotoNextPage(req, res);
return;

private void gotoNextPage(HttpServletRequest req,
HttpServletResponse res)

{

RequestDispatcher rd;
rd = getServletContext().getRequestDispatcher("/secure/" + next);
try
{

if(rd == null)System.out.println("Sister Mary");
//System.out.println("About to forward to " + next);
rd.forward(req,res);
return;

>
catch(ServletException e)
{

System.out.println("Servlet Error forwarding page "
+ next);//What to do?

}
catch(java.io.IOException e)
{

System.out.println("10 Error forwarding page " + next);
//What to do?

18

Appendix 2 Code

Code For Create Class Command 2

package NetClasses.secure.servlets;
import NetClasses.servlets.*;
import NetClasses.beans.*;
import j ava.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import j ava.util.*;
public class LecturerCreateClassCommand_2 implements Command
{

private String next;
private UserDataBaseBean userDB;
private int level;
private int index;
private DatabaseListBean list_maker;
private Vector classNames;
private String className;
private String subject;
private String lecturer;
private UserBean user;

public LecturerCreateClassCommand_2(
String next, int level, int index)

{
this.next = next;
this.next = next;
this.level = level;
this.index = index;
try
{

list_maker = new DatabaseListBean();
}
catch(Exception e)
{

list_maker = null;
}

userDB = UserDataBaseBean.getSingleton();
}

public String execute(
HttpServletRequest req, HttpServletResponse res)

19

Appendix 2 Code

throws CommandException
{

if(list_maker == null || userDB == null)
{

String message = " No database connection";
String error_next = "lecturer/classMenu/error." +

"jsp?message=";
error_next = error_next + message;
return error next;

HttpSession session = req.getSession(true);
//Check to see if the user pressed cancel
String status = req.getParameter("status");
if(status != null && status.equals("cancel"))

return "lecturer/classMenu/classMenu.jsp";
//Check to see if this command is the one currently
//being executed in the session. If not then it did not
//get requested from a menu but by resubmitting some
//page. It will only be serviced if current.
Integer session_level =

(Integer)session.getAttribute("ClassMenuLevel");
Integer session_index =

(Integer)session.getAttribute("ClassMenuIndex");
if(level != session_level.intValue()

|| index != session_index.intValue())
{

//System.out.println("level = " + level);
//System.out.println("session_level = " + session_level);
return "lecturer/classMenu/classMenu.j sp";

}

classNames = (Vector)session.getAttribute("ClassMenuClassList");

if (classNames == null)
{

//System.out.println("The class list is lost");
return "lecturer/classMenu/classMenu.jsp";

}

subject = req.getParameter("subject").trim();
if(subject.equals(""))
{

String message = " Subject must not be null";
String error_next = "lecturer/classMenu/error." +

"jsp?message=";
error_next = error__next + message;
return error next;

className = req.getParameter("class_name").trim();

20

Appendix 2 Code

if(className.equals("")
|| ! isClassNameValid(className, classNames))

{
String message = className + " is not valid";
String error_next = "lecturer/classMenu/error." +

"jsp?message=";
error_next = error_next + message;
return error next;

user = (UserBean)session.getAttribute("user");
if(user == null)
{

//System.out.println("The user bean is lost");
return "lecturer/classMenu/classMenu.jsp";

}

lecturer = user.getUsername() ;
if(lecturer == null)

lecturer = new String("");
//Add the table to the database
if(luserDB.createClassTable(className, lecturer, subject))
{

String message = "The " + className +
" table cannot be created";

userDB.deleteClassTable(lecturer, className);
String error_next = "lecturer/classMenu/error." +

"jsp?message=";
error_next = error_next + message;
return error_next;

//Add the corresponding folders
try
{
//Create the directory for the new lecturer
File f = new File("../webapps/NetClasses/lecturers/"

+ lecturer + "/" + className + '_');
if(f == null || !f .mkdir())
{

String message = "Unable to create folder "
+ lecturer + "/" + className;
String error_next =

"lecturer/classMenu/lecturerCreateClassError2.jsp" +
"?message=" + message;

return errornext;
}

}
catch(SecurityException e)
{

String message = "Unable to create folder " + className;

21

Appendix 2 Code

String error_next =
"lecturer/classMenu/error.jsp" +
"?message=" + message;

return error next;
}

if(!addSubjectFolder() || !addNotesFolder())
{ String message = " Folders for " + subject +

" cannot be added.";
String error_next = "lecturer/classMenu/error." +

"jsp?message=";
error_next = error_next + message;
return error_next;

}

classNames = list_maker.createClassesList(lecturer);
session.setAttribute("ClassMenuClassList", classNames);
req.setAttribute("class_list", classNames);

//this course now becomes the one the lecturer is currently
//focussed on
session.setAttribute("className", className);
session.setAttribute("subject", subject);

return next;

private boolean isClassNameValid(
String className, Vector classNames)

{
for(int i = 0; i < classNames.size(); i++)
{

if(className.equalsIgnoreCase(
(String)classNames.elementAt(i)))

return false;
}

if(className.equalsIgnoreCase("lecturer")
|| className.equalsIgnoreCase("administrator"))

{
return false;

}
return true;

private boolean addSubjectFolder()
<

//Add the corresponding folders

22

Appendix 2 Code

try
{

//Create the directory for the new class
File f = new File("../webapps/NetClasses/lecturers/"

lecturer + "/" + className + "_/" + subject

if(f = null || !f.mkdir())
{

return false;
>

}
catch(SecurityException e)
{

return false;
>

return true;

private boolean addNotesFolder()
{

//Add the corresponding folders
try
{
//Create the directory for the new class
File f = new File("../webapps/NetClasses/lecturers/"

lecturer + "/" + className + "_/" + subject + "
if(f = null | | !f .itikdir ())
{

return false;
}

}
catch(SecurityException e)
{

return false;
}

return true;
>

}

+
/notes");

23

Appendix 2 Code

Upload Server Bean Code

package NetClasses.secure.beans;
import javax.servlet.ServletlnputStream;
import javax.servlet.http.HttpServletRequest;
import j avax.servlet.http.HttpServletResponse;
import j ava.io.*;
import java.util.*;

public class UploadServerBean
{

private String savePath;
private String originalFileName;
private Dictionary fields;
private ServletlnputStream receivedFile;
private String lineString;
private byte[] boundary_array;
private int boundary_length;
private FileOutputStream target_file;
private byte prev_c;
private byte[] buffer;
private byte[] mid_buffer;
private byte[] oldest_buffer;
private byte[] temp;

public String getOriginalFileName()
{

return originalFileName;

public String getSavePath ()
{

return savePath;

public void setSavePath(String path)
{

savePath = path;

public UploadServerBean()
{

boundary_array = new byte[128];
receivedFile = null;
buffer = new byte[1024];
temp = new byte[1024];
mid_buffer = new byte[1024];
oldest_buffer = new byte[1024];
originalFileName = "";
savePath =
fields = new Hashtable();

}

24

http://http.HttpServletRequest
http://http.HttpServletResponse

Appendix 2 Code

public boolean doUpload(HttpServletRequest request ,String path)
{

setSavePath(path);
return doUpload(request);

}

public boolean doUpload(HttpServletRequest request)

try
{ //now the file
int i = readFile() ;

if(i == -1)
return false;

//Now there could be more field-value pairs
//Another name value pair
i = receivedFile.readLine(buffer, 0, 1024);

//Continue with the field value pairs until EOF
while(!(isByteArrayEOFBoundary(buffer, i) || i == -1))
{

readFieldValuePairs(i) ;
//A boundary
i = receivedFile.readLine(buffer, 0, 1024);
if(i == -1)
return true;
//Another name value pair

i = receivedFile.readLine(buffer, 0, 1024);
if(i == -1)
return true;

}
}
catch(java.io.IOException e)
{

System.out.println("Error reading file");
return false;
//e.printStackTrace();

}

return true;
}

public Dictionary getParameters()
{

25

Appendix 2 Code

return fields;

//This section is for parameters that come before the file
public Dictionary readParameters(HttpServletRequest request)
{

try
{
receivedFile = request.getlnputstream();
//read first line. It is a boundary marker
int i = receivedFile.readLine(buffer, 0, 1024);

//First line should be a boundary
if(i < 3)

return null;
boundary_length = i;
//Put boundary in boundary_array
for(int j = 0; j < i; j++)
{

boundary_array[j] = buffer[j];
}

int count = 0;
//First of the Field-Value pairs in three lines
// (name - value - boundary)
i = receivedFile.readLine(buffer, 0, 1024);
lineString = new String(buffer, 0, i);
while(!(

lineString.startsWith(
"Content-Disposition: form-data; name=")

&&
(lineString.indexOf("filename=\"") != -1)
)
&& i != -1)

{

//The Field-Value pairs must be extracted from the
//the three lines. Two more lines will be read in
// this function.
readFieldValuePairs(i) ;
//Boundary after one pair
i = receivedFile.readLine(buffer, 0, 1024);
//the first of another three lines(name - value - boundary)
i = receivedFile.readLine(buffer, 0, 1024);
lineString = new String(buffer, 0, i);

26

Appendix 2 Code

count++;
}

if(i == -1)//There is no file to upload because we did not
// find "filename=\"

{
return fields;

//The last of the Field-Value pairs
//before the file content (this is the filename).
//The filename Field-Value pair are not in the three line
//format
String fieldname = "";
StringTokenizer st = new StringTokenizer(lineString, "=");
if(st.hasMoreTokens())
{

//Get fieldname
st.nextToken(" = ") ;
if(st.hasMoreTokens())
{

st.nextToken("\"") ;
if(st.hasMoreTokens())

fieldname = st.nextToken("\"");
else return fields;

>

else
return fields;

>
else return fields;
//get filename
st.nextToken("=");
if(st.hasMoreTokens())
{

s t.nextToken("\"") ;
if(st.hasMoreTokens())

originalFileName = st.nextToken("\"");
else return fields;

}
else

return fields;
fields.put(fieldname, originalFileName);
//read the next line with type info
i = receivedFile.readLine(buffer, 0, 1024);
//There is a blank line then
i = receivedFile.readLine(buffer, 0, 1024);

27

Appendix 2 Code

catch(java.io.IOException e)
{

System.out.println("Error reading file");
//e.printstackTrace();

}

return fields;
}

private int readFile()
{

int count = -1;
int temp_count;
try
{

//start reading file
//System.out.println("Save path = " + getSavePath()) ;

target_file =
new FileOutputStream(new File(getSavePath()));

//We keep two buffers going. We write the oldest buffer
//to file while the current buffer is not a boundary. There is
//third buffer to make it possible to swap the other two.
int count_oldest = receivedFile.readLine(oldest_buffer, 0, 1024);
if(count_oldest = -1) return count_oldest;
count = receivedFile.readLine(buffer, 0, 1024);
if(count == -1)

return count;
while(count != -1 && !isByteArrayBoundary(buffer, count))
{

target_file.write(oldest_buffer, 0, count_oldest);
//promote the other buffer
//Shallow copy but thats ok because they are not meant to
//be copies but swaps
temp = oldest_buffer;
temp_count = count_oldest;
oldest_buffer = buffer;
count_oldest = count;
buffer = temp;
count = temp_count;
count = receivedFile.readLine(buffer, 0, 1024);

}

//the last buffer needs to be written

28

Appendix 2 Code

target_file.write(oldest_buffer, 0, count_oldest);

target_file. close ();
}
catch(java.io.IOException e)
{ System.out.println("Error reading or writing file in\n" +

"UploadServerBean.java");
//e.printStackTrace();
return -1;//Interpreted as an error in calling function

}

re turn coun t ;
}

private boolean isByteArrayBoundary(byte[] buff, int length_buff)
{

//First check is it the end of file boundary
//The end of file boundary has two more characters than
//a normal boundary
if(length_buff == boundary_length + 2)
{

return isByteArrayEOFBoundary(buff, length_buff);
}

//Then check is the length right
if(length_buff != boundary_length)
{

return false;
}

//Finally the most CPU expensive check. Each element is compared
for(int i = 0; i < boundary_length; i++)
{

if(boundary_array[i] != buff[i])
{

return false;
>

}

//if we get this far then it is a boundary
return true;

}

//This function should only be called if the boundary_array has been
//read.
private boolean isByteArrayEOFBoundary(byte[] buff, int length_buff)
{

if(length_buff != boundary_length + 2)
{

return false;
}

for(int i = 0; i < boundary_length; i++)
{
if(boundary_array[i] != buff[i])
{

29

Appendix 2 Code

//If we get as far as the endline character then it is an EOF
//because we already established that it is the right length
if((boundary_array[i] == '\n') || (boundary_array[i] == '\r'))
<

return true;
}

return false;
}

//We should never get this far because that would mean the two
//arrays both ending with with a newline character and one two
//characters longer than the other were equal
return false;

private void readFieldValuePairs(int i)
{

String name = null;
String value = null;
try
{

int start = lineString.indexOf("=");
if(start != -1)
{

StringTokenizer st = new StringTokenizer(lineString, "=");
if(st.hasMoreTokens())
{

//Get name of field
st.nextToken("=") ;
if(st.hasMoreTokens())
{

s t .nextToken("\"");
if(st.hasMoreTokens())

name = st.nextToken("\"");
else name = "";

}
else
name = "";

}
else name = "";
//Blank line
i = receivedFile.readLine(buffer, 0, 1024);
lineString = new String(buffer, 0, i);

//value
i = receivedFile.readLine(buffer, 0, 1024);
lineString = new String(buffer, 0, i);

//The value is in a line of it1s own
//We need to get the value without the end of line characters

30

Appendix 2 Code

value = new String("");
for(int j = 0; j < lineString.length(); j++)
<
char c = lineString.charAt(j);
if(c != '\n' && c != '\r')
{

value = value + c;
}

}

fields.put(name, value);
//System.out.println("name = " + name);
//System.out.println("value = " + value);

>
)
catch(java.io.lOException e)
{
System.out.println("Error in file headers or footers\n" +

"in UploadServerBean.java");
//&.printstackTrace();

}
}

>

31

