Tools and Techniques to Aid in the
Marking and Categorisation of Digital
Images

By Colin Callanan

Institute of Technology, Sligo

A thesis submitted in fulfilment of the degree of
Master of Science

2006

Supervisor: Mrs. Dana Vasiloaica

Submitted to the Higher Education Training and Awards Council, August 2006



ABSTRACT

Image processing technology is used in everyday applications to do things such as correct
red-eye in digital cameras, and to detect terrorists at airports. Recently it has become
more widespread and ubiquitous in society. With the surge in use of image processing
algorithms and technology, the need for reliable evaluation for those technologies has
increased, and research on objective and quantitative performance estimation methods is
actively investigated. This thesis starts out by giving a comprehensive overview of image
processing algorithms and performance evaluation techniques, ultimately drawing the
focus to the area of testing algorithms using ground truth measurements which allow
accurate reports on algorithm success and accuracy to be carried out. After understanding
this area, it was revealed that no comprehensive tools exist in the industry for the
gathering of ground truth data. Thus, the research moved towards finding out what kind
of working methodology would best tackle the important area of ground truth gathering
through image marking. After this thorough study, a promising framework was proposed,
a framework that would certainly fulfil all the requirements of the difficult ground truth
gathering task. The thesis then details how the software for ground truth gathering was
designed and implemented based on the established framework. The research concludes
that the tool developed certainly helped aid the task of algorithm testing, as proven by the

testing and use of the application at the partner company.



ACKNOWLEDGMENTS

I would like to thank my supervisor, Dana Vasiloaica, who gave some much needed help
and guidance throughout the composition of this thesis. I would also like to thank
Michael Barrett at the IT Sligo for steering me in the direction of this MSc. after I had
finished my degree. I send my gratitude to all of the staff at FotoNation Ireland in
Galway, who helped us get the project started and gave plenty of feedback throughout the
various stages of the project. Additionally, I must thank my co-researcher John Brady,
who offered much advice and help along the way, and my family who gave much support
throughout the duration of the project.



Declaration

TO WHOM IT MAY CONCERN

The work in this thesis: “Tools and Techniques to Aid in the Marking and Categorisation
of Digital Images” represents the research carried out by Colin Callanan under the
supervision of Dana Vasiloaica, and does not include work by any other party, with
acknowledged exception.

Signed: ‘
/ - _-u’//!'\, /(ﬁ'z///n/"ldbv\




List of Figures
Chapter 1: Introduction
Chapter 2: Literature Review
2.1 Introduction
2.1.1 Digital Images and People
2.1.2 Image Processing Advancements

2.2 Algorithm Development and Testing

2.2.1 Exploration of current development and testing tools

2.2.2 Case Study: FERET
2.2.3 Factors Hindering Algorithm Improvement

2.3 Marking and Categorisation
2.3.1 Performance Evaluation and Ground Truth
2.3.2 The Categorisation Process and Use of Markings
2.3.3 Importance of a Good Marking Tool

2.5 The Proposed Solution — An Overview

Chapter 3: Methodology and Requirements

3.1 Introduction

3.2 Evaluating the Algorithms
3.2.1 The Testing and Reporting Methodology
3.2.2 Discovering the Requirements for the Framework
3.3.1 Overview of Framework Components

3.4 Discovering The Requirements For Image Marking
3.4.1 Use Cases
3.4.2 A Framework for Marking

3.5 Overview of the Framework and Marking Tool
3.5.2 Goals of the Marking System

Chapter 4: Software Design

4.1 Design at the Architectural Level
4.1.1 Conceptual Class Diagram
4.1.2 Class Diagram

10
13
13
13
14
20
22
28
30
32
34
37
37
39
42
42
42
43
45
48
51
51
55
58
59
61
61
62
63



4.1.3 Sequence Diagram
4.1.4 Overall System Architecture
4.2 Technical Design
4.2.1 Storage Mechanism — XML Database
4.2.2 Revised Class Diagram
4.2.3 Graphical User Interface Design for the Image Marking Tool
4.3 Design Conclusion
Chapter 5: Implementation
5.1 Approaching Implementation and Testing
5.1.1 Exploration of Programming Environments and Other Resources
5.1.2 Selection of Programming Environment and Development Technique
5.2 Database Interaction and Interfacing with the Client
5.2.1 Client Side Requirements
5.2.2 Database Specification
5.2.3 PFML Server Side Implementation
5.2.4 Building the Data Model on the Client
5.2.5 Overview of the Database and Data Model
5.3 Implementation of the Client Interface
5.3.1 Interface Construction and Controls
5.3.2 Integrating the Data Model with the View
5.4 Integration with the Image Testing and Reporting Framework
5.4.1 Java Perspectives
5.4.2 Sharing Data Throughout The Application
5.4.3 Goals Fulfilled
Chapter 6: Testing
6.1 Testing Strategy
6.2 Functional Testing
6.3 Usability Testing
6.3.1 A look at usability
6.3.2 Improving Usability
6.3.3 Usability Test Results

66
68
69
69
75
77
93
95
95
96
99
100
100
100
103
110
125
126
127
133
153
153
156
157
158
158
160
175
175
176
176



6.3.4 Usability Evaluation
6.4 Conclusions of Test
Chapter 7: Conclusion and Recommendations
7.1 The Research Journey
7.2 The Resultant Tool
7.3 Recommendations for Future Work in the Field
7.4 Conclusion
APPENDIX A: XML Attributes
APPENDIX B: Geometry Types Defined in the Schema
Point
Circle
Ellipse
Rectangle
LineString
LinearRing (aka Polygon)
APPENDIX C: Usability Questionnaire

References

178
179
180
180
181
182
182
183
184
184
184
184
185
185
185
187
190



List of Figures

Figure 2.1: Acquisition of a Digital Photo.......cccccoiiiimiimiiiiiiniiiiiiisi s snsssassens 14
Figure 2.2: Algorithm EXCCULION ..........comssessvsrsernsussssrssnssonsasnsosusoapmessmsspusorsassasansrassonssopssorssonsenss 17
Figure 2.3 Image Processing APpPLiCations ..........cocueiecsumciirmrniisiisins s cinnssssssisssnsssssassnssnanees 18
Figure 2.4 Algorithm Development CYCIE .......cccumaeensinnssnsssnssesssnssnissanivissssssasssmasassssassaisiiisiassns 20
Figure 2.5 Algorithm Result ANalysiS.........covviiiciiimiiciiiniiiieiieisiii s snasssssnssanes 27
Figure 2.6: Image Marking .......cossssussasssonsisaosessnessesssnessassssssssssssmssnassstosssesnssesorsssseerssrassassas 32
Figure 2.7: Ground Truth COmMPariSON.......c.ciervririrririrrmrrenserrsessrassasssssessssieesseessesssiresarsasness 34
Figure 3.1: System Inputs and OULPULS ......iieeiiiiiriiiieniisiniieiisiinsisses s s sseasse e sennsonnens 43
Figure 3.2: Image Marking Inputs and Outputs........cccevvveniiieiiniiiiiiiininniiis s 44
Figure 3.3: Overall Framework Use Cases.......ccccvuviiniiinriniemisiiiesise s sssnnsnressesscessesaces 46
Figure 3.4: Framework OVEIVIEW ......cccvrriiiiriniiininiiiiiiiiisisiiissns e setssssnasiasssssssassessesaesssnsas 48
Figure 3.5: Image Marking Use Case.......cccuviiiininiimiiimmniiisiniisisiiss s snsesssesinsessssssssssn e 52
Figure 3.6: Image Marking Application OVEIrVIEW ........cocerrniersiriistersesiiseessesssssss s saesssssasss s 55
Figure 3.7: Image Marking TOOL.......ccccooiiiiiiiiiiiiiniiniin i aiss s s sss s s snas 57
Figure 4.1: Tree HIierarchy ......cooveoviiiiiiiiiiiiiii i it ittt s e s 61
Figure 4.2: Image Marker Tool Conceptual Class Diagram..........ccceeimiimiinnnnnenssneaninnisnn 62
Figure 4.3: Model-View-Controller ........ooceriiiireniieiiierimimmmsmreesnsesine sanssassssasssasssssssnsessas 64
Figure 4.4: Sequence Diagram..........cccccvireriiiiniiineiiiinmsisiisserserie e s s e esssssasessasssnssnssssssaens 66
Figure 4.5: Conceptual MOdel .......occooeiieriimieiiiinieiiciiisiiissssnssssssssssss s ssassssssssesassssennes 68
Figure 4.6: Getting an Image from the Image Database..........cccciivninmiiiiciinininin. 70
Figure 4.7: Sending an Image Back To The Image Database.........c.cccoieiiiviiiniinniiiiiiniiinininnnn. 71
Figure 4.8: Send Markings Data To The Clent..........cccciviiriiisiemieiiiiiiciessssnsscie s 72
Figure 4.9: Revised Class DIiagram..........ccceceeeeerernenniiisiniesmenimsesnesnsesssssnsesssessssarsesssessseas 75
Figure 4.10: The Old Image Marking TOOL .....ccevvereeiriiuessesinrsnssnsssranssessmsssssessssassasssassssansasssnss 19
Figure 4.11: PhOtOSROP.....ccoviiiieiecicriniis it sias e esss e aasesas s anb s e s et s sana s smbanesannaasnen s 81
Figure 4.12: Interface ProtOtyPe sivastessiiesirissatisiyessss s st ibsisysvsissais i issasssaeisiond soesaves 02
Figure 4.13: New Design SKeteh .....cooiiiiiiiiiiiiciiiiiiiisiiiscsiiiiinss b sssiesssnsssssasssssssssnsene e 85
Figure 4.14: Views in the Image Marking Tool..........cccoocviiriniiniimmnnnsniieeie e e ssereenie e 89
Figure 5.1: Extracting Data from the XML DOCUMENL .......coccviiiirmiiinmemiiisisiniminesimminesnses e 101
Figure 5.3: PFML API Packages UsSed.......c.cocovierniinnniinininioiinnimnsmesis s sesssessses s s s 123
Figure 5.4: Interface COMPONEDES.......c.eeeimiiiiiiiiiiiiiis et tssssarssaa s sassbas s ses s assas s e insseb s s e e e ans 130



Figure 5.5: Data Model and View Integration

Figure 5.6: Exchanges Between the Views ....

..........................................................................



Chapter 1: Introduction

The Image Processing Industry

In the last ten years there has been a digital image revolution, with soaring interest in
image processing technology across the consumer and business landscape. Algorithms —
advanced mathematical formulae that carry out a specific task — are used in many of the
new digital cameras for jobs like red-eye detection, red-eye correction and image
enhancement. Digital devices with such technology have become a ubiquitous and
requisite commodity for the recording, displaying and communication of visual
representations. IDC's European Consumer Digital Imaging Survey claims that “there has
been a meteoric adoption of digital photography in Europe” (IDC Press Release, 2005:1).
The technology has become less expensive, and consumers have a desire to use Image
Processing technology in their day-to-day lives for tasks as simple as capturing, editing
and archiving photos taken on family occasions, sporting events and holidays with digital

cameras.

Purpose of Research

Digital imaging, a multibillion dollar industry incorporating areas such as digital
cameras, airport security and medical screening, is ever in need of more efficient,
innovative algorithms to perform image processing tasks such as face detection, red-eye
detection and correction, retinal scanning, retinal identification, and so on. While a vast
amount of effort goes into the development of advanced algorithms, little work has been
done towards refining and automating their testing process. The accuracy of an algorithm
can only be proven by extensive testing and it is this very process that can speed up, or
slow down the algorithm development process. Also, the actual accuracy and quality of
an algorithm can be improved through rigorous testing. Thus, this thesis intends to study
the current approach to algorithm testing, and to identify ways in which testing process
can be improved. Based on the research, it is hoped that a new framework for testing can
be formulated; a framework that will help to rectify any of the current problems that exist

within the image processing algorithm testing field.

10



Research Approach

In order to gain an understanding of the image processing field, time was initially spent
examining emergent literature in areas such as face detection, biometrics, algorithm
development, and algorithm testing procedures. After analysing writings and applications
from the image processing field, weaknesses were identified within current practices. A
study of the testing methodology was conducted, and thus a framework that would cover
all areas of the image testing and marking process was uncovered. After coming up with
a framework for testing, it was necessary to turn this concept into a tangible, practical
software project. Thus, an application to fulfil the needs of advanced algorithm testing

was developed and tested.

Developments in the Field

Image processing algorithms are executed on the image-test-set. For this thesis, the
algorithms used are those that must detect a specific object within an image. In reality,
the object may be partially visible, may be at different angles, may be various distances
from the camera or may be out of focus. Thus, an image-test-set consists of a set of
images along with markings which state the locations of the objects that must be
detected. A well varied database of images is required. Regarding image sets where the
object to be detected is a face, a number of standardized databases are already available
from various universities and research institutes, such as the MIT Test Set (Sung and
Poggio, 1998) and the Kodak data set (A. C. Loui, C. N. Judice, S. Liu, 1998) and the
UCD Colour Face Image Database for Face Detection (Sharma and Reilly, 2003).
However, a lot of the image test sets found are limited to simplified backgrounds where
the item for detection is relatively easy to detect. Therefore, one of the requirements of
this thesis is the creation of a suitable image database to be used for algorithm tests. The
image set will vary depending on what objects must be detected. For instance, for red-eye
detection, a good selection of images demonstrating red-eye instances must be available.
The following broad requirements have been identified for the image database to be used
in this application:

(i) Objects at various distances from the camera

11



(ii) Objects in Complex Backgrounds
(iii) Partially obscured objects

Structure of Thesis

The thesis is divided into seven chapters. Chapter 2 surveys the literature on image
processing and identifies various characteristics of the algorithm testing field that are of
interest, as well as discovering the overall lack of research and development in the area of
algorithm development. Chapter 3 examines the methodology used for the testing of
algorithms and proposes a framework that will solve many of the problems that exist in
the algorithm testing field. A set of requirements are also drawn up at this stage, and
these requirements comprise the key goals of the research. Chapter 4 aims to evolve the
conceptual framework into a practical software application. Classes are identified and
some technical design issues are tackled. Chapter 5 details the actual implementation of
the solution, showing in detail the technical accomplishments of this research, and
explaining the inner working of selected key areas of the final application. Chapter 6
looks at a testing strategy for the application, and gives an account of usability tests that
were carried out. Finally, Chapter 7 gives a short conclusion, and explores some

recommendations for possible future work.

12



Chapter 2: Literature Review

2.1 Introduction

2.1.1 Digital Images and People

For centuries people have had an unwavering interest in taking photographs.
Traditionally, photographs have been used for capturing portraits of people, places and
objects; people are interested in recording portraits of themselves and places visited.
People want to retain a physical artefact of important events that have taken place, of a
holiday or journey, or of friends made along the way. People want to record photographic

evidence of their children growing up, as well as the household pets and animals.

It can be seen that people are using digital cameras more often and in more ways and
situations than they used film cameras. Some of the new and interesting uses are
highlighted by Narayanaswami, Raghunath; “Because digital images require little
physical space, some users have converted their children’s space consuming art projects
into compact yet accessible digital albums” (Narayanaswami, Raghunath, 2004:65). A
photograph class known as ephemeral images has emerged out of digital camera use,
helping to serve as a memory aid or for transcription. Such images are usually deleted
after use; It can be said that the apparent increased usage is down to the nature of digital
photography; “Consumers' desire to capture images using digital cameras has been shown
to be remarkably high, which reflects the ability to take, re-take, and delete digital photos
as desired” (IDC Press Release, 2005:1). The user may archive, digitally manipulate,
email, and print or upload captured images to the Internet with ease. The low cost of
capturing, storing and viewing digital images on small devices such as mobile phones
have prompted this sort of usage. In the coming years, it is likely that people will find

ever broader uses for their imaging devices.

13



. Take photo Upload Photos PC
4;{ —

Digital Camera

Figure 2.1: Acquisition of a Digital Photo

Narayanaswami and Raghunath state; “We expect digital cameras to be used
symbiotically in several environments, including homes, offices, shops, cars, airplanes,
and trains”, one of the trends being that “We can expect camera storage capacities to
continue doubling almost every year” (Narayanaswami, Raghunath, 2004:67). The same
article concludes with; “Digital cameras with short and long-range wireless
communications capabilities and large storage capacities are poised to change the way we

capture, view, and use digital images” (Narayanaswami, Raghunath, 2004:67).

2.1.2 Image Processing Advancements

Digital Image Processing is said to be the analysis and manipulation of images with a
computer, and involves:
a) The acquisition of an image through a digital source like a scanner or a digital
camera
b) The manipulation of the image in some way. This could include compression,
enhancement, and analysis of the image.
¢) The presentation of the result in some way, for instance, if the result is an altered
digital photo, then it could be printed on photographic paper or published to a
website. Alternatively it may be the results of image analysis that took place in

(b), e.g. “Two eyes have been detected in the image”.

According to Hongjun Xu, “Digital Image Processing is the study of representation and
manipulation of pictorial information by a computer” in order to “Improve pictorial
information for better clarity (human interpretation)” and “Automatic machine processing

of scene data (interpretation by a machine/non-human, storage, transmission)” (Xu,

14



2003:4). In short, Image Processing technology enables the manipulation and analysis of

data and information in the form of images.

Due to increased consumer demands, the technology behind digital cameras is evolving
rapidly. For instance, instead of just capturing an image based on reflected light, the
digital cameras of today have a very complex CCD (charge coupled device) which
captures an image by storing light as individual pixels which make up a total image —
often consisting of tens of thousands of pixels. The stored image is then processed by the

camera and saved to memory.

Once an image has been stored in the memory of the digital camera, it can be processed
further. Here are some examples of the image processing tasks that may take place:

a) The image may be digitally transferred from the camera to a PC. The user may
choose an editing tool such as PhotoShop to enhance or edit the image.

b) The image may be processed and altered by the actual digital camera or capturing
device itself. For instance, the camera may contain technology to eliminate red-
eye from photos. If the user has “Red-Eye Correct” switched on, then the camera
will process the image after it has been taken. In the processing stage, the camera
will detect the red-eye occurrences in photos and will alter the image to fix the

red-eye.

Regarding the red-eye example given in B) above, a program built into the camera might
use some sort of advanced problem-solving formulae to automatically detect and correct
the occurrence of red-eye in images — this logical mathematical formula is referred to as

an algorithm.

There are many algorithm types that may be used to deduce information from visual
images; face-recognition, red-eye detection, red-eye correction, product inspection,
biometrics, fingerprint analysis, disease detection are just a few examples. This thesis is
principally concerned with algorithms that detect and correct everyday faults in consumer
digital images, such as face, red-eye and dust detection and correction algorithms, and

that is why such examples are frequently used within this thesis. When conducting the

15



literature review, much research material on other techniques was also uncovered, but

they are too numerous to mention, and do not hold relevance to the work being carried

out.

2.1.2.1 Common problems solved by algorithms

As advanced imaging technology is finding use in everyday tasks, advanced detection

algorithms help solve conventional problems that users may encounter with digital

imaging media. As this thesis is predominantly concerned with photographs taken using

digital cameras, it is useful to explore some of the algorithms regularly encountered

within this field, namely:

Red-Eye Detection — finds the occurrences of red-eye in an image. Red-eye is a
condition caused by the camera flash reflecting off the back of a person's eye,
resulting in a photo where an individual appears to have red/gold eyes

Red-Eye Correction — manipulates the actual image to eliminate the appearance
of red-eye

Dust Tracking - finds the occurrences of dust in an image. Dust or spots of dirt
may appear on the lens, and may affect the quality of the end photograph.

Dust Correction — manipulates the actual image to reduce/eliminate the effect of
dust on the overall quality of the image

Face Detection — finds the location and extent of an anonymous face based on it’s
visual appearance

Face Recognition — recognises an individual within a personal photograph
collection

Blur Detection and Correction- locates an area containing blur; correction

algorithms will attempt to sharpen the problem area.

16



Taking face recognition as an example; it involves the detection of faces in an image,
and the comparison of these detected faces with a database of known faces to determine
if there is a match. Similarly, face detection algorithms will “determine whether or not
there are any faces in the image and, if present, return the image location and extent of
each face” (Yang et al, 2002:34). Margaret L. Johnson gives a brief outline of what
happens within such recognition algorithms; “in a face recognition system, facial
geometry algorithms work by defining a reference line — for example, the line joining the
pupils of the eyes — and using it to measure the distance and angle of various facial

features relative to this reference”(Johnson, 2004:92).

In Fig.2.2 below an image is fed into the computer system. In this instance, a face
detection algorithm is run, and it finds all faces in the image. Secondly, the faces are
extracted from the image. And thirdly, the system determines if the faces are recognised
by its database of known faces or not. Identification is when the system matches a
detected face with a particular known individual, and verification is when the system

verifies that a person is who they say they are.

Input - - = Identification
image —I Face Detection H Feature Extraction |—>I Face Recognition I—’ or Verification

Figure 2.2: Algorithm Execution

All methods of image recognition involve the use of advanced algorithms, a small
number of which are being studied in this research. In the above case, the algorithms
must have the ability to detect the presence of blur, dust and red-eye. Yang et al. states,
“To build fully automated systems that analyze the information contained in face images,
robust and efficient face detection algorithms are required.” (Yang et al, 2003:34). It is
thus vital that algorithms have been constructed and developed meticulously, with a
string testing and reporting framework to facilitate continual improvement and

performance measurement.

17



2.1.2.2 Real World Problems Solved

The results of the development and evolution in image processing, and the widespread
use of digital images, have yielded many advances in the technology. Many scientific
practices have benefited from such advancements. In particular, based on aforementioned
evidence, it is clear that the area of image recognition has flourished. Ming-Hsuan Yang
et al. (2003) claims that research efforts in face processing have helped to advance
computer vision techniques such as face recognition, face tracking, pose estimation, and
expression recognition. In face detection and recognition over two-hundred different
approaches to algorithm development have been reported. Each approach comprises
highly evolved mathematical calculations and analysis of images using techniques that
have been evolving since the inception of digital imaging (“Detecting Faces in Images: A

Survey”, Yang et al.).

Digital Image Processing is used in a wide range of business and industrial applications,

as shown by Hongjun Xu (2003, page 19) in Fig 2.3:

BIOLOGICAL: Automated systems for analysis of
samples.

DEFENSE/INTELLIGENCE Enhancement and interpretation of images
to find and track targets.

DOCUMENT PROCESSING Scanning, archiving, transmission.

FACTORY AUTOMATION Visual inspection of products

LAW ENFORCEMENT/FORENSICS Face recognition, fingerprint analysis.

MATERIALS TESTING Detection and quantification of cracks,

impurities, etc.

MEDICAL Disease  detection and  monitoring,
therapy/surgery planning

Figure 2.3 Image Processing Applications

18




In most cases, image processing algorithms do something useful after extracting
information from a digital image; “The rapidly expanding research in face processing is
based on the premise that information about a user’s identity, state, and intent can be
extracted from images, and that computers can then react accordingly, e.g., by observing
a person’s facial expression” (Yang et al., 2003:34). With the continual research and
development in imaging technology, the next natural step for its evolution is the
realization of the technology to solve more pressing and critical problems. The security
industry in particular has embraced image processing technology; incorporating
algorithms that deduce information from visual images, including face recognition and
fingerprint analysis technologies. Furthermore, there has been the development of more
advanced image recognition systems that can detect human faces in photographs and
video. With the growing security concerns after the New York bomb attacks on

1™ 2001, there is a remarkable need for such technology.

September the 1
Face recognition is now being used in many worldwide security systems, where it can be
implemented in systems that detect known individuals — terrorists can now be recognised

on video camera.

There is also evidence that the technology is evolving and moving into the 3D realm. A
good example of such development is given by the Israelis Michael and Alex Bronstein
(2003), who have worked on image recognition algorithms that may contribute to the
advancement of international security. Such technology scans and maps the human face
as an actual three-dimensional surface, providing a far more accurate reference for
identifying a person than aforementioned image recognition systems, most of which rely
on two-dimensional images. Such a product can potentially meet a wide range of security
needs in a world shaken by the September 11 attacks and various bombings thereafter.
“The system could be employed at airports or border crossings where a 3-D security
camera could scan passengers' faces and compare them with a database of three-
dimensional pictures of suspected criminals or terrorists, Michael and Alex Bronstein

said.” (CNN, 2003:1).

19



2.2 Algorithm Development and Testing

In order to build reliable and efficient systems that are able to deduce information from
consumer digital images, consistent, strong and efficient recognition algorithms are
necessary. While features such as face detection in surveillance systems or automatic
red-eye removal in digital cameras have greatly improved in the past few years, they have
still not reached desired standards; there are still many challenges in this arena; “Despite
their success, many of the appearance-based methods suffer from an important drawback:
recognition of a face under a particular lighting condition, pose and expression can be
performed reliably provided the face has been previously seen under similar
circumstances” (Belhumeur, 2005:2). And this is just one example. Later on in this
chapter, current development and testing techniques are explored with a view to finding
out what work can be done to aid in the evolution of digital image algorithm development

through improved testing procedures.

Image processing algorithms require an involved development process, with many
incremental improvements to fine-tune performance across a broad range of images,
verifying performance at all stages of the testing process using testing and reporting
techniques. “Algorithm development is a dynamic process” and “evaluations let
researchers know the strengths of their algorithms and where improvements could be
made. By knowing their weaknesses, researchers know where to concentrate their

efforts” (Rizvi, 1998:14).

Produce
Reports

Develop Image Test Image
Algorithm . Algorithm Reports

Identity
Weaknesses

Figure 2.4 Algorithm Development Cycle

20



Getting an algorithm to perform correctly is not a simplistic task. There are many
unexpected and unpredictable scenarios within images which may throw a well
developed and moderately tested algorithm off track. In the examples given in 1.2.1 —
Red-Eye detection, Red-Eye correction and so on. many difficulties can arise. For

example:

e Red-Eye reflections may be present, and may confuse the algorithms as to where
the red-eye is located, as it is spread around the outside of the eye

¢ Red-Eye false alarm may occur, where the algorithm may detect a non-eye-
related red shape in the photo which is the same size and color as a red-eye
occurrence, in which case it is incorrect to alter the image

e Blur false alarms may occur if the algorithm decides an area is blurry, but the
area is not actually blurred, e.g. a reflection in a pond.

e Dust may be falsely detected if dust-like dots make up part of the actual image,
for example a design on a t-shirt.

¢ Non-Detection may occur if the algorithm fails to find either blur, red-eye or dust

when occurrences of such are present.

Complications such as these mean that algorithm development may become quite
difficult, as algorithms need to be altered time and time again to reduce error rates and to
fine tune performance. “As recognition technology has matured and is being considered
for more applications, the demand for evaluations is increasing. At the same time, the

complexity and sophistication of the evaluations is increasing” (Grother, 2003:5).

Tools and techniques that aid in the job of inspecting and testing algorithms will certainly
help to speed up the process of algorithm development and testing. This thesis is
concerned with the job of inspecting and testing image processing algorithms, so by
conducting some research in this area, knowledge is gained of the current tools and

techniques developers have been using in this field of algorithm inspection and testing.

21



Thus it may be possible to find out how helpful such tools and techniques have been, and

whether there are weaknesses in their application.

2.2.1 Exploration of current development and testing tools

“The result of evaluation leads the developer to develop better technology by analyzing
the weakness” (Hong, 2004:8). Major evaluations like the FERET (Face Recognition
Technology) tests, which evaluated emerging approaches to face detection, have helped
to measure the power of face recognition technology and have also served to drive its
evolution. The primary motive of FERET is “to assess the state of the art, identify future
areas of research, and measure algorithm performance” (Phillips et al., 2000:1090 a — The
Feret Evaluation Methodology for Face-Recognition Algorithms). According to Phillips,
“Progress has advanced to the point that face-recognition systems are being demonstrated
in real world settings. The rapid development of face recognition is due to a combination
of factors: active development of algorithms, the availability of a large database of facial
images, and a method for evaluating the performance of face-recognition algorithms.”
(Phillips et al., 2000:1090 a). If anything, FERET has provided a snapshot of how
effective Image Processing algorithms can become when under constant scrutiny,

evaluation and improvement.

In this section, some of the evaluation tools and techniques currently being used in the
imaging industry will be examined to help uncover the strengths and weaknesses of
current practices. It will also become evident what work needs to be done if an improved

testing and reporting framework is to be developed.

22



2.2.1.1 Testing and Improving Algorithm Performance Through

Evaluation

Testing is required when developing any kind of computational algorithm, and in the
field of image processing, testing is seen as a vital and crucial stage worthy of much time
and effort. Whether the algorithms being tested are for face detection, red-eye detection,
or fingerprint analysis, much importance is given to the testing and reporting stage of

development.

This thesis is only concerned with more complex algorithms that require ground truth
measurement, i.e. features that must be detected within an image are previously marked
to measure if they have been detected. These are the kinds of algorithms where more than
one object may be detected in an image, and where there is no simple true or false —
detected or undetected — result that evaluations can be based upon. For instance, an
algorithm that must recognise a fingerprint either finds a match, or does not. Whereas an
algorithm that must detect the occurrence of red-eye in a photo may not find an instance
of red-eye that has been marked (false negative), or may locate red-eye at a location that
is not marked (a false positive). For this thesis, the researcher is interested in developing
testing tools and techniques for such algorithms that require the use of markings — ground

truth — to measure the efficacy of algorithms.

Algorithm developers use evaluation metrics and techniques to measure algorithm
performance and evaluate. Here are some examples of some of the techniques that may

be used when evaluating an algorithm:

A) Image Marking

As described by Sharma and Reilly in “A colour face image database for benchmarking
of automatic face detection algorithms”, “to evaluate the algorithm, a person must first go
through all images in the database, marking the faces that he/she finds in each image”
(Sharma, Reilly, 2003:3). This is the image marking stage of algorithm testing. In this
particular example, the aim of the algorithm is to detect faces; therefore the face locations

are stored for each image along with other image meta-data. Then automatic tests are run

23



which will reveal the false positives and negatives by comparing the markings done by a
human with the actual detected regions. According to Prag Sharma and Richard B. Reilly
(2003), it is then necessary to use an “accuracy measure to confirm a ‘correctly detected’
face. A spreadsheet with details of the faces present in each image of the database is also
provided” (Sharma, Reilly, 2003:5). An example of such a spreadsheet is given in section
2.2.1.3. The actual process of markings images is of much importance. When images are
well marked they can be easily categorised in the database, making it easy to run tests on
specific categories of images, ¢.g. all faces with eyes. This is a key area in this thesis so it

will be tackled in more detail in Section 3 — “Marking and Categorisation”.

B) Metrics

For evaluation purposes, it is important to examine some of metrics developers employ
when running tests. Defection rate is defined as the number of items correctly detected by
the algorithm vs. the number of items determined by a human (as defined in the image
marking stage in A above). A false positive is where an image region is declared to be a
face but it is not and a false negative is where a face is not detected at all. “Thus, false
positives and negatives can be automatically evaluated by comparing the location of the

detected regions to the hand segmented results” (Sharma, Reilly, 2003:5).

C) Further Comparisons

Many developers use advanced mathematical formulae to calculate the performance of
the current algorithm against the previous version of the algorithm, or against an
algorithm developed separately, or by another vendor. This allows developers to find out

whether the algorithm measures up against other developments in the field.

Regarding testing and evaluation techniques for other types of imaging algorithms, the
field of biometrics holds some quite interesting applications of the technology, of which
face detection is only one aspect; “Biometrics is a technology that automatically
identifies or verifies an individual based on one’s physiological and behavioral
characteristics, and usually fingerprint, face, iris, voice and signature recognition” (Hong,

2004:2). By and large, many of the developments in biometrics are based on

24



identification and verification; “In identification applications, a system identifies an
unknown face in an image; i.e., searching an electronic mug book for the identity of a
suspect. In verification applications, a system confirms the claimed identity of a face
presented to it. In recent times there has been much interest in biometrics for the purpose
of security, thus augmenting the need for testing; “With the great interest in biometrics, it
is necessary to evaluate the biometric systems accurately. For most biometrics products,
the evaluation was not good enough to estimate the performance” (Hong, 2004:1). Again,
the problem of insufficient testing and evaluation techniques crops up. In biometrics, a lot
of testing is centered around verification and identification. Regarding technology
evaluations; some examples are The Fingerprint Verification Competition (FVC) 2000
and 2002, which are technology evaluations that measure performance of single-finger
fingerprint algorithms. Also the FERET (Face Recognition Tests) technology evaluations
measure the performance of face recognition algorithms across multiple vendors.
Evaluations have served to give industry benchmarks, allowing for vendor to vendor

comparison, and improvement. FERET will be tackled in more depth in Section 2.2.2.

2.2.1.2 Use of a Large Test Image Database

All imaging algorithms require a large database of images for training and testing
purposes. Training refers to the process of getting an algorithm to work successfully with
a finite set of visual images which may contain a limited number of people and scenarios.
This set of images is known as the fraining set, and the algorithm is developed using this
training set for testing. Taking face detection as an example, the algorithm will be able to
detect all faces in the training set. Testing refers to the process of evaluating the algorithm
using a different set of images — the fest set. The algorithm will encounter images it has
not worked with before and as a result, the real strengths and weaknesses of an algorithm

will be revealed.
Based on evidence gained while investigating the specific area of face detection, it is

evident that algorithm developers have conducted a lot of interesting research in testing

and evaluation procedures. One of the problems identified in current testing and

25



evaluation practice has been the lack of a comprehensive image database. As Sharma and
Reilly report in “A colour face image database for benchmarking of automatic face
detection algorithms”, “Although several face image databases exist, most of them are
geared towards the evaluation of face recognition algorithms” (Sharma, Reilly, 2003:2).
A related problem has been the use of the same image data sets for both training and
testing purposes; this means an algorithm is developed to detect faces in a certain set of
images, and then the algorithm is evaluated based on its performance in detecting faces in
this small range of images; performance in images outside that range is not evaluated.
“An algorithm that is not designed properly will not generalize to another data set. To
obtain an objective measure of performance requires that results are computed on a
separate test data set.”(Phillips, 2005:2). Lei Zhang et al. summed up the main problems
in face detection in the following piece; “Though efficient and robust face detection
algorithms have become available, the effectiveness of available face recognition
algorithms is still limited to images of mug shots in which faces are mostly in frontal and
with reasonably homogenous lighting conditions and small variations in facial

expressions” (Lei Zhang, 2004:1).

Consequently, many of the face detection algorithms developed have not been tested on
an image database containing test sets which possess a high degree of variability in terms
of scale, location, orientation, pose, facial expression lighting conditions, etc, according
to Grother (2005). For instance the MIT database (MIT Database, 2006) consists of
frontal and near frontal view images on a cluttered background. Such databases do not
provide the challenges that face detection algorithms can encounter in real applications:
such as poor image quality, presence of multiple faces and faces with different
orientations (up-right and rotated). This is a universal problem which applies across the

board, to all detection algorithms.

More recently, awareness of this problem has grown, and more researches have attempted
to address this problem. Namely, image sets in databases set up by Sung and Poggioas,
Schneiderman, Kanade and Rowley possess a higher degree of variability, often with

more than one faces in images.

26



2.2.1.3 Statistically based evaluation speeds the improvement and

evolution of algorithms

P. Courtney and N.A. Thacker (2001) propose that the lack of algorithmic reliability has
been due to the neglect of the important role that statistics must play in algorithm
development. They report that one obvious problem is the testing of newly developed
algorithms on a small number of carefully chosen test images, wherein fact the new
algorithms effectiveness should be tested against those of existing algorithms. In the
chapter “Performance characterisation in computer vision: The role of statistics in testing
and design” (Courtney and Thacker, 2001), it is revealed that performance evaluation is
not just finding out whether algorithms perform as expected; according to Courtney and
Thacker, it involves the use of objective, usually statistical, measures for comparing the
performance of vision algorithms (Courtney and Thacker, 2001). Thacker also makes the
point that rigorous approaches to testing do exist such as test metrics like Feature
Detection Reliability metrics like the ROC (Receiver Operating characteristic) curve,
which is a graphical plot of the fraction of true positives versus the fraction of false
positives. They propose a framework on how to compare algorithms to draw defensible,
accurate and detailed conclusions about their performance. Such development work has
helped to advance algorithm development practices in many ways; one thing is that
developers can clearly see where problems lie. The data gathered in systems like ROC
provides developers with very useful data quickly, and this in turn speeds the evolution

and improvement of detections algorithms.

A S (T i [ Y o T PO - o 91| I _
File Name ("jpg) Total Faces = Frontal Intermediate Profle ~ Upright Rotated Occluded! Structural Comp
Person0001.jpy 1 1 0 0 1 0 0 0
|Person0002 jpy 1 1 0 0 1) 0 0 0
Person0003.jpg 1 13 0 0 1i 0 0 0
|Person0004.jpy 1 0! 1 0 ! 1 0 0
Person0005.jpy 1 0: 1 0 1 0 0 1]

Figure 2.5 Algorithm Result Analysis

27



2.2.2 Case Study: FERET

In FERET tests, algorithms were evaluated against different categories of images. The
categories were broken out by a lighting change, people wearing glasses, and the time
between acquisition of the database image and the image being presented to the
algorithm. Looking at algorithm performance in these areas provides an insight into the
face recognition field, as well as the actual strengths and weaknesses of individual

algorithms.

It is obvious that meticulous testing of algorithms is necessary in order to ensure accuracy
and consistency across results, especially in systems where security is vital, e.g. a
biometric system that verifies a human retina, and allows the user to operate military
equipment. Algorithms must be tested to ensure every possibility and scenario for the use
of the algorithm has been visited more than once. By exploring the FERET testing

procedures, it can be seen what challenges exist in the testing of imaging algorithms.

Large Numbers of Tests and Large Databases of Images

The nature of algorithm testing is that it is quite time consuming and requires large
numbers of tests to be run on images. For instance, in the paper “Detecting Faces in
Images: A Survey” by Ming-Hsuan Yang (2002, P44), the distribution based methods
mentioned used 4,150 positive examples of facial images, and 43,166 more images for
the sample of non-face patterns to test an algorithm. The Inductive Learning Approach
uses 2340 frontal face images in a FERET dataset in order to test its algorithms. The
Hidden Markov Model was tested on an MIT database of 432 images, each with a single
face, in order to determine the success rate of the technique, while the Information
Theoretical Approach uses a face training database consisting of nine views of 100

individuals.

In the face detection field, it appears that developers formulate numerous algorithms but
many of them are not tested on data sets where images possess a sufficient degree of

variability in pose, location, facial occlusions (such as glasses, beards, etc). This problem

28



could be solved by integrating a vast image database into the testing architecture that is
being proposed for this research. Databases will be used to empirically evaluate
recognition algorithms in a specific domain. Thus the database used in this research will
need to be able to accommodate a particular dataset of images and will need to provide an
efficient interface to the retrieval and storage of such images. Within this set of images,

there must be a wide variety of image content.

According to Yang et.al (2002:49), a database where “each image consists of an
individual on a uniform and uncluttered background” is “not suitable for face detection”.
Rather, a large database of images with photos of individuals in various situations, poses
and angles are necessary. For example, the Purdue AR database contains over 3,276
colour images of 126 people (70 males, 56 females) in frontal view with several varying
factors, such as facial expression, illumination conditions and occlusions. One of the
problems identified with FERET tests was that the majority of images consisted of

individuals in full frontal poses, and images were non-colour.

29



2.2.3 Factors Hindering Algorithm Improvement

One of the factors hindering algorithm development has been the lack of truly effective
testing and reporting tools that allow the efficacy of algorithms to be measured and
compared. This is known as performance characterization, performance estimation or
benchmarking. “One of the major criticisms of computer vision over the last few years
has been due to a general lack of algorithmic reliability. In our opinion, this has largely
been due to the neglect of the important role that statistics must play in algorithm

development.” (Courtney, Thacker, 2001:3).

Algorithm testing in image processing has been carried out in a somewhat cumbersome
and unsystematic fashion, without any standardised approach; While there arc certain
areas in computer vision where much literature is readily available and practices are
generally standardised; the 9th Workshop "Theoretical Foundations of Computer Vision"
conference reported that the research community faces a distinct lack of standardised,
well grounded and industry-wide accepted methodology in the area of imaging algorithm
testing (9th Workshop "Theoretical Foundations of Computer Vision", 1998). Now
experts are beginning to research more into this area. “It is now accepted by many in the
machine vision community that a more rigorous approach to studying the performance

characteristics of vision algorithms is required.” (Courtney, Thacker, 2001:3).

Without effective testing, the performance of algorithms is questionable, and it can be
hard to pinpoint problem areas in algorithms or to compare algorithm performance. Thus,
the key aim of this thesis was the development of a framework for testing and reporting

to systematically evaluate algorithm performance.

Some of the limiting factors identified thus far include:

30



1. Statistical Tools

No comprehensive statistical tools are available to aid in face recognition algorithm
comparison. While FERET proposed a standard testing protocol and standard dataset for
cvaluation, it was discovered by Yambor et al. that more involved and powerful
algorithm evaluation tools are required. The article “Face Recognition: Hypothesis
Testing Across All Ranks” (Mislav Grgic et al, 2005), reports that serious statistical tools
have not been used in face recognition algorithm comparisons. Essentially, based on
evidence seen in this paper, stats tools are available, but are not being deployed as widely

as is desirable within the testing and reporting part of the development process.

1I. Framework and Working Environment

Based on user profile studies at the partner company, it is evident that there is overall
dissatisfaction with current testing and reporting practices, with some major
shortcomings in the current testing and reporting system in use. After interviewing the

user base, it has been found that:

e Users who worked on the marking of image sets for algorithm testing and

reporting purposes found the task slow, difficult and tedious.

e The tools for marking images are not as accurate as desired, meaning that
markings may not be sound. This means ground truth data will suffer, and the

entire image algorithm testing process is made less effective.

e Algorithm developers saw a fragmentation in the different development stages for
an algorithms lifecycle. Stages were not coherent, lacking a streamlined process
where one stage feeds seamlessly into the next. The disparity between stages may
contribute to a loss in development time and decreased developer focus. The
different stages include; importing images to the system, marking images, adding
metadata, image categorisation, and also the process of actually running tests on

algorithms.

31



As reported, testing and standardized reporting on image processing algorithms up to
now is relatively underdeveloped. Based on studies carried out at the partner company,
evaluation techniques currently in use do not live up to expectations, and different applic
ations need to be used to carry out one task. Many incremental algorithm changes and
improvements will be necessary, and each time the algorithm has to be retested using the
same tools. Reporting tools have to be used after testing has taken place to evaluate

algorithm performance.

2.3 Marking and Categorisation

As found out in Section 2.2.1.1.A “Image Marking”, image marking and categorisation
are important and worthwhile stages of the testing process. In image marking a person
must first go through all images in the database, manually marking the faces found in
each image. The face locations are stored (this is known as the ground truth data), along
with other image data. Then automatic tests are run revealing the false positives and

negatives by comparing the markings done by a human with the actual detected regions.

Mark all
occurrences
of red-eye

Figure 2.6: Image Marking

There are some interesting examples of the usage of such marking systems in the imaging
industry at the moment. For instance, when comparing face verification algorithms using
appearance models, Kang et.al. built the appearance models by using a set of labeled
images, within which the areas of interest are marked and stored as co-ordinates, “All the
images were marked up manually with 68 key points on each face. We match the models
to these known points and extract the model parameters. This allows us to test the
classification performance alone” (Kang et.al, 2002:480). Similarly, in research

conducted by Feris, Gemmell, Toyama and Kruger during their project “Facial Feature

32



Detection Using A Hierarchical Wavelet Face Database” (2002), the project involved the
application of an affine transformation to feature positions taking into consideration the
whole face. In order to evaluate the effectiveness if the algorithms, each set of automated
feature localisations was compared with the hand marked locations of each feature. “An
‘accurate’ localization is characterized as one in which the feature was localized to within
3 pixels of the hand-marked position.” (Feris et. al, 2002:10). Based on results shown in
this paper, it is apparent that this technique of measuring algorithm accuracy worked
well, and gave researchers solid, clear results. Another use of image marking was for the
“Fast Face Detection and Pose Estimation” project (Fleuret and Geman, 2002) where
poses were marked by going through images individually and manually marking the real
pose on every face. By using this technique of evaluation, the distance between the real
location of the pose and the one found by the algorithm could be accurately measured.
Only one instance was discovered where hand marking systems were not adequate, and
this was by Jaynes et.al, 2005, in a study where video cameras were used and more than
10-minutes footage had to be manually marked for every 500" frame— in this instance
manual marking proved to be very slow; “the effort required over 100 human-hours of
cffort. This number includes only the hand-segmentation and labeling of subjects and
objects in the video sequences. Clearly a more efficient approach is needed.” ( Jaynes
et.al, 2005:7).

Because this thesis is concerned mainly with the task of image marking and
categorization for algorithm testing and performance evaluation, it is worthwhile to
explore the fundamental testing goals that are motivating development and research in
this area of the imaging industry, and also to investigate the research and development

work that has already been carried out.

33



2.3.1 Performance Evaluation and Ground Truth

The key purpose of using a marking system to aid in performance evaluation is the
acquisition of ground truth data. Ground truth data could be simply defined as the
expected output; in the image marking systems already mentioned, the ground truth data
is the marked data, e.g. a photo has 1 face with 2 eyes, so it is marked as such. If an
algorithm finds 1 face and 1 eye in the same photo, then — according to our ground truth
data — the algorithm has missed an eye, and is flawed. “Ground truth acquisition is the
process that generates both the actual input for the evaluated system and the expected
output (ground truth) for comparison with the actual output.” (Dori and Liu, 1999:3). In
Fig 2.7, the ground truth (shown as “Instances of Red-Eye”) data are compared with the
number of instances of red-cye detected by the algorithm through a range of images. As
can be seen, in image 1, the ground-truth seems to match the detected instances, but on
through image 2 and image 3, the detection rate has fallen, indicating that perhaps the
algorithm is not performing as well under particular conditions that exist in image 2 and

image 3.

B Instance of Red-Eye
@ Detected

Image

! Image -. Inst f Detected r
2 Imadnstance o etecte
m;geRed-Eye

Figure 2.7: Ground Truth Comparison

34



In the publication “Principles of Constructing A Performance Evaluation Protocol for
Graphics Recognition Algorithms” (Dori and Liu, 1999), a performance evaluation
technique for use in graphics recognition algorithms is described. Graphics recognition
algorithms are used in applications such as Optical Character Recognition software
(software that recognises shapes of words in an image); ” Graphics recognition is a
process that takes as input a raster level image consisting of pixels or a vector level
drawing consisting of symbolic primitives. The graphic objects that may be recognized
from the input include text (character) regions, lines of various shapes (e.g., circular arcs
and polylines) and styles (e.g., dashed lines and dash-dotted lines), special symbols,
dimension sets, etc.” (Dori and Liu, 1999:1). Graphics recognition algorithms are not
completely dissimilar to those encountered in face detection and fingerprint detection,
thus, the evaluation techniques used in this field are relevant and of interest. Also, the
same problems are encountered in the graphics recognition systems as in those dealing
with human features. One of the main challenges faced seems to be that of finding a
system that allows for quantitative and objective evaluations and comparisons. There is a
“lack of protocols that provide for quantitative measurements of metrics” and lack of “a
sound methodology for acquiring appropriate ground truth data, and adequate methods
for matching the ground truths with the recognized graphic objects” (Dori and Liu,
1999:1). In other words, the challenge in such systems is to measure whether the
algorithm was detecting the “marked” data. Dori and Lio found that in order to advance
the resecarch in recognition algorithms and to reliably and successfully compare
algorithms, there was a definite requirement for “the establishment of objective and
comprehensive evaluation protocols and a resulting performance evaluation

methodology” (Dori and Liu, 1999:1).

Dori views performance as a set of non-subjective metrics — or measurements — taken
from the output data of an algorithm, against the actual expected output, or ground truth.
The following three elements are stressed as being the real requirements to the successful
evaluation of a recognition algorithm:

A. The expected output — or ground truth - needs to be known so it can be compared

with the actual output, the results of the recognition algorithm. Importantly, it is

35



stressed that “a sound methodology of acquiring the appropriate ground truth data
is required”.

B. Each ground truth object — or in the case of human feature detection, each marked
feature — must be matched up with, and compared with, the actual object
recognized by the algorithms, and a sound matching method is needed

C. Representative metrics of interest must be used. These are the measurements that

will be most helpful in evaluating the performance of an algorithm.

It is emphasised that real-life ground truth is highly desirable. However, the challenge
expressed is that such “real-life” ground truth is difficult to acquire, as a large amount of
intensive manual work is required to build databases of real life input, as well as their
ground truths: “To comprehensively and thoroughly evaluate an algorithm on real-life
drawings, real-life ground truth is highly desirable. However, this type of ground truth is
hard to obtain, as it requires manual measurements, which are labor intensive and error-
prone” (Dori, WenYin, 1999:3). Often, such data is error prone because of the method
used to obtain ground truth. Another factor is that ground truth may be somewhat
subjective; “Moreover, manual ground truth input is somewhat subjective and may vary
from one human to another” (Dori, WenYin, 1999:3). Nevertheless, image marking is the
only method to acquire ground truth for real-life drawings or images of people, so it

needs to be employed as well as it can be.

When matching, Dori and Liu found that it was best to use a relative difference. In other
words, the ground truth and the object recognised by the algorithm are not at identical
locations, and the recognition result is to be matched with the ground truth — not vice
versa — because the ground truth is what recognition is intended to reveal. “The ground
truth is to be used as the basis for comparison” (Dori and Liu, 1999:4). “The performance
of recognition algorithms is usually reflected by two rates: true positive and false
positive” (Nalwa, 1993). According to Dori and Liu, it is important that the two rates are
used together so that improvements can be seen by a definite increase in the true positive

rate.

36



To summarise; image marking allows a clear ground truth that all tests can be accurately
measured by. Image markings an excellent way, and the only way, to work with large
numbers of images and many test cases. If markings are accurate and precise, algorithm

performance changes can be easily noted — improvements measured, etc.

2.3.2 The Categorisation Process and Use of Markings

When images are marked, the markings — or ground truth data — are stored as image
metadata. Such metadata may not only be used for the purpose of algorithm evaluation, it
may also be used as a means of categorising or annotating the images. Base on evidence
gathered by Zhang et al. (2004), there seems to be an emerging trend in image annotation
where keywords are associated with images or regions. According to Zhang et al., such
categorisation tools have been helpful in solving image retrieval problems. However, the
problem noted by Zhang et al. with some of the methods currently used to store images is
that there are not any automated annotation functions. While the paper is centered more
on categorisation tools and CBIR (content based image retrieval) for personal image
collections, it is focused on categorising images by face identities so that a user may
search for and retrieve all photos of a particular family member, or photos of all members
of a particular group. Interestingly, this means that the categorisation tools given to the
user will allow for the grouping of images based on a particular tag (e.g. ParisHoliday for
all photos taken on a holiday in Paris), the annotation of individual images based on the

person in the image, and the retrieval of images based on a query or tag.

Any image marking toc'Jl used in a testing/reporting environment will automatically
generate image metadata as images are manually marked. For instance, such metadata
may relate to the nose marked, the face marked, the person in the image, the date, a tag
(showing what group the image belongs to), and so on. Such data could be used to help

annotate and categorise images based on features marked, the date or the tag.

2.3.3 Importance of a Good Marking Tool

The ground truth —- or in this case the image markings - are only as good as the tool used

to mark them. A tool that provides an easy and fast way of markings images is not

37



available. If there are no good tools available for image marking, then the quality of the
ground truth - the actual markings - may be questionable. This is especially true where a
person must individually mark thousands of images — this is a manual and quite labour
intensive job, requiring many hours of work. Based on what has been expressed by
imaging researchers involved in the image marking process, it can be deduced that most
tools are slow, hard to use, monotonous and non-intuitive. The process of marking

images is a quite lacklustre affair, especially where a large number of images are used.

It is clear that there is a need for a tool that somehow helps to automate this marking
process as much as possible, speeding it up and making it more user-friendly and
intuitive. Such a marking tool would simultaneously and automatically categorises
images based on marked content and other meta-data such as the name of the person or
object in the image. A system combining such elements would be preferable to the

current manual task in place.

38



2.5 The Proposed Solution — An Overview

Throughout the exploration of literature, this writer has viewed many of the issues facing
image processing algorithm testing in a modern development climate. This section
attempts to relate some of the conclusions drawn post research by proposing an new
innovative framework to encapsulate the entire testing and reporting process for

algorithms.
2.5.1 The Proposed Framework

The framework proposed by this thesis is one that will provide an integrated and intuitive

testing and reporting environment, consisting of the following tools:
e An Image Marking Tool for the establishment of ground truth data

¢ An Image Database Tool to store and manage collections of consumer digital

images, and to interface with the two other tools in the framework

e A Testing Tool to run algorithm tests and to produce reports allowing for the

measurement of algorithm efficacy.

The framework will streamline and speed up the testing phase, and thus development, of

image processing algorithms.

Regarding the envisaged use of the proposed framework, it is likely that various image
processing techniques will be tested on a set of images containing accurate ground truth
data (images would have been pre-marked using the Marking Tool and saved into a
database). Automatic and semi-automatic tools should be available in the Testing Tool to
help with analysis of the results of image processing algorithm tests. Reports will be
highly customable to help identify various problems occurring with image processing
algorithms. As various versions of an image processing technique are tested on the same

set of images, reports will clearly show which version is the most efficient.

Unlike previous algorithm testing techniques, algorithm evaluations can be conducted in
an efficient and practical manner. This technology will improve the standard of algorithm
performance in terms of speed and accuracy, and will also result in a shorter algorithm

development lifecycle.

39



2.5.2 Image Marking and Ground Truth Creation

More specifically, during this review of literature, the need has been identified for a semi-

automatic marking tool to help facilitate in the testing of algorithms by providing

reputable ground-truth data.

Some of the aims of the tool are as follows:

il.

The tool must support the iterative nature of the image marking process by
providing tools that help automate repetitive marking tasks, as well as moving

from image to image

The tool must be intuitive. By this it is meant that the interface presented to the
user is well conceived, ergonomic and visceral. It should support the natural
inclinations of the user without the need for excessive learning and remembering

of interface controls and concepts

The tool will allow accurate ground truth data to be collected by the provision of
precision tools in the marking tool application. This will allow for the effortless

creation of sound, pixel perfect, accurate markings

The tool will be efficient. Because speed is an issue, the system must make it
possible to mar a large number of images in a minimal timeframe. Thus, measures
must be taken to reduce the number of user interactions with controls such as
buttons and menus to the least possible number. To do this, the application will
contain intelligence to best predict what best tools are to be used for the marking,

and what kind of menus to display, without asking the user beforehand.

The tool must be remotely accessible — once installed on a machine, the
application should connect to a networked image database, thus providing
location transparency. It does not matter if image are marked in Ireland or in the
US, the same database tasks will be carried out and underlying networking
information will be transparent to the user. When testing and reporting tasks take
place, again it does not matter where this is carried out as all test scripts and

results are saved in the same place.

40



The tool must perform efficiently to help speed up the process of marking many

images

. The tool must be platform independent — the application will work efficiently on

any operating system

41



Chapter 3: Methodology and Requirements

3.1 Introduction

As identified in the previous chapter, image testing and reporting tools do not quite live
up to the expectations of developers. By reviewing literature on image algorithm testing,
performance measurement and image marking for testing, an understanding has been
gained into what developers see as barriers to the use and development of such tools.
Thus, in discovering the development requirements that will bring about an improved
image algorithm testing system, it is possible to address the current industry needs. The
resultant system should accelerate and improve the quality and efficiency of the
algorithm testing process for imaging technologies. Focus is placed on image marking

and categorization, as this thesis will present a solution to deal with this area in particular.

This methodology chapter will attempt to communicate what it is that needs to be
achieved, and what the goal of the proposed system is. In order to elicit the goals of the
project, the current testing/reporting methodology must be explored as it currently stands
and the inputs and outputs of the procedure must be established. It will be seen how data

and evidence gathered during research will influence the proposed requirements.

It should be noted that the early sections of this chapter give an overview of the proposed
overall solution to algorithm testing as formulated by this researcher and the partner
company. This overview shows the complete framework; henceforth the context of this

researchers work is clear.

3.2 Evaluating the Algorithms

As imaging techniques become more widely applied, the need to critically evaluate new
methods and algorithms — such as face detection - has been recognised by developers as
an area of utmost importance. It is accepted by many in the image processing community
that a more rigorous approach to studying the performance characteristics of imaging
algorithms is required. As found out in literature review, one of the major criticisms of

image processing over the last few years has been due to a general lack of algorithmic

42



reliability (Courtney, Thacker, 2001). This has largely been due to the neglect of the
important role that statistics and ground truth must play in algorithm development, as

well as a distinct lack of advanced, automated testing and reporting tools.

3.2.1 The Testing and Reporting Methodology

Based on evidence found during literature review (particularly in section 5 -
“Recommended Solution”), an effective framework for testing and reporting is required.
Thus, this work proposes to test algorithms by providing an integrated and intuitive

testing and reporting framework.

The potential solution can be viewer as a black box (see Fig.3.1) with the following basic

clements:

1. Images — Images with objects at various angles and different locations are

collected using a digital camera and are stored in the system

2. Image Algorithm — An image algorithm — such as face detection, red-eye

detection, dust detection — is written and is plugged into the system

3. Reports — The system produces a report showing how the algorithm performed.
For example, if the object to be detected is a face, the algorithm should find faces.
The report will show how many of the actual objects were found by the algorithm,

and how many were not found

1.Images

Image Testing

2. Image
. Application ———® 3. Algorithm Reports

Algorithm

Figure 3.1: System Inputs and Outputs

43



Inside the Image Testing Application black box lies the proposed framework, fulfilling
all requirements of the testing/reporting process. In short, after images have been
collected and stored, and algorithms have been developed, the proposed framework will

work through a set of stages with detailed reports as the output.

This thesis is particularly concerned with the process of image marking and establishing
ground truth data, without which it is not possible to measure algorithm effectiveness.
Within the black box seen in Fig 3.1, another black box for the image marking process

can be viewed as follows:

1. Images — Images of objects at various angles and in various locations are
collected using a digital camera and are stored in the system

2. Marked Images — Marked images are retrieved. The images hold a set of meta-
data specifying locations of all marked features. This data will be used for

algorithm testing. Later on, the algorithm must find the marked objects.

Image Marking

1.Images ——P
g Tool

—» 2. Marked
Images

Figure 3.2: Image Marking Inputs and Outputs

As mentioned in Chapter 1, “Introduction”, the partner company already have an in-
house tools for the task of image marking (Fig 3.2). However, the tool is quite limited in
scope, so rather than reviewing it and attempting to re-engineer it; it will be left aside for
now. Instead, research and requirements gathering will be carried out from the drawing
board, in the knowledge that the original tool was put together quickly as a short term
solution without sufficient research, rendering it an unsuitable reference point. The in-
house marking tool may very well be re-examined later on when exploring interface
requirements later on in this chapter, and also when designing the graphical user interface

in Chapter 3, “Software Design”.

44



3.2.2 Discovering the Requirements for the Framework

Taking a look into the Image Testing Application — seen as a black box system in Fig 3.1
- a set of requirements must be drawn up in each case. By understanding the initial
requirements, it is possible to break the system up into separate components that will then
work together to bring about the new framework — a framework that will carry out the

necessary tasks to get our end result.

The need has thus been identified for a framework incorporating an integrated and user
friendly environment which supports automated algorithm testing and reporting. To bring
about such a framework, a divide-and-conquer stance is assumed, and the current view of
the testing and reporting system must be broken down into the following requirement

components:
- A facility to import images into an online image database, and to manage image-sets
- Ability to mark image-sets to establish a ground truth for testing purposes

- A facility to run algorithm tests on image sets based on test parameters, and generate

reports on algorithm performance.

Support for the categorisation of images and the analysis and editing of image metadata
should come about as a by product of the interactive framework. In order to validate and
test algorithms comprehensively, a key element of the framework is the image database
containing image test sets which possess a high degree of variability in terms of scale,
location, orientation, pose, facial expression lighting conditions, etc. Additionally, the
framework should bring about a platform independent system that is remotely accessible,

in line with the proposed solution as defined in Chapter 2, Literature Review, section 2.5.

3.2.2.1 Use Cases

A basic use-case diagram (Fig 3.3) based on our initial requirements shows that a
photographer will store and group images in the system, an image marker will use some

sort of system tool to mark images, and an algorithm developer will plug his/her

45



algorithms into the system, will run tests, and will create and view reports based on

algorithm performance.

—— T ———

Store Images (Plug in new algorithm

—

Ry —
™ -

~e,
Run Algorithm Test on Image Set
Photographer . \wﬁ_\_

—
-_—_‘ﬁ—u _—d—'_'-'-'-'-r

e —————

vl =
< Group Images Based on Content ,> Algetgsn Davalopar

-~
— Il

— p

- ——
—— e —_

- .
Image Marke ( Create Reports based on test results j
Mark Images

H“H—_ _-—F"'"__-F

Figure 3.3: Overall Framework Use Cases

With the key requirements in place, it is now possible to propose the overall framework
architecture that will be used for testing and reporting. The need was identified for a more
succinct, powerful and integrated framework that would allow for the efficient and user-
friendly testing of algorithms, right through the phases of database storage and

management, ground truth recording and actual algorithm tests and reports.

With all of the above, as well as the requirements, in mind, a methodology has been
derived for the testing and reporting of image processing algorithms. The framework
proposed comprises of an integrated user friendly environment for algorithm performance
evaluation and reporting. As an element of this overall framework, the need for a faster
and more efficient set of image testing, marking, and categorisation tools has been
identified, therefore the environment should consist of separate application components
that will help “divide and conquer” the workload of individuals responsible for the testing
of algorithms. The framework should thus promote and bring about the efficient, practical
and precise testing and reporting of algorithm performance through the use of improved
tools. When deployed in modern algorithm development environments, such a framework
should help to speed up testing cycles by quickly testing and identifying problems early

in an algorithm development lifecycle. The semi-automatic nature of the framework

46



means that algorithm performance is carried out quickly and easily, greatly reducing

testing time.

As specified by the partner company; “To validate and test algorithms developed, a
comprehensive set of automated/batch image processing tools and a series of specialized
image databases must be provided”. The framework will thus incorporate components to
mark image-sets for testing purposes, run algorithm tests on image sets based on test
parameters and generate reports on algorithm performance. Support for the categorisation
of images and the analysis and editing of image metadata could also be provided. In order
to validate and test algorithms comprehensively, a key element of the framework is the
image database, containing images which possess a high degree of variability in terms of
scale, location, orientation, pose, facial expression, lighting conditions, etc. Additional
requirements specified by the partner company are that the framework may also be
platform independent and accessible over the network to allow for testing across different
sites or inter-company teams using the same database and application setup, irrespective

of operating system and hardware requirements.

47



Image Database Tool
-> A. Manage Images

Store Images

Relevant
Marked

Image Marker Tool Images
-> B. Mark Images

Testing Tool
-> C. Run Algorithm Tests

Database

Raw Test

Data

Figure 3.4: Framework Overview

3.3.1 Overview of Framework Components

After researching into and examining existing systems in the area of algorithm testing, an
understanding was gained into the way developers work through the stages of algorithm
development, testing, and reporting. It has been decided that the most efficient way for a
user to carry out image marking, categorisation, testing and reporting would be to provide
a complete environment consisting of all these components as individual tools. In other
words, at the flick of a button the user must be able to move from the stage of marking
into, for instance, the stage of testing. Or from the stage of database management and
categorisation into the stage of marking. The actual development of imaging algorithms
is the only stage that is not included in this framework, and it is not included because of
the broad and unaccountable scope of the algorithm development process. The proposed
system endeavours to divide the workload by providing separate tools, thus providing
users with a clear distinction between  different stages of the
categorisation/marking/testing and reporting framework, and using the system should be

clear, concise and simple.

48



The application is thus composed of three tools, which will be examined one by one,

before focusing on the tool that this particular thesis is concerned with.

3.3.1.1 The Image Database Component

This component will store and manage images in the image database. There is the need to
be able to import images from a local disk or digital camera, browse through images
stored in the database, and search for images by using a query. It is also possible to delete
specified images. Image queries could be used to retrieve images that meet a particular
criterion. The component should allow for the modification of image properties. Image
properties should include items such as width, height, a description, last modification
time and so on, as well as a set of markings that identify different features found in the
images — that is, if they have undergone the marking process. An example of markings
metadata includes items such as a face and two eyes. It makes sense to also somehow
group particular images based on their content, and to allow a user to create a group, add

particular images to a group and to retrieve images belonging to a particular group.

3.3.1.2 The Image Marking Component

The Image Marking Component is used to mark various features — for example human
features such as face, eye, mouth - on the imported images, add properties to features,
add properties to the image, and save all image properties to the image database. An
intuitive graphical user interface will provide automatic and semi-automatic tools to
facilitate the marking and categorization of various image objects in the image data-sets.
Depending on the algorithm type, different features will be marked. If the algorithm is
red-eye detection, then occurrences of red-eye must be makes in all images. Data
gathered through use of this tool will be used later as ground truth data for the

performance evaluation of algorithms.

49



3.3.1.3 The Testing Component

The testing component allows the user to manage and run image algorithm tests. The
need has been identified for the facility to execute tests. This means, an algorithm — such
as face detection - is run on the relevant images, coming back with a list of detected faces

and their locations. This forms the central point of the framework.

If using the testing tool to run a red-eye detection algorithm on images, we make the
assumption that for each image in the image-test-set the location of every red-eye
occurrence is identified or marked prior to running the red-eye detection algorithm; this
means the ground truth data is readily available. It is important that all data gathered for
ground truth are accurate, so the tool used for this task is of fundamental importance. The
actual algorithm itself — known as the test code — will be executed on each image. For
instance, after running a red-eye detection test, the test results should consist of a list of
detected red-eye instances. Then for each image the coordinates of the marked areas
should be automatically compared with the coordinates of the arcas detected by the
algorithm (the ground truth, as established in the Image Marker Tool). If the two match,
the algorithm proves to be successful to give [a] a list of matching red-eyes, [b] a list of
marked red-eyes that have not been detected and [c] a list of detected red-eyes that do

not match any marked red-eye.

After running a test, test results will be available. It seems likely that results will be
formatted and displayed onscreen, and later saved. Automating the testing process is very
desirable during the development of an image processing algorithm. As programmers
develop a new version of an algorithm, it has to be tested to conclude whether a distinct

improvement occurred or not. The same image-test-set is used to test each new version.
Algorithm analysis can be carried out, and it is desirable that support be provided within

the framework to save the test-result data in the database. With such a facility, new

versions of the same algorithms can be tested and compared with previous saved results.

50



Results can be analysed when a different version of the same image processing technique

is developed.

3.4 Discovering The Requirements For Image Marking

This thesis is principally concerned with the design and development of an image
marking tool, therefore this section will attempt to explore the requirements of such a

tool.

3.4.1 Use Cases

A basic use-case diagram (Fig 3.5) based on our initial requirements for the task of image
marking shows that an individual appointed the task of marking images will mark the
various features on in image with a graphical interface, and will be able to go to the next
and previous images in the group of images to be marked. He or she will also be able to
save markings and edited properties to the server. The use case “Add properties to a
feature” could be a task such as specifying that a particular marked eye is an instance of
Red-Eye.

51



L~ Mark Nose

Mar¢ Mouth

-

Create new Face

e,
Previous Image
Next Image
“‘h""‘—\—d—
— -

———
———
-—.\._\

Add Properties to Feature

Image

Delete Marking

p——

Figure 3.5: Image Marking Use Case

At the moment, marking is seen as a slow, non-intuitive and time consuming task, as
found when reviewing literature on the subject: “To comprehensively and thoroughly
evaluate an algorithm on real-life drawings, real-life ground truth is highly desirable.
However, this type of ground truth is hard to obtain, as it requires manual measurements,
which are labor intensive and error-prone. Moreover, manual ground truth input is
somewhat subjective and may vary from one human to another” (Dori, WenYin, 1999:3).
It is necessary to gather large quantities of ground truth data in order to effectively
measure true performance: “Robust algorithms may require huge quantities of data. An
algorithm with 99% reliability means an error rate of 1%, which in turn means that

hundreds of test images may be required” (Courtney, Thacker, 2001:4). However,

52



ground truth data must be gathered for accurate algorithm testing to take place, so a

suitable system is certainly required.

Below is a list of the problems identified in Chapter 2, along with the recommended

solutions:

Problem

Recommended Solution

Ground truth is hard to obtain, as it
requires manual measurements, which are

labor intensive and error-prone

The envisaged marking tool will be fast
and ecasy to use, automating as many

tasks as possible

Manual ground truth input is somewhat
subjective and may vary from one human

to another

The marking tool will help to make the
marking process more objective by using
defined procedures and rules for marking

images

Expansive databases of real life input
must be used, making image marking
more complex because the operator must

draw images from various batabases

The marking tool will interface directly
with a database tool, allowing the fast and
casy retricval and storage of images
throughout

through masses of images will become an

the process. Navigating

easy task

Ground truth will always have some

residual error rate

While this problem is not eliminated by
the marking tool, the goal of this system
is to reduce the residual error rates in
ground truth data by providing a tool that
makes it clear to the user how he/she is
establishing ground  truth, thus
engendering the accurate recording of
ground truth data. Weaknesses in the
creation of ground truth will be easy to

identify should they occur

53



As Courtney and Thacker have said; “unless the data is synthetically generated, ground
truth will always have some residual error rate (bias and imprecision) due to
administrative or instrumental error.” (Courtney, Thacker, 2001:4), so while the proposed
system will not change this fact, one of its goals is to diminish imprecision due to
instrumental error. Also, the system should help speed up the process of manually
marking images, as well as categorizing images, with as little input as possible from the
user. The proposed tool must therefore be efficient, interactive, intelligent and with some
degree of automation where suitable. The tool will also be iterative, managing to mark
scores of images in as short a time frame as is possible. The system will put all the

necessary tools in the user’s hands, and less manual work will be necessary.

54



3.4.2 A Framework for Marking

Because this thesis is concerned with the marking tool, this area will be explored in depth

in this section. An overview of the application is given in Figure 3.6:

[ V=Y Image Marking Application
| - Marking images
- Remarking images

Digital Camera - Unmarking images

XML (used for data transfer)

Marked Images

Database
(Centralised)

Figure 3.6: Image Marking Application Overview

The need has been identified for an intuitive and easy to use graphical user interface for
the marking of image features, particularly faces and face features, as proposed in section

2.5 of Chapter 2 “Literature Review”.

The job of a detection algorithm is to detect and/or correct certain features or objects
within an image. Therefore, for testing purposes all the relevant features have to be
marked on each image in the image-set prior to running the algorithm in order to
establish ground-truth data. There is thus a need for automated tools to mange and
facilitate (i) the marking of image features such as faces, face features and other zones
around a person in an image; (ii) the categorization of images; (iii) the analysis and
editing of image metadata. The marking tool aims to assist and speed up the process of
image marking by fulfilling these requirements. It should have a user friendly interface

that the user will be able to instantly pick up and use effectively.

55



3.4.2.1 Interface Requirements

Based on the requirements discovered thus far, the proposed Marking Tool should consist
of the following broad interface components:

e A hierarchy of all features in the image — this graphical control could display the
parent/child relationship between related features, e.g. face->eye->retina making
it easy for the user to see the logical relationship between features

e A graphical view of the current image — this view will show the colour image in
full size, and should allow the user to zoom in and out as well as rotate, scroll and
resize the image to fit the display

e Properties — a list of the properties for the current feature should be visible. The
user should be ale to directly edit some of these properties where possible

e Other controls — Facilities such as importing a batch of images, going to the
previous/next image in the list, undoing an activity and more, must be available if

required.

Fig 3.7 shows an early concept for the user interface, taken from one of the sketches that
were drawn up at the stage of requirements gathering. In this image, in the feature list on
the left hand side, an eye is selected as the currently active feature. The user is in the

process of marking an eye, and is sclecting “red-eye” as the defect.

56



m IMI:.&Q. Mnrh‘v\j TO_O_L ; ]jE]

I Deowniosben
= \nmaces
Fearwme Last I E/‘
€ = Inace 1
abeoya = luace & |
EL Hero T _ .
‘—'Howrﬂ, _D-—IMA& .

}75‘14 %
—fLewr]

a BO‘ij L Préals, ‘NESH
I— - I lprke hadet
B—~Heap J OPERTIES B @ >
—ArRa [ Fextues Seiecren|—| Eve
- =
[_‘Euw E{ ARENT > HEAD
MARKeD Wi = ReCTANGLE
| | Derect > Rep-Eve | J

Figure 3.7: Image Marking Tool

3.4.2.2 Tasks to be performed by the Image Marking Tool

Step 1: Images to be marked will be loaded into the marking tool from the database
and/or digital camera.

Step 2: The system should automatically know what features can be marked in a
particular image, thus when the image is loaded the tools to mark these features will be
readily available to the user. For instance, if the user is working with a set of photos
showing peoples faces, and the algorithms to be tested are face detection, red-eye
detection and nose detection, then tools should be available to mark faces, red- eyes and
noses.

Step 3: The user will be able to select the feature he or she wants to mark, e.g. select eye

to mark eyes in the image.

57



Step 4: A feature will be marked using a clear and colourful shape. For instance a red
rectangle for a mouth, or a blue oval for a face.

Step 5: When a feature is marked, the markings are automatically stored as metadata for
that image. It should be possible to have additional properties as well, such as the skin

colour of the face, the name of the person.

It is necessary that the interface be intuitive and easy to use, allowing the user to resize
markings, move markings around, undo markings and delete markings. Additional
utilities could also be developed to help automate the marking of similar features across a
range of images, e.g. if the user knows he or she has to mark all eyes, then it should be
possible to ensure the eye tool is automatically selected for the next feature. When the
user has finished marking a set of images, the newly marked areas and associated

attributes for the image are saved to the image database.

3.5 Overview of the Framework and Marking Tool

As has been seen in this chapter, the need has been identified for a powerful marking tool
and categorization facility to help automate and streamline the process of manually
marking images. The needs have been identified through researching current practices in
the image algorithm development and testing arena, and the recommended solution aims

to fulfill the perceived requirements.

3.5.1 List of Requirements for the Image Testing Framework

R1. The application will provide a complete framework for testing and reporting on the
performance of image processing algorithms, consisting of several different modules

R1.1. Providing an Image Marking Tool for the manual marking of image-sets.

R1.2. Implementing an image database server to make the tool available worldwide.

R1.3. Providing an Image Database Tool for storage and categorization of image-sets.

R1.4. Providing a Testing Tool for testing developed algorithms and reporting on their

performance.

58



R2. The Image Marking process will be user friendly

R2.1. With a friendly Image marking interface, easy to use for an individual holding no
expert knowledge of image processing algorithm testing practices

R2.2. Providing to the user with coloured graphical tools to mark features in an image

R2.3. With fast and easy access to images and the ability to easily navigate through image
sets

R2.4. Forgiving the user by providing facilities to undo tasks carried out incase mistakes are
made while marking

R2.5. Allowing for the easy deletion and addition of features

R3. The Image Marking Tool will provide all functionality required to mark particular
features in an image, and to add metadata to a feature if necessary

R3.1. Depending on the type of image-sets being marked, the user will be able to mark
particular features, as described by the photographer who stored the images in the database
R3.2. If a photographer stored images with red-eye problems, and described facial features as
the features of importance, then the user can mark facial features such as eyes, nose, face,
mouth using the tool.

R3.3. When a user wants to mark a particular feature, the necessary tool for that feature
should automatically become available for marking as specified when the images were

stored.

3.5.2 Goals of the Marking System

In line with the identified needs, the resulting system is to be developed with the

following goals in mind:

e The speed at which images are marked will be faster and more efficient

e The accuracy and precision of actual marking data will be improved through the
use of intuitive tools

e The iterative marking process will flow seamlessly from image to image,
requiring as little effort or input from the user as possible to do tasks such as

import images or save markings to an image, or go to the next/previous image

59



e The user will find it much easier to work through 1000s of images, and because
less effort is required, the user will work faster and will be more productive

e The system will be intuitive and easy to learn and work with

e The image marking tool will work successfully with other framework components
such as the image database tool and the testing tool to help improve and refine the

entire image algorithm testing stage of development.

Using the approach outlined in this document may serve to change the way developers
work through the different phases involved in testing and analyzing the performance of
imaging algorithms. It should also greatly reduce development times. Imaging
algorithms, be they face detection, face recognition, red-eye detection or other, are very
complex entities, and consequently their development and testing is a non-trivial and
involved affair. The bringing about of simplicity, modularization, conciseness, precision
and some degree of automation and intuition to the process of such may very change the
way such activities are carried out. It is likely, and quite possible, that accuracy,
efficiency and ease of use will be increased greatly. Bottlenecks such as a large image

database and non-specific marking tools may thus be overcome.

60



Chapter 4: Software Design

After understanding the requirements of the Image Marking process, it is now necessary
to design software that will sufficiently fulfill all goals as set out in Chapter 3:
Methodology. Based on the requirements of image marking, it is clear that the software
must provide facilities to mark various objects. If objects such as faces and eyes must be
marked, then these entities must be modeled in the system, and must be visually
presented to the user in an easy to understand manner. The design chapter aims to elicit
the software components and processes that are required for the framework, leaving aside

precise implementation details for now.

In short, this chapter explores the possible architecture and design of the Marking Tool in
line with the established requirements, including diagrammatic representations of the
structure and processes of the system. The characteristics of objects that reside in the
system are detailed. This chapter also details objects to a point where code can be directly

derived from design diagrams.

4.1 Design at the Architectural Level

When working through the Methodology (Chapter 3), it was discovered that the best
approach to the graphical user interface design for an image object was to represent the

features contained within the image as a hierarchical tree structure (see Fig 4.1).

Image I

-» Face
-> Eye
-> Eye
-= Mouth
-> Nose

Figure 4.1: Tree Hierarchy

Such a visual representation makes for easy visibility of the logical parent/child
relationships occurring within an image. Not only should this hierarchical structure be
used for the visual interface representation of objects (items such as physical features,

e.g. an eye) within an image, it should naturally be adopted when designing the objects at

61



the architectural level, allowing for easy and direct manipulation/representation of
underlying object contents and structure. Thus, when modeling the image object on the
client side (the Marking Tool) it seems best for an image to be composed of features. In
turn, each feature within the image object may contain sub features, and such sub features
may again contain more sub features (all at the discretion of the XML schema in use).
Features may also contain properties, or useful information on the nature of the feature,
e.g. “red-eye”. For instance, an image has a face feature. The face feature has two eyes, a
nose and a mouth. One of the eyes has an attribute “Red-Eye”. The other eye may have a

sub feature retina, and the retina may have an attribute “dust”, and so on.

This chapter attempts to find a design that will bring some, if not all, of the
aforementioned ideas to fruition. Highlights of the design process are exhibited by

viewing documents used when designing.

4.1.1 Conceptual Class Diagram

Fig 4.2 depicts the conceptual class diagram, which helps to briefly represent the Image

Marker Tool system  architecture in terms of classes  involved.

Iﬁmge\ﬁev! e i e i e s e T B e e e e i 4> cleferences
> > Assoc » Model <inteifaces»
0.1 |FeatureTreeView 0.1 | ChangeListener

¥ Assoc » listener
4 AS5SDC 0.
0.1 ClientF eature

{

Cliertllmg

Figure 4.2: Image Marker Tool Conceptual Class Diagram

As seen in the diagram, the Image Marker Tool consists of five main objects — the
ImageView class, Clientlmage class, ClientFeature class, the FeatureTreeView class and

a listener class. The ImageView class will be the core class, and it shall comprise the

62



graphical user interface, as presented to the user. Part of the graphical user interface will,
as discovered in Chapter 3, consist of a hierarchical structure listing features as parents
and children - this will be the FeatureTreeView class. The FeatureTreeView class will in
turn contain an instance of an Image, class Clientlmage. The class is called ClientImage
as it is the representation of a server image and it’s metadata as presented to the client in
this tool. The TreeView uses a ClientImage instance primarily so it can gain access to the
feature metadata (markings and other properties) within the stored image, features that
will then be used to populate the tree hierarchy. Thus, features are represented as the
class ClientFeature. An instance of Clientlmage will always contain one or more
ClientFeatures, e.g. a Clientlmage instance may contain two ClientFeature instances of
Face. In turn, one of those ClientFeature faces may contain ClientFeature cye,
ClientFeature nose, ClientFeature mouth, and so on. Also, the ImageView class will

reference class ClientImage so it can visually display the image.

4.1.2 Class Diagram

It was obvious that the proposed application presented particular challenges regarding
class design. However, after researching into available class design literature, it was
obvious that “Design Patterns” presented some of the most insightful design ideas. The
Model-View-Controller (MVC) architecture appealed to this writer in many ways. “MVC
consists of three kinds of objects. The Model is the application object, the View is its
screen presentation, and the Controller defines the way the user interface reacts to user
input.” (Gamma et. al, 1995) Thus, in the design for the Testing Tool, the Clientlmage
and Client Feature classes can be viewed as the model, with the ImageView as the

viewer, and the FeatureTreeView as the controller, as seen in Fig 4.3.

63



Controller
Mouselisteners

?”' Model N\ 1
| [ClieniFeature | | Clientimage | J T

the view(s) that) /[ wihviewana
it has changed F contralier s
. ‘ notified

Tres Hietarchy  Image Display

Buttons and other GUI
components

Marker

Figure 4.3: Model-View-Controller

According to Gamma et al. (1995), “MVC decouples views and models by establishing a
subscribe/notify protocol between them. A view must ensure that its appearance reflects
the state of the model. Whenever the model's data changes, the model notifies views that
depend on it. In response, each view gets an opportunity to update itself”. Such a design
concept requires a way for all objects to stay up to date with changes in the model data
structure, and thus a listener class must be used, namely ChangeListener, as seen in Fig
4.2. When the structure in the ClientImage model changes, the listener will send out a
message to all interested objects informing them that the state of the model has changed.
This will fire update methods in all classes, and they will be updated with the latest data.
All classes that deal directly with the model (ClientImage) thus need to subscribe to the

ChangeListener class.
The likely sequence of events for the Marking Tool is as follows:

1. The user interacts with the view, for instance creates a new eye marking
2. The controller handles the event from the user interface via the ChangeListener
The controller accesses the model, adding the new eye marking to the correct leaf

node of the ClientImage structure

64



4. All parts of the view know that the model has changed, and so the view presents
to the user an updated visual interface, taking it’s data from the updated model

5. The view waits for further user interaction

Using the MVC architecture for the application as proposed by this thesis should provide

the following direct benefits:

e The model will be more robust because it is a separate entity to the view.
Components in the view are likely to require alteration at various stages, for
instance after usability testing. The model is much less likely to be affected as it is
not inherently linked to the view

e Code will be flexible and easier to maintain as the model code does not rely on
any of the user interface components. Code reuse is also possible.

e The model can send out a message to all interested parties when it undergoes
changes in structure, however it is still unaware of the view, meaning it is truly

independent

Before MVC, graphical user interface designs often designed model, view and controller
aspects together, resulting in highly coupled code that was inflexible and difficult to

maintain and reuse.

65



4.1.3 Sequence Diagram

The sequence in Fig 4.4 highlights the relations between objects in the context of how

they will be manipulated by the user.
ImageView | (EeatureTresView age Dat Clientimadge CllentFaaturs || |Picture
Control
i | i i X i
] 1 ) ] ] I
= I 1 ] [} 1
Get an Image ! : : :
I 1 ] ]
Image + XML data : : :
LoadFeatureTree | - : : :
i 1 1 I
Initialise a C!lentlmage o |_I : :
i Initialise ClientFeature :
I I
! ClientFeature | | :
g Full Clientimage structure :
Clientimage : :
'
1

]
Display Clientimage

L
1
tern Click :
N [}
ltem ID I
=% |
: term ID \
.

1 -1 |
X Associated Tool L
Associated Tool and Operation : :
< N i T 1 I
I 1 1 1 I
I ] I I
. 1 1 1 I
[ I I 1 1
| 1 Do marking | | I

: : i Execute op'eratlon for tool
Menu—Chnolse Red Eye ! : : :
I I 1 ) i
[} 1 1 ] L}
[} I I I 1
] 1 ] 1 )
Allocate structure with markings data e : :
1 [} 1 I
I L} [} '
I 1 1 I
Add new node structure : ! | :
| | | |
1 ] I 1
(] 1 ] 1 1
- I I [} I 1
1 I I 1) 1

Figure 4.4: Sequence Diagram

66



NS kW

10.

11.
12.

The user asks ImageView to retrieve an image from the server. The image is
returned, along with XML metadata specifying the hierarchy of features for the
image.

After an image is loaded, immediately the application will attempt to load the
feature tree hierarchy.

The FeatureTreeView needs to create an instance of ClientImage

A ClientImage is passed to the ImageViewer

The ImageViewer class displays the current image in a picture control

The user clicks on an item in the treeViewer hierarchy

The object id for the clicked item is passed to the Clientlmage, and is found
within the structure (e.g. face->eye).

The corresponding tool and associated properties for this object are passed back
(e.g. point tool and red-eye)

Now the user carries out a marking on the picture control with the selected tool

A menu should pop-up showing the user what tool options are available after he
or she has marked the image, e.g. set marking property red-eye to true, set
marking property gold-eye to true, and so on.

The selected options are stored in the ClientIlmage structure.

The correct node in the tree viewer control is populated with structure data.

67



4.1.4 Overall System Architecture

The Figure 4.5 details how objects as defined in the conceptual model above within the

system communicate with each other.

FealureTreeViewer

Marker

Figure 4.5: Conceptual Model

The diagram emphasises that the Marking Tool can be seen as the client, with the
Database Tool as the server. The client is not very thin in this system, all application
software and components will need to be installed there. Communication between the

Marking Tool and the Database Tool however is quite efficient.

68



4.2 Technical Design

This section describes the technical design for the Image Marking application.

4.2.1 Storage Mechanism — XML Database

The stored information for image sets not only consists of actual photographic images,
but also image metadata, such as features marked in an image, image description and
various other image attributes that may be defined as the need arises. Because the
metadata stored for image sets needs to be flexible, database developers at the partner
company decided on using an XML database for this part of the application. For the

image testing and reporting framework:

e An XML database is used
e Images are stored physically in the XML database
e The XML document is stored in the XML database

According to The XML Database Initiative (2003), an XML database defines a logical
model for an XML document, rather than actually defining the data in that document, as a
standard relational database would. Documents are thus stored and retrieved using the
logical model. Usually, the model includes elements, attributes, PCDATA, and document
order. Also, a row in a relational database is the fundamental unit of storage, with an
XML database an XML document could be seen as the unit of storage. Such a database
system is a very good choice for the storage of images and their metadata, as is required
by the testing and reporting framework for this project. The hierarchical structure of
image metadata can easily be represented using an XML document, and it can be quickly
transported between the application and the database as the file data can be serialised.

Thus, communication between the Marking Tool and the image database will be efficient.

For the Marking Tool, the XML database will be used to get images from the server. The
image will be used in the Marking Tool, markings will be added, and various types of
metadata could also be added. After this process, the image is sent back to the server with

all new metadata intact. Below we see some illustrations to help clarify this process.

69



A. Getting an image from the image database (Fig 4.6)

1.

The XML document for a particular image is retrieved from the XML database, it
contains the full hierarchical structure for all features allowed in the image, and
may contain markings

The XML document is sent to the marking tool (client) and here, a parsing tool
splits up the XML into data components that can be readily used on the client.

The data can now be sent to the ImageView object — the main application window

for the Marking Tool - where they are used in objects such as Clientlmage and

ClientFeature.
( XML Database )
The Marking Tool
" g Send XML Document /
ImageView | Parsed XhL Data ) ania ‘ XML Docurment
-Markings
/ -image Reference

Figure 4.6: Getting an Image from the Image Database

B. Sending an image back to the image database (Fig 4.7)

1.

The ImageView object — the main application window for the Marking Tool —
sends marking data from Clientlmage and ClientFeature objects back to the
parsing tool.

The data components are collected together and converted to an XML document
by the parsing tool.

The XML document is sent from the marking tool (client) to the XML image

database

70



The Marking Tool

ImageView

Send Client

(o omabase )
ﬂ.

> XML Document

-Markings
-Image Reference

Figure 4.7: Sending an Image Back To The Image Database

In the above situation, it is not specified what technology is going to be used for the

parsing tool, how it will integrate with the client, or how XML documents are retrieved

from, or sent to the server. Such decisions will be explored in the implementation chapter

of this thesis.

When designing the Marking Tool, it was necessary to confer and collaborate with the

database development team at the partner company in order to bring about an XML

document design that would benefit both ends. In order to do this, a good deal of design

work was necessary, and this writer attended various meetings with company developers

in order to elicit the real client-side requirements for server data, and to find out how

client technical requirements and client/server interplay would impact the XML database

schema.

71



4.2.1.1 Database Design Exploration

After the client application (the Marking Tool) retrieves an image from the server, it will
have access to all image metadata contained in the XML document. However, for the
creation of objects such as ClientImage and ClientFeature, and to build up the necessary
graphical representations of these objects for the user, sufficient data must be available in
the XML document taken from the database. The initial database specification did not
fulfill some of the requirements of the Marking Tool — it did not contain the full logical
structure for features (ClientFeatures) contained within an image (ClientImage), along
with all possible sub features for each feature, it only contained markings. Such a

database structure meant that on the client it would be necessary to do a little extra work

(illustrated in Fig 4.8):
XML Document |
Cllerdim: ]

s Sendmarkings | ., puo Marking:x:23:y64

- Face datato Cllert | -5 Eye Marking:x48:y22
S E -» Eye Marking:x:98:y14
- ye
->»Eye
-> Mouth
-> Nose

->» Face -
->
e
-> Mouth
-> Nose XML Database !

Figure 4.8: Send Markings Data To The Client

¢ Get the markings XML document from the server

e Create on the client the structure for an image (face, eye, eye, etc.) and create this
structure with an empty tree hierarchy.

e Extract the markings from the XML document using a parsing tool

e Determine where in our client structure the database markings should go, then

copy them to this location

72



There are two obvious problems with the above system:
1) The client must know the exact structure of a Clientlmage, and must know how to
create this structure. This will have to be hard-coded on the client side. If the storage
structure or schema rules change, then code has to be re-written on the client, as it is

dependant on the server.

2) Because unmarked features are not stored on the server, the XML document obtained
from it does not specify precisely where in the Clientlmage hierarchy the markings reside
in cases where parent features are not marked (if parent features are marked, then this is
not an issue). For instance, if there are only three eye markings on the server, then does
the client developer assume that the first two eyes are located in Face 1? Does the

remaining cye marking get copied into Face 2 in the structure?

The database team at the partner company has particular requirements for the database —
namely efficiency and storage of as little metadata as possible, so any design changes
must make sense in the larger scheme of things, not just in the facilitation of the client

application data requirements.

4.2.1.2 An Agreed Solution for Client and Server

A design was agreed upon between client and server developers. Put simply, the use of a
compulsory root feature would solve previous problems. Basically this means that the
server must — at the very least — store one root feature. In the example we are working
with of face and eye markings, it was decided that the most suitable feature to set as a

root in this scenario would be the face.

XML Document I

-> Face
-> Eye Marking:x:23:y64
-» Eye Marking:x:48:y22
-> Face
-> Eye Marking:x:98:y14

—

73



Not only this, but on the server, all rules for the XML storage structure are defined, as
well as the storage of actual data. If the rules for storage of data are changed on the
server, the client will automatically pick-up the changes and adapt to the new structure.
For example, if we are using the application for animals such as cats, the server may add
a new child “whiskers” underneath the parent “face”. When the client downloads the
image with the new XML structure, it will automatically instantiate Clientlmage and
ClientFeature objects supporting the new structure. Similarly, it will go on to create user
interface components — such as the tree view — with the new leaf nodes. Taking the cat
example given earlier, a face will be available with children “eye, eye, nose, mouth,
whiskers”. The client is not dependant on the server structure, and this give a lot more
flexibility to the server, as it can freely change the XML schema at will to support
different types of marking entities and varying structures. If necessary, a completely new
structure may be drawn up, perhaps to facilitate the use of the marking application on
vehicles such as cars. In this case, ground truth data may need to be collected for number
of wheels and doorknobs present in the photo. To change the scope of the marking
application to deal with cars, the server developer only needs to change the XML schema
for images of cars stored on the server. An image of a car, when downloaded to the client,

should come with a structure like the following:

= Car body
= Wheel
= Wheel
= Wheel
= Wheel
=» Doorknob
= Doorknob

Thanks to XML flexibility, such a change in the use of the marking application should
have little or no effect on the client using the image and its XML. This is the optimal
solution for the application, and will certainly prove to boost the maintainability,
flexibility and robustness of the Marking Tool, as well as de-coupling code and reducing

code dependency.

74



4.2.2 Revised Class Diagram

Now that some vital design decisions have been made regarding the architecture and the
content of objects used for the Marking Tool, an illustration is shown in Fig 4.9 showing

some of the new proposed class contents.

ImageView [T T T T T T TTTTm T oo s m s e m e '{a crefarences
I » ASSOC * Model cntertaces
0.1 |FeatureTreeView 0.1 ChangeListener
w1
4AsS50¢
v
ASSOC > |istener
0.1 Y Assoc
0,1
Clientimage

@tealureCount : Inleger
& roolFeatures : List
® sowrcelmage : Image

¥ Assoc
My

/ Q P
CliemF eature

& index : Integer

@pmarked ; Boolean
@ermyAatirbuteDefintions : AttrbuteDefinRlon[
@ name : Sting

@ parent : CllemtFeatwe

@ subF eatures : List

Figure 4.9: Revised Class Diagram

75



As seen in the class diagram above, a ClientImage object will simply contain:

e featureCount — the number of rootFeatures within the image
e rootFeatures — an list object filled with all the actual root features themselves
(ClientFeatures)

e sourcelmage —the image itself, taken from the server
An instance of a ClientFeature will contain:

e index - An index unique to this feature, could prove to be important when
adding/deleting and traversing through the tree structure

e marked - A Boolean value to indicate whether or not this feature is marked (as
decided earlier on, a feature need not be marked, it may just exist to support the
correct tree structure).

e geometry — The actual marking data, containing the shape co-ordinates for where
the image is marked

o myAttributeDefinitions — this array will contain all of the possible attributes this
feature can posess, as defined in the XML schema

e name - A name for the feature, for example “face”.

e parent — a reference to the parent feature so that backward traversal through the
tree is possible

e subFeatures — a list containing this features actual subFeatures

The above class diagram was decided upon after trying out various different approaches
and design ideas. While appearing simplistic, this is the very aspect that will make this
design work effortlessly for the client application; XML data taken from the server is
already in a hierarchical structure, so it is just a case of somehow parsing the data and
copying it into the Clientimage data structure on the client. The client objects are then
ready to go, with a model that is adaptable, concise and clear. The model, if used with a
powerful programming language such as C++ or Java, will allow for complete control

over all marked features and attributes within an image with minimal coding. Code

76



coupling should be reduced, and maintenance tasks will be made easy thanks to a design

that engenders code modularity.

The class diagram seen in Fig 4.9 could be said to be the core of the proposed system —
all code in our Marking Tool will be written around this fundamental design. If the
classes for this part of the system are well conceived, then the rest of the system should
follow the pattern set out by this initial design. The code developed will follow on from

the example set out by Clientlmage and ClientFeature in modularity and clarity.

4.2.3 Graphical User Interface Design for the Image Marking Tool

As discovered in the Chapter 3 - Methodology, and even more so at various points in
design, the success and effectiveness of the marking tool largely depends on the quality
of its user interface. Put simply, a good user interface will make the job of making images
easy and interesting, and markings data gathered will be more likely to provide for solid
and consistent ground truth data. On the other hand, of the interface is not good, the user
will be less productive and using the tool will be dull and uninteresting. While it is a
subject often overlooked in design, this writer places quite a bit of importance on the
necessity of a little Human Computer Interaction (HCI) study, in particular the books of
Raskin and Nielsen. According to Raskin (2000:198), good interface design results in

some of the following benefits:

e Higher productivity for the user
e Increased user satisfaction
e Faster and simpler implementation

e Simpler manuals

To reiterate the core requirements of this tool; there is a need to mark images quickly and
intuitively. Preferably this will be carried out with a good user interface and clearly
defined components to show and represent different aspects of the marking process, the

images being used, the available tools, settings, and so on.

71



It was obvious from the requirements and research what the key tasks of this system
would be, but we it was unclear what kind of design would be best, and how it would
work. The interface must be user friendly and each component must be clean and easy to
use. In order to do this, it will be important to look into how interface controls such as
buttons, list displays, drop down selection boxes, and image displays will be used to help
speed up use of the system. The use of icons, language and colour are also important

consideration. Later on in this section such subjects will be explored.

4.2.3.1 The Previous Marking Tool
As mentioned in Chapter 1 — Introduction, at the start of this project the partner company

presented to this researcher a basic marking application that was being used to mark sets
of images. The tool was designed to create some basic markings, but did not have a lot of
the functionality desired and was quite slow and cumbersome to use. Markings were
saved to a basic text file, residing in the same directory as marked images — there was no
remote database access or XML storage structure. As part of the new framework, a better
and more versatile marking tool would be made available for the marking and
categorisation of images. The previous tool, titled Image Feature Marker, was not used
much as a focus point while developing its successor as a complete overhaul of the
underlying technology and interface was necessary. However it is worth taking a look at
the interface for the Image Feature Marker while developing the new interface. Fig 4.10

below shows the Image Feature Marker tool at work.

78



<1 CyDocuments and Settings'.ccallanan\My Documents\
Elle Jools Yiew Help

I=] KEZ VAL Nameliy -t

Ready [1200x 900 [1/6rectangles [G26588) -

Figure 4.10: The Old Image Marking Tool

The Image Feature Marker was used by the company to manually mark hundreds of
images on a day-to-day basis in order to facilitate the testing of algorithms against a

ground truth.
The tool’s functionality was as follows:
¢ Open an image file
e Mark a face
e Mark an instance of red-eye
e Mark lips
e View change (zoom in/out, view full size, view best fit, scroll)
e Mark image using a rectangle / polygon / point
e Previous image / next image

e Save markings

79



Regarding the interface, obviously much improvement is necessary in order to make

marking a more powerful, intuitive, automated and multi-layered process. Some of the

following problems exist with the old Image Feature Marker interface:

It is only possible to mark faces, redeye and lips. If this changes, and for instance
noses must be marked, then the application implementation will have to change to

support new interface controls

There is no structure for features marked, therefore the user does not make any

distinction with which individual in the photo is being marked
It is not possible to delete a marking

It is not possible to undo or redo markings

It is not possible to copy and paste markings

It is not possible to resize or move a marking

The flow of the process from image to image relies on the directory structure, so
the user will have to repeatedly change the directory structure to mark new sets of
images. This really slows down the job, as the user is not only responsible for
marking the images, but also must deal with directories of images and must

import them into the tool one by one

The newly developed tool should aim to solve the above issues, as well as to invent an

original and interesting tool to enliven up the job of the image marker.

4.2.3.1 Design Iterations

Early on in development a few mock-up prototypes were developed in order to “thrash

out” the design. Different design ideas were investigated and attempted, some of which

would make it into the final design stages, but many of which were left-aside for various

reasons.

Even at early stages of user interface design, it was clear what we wanted from the

design, and professional “tried and tested” image processing applications such as

80



PhotoShop™ (Fig 4.11), Matlab and Paintshop Pro became ever more useful reference
points. For instance, the way PhotoShop™ presents an image to the user with a
deceptively simple set of controls and display data was certainly something to aspire to;
the selective revelation of the more intricate details and complex tools being the pinnacle
of the programs ingenuity. This project, while not dealing with anywhere near as wide a
range of components as the aforementioned, still required simplification of the user’s job
wherever possible, hiding from the user the complexities of the underlying system

components.

t. Adobe Photoshop i - _
Fle Edt Inage Layer Select filer View Window Hep

;;HIGFUII,iDg @ 100% (RGB)

[ 100% | Doo: 251K/251K B Draw reotangular selection or move selection outlins.

Figure 4.11: Photoshop
As seen in Fig 4.12, an early prototype consisted of a simple interface with buttons for

going to previous image and next image, as well as some sort of tree hierarchy to show

features. The key components identified were: Tree Viewer, Image Viewer, Image

81



Properties, Image List View. What follows is a basic overview of each part, and how the
design will fulfil particular requirements that were uncovered in Chapter 3 -

Methodology.

Hlerarchy Structure

Photo

ParentFeature
Child Feature
ParertFeatwe '

Child Feature
Child Feature

FestureProperty |Property Value
FeaturePropetty | Property Value
FestureProperty | Properly Value

Previous Image  Next Image

Figure 4.12: Interface Prototype

A. Tree View of Image Features and Properties

The Tree View window will be located at the top-left area of the screen. It will display a
list of features, sub-features and properties in the shape of a tree. Where possible, a
feature/sub-feature can be expanded and/or collapsed. If the user clicks on the feature,
then information pertaining to its properties will be shown in another view (Feature
Properties View). Some examples of properties: parent - face, defect — redeye. A user
marks a feature by clicking on it in this view, and then moving the mouse to the
ImageView — now that the tool for this feature is automatically selected, the user just
presses down the mouse to draw the desired marking shape on the image. The shape is

finished when the user releases the mouse.

B. Feature Properties View
The Feature Properties View will display all properties for the currently selected feature.
It will be located below the photo viewing window. Feature Properties For example, if

“eye” is selected in the Tree View, then properties associated with this eye will be visible

82



in the Feature Properties View, for example parent = face, tool shape = circle, XY co-

ordinates = 231,521, width = 20, height = 10, problem = redeye.

The Feature Properties View should consists of a label for each property type on the left,
and an editable value field in the right. The value field could also be a spin control

(increase, decrease), text field or combo box.

C. Image Viewer
Quite simply, this viewer will show the currently loaded image. It must be possible to
zoom in/out, scroll and resize. Also, some details on size and aspect ratio would prove

useful, as well as cursor co-ordinate display.

D. Image List View

This component should show all images in the current loaded set — that is if the user is
working with batches of images. If the user is working on a single image, this list is not
necessary. However, it may prove useful for quick navigation, and for the user to see

where about he/she is in the list.

Later on, after numerous iterations of the above design ideas, a more refined stage of
design was reached by eliciting detailed requirements from users based at the partner

company, as seen in the following sections.

4.2.3.2 The Feature Tree View

As found in the methodology, as features are marked, they will need to be visibly
“active” onscreen in this hierarchical structure which has been termed the Tree Viewer.
The main action the user will carry out in this view is the management of features —
he/she can add markings to features using a drawing tool in the image viewer, he/she can
delete the markings for a feature and he/she can edit the propertics for a feature by
clicking it and then using the Feature Properties View. In line with the principles set out

in the Model-View-Controller architecture (Gamma et al, 1995), this tree structure acts as

&3



the view for our objects. The tree will actually contain visual representations of all
feature objects created on the client, feature objects that were instantiated based on the

contents of the XML file downloaded from the server.

Regarding the interface for this component, it is evident that the user requires feedback to
clearly state the following:

e The feature name, e.g. face, eye, nose, mouth.

e What feature is currently “active”, and is being marked

e What features are marked / unmarked

e [f a feature is expanded - child features are visible

e Ifa feature is collapsed but can be expanded — has children

In addition to the above, it has been discovered that the user also requires the following
facilities:
e Add a new root feature, i.e. an entire new tree based on the XML structure
e Delete a root node, along with all its sub features and their associated markings
e Filter the visible features to only show a) All marked features, b) All unmarked
features, c)All features

e Delete the markings for the currently selected feature

To carry out the above tasks, it is necessary to find out how to best incorporate many
clements into as small and simple a control as possible. The book “The Humane
Interface” by Jef Raskin (2000) was quite a help in this area, as many important decisions

now had to be made regarding “look and feel”.

One important idea regarding the use of the hierarchical structure is that as the user
creates more root features, and marks more sub features, he/she is creating his/her own
chosen structure, and this is part of the user’s content, not just the interface (Raskin,
2000:121). In line with the Model-View-Controller (MVC) architecture principles, these

new nodes are part of the view of the model, and are more than just interface controls.

84



Thus, it is important to communicate to the user that he/she is dealing with the ever

changing content layer of the MVC through the view.

Regarding icons, it had to be decided how much of the Tree Viewer interface would use
just text, and whether the use of icons would help or hinder the look and feel of this
component. Raskin (2000:169) has found that while text often gives the best visual clue,
icons are effective when used sparingly — under a dozen at most. When designed, Raskin
states that the icons must be visually distinct; large enough to be clear, and must do a
good job at representing the appropriate control. Because icons are being considered for
the Tree Viewer, consideration has to be taken regarding where to use them, and how
many — they should only be used in a few situations where research has shown them to be
advantageous. Otherwise, best to stick with text descriptions. Raskin (2000:63) also
speaks about affordances and visibility. If the interface being developed here is to place
importance affordances, then it will give some visual clue to the user as to the intended
use of a particular control. For instance, to expand menu items, the user will see a [+]
icon, and will thus attempt to “add on” extra features to the current feature.

The result of studies conducted yielded the following design:

O] ImAe MAING TooL.

b Eor  Toots Rw

SeancH

ImAce  Maguee Mwm:-t&]

Cunent IMAGE Set b Tre- = IEI‘EJ""

Bl (MAcE Vlever

] T

&TA\'& m] RWMG]@@ :.L.Shf

+¥4 koo New Fertuee

| J_:] I‘w\&“_’loo -1 DérLete Feature
i 4l fmn\r}; 20| N SAE MARKINGS
D lmu\r 103 2

[fenuae Detans \\éw Edit Attribetes >> Gokden Eye

A T GuinessEye
Ferrute sececten @ eye 2 o
Sewecren Tool RecTANGLE =
PasenT Face '
MARKED WK © ReCTANGLE | . T
Deésect . Reb-Eve c4 SURIRE Y 4'va; N€
1 L . Brewivess EE] | acy wgb

Figure 4.13: New Design Sketch

85



As can be seen from the interface screen in Fig 4.13, user familiarity (Sommerville,
2001:330) will play an important role in helping to speed up the use of this system, and it
should prove relatively easy to use and learn. Users have encountered a comparable
interface in every day applications such as windows explorer and most other hierarchical
file navigation interfaces. To the left of each feature icon is a tick box indicating whether
an image has been marked or not. Also seen above, after a user has finished drawing a
marking on the image, a menu will pop-up allowing the user to instantly set a property
for the marking. In this case, there is an instance of red-eye, so the user is choosing to set

the defect as red-eye.

Of the heuristic discount usability principles — set out by Jacob Nielsen — the Tree Viewer
adheres to the following particulars:

¢ The use of simple and natural dialogue, easily understood by the user

e Error prevention mechanisms

e Robust and clear error handling techniques when the user makes the occasional

crror

4.2.3.3 Image Viewer

From requirements, it is clear that the image currently being marked by the user must be
displayed in a large viewer, dominating much of the display area. The main operations
will be to view the markings on the current image, click on markings to select them and

make them “active”, drag and drop marking, resize markings, delete markings.

The user must have feedback from this part of the interface to clearly show the following:
e The current XY co-ordinates of the cursor
* The name of the feature currently being marked, and the tool being used to do
this, e.g. eye -> rectangle
e Zoom ratio and percentage
® Tool being used — the mouse cursor should change so the user knows what tool is

currently selected

86



In addition to the above, it has been discovered that the user also requires the following
facilities:

e When all parts of the image are not visible onscreen, the user must be able to
scroll up and down or left to right using scrollbars located at the bottom and right
hand side of the image

e The user must also have “Next” and “Previous” buttons, allowing the user to
navigate through the set of images

e Buttons to allow the user to zoom in and zoom out

Regarding usability for this component, the book “Software Engineering”, by Ian
Sommerville (2000:330) was quite a useful reference point here. In particular,
Sommerville points out that the system should not surprise the user with any new or alien
concepts, and should instead use a look and feel that the user is more likely to be familiar
with, such as the look and feel of the Photoshop image viewer. Meaningful feedback
must be provided when necessary, e.g. telling the user they have reached the end of the
list of images. The interface for this view must also be consistent with the other interface
components, and the user should be able to see a direct mapping between the features in
the tree viewer and the actual markings for those features, which will appear in the image

viewer as coloured shapes.

4.2.3.4 Feature Details View
The feature details/properties view must present to the user, quite simply, the properties

associated with the currently active/selected feature. The Property Viewer will be located
below the photo viewing window. This viewer displays property values associated with
the current property that is selected in the tree view. E.g. if we have selected the feature
“eye” in the tree view, then the property viewer will display the corresponding properties
for this feature, e.g. the feature has been marked with a rectangle, and it has an attribute

defect, which holds the value “red-eye”.

Certain properties may be editable, so the property viewer will contain value editors

where necessary. After research it was found that edit boxes and spin controls such as

87



combo boxes are the best thing to use for this part of the program. Certain values will be
for display purposes only, and the user will not be able to edit them, for example
parent=face. Again, the property viewer is another “view” of the same “model”. The data
to be presented in this view is taken from the same model that supports the tree viewer
and the image viewer, but this time the data we are interested in is specific to a particular
feature — the inner data from the feature. For this, care must be taken to ensure the correct
set of data is taken from the model, and that it is sufficiently presented. Sommerville
(2000:335) states that as developers, we require some knowledge of the user’s
background before important decision are made relating to the presentation of
information. Specifically, Sommerville sets out the following useful questions that help

in making such decisions:

1. Is the user interested in precise information or in the relationship between
different data values?

2. How quickly do the information values change? Should the change in a value be
indicated immediately to the user?
Must the user take some action in response to a change in information?

4. Does the user need to interact with the displayed information via a direct
manipulation interface?

5. Is the information to be displayed textual or numeric? Are relative values of

information items important?

Attributes that are visible in this interface depend on the feature attributes specified in the

XML schema for a feature.

88



4.2.3.4 Image List View

It is necessary that the user see a list of images currently downloaded from the server, so
this view will display the set of images the Image Marker Tool is currently working with.
When the user wants to initially mark images, he/she will be able to select the set of
images to work with from the images in the image database. Then the images will be
loaded into the Image List View. Double clicking on an image in this list loads it into the

Tree Viewer for marking.

The Image List view will look as follows:
(w25 S O
Current Image Set: Tag - "Rotated" (modified)
£ @ Image - 11770
iy >Image - 11771

...... >Image - 11772

-« Image Marker Manager

4.2.3.5 Overall Image Marking Tool Interface

Image
Marking
Tool

Marker

Figure 4.14: Views in the Image Marking Tool

89



As seen in Fig 4.14 above, the four views that have been conceived are all based on the
original model — the data layer — and thus, are all quite simply different views or

presentations of the same data.

When designing each of the views, importance was placed on the fact that each view
must compliment the other, and in many cases one view will influence the behaviour of
another. The following is a list of ideas that will help to ensure all views work together on
the same model unitarily and seamlessly:

e When a user clicks and already marked feature in the tree viewer, it will be
highlighted somehow in the image viewer, and its properties will be displayed in
the feature properties view

e When the marking for a feature is deleted in the tree viewer, it must be
instantaneously deleted in the image viewer

e When the marking for a feature is deleted in the image viewer, it must be
instantaneously deleted in the tree viewer

e If a feature is edited in the image viewer (resized, moved, etc) then its new
properties will be instantly updated in the feature properties view

e If an feature is clicked in the image viewer, then it will be highlighted in the tree

viewer, and its properties will be made visible in the feature properties view

1 Separating the Presentation System from the Data

In order to get the overall design correct, some more HCI research was necessary. In
particular, Sommerville’s (2000:334) notion of separating the presentation system from
the data, making it possible to separate the interaction style from the underlying entities
that are manipulated through user interface. This basically means that the representation
on the user’s screen can be changed without having to change the processing mechanism
— or the data - at work behind the scenes. The separation of presentation (view)
interaction and user interface entities helps to support the desired MVC architectural
design style. It is, according to Sommerville, also good software design practice to keep

the software interface components separate from the information itself. “The MVC

90



approach, first made widely available in SmallTalk, is an effective way to support
multiple presentations of data. Users can interact with each presentation using a style that
is appropriate to it. The data to be displayed is encapsulated in a model object. Each
model object may have a number of separate view objects associated with it, where each

view is a different display representation of the model” (Sommerville, 2000:335).

II. Highlighting, Indication and Selection

While looking into some overall usability principles for the whole application, again
Raskin serves as a useful reference. Highlighting, indication and selection will be
important elements in ensuring cooperation and consistency between all four views, as
well as giving the user vital clues as to the state of the system, so the books of Raskin
were consulted about this subject. According to Raskin (2000:105), for the most part,
cognitive differences among applications lie in how selections are presented and how the

user can operate on them. The following ideas are most useful:

e Highlighting - Raskin emphasises that the key function of highlighting is to allow
the user to determine that the system has recognised a particular object as having
special states. For instance in the Marking Tool, if a feature is highlighted in the
tree view, then it can now be edited, moved, resized, or deleted in the image view.

e Indication - Raskin points out that indication is vital - the user must know at all
times what he/she is pointing at by viewing the interface. For instance, if the user
is working on an eye feature in the image view, it should be obvious to the user
where this eye is located in the hierarchy, and there should not be any question as
to which eye is currently being marked

e Selection — The highlighting that signals selection should be distinct from and
more readily apparent than that used for indication. For instance if the user has
selected the eye marking and wants to resize it, then there should be very obvious,
bright selection points around the current eye marking, leaving no doubt in the
users mind as to whether or not the desired marking is selected. Moving from one

selection to another, it should be easy to sce the changes in selection.

91



11 Colour

Another area Raskin (2000:172) places importance on is the use of colour. Colour coding
can fail if too many colours are used, or if there are too many graphical symbols in each
colour. One of the early design ideas for the Marking Tool was to use a different colour
for each marking in the hierarchy; this would help to distinguish one marking from
another and was initially thought to look nice. However, it proved to be a distracting
design idea, and since then it has been decided to employ the colour red for all markings.
If a marking needs to be highlighted, this can be easily done without colour change. If a
marking needs to be distinguished as a parent, then it can be easily done without colour

change — perhaps by marking the line width of the marking thicker.

Regarding the overall use of colour for the application, it was decided that the colour
scheme for this program should be in line with the operating system that it is currently
running on, so for windows the standard pastel grey will be used for most controls and
backgrounds, with blue for window headers. There is no need to reinvent the wheel when

is comes to colouring for an application such as this.

1V. Usability Heuristics

In keeping with Nielsen’s heuristic discount usability principles, the design of the

graphical interface obeyed the following principles:-

(i) The use of a simple and natural dialogue easily understood by the user

(i) Clearly marked exits visible at all stages of the application’s function

(iii) Error prevention mechanisms

(iv) Robust and clear error handling techniques when the user makes the occasional
error

(v) Comprehensive help messages

(vi) Graceful recovery from internal error states, (i.e run-time exceptions/errors) and, in

the event that such recovery is not possible, the implementation of a graceful

92



program exit allowing the user to perhaps save some of the data generated over the

course of the session.

4.3 Design Conclusion
The design formulated for the Marking Tool should bring about the efficient

implementation of an intuitive and concise piece of software. By taking user concerns
into account, combined with the knowledge gained from literature composed by authors

such as Raskin and Sommerville, a good design is formulated.

The user interface design is viewed as being quite important for this application, as the
actual process of accurate ground truth acquisition is root aim for this thesis. Algorithms
cannot be effectively evaluated if the ground truth data is inconsistent with actual
physical features within images. As found while reviewing literature on the subject, the
imaging industry lacks a sound methodology for acquiring appropriate ground truth data,
and adequate methods for matching the ground truths with the recognized graphic
objects” (Dori and Liu, 1999:1). But ground truth is known as being hard to obtain,
requiring manual measurements that are labour intensive and prone to inaccuracy. Not

only this, but ground truth input may vary from one human to another.

The design for the Marking Tool takes into account such problems, and allows for not
only accurate but also fast ground truth acquisition. The design for the tool allows a user
to:

e Mark various features (e.g. face, eye, mouth) on an image

e Add properties to features

e Add properties to the image

e Save all image properties to the image database

Data gathered through use of this tool will be used later as ground truth data for the

testing of algorithms, and it is envisaged that such data will be of a more consistent and

93



accurate nature than that collected using older marking practices, such as the “Image

Feature Marker” application that was being used at the partner company.

94



Chapter 5: Implementation

As identified in the design chapter, there is a need for an Image Marking Tool that has a
user friendly, intuitive interface. The user should have the facility to import images from
an online image database and mark image-sets to establish a ground truth for testing. The
overall goal is the development of an image marking system that fulfils all design
requirements and gives all the desired marking functionality to the user at the touch of a

button.

The aim of this chapter is to communicate the means through which the Image Marking
Tool design was implemented. This chapter does not make an attempt to cover the entire
Image Marking Tool architecture, as there are in excess of forty classes used for the
making tool alone. However, this section will tackle some of the fundamental areas of the
architecture, such as the data model, interaction between the data model and the server
XML data, user interface components and interaction between the user interface
components and the underlying data model. A working knowledge of object oriented

programming is assumed in an attempt to reduce the explanatory content of the chapter.

5.1 Approaching Implementation and Testing

Because of the complexity of the problem and the need for integration of many different
disciplines ranging from data modeling to user interface studies to white box testing and

analysis, the implementation of the Marking Tool was split up into the following stages:

e Selection of programming environment

e Development of the data model

e White box testing of the data model

e User interface research and development

o Integration of user interface components with data model
e Black box usability tests

e Interface redevelopment

95



The testing stages of development mentioned above will be detailed in Chapter 6 —

Software Testing, while the implementation stages will be explored within this chapter.

5.1.1 Exploration of Programming Environments and Other
Resources

Before starting into the actual implementation, it was important to decide what
programming languages and development environments best match the developmental

requirements and goals of the project.

A. Programming environment criteria
Prior to selecting a particular technology for the implementation of the Image Marking

Tool, it is vital to determine a few simple but definite criteria as follows:

e Development productivity — some development tools allow for fast development
and give the developer many aids that help to automate and speed up code
creation and maintenance

e Efficiency of the resultant application — certain programming languages are
known to produce fast efficient code (for example C) whereas some languages
end up with slow processing time (for example Microsoft Visual Basic).

e Maintainability of the resultant application — if the language used is easy to
understand and encourages developers to write modular code with distinctive
components, then the code will be easy to edit and review should the necessity
arise.

e Portability — can components of the final application be ported to a different
application, and can the code be used on different operating systems, different

development environments and in

These will be the criteria against which the development languages will be accessed.

B. The potential programming environments

Language 1: C++

96



The object oriented C++ language, which has an International ANSI/ISO Standard, is a
highly capable and efficient programming language that is certainly capable of
implementing the Marking Tool if used correctly. C++ is a superset of the C
programming language, with advanced features that allow low-level access to memory.
MFC (Microsoft Foundation Classes) also allow higher level programming development
with C++. The model-view-controller architecture could certainly be implemented using
MFC, where user interface controls such as tree control could be used for the model, a list
control for properties, and a dialog for image display. For the data model C++ objects
could be created and with the added benefit of C++ memory management techniques,

code could prove quite efficient.

Language 2: Java

Java is another powerful language. Having first emerged in 1994, this modern
development language has grown exponentially in the last decade, with many add-ons
and new Java technologies being created to further extend Java’s range of use. A cross-
platform language, Java applications will run on any operating system so long as the
operating system runs a Java Virtual Machine. Java is an object-oriented language similar
to C++, but is somewhat simplified in order to eliminate language features that cause

common programming errors.

There are many different Java IDEs (Integrated Development Environments), all of
which offer different development tools that help programmers create more advanced
Java applications at a faster rate. Well known IDEs such as Eclipse, NetBeans, JBuilder
and IntelliJ make available to the developer many modules, such as code debuggers, form
editors, object browsers, CVS functionality, and integration with other languages. For the
Marking Tool, it would appear that the powerful Eclipse IDE offers the best choice of
functions. With Eclipse, the developer can build an application that easily incorporates
different plug-in components from a variety of vendors, meaning a much richer selection
of possibilities available. Eclipse also uses the concept of different perspectives, allowing
for the creation of views of the same data, or different interfaces to carry out different

tasks on the same data. This idea fits in with the model-view-controller architecture, and

97



could very well facilitate a way for the image testing and reporting framework to achieve

the notion of a single application with different stages of use.

C. Exploring Implementation Techniques

Before choosing a language and diving into the implementation of this large tool, some
time was spent exploring possible implementation scenarios. Because C++ at first looked
like the more likely candidate, a lot of time was spent implementing the data model
using, as well as reading literature on programming tools that would allow for the fastest
user interface development. After this, attention was drawn to the Eclipse Java
development environment, which had previously been overlooked as a realistic platform

for development due to its infancy and lack of documented use.

Technique 1: Write the data model in C++, using Visual C++ with MFC for the GUI

With this technique we would have access to a rapid application development
environment that has a comprehensive graphical toolkit in the form of the Microsoft
Foundation Classes (MFC). In addition, the following advantages are applicable:
e Wealth of MFC Windows classes readily available that can be adapted for use
with the Marking Tool
e Using the C++ language with its memory management facilities means the end
product will work efficiently
e The ability to directly program the Win32 API to speed up complex tasks
e MFC provides a Document/View framework that facilitates the creation of

Model-View-Controller based architectures

Technique 2: Use the Eclipse development environment to create the data model and
user interface, using Java compatible open source facilitics where necessary From the
project specification research it is evident that developing the application to be cross-
platform would reap a few benefits. Particularly, it was obvious that the tools being

developed as part of the Image Testing and Reporting Framework would be used on a

98



variety of operating systems depending on the preference of the algorithm developer or
tester. The likelihood of heterogencous use, as well as the necessity and definite
advantage of using world wide open standards mean that Java and its associated

technologies may provide the most attractive option.

Additionally, a GUI is required and must provide an intuitive and familiar interface to
ensure the full potential of the marking tool is realised. Hence, a graphical interface to

drive the tools is required to integrate all the parts and provide ease of use.

5.1.2 Selection of Programming Environment and Development
Technique

The Java programming environment — for reasons of portability and familiarity — was
chosen as the primary tool for implementation. The Eclipse development environment
was a particular deciding factor, and made available a powerful and broad range of tools
unseen in any other IDE. Use of Eclipse will require the mastering of a whole new Java
development environment and an array of new development tools and widgets. This will
undoubtedly enhance skills in programming techniques and should therefore be regarded

a positive, and not a drawback.

After creating a few sample application using Eclipse, it was found that Eclipse, when
combined with the JDT (Java Development Tools) was quite a fast and easy to work with
development platform, offering features like a syntax-highlighting editor, incremental
code compilation, a thread-aware source-level debugger, a class navigator, a file/project
manager, and useful interfaces to standard source control systems such as CVS
(Concurrent Versions System). Not only this, but Eclipse has advanced code refactoring

and support for code unit testing with a plug-in known as JUnit.

One of the most attractive and interesting features of Eclipse however is that it is
platform and language neutral. Along with support for languages such as Java and
C/C++, there is also upcoming support for languages as wide ranging as PHP, Ruby,
Python, Eiffel, and even Microsoft’s C#. But the most useful aspect of Eclipse is the

plug-in architecure and rich APIs supplied by the Plug-in Development Environment,

99



allowing constant extensions of the Eclipse functionality. Basically a Plug-In is Adding
support for a new type of editor, view, or programming language is remarkably easy,

given the well-designed APIs and rich building blocks that Eclipse provides.

5.2 Database Interaction and Interfacing with the Client

As discussed in Chapter 4 — Software Design, the decision was made to use an XML
database for the Image Marking Application. The first step when implementing the client

application was to consider the best options for database interaction.

5.2.1 Client Side Requirements

It is known that the objects developed on the client will work with data obtained from the
server. On the server, data will be stored in XML format. After an image is downloaded
from the server, the client must somehow parse the XML data to extract the relevant
information. When the relevant information is obtained, it must be plugged into client
side objects, such as Clientlmage and ClientFeature, as discussed in design. Taking a
look at what objects are required in the client application, it became clearer what kind of

XML structure was required on the database side.

5.2.2 Database Specification

As mentioned in Chapter 4 — Software Design, section 4.2.1.1 - it is necessary for the
server to hold at the very least a list of root features. Both server and client only need to
agree on what a root feature is (this will be specified in the XML schema), and once this
is established, the server data will mesh easily with the client data structures. The client
simply looks at the data on the server, root feature by root feature, and copies the data
from each server root into a newly created root feature on the client, known as a
ClientFeature - see Fig 5.1. The data on the client must be as close as possible in structure
and purpose as that on the server. Data that deals with the client implementation must be
kept away from the server structure to lessen the possibility of code coupling and

dependence.

100



Image Marking Tool

. | Clientimage |
XML Document |
SE -» Face
<> Face ->Eye Marking:x:23y64
-» Eye Marking:x:23.y64 - 48
->» Eye Marking:x:48:y22 ¥ -; %?_.thmarkingw =
-> Face | o -> Nose
-» Eye Marking:x:98:yv14 i -»Face
: -» Eye Markingo:98:y14
->Eys
-» Mouth
\_/—\ =l

Figure 5.1: Extracting Data from the XML Document

The first version of the database used for this application possessed some characteristics
that did not work well with the above client object design. Thus, a second version of the
database was developed. The new database was an XML database, allowing for the
retrieval and storage of images along with associated XML metadata. In order to
successfully derive all necessary client objects from server data or - put more simply - to
take the markings from the server and plug them into the client application, the following

elements would be required:

A. Clientlmage
An instance of ClientImage will contain the full structure for all markings in an image, as

well as image attributes.

=» rootFeatures — a list of all root features in this image. If using a schema where
face is defined as the root feature, then all root features will be faces.
=> Attributes — a ClientImage will contain a list of attributes that the client user will

be interested in. Attributes specified will be things such as:

* Image ID
=  Width
= Height

* Image Description

101



» File Name

» (Created

= Last Modified
= Tag

=» featureCount — the number of root features within this image

B. ClientFeature

An instance of ClientFeature will contain the actual marking for that feature, if it has

been marked, as well as other data that must be gathered for algorithm testing purposes.

= subFeatures — a list of all child features in this feature. The schema will have
defined the rules pertaining to what children are allowed.
=> Attributes — a ClientFeature will contain a list of attributes. Different features will
have different attributes. In our current example, a face should have attributes
such as:
=  Person’s Name
= Colour of Skin
= Age group
» Defect - An eye feature has this attribute which allows the user to choose
from a list of potential XML defined defects such as red eye, golden eye, or
whatever defect the algorithm in question is being tested for:
=» Name — the name of the feature, for instance face or nose.
= Attributes — a ClientFeature will contain a list of attributes that the client user will
be interested in. Attributes specified will be things such as:
= Geometry — the actual marking data. Usually this will be in the form of a point,
ellipse, rectangle or other polygonal shapes as defined by the user. This data must
allow the application to pinpoint exactly where and how to draw the marking on

top of the onscreen image.

102



In the second version of the database, the XML structure on the server was tailored to
provide the data needed to effectively run the marking tool. The object contents described
above will be common to both client and server. On top of this, an additional XML
solution was derived for client/server database interaction based on the data model. This
solution was given the name PFML — photographic feature markup language — and was
created to bridge the gap between the client application and the server data, and to allow
for the ease of data transportation between the two. In short, the client will download an
image along with its PFML content. Then the client will have the facility to use the
PFML API functions to retrieve useful data from the PFML content, such as image

attributes and image markings.

5.2.3 PFML Server Side Implementation

5.2.3.1 Image Markup

PFML is an XML based language to describe features and artifacts in a photographic
image. This takes the form of a feature hierarchy, inside which features can be embedded

in other features. Example:

<pfml version="1.,0">
<face>

<attribute name="skintone">white</attribute>

<!-- face outline -->
<geometry>
<LinearRing>
<Point x="x0" y="y0" />

<Point x="x1" y="yl" />

<Point x="xn" y="yn" />
<Point x="x0" y="y0" />
</LinearRing>

</geometry>

103



<l=- first eye -->
<eye>
<attribute name="defect">redeye</attribute>
<geometry>
<Circle x="123" y="233" r="10" />
</geometry>

</eye>

<!-- second eye -->
<eye>
<attribute name="defect">redeye</attribute>
<geometry>
<Circle x="174" y="228" r="9" />
</geometry>
</eye>

<!-- nose -->
<nose>
<geometry>
<LinearRing>
<coordinates>....</coordinates>
</LinearRing>
</geometry>

</nose>

<l=- mouth -->
<mouth>
<attribute name="state">open,smile, teeth</attribute>
<geometry><LinearRing><coordinates>...</coordinates></LinearRing>
</geometry>

</mouth>

</face>

</pfml >

104



5.2.3.2 Storing image markup in the image XML file

On the database server side, there exists an image storage schema. The PFML markup
structure, as described 5.3.3.1 will simply sit in the middle of the image storage XML file

as follows:

<image version="1.0" id="123" width="3234" height="1200">

<!-- Standard attributes -->
<created>1032000000</created>
<lastmodified>1033000000</lastmodified>

<title>This is my title</title>
<description>...</description>
<creator>J Bloggs</creator>
<date>25 Aug 2004</date>

<filename>original-filename.jsp</filename>

<l=- tags -->
<tag name="redeye" />

<tag name="indocor" />

<!--.. repeated as necessary -->
<l-- User defined attributes, all under user element -->
<user>

<indoor>true</indoor>

</user>

<!-- EXIF data from image header, all under exif element -->
<exif>

<shutter>100</shutter>

<aperture>5.6</aperture>

</exif>

<!=-- Computed attributes, all under computed element -->

<computed>

105



<histogram> tbd </histogram>

</computed>

<!-- Feature markup -->
<pfml version="1.0">

. feature markup .
</pfml>

</image>

The above XML file is what will be downloaded to the client as an “image”.

5.2.3.3 Attributes

As seen above section, the image storage XML schema uses various attributes. Standard
attributes are based on the Dublin Core standard which defines 14 attribues which each
document should have. For this application, attributes such as date, title, description and
creator may be used. More information on Dublin Core Attributes can be found in

Appendix A.

5.2.3.4 Elements and attributes in the schema

PFML provides a schema with a set of rules for the storage of images on the server. Rules
for the feature tree hierarchy are specified with regard to allowed children and max

number of children of any type allowed, for instance:

e A ClientImage will contain a list of attributes that the client user will

o A feature element comprises zero or more attribute elements

e A feature element comprises one or more geometry elements as defined by the
schema

o A feature clement comprises zero or more feature elements (sub-features) as
defined by the schema

e Geometry element comprises one of (and only one) Point | Circle | LineString |

Polygon geometries.

106



The possible geometry types include point, rectangle, linear ring, line string and ellipse.

See Appendix B for a more detailed specification on geometry types.
5.2.3.4 A look at the XML schema itself

As already discovered, the schema defines the properties of an images and its features. It

also defines relationships between features (eg face can have at most two eyes):

<?xml version="1.0" encoding="UTF-8"?2>

<xsischema xmlns:xs='http://www.w3.0rg/2001/XMLSchema'>

<xs:element name="attribute">
<xs:complexType>
<xs:attribute name="name" type="xs:string"/>
</xs:complexType>

</xs:element>

<xs:element name="eye">
<xs:complexType>
<xXs:seqguence>
<xs:element ref="attribute"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="mouth">
<xs:complexType>
<xXs:sequence>
<xs:element ref="attribute"
minOccurs="0" maxOccurs="unbounded" />
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="nose">
<xs:complexType>

<Xsisequence>

107



<xs:element ref="attribute"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="face">
<xs:complexType>
<xs:sequence>
<xs:element ref="attribute"
minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="eye" minOccurs="0"
maxQccurs="2"/>
<xs:element ref="mouth" minOccurs="0"
maxOccurs="1"/>
<xs:element ref="nose" minQccurs="0"
maxOccurs="1"/>
</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="head">
<xs:complexType>
<xXs:sequence>
<xs:element ref="attribute"
minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="face" minOccurs="0"
maxOccurs="1"/>
</%xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="body">
<xs:complexType>
<xs:sequence>
<xsielement ref="attribute”
minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="head" minQeccurs="0"
maxOccurs="1"/>
</xs:sequence>

</xs:complexType>

108



</xs:element>
<xs:element name="dust_ spot">
<xs:complexType>
<xs:sequence>
<xs:element ref="attribute"
minOccurs="0" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>

</xs:element>

<!=pfml element encapsulates all feature markup -->
<xs:element name="pfml">
<xs:complexType>

<xs:sequence>

<xs:element ref="eye" minQccurs="0"
maxOccurs="unbounded" />

<xs:element ref="body" minOccurs="0"
maxOccurs="unbounded" />

<xs:element ref="dust_spot"

minOccurs="0" maxOccurs="unbounded">
</xs:element>
</xs:sequence>
</xs:complexType>

</xs:element>

<xs:element name="image">
<xs:attribute name="version" type="xs :NMTOKEN"
fixed="1.0" />
<xs:attribute name="id" type="xs:integer" />
<xs:complexType>
<xs:sequence>
<xs:element ref="attribute"
minOccurs="0" maxOccurs="unbounded" />
<xs:element ref="pfml" minOccurs="0"
maxOccurs="1"/>
</xs:sequence>
</xs:complexType>

</%xs:element>

109



</xs:schema>

5.2.4 Building the Data Model on the Client

In order for the client application to make use of the PFML and the functionality it
provides, the PFML library is installed on the client. After an image is downloaded from
the server, the API provides the client with access to various classes and methods that
interface with the PFML data attached to the image. This allows the client to carry out
many useful tasks, such as parsing the entire markup structure to gather metadata about
the image. The result of this will be the creation of a Clientlmage instance on the client,
populated with all attributes and all markings as they are found on the server, as seen in
Fig 5.2 below. In this section, the set of steps carried out on the client to build up the data

model will be explored.
( XML Database )

Image

Image Marking Tool

STEP 2
Image markings are extracted
from image using PFML API

ImageMarkup f Clientimage

STEP 3 B
The PFML ImageMarkup data
are used to populate client
objects with merkup data

Image

XML Document
contalning PFML @’ﬁ]

STEP 1
Image and XML
downloaded to clien

Figure 5.2: Using XML Data to Create Client Side Data Structures

The above set of steps are simply reversed if the aim is to store new markings on the
server, that is: extract markings from the client, convert to PFML ImageMarkup format,

store in the image structure, and send the image back to the server.
Note: For simplification, Fig 5.2 shows only one image being downloaded to the client.

In most cases, a set of images will be downloaded, and each image will be dealt with in

turn by the user.

110



5.2.4.1 Step 1 — The Image and its XML are downloaded to the client

The client downloads an image, or a set of images, from the server based on a query or a
tag. Images are tagged based on their content, so for instance if twenty images are taken,
all showing females with red-eye occurrences, all images would be given a tag such as

“RedEye-Females001”. The user chooses a tag as follows:

3elect Image Set

[ No tag Is selected. Please selecta
tag to specify the Input Image set.

~Image Set Datails I
Image Set: ¢ query  Tag
Query: | SO < >RedEye-Samsung_Diglmax i5_ #11 (122
I < >RedEye-YCC (5871 images)
Tag: | Browse... | | |<>RedEye-YCC-DS (4424 images)

< >Rotated (3 Images)
<>Samsung (31057 images)
<>Samsung_Digimax_|S (122 images)

< >ISamsunu Digimax i6 (30935 lmaues)_l.ﬂ
q »

Finish Cancel I

OK Cancel I

A query may also be used to retrieve images, for instance:

//feature[@class='face'][count(feature[@class='eye']) = 2]

111



The above query should return all images where two eye makings are present within a

face instance.

After choosing the image tag, or querying the server, all of the images in the chosen set
are downloaded to the client and cached in a temporary folder for fast access should the
client need to re-mark a photo. XML files containing the image markup are retrieved
from the server each time an image is loaded, and stored back onto the server each time
an image is saved. Visually, the user interface component Image Marker Manager

displays all downloaded images in the image list view as follows:

-+ Image Marker [Manager

Ga 20|

"Rotated"

Current Image Set: Tag -

| Image - 11771

Lt'a >Image - 11772

5.2.4.2 Step 2 — Get image markings from the image

After the user selects an image from the image list view, the loadlmage(Image img)
method is executed in a class on the client called Image Marker Manager. The loadlmage
method instantiates the ImageView, which will display the image, and also the

FeatureTreeViewer class, which will display the feature hierarchy for the image.

A) Load an Image

After the FeatureTreeViewer class is created, it executes the following code:

112



Image image = imageSetManager.getCurrentImage () ;
String xmlDir = ImageTestingPlugin.getBAbsolutePath
("config/featureDefinitions" );

ClientImage clientImage = new ClientImage( xmlDir, image );

Basically, the image set manager hands the FeatureTreeViewer a copy of the image
structure. The xml directory for feature definitions (a more detailed schema, crafted for
the client) on the client is also set, as this will be used later on when creating ClientImage
structure. An instance of ClientImage is then created, and it is initialised with the xml

directory for feature definitions, as well as the actual image.

B) Create the Data Model — ClientImage

Within the ClientImage constructor, the following lines are executed:

xmlPath = new File( xmlDir );

addMarkings ( image.getMarkup() );

A feature definition basically defines how each feature must be used: what children a
feature can have, how many instances of a particular child feature can be present, and
what possible attributes can be set for that feature. Therefore, the client first needs access
to all the client side feature definitions in order to build up the ClientImage/ClientFeature
structure correctly, obeying schema rules, and with all the possible attribute setting for

different features.

The method image.getMarkup() will return an instance of the PFML ImageMarkup.
Thanks to the fact that the client has access to the PFML API, various methods can be
executed on this ImageMarkup instance, allowing the client programmer to easily parse

down through the XML structure, capturing components that are of use.
The addMarkings method basically carries out all that is necessary for Step 3, that is to

say the ImageMarkup data are used to populate all client objects, or in this case the
ClientImage class is saying “add all the markings inside image.getMarkup() to me”.

113



5.2.4.3 Step 3 — Instantiate client objects and provide them with server
metadata

Now it is time to take a look at what happens inside the addMarkings method in the
ClientImage class:

A) Get Features from the markup

In order to get all root feature instances from the markup, the following method is

executed:
Feature[] markupRootFeats = markup.getFeatures();

B) Go through each feature in the markup, creating a new root ClientFeature for each

one

For each feature in the markupRootFeats, it is necessary to create another root
ClientFeature on the client, and to instantiate all subfeaturecs of each root feature,
ensuring the structure on the client matches exactly with that of the server. The method
addEmptyFeatureTree(fecature name) creates an empty root ClientFeature, as well as
instantiating all sub features that should exist within that root ClientFeature. How does
the addEmptyFeatureTree(name) know how many children to instantiate, and what
attributes to instantiate, when it is only given a name from the markup? Answer: It will
use the name it has been given to look up the feature definition for that feature, and it will
create the structure based on that. For example, if the name is face, then the
corresponding feature definition will state that two eyes are allowed as children, a nose is
allowed, a mouth is allowed, a geometry ellipse is allowed for marking, an attribute

personName can be set, etc.

for( int 1 = 0; i < markupRootFeats.length; i++ ) {

114



// PART I - For each root feature add a new empty feature tree which
// we will populate with the markings from a root feature.

addEmptyFeatureTree( markupRootFeats[ i ].getName() ):

// PART II - Add the root feature to the new image markup
ImageMarkup individualMarkup = new ImageMarkup():

individualMarkup.addFeature( new Feature( markupRootFeats[ i ] )} )7

ClientFeature lastRootFeat = (ClientFeature) rootFeatures.get( i );

lastRootFeat.markSubFeatures( individualMarkup );

As seen in Part I of the code, a for loop is used top go through each feature found in the
markup features. The method addEmptyFeatureTree (name) creates the corresponding
root ClientFeature for the markup feature.

C) For each feature in the markup, copy its marking into the corresponding

ClientFeature

In Part II of the for loop, for each new root ClientFeature created, it is necessary to copy

the marking data and other attributes from the corresponding markup feature.

for( int i = 0; i < markupRootFeats.length; i++ ) {
// PART I - For each root feature add a new empty feature tree which
// we will populate with the markings from a root feature.

addEmptyFeatureTree( markupRootFeats[ i ].getName() );
// PART II - Add the root feature to the new image markup
ImageMarkup individualMarkup = new ImageMarkup() ;

individualMarkup.addFeature( new Feature( markupRootFeats[ i ] ) ):

ClientFeature lastRootFeat = (ClientFeature) rootFeatures.get( i );

lastRootFeat.markSubFeatures( individualMarkup )

115



As seen in Part II above, a object called individualMarkup is created. This object is
created so that the markup for the current root feature (markupRootFeats[i]) can be
isolated, and sent into the corresponding ClientFeature — if the entire markup structure
was passed down into the ClientFeature structure, it would be difficult to determine

which markup feature is being copied.

The lastRootFeat variable will contain the most recently instantiated root ClientFeature
(as instantiated in the method addEmptyFeatureTree), and this is the ClientFeature that is

currently of most interest, as it is the one for whom marking data is being obtained.

Thus, all that needs to be done is to execute the method markSubFeatures on the
lastRootFeat object, passing it as argument individualMarkup — all subfeature of
ClientFeature lastRootFeat will now be marked with all data in individualMarkup.

All of the above tasks are carried out for each feature found in the markupRootFeats,

ensuring that all root feature taken from the server are instantiated as root ClientFeatures

for this application.

116



5.2.4.4 Inside the method ClientFeature.addEmptyFeatureTree(String
rootFeatureName)

The method addEmptyFeatureTree was mentioned in the previous section, 5.3.4.3, but it

is worth taking a look at how this method actually builds up the data model on the client.

public void addEmptyFeatureTree( String featureName )
// Use DB to create full template

myDB getFeatureDefinitionDB() ;

root myDB.getDefinition( rootName ):

ClientFeature rootFeat =

new ClientFeature( root.getName (), myDB, null );

this.addRootClientFeature( rootFeat );

A) Get a reference to the FeatureDefinitionDB

Because the entire empty hierarchy consisting of ClientFeature objects must be
instantiated, it is necessary to have access to the feature definitions for each feature type,
thus ensuring that all objects are consistent with the database schema. The myDB
variable is an instance of a FeatureDefinitionDB. The FeatureDefinitionDB singleton
class is instantiated inside the method getFeatureDefinitionDB, using the specified XML

path for feature definitions (mentioned in section 5.3.4.2, a), as follows:
myDB.init ( xmlPath };

B) Instantiate the root ClientFeature

To add an empty feature hierarchy for the current root feature, all that needs to be done is

to call the ClientFeature constructor, passing it simply the name of the root feature, a

117



reference to the feature definition database, and the parent of this feature. Because we are

adding a root feature, parent is set to null.

Inside the ClientFeature (name, myDB, root) constructor, the following occurs:
I) The name argument is assigned to this ClientFeature instance
II) The parent argument is assigned to this ClientFeature instance
IIT) The XML feature definition for the current feature is retrieved by executing the

following:
myDefinition = fdDB.getDefinition( name );

IV)Find out what geometry (marking) is allowed for this feature, and set it:

if( myDefinition.isGeometryAllowed( "Rectangle” ) )} {

geometry = Geometry.newGeometry( Geometry.RECTANGLE )
this.setCurrentGeometryType ( geometry };

}

The above check will be carried out for each geometry type, until an allowed type

is found. If no allowed geometry type is found, a "Geometry Type Not
Supported" exception is thrown.

V) Not only does the feature definition database object define information on the
features, it also specifies what attributes should be present within a particular

feature. To get an attribute definition the following code is executed:

myAttributeDefinitions = myDefinition.getAttributeDefinitions();

VI)Now that it is known what attribute variables should be added for the current

client feature, the following loop is executed:

for( int 1 = 0; i < myAttributeDefinitions.length; i++ ) {
String attrName = myAttributeDefinitions|[ i ].getName () ;
setAttribute( attrName, "" )

118



VID)

As seen above, each attribute is created on the client, and set with a null value.
The setAttribute(name, value) method actually creates a new Attribute instance
for this ClientFeature, and executes a fireUpdate( this ), to notify all interested

listeners that the attribute has been updated (more on this later).

Lastly, all sub features for this client feature must also be instantiated, meaning
that some recursion must occur. In brief, the following steps are carried out:

Use the definition for this feature to find out what subfeatures are allowed:
myDefinition.getAllowedSubFeatures ()

Find out how many instances of this subfeature should be created:

int maxCount = myDefinition.getSubFeatureMaxCount

(allowedSubFeatName) ;
Create maxCount number of this subfeature. To create a feature, the following is
executed:

ClientFeature subFeat =

new ClientFeature(allowedSubFeatName,this );

this.addSubFeature( subFeat );
this.fireNewRoot ( subFeat );

As seen, the method addSubFeature is called, and this calls the ClientFeature
constructor, recursing back into the above code when more subfeatures are found
for each feature. Also note that fireNewRoot is called, notifying all listeners that a

new root has been added to the structure (more on this later).

5.2.4.5 Inside the method

ClientFeature.markSubFeatures(ImageMarkup m)

Now that an understanding is gained into the workings of the addEmptyFeatureTree

method, it is time to find out how the newly created ClientFeature tree hierarchy is

populated with markings from the markup structure. Taking another look at the

previously mentioned for loop in the Clientlmage.addMarkings method:

119



for( int i = 0; i < markupRootFeats.length; i++ ) |
// PART I - For each root feature add a new empty feature tree which
// we will populate with the markings from a root feature.

addEmptyFeatureTree ( markupRootFeats[ i ].getName() );

// PART II - Add the root feature to the new image markup
ImageMarkup individualMarkup = new ImageMarkup() ;

individualMarkup.addFeature( new Feature( markupRootFeats[ i ] ) )

ClientFeature lastRootFeat = (ClientFeature) rootFeatures.get( i ):;

lastRootFeat.markSubFeatures( individualMarkup ) ;

The aim of Part II above is to plug the markup data for the current root markup feature
into ClientFeature lastRootFeat. After the markSubFeature method is executed,
lastRootFeat should contain all markings that were previously stored on the server for
this particular feature in the image. markSubFeatures is another recursive method which

will go through each and every feature in the tree.

The markSubFeatures method:

// Marks this feature and all the sub features that are marked in the

//specified markup.

protected void markSubFeatures( ImageMarkup markup ) {
// PART I - Mark all subfeatures
for( int i = 0; i < subFeatures.size(); i++ ) |
ClientFeature currFeat = subFeatures.get(i);

currFeat.markSubFeatures( markup ):

if ( markup.hasFeature( currFeat.getName(), true ) &&

lcurrFeat.isMarked () )} {

Feature markedFeat = markup.getFeatureAndRemove

(currFeat.getName (), true );

120



if( markedFeat.getGeometry() != null ) {

// copy data from the marked feature

// into the corresponding clientfeature.

currFeat.setCurrentGeometryType (
markedFeat.getGeometry () ):

}

currFeat.addData ( markedFeat );

}

// PART II - Now mark this feature + add attribute data
if( markup.hasFeature( this.getName (), false ) &&
'this.isMarked() ) {

Feature markedFeat = markup.getFeatureAndRemove (

this.getName (), false );

if( markedFeat.getGeometry() != null ) {
// copy data from the marked feature into this

// clientfeature

this.setCurrentGeometryType (markedFeat.getGeometry());
}

this.addData( markedFeat );

A) Part I — Mark all sub features

For each subfeature in the subfeature list in this ClientFeature instance, do the following:

- Mark its subfeatures recursively by calling currFeat.markSubFeatures (

markup )
- The method markup.getFeatureAndRemove (currFeat.getName(), true )
searches to see if there are any markings for the current feature in the markup

based on the current feature name (e.g. face). It there are, this method removes the

121



corresponding feature from the markup using The getFeatureAndRemove method.
This ensures that after the feature markup is stored in the client structure, it is
removed from the markup structure — this helps to avoid markup duplication, as
another instance of a feature may also have the same name, e.g. face.

If the geometry for the markup feature is not empty it means the feature has been
marked, so copy the data from the marked feature into the current ClientFeature
by using currFeat.setCurrentGeometryType (markedFeat.getGeometry () ).
Lastly, the addData method is used to copy all attribute data from the markup into

the current ClientFeature.

B) Part I - Mark this feature

Now, this ClientFeature must be marked, that is, the ClientFeature instance we are

working in at the moment. Again, a similar set of steps takes place:

If this feature is found in the markup, then get it from the markup using
markup.getFeatureAndRemove (this.getName (), true ). The
getFeatureAndRemove method ensures that after this feature markup is stored in
the client structure, it is removed from the markup structure.

If the geometry for the markup feature is not empty, and the feature has been
marked, then copy the data from the marked feature into this clientfeature
instance by using
this.setCurrentGeometryType (markedFeat.getGeometry ()).

Lastly, the addData method is used to copy all attribute data from the markup into
this ClientFeature.

5.2.4.6 Database Architecture

While the focus in this section is on how the data model is created on the client, a brief

overview of the PFML technology is useful in summarizing the PFML functionality that

has already been explored while creating the data model. Also, it is worth taking a brief

look at the technology used to retrieve images from the server.

122



A) A look at PFML - Photographic Feature Markup Language
Fig 5.3 shows all PFML API classes and methods that are used on the client for various
tasks. Because PFML is implemented in Java, the architecture is broken down into the

various Java packages in the illustration.

PFML Package Aftribute Package
FeatureDefinitionDB AttributeDefinition
getInstance() getName()
getDefinition(String featMame)
Init()
Attribute
getName()
ImageMarkup S,
getFeatures() oA
hasFeature(String name, true) =
getFeatureandRemove(String name, true) AttributeSchema
newattribute{name)
Feature
getName()
getGeometry()
setGeometry{Geomestry)
newFeature(String name)
getAttributes() lmageDB
Image
FeatureDefinition getMarkup()
getallowedSubfeatures()

getSubfeatureMaxcount(String name)
IsGeometryallowed{Geometry)
.getAttributeDsfinitlons()
getAttributeSchama()

Figure 5.3: PFML API Packages Used

In terms of Java packages that make up the API, the PFML package, Attribute package
and ImageDB package are the key PFML API packages used on the client, and the
methods listed in Fig 5.3 are the ones that proved fundamental in building the data model
for the client application. In addition to those, other packages also exist, but their focus is

on background activities such as server interaction, marshaling and unmarshaling of the

123



image files from the server, XML parsing, etc. Thus, it is out of the scope of this chapter
to go into too much depth in this area. But what is worth exploring is how the client

application interacts with the server image files.

As previously mentioned, the PFML API resides on the client application and allows for
interfacing with the XML database images after they have been downloaded. Using the
AP the client sends requests to ImageDB image instance (see Fig 5.3) for data, and
receives back image metadata in the form of image markup. The ImageMarkup object,
part of the PFML package in the API, converts raw XML data into a format that is
immediately useful on the client. As seen in earlier sections of this chapter, the PFML
will allow the developer to efficiently parse through the image metadata XML files,
gathering relevant metadata and storing that data in objects for the client. Because PFML
handles the parsing and marshalling of XML files, the client developer is free to focus on
the more pressing task of building objects of the client, and getting those objects to work

with the user interface.

B) XPath

It is known that an XML database is used on the server, storing images as well as their
associated XML documents. When XML documents and images are retrieved from the
server, PFML helps the client to easily extract useful information from the XML. But
how are images actually retrieved from the database in the first place? The XML is just

sitting on the server, and needs to be queried somehow.

XPath, a technology for searching and querying raw XML data, provides the solution to
this problem. XPath (XML Path) is a W3C (World Wide Web Consortium)
recommended syntax, and allows for the querying of indexed XML data, as well as the
earch and retrieval of information within an XML document structure. According to
W3C (1999), instead of being an XML syntax, XPath instead uses a syntax that relates to

the logical structure of an XML document.

124



In the client application, an XPath query is sent to the XML database for an image or a
group of images, and the XML image document(s) are returned. The retrieved XML
image document also specifies an associated image file, usually in jpeg format, and this

will also be downloaded to the client.

/ Marking Tool
<< KPath Query
XML Database PFML API

¥ML Document

After being downloaded, the PFML API is responsible for storing the image XML,
parsing the XML and for providing methods that let the client developer manipulate the
image XML.

5.2.5 Overview of the Database and Data Model

In this section, the database side of the application was explored. It was seen how the
client can instantiate the data model, consisting of ClientImage and ClientFeature objects,
based on data held in the XML database. The use of the PFML API was exhibited
through the exploration of some programming code that is executed upon downloading
an image. While examples given only show a small side of the data model architecture
used for this application, they should provide a clue as to the importance of the client
object design, the server XML schema design and the means to the efficient exchange of
data between the two using the PFML technology developed in conjunction with the
partner company. Additionally, the significance of this data model on the client will be
further reinforced when graphical user interface components are explored later on. Some

of the immediate benefits include:

I)  Low coupling and high cohesion
Code developed for the data model — mainly Clientimage and ClientFeature - will

work in isolation of the user interface, and does not truly depend on any of the

125



client application classes. While the model may include some methods that are
useful for client side functionality, such as the firing of an event so that graphical
components will be updated when a new root is added, application specific data is

kept away from the model.

II) Portability
If there was a requirement to develop another application using the data model
mentioned in this chapter, porting it over should not prove very difficult. Perhaps
small changes may need to be made, such as extra functionality or additional

storage types if required, but by and large the model would remain the same.

IIT) Modularity
When implementing the model, it was fundamental that
Modular systems are known to be easier to maintain and update in the long run.
Not only this, but it was found that thinking in terms of modularity at each stage
of the design and implementation of this solution reduced complexity and

provided a fast and concise approach to the problem.

IV) Standardisation
Because the model works with W3C standards to retrieve images from the

database

5.3 Implementation of the Client Interface

Initially, when deciding what programming environment to use for this project, the ability
to quickly develop advanced user interface components was imperative. While the
Microsoft Foundation Classes (MFC) architecture provided many reusable classes and
interface controls, it was found that from a developer’s point of view their complexity
and reliance on Microsoft developed technology was a drawback, and limited code

portability. Eclipse exists at the other end of the spectrum entirely; it is cross-platform

126



and open ended, allowing just about anybody with some programming experience to add

another Eclipse Plug-In to further extend the IDE.

This section will provide details firstly on how Eclipse helped with the development of
user interface components, and secondly on how the data model (as explored in section

5.3 Database Interaction and Interfacing with the Client) was used within the interface.

5.3.1 Interface Construction and Controls
A. GUI Components on the Eclipse Platform

The official Eclipse website declares: “The Eclipse Project is an open source software
development project dedicated to providing a robust, full-featured, commercial-quality,
industry platform for the development of highly integrated tools”. It could be said that
Eclipse is more than just a Java IDE, it is more like an open platform allowing for tool
integration, as well as a fully functional Java IDE in the form of the Eclipse plug-in
components. When an Eclipse based application initializes, it discovers and activates all
of the plug-ins that have been configured for the workstation. The components allow for
the extension of Eclipse functionality. The Eclipse platform is able to performing any

function that has been added to it by the plug-ins it currently contains.

Such is the nature of Eclipse, development Marking Tool relies on the use of various
plug-in components that will enhance the user interface of this application. Plug-ins are
developed using the plug-in development environment (PDE), as well as a set of Java

development tools (JDT).

The following elements of Eclipse became of fundamental importance when developing

the Marking Tool:

e Extensibility Model — because the Marking Tool application is built using
Eclipse’s plug-in architecture, it will itself be a plug-in that sits on top of the
Eclipse desktop.

127



SWT - the standard widget toolkit will be used for developing application
graphics. SWT, developed as a part of Eclipse, allows Java applications to access
native operating system functionality and resources. This means if a component
such as a message box is written in Java using SWT, then when the code is run on
Windows the message box has a Windows look and feel (widget colour, size,
shading, etc.). If the message box appears on the Apple Mac OSX operating
system, then it has an OSX look and feel. Using SWT for the Marking tool, it was
possible to incorporate a wide range of events, layout managers and widgets.
SWT even uses native operating system specific components such as drag and
drop. Older Java widget toolkits such as AWT and Swing may also be used in
Eclipse, however SWT was written as part of Eclipse because the entire Eclipse
platform, along with all its plug-ins, have been written in SWT.

JFace - for building the Marking Tool graphical user interface, SWT is often used
along with JFace — Eclipse’s user interface framework. JFace provides
programmable components to the developer such as dialogs, tree views, filters,
action listeners, toolbars, toolbar managers. JFace certainly helps to speed up
interface development, and as well as this

Perspectives, Editors and Views — Eclipse provides a framework for the creation

of:

- Views — as shown in the Model-View-Controller architecture, a single data
model may have many views. Similarly, a program — or a single perspective —
may provide to the user different views of the same data. Eclipse provides
Views to easily implement this functionality

- Editors — an editor allows the user to edit object information, so most editors
will allow the user to create, edit, save and delete data.

- Perspectives — a single application may provide different functions, each
function can be divided up into a perspective that is, in itself, a fully featured
program. This allows the developer to “divide and conquer” the application
development, and also provides to the user various clear and concise

Interfaces

128



e User control — the user can stack, tile, move and arrange views and editors at will
within a perspective. So a perspective is actually made of views and editors. Only
one perspective is visible within a window. If the user wishes to move to another
perspective, a part of the application dealing with different functionality, then he
or she must save data within the current perspective and choose a different

perspective.

With Eclipse, an application is built starting from the Eclipse workbench. From here, it is
necessary to choose what plug-ins best suit the needs of the developer, and then add them
to the application, and adapt them to suit the requirements of the implementation. Plug-

ins that are not required can be removed from the workbench.

B. Using Eclipse to Implement the Marking Tool Interface

In this section, the use of Eclipse in the development of the Marking Tool user interface
is explored. It should be noted that all of the classes explored in this section are
subclasses of the Eclipse ViewPart class. This means they inherit all the functionality of
ViewPart, such as the ability to define a new view that is displayable within an Eclipse
perspective. All of the classes explored in this section are views within the Image

Marking Tool perspective.

129



Part [

Part IV

Filo Edifl Sampla Menu Tools Run - Search

Help

R IHUE AL I N
ue = =
Part II 152 Imagg Marker Managerl 8| "3 hgkar Featurs Vlew] a
Gz 30 - wEowEY
Current Image Set: Tag - Rotated” (mex || face
& Image - 11770 & 1 fae
[#] Image - 11771 07 mriouth
[ >Image - 11772 <} Pioao
M eye
leye
focusedarea
Part IIT Pimage Detalls X | = 0| #'Featrapetals view| = O
Image: 11772 Featrs: face Selected Tool: Ling
Name I Value Name ] Vale
D 11772 Parent None: RootFeatt
Width 2048 pixels Allowed Geoms:  LinearRing/Ellips
Height 1536 pixels Marked With: LinearRing ol
Description Pt: 1 700, 1105 Operation Origani e i ﬁ""“"’ 1 1)
Tags Rotated Pt: 2 745, 1180 face =& LinearRing = . |
original flename  111_1153.JPG Pt: 3 823, 1216 : . ‘ ; I 2
Create time wedNov 16 19:01 || |pia A ges 1170 ] ISaVE Ao R CA Ak mas e CU <
Last modifled time Tue Apr 11 11:49:; || [Pt: 5 892, 1135 steo [1 = << Previou] Next >> |
| | 2| Ll |
: Part V Part VI
Figure 5.4: Interface Components

Part I — The Image Marking Tool Perspective

In the top left corner of the screen, a small panel shows the different perspectives that

make up the Testing and Reporting framework. The third one from the right — the

Marking Tool - is highlighted as currently selected. Thus, the perspective (application

component) currently being used is the Marking Tool.

The following perspectives are available in the Testing and Reporting Framework:

e Image Database Tool

e The Testing Tool
e The Marking Tool

130




As discussed in Chapter 2 — Methodology, three different components are used for the
overall framework, and thanks to the Eclipse platform’s architecture, these elements can
be implemented as perspectives. As previously mentioned, a perspective contains a

collection of views and editors.

Part II — The Image Marker Manager

The ImageMarkerManager class is a child of the Eclipse class ViewPartn this case, the

view defined will display the list of images downloaded from the server.
The ImageMarkerManager view does the following:

e Instantiates an instance of FeatureTreeViewer (the tree view class)

e Gives the tree view a reference to the ImageView class

e Loads an image into the tree view

e Tells the ImageView class to load the current image

e Allows the user to enter a query to retrieve images from the image database

e Displays the list of images that have been returned from the server

e Downloads the actual image from the server and hands it to the ImageView class
for display

e Saves new image markings to the server after the user finishes marking

Part III — The Image Details View

The ImageDetailsView class accesses image metadata from the currently loaded image
and displays it in a simple table, using a grid layout. Examples of properties displayed
are: width, height, description, date.

131



Part IV — The Marker Feature View (FeatureTreeViewer)

The FeatureTreeViewer class contains a TreeViewer instance which is used to display all
features within an image. The features appear in a hierarchical structure. After the
ImageMarkerManager tells the FeatureTreeView that a new image has been loaded, the
FeatureTreeView populates it’s nodes with all the marked (ticked) features from the

image.
Part V — The Feature Details View

After a feature has been selected in the tree viewer, it’s properties are displayed in the
FeatureDetailsView component. This class uses a grid layout with two columns to
display various properties and their corresponding values. This view should display items
such as: the geometry used to mark the feature, the defect if one is present (e.g. red-eye),

co-ordinates for the marking.
Part VI — The Image Viewer

The ImageViewer class displays an image to the user. If a feature is currently selected in
the tree view, then the user can use the mouse to draw a marking on the image in the
location of the specified feature. For instance, if the user wants to mark a red-eye he/she
will select eye in the tree view, and then draw an eye marking across the instance of red-
eye he/she visually finds in the actual image. After the user has finished drawing the
marking using the left mouse button, he/she will release the left mouse button, and when

this happens a menu pops up to allow the user to quickly set an attribute as follows:

Red Eye

Edit Attributes ... Golden Eye
Guinness Eye
none

In the first pop-up menu, the user chooses to either set a defect (if defects can be set for
the feature in question) or else go into the edit attributes dialog. If the user wants to set a

defect, then an additional menu is displayed allowing the user to select the defect — in this

132



case red-eye, golden eye and Guinness eye are displayed. On the other hand, if the user

wishes elects to choose “Edit Attributes”, the following dialog is displayed:

: Edit Attributes aed|

™ Remember atribute values

Save I Cancel |

The ImageView class is the largest and most complex class for the Testing Tool as it
contains all of the logic that dictates how markings are displayed under various
circumstances (rotation, zooming, scrolling), as well as ensuring that events are fired to
tell other views when a marking is moved or resized. It also makes it possible to undo and

redo all marking activities.
5.3.2 Integrating the Data Model with the View

Now that the implementation for the interface design has been explained, it is worth
looking at how the model-view-controller architectural design will help in tying the
graphical interface components together with the underlying data model. Fig 5.5 shows a

broad outline of how the various pieces hang together.

133



ImageView

Update self to
reflect nevw
changes inthe
Data Model i
ListenerList
Clientimage Bég:z;::‘
CllertFeature _cc‘;%_p ImageView
CllentFeature
i : FestureTreeView
I CllentFeature |
Broadcast
. Changes

FeatureTreeVlew

Update self ta
reflect new
changes inthe
model

Figure 5.5: Data Model and View Integration

While quite an over simplification, the above diagram will serve as a good starting point

for the exploration of the IDeltaListener implementation.
5.3.2.1 Broadcasting changes in the model data to all interested parties

Fig 5.5 shows the data model, consisting of a ClientImage and its child ClientFeatures.
When the content or structure of the model changes in any way, other parts of the
application must be made aware of this change. In the case of the Marking Tool, it is vital
that ImageView and FeatureTreeView are notified of changes in the model so that the
user can be presented with an interface consisting of up to date visual representations of
the underlying objects. Thus, FeatureTreeView and ImageView will explicity ask to be
added to the data model’s ListenerList structure. When a change occurs in the data
model, all components found in the ListenerList will be sent details of the data change. It
is then up to the individual components to decide for themselves how best to deal with
the changes. For instance, the FeatureTreeView may choose to tick the “marked” tickbox

opposite a feature if this feature has just been marked. The ImageView may write a

134



different implementation to deal with the same event, for instance to highlight this new

marking on the screen.

To implement this functionality, it was necessary to create an Interface named
IDeltaListener, consisting of the four main events that an instance of IDeltaListener can
receive, or rather methods that can be defined by all implementations of this class. In Fig
5.5, the ListenerList in the data model component actually consists of IDeltaListener
instances. Each individual ClientFeature in the model will contain its own ListenerList,
and within each ListenerList are a group of objects that have asked to be notified of
events for that particular object. In our case, most ClientFeatures will have a ListenerList
containing ImageView and FeatureTreeView. If something occurs to change the contents
of the ClientFeature, then it is that ClientFeatures responsibility to iterate through each
element within its ListenerList, calling the relevant IDeltaListener method in each case to
notify the interested object what changed have occurred. When writing the IDeltaListener
class, the main question was; what change events in the model should a listening object

be interested in? The solution was defined as follows:

€} IDeltaListener

.- @ add(DeltaEvent)
newRoot(DeltaEvent)
remove({DeltaEvent)
removeRoot(DeltaEvent)
update(DeltaEvent)

Thus, each implementation of IDeltaListener will be able to receive notification when a
marking is added to a ClientFeature in the structure, when a new root ClientFeature is
added to the structure, when a marking is removed from a ClientFeature in the structure,
when a root is removed from the structure and when the data for a ClientFeature is
updated or changed. Next, the implementations for model and view events will be

explored.

On the Model Side

The implementation of the model has already been explored, now focus will be placed on
understanding how listener events have been implemented. When an event occurs, such

as a new root, it needs to be “fired” so that it can be broadcasted to interested objects.

135



ClientImage

A ClientImage is mostly used as a container for a ClientFeature structure, usually
consisting of a set of “root” features. Therefore the only changes in a ClientImage that
will be of importance will be the creation of a new root ClientFeature, the removal of a
root ClientFeature. There will also need to be a method to add listeners to the ListenerList

for a ClientImage. The following methods have been implemented:

= protected void fireNewRoot (Object newRoot)
When a new root is added to the Clientlmage in the method
addRootClientFeature(ClientFeature newFeat), fireNewRoot(newRoot) is called,
and the argument newRoot consists of the new ClientFeature. Within the method,

the following loop will tell all listeners in the ListenerList that a new root has

been added:
for( Iterator iter = listenerlList.iterator(); iter.hasNext(); ) ({
IDeltalListener listener = (IDeltalistener)

iter.next ();
listener.newRoot ( event )
}

It is up to each individual listener to decide how to implement its newRoot

method.

= protected void fireRemoveRoot (Object root)
When a root is removed from the Clientimage in the method
removeRootFeatureAt( ClientFeature rootToRemove ), fireRemoveRoot(root) is
called, and the argument root consists of the ClientFeature that must be removed
from the structure. Within the method, the following loop will tell all listeners in

the ListenerList that a root has been removed:

for( Iterator iter = listenerlList.iterator(); iter.hasNext(); ) {
IDeltalistener listener = (IDeltalistener)
iter.next ();
listener.removeRoot ( event ):

}

136



It is up to each individual listener to decide how best to implement its

removeRoot method.

protected void fireNewRoot (Object newRoot)
When a new root is added to the Clientlmage in the method
addRootClientFeature(ClientFeature newFeat), fireNewRoot(newRoot) is called,
and the argument newRoot consists of the new ClientFeature. Within the method,
the following loop will tell all listeners in the ListenerList that a new root has

been added:

for( Iterator iter = listenerlist.iterator(); iter.hasNext(); ) {
IDeltalistener listener = (IDeltalistener)
iter.next () ;
listener.newRoot ( event )

}
It is up to each individual listener to decide how to implement its newRoot

method.

public void addListener (IDeltalistener listener)
In order for any object to be added to the ListenerList for a Clientlmage, it must

call the method addListener on the ClientImage. The ClientImage will then do the

following:
if( Ithis.listenerList.contains( listener } ) {
this.listenerList.add( listener )

If the listener supplied by the calling object (usually it supplies itself, using this)
is not already in the ListenerList for the ClientImage, it will be added.

137



ClientFeature

ClientFeatures are the key building blocks for the model. As such, if any changes occur
whasoever, all listeners will need to be notified. There will also need to be a method to
add listeners to the ListenerList for a ClientFeature. The following methods have been

implemented:

= protected void fireAdd (Object added)
When new markings are added to a ClientFeature in the method mark( Geometry
geom ), fireAdd(added) is called, and the argument added conlsists of the current
ClientFeature with its updated data. Within the fireAdd method, the following
loop will tell all listeners in the ListenerList that an add event has occurred, and

the new ClientFeature will be supplied as the event argument:

for( Iterator iter = listenerList.iterator(); iter.hasNext(); ) {
IDeltalistener listener = (IDeltalListener)
iter.next ()
listener.add/( event )
}

It is up to each individual listener to decide how to implement its add

method.

= protected void fireRemove (Object removed)
When markings are deleted from a ClientFeature in the method unmark(),
fireRemove (removed) is called, and the argument removed consists of the
ClientFeature that must be removed from the structure. Again, as in the fireAdd
method described previously, all listeners in the ListenerList will be informed of

the remove event by executing listener.removeRoot ( event ) in each case.

= protected void fireUpdate (Object updated)
When markings in a ClientFeature are changed in any way, fireUpdate (updated)
is called, and the argument updated consists of the ClientFeature whose contents
have changed. Again, the ClientFeature in question will inform all listeners in the

ListenerList that there has been a change in content by executing

138



listener.update( event ) in each case. When the listener receives the update

call, it must do some processing to update itself with the new object contents.

= protected void fireNewRoot (Object newRoot)
This method is called from the Clientlmage fireNewRoot method, and most
implementations of it will call addListener for the current ClientFeature, as well
as for all subfeatures found within it. This ensures that listeners added to each
node in the entire structure, and will thus receive notification should the model
content change. Traversing through all subfeatures and executing addListener for

each one could be done on the listener side using simple code such as the

following:
feature.addListener ( this ):
ClientFeature(] subFeatures = feature.getSubFeatures();
for( int i = 0; i < subFeatures.length; 1++ ) {
addListenerTo( subFeatures|[ 1 ] )
}
= public void addListener (IDeltalistener listener)

In order for any object to be added to the ListenerList for a ClientFeature, it must
call the method addListener on the ClientFeature. This method adds the object to
the current ClientFeatures ListenerList. The ClientFeature will do this as follows:

1f¢( !this.listenerList.contains ( listener ) ) {

this.listenerList.add( listener )i

If the listener supplied by the calling object (usually it supplies itself, using this)

is not already in the ListenerList for the ClientFeature, it will be added.

As seen, the implementation for event handling on the model side covers all potential
structural and content changes. Listeners can be registered, and will be notified in turn

when a change occurs, or is “fired”.

139



Now that the workings of the model have been explored regarding its handling of events,
it is worthwhile to look at a few examples of how the various viewers will respond to
events. As mentioned in the previous section, each viewer will react differently when it is

notified of an event change in the model.

On the TreeView side

When an image is loaded, class FeatureTreeView instantiates the Clientlmage structure
(thus instantiating all root features and their child features). FeatureTreeView also has an
instance of TreeViewer called viewer. The TreeViewer class is a concrete viewer that
will work alongside the SWT GUI controls, handling update events and changes to the

structure.

FeatureTreeView
In the loadlmage method of class FeatureTreeView, the Clientlmage structure is passed

back to the TreeViewer instance:

viewer () .setInput ( this.currentImage )

viewer () .expandall () ;

The above code basically plugs the Clientlmage structure into the TreeViewer, and
expands all nodes so the user can see the entire structure with all ClientFeatures and child

ClientFeatures.

Content for the TreeViewer is handled by class FeatureTreeContentProvider, this link is

established as follows:
viewer.setContentProvider (new FeatureTreeContentProvider()):

The content provider takes responsibility for mediating between the viewer’s model
(Clientlmage) and the viewer itself, keeping track of content changes within the
TreeViewer and ensuring that when the user does something such as expand nodes or

collape nodes that the correct data is on display. Now that the content provider has been

140



set for our TreeViewer, it should watch out for changes in the model (if the necessary

listener methods have been implemented).

FeatureTreeContentProvider

Because class FeatureTreeContentProvider implements the IDeltaListener interface, it
should provide implementations for all methods in class IDeltaListener — namely add,
newRoot, removeRoot, remove and update. The code written for these methods should do
something useful when changes occur in the model. While it is not necessary to explore
the implementation of all the listener methods, it is worth looking at a couple in order to

get the general idea of how this part of the interface interacts with the model.

First of all, it has been seen that when an image is loaded, the Clientlmage structure is
instantiated within class FeatureTreeView pertaining to the XML rules on the server.
FeatureTreeContentProvider has been linked to TreeViewer, which is in turn linked to
FeatureTreeView, so any changes in content must go through the

FeatureTreeContentProvider.

Before being able to receive events from the model however, the
FeatureTreeContentProvider, which has access to the full ClientiImage structure, must add
itself as a listener to each and every feature and all subfeatures within the Clientimage

structure. This is using the following methods, the second of which goes into recursion:

protected void addListenerTo( ClientImage image ) {

image.addListener ( this );

for (Iterator iterator = image.getRootFeatures().iterator():;
iterator.hasNext ();) {
ClientFeature aimage = (ClientFeature) iterator.next();

addListenerTo( aimage ):

protected void addListenerTo( ClientFeature feat ) {
feat.addListener (this);

ClientFeature[] subFeatures = feat.getSubFeatures():;

141



for (int i = 0; 1 < subFeatures.length; i++ ) {

addListenerTo( subFeatures[ i 1 );

The lines of code image.addListener( this ) and feat.addListener (this) do the
actual work of adding this — the current instance of FeatureTreeContentProvider — to
the ListenerList of the relevant Clientlmage/Feature. As already seen, the
addListener(obj) method of Clientlmage or ClientFeature simply does the following:

this.listenerList.add( listener )

In this case, the listener will be an instance of FeatureTreeContentProvider.

Now that the FeatureTreeContentProvider is set up to listen out for events that are fired in
any of the model’s nodes, it is now time to write code to do some processing if an event

occurs. To show how this was implemented, we will look at two examples:

a) If the model fires an add event after data is added to a ClientFeature, then this method
will be executed. It calls the TreeViewer’s update method, supplying it with the receiver
of the event - event being the model change, and getTarget() returning the receiver of this
event, the changed ClientFeature. So the viewer will be refreshed with the new

ClientFeature data.

public void add( DeltaEvent event ) ({

viewer.update( event.getTarget (), null );

b) If the model fires a removeRoot event after a root feature is removed from the
Clientlmage structure, then the removeRoot method will be executed in
FeatureTreeContentProvider. The method calls the removeListenerFrom method,
supplying it with the receiver of the event - the ClientFeature that was removed. Looking
at the removeListenerFrom method, it is secn that the removeListener method is not only

executed for the ClientFeature who fired the event, it is also executed for each child of

142



that ClientFeature. This is because once a root is removed, FeatureTreeContentProvider
must not only remove itself from the listener list of the root feature that was removed, but
also from all children, as they have also been removed. There is no need to worry about
updating the user interface for the TreeViewer, as this will be automatically handled

when the content provider is informed of a change in the structure.

public void removeRoot( DeltaEvent event ) {

removeListenerFrom( (ClientFeature)event.getTarget() );

}

protected void removelistenerFrom( ClientFeature feat ) {

feat.removeListener( this );
ClientFeature[] subFeatures = feat.getSubFeatures();

for (int i = 0; 1 < subFeatures.length; i++ ) {

removeListenerFrom( subFeatures[ i 1 ):

On the ImageView side

Again, as class ImageView implements the IDeltaListener interface, it must also provide
implementations for the methods in class IDeltaListener — namely add, newRoot,
removeRoot, remove and update. The code written for these methods should do
something useful in the ImageView class when changes occur in the model. In general,
the task here will be to ensure that all markings drawn on the ImageView correspond
with the data stored in the model. If a new marking is added to the model, it should
appear on the ImageView. If a marking is removed, it should not be visible in the
ImageView. If a marking is moved or resized, the ImageView should show the marking

in its new position, or at its new size.

143



ImageView

a) First of all, after an instance of ImageView has been instantiated, a ClientImage
structure will be loaded into it. Before being able to receive events from the model
however, ImageView must add itself as a listener to each and every feature and all
subfeatures within the ClientImage structure. This is done using the following methods,

the second of which goes into recursion:

protected void addListenerTo( ClientImage image ) {

image.addListener( this );

for( Iterator iterator = image.getRootFeatures().iterator():;
iterator.hasNext (); ) {
ClientFeature aimage = (ClientFeature) iterator.next();

addListenerTo( aimage ):

protected void addListenerTo( ClientFeature feat ) {
feat.addListener (this);
ClientFeature[] subFeatures = feat.getSubFeatures();
for (int 1 = 0; i1 < subFeatures.length; i++ ) {

addListenerTo( subFeatures[ i 1 ):

b) Now that the ImageView class is set up to listen for events in the model,

implementations must be written for add, newRoot, remove, removeRoot and update.

=2 If a new root is created in the model, then this method is fired in the ImageView
class. The method recursively adds the ImageView class to the ListenerList of the
new root feature, and to all of its subfeatures. The addListenerTo method works

the same as that listed above in a) of this section.

public void newRoot( DeltaEvent event ) ({

addListenerTo( (ClientFeature) event.getTarget() ):

144



2 When a marking is added to a feature in the model, the add method is fired on all
listeners in the ClientFeature’s ListenerList. The ImageView class will handle an
add event as follows: Set the variable newMarkingsAdded to true. Get the
receiver of the add event by using the getTarget() method, then cast this into a
ClientFeature instance. Get the actual marking from the ClientFeature instance
and store it in list structures that will be used for display purposes later on in the
ImageView class. Then, after checking that the quickMark facility is not being
used, execute treeView.selectFeat(clientFeature) to ensure that this recently
updated feature is currently selected in the TreeViewer control. Now all that
needs to be done is to repaint the image, and redisplay all geometries, to ensure

that the ImageView class presents to the user all recent changes.

Regarding the use of this method — if the user draws a marking on the ImageView
display, when mouseUp occurs, the method ClientFeature.mark(geometry) is
called for the ClientFeature being marked in the ImageView, and this method
actually fires an add event, which is then sent back to the ImageView. This call
back protocol works quite well, and ensure that not only the ImageView, but all

the other Views will know about the changes that were made in the model.

public void add( DeltaEvent event ) {

if( !'mewMarkingsAdded ) {

newMarkingsAdded = true;
}
ClientFeature clientFeature = (ClientFeature)event.getTarget ();
displayedMarkings.add( clientFeature.getMarking() )
geomFeatMap.put ( clientFeature.getMarking(), clientFeature );
if( (! (quickMarkUtil.getQuickMarkAllOn()))

|| (fquickMarkUtil.getQuickMarkUnMarkedOn()) ) {
treeView.selectFeat( clientFeature );
paintImage () ;

displayGeometries () ;

145



= When a marking is removed from a feature in the model, the remove method is
fired on all listeners in the ClientFeature’s ListenerList. The ImageView class will
handle a remove event as follows: Get the currently selected feature in the
TreeViewer. Now, in the for loop, iterate through all onscreen displayed markings
until the one found is identical to the one that has been removed in the model.
When found, remove this marking from the displayed markings, remove it from
geomFeatMap (a structure used in ImageView for keeping track of mappings
between features and geometries), the repaint the image, and redisplay all
geometries. Now all that needs to be done is to repaint the image, and redisplay
all geometries, to ensure that the ImageView class presents to the user all recent
changes. Lastly, we select in the TreeViewer the ClientFeature whose marking

was most recently removed.

Use of this method is quite similar to add above, and when the user selects a
marking in the ImageView and hits the delete button, ClientFeature.unMark() will
be called. This in turn will fire a remove event in the model, triggering the

ImageView’s remove implementation as seen below.

public void remove( DeltaEvent event ) {
Geometry marking =
((ClientFeature event.getTarget()).getPreviousGeometry() ;
ClientFeature selectedFeature = getSelectedFeature();
for( int i = 0; i < displayedMarkings.size(); i++ )} {
// Find Marking to remove in displayedMarkings List and
// GeomFeatMap
if( displayedMarkings.get( i ).equals( marking ) ) {
displayedMarkings.remove( 1 );
geomFeatMap.remove ( marking );
paintImage () ;

displayGeometries();

146



}

treeView.selectFeat ( selectedFeature );

2 When a root is removed, the removeRoot method calls the recursive method
removeListenerFrom, which ensures that the ImageView is not registered as a
listener in the removed root feature, or any of its subfeatures, which will also have

been removed from the model structure.

public void removeRoot ( DeltaEvent event ) {
removeListenerFrom( (ClientFeature) event.getTarget() );
paintImage () ;

displayGeometries();

= When any of the details for a ClientFeature are changed, it fired an update event.
In the ImageView this event is handles by calling the updateFeatureDetailsView()
method on the FeatureTreeView instance, ensures that the most recent data is

onscreen in the FeatureDetailsView display.

public void update( DeltaEvent event ) {

getTreeView () .updateFeatureDetailsView();

147



5.3.2.2 User interaction with the FeatureTreeView and ImageView

The previous section explored how changes in the model are handled in the views.
However, what was left out was the issue of how the model structure actually gets created
and altered in the first place. The answer to this question is; through the graphical user
interface with the use of various controllers. The user interacts with controls in the user
interface and changes the contents of the model as he/she uses the application’s user
interface, or view. Fig 5.6 attempts to give an overview of the most important user
initiated exchanges that will occur between the two views — ImageView and
FeatureTreeViewer. It also shows how the model will be affected by user interaction with
these views. So whereas the previous section was centred around the model, in this
section our exploration is centred on the user interaction with views, or rather the View-

Controller part of the Model-View-Controller architecture.

148



FeatureTreeViewer ImageView

Add ImageView to my list of | FeetyreTreeView addSelectionChangedListenertthis)

Interested event listeners <-|«¢ <~ Add self to FTV ListenarList

» FesatureTreeView addNewFeatureTres() <- New Image is loaded

Create a new Marking - >+—

FeatureTreeView selectFeat(selecledFeature)

Highlight selected feature <- g - A feature Is clicked on

Return currently selected feature<- FeatureTreeView getSelectedreatun <~ Find out what feature has
been selected

< FeatureTreeView saveCurrentimage() <- Save the current image

- A feature is movedfresized

FeatureDetailsView |< FeatureTreeVieve updeteFestureDetailsView()

Fire a selectionChanged event

A i

ChangeSelection -> -> Highlight new selection

<- Delete a geometry
Un-tick Box <-)¢

-> Remove the geometry

ClientFeature unMark()

Delete Marking -

Delete a root Feature ->f Data Model

Delete a root feature <- fireRemave()

CllentFeatufe unherk()
CliertFeatire mark()

ClientFesfure removefRootFestureAt ()

fireRemoveRoot()

@_

Figure 5.6: Exchanges Between the Views

Fig 5.6 above attempts to show user initiated changes that will affect both views, as well
as the model in some cases. For the sake of simplification, the above diagram leaves out
some system details, such as fireUpdate() which will be called and firctAddRoot() which
is similar to fireRemoveRoot(). In any case, the details of the entire architecture

illustrated in Fig 5.6 will be tackled below.

149



ImageView

Features present in ImageView include:

A. Click on a geometry

When the user clicks on a geometry shape to select it in the ImageView, this feature must
be selected in the FeatureTreeView. To do this, the ImageView class has a reference to
the TreeView class, and it simple executes the TreeView.selectFeat(feature) method. This

ensures the same feature is selected in both views.

B. Move a geometry

If a geometry is moved to a new location in the ImageView, then the FeatureDetails view
must be updated to show the new geometry data. First of all, the ImageView class must
call ClientFeature.unmark() and ClientFeature.mark(newMarking) on the ClientFeature
that has been moved, updating it with the new markings. These ClientFeature methods
will in tumn call fireRemove() and fireAdd(feature) in the ClientFeature so that all
listeners will be wupdated with the new marking. After this, the method
getTreeView().updateFeatureDetailsView() is called in ImageView, updating the tree

view’s instance of FeatureDetailsView with the new geometry information.

C. Resize a geometry

If a geometry is resized by the user using the mouse in the ImageView, then the
FeatureDetails view must be updated to show the new geometry data. Same as above, the
ImageView class must call ClientFeature.unmark() and ClientFeature.mark(newMarking)
on the ClientFeature that has been moved, updating it with the new markings. These
ClientFeature methods will in turn call fireRemove() and fireAdd(feature) in the
ClientFeature so that all listeners will be updated with the new marking. After this, the
method getTreeView().updateFeatureDetailsView() is called in ImageView, updating the

tree view’s instance of FeatureDetailsView with the new geometry information.

150



D. Delete a geometry

If the user clicks on the geometry in the ImageView, and hits the delete key to remove it
from the photo, then — over in the tree view - the tickbox opposite the node for this
feature must be unticked to show that the feature is now unmarked. To do this, the user
hits the delete button and the method selectedFeature.unmark() is called, selectedFeature
being the ClientFeature to which the unmark method is applied. This unmark() method
will fire a remove event in the ClientFeature. Because the corresponding tree view node
for this feature is registered as a listener for that ClientFeature, also its remove method
(as discussed earlier) will be called, and this will be handled with in the tree view by

unticking the box opposite the node.

FeatureTreeViewer

A. Change the selection

When the user clicks on a ClientFeature node in the FeatureTreeViewer, it becomes the
currently selected item. It must be ensured that the marking for this feature is highlighted
in the ImageView (if this feature is marked). The information in the FeatureDetailsView
must also be updated to show data for the newly selected feature. In order to carry out all
this, the ImageView class must actually be registered as a listener in the
FeatureTreeViewer class — similar to the way ImageView and FeatureTreeViewer are
registered as listeners in the ClientImage/ClientFeature structure. This means that when
the user selects a different node, the fireSelectionChanged() event is fired in the
FeatureTreeViewer. When it is fired, the implementation for selectionChanged(
SelectionChangedEvent event ) is executed in the ImageViewer class, and this method
casts the event argument to a IStructuredSelection instance, from which the first element

should be the ClientFeature that must be highlighted in ImageView.

151



B. Delete the Marking for a particular selection

If the user selects an item in the tree view, and then hits delete (either the onscreen delete
button, or the keyboard delete button) then the marking is removed from this feature. To
do this, FeatureTreeViewer calls the method ClientFeature.unMark() on the feature
concerned. This method will in turn fire the remove event for all listeners in the feature’s
ListenerList:

e FeatureTreeViewer’s content provider class is in the ListenerList, so the remove
method is triggered in the FeatureTreeContentProvider class, and this method
simply updates the tree view interface with the latest version of the feature.
Because this feature is not marked anymore, the tickbox opposite this node will be
unticked. FeatureTreeViewer will also update the FeatureDetailsView by calling
upDateFeatureDetailsView().

e ImageView is also in the ListenerList for the ClientFeature. Thus, when
ImageView finds out the remove event has occurred it will update itself
accordingly: as seen earlier, it will get the geometry from the removed
ClientFeature and will remove it from the displayedMarkings list. Then the

ImageView will be repainted without the removed shape.

C. Delete a root

If the user selects an item in the tree view and hits the “Delete Root” button, then the root
feature — in our given examples it is a face — will be removed from the tree, along with all
of its sub features. For this to happen, after the button is clicked, it triggers the method
deleteSelectedRoot() in FeatureTreeViewer, which then calls
currentImage.removeRootFeatureAt(cfeat.getindex() ), where currentlmage is the
Clientlmage instance from which the root must be removed. The method
Clientlmage.removeRootFeatureAt(index) fires a removeRoot event, and as explored
earlier, both ImageView and FeatureTreeView have implementations to deal with the

removeRoot:

152



¢ In ImageView, all markings for the removed root feature and all of its children
will no longer be displayed
e In FeaturcTreeViewer, the node representing this feature will be removed from

the onscreen structure, thus removing all sub-nodes.

D. Create a new root

If the user clicks the “Add Root” button, then a new unmarked root feature will be
created, along with all of its sub features. This does not affect the ImageView. However,
the structure of the ClientImage being used must be changed, so FeatureTreeViewer calls
the method addNewFeatureTree(““face”), within which is called
this.currentimage.addEmptyFeatureTree( “face” ). The
ClientImage.addEmptyFeatureTree(featName) method, as explored earlier, adds another
root feature to the ClientImage structure, and automatically creates empty features for all

possible sub features as defined in the XML schema.

5.4 Integration with the Image Testing and Reporting Framework

Now that the image marking tool has been implemented, it fits into the overall framework
as an Eclipse defined perspective. This ensures that the overall project requirements of

having an integrated overall testing framework are fulfilled.

5.4.1 Java Perspectives

Separate application components have been developed and implemented within the same
application as Eclipse perspectives simplifying the task of the user. The following

benefits are immediately obvious:

e A user carries out image marking, categorisation, testing and reporting within a
single complete environment

e FEach application component is seen as an individual tool

e The workload of the user is divided

e Users are given a clear distinction between different stages of the marking, testing

and reporting framework

153



The perspectives available are:

1. The Image Database Tool

e O
[SwWi i< fe A
b L M R i e

e NAFRTS
£

-
. v
o = -
e = I it v
= oy e i !
fasd [ e LAIR
Ierame e e || == e
i YAl
=t s
i P
] i

| [T T— 1o T

1I. The Marking Tool

iy

m— -
g _-'”o .

154



III. The Testing Tool

Here is a scenario to illustrate how the different perspectives come into play:

e A user takes photos of his car with a digital camera, and then transfers them to the
computer

e The user loads the images into the database tool, and places them all under the tag
“car”

e The user then opens the marking tool and searches for images by tag. When
he/she finds images with the tag “car”, he/she selects them to be loaded into the
marking program

¢ The user marks all the images using the marking tool, tools will be made available
to mark vehicle objects (based on a predefined XML schema).

e Next, the user opens the reporting tool and runs a test on the marked images. The
test reveals how many marked vehicle objects were detected by the vehicle
detection algorithm. Detailed reports can then be viewed and printed out to

determine how the algorithm has performed.

155



5.4.2 Sharing Data Throughout The Application

After an image database has been set up, images are uploaded using the Image Database
Tool. In this tool, images can be imported, exported, assigned tags. Facilities are
available in the database tool application to allow the user to query by tag or by search
criteria, to specify images for retrieval. Usually queries will specify something to the
effect of “Find all images that contain instanced of red-eye”. The database created for this
project contains a large set of images with variability in scale and location, faces in
various poses and colour differences. Images were captured using digital cameras, and

continuously uploaded to the database to help diversify the test set.

The images uploaded in the Image Database Tool are used in the Marking Tool. The
Marking Tool queries the image database and gets back a set of images. This set of

images is marked, and thus metadata is added to images.
Lastly, algorithms are run using the Testing Tool. Again, algorithms are run on the same

set of images. Results of algorithms are also compared to the image ground truth data that

was gathered using the marking tool.

156



5.4.3 Goals Fulfilled

e The framework should thus promote and bring about the efficient, practical and
precise testing and reporting of algorithm performance through the use of
improved tools

e The Marking Tool allows for the gathering of much more accurate image
markings, which means accurate ground truth data, which promotes a consistent a
more reliable algorithm testing process

o The semi-automatic nature of the framework means that algorithm performance
assessment is carried out quickly and easily, greatly reducing testing time

e The framework thus incorporates tools to mark image-sets for testing purposes,
run algorithm tests on image sets based on test parameters and generate reports on

algorithm performance

157



Chapter 6: Testing

In this chapter, an overview is given of the testing techniques employed for the Marking

Tool application.

6.1 Testing Strategy

Software testing is essentially a part of software development, and as such must be
carefully conducted in order to uncover serious errors in code and in interface design.
When discovered anomalies are corrected, there should come about an increase in the
completeness and consistency of a given application. A few questions had to be asked
when formulating a test plan for the Marking Tool application. Questions such as; what
types of testing must take place? What application components must be tested? How long
should be spent testing them? How thorough must the tests be? For this type of
application would white box (implementation and code based) testing or back box
(interface and specification based) testing be preferable? A little research was necessary

to find out what the best approach to testing would be.

“Realistic test planning is dominated by the need to select a few test cases from a huge
set of possibilities. No matter how you try, you will miss important tests. No matter how
careful and thorough a job you do, you will never find the last bug in a program, or if you

do, you won’t know it” (Kaner et al, 1993:18).

One of the certainties about testing any system is that it is not possible to test every
possible combination of uses for each and every system component. Therefore, a realistic
number of tests must be carried out within a practical allocated timeframe. The challenge
with the Marking Tool is that many different facets of application development must be
dealt with — there is the data model, there is the processing that goes on when data is
taken from the interface, validated, and stored in the data model, there are various
interface components that must each be tested for consistency, there is client/server
interaction, there are data retrieved from XML files and used at various points in the

application, and data must also be stored back to the server. Thus a single approach to

158



testing may not necessarily cover all the bases for this particular application. If using unit
tests, all aspects of the data model may be inspected and tested, but what happens when
the data model interacts with the user interface and the user attempts to store and retrieve
data through the data model? Similarly, the user interface may look good, but if the data
collected through it are not dealt with and processed correctly, anomalies will occur
underneath the surface. Looking at all these aspects, it appears that the best approach to
testing is one where different techniques are combined together to ensure testing has been
conducted as thoroughly as possible. The hybrid approach described by Roper in
“Software Testing”(1994) offers a good solution by combining both white box and black
box techniques. For the Marking Tool, the hybrid approach to testing brought about the

following set of stages:

1. Carry our functional testing on the user interface (black box testing)
2. Carry out unit testing on the model objects (white box testing)

3. Conduct usability tests with users to validate system design and identify

Because time was an issue throughout the final testing stages of the project, usability tests
were often conducted alongside the functional code testing (white and black box). In both
stages 1 and 2 above, the ultimate aim is to reveal bugs in the code and to rectify
processing errors. This is done by the creation of tests cases — test cases should attempt to
execute each and every possible combination of real-world uses that could occur when
the application is operated by normal users. In stage 3 above, the aim is to find out
whether or not the design works; is it intuitive, easy to understand, efficient, does it
present unseen difficulties, etc. Overall, a mixture of black box, white box and usability
tests should help to reasonably test and validate the application code, specification, and

design for the Marking Tool.

159



6.2 Functional Testing

Both white box and black box testing will be employed in order to test the functionality
of the proposed application. Such testing should help to accurately evaluate whether or

not the implementation satisfies the specified requirements accurately.
A. Black Box Testing

This method of testing checks that the code in the program is working correctly based on
the behavior of the program. The tester does not look at actual code, but instead checks to
see if the program carries out a task successfully or not. To build up a set of tests the
specification documents for the Marking Tool application are consulted, and these
documents cover all the inputs, outputs, and program functions for the application. The
test data should ascertain whether or not the application is behaving as expected in all

possible circumstances, and also if it fulfills the specified requirements.
Functional tests for the Marking Tool were carried out as follows:
I). Mark an image

Functional cases

F1: | Select feature to be marked in feature tree view. Mouse down on the image in
the ImageView, draw shape, mouse up. Ignore pop-up menu and change

selection.

F2; Select feature to be marked in feature tree view. Mouse down on the image in

the ImageView, draw shape, mouse up, select a property from pop-up menu.

F3 Select feature to be marked in feature tree view. Mouse down on the image in
the ImageView, draw shape, mouse up, select “Edit Attributes” from pop-up

menu. In edit attributes enter [VALID DETAILS]

160



Invalid Cases

Select feature to be marked in feature tree view. Mouse down on the image in the
ImageView, draw shape, mouse up, select “Edit Attributes” from pop-up menu.

In edit attributes enter [[INVALID DETAILS]

Select an already marked feature in the feature tree view. Mouse down on the

image in the ImageView, attempt to draw shape, mouse up.

II). Delete Feature Markings

Functional cases

‘Fl:

| F2:

| F4:

F3:

Select an item in the feature tree view. Press the delete key on the keyboard

Select an item in the feature tree view. Press the delete delete button located at

the top of the feature tree view.

Click on a shape in the ImageView. After it has been selected, press the delete

key on the keyboard

|
Click on a shape in the ImageView. After it has been selected, press the right

mouse button down, and from the pop-up menu, select “Delete Marking”.

Invalid Cases

11:

12:

Select an unmarked item in the feature tree view. Press the delete key on the |

keyboard

Select an unmarked item in the feature tree view. Press the delete delete button

located at the top of the feature tree view.

161




III). Test Undo and Redo

Functional cases

F1:

F2:

F3:

F4.

Mark four features in a face. Create a new face, mark four more feature within
it. Undo the last six actions. Mark one more feature in the first face. Mark one

more feature in the second face. Undo the last four actions.

Mark three features in a face. Create a new face, mark three more feature within

it. Delete a marking from the first face. Delete a marking from the second face.

Undo the last four actions. Delete a feature in the first face. Undo the last action.
Delete a feature in the first face. Add a feature in the second face. Undo the last

three actions.

Mark four features in a face. Create a new face, mark four more feature within
it. Undo the last six actions. Mark one more feature in the first face. Mark one
more feature in the second face. Undo the last four actions. Redo the last four

actions.

Mark three features in a face. Create a new face, mark three more feature within

it. Delete a marking from the first face. Delete a marking from the second face.
| Undo the last four actions. Redo the last four actions. Delete a feature in the first
| face. Undo the last two actions. Redo the last two actions. Delete a feature in the
| first face. Add a feature in the second face. Undo the last two actions. Redo the

last two actions.

Invalid Cases

I1:

| Mark two features in a face. Create a new face, mark two more feature within it.

| Undo the last six actions. Redo the last six actions.

162




IV). Edit Markings (move, resize various points, redraw)

Functional cases

F3:

Fl1:

F2:

F4.

F5:

| F6:

Mark a feature with a linear ring consisting of ten points. Using the mouse, drag-
and-drop each point to a new location. Execute redraw methods (Zoom in x 4
and zoom out x 2. Rotate clockwise x 2. Rotate anti-clockwise. Scroll up and |

down. Scroll left and right).

Mark a feature with a rectangle. Using the mouse, drag-and-drop each point to

make the shape larger. Execute redraw methods.

Mark a feature with a rectangle. Using the mouse, drag-and-drop the entire

shape to a new location. Execute redraw methods.

Mark a feature with a point. Using the mouse, drag-and-drop the point to a new

location. Execute redraw methods.

Mark a feature with an ellipse. Using the mouse, drag-and-drop each point to |

make the shape larger. Execute redraw methods.

Mark a feature with a rectangle. Using the mouse, drag-and-drop the entire .

shape to a new location. Execute redraw methods.

V). Zooming In/Out, rotation, scrolling and resizing

Functional cases

F1:

F2:

Place five different markings on the image. Zoom in x 5. Zoom out x 15. Zoom
in x 30. Press “Fit to screen” button located at the top of ImageView. Press |

“Actual size” button located at the top of ImageView. |
|

Place five different markings on the image. Rotate clockwise x 2. Add two new |

163



markings. Zoom out x 3. Show actual size.

F3: Zoom in x 20. Place two markings on the image. Zoom out x 10. Place two new
markings on the image. Zoom out x 5. Scroll to the right by approx. three
inches. Place two new markings on the image. Show actual size. Rotate

clockwise x 3. Place a new marking on the image. Zoom out x 3. Zoom in x 10.

F4. Zoom in x 20. Place two markings on the image. Show actual size. Rotate 3 x
anti-clockwise. Place a marking on the image. Scroll to the right. Scroll down.
Zoom out x 10. Place a marking on the image. Scroll up. Scroll down. Zoom out

[ x 2.
| |

Invalid Cases

I1: ‘ Zoom in x 200.

[ 12: ‘ Zoom out x 200.

VI). Delete a root node

Functional cases

Fl: In the tree view, create three root features using the “Add root” button at the of
the tree viewer. In each root feature, mark three sub features. Select the middle

root feature and click the “Remove root” button located at the top of the tree

viewer. Select the bottom root feature and click the “Remove root” button
located at the top of the tree viewer. Create two more root features using the
“Add root” button at the of the tree viewer. For the two new root features, mark
one sub feature within each. Now remove the top root feature, then the bottom,

then the middle.

| F2: Add ten new root features. Mark each of the root features in turn. Delete the

164




fifth root feature down. Delete the last root feature. Delete the first root feature.
Delete the last root feature. Delete the second last root feature. Add two new

root features. Delete the first root feature. Delete the first root feature.

Invalid Cases

‘ I1: One root feature is present — delete this root feature. Now press the “Remove
! Root” button again three times. Press the “New Root” button. Mark the root

feature. Now press the remove root button two times.

VII). Setting properties (from both treeview and imageview)

Functional cases

F1: In the tree view, create one root features using the “Add root” button at the of
the tree viewer. Create a marking for the face feature. Select the face marking in
the image viewer, and right click on it. From the pop-up menu, select “Edit

Attributes”. In the dialog box that appears, enter name “Pat Reynolds”

F2: In the tree view, create one root features using the “Add root” button at the of

the tree viewer. Create a marking for the face feature. Right click on the face |

| feature in the tree viewer, and from the pop-up menu, select “Edit Attributes”. In |

the dialog box, enter name “Pat Reynolds”.

F3: ‘ In the tree view, create one root features using the “Add root” button at the of
| the tree viewer. Create a marking for the face feature. Right click on the face
| feature in the tree viewer, and from the pop-up menu, select “Edit Attributes”. In |

| the dialog box, enter no name and delete any default characters for the name.
| |

165



VIII). Image navigation

Functional cases

Fl1:

F2:

F3:

Load a new set of images into the image list view. Click the first image in the
sequence. Click the “Next image” button located at the bottom of the
ImageView. Mark one of the root features in the image. Click next image, mark

a root feature in the image. Click previous image. Click next image.

Load a new set of images into the image list view. Click the first image in the

sequence. Click the “Next image” button located at the bottom of the

ImageView. Continue to click next image until the last image is reached. Mark a
root feature in the image. Click next image. Click previous image. Click

| previous image. Click next image.
|

Load a new set of images into the image list view. Click the first image in the
sequence. Mark a root feature in the image. Click the “Next image” button
located at the bottom of the ImageView. Mark one of the root features in the
image. Click next image, mark a root feature in the image. In the image list

view, click the first image in the list. Click next image. Click previous image.

Invalid Cases

I1:

| After loading a set of images into the image list view, select the last image in the
list. Mark a root feature in the last image. Click next image. Click next image.

Click previous image.

After loading a set of images into the image list view, select the first image in the
| list. Mark a root feature in the image. Click previous image. Click previous

| image. Click next image.

166




Note: For all above cases, the assumption is made that a query for a set of images has
already been sent to the database, and a set of images has successfully been downloaded

to the client application, appearing in the image list view.

The functional cases listed above provided clear and effective tests, covering as large a
domain of application functionality as possible within a reasonable timeframe. It can be
clearly seen how the established test cases are in line with the requirements for the

application.

Using the Functional Cases and Invalid cases helped reveal erroneous program
components and problem areas in the application. Ultimately, all test cases were carried
out without anomalies, and invalid cases did you lead to unexpected behaviour. While
such testing is fundamentally “integration testing”, because the application was
developed with modularity in mind, error correction was made easy, and errors were
resolved by isolating a problem to a particular module. Earlier design decisions proved to
be quite useful in this regard, especially when tackling the interaction between the data

model and the various views in their respective modules.
Here is a sample of some errors revealed through functional testing:

e When an image was scrolled up or down and then rotated, markings did not
relocate to the correct rotated coordinates on the image

e If an image was zoomed in on and then scrolled, markings were not consistently
displayed in the same location on the image

e Often when clicking on an item in the tree viewer, the corresponding feature
marking was not always selected correctly. Sometimes the index retrieved for the
image viewer item was incorrect

e Using the application continuously for more than one hour caused it to crash

e ]t was not possible to add face attributes

167



B. White Box Testing

With white box testing, actual code modules are both inspected and executed in order to
reveal errors and ascertain that all required tasks are being carried out in a correct
manner. Such testing should take place before application components such as the core
data model and graphical user interface components are integrated (such integration

testing takes place later on) in order to keep errors to a minimum.
The most fundamental forms of white box testing for this application are:

e Developers Tests — such tests are conducted by the developer as he or she writes
actual code, and adds new functionality to old code. Code should be checked and
verified wherever possible, and testing is conducted in an organized manner.

e Unit Tests — unit testing checks the correctness of several application classes and
components, often in an automated manner. External data sources like databases

and XML documents are all used in these tests.

A combination of both of the above testing categories was used, and this served to

satisfactorily reveal errors at early stages of development.

Unit Testing In Practice

While developers tests can be easily conducted at the developers discretion, a more
regimented way of conducting unit testing is required. Unit testing can become a time
consuming affair, and it is often difficult to ensure that new code changes will not

interfere with previous components of code.

Thankfully, because the Eclipse programming environment is used for the development
of the Marking Tool, a useful code testing framework known as JUnit is made readily
available. JUnit helps to speed of and automate the testing of code components, helping
to ensure that code behaves as expected. It was found that JUnit allows for the fast
creation of unit tests, and also allowed for some regression testing when new code was

added to the application, for instance a new method in one of the data model objects.

168



With JUnit, testing is carried out by going through the following steps:

e Write test cases in Java
e Compile the test cases

e Run the resultant classes with a JUnit Test Runner

The best way to explore how unit testing was conducted for the Marking Tool is to go

through some examples, showing how JUnit works.

Working with JUnit

Both Clientlmage and ClientFeature were tested using JUnit and their corresponding
JUnit test classes are good examples of how this testing framework can be used. In this
section, a few of the more relevant tests will be explored. JUnit tests proved quite
important in ensuring that the data model on the client was consistent and was behaving

as expected.

L. Initialising JUnit

A test is created in JUnit by extending the junitframework.TestCase class. For the
Marking Tool a class ClientFeatureTest extends TestCase was created. This classes
main method calls the junit.textui. TestRunner.run(Class) method and passes the test class
(ClientFeatureTest) as an argument. The run method invokes any method that begins
with fest. Thus, for each method that needs to be tested, there will exist within
ClientFeatureTest various methods beginning with test, e.g. testGetClientGeometry,

testEditMark, testGetMarkedFeatures, and so on.

Within the constructor for ClientFeatureTest, all necessary objects are set up such as a list
of test images and the testing directory. It also contains a couple of debug assertions to
ensure that there are images in the image list — Clientimage and ClientFeature cannot be

tested unless we have some images to test on.

169



IL. JUnit Tests

The actual test code uses methods from the TestCase super class to assert particular
conditions throughout the test run. In most cases, some processing is performed and then
values are compared or checked in order to ascertain whether object contents are as
expected or otherwise. If an assertion fails, it is reported. Examples of assertions include

the following:

- assertEquals(int expected, int actual)
- assertTrue(String message, boolean condition)

- assertNotNull(Object object)

Looking at test code, each test method is named after the object method that it aims to

test. For instance, testGetAttribute tests the getAttribute method in ClientFeature.

In the first test example the getChildAt (index) method is tested. First of all, a
rootFeatureList is created consisting of a single root feature “face”. This list is handed
into the addEmptyFeatureTree method, which then initializes all subfeatures for the root
feature face. testClientImage.getChildAt(0) returns the ClientFeature at element 0 within
testClientImage feature tree. It is already known that this should be a face, as it was
added, so assertNotNull is called to make sure a null value was not returned. If a null
value was returned then this will be reported.
public void testGetChildAt () {

System.out.println(">>>>>> TEST: editMark <<<<<<<");

ArrayList rootFeaturelist = new ArrayList();

String rootName = "face";

rootFeatureList.add ((Object) rootName) ;

testClientImage.addEmptyFeatureTree (rootFeaturelist) ;

ClientFeature cf = testClientImage.getChildAt(0);

170



assertNotNull (cf) ;

System.out.println("Got child at 0 " + cf.getName()):
}

The following piece of code shows how the getAttribute method of class ClientFeature is
tested. Before anything is tested, it must be ensured that the feature tree within the
testClientImage contains ClientFeature objects, so again, the feature tree is initialized
with a single face root feature. When this happen, default attributes for each feature are
set. One of these attributes is the skintone, so if the getAttribute method needs to be
tested, then it is certain that it should return a value when asked for the skintone.
testClientImage.getChildAt(0) returns the ClientFeature at element 0 within
testClientImage feature tree (it is already known that this should be a face, as it was
added). Next, the getAttribute method is executed with the “skintone” argument — thus
the method should return the attribute whose name matches “skintone”.

assertNotNull(att) ensure that an attribute is returned correctly. If not, it will be reported.

public void testGetAttribute() ({
System.out.println(">>>>>> TEST: getAttribute <<<K<<<«");
ArrayList rootFeaturelist = new ArrayList();
String rootName = "face";
rootFeaturelist.add( (Object) rootName) ;
testClientImage.addEmptyFeatureTree (rootFeaturelist) ;
ClientFeature cf = testClientImage.getChildAt (0);
Attribute att = cf.getAttribute("skintone"):;

assertNotNull (att);

The next test method shows how the editMark method is tested. As before, the
ClientImage object is initialized with a single root face feature. After that has been done,

an ellipse marking is created and is added to the ClientFeature in the feature tree. The

171



data for the marking is printed to the screen, then the marking is changed, and the method
editMark is called on the ClientFeature, handing it the new ellipse marking. To ensure
that the ClientFeature has been updated correctly using editMark, assertEquals (newEl,
cf.getMarking()) is called, and this will report success if there is a match, and
ClientFeature has been updated correctly with the new marking, or false if both

arguments are not equal.

public void testEditMark() {
System.out.println(">>>>>> TEST: editMark <<<<<<<");
ArraylList rootFeaturelist = new ArrayList();
String rootName = "face";
rootFeaturelList.add( (Object)rootName) ;
testClientImage.addEmptyFeatureTree (rootFeaturelist) ;
ClientFeature cf = testClientImage.getChildAt (0);
Ellipse newEl = new Ellipse(12,12,12,12);

cf.mark (newEl) ;

newEl = (Ellipse) cf.getMarking();
System.out.println("PreEdit:The geometry of <child 0 is " +
newEl.getX() + " : " + newEl.getY() + " : " + newEl.getHeight{() +

" ¢ " + newEl.getWidth()):
newEl.setX (24);

newEl.setY (24);
newEl.setWidth (24);
newEl.setHeight (24);

cf.editMark (newEl) ;

assertEquals (newEl, cf.getMarking()):;

newEl = (Ellipse) cf.getMarking():

172



System.out.println("PostEdit:The geometry of child 0 1is " +
newEl.getX() + ™ : " + newEl.getY() + " : " + newEl.getHeight () +
" " + newEl.getWidth()):

After running the above three tests, the output in the Java console is as follows:

>>>>>> TEST: getChildAt <<<<<<<
Got child at 0 face

>>>>>> TEST: getAttribute <<<<<<<
>>>>>> TEST: editMark <<<<<<<

PreEdit:The geometry of child 0 is 12 : 12 : 12 : 12

PostEdit:The geometry of child 0 is 24 : 24 : 24 : 24

The JUnit interface shows that three tests have been successfully run with no failures or

errors:
I ClientFeatureTest... S@Yﬁd =Ha] [EE Outline 23\ —m
Error Log| Tasks| Problems | Search | console | Debug MFomﬂlas ]
Finished after 0,063 seconds o | Q% BB Y

Runs: 3/3 @Errorst 0  BFalures: 0 [N
@" Failures | Hierarchy = Failure Trace E

EREE} corn fotonation fofofdarker, riodel ClisntFeahraTest
&4] testGetChildAt
-l testGetatiribute

The above is just a small sample of the JUnit testing carried out for the Marking Tool.
For the ClientFeature object alone, many other tests had to be carried out, such as:
TestGetMarkedFeatures, TestGetUnMarkedFeature, testGetAttributes,
testSetClientGeometry, displayAllClientFeatures, displayFeatureDefitnitions. For the
Clientlmage class tests also took place, for instance: testGetMarkup,

testGetRootFeatures, testEquals, testAddEmptyFeatureTree.

173



When there are problems, the JUnit interface makes it quite clear what part of the code is

at fault, as seen below:

elopment - ClientFeatureTest, java - Eclipse SDK Yk . IR
Refactor Navigate Search Froject Run Window elp
BeQeQe [ BEG] s e e g Zj $hebmy E'TeamSync... | +{-Plgein Dev... {
U] TestManagerView.java | 11 ClientCortrollar.... 1)) Clientimage.java :"[4‘1 CliertFeatureTest,, & - i = ()5 outne 12 =y
puhlic void g ‘:] |_% WY e WY
WEbhviise thoePeRCuRLIE: & men AssetTonire 4 ' mportdecoratons =]
S:r::q :;utrlame = "face”; h ' = G’CIENF g st L6 [
¢ éf
roocFeacureliac.add ((Ohject) roacName) ¢ ' VEST IMAGE_SET G
*F UMT_TEST_DATa C
ceatClient Inade.addEmpryFeatureTree Yoot Feauurel 13t & =
ClientPeatuce of = tesslientImage ,getChildat (0] , UMIT_TEST DATA F
Ellipse nevBl = new Ellip=e(12,12,12,12)7 - d“plafA"c"“'ﬁam'
cf .wark [neoEl) ; X deplayClientFeatre(
nevEl = (Ellipae| of,gethacking() : -sdispla,n:liaweanre(
gyscem, cld println|"PreEdiviTae gecmetty of child 0 13 " + pevEi.getX() + ™ 1 * + neul_] ® ° dieplayFestreDefinit
nevEl.zetX{24); o ° man@rngl)
nevkEl.=esY¥(249): nooImageist | List
newEl.aectWideh|{29) a |mg g lm*
hawE]l,aevKeighc 124) ; = IpstClientmage : Clx
el eel Ul ienlGeoretr (e n Ll a msm"mu,mqgg :C
ct.aditRark |[newkl) u  testDir :Eile
assertSame(hevEl, cr.getfarking(l): v lestlmageSetDy Fil
nevEl (EL1L | cE.petMarking) e k=
e = pae| of, 3 5 ¢ .
o B Test(St
Syscem.cut prantln|"Frefdav:The geometcy of chaild 0 1s " + pewEl.getX() + * i * + neul c"en.;;amre G
» 32tp
) « tearlownd)
bt © lenitpahrasrp
a | e | | i
Emor Log| Tasks Problems |Search Console mpmpa'ues N o= | EET =0
Finished after 0,265 seconds
Rus: 7/7 GEmors: 0 OFallures: 1
oCFadres|iftHerarchy| = FailreTrae (1=
& a com.folonation. atcMarker. medel ClimtFoeatre Test 1 nit framewark, AssartonFailederror : epected same:<com, folonaton imageds ofml Ellpsesd st fc> wa

0.} 1estClentFeatr eSlringFeatureLefi2icn COC lentFaataa
7 | testEewtriutes

| testGetatrizute

- e

o | testoevisrkedreatres

& | testGenmvisrkedFestre

| estGetChiidat

«l 1 »l

at com. fotcnaton fothviarker, model.ClientFeatraTest testEdithark(C lentFestraTest java: L60)

at sunceflectNatveivethodiccessor impl nvakedNative Method)

at sungrofiecNativevVethodAooessoe Impl srecka(Unknown Souroe)

at sunreflect DelegstngMethcdaccesscrlmpl. ks Unkrown Sounce)

at org.eclipse pde, ntemal, junit.runtime, RematePluginTesRunner. mainiRematePignTesRurner, sava: 57

at org.eclipse.ode. niemal. jJunitruntime. Ul Testappications Lrun LI Testapplication, |ava:59)

at org.eclipse_swiywvidgate Runnablel ock. ranRunnshilel ock. sava: 25)

at org.eciipss. swt wilgats, Syrchronizer rundsyeMessages [Synchronizer . jsva i 123) r,|
i —y e = e .

TS0 THE 00005 000 40 i

In the case above, one of the assertions within testEditMark had failed.

White Box Conclusion

Having used JUnit to develop tests early on in the process of implementation helped to
understand the relationships between objects as well as the danger areas where errors are
most likely to occur. Thanks to such white box testing techniques, it became easy to see

how the tested program components would integrate when new components had to be

174



added. Additionally, for future maintenance of code new developers can easily gain an

understanding into the various classes and methods by simply running JUnit tests.

6.3 Usability Testing

In this section, methods used to test the usability of the Marking Tool will be discussed.
The research of Jakob Nielsen provided many useful starting points in the development
of usability tests for this project, and ultimately led to some interesting and unforeseen

application changes.

6.3.1 A look at usability

According to Jakob Nielsen, “Usability is a quality attribute that assesses how easy user
interfaces are to use. The word "usability" also refers to methods for improving ease-of-
use during the design process.” (Nielsen, 2003). While developer tests and unit testing
have helped to reveal logical errors in code and problems with functionality, there is also
a necessity to assess the user interface. Although the system was initially designed by
working with sample users and eliciting requirements from them, how accurate is the end
result in representing those requirements within an actual system? And how do we define
usability itself? In Nielsen’s “Usability: 101” article (Nielsen, 2003), the following six

quality components are given to help describe usability:

e Learnability: Is it easy for users to learn the system, and can tasks be
accomplished easily?

o Efficiency: When the user is familiar with the system, is it possible to work
quickly and carry out tasks with greater speed?

» Memorability: Is it possible to easily memorise the user interface components so
that when the user returns to it after a period of non-use it is possible to quickly
become proficient again?

e Errors: Does the user make a lot of errors using the system? Do these errors
interfere with the system functionality, and can the user recover from the error?

o Satisfaction: Is the system satisfying and fun to use?

o Utility: Does the system help to carry out the tasks that users want?

175



The first five components refer to ease of use, but the last one refers more to actual
functionality; as Nielsen would have it, there is little point in a system that is easy to use
if it does not carry out the necessary tasks. Similarly, if a system carries out all desired

tasks but is overly difficult to use, the system is not desirable.

6.3.2 Improving Usability

It is vital that the usability of the Marking Tool is somehow tested and improved if
necessary. Thus, a study of the usability was required. According to Nielsen (2003), the
most useful method is user testing. Based on Nielsen’s guidelines, the following usability

tasks were carried out for the Marking Tool:

e At the partner company a group of representative users were found, some
members of which would be the end users of the system

o Users were requested to use the system to carry out their task — that of marking
images — and were requested to carry out a set of steps to ensure all aspects of the
system have been used

e Users provided reports on their use of the system, and were encouraged to voice

any problems that were encountered

To help carry out the above, a questionnaire (Appendix C) was also provided to users
after they had spent a good deal of time with the system. As well as this, hallway
usability tests were carried out. This is where a person is selected randomly in the office
as a testing candidate for the application that has just been developed. The feedback
obtained from such usability testing helps to give an overall impression of how successful
the system is in achieving its goals. A certain distance was maintained between developer

and user in order to ensure that users were not influenced in any way.

6.3.3 Usability Test Results

After conducting usability tests, and consulting questionnaire results, it was found that

the application had plenty of room for improvement. The application was installed at the

176



partner company, and eight people used the software for a couple of weeks to mark

images. From observing the way users approached and used the application, and also the

usage scenario for the most common task — mark all faces and eyes — a lot of useful

information was gained regarding what features were unnecessary, and what ones may

need to be improved. It was found that some of the features were not used very much,

demonstrating perhaps that they were not appealing to the user and needed rethinking, or

possibly removal from the application. Not only this, but in some areas the application

exhibited undesirable behaviour that not been explored in functionality tests. Below is a

sample of the usability testing findings.

Problems:

Markings can be dragged and resized outside of the image boundaries, creating an
erroneous visual effect that was found distracting and confusing

It is possible to mark outside of the image canvas

It is difficult to figure out what marking will be selected with a mouse click when

there are multiple markings lying on top of each other

Desired Functionality:

A copy and caste functionality is desired for the image marker — should not have
to create every marking from scratch, especially when many eye markings are the
same size and shape

When navigating through images, the application should remember some of the
previously entered properties as a lot of the time, people in the images may
reoccur many times, so items like age, sex, skintone, etc. should not have to be re-
entered time and time again. These details should be rememberd from one image
to another by using something like a tickbox to ask the application to remember
such details

Within the application, there should be support for contrast and brightness

adjustment for the image-viewer. If an image is too dark or too bright, a separate

177



application must be opened to brighten it, then it has to be imported all over
again.

For images that are part of a video stream, the application should predict where
the next markings will be located

It should be possible to add/remove a point in a LinearRing (polygon)

The last attribute values used for a feature should be remembered

It should be possible to move an entire LinearRing shape

It should be possible to continue marking a closed polygon

It should be possible to move an entire feature tree

It should be possible to copy and paste an entire featuretree

There should be support for PNG, TIFF and GIF images

It should be possible to add an attribute to a face to state the horizontal orientation
of the person, for instance frontal, Ileft-profile, left-semi-profile,
right-profile, right-semi-profile

It should be possible to specify the age group of an individual, for instance baby,
child, adult, old-age

Functionality Not Used Regularly:

The QuickMark facility — allowing the user to mark many features of a particular
type at a fast rate — was not used very much. Users do not want to mark all eyes,

or all faces — they generally want to mark a face, then eyes

6.3.4 Usability Evaluation

After examining the usability test results, the application design was revisited and

features that came under scrutiny in the usability test results were altered. Then additional

usability tests took place to ensure that all implemented changes went towards improving

the user experience.

178



6.4 Conclusions of Test

One of the main benefits of letting user research drive design is that you do not have to

spend time on features that users do not need. Early studies show you where to focus

your resources so that you can ship on time.

The tests shown above were all executed successfully and the Marking Tool application

is now in a fit state to be used seriously in the partner company.

179



Chapter 7: Conclusion and Recommendations

7.1 The Research Journey

The specific purpose of this research was the development of advanced tools to help
streamline and automate the development of image processing algorithms. The project’s
principal motivation being the acceleration of algorithm testing and reporting procedures
which are currently time consuming and often counter-intuitive, and also more efficient

retrieval of images by using a specialised online image database.

A thorough literature review was carried out, helping to establish the context of the task
of image marking and categorisation. Existing technologies and work practices were
explored in the methodology chapter, with a view to pinpointing where and how current
practices can be improved and reinvented through a new framework for testing. When
formulating this framework, a systematic attempt was made to find out what tasks the
client carried out using the existing image marking and algorithm testing tools. It was
important to note the essential system components and time-frame constraints for the task
of marking images and running image tests. Image storage, retrieval and the use of
queries was also noted. One of the conclusions derived from exploration of current
practices was that hand-marking hundreds of images can be troublesome if the tools used
are limited; because the task becomes tiring, accuracy of markings may suffer. If the
individual who marks images does not provide precise markings then the entire image
algorithm testing process suffers because all tests rely on ground truth data for
comparison — and ground truth data is achieved only through the image marking
procedure. It was discovered that a new approach to the image marking and
categorisation process would help to rejuvenate the testing of algorithms for the better.
Resultantly, a set of detailed functional requirements were be drawn up and used for the

development of the system.

180



7.2 The Resultant Tool

The Image Marking Tool application fulfils many of the working requirements of the
algorithm testing process. The framework has been tested and used in the partner
company since the first fully working version was released towards the end of 2005, and
has gradually — through various iterations — come to fulfil the demands served up by a
commercial working environment. Now that the application is used daily, it has proven

its usefulness, intuitiveness and robustness.

The aim of the thesis was not to drastically change or revolutionise the testing processes
carried out in the image processing field, but looking at the application as it stands, this
research may very well have discovered many efficient new ways of conducting and
executing image processing tasks in the field of algorithm testing with regard to ground
truth gathering, storage and manipulation. This work will hopefully highlight to
algorithm testers in the industry the fundamental role of ground truth creation in the
image processing field, as well as exhibiting the many advantages of a good image
marking framework, good image marking tools, an intuitive and carefully developed
interface and the vital link between onscreen interface components and the underlying
data layer. Ultimately — when this work is combined with algorithm testing and reporting
tools, as developed in the companion thesis - this work highlights the effectiveness of a
marking tool to help speed up and streamline algorithm testing and ultimately algorithm

improvement by the pinpointing of weaknesses at an early stage.

181



7.3 Recommendations for Future Work in the Field

While conducting research for this thesis, the intriguing area of automated batch image
marking and categorisation was stumbled upon. Put simply, this discipline aims to
discover ways in which the process of hand marking images using a marking tool can be
further sped up by letting detection algorithms aid in the marking process. In some cases,
such technology has been used to attempt to track objects in a video stream — if there are
1000 frames in the video, then in each frame perhaps a person’s face must be marked. In

a situation like this automated marking is a must.

Regarding the use of similar automation techniques in the making tool developed for this
thesis, this researcher sees such technology as a “helper” for the human image marker.
For instance, if a person has to mark the faces in one hundred images, an automated
marking tool would attempt to predict where all the faces should be marked on images by
using a relevant detection algorithm. The user would then only have to quickly view each
image to ensure the markings were placed in the correct positions. Depending on how
advanced the algorithm is markings may need to be edited for accuracy. This kind of
prediction tool would certainly be the next step for the marking tool if this researcher was
to spend further time on this project. Incidentally, the detection algorithms used in the
marking tool to help predict markings may very well be the same algorithms that are

being tested later on — during the stage of algorithm testing and reporting.

7.4 Conclusion

With the Image Marking Tool is in place, the partner company have reported higher
productivity regarding the testing of algorithms using ground truth data (image
markings). Ground truth data is easily obtainable online, editable, robust, accurate and
modular. While further development, like the marking prediction tool (mentioned in 7.1)
could be advantageous, the marking tool quite sufficiently carries out all roles that were

specified in the requirements for this project.

182



APPENDIX A: XML Attributes

Dublin Core Attributes

The following DC attributes are used. Each attribute is encoded as an element under the

image element.

e date -- date at which photo was taken
¢ title -- short caption
e description -- longer description

e creator -- photographer

rights -- copyright and rights to distribute etc

In addition to DC attributes also have:

o created -- time at which image was added to the database (unix epoch time, UTC)
¢ lastmodified -- time at which image was last modified (unix epoch time, UTC)

o filename -- the original image file name if available

User Attributes

User defined. Examples: indoor/outdoor flag. User attributes should be prefixed with

"user.".

EXIF Attributes

Standard EXIF data. Numeric values should be stored as numbers so that numeric

comparitor operators can be used. EXIF attributes must be prefixed with "exif.".

Feature Markup

The actual markup for the image.

183



APPENDIX B: Geometry Types Defined in the Schema

Point

A "Point" is a point in two dimensional pixel space defined by two integers (x and y).

[} X
Yy
Circle

A "Circle" is a circle defined by its center in two dimenaional pixel space (x and y) and a

radius in integer pixels.

e X
s ¥y
o radius

Computed attributes:
e arca

Ellipse

An "Ellipse" is defined by its center in two dimenaional pixel space (x and y), a radius (of

the major axis) in integer pixels and eccentricity.

s X
L |
o radius

e eccentricity

Computed attributes:

e arca

184



Rectangle

A "Rectangle" is defined by top left correr in two dimenaional pixel space (x and y), the
width and height in integer pixels.

° X

L §

o width

o height
Computed attributes:

e area
LineString

A "LineString" is a piece-wire curve composed of line segments.
e 2 or more X,y coordinate pairs.

Computed attributes:
e length

LinearRing (aka Polygon)

e 4 or more X,y coordinate pairs. The first and last coordinate must be the same. A

valid LinearRing must not self-intersect.
Computed attributes:

e darea

Some non-geometrical attributes are as follows:

e name

185



e value

Attribute datatypes:
e integer
e double
e string

e complex (optional)

e selection (one or multi)

Computed attributes of features

These attributes apply to geometries. When added or modified to the database some
computed attributes will be added which will aid in constructing queries. Example: length
of LineString, area of Polygon, centroid of Polygon.

186



APPENDIX C: Usability Questionnaire

Rating scale to be used:

1 - strongly disagree
2 - disagree

3 - not sure

4 - agree

5 - strongly agree

I found it easy to pick up and use the system with little instruction required
The job of marking images was intuitive and fun to use

The system responded quickly and allowed me to mark many images in a reasonably

short period

The steps involved in getting a new image, marking it and saving it were reasonably

straightforward

The steps involved in going to a previously marked image to edit existing markings were

reasonably straightforward

The steps involved in going to a previously marked image to delete an existing marking

were reasonably straightforward

The image viewer area — where the image is displayed - provided enough detail for me to

understand clearly and accurately where markings are located.

187



The information at the bottom of the image viewer was easy to read and understand.

The image attributes data, displayed below the image viewer, was easy to read and

understand.

The tree viewer control helped me understand how I was marking the image as I was

going along,
The tree viewer control was easy to read and understand
The tree viewer control made it easy to navigate through markings

It was always reasonably easy to tell which marking I was working on at a particular time

— markings were sufficiently highlighted.

The quick mark marked tool was intuitive and relatively easy to use.
The quick mark all marked tool was intuitive and relatively easy to use.
Pop up controls for markings were readable and relatively easy to edit.
Zooming in and zooming out of the image works reasonably well

I used the zooming functionality a lot

Undo functionality was helpful

I would find such a system useful in my day to day job when I need to mark a large

quantity of images.

What buttons, if any, did you find least useful? Most useful?
Are there any buttons (functions) that you would add to the system? Why?

If you ever deviated from the envisaged use of the system, what was the usual reason?

188



Can you think of something the system could do to help prevent this?
What was the hardest thing to learn about using the system?

What feature did you particularly like?

Any additional comments about the system?

1. Does the new interface help to speed up the task of marking images?

2. Is it easy for the user to understand how to use the system based on it’s visual
appearance, or are some instructions required?

3. Does the system present any difficulties that prevent the user from carrying out
tasks seamlessly?

4. Are parts of the system irrelevant or unnecessary?

Please rate the system from 1 to 5 based on the following measures. Feel free to leave a

comment for any of the measures.

a. Efficiency

b. User friendliness

c. Pleasant to use

d. Easy to remember

e. Overall satisfaction

f. Potential future usage

189



References

1998, "Evaluation and Validation of Computer Vision Algorithms", in 9th Workshop

"Theoretical Foundations of Computer Vision".

The XML DB Initiative. http://xmldb-org.sourceforge.net/faqs.html . 1-2-2003.
Ref Type: Electronic Citation

A.C.Loui, C. N. J. S. L. "An Image Database for Benchmarking of Automatic Face
Detection and Recognition Algorithms".

Alexander M.Bronstein, Michael M.Bronstein, & Ron Kimmel. 3D Face. Geometric
Image Processing Laboratory, Institute of Technology Israel . 10-3-2003.
Ref Type: Electronic Citation

Cem Kaner, J.Falk, & Hung Quoc 1993, Testing Computer Software International
Thompson Publishing.

Chandra Narayanaswami & M.T.Raghunath 2004, "Expanding the Digital Camera's
Reach", IEEE Computer Magazine, vol. 37, no. 12.

Christopher Jaynes, Amit Kale, Nathaniel Sanders, & Etienne Grossman "A Scripted
Multi-Camera Indoor Video Surveillance Dataset with Ground Truth", in IEEE Workshop
on Visual Surveillannce and Performance Analysis for Tracking and Surveillance, Ctr.
for Visualization and Virtual Environments and Dept. of Computer Science, University

of Kentucky.

190



CNN. Twins crack face recognition puzzle. CNN . 10-3-2003.
Ref Type: Electronic Citation

Daniel A.Carp. Market Convergence: Advances in Imaging are Reshaping World
Markets. Kodak Press Centre . 25-9-2002.
Ref Type: Electronic Citation

Dov Dori & Lio WenYin "Principles of Constructing A Performance Evaluation Protocol

for Graphics Recognition Algorithms", Kluwer Academic, pp. 97-106.

Erich Gamma, R. H. R. J. J. V. 1995, Design Patterns: Elements of Reusable Object-
Oriented Software Addison-Wesley Professional.

Francois Fleuret & Donald Geman 2002, Fast Face Detection and Pose Estimation.

H.Kang, T.F.Cootes, & C.J.Taylor "A Comparison of Face Verification Algorithms using
Appearance Models".

Hongjun Xu. Digital Image Processing. 6-6-2003.
Ref Type: Slide

Ian Sommerville 2000, Software Engineering.

IDC Press Release. IDC Survey: IDC's European Consumer Digital Imaging Survey
Highlights Key Growth Opportunity in the Home Printing Market. 19-1-2005.
Ref Type: Generic

191



Ilker Atalay. Face Recognition Vendor Test 2002 Review. 16-3-2002.
Ref Type: Generic
Keywords: FERET/recognition techniques/report/techniques

Notes: Report on Testing and Evaluation of image recognition techniques

Jakob Nielsen. Why You Only Need to Test With 5 Users.
http://www .useit.com/alertbox/20000319.html . 19-3-2000.
Ref Type: Electronic Citation

Jakob Nielsen. Success Rate: The Simplest Usability Metric.
http://www.useit.com/alertbox/20010218.html . 18-2-2001.
Ref Type: Electronic Citation

Jakob Nielsen. Usability 101: Introduction to Usability.
http://www.useit.com/alertbox/20030825.html . 25-8-2003.
Ref Type: Electronic Citation

Jef Raskin 2000, The Humane Interface: New Directions for Designing Interactive
Systems Addison-Wesley Professional.

Jin-Hyuk Hong, Eun-Kyung Yun, & Sung-Bae Cho. A Review of Performance
Evaluation for Biometrics Systems. International Journal of Image and Graphics . 24-3-
2004. World Scientific Publishing Company.

Ref Type: Magazine Article

John A.Black, M.Gargesha, K.Kahol, P.Kuchi, & Sethuraman Panchanathan "A
Framework for Performance Evaluation

of Face Recognition Algorithms".

192



K-K.Sung & T.Poggio. Example-Based Learning for View-Based Human Face
Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 20[1], 39-51.
10-1-1998.

Ref Type: Magazine Article

Lei Zhang, Yuxiao Hu, Mingjing Li, Weiying, Ma, & Hongjiang Zhang "Efficient
Propagation for Face Annotation in Family Albums", in ACM Multimedia, New York, US,
2004.

M.Roper 1994, Software Testing McGraw-Hill.

Margaret L.Johnson 2004, "Biometrics and the Threat to Civil Liberties", IEEE
Computer Magazine, vol. 37, no. 4, pp. 92-91.

Ming-Hsuan Yang, D. J. K. N. A. "Detecting Faces in Images: A Survey", in IEEE
TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1 edn.

Mislav Grgic, K.Delac, & S.Grgic 2005, Face Recognition: Hypothesis testing across all
ranks University of Zagreb.

MIT. MIT Database. 2-1-2006.
Ref Type: Data File

National Science Foundation. Advanced Technological Education Project. National
Science Foundation . 22-8-2000.
Ref Type: Electronic Citation

193



P.Courtney & N.Thacker 2001, "Performance Characterisation in Computer Vision," in
Imaging and Vision Systems: Theory, Assessment and Aplicationslmaging and Vision

Systems. Theory, Assessment and Applications, NOVA Science Books.

P.J.Phillips, P.J.Flynn, T.Scruggs, K.W.Bowyer, J.Chang, K.Hoffman, J.Marques, J.Min,
& W.Worek "Overview of the Face Recognition Grand Challenge", in IEEE Conference

on Computer Vision and Pattern Recognition, 2005.

P.Jonathan Phillips, H. M. S. A. R. P. J. R. 2000, "The FERET Evaluation Methodology
for Face-Recognition Algorithms", IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 22, no. 10.

Keywords: recognition techniques/techniques

Notes: Evaluation of image recognition techniques

P.Jonathon Phillips, A. M. C. L. W. M. 2000, "An Introduction to Evaluating Biometric
Systems", IEEE Computer Magazine, vol. 33, no. 2.

Notes: Evaluation of the performance of emerging biometric technologies

Patrick Grother, Ross Micheals, Duane M.Blackburn, Elham Tabassi, Mike Bone, &
P.Jonathon Phillips 2003, Face Recognition Vendor Test 2002 - Evaluation Report.

Patrick Grother & Ross Michealsand, P. J. P. Face Recognition Vendor Test 2002
Performance Metrics. 1-1-2005.

Ref Type: Generic

Keywords: - Identification,verification,validation, Techniques to evaluate algorithms
Notes: Detailed explanation of methodology and recognition performance

characteristics used in the Face Recognition Vendor Test 2002

194



Patrick Grother, Ross Micheals, & P.Jonathon Phillips. Face Recognition Vendor Test
2002 Review. 2005.
Ref Type: Generic

Peter N.Belhumeur "Ongoing Challenges in Face Recognition", in 2005 U.S.Frontiers of

Engineering Symposium Presentations, National Academy of Engineering.

Prag Sharma & P.Reilly 2003, "A colour face image database for benchmarking of
automatic face detection algorithms", in Video/Image Processing and Multimedia
Communications, 2003. 4th EURASIP Conference, 2-5 July 2003.

Rogerio Schmidt Feris, Jim Gemmell, Kentaro Toyama, & Volker Kruger 2002, Facial

Feature Detection Using a Hierarchial Wavelet Face Database, Microsoft Research.

Syed A.Rizvi, P.Jonathan Phillips, & Hyeonjoon Moon 1998, The FERET Verification
Testing Protocol for Face Recognition Algorithms.
Keywords: FERET

W3C. XML Path Language. 16-11-1999.
Ref Type: Data File

195



