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A B S T R A C T   

Mycobacterium tuberculosis, the causative agent of human tuberculosis (hTB), is a close evolutionary relative of 
Mycobacterium bovis, which causes bovine tuberculosis (bTB), one of the most damaging infectious diseases to 
livestock agriculture. Previous studies have shown that the pathogenesis of bTB disease is comparable to hTB 
disease, and that the bovine and human alveolar macrophage (bAM and hAM, respectively) transcriptomes are 
extensively reprogrammed in response to infection with these intracellular mycobacterial pathogens. In this 
study, a multi-omics integrative approach was applied with functional genomics and GWAS data sets across the 
two primary hosts (Bos taurus and Homo sapiens) and both pathogens (M. bovis and M. tuberculosis). Four different 
experimental infection groups were used: 1) bAM infected with M. bovis, 2) bAM infected with M. tuberculosis, 3) 
hAM infected with M. tuberculosis, and 4) human monocyte-derived macrophages (hMDM) infected with 
M. tuberculosis. RNA-seq data from these experiments 24 h post-infection (24 hpi) was analysed using three 
computational pipelines: 1) differentially expressed genes, 2) differential gene expression interaction networks, 
and 3) combined pathway analysis. The results were integrated with high-resolution bovine and human GWAS 
data sets to detect novel quantitative trait loci (QTLs) for resistance to mycobacterial infection and resilience to 
disease. This revealed common and unique response macrophage pathways for both pathogens and identified 32 
genes (12 bovine and 20 human) significantly enriched for SNPs associated with disease resistance, the majority 
of which encode key components of the NF-κB signalling pathway and that also drive formation of the 
granuloma.   

1. Introduction 

The phylum Actinobacteria represents one of the largest taxonomic 
groups among the 18 major lineages currently recognized within the 
domain Bacteria, including five subclasses and 14 suborders. It com
prises gram-positive bacteria with a high genomic DNA GC content, 
ranging from 51 % in some Corynebacterium to more than 70 % in 
Streptomyces and Frankia [1]. Two important disease-causing species of 
Actinobacteria, Mycobacterium tuberculosis and Mycobacterium bovis, are 
members of the M. tuberculosis complex (MTBC) and are characterised by 
99.95 % similarity at the nucleotide level [2]. Both species cause 

tuberculosis (TB) in mammals, with M. tuberculosis displaying a specific 
host preference for humans, with this MTBC strain not environmentally 
maintained by animal reservoirs [3,4]. 

M. tuberculosis is one of the most deadly human pathogens, and until 
the COVID-19 pandemic was the leading cause of death from a single 
infectious agent, ranking above HIV/AIDS with approximately 1.6 
million deaths in 2021 and is the thirteenth leading cause of death 
overall [5]. In 2021, there were also approximately 450,000 new cases 
that exhibited resistance to rifampicin (RR-TB), the most effective 
first-line drug, or that were multidrug-resistant (MDR-TB). Most deaths 
from hTB could be prevented with early diagnosis and appropriate 
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treatment. 
M. bovis, the causative agent of bovine tuberculosis (bTB), is 

considered to be one of the most damaging infectious diseases to the 
global agricultural industry, with the global costs of disease conserva
tively estimated to cost €3 billion annually, imposing huge economic 
losses on farmers of infected herds [6–8]. Mycobacterium bovis can cause 
zoonotic TB (zTB) with serious implications for human health [9–11]. 
Due to the highly infectious nature of the pathogen, early detection and 
removal of infected animals is the most effective control measure [12]. 
In contrast to M. tuberculosis, M. bovis has a wide host range and can 
infect a broad spectrum of domestic and wild mammals including 
taurine and zebu cattle (Bos taurus and B. indicus, respectively), sheep 
(Ovis aries), goats (Capra hircus), llamas and alpacas (Lama spp.), pigs 
and wild boar (Sus scrofa), European badgers (Meles meles), brushtail 
possums (Trichosurus vulpecula), various species of deer (Cervidae), Af
rican and Asian elephants (Loxodonta spp. and Elephas maximus), African 
buffalo (Syncerus caffer), and many Felidae species including African 
lions (Panthera leo), leopards (Panthera pardus), and cheetahs (Acinonyx 
jubatus) [13–15]. 

Considered together, M. tuberculosis and M. bovis represent enormous 
burdens on global health systems and animal agriculture worldwide. 
Previous studies have shown that the pathogenesis of bTB disease in 
cattle is comparable to hTB disease and many aspects of M. bovis 
infection are also characteristic of M. tuberculosis infection [16–20]. 
Consequently, M. bovis infection of cattle and bTB disease are now 
recognized as a valuable model for understanding hTB caused by 
M. tuberculosis [21–25]. Transmission of both MTBC strains is via 
inhalation of contaminated aerosol droplets and the primary site of 
infection is the lungs [26,27], where these pathogens encounter resident 
alveolar macrophages (AM), the host’s first line of defence, which nor
mally phagocytize and destroy airborne bacteria [28,29]. However, 
MTBC mycobacteria such as M. bovis and M. tuberculosis can persist and 
replicate within alveolar macrophages via a plethora of evolved evasion 
mechanisms that subvert and interfere with host immune responses 
[30–33]. Some of these mechanisms encompass the early secretory 
antigenic target-6 (ESAT-6) secretion system-1 (ESX-1), which facilitates 
escape from the macrophage phagosome into the cytosol where it rep
licates [34]. The phagosomes that form when macrophages digest an 
invading microorganism normally go through rapid fusion with lyso
somes; however, this is not the case with AM that phagocytize the 
pathogenic MTBC strains [35]. 

Previous studies, including those performed by our research group, 
have demonstrated that the bovine and human alveolar macrophage 
(bAM and hAM) transcriptomes are extensively reprogrammed in 
response to infection with M. bovis and M. tuberculosis [36–43]. These 
studies have also highlighted a complex system of gene expression 
regulation that drives host-pathogen interactions and innate immune 
response pathway execution, which are functionally associated with 
many macrophage processes that control or eliminate intracellular mi
crobes. What remains unclear, however, is the innate immune response 
genes and pathways that are species-specific or common to both bAM 
and hAM infected with M. bovis and M. tuberculosis, respectively. 

Even though M. bovis and M. tuberculosis share 99.95 % identity at 
the genome level, the innate immune responses to the pathogens can be 
characteristically different. Though the two pathogens encounter com
mon immune response pathways in their preferred host, there are 
certain genes that are activated or repressed in response to a specific 
MTBC pathogen. For example, a study by our group investigated the 
responses of bAM to M. bovis and M. tuberculosis at 2, 6, 24 and 48 hpi 
[39]. RNA-seq data from the infected bAM indicated that host genes 
were differentially expressed between the cells infected with each MTBC 
strain, suggesting that different immune response pathways may be 
employed by the bovine host in response to M. bovis and M. tuberculosis. 
In this regard, it is important to note that cattle experimentally infected 
with M. tuberculosis displayed minimal pathology, even though diag
nostic assays indicated a successful infection [44,45]. 

In the current study, we extend our macrophage infection approach 
to encompass comparative integrative analyses for both pathogens 
(M. bovis and M. tuberculosis) and their corresponding mammalian hosts 
(B. taurus and H. sapiens). To do this we used four different experimental 
infection groups, each with parallel non-infected control cells: 1) bAM 
infected with M bovis (bAM-MB); 2) bAM infected with M. tuberculosis 
(bAM-MT); 3) hAM infected with M. tuberculosis (hAM-MT); and 4) 
human monocyte derived macrophages (hMDM) infected with 
M. tuberculosis (hMDM-MT). Transcriptomics data from these experi
ments were analysed, compared, and interpreted using three separate 
computational pipelines: 1) differentially expressed (DE) genes (DEG)— 
the standard approach to catalogue quantitative changes in gene 
expression levels between experimental groups; 2) differential gene 
expression interaction networks (DEN), which uses validated molecular 
interactions extracted from the scientific literature and other sources in 
combination with DE gene expression values to detect and identify 
functional gene subnetworks (modules); and 3) combined pathway 
analysis (CPA), where DE genes are subject to pathway enrichment 
across six different biological pathway resources. The outputs from these 
analyses were then integrated with two separate high-resolution bovine 
and human GWAS data sets with the aim of uncovering novel QTLs and 
obtaining new insights into the genomic architecture of the TB infection 
response in cattle and humans. 

2. Materials and methods 

2.1. Ethics statement 

No animal or human procedures were performed for this computa
tional genomics study, which used published and publicly available 
RNA-seq transcriptomics data. 

2.2. General computational methods 

All data-intensive computational procedures were performed on a 
36-core/72-thread compute server (2 × Intel® Xeon® CPU E5- 2697 v4 
processors, 2.30 GHz with 18 cores each), with 512 GB of RAM, 96 TB 
SAS storage (12 × 8 TB at 7200 rpm), 480 GB SSD storage, and with 
Ubuntu Linux OS (version 18.04 LTS).The complete computational and 
bioinformatics workflow is available with additional information as a 
public GitHub repository (github.com/ThomasHall1688/Bovine_multi- 
omic_integration). The individual components of the experimental and 
computational workflows are described below and these methodologies 
and procedures used are modified from those detailed previously by us 
[41]. 

2.3. Bovine genomic data acquisition 

Genome-wide RNA-seq transcriptomics data we previously gener
ated from a 48-h bAM time course challenge experiment using the 
sequenced M. bovis AF2122/97 and M. tuberculosis H37Rv strains was 
used (European Nucleotide Archive (ENA) accession: PRJEB23469). The 
complete laboratory methods used to isolate, culture and infect bAM 
with M. bovis AF2122/9 and M. tuberculosis H37Rv and generate strand- 
specific RNA-seq libraries using RNA harvested from these cells are 
described in detail elsewhere [36,39,46]. Briefly, these RNA-seq data 
were generated using bAM obtained by lung lavage of ten unrelated 
age-matched 7–12-week-old male Holstein-Friesian calves. These bAM 
were infected in vitro with 1) M. bovis AF2122/97, 2) M. tuberculosis 
H37Rv, or 3) incubated with media only. Following total RNA extraction 
from the two MTBC strain infected groups and the control non-infected 
bAM, strand-specific RNA-seq libraries were prepared. These comprised 
M. bovis-, M. tuberculosis- and non-infected samples from each 
post-infection time point (2, 6, 24 and 48 hpi across 10 animals (with the 
exception of one animal that did not yield sufficient alveolar macro
phages for in vitro infection at 48 hpi). Raw sequence data for RNA-seq 
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analysis was generated as paired-end 2 × 90 nucleotide reads using an 
Illumina® HiSeq™ 2000 apparatus. For the present study, the RNA-seq 
libraries derived from the 24 hpi timepoint for the M. bovis-infected 
bAM, M. tuberculosis-infected bAM, and control non-infected bAM were 
selected for transcriptomics analysis and downstream comparative data 
mining. 

Bovine GWAS data sets for the present study were obtained from 
intra-breed imputed WGS-based GWAS analyses that used estimated 
breeding values (EBVs) derived from a bTB resistance phenotype, which 
were generated for 1502 Holstein-Friesian sires [47]. The bTB pheno
type, the WGS-based imputed SNP data, and the quantitative genetics 
methods are described in detail elsewhere [47]; however, the following 
provides a brief summary. The bTB resistance phenotype was defined for 
every animal present during each herd-level bTB breakdown when a bTB 
reactor or an abattoir case was identified. Cattle that yielded a positive 
single intradermal comparative tuberculin test (SICTT), post-mortem 
lymph node lesion, or laboratory culture result/s were coded as “1” 
(bTB = 1) and all other cattle present in the herd during the 
bTB-breakdown were coded as “0” (bTB = 0). After phenotype data 
edits, bTB resistance EBVs were generated for 781,270 cattle and these 
were used to produce individual sire EBVs for each of three breed groups 
(Charolais, Limousin and Holstein-Friesian). For the present study we 
used GWAS data from the Holstein-Friesian breed group, which was 
generated using EBVs for bTB resistance, and genotype data from 1502 
Holstein-Friesian male cattle. After SNP filtering using thresholds for 
minor allele frequency (MAF <0.002) and deviation from 
Hardy-Weinberg equilibrium (HWE; P < 1 × 10− 6), there were 15,017, 
692 autosomal SNPs for the Holstein-Friesian sire analysis. A single-SNP 
regression analysis was then performed using sire EBVs for bTB resis
tance and the nominal GWAS P values were used for downstream inte
grative genomics analyses. 

2.4. Human genomic data acquisition 

RNA-seq transcriptomics data from a 72-h hAM and hMDM time 
course challenge experiment using the sequenced M. tuberculosis H37Rv 
strain was used for the human transcriptomics component of this study 
(GEO accession: GSE114371). The complete laboratory methods used to 
isolate, culture, and infect hAM and hMDM with M. tuberculosis H37Rv 
and generate strand-specific AmpliSeq™ RNA-seq libraries using RNA 
harvested from these cells are described in detail elsewhere [40]. Briefly, 
these RNA-seq data were generated using samples obtained from healthy 
human donors that tested negative for the tuberculin skin test (TST), 
under an approved IRB protocol at the Ohio State University Wexner 
Medical Centre [40]. Human AM and PBMC (used for culturing hMDM) 
were obtained from different donors and macrophages (hAM and 
hMDM) were infected with M. tuberculosis H37Rv using a multiplicity of 
infection (MOI) of 2:1. Infected and control non-infected hAM and 
hMDM were harvested in Trizol reagent after 2, 24 and 72 hpi and RNA 
was extracted from each experimental group and Ion Torrent sequencing 
libraries were prepared according to the AmpliSeq™ Library prep kit 
protocol [48]. 

The human GWAS data set for resistance to infection by 
M. tuberculosis, which was used for the human integrative genomics 
work described in this study was obtained from the UK Biobank 
GeneATLAS (http://geneatlas.roslin.ed.ac.uk). Detailed information 
about this public atlas of genetic associations for 118 non-binary and 
660 binary traits catalogued in 452,264 UK Biobank participants of 
European ancestry has been published by Canela-Xandri et al. [49] and 
the UK Biobank deep phenotyping and genotyping project is described 
by Bycroft et al. [50]. The UK Biobank resource contains genotype data 
for 488,377 participants that was generated using custom high-density 
genome-wide SNP arrays containing more than 800,000 SNPs. These 
SNP data were then imputed up to more than 30 million genome-wide 
SNPs for the GeneATLAS GWAS resource [49]. The hTB GWAS data 
set used for the present study was generated from 2219 hTB cases and 

450,045 disease-free controls. Autosomal SNP filtering criteria consisted 
of the following: a SNP call rate threshold >0.98; HWE deviation 
threshold (P < 1 × 10− 50 on a subset of 344,057 unrelated White British 
individuals); MAF <0.001; and an imputation score >0.9 [49]. There 
were 9,113,113 SNPs remaining after these filtering steps. In common 
with the other traits, the binary hTB resistance trait GWAS data set was 
generated using a linear mixed model (LMM) and a genomic relationship 
matrix (GRM) using the DISSECT software tool [51]. Supplementary 
Fig. 1 shows a Q-Q plot obtained for the expected and observed SNP P 
values for the hTB resistance trait associations. 

2.5. Differential gene expression analysis of bovine and human RNA-seq 
data 

The RNA-seq data was aligned to the bovine genome ARS-UCD1.2 
[52] using the STAR aligner (version 2.7.1b) [53] with a 94 % 
average read mapping efficiency. Following this, differential gene 
expression analysis (experimental contrast: infected versus control) was 
performed using the DESeq2 package (version 1.24.0) [54] with a lon
gitudinal time series design that accounted for time (hours 
post-infection, hpi) and treatment (control and infected). Multiple 
testing correction was performed using the Benjamini-Hochberg false 
discovery rate (FDR) method [55]. Consequently, an individual gene 
was considered to be differentially expressed (DE) if it exhibited an 
FDR-adjusted P-value less than 0.05 (Padj. < 0.05) and an absolute log2 
fold-change greater than one (|log2FC| > 1). 

The human differential gene expression analysis (experimental 
contrast: infected versus control) is fully described by Papp and col
leagues [40]. Briefly, human AmpliSeq™ RNA-seq data was analysed 
using the Ion Torrent Mapping Alignment Program (TMAP) [56]. Dif
ferential expression analysis was performed with the R package edgeR 
[57]. For the purposes of the work described in this study, DE genes were 
selected based on FDR Padj. < 0.05 and |log2FC| > 1. 

2.6. Functional gene module identification using differential gene 
interaction networks 

The GeneCards® (www.genecards.org; version 4.12) gene compen
dium and knowledge database is a webtool that integrates multiple 
sources of biological information on all annotated and predicted human 
genes [58]. This database was used to identify a set of genes that are 
functionally associated with the host response to diseases caused by 
infection with mycobacteria. The search query used was tubercu
losis OR mycobacterium OR mycobacteria OR mycobacterial 
and genes were ranked by a GeneCards® statistic—the Relevance 
Score—based on the Elasticsearch algorithm [59], which determines the 
strength of the relationships between genes and keyword terms. Gene 
IDs were converted to human Ensembl gene IDs [60] and retained for 
downstream analysis using the InnateDB knowledgebase and analysis 
platform for systems level analysis of the innate immune response (www 
.innatedb.com; version 5.4) [61]. 

A gene interaction network (GIN) was generated with the gene list 
output from GeneCards® using InnateDB with default settings and this 
network was visualised using Cytoscape [62]. The jActivesModules 
Cytoscape plugin (version 3.12.1) [63] was then used to superimpose 
the four bovine and human RNA-seq DE genes data sets and detect—
through a greedy search algorithm—differentially active subnetworks 
(modules) of genes. This process generated four sets of locally coherent 
clusters that contain both DE genes and genes that are not DE but are 
members of the functional gene modules. These modules were identified 
using: the log2FC and Padj. values of each DE gene; the overall connec
tivity of those genes with their immediate module co-members; and the 
comparison of that connectivity with a background comprised of 
randomly drawn networks using the same genes, but independent of the 
base network. Gene module identification revealed a set of modules for 
each of the four sets of DE genes (bAM infected with M. bovis – bAM-MB, 
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bAM infected with M. tuberculosis – bAM-MT, hAM infected with 
M. tuberculosis – hAM-MT, and hMDM infected with M. tuberculosis – 
hMDM-MT). Genes embedded in active modules that were detected as 
statistically significant for the four experimental contrasts were com
bined and annotated for downstream GWAS integration. 

2.7. Combined pathway analyses 

For the combined pathway analysis (CPA), the four DE gene data sets 
were uploaded to the InnateDB pathway analysis webtool [61] and 
bovine genes were converted to their human orthologs. Selection of 
genes for CPA was performed using Padj. < 0.05 and |log2FC| > 1, with 
all remaining genes acting as a background distribution by which to 
compare. The InnateDB overrepresentation analysis (ORA) tool was 
used, which performs a meta pathway analysis across multiple data
bases. The four different DE gene sets were queried against the following 
six pathway resource databases: 1) Kyoto Encyclopaedia of Genes and 
Genomes (KEGG – www.genome.jp/kegg) [64]; 2) Integrating Network 
Objects with Hierarchies Pathway Database (archived INOH – dbarchive. 
biosciencedbc.jp/en/inoh/desc.html) [65]; 3) NCI-Nature Pathway 
Interaction Database (archived NCI-PID – www.ndexbio.org) [66]; 4) 
Reactome (REACTOME – reactome.org) [67]; 5) Biocarta Pathways 
(archived BIOCARTA – https://maayanlab.cloud/Harmonizome/datas 
et/Biocarta+Pathways) [68]; and 5) NetPath [69]. Following this, the 
top five pathways from each experimental contrast were identified using 
InnateDB pathway overrepresentation Padj. values (B–H FDR) and 
curated for downstream analysis. For each of the five top pathways for 
the four experimental contrasts, all the genes within the pathway, 
regardless of whether differentially expressed, were extracted, tabulated 
and annotated for downstream GWAS integration. 

2.8. Ingenuity® pathway analysis 

Ingenuity® Pathway Analysis—IPA® (version 1.1, summer 2020 
release; Qiagen, Redwood City, CA, USA) was used to perform a statis
tical enrichment analysis of DE gene sets for each experimental group 
[70]. This enabled identification of canonical pathways and functional 
processes of biological importance in these groups. Following best 
practice, the background gene set for pathway and functional process 
enrichment testing was the set of detectable genes for each experimental 
group [71]. To produce gene sets for the IPA Core Analysis within the 
recommended range for the number of input entities [70,72] and to 
include DE genes with small fold-change values, gene sets were filtered 
using only Padj. thresholds of 0.05 for the four experimental groups. In 
addition, the target species selected was Homo sapiens and the cell type 
used was Macrophage (including Microglia OR Bone marrow-derived 
macrophages OR Monocyte-derived macrophages OR Other macrophages 
OR Peritoneal macrophages OR Macrophages not otherwise specified) with 
the Experimentally Observed and High Predicted confidence settings. For 
each of the ten top pathways for the four experimental contrasts, all the 
genes within the pathway, regardless of whether differentially 
expressed, were extracted, tabulated, and annotated for downstream 
GWAS integration. 

2.9. Integration with bovine and human tuberculosis GWAS data sets 

To facilitate integration of GWAS data with gene sets generated from 
functional genomics data analyses, the gwinteR software package was 
used (github.com/ThomasHall1688/gwinteR) [41]. The gwinteR tool 
can be used to test the hypothesis that a specific set of genes is enriched 
for signal in a GWAS data set relative to the genomic background. For 
example, such a gene set could be an output from an active gene module 
network analysis of transcriptomics data from a tissue relevant to the 
GWAS phenotype. For the present study, gwinteR was used as follows: 1) 
a set of SNPs (the target SNP set) was collated across all genes in a 
specific gene set at increasing genomic intervals upstream and 

downstream from each gene inclusive of the coding sequence (e.g., ±0 
kb [intragenic only], ±10 kb, ±20 kb, ±30 kb … …±100 kb); 2) for 
each genomic interval, a null distribution of 2500 SNP sets, each of 
which contains the same number of total combined SNPs as the target 
SNP set, was generated by resampling with replacement from the search 
space of the total population of SNPs in the GWAS data set; 3) the 
nominal (uncorrected) GWAS P-values for the target SNP set and the null 
distribution SNP sets were converted to local FDR-adjusted P-values 
(Padj.) using the fdrtool R package (current version 1.2.15) [73]; 4) a 
permuted P-value (Pperm.) to the test the primary hypothesis for each 
observed genomic interval target SNP set was generated based on the 
proportion of permuted random SNP sets where the same or a larger 
number of SNPs exhibiting significant q-values (e.g. q < 0.05 or q <
0.10) are observed; 5) gwinteR generated data to plot Pperm. results by 
genomic interval class and obtain a graphical representation of the 
GWAS signal surrounding genes within the target gene set; 6) a summary 
output file of all SNPs in the observed target SNP set with genomic lo
cations and q-values was generated for subsequent investigation. 

For the integrative analyses of GWAS data sets with functional ge
nomics outputs from infected bAM (bAM-MB and bAM-MT) and infected 
hAM and hMDM (hAM-MT and hMDM-MT), four different subsets of 
genes for each experimental contrast were used: 1) basic DE gene sets 
that were filtered to ensure manageable computational loads using 
stringent expression threshold criteria of |log2FC| > 2 and Padj. < 0.01 
for the bAM-MB, bAM-MT and hMDM-MT contrasts and less stringent 
expression criteria of |log2FC| > 1 and Padj. < 0.05 for the hAM-MT 
contrast; 2) for the four contrasts individually (bAM-MB, bAM-MT, 
hAM-MT, and hMDM-MT), the genes embedded in active modules 
identified from the GIN using jActiveModules; 3) for the four contrasts 
individually, all genes, regardless of expression, that are members of the 
top five overrepresented pathways across the KEGG, INOH, NCI-PID, 
REACTOME, BIOCARTA and NETPATH databases; and 4) for the four 
contrasts individually, all genes, regardless of expression, that are 
members of the top 10 enriched pathways obtained using the IPA 
analyses. 

3. Results 

3.1. Differential gene expression of M. bovis- and M. tuberculosis-infected 
bovine alveolar macrophages 

Quality filtering of RNA-seq read pairs yielded a mean of 22,347,042 
± 2,433,115 reads per individual library (n = 29 libraries). A mean of 
19,290,873 ± 2,166,803 read pairs (86.31 %) were uniquely mapped to 
locations in the ARS-UCD1.2 bovine genome assembly. Detailed 
filtering, mapping, and read count statistics are provided in Supple
mentary Information File 1 (Worksheets 1 and 2) and multivariate 
PCA analysis of the individual animal sample expression data using 
DESeq2 revealed separation of the control non-infected AM versus the 
bAM-MB and the bAM-MT at the 24 hpi time point (Supplementary 
Fig. 2). 

Using default criteria for differential expression (Padj. < 0.05) and 
considering the bAM-MB and bAM-MT relative to the control non- 
infected AM, 3591 DE genes were detected at 24 hpi in the bAM-MB 
contrast (1879 with increased expression and 1712 with decreased 
expression); and 1816 DE genes were detected at 24 hpi in the bAM-MT 
contrast (1039 increased and 777 decreased). Fig. 1 shows volcano plots 
of DE genes for the bAM-MB and bAM-MT comparisons (see also Sup
plementary Information File 1 – Worksheets 3 and 4). 

To ensure manageable computational loads, the input lists of bAM- 
MB and bAM-MT DE gene sets for GWAS integration with the gwinteR 
tool (DEG-bAM-MB) and DEG-bAM-MT) were filtered with |log2FC| > 2, 
and Padj. < 0.01 and Padj. < 0.05 for the bAM-MB and bAM-MT contrasts, 
respectively. The less stringent Padj. threshold used for the DEG-bAM-MT 
input gene set was a consequence of losing one sample after QC filtering 
(n = 9). With these criteria, there were 378 and 284 genes for the DEG- 
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bAM-MB and DEG-bAM-MT input sets, respectively. The two DEG bAM 
gwinteR input gene sets are fully detailed in Supplementary Informa
tion File 1 (Worksheets 5 and 6). It is also important to note that 243 
genes overlapped between the DEG-bAM-MB and DEG-bAM-MT gene 
sets. 

3.2. Differential gene expression of M. tuberculosis-infected human 
alveolar macrophages and human monocyte-derived macrophages 

A full description of the methodology used to detect DE genes in 
M. tuberculosis-infected hAM and hMDM at 24 hpi is available in the 
source publication [40]. Briefly, a mean of 8,557,929 ± 2,22,249 read 

Fig. 1. Volcano plots showing differentially expressed genes for the two bAM experimental contrasts at 24 hpi. A. Bovine alveolar macrophages (bAM) infected with 
M. bovis versus control non-infected bAM. B. bAM infected with M. bovis versus control non-infected bAM. All genes with Padj. < 0.05 and |log2FC| > 1 are shown in 
red, with the top ten genes by Padj. value labelled for each group. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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pairs (93.95 %) from 12 libraries (3 hAM control/3 hAM infected, 3 
hMDM control/3 hMDM infected) were uniquely mapped to locations in 
the GRCh38 human genome assembly. Detailed mapping statistics and 
read count information on the DE genes are provided in Supplementary 
Information File 2 (Worksheets 1 and 2). 

Using default criteria for differential expression (Padj. < 0.05) and 
considering the M. tuberculosis-infected hAM (hAM-MT) and hMDM 

(hMDM-MT) relative to the control non-infected hAM and hMDM, 899 
DE genes were detected at 24 hpi for the hAM-MT contrast (567 
increased and 332 decreased) and 1545 DE genes were detected at 24 
hpi for the hMDM-MT contrast (796 increased and 749 decreased). Fig. 2 
shows volcano plots of DE genes for the hAM-MT and hMDM-MT com
parisons (see also Supplementary Information File 2 – Worksheets 3 
and 4). 

Fig. 2. Volcano plots showing differentially expressed genes for the hAM and hMDM experimental contrasts at 24 hpi. A. Human alveolar macrophages (hAM) 
infected with M. tuberculosis versus control non-infected hAM. B. Human monocyte-derived macrophages (hMDM) infected with M. tuberculosis versus control non- 
infected hMDM. All genes with Padj. < 0.05 and |log2FC| > 1 are shown in red, with the top ten genes by Padj. value labelled for each group. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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As with the bovine data, the input lists of hAM-MT and hMDM-MT 
DE gene sets that were used for GWAS integration with the gwinteR 
tool (DEG-hAM-MT) and DEG-hMDM-MT) were filtered with |log2FC| >
1, and Padj. < 0.05 for the hAM-MT contrast and |log2FC| > 2, and Padj. <

0.05 for the hMDM-MT contrast. The less stringent |log2FC| cut-off used 
for the DEG-hAM-MT input gene set was a consequence of relatively low 
expression fold change values observed for the hAM-MT infection 
experiment, which was discussed by Papp and colleagues [40]. With 
these criteria, there were 277 and 415 genes for the DEG-hAM-MT and 
DEG-hMDM-MT input sets, respectively. The DEG-hAM-MB and 
DEG-hMDM-MT gwinteR input gene sets are fully detailed in Supple
mentary Information File 2 (Worksheets 5 and 6). It is also important 
to note that 98 genes overlapped between the DEG-hAM-MT and 
DEG-hMDM-MT gene sets. 

3.3. Common and group-specific differentially expressed genes across the 
four experimental contrasts 

Table 1 shows a breakdown of DE genes across the four infection 
groups for a range of statistical thresholds and fold-change cut-offs, 
including the default criteria (FDR Padj. < 0.05). The 118 up- and 
downregulated genes common to all experimental groups at Padj. < 0.05 
are shown in Fig. 3A and detailed in Supplementary Information File 
2 (Worksheet 7). In addition, Supplementary Figs. 3–6 show various 
between-group correlation plots for the 118 DE genes common to all 
experimental groups. Examples of shared upregulated genes include: 
IL6, which encodes a pro-inflammatory cytokine; IL1B, which also en
codes an inflammatory proprotein produced by activated macrophages, 
CCL20, which encodes a chemokine that attracts dendritic cells; and 
INHBA, which encodes a member of the transforming growth factor beta 
superfamily. Examples of shared downregulated genes include: PIK3IP1, 
which encodes a negative regulator of PIK3 activity, CABLES1, which 
encodes a regulator of p53/p73-induced apoptotic cell death; and 
SORL1, which encodes a transmembrane signalling receptor that is 
involved in control of phagocytosed mycobacteria [74]. The overlap of 
the DE genes across the four experimental contrasts is illustrated in 
Fig. 3B. 

3.4. Detection of active gene subnetworks in bovine and human infected 
macrophages using a tuberculosis and mycobacterial infection gene 
interaction network 

The GeneCards® search query generated a total of 2516 gene hits 
using the terms tuberculosis OR mycobacterium OR mycobac
teria OR mycobacterial (Supplementary Information Files 3 and 
4 – Worksheet 1). To provide a computationally manageable number of 
genes for an InnateDB input data set, a GeneCards® relevance score 
(GCRS) threshold >2.5 was used. This produced an input list of 260 
functionally prioritised genes for generation of an InnateDB gene 

interaction network (GIN) and the top ten genes from this list ranked by 
GCRS were: interferon gamma receptor 1 (IFNGR1), toll like receptor 2 
(TLR2), interleukin 12 receptor subunit beta 1 (IL12RB1), interleukin 
12B (IL12B), solute carrier family 11 member 1 (SLC11A1), signal 
transducer and activator of transcription 1 (STAT1), interferon gamma 
receptor 2 (IFNGR2), cytochrome b-245 beta chain (CYBB), tumour 
necrosis factor (TNF), and interferon gamma (IFNG). 

The large GIN produced by InnateDB starting with the input list of 
260 functionally prioritised genes was visualised using Cytoscape and 
consisted of 6951 nodes (individual genes) and 21,653 edges (gene in
teractions) (Fig. 4). Following visualisation of the large GIN in Cyto
scape, the jActivesModules Cytoscape plugin was used to detect 
statistically significant differentially activated subnetworks (modules) 
within the large GIN. This consisted of superimposing the DE genes from 
all for experimental groups onto the larger GIN, creating differentially 
expressed gene interaction networks for each of the four experimental 
contrasts. Supplementary Information File 3 (Worksheets 2) provides 
information for all gene interactions and superimposed bovine DE genes 
represented in Fig. 4A and B and Supplementary Information File 4 
(Worksheets 2) provides information for all gene interactions and 
superimposed human DE genes represented in Fig. 4C and D. To illus
trate active module subnetwork capture, the large GINs in Fig. 4A–D are 
accompanied by an example subnetwork of genes and gene interactions. 
The top five subnetworks from each experimental group were retained 
for downstream analyses. 

Module 1 from the bAM-MB group (M1-DEN-bAM-MB) contained 
266 genes and there were 237 genes in M2-DEN-bAM-MB, 269 genes in 
M3-DEN-bAM-MB, 204 genes in M4-DEN-bAM-MB, and 235 genes in 
M5-DEN-bAM-MB (Supplementary Information File 3 – Worksheet 3). 
Module 1 from the bAM-MT group (M1-DEN-bAM-MT) contained 148 
genes and there were 158 genes in M2-DEN-bAM-MT, 160 genes in M3- 
DEN-bAM-MT, 137 genes in M4-DEN-bAM-MT, and 52 genes in M5- 
DEN-bAM-MT (Supplementary Information File 3 – Worksheet 4). 
Module 1 from the hAM-MT group (M1-DEN-hAM-MT) contained 140 
genes and there were 155 genes in M2-DEN-hAM-MT, 65 genes in M3- 
DEN-hAM-MT, 168 genes in M4-DEN-hAM-MT, and 180 genes in M5- 
DEN-hAM-MT (Supplementary Information File 4 – Worksheet 3). 
Module 1 from the hMDM-MT group (M1-DEN-hMDM-MT) contained 
139 genes and there were 137 genes in M2-DEN-hMDM-MT, 149 genes 
in M3-DEN-hMDM-MT, 93 genes in M4-DEN-hMDM-MT, and 182 genes 
in M5-DEN-hMDM-MT (Supplementary Information File 4 – Work
sheet 4). 

After concatenation of each set of five modules and removal of du
plicates, the input gene set derived from the bAM-MB group (DEN-bAM- 
MB) contained 398 genes and the DEN-bAM-MT input gene set con
tained 259 genes (Supplementary Information File 3 – Worksheets 5 
and 6). The DEN-hAM-MT input gene set contained 262 genes and the 
DEN-hMDM-MT input gene set contained 239 genes (Supplementary 
Information File 4 – Worksheets 5 and 6). 

3.5. Combined open-source pathway analysis of differentially expressed 
genes 

The DE genes from each of the four experimental contrasts was 
analysed individually for enriched pathways across the KEGG, INOH, 
NCI-PID, REACTOME, BIOCARTA and NETPATH pathway repositories 
using the InnateDB pathway ORA tool. Pathways with a B–H FDR Padj. <

0.05 were considered enriched. Analysis of the DE genes generated from 
the bAM-MB experimental contrast identified 46 upregulated pathways 
and one downregulated pathway. After filtering by the Padj. values, the 
top five enriched pathways were Cytokine-cytokine receptor interaction 
(KEGG), GPCR signalling (INOH), Jak-STAT signalling pathway (KEGG), 
RIG-I-like receptor signalling pathway (KEGG), and JAK STAT regulation 
(INOH), which were all upregulated (see Supplementary Information 
File 5 – Worksheet 1). Analysis of the DE genes generated from the bAM- 
MT experimental contrast identified 21 upregulated pathways and no 

Table 1 
Differentially expressed genes detected in M. bovis-infected bovine AM (bAM- 
MB), M. tuberculosis-infected bovine AM (bAM-MT), M. tuberculosis-infected 
human AM (hAM-MT), M. tuberculosis-infected human MDM (hMDM-MT) rele
vant to controls.  

Post- 
infection 
time point 

Padj. < 0.05; | 
log2FC| >
0 (increased/ 
decreased) 

Padj. < 0.05; | 
log2FC| > 1 
(increased/ 
decreased) 

Padj. < 0.01; | 
log2FC| >
0 (increased/ 
decreased) 

Padj. < 0.01; | 
log2FC| > 1 
(increased/ 
decreased) 

bAM-MB 3620 (1898/ 
1722) 

1345 (764/ 
581) 

2059 (1168/ 
891) 

933 (577/ 
356) 

bAM-MT 1819 (1040/ 
779) 

734 (468/ 
266) 

805 (527/278) 422 (297/ 
125) 

hAM-MT 899 (567/332) 277 (211/66) 589 (405/184) 240 (194/46) 
hMDM- 

MT 
1545 (796/ 
749) 

1286 (665/ 
621) 

1063 (597/ 
466) 

1042 (584/ 
458)  
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Fig. 3. Comparison of shared differentially expressed (DE) genes across the four experimental contrasts. A. Plot of 118 common shared up- and downregulated genes 
across the four experimental contrasts. The top 10 upregulated and the top 5 downregulated genes are shown for each group (by log2FC). B. UpSetR plot showing all 
overlapping DE genes (Padj. < 0.05) colour-coded by experimental contrast. The UpSetR plot was generated using the UpSetR package [125]. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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downregulated pathways. The top five enriched pathways were Cyto
kine-cytokine receptor interaction (KEGG), GPCR signalling (INOH), Jak- 
STAT signalling pathway (KEGG), HIF-1-alpha transcription factor network 
(NCI-PID), and IL23-mediated signalling events (NCI-PID) (see Supple
mentary Information File 5 – Worksheet 2). 

Analysis of the DE genes generated from the hAM-MT experimental 
contrast identified 31 upregulated pathways and no downregulated 
pathways. The top five enriched pathways were Cytokine-cytokine re
ceptor interaction (KEGG), Chemokine receptors bind chemokines (REAC
TOME), Peptide ligand-binding receptors (REACTOME), Class A/1 
Rhodopsin-like receptors (REACTOME), and GPCR ligand binding (REAC
TOME) (see Supplementary Information File 6 – Worksheet 1). 
Analysis of the DE genes generated from the hMDM-MT experimental 
contrast identified 111 upregulated pathways and three downregulated 
pathways. All three downregulated pathways were also significantly 
upregulated; however, they contained genes that were also significantly 
downregulated. All pathways with downregulated genes were involved 
in GPCR signalling. The top five enriched pathways were Cytokine- 
cytokine receptor interaction (KEGG), Cytokine Signalling in Immune system 
(REACTOME), Interferon gamma signalling (REACTOME), Interferon Sig
nalling (REACTOME), and Class A/1 (Rhodopsin-like receptors) (REAC
TOME) (see Supplementary Information File 6 – Worksheet 2). 
Supplementary Fig. 7 shows the top 16 overrepresented biological 
pathways for each of the four experimental contrasts. 

The top overrepresented pathway common to all four experimental 
contrasts was Cytokine-cytokine receptor interaction (KEGG) (see Figs. 5 
and 6). This pathway was also the most significantly overrepresented 
pathway for all four experimental contrasts, though the DE genes 
enriched in this pathway differ between all four groups (Figs. 5 and 6). 
The genes from each of the top five pathways identified from the CPA for 
each experimental contrast, regardless of if the genes were DE or not, 
were combined, filtered for duplicates, and catalogued for GWAS inte
gration. The CPA input gene set derived from the bAM-MB group (CPA- 

bAM-MB) contained 557 genes and the CPA-bAM-MT input gene set 
contained 473 genes (Supplementary Information File 5 – Worksheets 
3 and 4). The CPA-hAM-MT input gene set contained 640 genes and the 
CPA-hMDM-MT input gene set contained 737 genes (Supplementary 
Information File 6 – Worksheets 3 and 4). 

3.6. Ingenuity® pathway analysis (IPA) of differentially expressed genes 

The DE genes from each experimental contrast were analysed for 
enriched pathways using IPA and the IPA Knowledge Base. This resulted 
in 1961 input genes (1073 upregulated and 888 downregulated) from a 
background detectable set of 7103 from bAM infected with M. bovis 
(bAM-MB), 978 input genes (571 upregulated and 407 downregulated) 
from a background detectable set of 6970 genes from bAM-MT, 581 
input genes (354 upregulated and 227 downregulated) from a back
ground detectable set of 6627 genes from hAM-MT and 941 input genes 
(509 upregulated and 432 downregulated) from a background detect
able set of 6825 genes from hMDM-MT. 

Using the B–H method for multiple test correction in IPA (FDR Padj. 
< 0.05), there were 68 statistically significant enriched IPA canonical 
pathways from the bAM-MB group, 201 from the bAM-MT group, 61 
from the hAM-MT group, and 118 from the hMDM-MT group. The genes 
from each of the top 10 pathways for each of the four experimental 
groups (Supplementary Information File 7 and 8 – Worksheets 1 and 
2), regardless of if the genes were DE or not, for each group from the IPA 
analysis were combined, duplicates removed, and catalogued for data 
integration using the bovine GWAS and human GWAS data sets (Sup
plementary Information File 7 and 8 – Worksheets 3 and 4). The IPA 
gene set derived from bAM infected with M. bovis (IPA-bAM-MB) con
tained 386 genes and the IPA-bAM-MT input set contained 276 genes 
(Supplementary Information File 7 – Worksheets 3 and 4). The IPA 
gene set derived from hAM infected with M. tuberculosis (IPA-hAM-MT) 
contained 207 genes and the IPA-hMDM-MT input set contained 274 

Fig. 4. Gene interaction network analysis and functional module identification using jActiveModules and differentially expressed genes across four experimental 
contrasts at 24 hpi. A. bovine alveolar macrophages (bAM) infected with M. bovis. B. bAM infected with M. tuberculosis. C. human alveolar macrophages (hAM) 
infected with M. tuberculosis. D. human monocyte-derived macrophages (hMDM) infected with M. tuberculosis. Example active modules are shown for each contrast. 
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Fig. 5. Protein network schematics and cellular locations of the top overrepresented common biological pathway - Cytokine-cytokine receptor signalling (bovine). A. 
M. bovis-infected bAM. B. M. tuberculosis-infected bAM. Red and blue nodes indicate upregulation and downregulation, respectively. Grey nodes indicate no 
detectable expression change. The size of the nodes corresponds to the degree of connectivity (number of interactions). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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Fig. 6. Protein network schematics and cellular locations of the top overrepresented common biological pathway – Cytokine-cytokine receptor signalling (human). A. 
M. tuberculosis-infected hAM. B. M. tuberculosis-infected hMDM. Red and blue nodes indicate upregulation and downregulation, respectively. Grey nodes indicate no 
detectable expression change. The size of the nodes corresponds to the degree of connectivity (number of interactions). (For interpretation of the references to colour 
in this figure legend, the reader is referred to the Web version of this article.) 
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gene (Supplementary Information File 8 – Worksheets 3 and 4). Fig. 7 
summarises the top 10 IPA enriched pathways for each of the four 
experimental contrasts. 

Some of the top 10 enriched pathways (Fig. 7) were common to two 
or more experimental groups (see Supplementary Information File 8 – 
Worksheet 5) and include: Role of Pattern Recognition Receptors in 
Recognition of Bacteria and Viruses; Activation of IRF by Cytosolic Pattern 
Recognition Receptors; TNFR2 Signalling; Dendritic Cell Maturation; Role of 
Macrophages, Fibroblasts and Endothelial Cells in Rheumatoid Arthritis; and 
Hepatic Cholestasis. 

3.7. Integration of functional genomics outputs with GWAS data sets and 
identification of additional species-specific SNP-trait associations 

The sixteen input gene sets generated from the four separate analyses 
of DE genes generated from the bAM-MB, bAM-MT, hAM-TB, and 
hMDM-TB infection challenge experiments are summarised in Table 2 
and further detailed in Supplementary Information Files 1–8. In 
addition to these sixteen putative functionally relevant gene sets, 100 
sets of 250 genes randomly sampled from the bovine genome (BOV- 
RAN), and 100 sets of 250 genes randomly sampled from the human 
genome (HUM-RAN), were used for statistical context and comparison 
(data not shown). The results from the integrative analyses using the 

Fig. 7. Top 10 enriched biological pathways for each experimental group from the Ingenuity® Pathway Analysis (IPA). Stacked horizontal bar charts showing the top 
twenty canonical pathways from IPA in order of descending -log10 Padj.: A. bAM-MB, B. bAM-MT, C. hAM-MT, and D. hMDM-MT The numbers to the right of the bars 
show the number of genes in the pathway and the colours of the bars indicate the percentages of these genes that are downregulated, upregulated, show no change in 
expression, or have no overlap with the data set. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 2 
The 16 different input bovine and human gene sets used for GWAS data integration.  

Infection group Differentially expressed 
genes (DEG) 

Differential expression 
network (DEN) 

Combined Pathway Analysis 
(CPA) 

Ingenuity Pathway Analysis 
(IPA) 

Input gene set 
code 

No. of 
genes 

Input gene set 
code 

No. of 
genes 

Input gene set 
code 

No. of 
genes 

Input gene set 
code 

No. of 
genes 

Bovine alveolar macrophages infected with 
M. bovis 

DEG-bAM-MB 378 DEN-bAM-MB 398 CPA-bAM-MB 557 IPA-bAM-MB 386 

Bovine alveolar macrophages infected with 
M. tuberculosis 

DEG-bAM-MT 390 DEN-bAM-MT 259 CPA-bAM-MT 473 IPA-bAM-MT 276 

Human alveolar macrophages infected with 
M. tuberculosis 

DEG-hAM-MT 277 DEN-hAM-MT 262 CPA-hAM-MT 473 IPA-hAM-MT 207 

Human monocyte-derived macrophages infected 
with M. tuberculosis 

DEG-hMDM- 
MT 

415 DEN-hMDM- 
MT 

239 CPA-hMDM- 
MT 

737 IPA-hMDM- 
MT 

274  
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gwinteR tool with the DEG-bAM-MB, DEG-bAM-MT, DEN-bAM-MB, 
DEN-bAM-MT, CPA-bAM-MB, CPA-bAM-MT, IPA-bAM-MB, IPA-bAM- 
MT, and BOV-RAN input gene sets are summarised graphically in Fig. 8 
and fully detailed in Supplementary Information File 9 (Worksheets 
1–4). Likewise, the results from the integrative analyses using the 
equivalent human data sets are summarised graphically in Fig. 9 and 
fully detailed in Supplementary Information File 10 (Worksheets 
1–4). Inspection of Fig. 8B and C shows that, in terms of SNP enrichment 
(Pperm. < 0.05), the integrative analyses using gwinteR were most 
effective with the DEG-bAM-MB, DEG-bAM-MT, and CPA-bAM-MT data 
sets. A possible explanation for the inferior performance of the other 
data sets is that these methods rely heavily on gene orthology, i.e., all the 
bovine DE genes used to generate the DEN, CPA and IPA gene sets were 
first converted to human gene IDs. More generally, it is also important to 
note that the literature-supported relationships among molecules, dis
eases and biological processes in the IPA Knowledge Base are based on 
human, mouse (Mus musculus), and rat (Rattus norvegicus) data, which 
may place caveats on the use of IPA with other mammals [70]. In this 
regard, methods that do not rely on ortholog conversion, such as gene 
co-expression networks, seem to perform better. Fig. 9B and C demon
strate that the human data integration performed better with multiple 
techniques; statistically significant SNP enrichment was achieved with 
the DEG-hAM-MT, DEG-hMDM-MT, DEN-hAM-MT, and CPA-hAM-MT 
data sets. Fig. 10 provides information on the 32 genes that were 
proximal to SNPs significantly associated with bTB and hTB disease 
resilience, which were identified through integration of functional ge
nomics outputs with the bovine and human GWAS data sets. 

4. Discussion 

4.1. Bovine and human macrophages share common immune response 
genes and pathways to mycobacterial infection 

The work described in this study has generated new scientific in
formation regarding host-pathogen interaction during the initial stages 
of infection for M. bovis and M. tuberculosis, which are the archetypal 
mycobacterial pathogens of cattle and humans, respectively. Using four 
separate multi-omics analysis workflows, we demonstrate that there are 
striking similarities in the patterns of differential expression and the 
cellular pathways that are perturbed by these infections in bovine and 
human macrophages. In terms of understanding host-pathogen inter
action in an evolutionary context, it is now considered likely that the 
MTBC complex emerged relatively recently during the Neolithic period 
and probably within the last 5000 years [75–77]. Therefore, the recent 
shared evolutionary histories of M. bovis and M. tuberculosis may account 
for congruent host responses from the pathogen perspective. However, 
from the perspective of the mammalian host species, what is particularly 
remarkable—given the similarities in macrophage responses to 
infection—is that artiodactyls and primates last shared a common 
ancestor more than 80 million years ago [78]. 

As shown in Fig. 3 and Supplementary Information File 2 
(Worksheet 7), there were 118 DE genes in common across the four 
different experimental infection groups (bAM-MB, bAM-MT, hAM-MT, 
and hMDM-MT) 24 hpi. All these genes were significantly DE, and the 
log2 fold change values were highly correlated for each pairwise com
parison, with the highest correlation coefficient for these 118 genes 

Fig. 8. Integration of bAM functional genomics outputs and GWAS data for M. bovis infection resistance in Holstein-Friesian cattle. A. Circular Manhattan 
plots showing GWAS results pre-integration with blue and red highlighted data points indicating binned SNP clusters with FDR Padj. < 0.10 and < 0.05, respectively. 
B./C. Line plots of permuted P values (-log10Pperm.) across different genomic intervals for SNPs from eight different input gene sets and random genes (B. bAM-MB 
and C. bAM-MT). D./E. Circular Manhattan plots showing GWAS results post-integration with blue and red data highlighted points indicating binned SNP clusters 
with FDR Padj. < 0.10 and < 0.05, respectively, and SNPs enriched by gwinteR coloured green (D. bAM-MB and E. bAM-MT). (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 

T.J. Hall et al.                                                                                                                                                                                                                                   



Tuberculosis 147 (2024) 102453

e14

Fig. 9. Integration of hAM and hMDM functional genomics outputs and GWAS data for M. tuberculosis infection resistance in humans. A. Circular Man
hattan plots showing GWAS results pre-integration with blue and red highlighted data points indicating binned SNP clusters with FDR Padj. < 0.10 and < 0.05, 
respectively. B./C. Line plots of permuted P values (-log10Pperm.) across different genomic intervals for SNPs from eight different input gene sets and random genes (B. 
hAM-MT and C. hMDM-MT). D./E. Circular Manhattan plots showing GWAS results post-integration with blue and red data highlighted points indicating binned SNP 
clusters with FDR Padj. < 0.10 and < 0.05, respectively, and SNPs enriched by gwinteR coloured green (D. hAM-MT and E. hMDM-MT). (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 10. Histograms of statistically significant SNP numbers and proximal genes enriched through integration of bovine and human functional genomics outputs with 
bTB and hTB GWAS data sets. A. bAM infected with M. bovis (bAM-MB). B. bAM infected with M. tuberculosis (bAM-MT). C. hAM infected with M. tuberculosis (hAM- 
MT). D. hMDM infected with M. tuberculosis (hMDM-MT). The colour of each bar indicates whether the gene was upregulated (red), downregulated (blue), or whether 
there was no significant differential expression for genes identified through the subnetwork (module) or pathway analyses. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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observed between the bAM-MB and bAM-MT contrasts (r = 0.9894) 
(Supplementary Fig. 3). The correlation of expression differences for 
these genes between the hAM-MT and hMDM-MT infection groups was 
lower (r = 0.8088) (Supplementary Fig. 4), reflecting cell type differ
ences in the transcriptomes of these human macrophages infected with 
M. tuberculosis. The hAM-MT/bAM-MB and hAM-MT/bAM-MT infection 
group comparisons for these 118 shared DE genes produced correlation 
coefficients of r = 0.7122 and r = 0.7170, respectively (see Supple
mentary Figs. 5 and 6); the interspecific comparison with the same 
MTBC pathogen (M. tuberculosis) being marginally more correlated. 

Several groups of related genes were consistently upregulated for all 
four experimental infection contrasts, suggesting a core MTBC infection 
response gene repertoire intrinsic to macrophages from both species of 
mammal. Several of these genes encode different types of cytokines 
including interleukins (IL1A, IL1B, IL23, IL6, and IL7R); chemokines 
(CCL2, CCL3, CCL4, CCL8, CCL20, CXCL2, CXCL3, CXCL5 and CXCL11); 
and members of the TNF family, such as TNF, CD40, LTA and TNFAIP6. 
In this regard, many of these genes were previously identified by our 
group as corresponding to a core innate immune response for bovine AM 
infected with both M. bovis and M. tuberculosis across a 48-h post- 
infection time course [39]. Interestingly, the group of cytokines that 
did exhibit a marked species-specific pattern of gene expression were 
interferons. Many interferon-induced genes were differentially 
expressed in each experimental infection contrast group (bAM-MB: 18, 
bAM-MT: 6, hAM-MT: 12, and hMDM-MT: 14); however, only IFIT2 was 
DE across all four groups, suggesting that for MTBC infections of AM or 
MDM, interferon-induced proteins tend to function in a strain- or host 
species-specific fashion, as opposed to interleukins and chemokines, 
which were consistently DE across the experimental groups regardless of 
macrophage cell type, strain or host species. 

Other genes that were DE across the four experimental contrasts 
included: STAT1, which was consistently upregulated and is a key 
modulator of the immune response to mycobacterial infection and a 
critical transcription factor in the JAK-STAT and interferon signalling 
pathway [79]; PIK3IP1, which was consistently downregulated and is a 
key negative regulator of the PIK3-AKT signalling pathway [42,80]; and 
IDO1, which was consistently upregulated and is involved with limita
tion and accumulation of tryptophan in immune cells, which can induce 
apoptosis, limit growth of intracellular pathogens, and control immu
nopathology resulting from unchecked immune responses [81]. Recent 
studies have indicated that the IDO1 protein may facilitate bacterial 
survival in macrophages infected with M. tuberculosis, and that down
regulation of IDO1 may lead to enhanced control of infection [82,83]. It 
is therefore noteworthy in the present study that IDO1 is uniformly 
upregulated 24 hpi across all experimental groups (bAM-MB, linear fold 
change of +13.3; bAM-MT, 12.3-fold; hAM-MT, +36.1-fold; and 
hMDM-MT, +3765.6-fold) (see Supplementary File 2 – Worksheet 7). 
Finally, SLAMF1, which was consistently upregulated and induces 
expression of IL12 and TNF in the presence of LPS [84], and regulates 
phagosome maturation and recruitment of the PI3K complex 2; for 
example, with Escherichia coli infection of macrophages this occurs 
through recognition of OmpC and OmpF on the bacterial cell surface 
[85,86]. Our group has also recently shown that the activity of SLAMF1 
is regulated at the epigenetic level, with H3K4me3 deposition at the 
transcriptional start site of SLAMF1 modulating its expression in bovine 
AM infected with M. bovis [42]. 

In addition to common response genes, all four experimental infec
tion contrasts had the same top response pathway, Cytokine-cytokine 
receptor interaction (Figs. 5 and 6). While the DE genes in each pathway 
varied among the four groups, this pathway was statistically highly 
enriched across all the groups (Supplementary Fig. 7), which again 
highlights the evolutionary conservation and functional importance of 
cytokine signalling during MTBC infections of mammalian 
macrophages. 

As part of the differential expression network analysis (DEN), a large 
gene interaction network (GIN) was used with log2 fold-change and FDR 

Padj. values as the key parameters to identify and extract smaller func
tional modules/subnetworks (see Fig. 4 and Supplementary Informa
tion Files 3 and 4). Five functional modules were extracted from the 
large GIN for each of the four experimental infection contrasts. Each of 
these subnetworks exhibits a scale-free topology [87,88]; most gene 
nodes within the network interact with one other gene (low degree), 
while a small subset interacts with substantially more (high degree). 
These nodes tend to be direct regulators of other genes such as tran
scription factors, or subunits of important proteins. Comparison of genes 
with high degree across all 20 modules (Supplementary Information 
File 4 – Worksheet 7), demonstrated that all four groups share genes of 
high degree, suggesting that the key regulators of gene modules that 
respond to intracellular mycobacterial infection are common across the 
two species and macrophage cell type and MTBC strain. Genes present in 
at least one functional module from all experimental infection contrasts 
included inflammation-related transcription factors such as CEBPB, 
EGR1, IRF1, NFKB1, NFKBIA, STAT1, JAK2, UBC, and TNF. In this re
gard, using a differential network approach to analyse microarray gene 
expression data from bovine MDM challenged with M. bovis and an 
attenuated M. bovis BCG vaccine strain, our group previously identified 
NFKB1 and EGR1 as key hub and bottleneck gene nodes, respectively 
[89]. 

Interestingly, although the IRF1 gene was present in all experimental 
infection contrasts, and IFNG, IFNG1, IFNG2, IFNG3 and IFNG4 were 
present as high degree genes in some contrasts, only IFNG was present in 
more than one group and no interferon gene was present in the func
tional modules identified for the bAM-MT infection contrast. This 
observation indicates that interferon genes in these experimental con
trasts exhibit specific functions depending on cell type, species and 
MTBC strain. There was also one other gene that did not appear in 
subnetworks identified for the bAM-MB infection contrast, but that was 
present in the remaining three M. tuberculosis-challenged groups (bAM- 
MT, hAM-MT, and hMDM-MT). This was the vitamin D receptor gene 
(VDR), which mediates the immunological function of vitamin D3, an 
activator of macrophages [27,90]. Vitamin D deficiency has been 
implicated in susceptibility to both bTB and hTB [91,92]; therefore, it is 
somewhat surprising that VDR was not a gene node in any of the mod
ules from the bAM-MB infection contrast. Taking into consideration the 
inter- and intra-species robustness of the functional modules, further 
research is needed to improve identification and functional annotation 
of gene response modules extracted from knowledge-based gene inter
action networks. 

4.2. Genes enriched for bTB and hTB GWAS SNPs in both species play 
central roles in NF-κB signalling and the formation of the granuloma 

After all of the input gene sets were integrated with the bTB and hTB 
GWAS data sets using gwinteR, a total of 32 unique genes (12 bovine and 
20 human genes; see Fig. 10) exhibited intragenic SNPs or SNPs within 
100 kb up- and downstream that were enriched for associations with 
infection susceptibility/resistance. There was intraspecies overlap in 
enriched genes, such as bovine IL17A and human CXCL13, but there was 
no interspecies overlap. However, it is important to note that there was 
an enrichment observed for genes involved with initiation, formation, 
and regulation of the granuloma in both species. 

Granulomas are densely compact, organized aggregates of immune 
cells consisting of epithelioid cells, blood-derived infected and unin
fected macrophages, foamy macrophages, and multinucleated giant 
cells [93]. The enriched bovine SNPs lay in proximity to six genes related 
to granuloma biology. These are CSF3, HPSE, IER3, IL17A, IL17F and 
VEGFA. The HPSE protein (heparanase) has a role in inflammation and 
cell adhesion during granuloma formation and is also expressed in pe
ripheral granulomas [94,95]. Expression of IER3 has been observed in 
chronic lung granulomas [96], and it may act as an inhibitor or 
contributor to their formation. VEGFA expression in macrophages reg
ulates granuloma formation in the non-angiogenic pathway during TB 
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disease and recruits immune cells to the granuloma [97]. 
The CSF3 gene (aka GCSF) encodes a protein with many immuno

logical roles, such as survival, proliferation, and polarization of mac
rophages [98,99]; it has also been detected in multiple macrophage 
infection studies using pathogenic MTBC strains [39,40,42]. Although it 
has been shown to be upregulated in sarcoidosis granulomas [100], the 
role of CSF3 in TB-induced granuloma formation has not been exten
sively studied; however, induction of granulomatous tissue by CSF3 has 
been documented in other conditions, such as granulomatous dermatitis 
and chronic granulomatous disease in immunocompromised patients 
[101,102]. However, it is important to note that colony stimulating 
factor proteins have recently been shown—in a membrane 
fusion-independent manner—to stimulate the formation of multinucle
ated giant cells (MGCs), which are key components of TB-induced 
granulomas. For example, CSF1 in conjunction with a persistent 
ligand, such as TNF, can induce MGCs from bone marrow myeloid 
progenitors via polyploidy, typically associated with replication stress or 
DNA damage [103], which supports a larger role for CSF proteins in the 
formation of TB granulomas. In addition, our group has recently shown 
that the CSF3 locus is epigenetically regulated through H3K4me3 
deposition in bovine AM infected with M. bovis [42]. Consequently, 
based on the multi-omics results presented here that highlight CSF3 in 
macrophage responses to mycobacterial infections, further research into 
the role of CSF3 in bTB and hTB is warranted. 

For the human functional genomics outputs and GWAS data inte
gration results, the enriched SNPs identified were proximal to five genes 
associated with granuloma biology: CACNA2D3, CXCL13, ENPP2, PLG, 
and TNFSF4. Differential levels of CACNA2D3, a protein in the voltage- 
dependent calcium channel complex, had been demonstrated within 
granulomatous structures [104] and it has been proposed to play a role 
in the CRR5 pathway in macrophages, which regulates chemotaxis 
during inflammatory responses [105]. The CXCL13 chemokine recruits 
B cells to sites of inflammation, including the granuloma [106,107]. 
Macrophages do not typically express this gene, which would explain 
the lack of differential expression observed in any of the four experi
mental infection contrasts. However, this gene was included as part of 
the GIN analysis, highlighting the importance of integrative analytical 
approaches that extend beyond simple catalogues of DE genes. The 
protein product of the ENPP2 gene interacts with IL-13 during the 
IL-13-mediated sarcoidosis granulomatous response [108] and the 
product of ENPP2 (aka autotaxin) phospholipase action, lysophospha
tidic acid, converts recruited monocytes from bone marrow into mac
rophages [109]. Increased levels of PLG (plasminogen) have been shown 
to encourage granuloma formation; a recent study showed that M. bovis 
BCG bacilli coated in PLG leads to a decrease in phagocytosis, and an 
increase in granuloma formation [110]. TNFSF4 has been proposed as 
an inhibitor to granuloma formation; polymorphisms in the TNFSF4 
gene are associated with Sjogren’s syndrome, phenotypic effects of 
which include irregular granuloma formation [111,112]. Other human 
genes that were associated with enriched SNPs include PLAC8, LDB2, 
PLOR2F, GNG12, and PRR5l, which have roles in inflammation, pathway 
initiation and recruitment, but no direct link to granuloma formation for 
these genes has yet been established. 

From the host’s perspective, the ideal outcome of granuloma for
mation in TB disease is elimination or sterilisation of macrophages 
infected with pathogenic MTBC strains. However, in cases where the 
granuloma becomes necrotic, it is clearly beneficial to the pathogen and 
transmission of the infection [93]. As such, formation of the granuloma 
can be interpreted as a failure of alveolar macrophages to sufficiently 
control MTBC pathogens. Consequently, a better understanding of host 
genes and genomic variation that determines and influences formation 
and success of the granuloma could lead to novel therapeutics, di
agnostics, prognostics, and in the case of livestock, potential targets for 
genome editing and genome-enabled breeding programmes for bTB 
disease resistance/resilience [113–115]. The results presented here 
relating to granuloma formation also emphasise the importance of 

M. bovis infection in cattle and bTB disease as an animal model of hTB 
[20,21,116]. 

In addition to genes associated with granuloma formation, many of 
the 32 bovine and human genes identified through bTB and hTB GWAS 
integration also encode important components of the NF-κB signalling 
pathway. The nuclear factor-κB (NF-κB) complex constitutes a family of 
inducible transcription factors that regulate a large array of genes 
associated with innate and adaptive immunity and inflammatory re
sponses [117]. Including both bovine and human genes, there were 
three genes encoding activators (GNG12, IL17, PELI2), two genes 
encoding inhibitors (TNFSF4, IER3, SOC3) and twelve genes encoding 
downstream targets (GRM7, CACNA2D3, CSF3, CYB5R3, CXCL13, 
KRT79, NKG7, PRR5L, SOCS3, SP3, VEGFA, HPSE). Notable downstream 
target genes included HPSE, which encodes a lung injury serum protein 
that promotes neutrophil adherence and inflammation [118] and GRM7, 
which encodes a protein that modulates adaptive immunity and 
inflammation [119]. Many of the downstream targets are also regulators 
of granuloma initiation and formation, again highlighting the impor
tance of this feature of TB disease pathogenesis. Because NF-κB-related 
genes were highlighted in the original GWAS integration, a supple
mentary analysis was conducted where 17 NF-kB subunit, activator and 
inhibitor genes (NFKB1, NFKB2, RELA, RELB, REL, NFKBIA, NFKBIB, 
NKRF, NFKBIL1, NFKBIZ, NFKBIE, NDFIP1, NKAP, NKAPL, NKIRAS2, 
NFKBID, and NKAPP1) were directly used as an input gene set for GWAS 
integration using the gwinteR tool (Supplementary Information File 
11). This resulted in detection of 163 significantly enriched SNPs (6 
human and 157 bovine) within or proximal to these NF-κB-associated 
genes. 

It is important to note that the disparity between the human and 
bovine SNP enrichment for NF-κB genes may be a consequence of the 
phenotypes used in the bTB GWAS and the hTB GWAS. The bTB 
phenotype is a susceptibility/resistance sire EBV generated from 
M. bovis infection diagnostic epidemiology data [47]. Conversely, the 
hTB case-control GWAS phenotype is more directly related to disease 
resilience because a relatively large proportion of the hTB control cohort 
(>20 %) may have been latently infected with M. tuberculosis [120,121]. 
Consequently, the overrepresentation of bovine genes with enriched 
SNPs in the NF-κB signalling pathway may reflect the importance of 
innate immune responses in the phenotype used for the bTB GWAS. The 
hTB case-control GWAS phenotype, on the other hand, may be more 
directly associated with adaptive immunity [122–124]. 

5. Conclusion 

Although M. bovis and M. tuberculosis are 99.95 % similar at the 
nucleotide level, they exhibit specific host tropism to sustain across 
different hosts yet generate comparable disease in their preferred host. 
In this regard, key to further understanding this host tropism will be 
elucidation of the shared and species-specific immunological mecha
nisms underpinning the bovine and human host responses to establish
ment of infection by M. bovis and M. tuberculosis, respectively. In 
addition, identification of critical mycobacterial infection response 
pathways shared between the two species underlines the importance of 
the bovine model for understanding human TB. Using four tran
scriptomics data sets that represent the responses to infection of bAM, 
hAM, and hMDM, common and distinct genes and gene response path
ways across both host species have been identified. Using three different 
analysis pipelines, a key observation was the role played by the 
cytokine-cytokine receptor interaction pathway, which was the most 
enriched pathway in all four experimental groups across seven func
tional databases. After integration of the downstream functional geno
mics outputs with the GWAS data sets, 32 bovine and human genes 
contained or were proximal to SNPs significantly associated with resis
tance to infection or disease resilience. A striking feature of this result is 
that 11 of these genes, across all four groups, are directly involved with 
the formation of the granuloma, while 18 are involved with NF-kB 
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signalling. This indicates that the overall response pathways and gene 
regulatory networks (GRNs) are comparable across host species and 
mycobacterial strains. Our work therefore provides underpinning data 
with which to elucidate the molecular basis of host tropism across the 
animal- and human-adapted MTBC. 
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