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Abstract 

Fisheries surveys are widely used in the stock assessment process by providing time 

series of relative abundance and recruitment strength. Surveys also provide biological 

data that have the potential to improve stock projections by providing alternatives to 

the use of spawning stock biomass as a measure of stock reproductive potential. The 

objective of the present work is to illustrate various sources of error in survey data, 

using examples from bottom trawl surveys and to provide innovative methods for 

identifying and minimising these errors. In Chapter 1, the current work is framed 

within the existing literature and an overview is given of the different sources of error. 

The next six chapters consist of papers that have been published, are in press, or under 

review with peer-reviewed journals. These papers consist of case-studies, each 

exploring a different source of error. In Chapter 2, a method for summarising the 

precision of a length-frequency distribution is presented and recommendations are 

given on the sample sizes required to achieve a particlar precision level. In Chapter 3, 

the variability in the assignment of maturity stages of plaice (Pleuronectes platessa, 

L.) and whiting (Merlangius merlangus, L.) is examined, using statistical techniques 

developed in the social sciences. In Chapter 4, the spatial variability in the age-length 

structure of haddock (Melanogrammus aeglefinus, L.) is explored and a new method 

for comparing age-length keys is developed. In Chapter 5, the spatial structure in the 

length-weight relationships of whiting and haddock are analysed using geostatistical 

tools. In Chapter 6, the spatial trend in the sex ratio of megrim (Lepidorhombus 

whiffiagonis, Walbaum) is explored using generalized additive modelling techniques. 

In Chapter 7, spatial trends in the proportion of mature cod (Gadus morhua, L.) are 

investigated. In the concluding Chapter 8, the scale of various errors is reviewed in 

the light of the current work and recommendations for sampling design are proposed. 
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Chapter 1 

General introduction 

1.1. Structure of the thesis 

This thesis consists of a general introduction followed by five papers that have been 

published or are in press with peer-reviewed journals and one paper that is under 

review, the last chapter provides a synthesis. Each of the papers covers a subject 

related to variability and bias resulting from measurement error or sampling error on 

bottom trawl surveys. A glossary of terms is provided in Appendix A, page 106. 

1.2. Purpose of bottom trawl surveys 

Bottom trawl surveys are widely used to collect information on a variety of 

parameters of fish stocks. Surveys are used in the stock assessment process to 

calibrate or “tune” age- or size-based population models. Surveys also provide crucial 

information on the strength of the incoming year class before it enters the fishery.  

This is particularly important in terms of forecasting stock development in the short 

term and giving advice on future catch options. The reliability of stock assessment 

results is greatly influenced by the precision of survey abundance estimates (Smith 

and Gavaris, 1993; Beare et al., 2003).  

Bottom trawl surveys are also increasingly used to provide abundance estimates 

independently of commercial data (Beare et al., 2005). Due to unknown levels of 

misreporting and/or discarding, many sources of commercial data are regarded as 

unreliable. In addition to this, data from commercial sources may lack spatial detail 

while at the same time commercial fisheries tend to target specific locations such as 

spawning aggregations. Therefore, data from commercial sources are likely to be 

significantly biased samples of the population. This can result in biased estimates of 

the age structure or other biological parameters like maturity, sex ratio or condition. 

For this reason, commercial sources are often unsuitable for providing reliable 

biological data. While survey data are sparser than commercial data, survey data are 

collected under controlled circumstances and can provide spatially detailed biological 

information.  

Time series of biological data have the potential to provide improved estimates of 

reproductive potential. Historically, the spawning stock biomass (SSB) has been used 
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as an index of reproductive potential (Beverton and Holt, 1957). However, up-to-date 

information on age composition, maturity, condition and sexual dimorphism can help 

to provide more sensitive indices of reproductive potential than SSB estimates alone 

(Marshall et al., 1998; Marteinsdottir and Thorarinsson, 1998; Scott et al., 1999; 

Marshall et al., 2003; Tomkiewicz et al., 2003a; Marshall et al., 2006). For example, 

SSB estimates do not take account of changes in sex ratio or fecundity, while female-

only SSB or total egg production estimates are conceptually better proxies for 

reproductive potential. Additionally, trends in growth rates and maturity can be used 

as an indication of over-exploitation. For example, the collapse of the Northwest 

Atlantic cod (Gadus morhua) populations was preceded by a significant reduction in 

age and length at first maturity (Hutchings, 2005). 

Including information other than SSB in fisheries advice does not necessarily improve 

projections, however. The error around estimates of stock parameters will increase as 

the number of parameters used in this estimate increases. Each of the steps involved in 

the estimation of stock parameters, has a certain amount of error associated with it 

(Figure 1.1). The economist John Maynard Keynes is reported to have said that he 

would rather be approximately right than exactly wrong, but in order to weigh up 

accuracy versus precision, it is necessary to understand and quantify all sources of 

error that are involved in the collection and analysis of biological data. 

1.3. Types of error 

There are two main types of error. Random error is related to the precision of an 

estimate: it is the variability between replicate experiments. It is not always necessary 

or possible to perform replicate sampling in order to estimate random error. Analytical 

(Zar, 1999), Bayesian (Malakoff, 1999), or re-sampling techniques (Efron and 

Tibshirani, 1993) can be used to estimate this type of error. The second type of error, 

systematic error or bias, is related to the accuracy of an estimate: it is the difference 

between the true parameter value and its estimated value. Both random and systematic 

errors can result either from sampling error or measurement error. Sampling error is 

determined by the sample size and the variability of the parameter. Measurement error 

is due to the measuring device or to observer error.  
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1.4. Sampling error 

Gear selectivity - By the time the fish arrive on the deck, the sample is already highly 

biased (Gulland, 1966). Although not all fish in a population are equally vulnerable to 

the fishing gear, surveys are generally assumed to assess age groups with equal 

accuracy from year to year. However, if the size-at-age distribution varies between 

years, abundance estimates will be affected because trawls are highly length-sensitive 

tools (Godø and Sunnanå, 1992). In addition to bias in abundance estimates, bias can 

also occur in estimates of length-at-age, sex ratio-at-age and maturity-at-age for age 

classes that are not fully selected by the gear. Differences in size and behaviour 

between the sexes can also result in differences in catchability between the sexes 

(Beverton, 1964; Rijnsdorp, 1993; Solmundsson et al., 2003), an issue that will be 

further explored in Chapter 6. 

Knowledge on the selectivity of the gear can help to correct for some forms of bias 

but selectivity itself can be quite variable, particularly for fish that have a low 

catchability (Godø and Sunnanå, 1992). 

 

Spatial structure – Most fish populations appear to be spatially clustered. Pennington 

et al. (2002) have shown that fish caught together tend to be much more similar in 

size than can be expected from a random sample. Johnsen (2003) also noted a 

clustering of fish of similar lengths and used geostatistical techniques to take this 

spatial covariance into account for the estimation of length frequency distributions. 

Spatial structure, or clustering, has also been observed for age distribution  (Smith et 

al., 1992), sex ratio (Morgan and Trippel, 1996; Swain, 1997) and the proportion of 

mature fish (Horn et al., 1998; Bromley, 2000; Rochet, 2000). If trends occur on a 

large spatial scale, bias may occur if sampling coverage is incomplete. Spatial 

structures that are small, compared to the scale of sampling, result in increased 

variability between stations. This between-station variability is often ignored, for 

example Gulland (1966) states that the precision achieved for length sampling is 

determined almost entirely by the number of specimens examined; he does not 

mention the influence of the number of sampling locations on the precision. However, 

Pennington et al. (2002) have shown that the precision of a length sample is almost 

entirely determined by the number of locations sampled, while the total number of 

fish measured hardly influences the precision. 
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Variability between stations or regions will be explored for the following parameters: 

age-length structure (Chapter 4); condition (Chapter 5); sex ratio (Chapter 6) and 

maturity (Chapter 7). 

 

Subsampling – As it is often impossible to analyse every fish caught, subsamples are 

regularly taken from the catch. If the sample is taken without thorough mixing or 

randomisation, bias might occur. Heales et al. (2003) have shown that some catches 

are not uniformly mixed; they found that that mechanical sorting can take place in 

seawater hoppers. This potential bias is easily avoided, for example by placing the 

total catch in fish boxes and repeatedly halving the contents of each box (by tipping 

the contents of one box into two others) until the desired sample size is achieved. 

Although it has not been tested whether this results in a truly random sample, it seems 

reasonable to assume that such subsamples are representative of the catch. 

Two-stage sampling is a common way of subsampling a catch (Gulland, 1966; 

Cochran, 1977). A representative sample is taken to obtain a (presumably) unbiased 

length frequency distribution of the catch. A smaller sample is then taken for further 

biological analysis such as individual weight, age, sex and maturity stage. Often, this 

biological sample is taken on a length-stratified basis; a target sample number is 

obtained for each length class. An age-length key (or maturity-age-length key) is then 

constructed for each stratum and applied to the estimated length distribution in that 

stratum (Fridriksson, 1934). The implicit assumption is that the age-at-length 

relationship is approximately constant within each stratum (Cotter, 1998). However, 

Chapter 4 shows that the age-at-length distribution of haddock (Melanogrammus 

aeglefinus) can vary strongly on a small spatial scale, indicating that this assumption 

might not always be valid. 

The precision with which the length distribution of the catch can be determined 

depends on the size of the subsamples. In Chapter 2, a method is presented that 

summarises the precision of a length distribution, allowing length data to be collected 

to a pre-defined precision level. While length measurements can be collected quickly 

and cheaply, further biological data tend to be much more time-consuming to collect. 

It is generally assumed that the precision of the estimated age distribution improves 

rapidly with increasing numbers in the aged sample (Flatman, 1990; Kimura, 1997). 

Oeberst (2000) has developed a cost function to estimate the optimal number of age 

readings. Gutreuter and Krzoska (1994) investigated the precision of weight 
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measurements and Roa et al. (1999) evaluated various methods to estimate the 

precision of maturity estimates. While these studies can give insight into the precision 

of catch estimates, they give no information on the precision of population estimates, 

because between-station variability is ignored. Ignoring this covariance between 

stations can lead to over-fitted models, misleading error distributions and biased 

estimates (Cotter, 1998).  

1.5. Measurement error 

Ageing error – There are a number of different types of measurements associated with 

surveys, each with its own measurement error. The error in age determination has 

received by far the most attention in the literature, as age determinations are both 

subjective and central to most stock assessment models. A large number of papers 

deal with ageing error and quality control (e.g. Bradford, 1991; Kimura and Lyons, 

1991; Richards et al., 1992; Campana et al., 1995; Campana, 2001; Reeves, 2003; 

Clark, 2004; Kimura and Anderl, 2005; Power et al., 2006). In general, random 

ageing errors result in an underestimate of the numbers of the most common age class 

in the catch (Richards et al., 1992). This is because a certain percentage of the most 

common age class will be wrongly assigned to the neighbouring age classes, the 

reciprocal number of fish that will be wrongly assigned from the neighbouring age 

classes will be lower because the numbers of fish in these age classes are lower. 

Therefore, random ageing error tends to smooth out differences in abundance between 

age classes. It is possible to correct for this type of bias by modelling the age reading 

errors (Richards et al., 1992). The effects of ageing errors on stock assessments have 

been investigated by Bradford (1991) and Reeves (2001; 2003). 

Systematic error can occur in species where the first growth increment is unclear. If 

ages are determined from an incorrectly defined starting point, age determinations 

will be consistently wrong by a constant amount. Alternatively the periodicity of 

increments might not be annual, also leading to bias. Campana (2001) provides a 

comprehensive overview of different types of ageing error, their magnitude and 

quality control standards. Systematic ageing errors can be detected from consistent 

differences between labs (e.g. Power et al., 2006) or by obtaining known-age material 

(validation; e.g. Campana, 2001). 
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Other sources of measurement error – Errors can occur in length measurements (e.g. 

Gulland, 1966). Unpublished data by the author also show that consistent differences 

between people repeatedly measuring the same sample of fish can be detected, even 

when using electronic measuring boards. However, these differences were too small 

to be significant with the sample size of 30 fish that was used in the experiment 

(Gerritsen, unpubl.; Appendix B page 110). Gutreuter and Krzoska (1994) state that 

length can be measured with high precision, while weight measurements are more 

variable, particularly for small fish. They found that the precision of weight estimates 

was mostly affected by surface wetness and movements of the fish. Cotter (1998), on 

the other hand, states that weighing variances can be safely ignored if surveys are 

equipped with high-quality balances. Unpublished work by the author suggests that 

weighing errors on Irish groundfish surveys are likely to be smaller than 1% 

(Gerritsen, unpubl.; Appendix B page 110). A parameter that is not usually associated 

with measurement error is sex determination. However, it can be difficult to 

determine the sex of some young fish (Chapters 3 and 6), resulting in another 

potential source of error. The assignment of maturity stages can also be somewhat 

subjective. Maturity stages are usually assigned after macroscopic (visual) inspection 

of the gonads. While this is generally accepted to be less precise and accurate than 

histological analysis, it is the only practical method that allows large numbers of fish 

to be analysed (West, 1990). Vitale et al, (2006) found consistent differences between 

the two methods in the estimated proportions mature, but they also found that this bias 

was negligible in samples taken just before the start of the spawning season. 

Tomkiewicz et al. (2003b) also found the highest agreement between the two methods 

just before the spawning season. In Chapter 3, the variability in the assignment of 

maturity stages is further investigated.  

The objective of the present work is to illustrate various sources of error in survey 

data, using case studies from bottom trawl surveys and to provide innovative methods 

for identifying and minimising these errors. 
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1.6. Figure 
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Figure 1.1. Diagram of the various steps involved in data collection and analysis of 

fisheries data and the sources of error at each step of the process. In age-based stock 

assessment, one of the most important parameters to be estimated from trawl surveys 

is an estimate of the numbers-at-age caught per unit effort. This information is used to 

tune the stock assessment model. Other survey data that can be used in assessments 

are maturity ogives, length-weight relationships and/or length-at-age data. Survey 

data can also be used to obtain fisheries-independent abundance estimates and for 

indices of reproductive potential other than Spawning Stock Biomass (SSB). 
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Chapter 2 

Precision estimates and suggested sample sizes for length 
frequency data 

This chapter is reproduced from the following original publication: 

Gerritsen HD, McGrath D (in press) Precision estimates and suggested sample 

sizes for length frequency data. Fish Bull 105 (1): 116-120 (2007) 

2.1. Abstract 

For most fisheries applications, the shape of a length frequency distribution is much 

more important than its mean length or variance. This makes it difficult to evaluate at 

which point a sample size is adequate. By estimating the coefficient of variation of the 

counts in each length class and taking a weighted mean of these, a measure of 

precision was obtained that takes the precision in all length classes into account. The 

precision estimates were closely associated with the ratio of the sample size to the 

number of size classes in each sample. As a rule of thumb, a minimum sample size of 

10 times the number of length classes in the sample is suggested, as the precision 

deteriorates rapidly for smaller sample sizes. In absence of such a rule-of-thumb, 

samplers have previously under-estimated the required sample size for samples with 

large fish, while over-sampling small fish of the same species. 

 

Key words:  length frequency, precision, sampling design, sample size. 

2.2. Introduction 

Length measurements are fundamental to many aspects of fisheries science. However, 

there is little formal guidance on the appropriate size of a length sample. Such 

guidance is of particular relevance when the number of fish available exceeds the 

number that can be measured at a reasonable cost, and a sub-sample needs to taken. 

Clearly, the required precision of a length sample depends on the purpose of 

sampling. In order to identify modes of individual year classes for a length-based 

assessment, the precision of the sample needs to be quite high. Sample sizes of more 

than 1000 are necessary to identify more than half the modes in a typical length 

distribution (Erzini, 1990). A sample size of at least 100 adult fish was recommended 
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for age-based stock assessment purposes (Anderson and Neumann, 1996), although 

the authors do not mention how they arrived at this number.  

Regardless of the type of assessment that is used, the shape of the length frequency 

distribution is of interest, rather than simple summary statistics such as the mean or its 

variance. For this reason, it has proven difficult to quantify what constitutes a 

representative or adequately precise length distribution. Some studies have attempted 

to find minimum or optimum sample sizes by comparing samples to an expected 

distribution (e.g. Müller, 1996; Gomez-Buckley et al., 1999; Vokoun et al., 2001). 

However, the true distribution is usually unknown, and dissimilarity from the 

expected distribution does not necessarily indicate an imprecise sample. In addition, 

these methods only provide indirect measures of precision that are difficult to evaluate 

objectively.  

Thomson (1987) used the precision of a sample explicitly to establish an appropriate 

sample size. Thompson proved that a sample size of 510 is sufficient to be 95% 

confident that all estimated proportions in a multinomial distribution are no more than 

0.05 from the true proportion. However, Thomson based this figure on a worst-case 

scenario, which, in the present case, is a length frequency distribution that is evenly 

apportioned over three size classes. As this is not the typical shape of a length 

frequency distribution used in fisheries science, Thomson’s measure of precision is 

too conservative in the vast majority of cases. 

For most fisheries applications, it would be more useful to define the precision of a 

length frequency sample as the mean precision over the entire size range. However, it 

appears that this approach has not been used to establish an optimum sample size. 

Such precision estimates might be used to obtain a rule-of-thumb for sample sizes 

required to obtain a certain precision level of the catch at each location. In the present 

paper we aim to: 1) Determine a rule-of-thumb for obtaining an appropriate sample 

size when the number of fish available in a particular sample exceeds the number that 

can be measured at a reasonable cost. 2) Examine the sample sizes taken in the past, 

in absence of such guidance. 

2.3. Materials and methods 

Data were used from the Irish Groundfish survey, which was carried out on R.V. 

Celtic Explorer in the waters around Ireland during October and November 2005. The 

catch was sorted into species and, if appropriate, size grades, each of which were 
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treated as a separate length sample. Length measurements were taken from all fish 

and squid species that were caught. If the number of individuals in a sample was 

large, a sub-sample was taken by repeatedly transferring the sample from each fish 

box into two other boxes and discarding one of these. This method ensures that the 

entire catch is represented uniformly in the sub-sample. At the time of the survey, the 

samplers did not have any particular guidance on the appropriate sub-sample size, but 

used their own judgement to decide on the sample size. 

The precision of the number of observations in each length class of a random sample 

can be estimated by assuming a multinomial distribution (Smith and Maguire, 1983). 

If the precision in each length class is expressed in the form of a coefficient of 

variation (CV), an overall measure of precision can be obtained by weighting each 

CV by the number of fish in each length class. This mean weighted CV (MWCV) 

provides a description of the precision over the entire range of size classes in a length 

frequency distribution.  

Under the assumption of a multinomial distribution, the standard deviation (σi) of the 

number of fish in a sample that are length category i can be estimated by: 

(2.1) )1( iii pnp −=σ  

where n is the total number of fish in the sample and pi is the proportion of the sample 

that is length i. The coefficient of variation (CV) of the number of fish at length i, is 

given by: 

(2.2) 
i

i
i np

σ
=CV  

and the mean weighted coefficient of variation (MWCV) is given by: 

(2.3) 
n

CVp i
ii
∑

∑
σ

==MWCV  

The highest possible value of the MWCV results from a length frequency distribution 

that is evenly distributed over a large number of size classes. The numbers of fish at 

each length class are then Poisson distributed with a standard deviation that equals the 

square root of the number at length (Zar, 1999). The theoretical maximum MWCV is 

therefore given by: 

(2.4) 5.0)(MWCV −= cn  

where c is the number of size classes in the sample. The minimum MWCV is zero and 

would result from a distribution where all observations fall within a single length 
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category. Therefore, the MWCV estimates will always lie between zero and the curve 

described by Equation (2.4). 

2.4. Results 

During the 2005 survey, a total of 2332 length samples were taken for 80 different 

species of fish and squid. In most cases, the sample size was limited by the number of 

individuals in the catch. However, 596 samples were deemed too large to measure all 

individuals and sub-samples were taken. The median sub-sample size was just under a 

quarter of the total catch (by weight), while 90% of the sub-samples were smaller than 

half of the total catch. The four most common species that were sub-sampled were 

poor cod (Trisopterus minutus), blue whiting (Micromesistius poutassou), haddock 

(Melanogrammus aeglefinus) and Norway pout (Trisopterus esmarkii). 

The estimated MWCV of the sub-samples was closely associated with the ratio of the 

number of individuals measured to the number of length classes in the sample (Figure 

2.1). The MWCV appeared to follow an exponential curve that was close to the 

maximum MWCV given by Equation (2.4). The MWCV decreased very rapidly with 

increasing sample size up to sample sizes of around 10 times the number of length 

classes in the sample, after which the sample size would need to be increased 

considerably for a moderate further improvement in precision. If the sample size is 

taken as 10 times the number of length classes in the distribution, an MWCV of 

around 0.25 can be expected; a sample size of 48 times the number of length classes 

would result in an MWCV of 0.10 and a sample size of 155 times the number of 

length classes would be necessary to reduce the MWCV to 0.05.  

The mean sample size in the sub-samples taken on the survey was just under nine 

times the number of length classes per sample, resulting in a mean MWCV of 0.33. 

However, there was quite a large spread in the sample sizes (Figure 2.1), so some 

samples were measured with very low precision, while others had excessively large 

sample sizes. The range of sample sizes was between 2.2 and 24.7 times the number 

of length classes (2.5% and 97.5% quantiles), resulting in a range of MWCVs 

between 0.14 and 0.61. With a minor increase in effort, the sample size might be 

increased to 10 per length class for each sub-sample, resulting in an MWCV of around 

0.25 for all samples. Considering that the precision deteriorates very rapidly for 

sample sizes of less than 10 per length class, a minimum sample size of 10 times the 
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number length classes in the sample is suggested as a rule-of-thumb in the present 

case.  

The previous analysis shows that, in order to obtain the same level of precision for all 

sub-samples, the sample size should be directly proportional to the number of size 

classes. In absence of specific guidance on the sample size during the 2005 survey, 

the chosen sample size was only weakly correlated to the number of length classes in 

the sample for haddock and poor cod, while no significant correlation was found for 

blue whiting and Norway pout (Figure 2.2). The same figure also shows that the 

MWCV in sub-samples tended to increase with the mean length of the fish in the 

sample. This indicates that samples of fish with a large mean length tended to be 

sampled with lower precision than samples of smaller fish of the same species.  

2.5. Discussion 

Length distributions that result from combining a number of different samples, exhibit 

greater variation than expected under the multinomial model given in Equation (2.1) 

(Smith and Maguire, 1983). Fish populations are usually not uniformly mixed, 

therefore individual samples are not random samples from the population (Pennington 

et al., 2002). The simple multinomial model does not take account of the between-

sample variability and will therefore underestimate the total variance. However, 

Equation (2.1) does provide an unbiased estimate of the variability within each 

sample; this is the variability that would occur if one could repeatedly take a random 

sample at the same location and time and measure these without error. This is the 

variability that is of interest when deciding whether the sample size is large enough to 

estimate the length distribution from a particular haul with a certain precision. 

Therefore, the MWCV is a suitable measure for this exercise. 

In order to obtain a precise population estimate, it is important to maximise the 

number of sampling locations due to the considerable between-sample variability that 

is usually present (Pennington et al., 2002). These authors suggest maximising the 

number of sampling locations at the expense of the number of fish measured. 

However, the number of hauls is often limited by practical considerations, and length 

measurements can be obtained quickly and cheaply. Therefore, it seems prudent to 

sample enough fish from each haul to obtain a length distribution that is representative 

of that catch at that particular location. Detailed information of the length distribution 

at each station can be valuable for exploratory data analysis, such as investigating the 
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spatial structure in the data. Nevertheless, this sampling level might not be strictly 

necessary for a precise population estimate of the length frequency distribution for an 

age- or length-based assessment. 

The samples in Figure 2.1 included a large range of species and size categories of fish, 

but the variability in the MWCV was small after taking account of the sample sizes. 

This suggests that the MWCV is not very sensitive to the exact shape of the 

distribution and can be predicted with high precision, at least within the range of 

length distributions encountered on the survey. A minimum sample size of 10 times 

the number of length classes in the sample appears to be a reasonable compromise 

between effort and precision in the present case.  

The current analysis has focussed on sub-sampling during surveys; however the same 

principles can be applied to any data collection for which the shape of the distribution 

is of interest. The desired precision level for these cases will depend on a number of 

factors. For certain species that are of little commercial or scientific interest, but 

which might span across a large number of length classes, the suggested sample size 

of 10 per length class might be excessive. Likewise, as the MWCV is directly 

proportional to the number of length classes in the sample, the choice of the interval 

of the length classes will determine the precision. Although increasing the size of 

length intervals will reduce the MWCV, this will result in a loss of information which 

is undesirable. The cost of sampling, the detail required and the purpose of the data 

collection need to be considered before the required precision level can be determined 

for other applications than the present example. 

Without formal guidance on the sample size, the sample sizes chosen were, at best, 

weakly correlated with the number of size classes in the samples. It appears that the 

samplers underestimated the required sample size for samples with large fish, while 

samples of smaller fish of the same species were over-sampled. This might be related 

to the fact that the volume of a sample increases with the cube of its mean length, so a 

sample size of large fish might appear to be larger than the same number of small fish. 

In addition, samples with large fish tend to be spread out over a larger number of size 

classes, thus requiring higher sample numbers. 

In practice, it will be difficult for a sampler to estimate both the number of size classes 

and the number of fish in a sample. Therefore, the Marine Institute in Ireland is 

developing a software application that allows samplers to examine the length 

frequencies of the samples directly after they have been measured. The software 
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estimates the weight of the suggested sample size for each distribution. As size 

distributions tend to be similar on consecutive hauls, the sampler can get an insight 

into the required weight of an appropriate sample for each species and size category.  

The information contained in a length frequency distribution is largely a function of 

sample size. The present method allows the amount of information to be quantified in 

terms of precision, allowing samplers to make informed decisions on the sample size 

that is required to obtain an adequate estimate of the length frequency distribution of a 

particular catch. 
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Figure 2.1. The mean weighted coefficient of variation (MWCV) for 596 sub-samples 

was closely related to the sample size (n) divided by the number per length classes in 

the sample (c). A good fit was obtained for the power function indicated by the solid 

line; its parameters are given at the top of the plot. The dashed line indicates the 

theoretical maximum MWCV (Equation 2.4). The histograms show the distribution of 

the samples on both axes.   
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Figure 2.2. The sample sizes of sub-samples taken on the survey were correlated with 

the number of length classes in the samples for haddock (Melanogrammus aeglefinus)  

and poor cod (Trisopterus minutus), but not significantly so for blue whiting 

(Micromesistius poutassou) and Norway pout (Trisopterus esmarkii) (top row). There 

was considerable variation in the MWCV, which correlated with the mean length of 

fish in the samples (bottom row). The solid lines represent linear regressions and the 

dashed lines indicate the sample sizes and MWCV that would have resulted from a 

sampling scheme where the sample size was chosen to be 10 times the number of 

length classes in the distribution. The coefficients of determination, R2, are given 

together with their p-values. 
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Chapter 3 

Variability in the assignment of maturity stages of plaice 
(Pleuronectes platessa L.) and whiting (Merlangius 
merlangus L.) using macroscopic maturity criteria 

This chapter is reproduced from the following original publication: 

Gerritsen HD, McGrath D (2006) Variability in the assignment of maturity 

stages of plaice (Pleuronectes platessa L .) and whiting (Merlangius 

merlangus L.) using macroscopic criteria. Fish. Res 77: 72-77. 

doi:10.1016/j.fishres.2005.08.007 

Earlier versions of the paper have been presented to the following conferences:  

Gerritsen H, McGrath D (2005) Improving the consistency in the assignment 

of maturity stages. ICES Annual Science Conference, Aberdeen 20-24 

September 2005. ICES CM 2005/Q:32 

Gerritsen H, McGrath D (2005) Variability in the assignment of maturity 

stages of plaice. Institutes of Technology Science and Computing Research 

Colloquium, Carlow 26-27 May 2006. 

3.1. Abstract 

This study investigates if a macroscopic maturity scale can be applied consistently, by 

examining the variability between and within ten people who repeatedly assessed the 

sex and maturity stages of 80 plaice (Pleuronectes platessa L.) and 79 whiting 

(Merlangius merlangus L.) gonads. In most cases, agreement within assessors was not 

significantly higher than agreement between assessors, suggesting that variability was 

random and not due to differences in interpretation. This finding was supported by the 

fact that a significant bias was only found for one assessor. Some maturity stages were 

assigned quite consistently, while other stages were not defined objectively enough to 

be assigned reliably, even when fish were assessed repeatedly by the same person. For 

both species, well-defined maturity scales with fewer stages would be preferable over 

scales that distinguish a larger number of maturity stages. As maturity staging will 

always contain a form of subjective judgement, it should be subject to continuous 

quality control measures. 
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3.2. Introduction 

Operator error is potentially a significant factor in many aspects of data collection in 

fisheries science. While any measurement error should be subject to some sort of 

quality control mechanism whereby accuracy, precision and bias are being monitored; 

this is particularly important when subjective criteria are used to quantify a variable. 

Although even measures such as fish length can have a source of operator error (King, 

1995) this is more likely to be a problem for parameters like fish age and maturity 

stage, where subjective judgements play a large role. There is a large body of 

literature available on the quality control and quality assurance in the field of age 

reading (Kimura and Lyons, 1991; Campana et al., 1995; Eltink et al., 2000; 

Campana, 2001; Kimura and Anderl, 2005).  However, the literature on the 

assignment of maturity stages to fish gonads is more limited. Most work seems to be 

concerned with routine validation of maturity staging. The most widely used method 

to determine the maturity stage of fish is visual examination of the gonads, applying 

macroscopic criteria, a selection of which is usually validated by histological analysis 

(West, 1990). This work is published mostly as working documents or reports, with a 

few exceptions (e.g. Tomkiewicz et al., 2003b; Claereboudt et al., 2005). However, 

apart from validation (a measure of accuracy), any quality control program should 

also include measures of precision and bias. Measures of precision should include 

variability between as well as within assessors, which can only be obtained by 

repeated assessment of the same sample. Bias measures whether disagreement is 

systematic and differences between workers are the result of differences in 

interpretation of the maturity scale or whether disagreement is random. This 

information can be used to improve the design of maturity scales and to monitor 

training or calibration exercises. 

It appears that only one study has been published in which precision of maturity 

staging was investigated (ICES, 2005a). In this study, 72 images of herring gonads 

were sent to a number of laboratories to be assessed by various people. The study 

concluded that agreement was higher for maturity scales that distinguished fewer 

stages, but no correction was made for the fact that a scale with fewer stages has a 

higher amount of chance agreement. No comparisons were made within assessors, nor 
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was it investigated whether disagreement was random or systematic. Additionally, the 

use of photographs might not be an accurate reflection of assigning fresh material.  

The current study investigates whether macroscopic maturity scales can be applied 

consistently by examining the variability in the assignment of maturity stages to fresh 

samples of plaice (Pleuronectes platessa L.) and whiting (Merlangius merlangus L.). 

The study will address the agreement of individual maturity stages, agreement 

between and within workers and check whether disagreement is random or 

systematic. Histological validation will not be addressed in the current study but will 

be the subject of future work. 

3.3. Methods 

Two samples of plaice were taken during the Irish Groundfish Survey, carried out in 

2004 by the Marine Institute. Additionally, two samples of whiting were taken during 

the Biological Sampling Survey, which was undertaken in 2005 by the Marine 

Institute. The first plaice sample was taken on 17 October in ICES area VIa-South  

(north of Ireland); the second sample was taken on 4 November in ICES area VIIg 

(Celtic Sea). Both samples were selected from a catch of about 150 plaice, which 

were sorted into the available maturity categories. Around seven fish were chosen at 

random from each available sex and maturity category, so that the sample contained 

approximately equal numbers in each category. Both plaice samples contained a total 

of 40 fish. At the time of sampling, many plaice had already started gonad 

development for the next spawning season, which starts around January (Armstrong et 

al., 2001), so a variety of maturity stages were available. Both samples of whiting 

were taken in ICES area VIIj (Celtic Sea) on 4 March, just before the peak of 

spawning for whiting. During that time nearly all maturity stages except spent fish 

were present. The whiting samples were taken from a catch of around 300 fish and 

contained 40 and 39 fish respectively from the range of available maturity stages. The 

fish were tagged with complex codes to ensure the assessors would not remember 

individual fish. The assessors were not aware that there were approximately equal 

numbers of fish from each maturity stage. 

The maturity of the fish was assessed using the maturity scale given in Table 3.1. In 

both plaice samples, maturity stages F1, F2 and F4 were identified for females and 

stages M1, M3 and M4 were found for males. For plaice, maturity stages F3 and M2 

are usually not distinguished but the numbering is maintained for consistency with 



3. ASSIGNMENT OF MATURITY STAGES 

 20 

other species. In the whiting samples, maturity stages F1 to F5 were identified for 

females and stages M1 to M4 for males. 

The plaice samples were assessed by four people each to allow for comparisons 

between workers. The samples were then stored overnight at 4°C in a sealed plastic 

bag to keep them as fresh as possible. The next day, the samples were assessed again 

by the same set of people to allow for comparisons within, as well as between, 

assessors. The whiting samples were assessed by three people, both samples were 

assessed twice by each person on the same day; these samples could not be stored 

overnight as they tended to deteriorate more rapidly than plaice. There was some 

variation in the experience of the workers concerned. Person A, who had a number of 

years of experience in the assessment of maturity stages, trained all others except 

person C, who was trained independently. All others had little previous experience in 

maturity staging. Training took place while at sea using both fresh and photographic 

material. 

To examine the agreement between two people classifying the same sample, Cohen 

(1960) proposed a coefficient of agreement, kappa, which takes into account that a 

certain amount of agreement between two judges might be expected by chance. 

Cohen’s kappa is, in other words, the proportion of agreement after chance agreement 

has been removed.  It is given by: 

(3.1) 
e
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pp

−
−

=
1

κ  

where po is the observed proportion of agreement and pe is the proportion of 

agreement expected by chance. For a comparison between persons A and B using n 

categories (i = 1, 2, …, n), the proportion of agreement expected by chance is given 

by: 
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where pa,i is the proportion of the sample that person A attributes to category i and pb,i 

is the proportion of the sample that person B attributes to category i. Kappa ranges 

from -1 to 1, where κ = –1 indicates complete disagreement and κ = 1 indicates 

complete agreement. Cohen’s kappa is widely used in the social and medical sciences 

where nominal and ordinal scales are used regularly. 

The interpretation of kappa can be sensitive to asymmetric or systematic disagreement 

and to very high or very low prevalence (Schuster, 2004). Systematic disagreement 
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will be tested for using binomial tests (see below). No cases of extreme prevalence 

occurred as the samples were selected to have approximately equal numbers in each 

maturity category. Additionally, the use of kappa requires the assumption of 

independent ratings (Cohen, 1960). This assumption is met, as each sample only 

contributes to one paired rating for each comparison and the assessors worked without 

knowledge of the others’ results. The fact that two assessors assess the same samples 

does not contravene the assumption of independence. Cohen’s kappa was originally 

proposed for the use of nominal scales and another parameter, weighted kappa, was 

later introduced to deal with ordinal scales (Cohen, 1968). The maturity scale is an 

ordinal scale as one maturity stage follows the next, however for the current study no 

distinction will be made between a disagreement over consecutive points on the scale 

(e.g. F1-F2) or points further apart (F1-F5), therefore unweighted kappa is appropriate 

in the present case. 

Differences between correlated kappa values can be evaluated by bootstrapping the 

pairs of observations (Efron and Tibshirani, 1993; McKenzie et al., 1996). For each 

kappa value, 1000 bootstrap replications were performed and confidence intervals 

(CI) were generated for the differences between two bootstrapped kappa values. The 

95% CI were estimated from the percentiles of the differences. If the CI did not 

include zero, the difference was considered larger than zero and kappa values were 

significantly different at the 5%. For differences between two mean kappa values, the 

means were calculated for each bootstrap replication and otherwise the same 

procedure was followed. 

Kappa quantifies agreement but it does not give any information on whether 

disagreement is random due to bias. One assessor might interpret the maturity scales 

in a systematically different way from the others or disagreement might be random. If 

disagreement is random, the number of fish that one assessor assigned to a certain 

category with which a second assessor did not agree, should not be significantly 

different from the number of fish that the second assessor assigned to this category 

with which the first did not agree. If this difference is significant, disagreement could 

be systematic and might result from a difference in the interpretation of the maturity 

scale. As the number cases of disagreement in each category is generally low (n<10), 

a binomial test is appropriate to test for a systematic difference (Zar, 1999).  The 

binomial test was performed separately for each of the available categories. To reduce 

the risk of type I error (false positive), a Bonferroni correction for repeated tests was 
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applied to the significance level (Bland and Altman, 1995). With k categories (one test 

for each category) and an overall significance level of 5%, the significance level for 

each individual test, αk, is given by: 

(3.3) ( )105.0 −= kkα  

All computations were performed in the R environment (Venables et al., 2005). 

3.4. Results 

Table 3.2 shows the total of all pair-wise combinations between assessors by maturity 

stage for the plaice samples. There was some variability in the assignment of male and 

female plaice at the early maturity stages. This was mainly due to one person, assessor 

G. Stage F4 was assigned with the highest consistency in plaice, while there was 

considerable disagreement between stages F1 and F2. For male plaice, most of the 

disagreement was between stages M3 and M4. Table 3.3 shows the figures for 

whiting. The most consistent maturity stage for whiting was F5, with high 

disagreement between F2 and F3 for females and around M1 and M2 for males. In 

general, most of the disagreement was confined to consecutive maturity stages, 

indicating that the distinction between these stages was not clearly defined. 

Kappa values were calculated for comparisons between and within assessors (Table 

3.4 and Table 3.5). To test if there were differences in agreement between the first and 

second time the samples were assessed (e.g. due to deterioration of the samples), the 

mean kappa values for all comparisons within the first assessment, were compared 

with those within the second. For plaice sample I, the mean kappa value was 0.83 for 

the first time and 0.76 for the second time the samples were assessed. For plaice 

sample II, mean kappa values were 0.70 for the first and 0.73 for the second 

assessment. Neither of these differences was significant (bootstrapped difference, 

p>0.05). Whiting sample I had a higher mean kappa value for the first assessment 

(0.71) than for the second (0.60) but whiting sample II had a lower mean kappa value 

for the first assessment (0.65) than for the second (0.80). Again, neither difference 

was significant at the 5% level. Therefore, there seems to be no reason to assume that 

there were any differences in agreement between the first and the second time the 

samples were assessed. 

To examine if agreement within assessors was higher than between assessors, the 

differences in the mean kappa values for comparisons within and between assessors 

were evaluated. For plaice sample I, the mean kappa value for comparisons within 
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assessors was significantly higher than the overall mean kappa value between 

assessors (0.89 and 0.80 respectively; bootstrapped difference: p<0.05).  For plaice 

sample II, the mean kappa within assessors was nearly the same as the mean kappa 

between assessors (0.70 and 0.71); the difference was not significant. As both whiting 

samples were assessed by the same set of people, the samples were combined; the 

mean kappa within assessors was higher than between assessors (0.70 and 0.65 

respectively) but this difference was not significant. 

The most experienced workers, A and C, obtained higher kappa values for within-

assessor comparisons than most others, although assessors D and F also scored highly 

(Table 3.4). Person C scored low kappa values for between-assessor comparisons and 

appeared to assign some maturity stages in a different way from the others: for the 

first time plaice sample I was assessed, a significant systematic difference was found 

between persons A and C (two-tailed binomial test, p<0.01), for the second time the 

sample was assessed systematic differences found between B and C and between C 

and D (two-tailed binomial test, p<0.01). In every case, person C was more likely to 

assign stage F2 and less likely to assign F1 than the others. Assessor C can therefore 

be considered to be biased towards the others. No significant systematic differences 

were found in any of the other comparisons. Another person that deviated from the 

general pattern was assessor G (plaice sample II). Agreement was very low for all 

comparisons with this assessor and particularly within person G. This indicates that 

person G was generally inconsistent in the assignment of maturity stages. 

3.5. Discussion 

An important assumption of the study is that the first time the samples were assessed, 

was independent from the second assessment. Although the workers were aware that 

they were assessing the same sample twice, the experiment was designed to make it 

difficult for anyone to remember individual fish. The fish were labelled with complex 

codes and samples contained few very small, very large or otherwise distinctive fish. 

The two whiting samples were given in a different order than the assessors were told 

to expect but this was not noticed by anyone so individual codes or fish were not 

remembered. The first and second assessment of each sample can therefore be 

considered independent. It is also implicitly assumed that the condition of the samples 

did not deteriorate over time. There is little reason to assume that they did, as the 

mean agreement did not decrease significantly for any of the plaice or whiting 
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samples. It can therefore be assumed that comparisons between and within the 

assessors are valid. 

Variability appeared to be high for certain maturity stages, while others appeared to 

be quite well defined. It is assumed that fish of either sex at maturity stages 1 and 2 

will not spawn in the current season and that all fish of stage 3 and higher are mature. 

Therefore the most important distinction is between stages 2 and 3. For plaice there 

was little disagreement between the assignment of mature and immature fish. 

However, for whiting, there was considerable variability between the immature 

females (F2) and maturing females (F3). This could potentially have a large effect on 

the estimate of the proportion of mature fish in the population. In the present case, 

maturity stage F3 was quite rare in the catches (<4%), so this effect is probably small 

for the current survey. However, these results highlight the importance of timing of 

sampling. Size frequency analysis of the oocytes of plaice and whiting (Gerritsen et 

al., unpublished data; Appendix B page 110) shows that vitellogenic cells in plaice 

quickly reach a relatively large size. On the other hand, in whiting there is no obvious 

gap in the size range between pre-vitellogenic and vitellogenic cells. It is therefore 

more difficult to distinguish females with vitellogenic cells (F3; mature) from those 

without vitellogenic cells (F2; immature) in whiting. 

One person, assessor C, was shown to be biased towards the other assessors. It is 

interesting to note that C was trained independently from the others. If person C is 

omitted from plaice sample I, mean kappa within and between assessors is no longer 

significantly different. So, with the exception of person C, there does not seem to be a 

higher agreement within assessors than between them. This suggests that the 

disagreement found was almost entirely due to chance and not due to differences in 

interpretation of the maturity scale. This has a number of implications, firstly, it is 

unlikely that the consistency of most assessors can be much improved by further 

training; some maturity stages simply could not be assigned consistently, even when 

samples were assessed repeatedly by the same person. On the other hand, it should be 

possible to address the issues of systematic disagreement (assessor C) and major 

inconsistency (assessor G) by calibration exercises and additional training. 

For the purposes of quality control, it would be very useful to repeatedly assess a 

number of maturity samples each time they are collected. However comparing more 

than two assessors or repeatedly assessing the same assessor is quite time consuming 

and might not be possible on a routine basis. Additionally, unlike age reading, it will 
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not be possible to return to the maturity samples and assess them again if agreement 

falls below a certain threshold. On the other hand it would be feasible for two 

assessors to note maturity stages independently of each other as part of the normal 

sampling procedure. This information would be valuable to monitor the progress of 

training or calibration exercises. It would also contribute to finding a realistic value of 

kappa at which agreement is considered adequate. At the moment this is not possible, 

as too few samples have been assessed so far. 

Hunter and Macewicz (2003) suggested that maturity scales could be improved by 

reducing the number of classes and focussing on the most reliable characteristics. The 

present study seems to confirm this; maturity stages that were not unequivocally 

defined could not be distinguished consistently and therefore the value of a maturity 

scale with a large number of stages is doubtful. The study on herring gonads (ICES, 

2005a) also seems to support this finding. A maturity scale that distinguishes between 

virgin, maturing, spawning and spent fish might be a good compromise between 

gleaning detailed information and obtaining consistent results. The current findings 

will most likely generalise to other species in other areas as most maturity scales are 

based on similar criteria. 
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3.7. Tables 

Table 3.1. Macroscopic maturity scale for plaice and gadoids. Adapted from Bromley 

(2000) and Tomkiewicz et al. (2003b). 

Females Males 

F1 Ovary small, contents translucent, 

nearly colourless 

M1 Testes tiny, translucent and 

undeveloped 

F2 Contents blurred translucent, 

pinkish, no oocytes visible 

M2 Gadoids: lobules developing but 

still pinkish and translucent. 

Plaice: no stage M2 

F3 Gadoids: ovary opaque, contents 

yellow, individual oocytes not yet 

visible. Plaice: no stage F3 

M3 Testes developing, creamy white 

and opaque. Testes less than 50% 

of full size 

F4 Ovary contains opaque oocytes, 

clearly visible when ovary is cut 

M4 Testes filling but no sperm 

visible when cut 

F5 Ovary contains hydrated cells but 

does not run 

M5 Sperm visible when cut but testes 

do not run 

F6 Like stage 5 but runs under 

moderate pressure 

M6 Testes run under moderate 

pressure 

F7 Ovary slack, contains slime and 

sometimes remaining oocytes 

M7 Testes can be quite small, fluid 

remaining in sperm duct 

 

Table 3.2. Tally of all pair-wise comparisons between assessors by maturity stage for 

the combined plaice samples. Percentages of raw agreement are given. 

Plaice M1 M3 M4 F1 F2 F4 Agreement 

M1 105 13 1 19 3 0 74% 

M3  126 49 10 3 0 63% 

M4   150 1 3 0 74% 

F1    74 83 0 40% 

F2     141 10 58% 

F4      169 94% 
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Table 3.3. Tally of all pair-wise comparisons between assessors by maturity stage for 

the combined whiting samples. Percentages of raw agreement are given. 

Whiting M1 M2 M3 M4 F1 F2 F3 F4 F5 Agreement 

M1 50 15 2 2 0 2 1 0 0 69% 

M2  9 9 0 0 0 2 0 0 26% 

M3   12 34 0 0 0 1 0 21% 

M4    44 0 0 1 1 0 54% 

F1     3 4 0 0 0 43% 

F2      77 46 2 0 59% 

F3       46 8 0 44% 

F4        32 10 59% 

F5         61 86% 

 

Table 3.4. Kappa values for comparisons between and within assessors A-G for plaice 

samples I and II. Kappa values above the diagonal are from the first time the samples 

were assessed; below the diagonal are the values for the second assessment. 

Comparisons within assessors are shaded. 

Plaice I 1st assessment  Plaice II 1st assessment 

2nd assess A B C D  2nd assess A E F G 

A 0.91 0.97 0.70 0.97  A 0.88 0.84 0.76 0.66 

B 0.79 0.79 0.73 0.94  E 0.88 0.67 0.72 0.60 

C 0.70 0.66 0.90 0.67  F 0.76 0.79 0.81 0.63 

D 0.94 0.73 0.71 0.94  G 0.64 0.64 0.67 0.42 

 

Table 3.5. Kappa values for comparisons between and within assessors I-K whiting 

samples I and II. See Table 3.4 for further description. 

Whiting I 1st assessment  Whiting II 1st assessment 

2nd assess I J K  2nd assess I J K 

I 0.54 0.71 0.46  I 0.76 0.59 0.62 

J 0.66 0.59 0.65  J 0.59 0.81 0.67 

K 0.74 0.74 0.70  K 0.56 0.94 0.76 
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Chapter 4 

A simple method for comparing age-length keys reveals 
significant regional differences within one stock of 

haddock (Melanogrammus aeglefinus L.) 

This chapter is reproduced from the following original publication: 

Gerritsen HD, McGrath D, Lordan C (2006) A simple method for comparing 

age-length keys reveals significant regional differences within a single stock 

of haddock (Melanogrammus aeglefinus). ICES J. Mar. Sci. 63: 1096-1100 

An earlier version of the paper has been presented to the ICES workshop WKSDFD:  

Gerritsen H (2005) Modelling age-length keys. ICES Workshop on Sampling 

Design for Fisheries Data (WKSDFD). Pasajes, Spain, 1-3 February 2005 

4.1. Abstract 

A multinomial logistic model is presented as a tool for comparing two or more age-

length keys. The model provides an objective way to fill in missing values and can be 

used for estimating uncertainty and visualising age-length keys (ALKs). An example 

of haddock (Melanogrammus aeglefinus L.) in ICES Division VIa (West of Scotland) 

is used to illustrate that significant regional differences in the proportions of age 

classes-at-length can exist on a small spatial scale. These differences were caused by 

regional variation in both length-at-age and relative abundance-at-age. As the length-

at-age data are not normally weighted by the local catch rate (abundance), the ALK of 

the combined age data can result in strongly biased estimates of numbers-at-age. In 

the present case, the use of unweighted age data would have resulted in an over-

estimate of recruitment of nearly 200% and an under-estimate of the spawning stock 

biomass of 15%. Comparing ALKs using this method will have several applications in 

fisheries science. 

 

Key words: age-length key; multinomial logistic model; sampling design; haddock. 

4.2. Introduction 

Most fisheries stock assessments are based on estimates of numbers of fish per age 

class. Sampling for age data generally takes place on a non-random (length-stratified) 

basis where sampling targets are set by length class. Additionally, a larger random 
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sample is taken to obtain the length frequency of the catch or landings. To estimate 

numbers at age, the aged sample is raised to the total length frequency using an Age-

Length Key (ALK), which consists of the proportions at age for each length class 

(Fridriksson, 1934). The length-stratified sampling strategy ensures that fish from a 

wide range of sizes are represented in a relatively small aged sample. 

All age-at-length data from an entire stock are often combined without weighting 

under the assumption that differences between gear types or regions can be 

disregarded (e.g. ICES, 2005c). Differences in size selectivity among gears should not 

influence the proportions of age classes at a given length, assuming that within each 

length class the probability of capture is independent of age. However, regional 

differences in the length-at-age distributions do have the potential to result in a biased 

ALK. These differences might be caused either by variation in length-at-age 

distributions or by variation in relative abundance of the age classes. For example, 

fish of a certain age might have a larger mean length in one area than another, due to 

differential growth rates or size-specific migration. Additionally, in certain length 

classes, proportions of young fish might be higher in nursery areas than elsewhere, 

simply because they are locally more abundant, relative to other age-classes. 

Various methods have been applied to test for differences between ALKs. Hayes 

(1993) and Horbowy (1998) both suggested comparing individual cells of the ALKs 

using multiple Fisher’s or Chi squared tests. Although the application of these tests is 

straightforward, the interpretation of the results is not, as there are as many p-values 

as the number of age and length classes that are considered. Additionally, any cells 

that do not contain enough data, have to be omitted, so the tests can only be applied to 

large data sets. Dwyer et al. (2004) took a different approach and suggested applying 

a two-dimensional Kolmogorov-Smirnov test. This approach only requires a single 

test to compare two ALKs. However, the two-dimensional Kolmogorov-Smirnov test 

is not widely available in statistical packages, nor does it appear to be the most 

parsimonious solution. Rindorf and Lewy (2001) applied multinomial models of 

continuation-ratio logits to aged data. This approach has many advantages, however 

Rindorf and Lewy’s model required a polynomial function to be defined to allow 

every possible type of distribution to be modelled. However if one makes the 

assumption of normality in the length-at-age distributions, Rindorf and Lewy’s 

method can be greatly simplified by removing the need for arbitrary smooth functions. 
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The assumption of normality in length-at-age distributions is routinely being made, 

either with constant variance over the age groups or variance proportional to mean 

length (e.g. Schnute and Fournier, 1980; Labonté, 1983; Rosenberg and Reddington, 

1988). However, in contrast to these studies, the current assumption of normality is a 

weak one and applies only to the population from which sample was drawn, not the 

aged sample itself (which is non-random) or even the catch (which is often size 

selective).  

The suggested approach allows for multinomial logistic models to be applied, testing 

for differences between ALKs. In addition, the models can be used to predict missing 

values, estimate uncertainty and help visualise ALKs. The method will be illustrated 

by examining the variability in ALKs of haddock to the west of Scotland (ICES 

Division VIa) through the application of multinomial models to age-at-length data 

from the 2004 Irish Groundfish Survey. 

4.3. Methods 

Logistic models with a binomial error distribution are widely used in fisheries science 

to describe the relative proportions of two overlapping distributions. Examples 

include size selection ogives for fishing gear, discarding ogives and maturity ogives. 

In the case of ALKs, there are mostly more than two overlapping length-at-age 

distributions and therefore a multinomial logistic model is required to describe the 

proportions of age-at-length. Multinomial models can be fitted by maximising the 

product of the conditional binomial trials simultaneously (Beare and McKenzie, 1999; 

Rindorf and Lewy, 2001). Alternatively the S-PLUS® and R packages provide the 

function multinom() which fits multinomial log-linear models via neural networks 

(Venables and Ripley, 1994).  Some examples of R-code applying multinomial 

models to age-at-length data are provided in Appendix C, page 114. 

Multinomial model selection, testing and estimation can be carried out in a similar 

way to generalised linear modelling (McCullagh and Nelder, 1989). Model selection 

allows one to identify which factors contribute significantly to the explanatory power 

of the model and to test for differences between regions, gear types etc. Model 

estimation can be used to interpolate missing values. It is a regular occurrence that for 

certain length classes in the total length frequency, no aged samples are available. 

These gaps in the data need to be filled in to allocate numbers-at-age for the relevant 

length classes. The multinomial logistic model provides an objective way to do so. 
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Here, ALKs of haddock (Melanogrammus aeglefinus L.) were obtained from the Irish 

Groundfish Survey, carried out by the Marine Institute in October and November 

2004 on RV “Celtic Explorer”. Data from ICES Division VIa (West of Scotland) were 

selected to illustrate the method. The area was divided into three depth strata: shallow 

(<75m), medium (75m-125m) and deep (>125m). Sampling targets of five age 

samples per cm length class were set for each of the strata, so a separate ALK was 

available for each stratum. Fish ages were determined by sectioning the sagittal 

otoliths through the nucleus and counting the number of hyaline rings. 

Multinomial logistic models of the following form were fitted: 

(4.1) A ~ L + S + L.S 

where A is the predicted age distribution at length L in stratum S. L was fitted as a 

continuous variable, S as a factor and L.S is an interaction term. The significance of 

the factor stratum in the model was tested by comparing the initial model to a model 

without that factor.  The difference in residual variance of these nested models was 

tested against the difference in the model degrees of freedom (υ) using the Chi-square 

test (Collett, 2003). For the current analysis, age classes of 4-year-olds and older were 

combined into a single plus-group. As catches of 0-group fish were scarce and did not 

overlap in size with the other age classes, they were omitted from the analysis. 

All haddock from VIa are considered to be a single stock and for the purposes of 

stock-assessment it is common practice to use a single ALK to obtain numbers-at-age 

without weighting the age data in any way (ICES, 2005c). For the present study, 

numbers-at-age in the survey catches were estimated in two ways: firstly by 

combining all age data without weighting and secondly by weighting the age data by 

the relative abundance in each stratum. The relative abundance in each stratum was 

estimated from the catch numbers per unit effort (CPUE), multiplied by the surface 

area of each stratum. The unit effort is a standard half-hour trawl, towed at 3kn. The 

length frequency data were expressed as CPUE and weighted by stratum surface area 

in all cases to obtain an unbiased length frequency for the combined strata. 

Standard errors for the numbers-at-age estimates were obtained using a bootstrapping 

routine (Efron and Tibshirani, 1993). The individual fish in the aged sample were 

treated as independent sampling units and re-sampled 500 times. This approach, as 

opposed to re-sampling within length classes, can result in length classes without data, 

therefore a multinomial model was fitted to the data for each bootstrap iteration. 

Standard errors were estimated from the standard deviation of the bootstrapped 
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estimates from the modelled data. The length distributions were assumed to be known 

without error.  

4.4. Results 

A very highly significant stratum effect was found for a model that contained data 

from all three strata (χ2=133.3; υ=16; p<0.001). When the shallow stratum was 

omitted from the dataset, the stratum effect was no longer significant (χ2=9.2; υ=8; 

p=0.32). However, if either one of the other strata were omitted, the stratum effect 

remained highly significant. This indicates that the ALK of the shallow stratum was 

significantly different from the ALKs of two other strata and that the ALKs of the 

deep and medium strata were not significantly different from each other. Figure 4.1 

shows the observed and modelled proportions at age and length distributions. The 

figure indicates that the main difference between the strata lies in the proportions of 

one-year-olds in length classes 25-35cm, which were considerably higher in the 

shallow stratum than in the other strata. 

In the medium and deep strata, two-year-olds were by far the most common age class 

in the catches (Table 4.1). In the shallow stratum, one-year-olds were most abundant, 

relative to other age classes. In addition, the mean length-at-age appeared to be higher 

for most age classes in the shallow stratum than in the others (Table 4.2). Combining 

all aged data into an ALK without weighting, resulted in estimated catch numbers for 

one-year-olds that were nearly twice as high (88 fish per unit effort) as the estimate 

using age data weighted by abundance (47 per unit effort; Table 4.2). If the present 

data were used as an absolute estimate of the spawning stock biomass, the unweighted 

estimate would have resulted in an under-estimate of the spawning stock biomass by 

15%, assuming a knife-edge maturity at age two (ICES, 2005c). 

The main reason for the bias in the unweighted ALK, appears to be that fish from the 

shallow stratum were over-represented in the sampling. Catch rates in the shallow 

stratum were around 8 times lower than in the medium and deep strata, but the sample 

numbers for age were actually higher in the shallow stratum (Table 4.2). As the one-

year-olds in the shallow stratum were relatively abundant (compared to other age 

classes) and, on average, about 2cm larger than in the other strata, the proportions of 

one-year-olds at length were over-estimated in many size classes of the unweighted 

ALK. 
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4.5. Discussion 

The multinomial model used here, is a special case of the methodology presented by 

Rindorf and Lewy (2001). It eliminates the need to apply a polynomial function to the 

length classes, which improves the transparency and simplicity of the model. A model 

with A age classes only requires 2(A-1) model parameters; the apparently complex 

shape of the model (e.g. Figure 4.1) results from the added proportions of the various 

age classes. 

The assumption of normality applies not to the aged data but only to the underlying 

population because the model uses proportions (age-at-length), not length-at-age 

distributions. This is most clearly demonstrated in the binomial logistic case, for 

example a discard ogive. The symmetric s-shaped curve that describes a discard 

ogive, results from the proportions of two overlapping distributions: one length 

distribution of discards and one of landings. If both distributions were strictly normal 

(at least in the area of overlap) with equal variance, a logistic binomial curve would 

describe the proportions-at-length exactly, regardless of any size selection in the 

sampling. For most binomial applications the assumption of normality cannot be 

made, however the proportions-at-length still tend to follow an s-shaped curve that is 

closely described by the logistic curve (McCullagh and Nelder, 1989; Collett, 2003). 

The multinomial case expands on the binomial model by describing the proportions of 

more than two overlapping distributions. Unlike many binomial applications, length-

at-age distributions do tend to be approximately normally distributed with similar 

variances (e.g. Schnute and Fournier, 1980; Labonté, 1983; Rosenberg and 

Reddington, 1988). 

Sexual dimorphism in growth could result in bimodal, hence not normal, length-at-age 

distributions. In this case, it might be advisable to sample the sexes separately, as is 

feasible for some flatfish that can be sexed without dissection. Alternatively, one can 

apply an age-sex-length-key, which should restore the normal length-at-age 

distributions; the factor sex could then be added to the multinomial model. 

The model appears to be a useful tool to detect significant differences between ALKs, 

although the likelihood of finding these differences will, of course, depend on the 

number of fish sampled. The model is also useful for obtaining confidence limits or 

variance estimates and it can deal with missing length classes: if no aged data exists 

for a certain length class, the model can predict the expected proportions of the age 
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classes for that (or any other) length class. In the future, the model might be expanded 

to include seasonal changes, for example by fitting smooth curves through a time 

variable. 

The current example shows that there can be a high degree of spatial variability in 

ALKs, which can result in strongly biased numbers-at-age estimates. This has many 

implications for the unit-stock and dynamic pool assumptions that underlie many age-

based stock assessments. Many stocks are known to have nursery areas or age- or 

size-specific migration and will therefore have regional differences in the age 

structure. If the number of age samples is proportional to the local abundance of fish, 

the estimates will be unbiased, but otherwise the aged samples should be weighted by 

the abundance in each region before they are combined into an ALK to avoid bias. 

These considerations apply to survey data, as well as to data from commercial 

sources, where data from many regions are often combined without weighting. 

In the present case, the consequences of using an unweighted ALK would be a large 

bias in the estimated abundance of one-year-old fish. Many stock assessments use 

survey indices in a relative sense and this bias might be corrected by a catchability 

parameter. However if the bias changes from year-to-year due to year class effects, 

changes in survey design or other mechanisms, there will be implications for the 

assessment and management advice. If this survey were used in an absolute sense 

(e.g. Beare et al., 2005) the consequence of the bias would have been a nearly two-

fold over-estimate of the 2003 year class and an underestimate of the spawning stock 

by 15%. 
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4.7. Figure and Tables 
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Figure 4.1. Proportions-at-length of age groups 1 to 4+ in the three depth strata and 

the length-at-age distributions estimated by applying ALK models to the total catch 

length frequencies. The circles represent the observed proportions with their 

individual 95% confidence intervals and the curves represent the predicted 

proportions from the multinomial models. The shades of the stacked bars correspond 

to the different age classes. The proportions of one-year-olds were higher in the 

shallow strata than in the other strata for length classes up to 35cm. 

 

Table 4.1. Summary statistics of the three depth strata in ICES area VIa. Given for 

each stratum are the surface area (in nautical miles); the number of stations; the 

catch per unit effort (CPUE) and the number of fish sampled for age reading. 

 Area (nm) Stations CPUE Nos aged 

VIa Shallow 4000 18 59 96 

VIa Medium 5400 17 460 62 

VIa Deep 2700 6 455 41 
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Table 4.2. Estimated numbers-at-age and mean lengths-at-age for individual strata 

and for the combined area after application of weighted and non-weighted ALKs. 

Weighting the ALKs resulted in considerably lower estimates for the number of one-

year-old fish. Standard errors were obtained by bootstrapping and are given in 

brackets. Numbers-at-age and lengths-at-age were obtained by applying the ALK to 

the catch length frequency in each stratum. 

 Age class 

Stratum 0  1  2  3  4  5 

 

Numbers-at-age (per unit effort) 

VIa Shallow 1 (5)  21 (2)  18 (3)  13 (3)  3 (1)  4 (5) 

VIa Medium 3 (0)  71 (19)  226 (24)  91 (17)  40 (10)  30 (7) 

VIa Deep 2 (0)  34 (8)  160 (22)  36 (14)  93 (20)  129 (21) 

 

Numbers-at-age for combined strata (per unit effort) 

VIa - not weighted 2 (1)  88 (10)  121 (10)  46 (6)  34 (5)  36 (5) 

VIa – weighted 2 (1)  47 (10)  143 (13)  53 (9)  39 (7)  43 (6) 

 

Mean-length-at age (cm) 

VIa Shallow 14.2 (3.1)  26.7 (1.4)  32.1 (0.8)  34.8 (0.7)  36.0 (1.2)  37.4 (3.5) 

VIa Medium 15.1 (0.3)  24.6 (0.5)  27.0 (0.2)  31.0 (0.4)  33.3 (0.7)  36.0 (0.9) 

VIa Deep 13.8 (0.3)  24.7 (0.7)  27.7 (0.4)  31.7 (0.8)  31.9 (0.6)  33.2 (0.5) 
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Chapter 5   

Significant differences in the length-weight relationships 
of neighbouring stocks can result in biased biomass 
estimates: examples of haddock (Melanogrammus 

aeglefinus, L.) and whiting (Merlangius merlangus, L.) 

This chapter is reproduced from the following original publication: 

Gerritsen, HD, McGrath D. (In press) Significant differences in the length-

weight relationships of neighbouring stocks can result in biased biomass 

estimates: examples of haddock (Melanogrammus aeglefinus, L.) and whiting 

(Merlangius merlangus, L.). Fish Res. XX:XX-XX. 

doi:10.1016/j.fishres.2007.01.004 

5.1. Abstract  

Length-weight relationships of fish are often used for estimating biomass or to obtain 

an index of condition. Although large-scale spatial trends are known to exist, it is 

often assumed that length-weight relationships do not vary significantly within stocks 

or between neighbouring stocks. The present study examined length-weight 

relationships of 1334 haddock (Melanogrammus aeglefinus) and 1186 whiting 

(Merlangius merlangus) collected on a groundfish survey in the waters around Ireland 

in 2004. Additionally, condition indices were estimated for individual fish and for 

length frequency samples to summarise their length-weight relationships. The length-

weight regression showed a significant area effect and no differences between the 

sexes. The condition indices showed a moderate spatial structure for both species: 

around 25% of the variability could be explained by the location of the samples, the 

rest of the variability was due to other sources. Length-weight relationships did not 

appear to vary significantly within stocks, however differences between stocks were 

significant. In the present case, a bias of up to 10% could occur in biomass estimates 

as a result of applying length-weight relationships of one stock to length data of a 

neighbouring stock.  

 

Key words: length-weight; condition; haddock; whiting; biomass estimate. 
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5.2. Introduction 

Length measurements can be obtained quicker and under a larger range of 

circumstances than weight measurements, therefore a limited number of weight 

observations is often used to construct a length-weight relationship. This relationship 

can then be used to convert length distributions into weights for biomass estimates. A 

widely used relationship between length (L; in cm) and weight (W; in grams) is the 

power function: 

(5.1) baLW =   

This relationship can also be used to estimate a condition index. By keeping 

parameter b constant for a species or stock, parameter a can be estimated for 

individual fish and used as a condition index (Anderson and Neumann, 1996). 

The parameters a and b can either be estimated by linear regression on the log-

transformed variables (Ricker, 1975) or by non-linear regression of non-transformed 

variables (Hayes et al., 1995). The two methods differ in their assumptions on the 

error structure. Linear regression on the log-transformed variables assumes that the 

errors in the observed weights are log-normally distributed and multiplicative, while 

non-linear regression assumes a normally distributed, additive error structure (Hayes 

et al., 1995). Linear regression results in a bias due to the logarithmic transformation: 

the model passes through the geometric mean, rather than the arithmetic mean, but 

this can be adjusted using a simple correction factor (Sprugel, 1983). 

Many biological parameters are known to vary over small geographical ranges (e.g. 

Armstrong et al., 2004; Gerritsen et al., 2006). Nevertheless, for stock assessment 

purposes, length-weight relationships are often assumed to be uniform for an entire 

stock. When data are sparse for a certain stock, length-weight relationships from 

neighbouring stocks are sometimes applied (e.g. ICES, 2004b). However, regional 

differences in the length-weight relationships and condition indices of fish are known 

to exist (Brodziak and Mikus, 2000; Rätz and Lloret, 2003). These differences could 

potentially bias biomass estimates. It is presently unclear to which extent differences 

exist within stocks or between neighbouring stocks. The aim of the present study is to 

investigate the spatial variability in length-weight relationships and condition indices 

of haddock (Melanogrammus aeglefinus) and whiting (Merlangius merlangus) in the 

waters around Ireland and quantify the potential effects this regional variation might 

have on biomass estimates. 
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5.3. Methods 

Length and weight data were collected on the 2004 Irish Groundfish Survey. This 

survey is carried out annually on the RV “Celtic Explorer” in the months of October 

and November. The 2004 survey covered 161 stations around the Irish and Northern 

Irish coasts in a depth range from 10 to 250m. Trawling took place during daylight 

hours for 30 minutes at 3kn of speed over the ground using a GOV trawl (ICES, 

1999). The survey area was divided into 14 strata, based on ICES Divisions and 

bottom depth. Each ICES Division was divided into shallow (<75m), medium (75m-

125m) and deep (>125m; where present) depth bands (Figure 5.1). The catch was 

speciated, weighed and samples were taken for length measurements. Additionally, 

biological samples were taken on a length-stratified basis to obtain the age, round 

weight, sex and maturity stage of individual fish. A target of five biological samples 

per cm length class was set for each stratum. The length of the fish was measured to 

the nearest cm below the total length and round weights were recorded in grams. 

Haddock and whiting were the most abundant commercially exploited demersal 

species caught on the survey. Individual weights were recorded for 1334 haddock and 

1186 whiting. 

Values in the length-weight relationships that were obviously spurious, were removed 

from the dataset after examination of plots of the raw and log-transformed variables. 

These spurious values amounted to less than 0.2% of the observations. In addition, all 

fish under 15cm were omitted, as the precision of the weighing scales was considered 

too low for fish at those sizes. The residuals from linear models of the log-

transformed lengths and weights were approximately normally distributed and their 

variance appeared constant over the range of the predictor variable. Therefore linear, 

rather than non-linear modelling techniques were applied. No bias correction was 

applied, as the length-weight relationships were only evaluated relative to each other 

and not in absolute terms. 

A stepwise linear regression procedure was employed to identify influential variables 

(Draper and Smith, 1998). The Akaike Information Criterion (AIC) was used to 

evaluate the improvement of the model when adding or dropping a term (Sakamoto et 

al., 1986). The predictor variables for ln(weight) that were evaluated, were the main 

effects ln(length); stratum; stock; bottom depth; age and sex and all possible 

interactions between them. Age classes of three years and older were collapsed into 
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one group due to the low catch numbers at these ages. The terms ln(length) and depth 

were fitted as continuous variables, the terms stratum, stock, age and sex were fitted 

as factors. Most gonads were inactive and small at the time of sampling; therefore 

information on the maturity stage was not included as an explanatory variable. The 

term stratum is likely to be correlated with the terms bottom depth and stock. 

Therefore, the terms made available to the models included either stratum or bottom 

depth and stock but never all three terms. 

Due to the relatively low numbers of biological samples at each station, it was not 

possible to accurately estimate both parameters from Equation (5.1) for each 

individual haul. Therefore, in order to obtain information on the length-weight 

relationship on a fine spatial scale, parameter b was estimated for the combined data 

of the entire survey and the condition index (parameter a) was then estimated for 

individual fish by solving Equation (5.1). The condition index for individual fish was 

used to estimate variability in the condition of individuals within hauls. 

The condition index was also estimated for entire length samples for which only a 

bulk weight was available by solving a in the following equation: 

(5.2) ∑
=

=
n

ni

b
ibulk LaW   

Where Wbulk is the bulk weight of a sample of n length measurements Li (i = 1,2,…,n). 

This sample condition index was used to investigate the variability between hauls and 

the spatial structure in the condition. Spurious values and samples of less than 10 fish 

were removed, leaving in 108 hauls for haddock and 112 hauls for whiting. At some 

stations the fish were graded into size classes, resulting in two or more length samples 

per haul. For the current analysis, these samples were combined, resulting in one 

sample condition index per location. It was considered that this bulk condition index 

was a more representative measure of the condition of fish in a particular haul than the 

average condition index of individual fish taken as part of the length-stratified 

sampling scheme for biological samples. The reason for this is that the latter is a non-

random sample of the catch, while the former consists of a large number of 

individuals, thus incorporating more of the individual variation in condition. 

The spatial structure of the sample condition index was investigated using 

geostatistical methods (Rivoirard et al., 2000). Station positions were taken as the 

midpoint of the trawl and projected onto a plane using a transformation of longitude 

based on the cosine of latitude. Distances between stations were calculated as the 
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shortest distance between two points, regardless of the presence of landmasses. 

Experimental variograms were computed using code written in the R environment (R-

Development-Core-Team, 2005). A lag spacing of 10nm ±5nm was used; this 

distance is close to the mean distance of each station to its nearest neighbour. The 

maximum distance for which the variograms were calculated was 200nm, which was 

just over half the maximum distance between stations. No weighting was used 

because each sample condition estimate is derived from a single sample weight and a 

number of length measurements. The precision of the estimate does therefore not 

necessarily improve with larger sample numbers. Isotropy was assumed in the 

geostatistical models, this assumption was tested by investigating the presence of 

trends in the data by plotting the condition indices against bottom depth, latitude and 

longitude. Linear and spherical variogram models were fitted and evaluated using the 

goodness-of-fit statistic, which was weighted by the number of pairs in each distance 

bin (Rivoirard et al., 2000). 

In order to quantify the influence that the regional differences in the length-weight 

relationships might have on biomass estimates, separate length-weight regressions 

were obtained for each stratum. These relationships were then used to estimate the 

weight of a “standard” length distribution of mature fish. This length distribution was 

the average catch length distribution of mature fish, assuming knife-edge maturation 

at 25cm for both species. This corresponds roughly to the knife-edge maturation ogive 

at age two that is applied for stocks of both whiting and haddock around Ireland 

(ICES, 2004a; b). Confidence limits were estimated from the quantiles of 1000 

bootstrap replications from the length-weight data, using the sampling stations as 

bootstrapping units (Efron and Tibshirani, 1993).  

5.4. Results 

A simple linear model with ln(length) as only predictor variable for ln(weight) 

resulted in a high coefficient of determination, R2, of around 0.98 for both species 

(Figure 5.2). The residuals did not show any obvious patterns, nor did the locally 

weighted running line smoothers that were fitted through the residuals (loess with a 

span of 25%; Figure 5.2; Hastie and Tibshirani, 1990). This suggests that the linear 

model provides a good fit.  

The stepwise regression procedure identified ln(length) as the main explanatory 

variable for ln(weight) for both species, resulting in a very large reduction in the 
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residual sum of squares (Table 5.1). For both species, the factor stratum was the 

second term in the stepwise procedure to be included into the models; it resulted in a 

highly significant reduction in the AIC. Inclusion of the term stratum resulted in a 

larger reduction in the AIC than the inclusion of the terms stock and/or bottom depth, 

either with or without an interaction term. The terms stock and bottom depth were 

therefore omitted from further analysis as they were likely to correlate with the term 

stratum. 

The next terms that were added to the model in the stepwise selection procedure were 

age and the interactions ln(length).age and ln(length).stratum (Table 5.1). Adding 

these terms reduced the AIC for both species, but the associated reduction in the 

residual sum of squares was very low. This suggests that these terms have a limited 

additional explanatory power. No terms were dropped during the stepwise procedure 

and the term sex could not be included at any stage without increasing the AIC, 

suggesting that this factor does not have significant explanatory power. 

The sample condition index varied significantly between strata (ANOVA, p<0.02 for 

haddock and p<0.001 for whiting), confirming the highly significant stratum-effect 

found for the length-weight relationship. The mean length of the samples did not 

influence the condition index (ANOVA, p=0.94 and p=0.28 respectively), suggesting 

that the sample condition index is not influenced by the size composition in the 

samples.  

The variograms for the sample condition index show a large nugget effect for both 

species of around 75-80% of the sample variance (Figure 5.3). This indicates that 75-

80% of the variation is either due to factors other than location or takes place on a 

smaller scale than the sampling resolution. Nevertheless, the condition indices are not 

entirely independent of their spatial location; samples taken close together were more 

similar than samples further apart. The variogram model for haddock increases slowly 

over the entire range, suggesting a large-scale trend in the data. The whiting 

variogram stabilises around 150nm after which it does not increase further, indicating 

a large-scale structure. Data were too sparse to conclusively determine if anisotropy 

existed. However, no patterns could be discerned when plotting the condition indices 

against depth, latitude or longitude (data not shown), therefore there was little reason 

to suspect that the assumption of isotropy was violated. 

The condition indices of the individual fish were used to test if the nugget effect 

observed in Figure 5.3 was due to variation on a smaller scale than the sampling 
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resolution or due to variation within hauls. For haddock, the mean variance, weighted 

by sample numbers, within the hauls was 78% of the mean variance of all individual 

condition indices, for whiting this figure was 73%. This suggests that the nugget 

effect is not likely to be due to the scale of the sampling resolution, but due to 

variability that is independent of sampling location. The remaining 22-27% of 

variability is due to spatial factors. 

The ICES working groups for stock assessment (ICES, 2004a; b) distinguish three 

haddock stocks and four whiting stocks in the waters around Ireland (Figure 5.1). The 

haddock stocks are allocated as follows: West of Scotland; Irish Sea; Celtic Sea plus 

West of Ireland. For whiting, the Celtic Sea stock is considered separate from the 

West of Ireland stock. Figure 5.4 shows biomass estimates obtained by applying 

separate length-weight relationships for each stratum to the average length 

distribution of mature fish in the catches. The biomass estimates for haddock were 

highest using length-weight relationships from the West of Scotland stock. For 

whiting, the highest biomass estimates were consistently obtained from Celtic Sea 

length-weight relationships. The lowest biomass estimate was obtained from a length-

weight relationship from the West of Ireland. The position of the 95% confidence 

intervals suggests that differences between some of the stocks are significant, while 

differences within stocks mostly fall within overlapping confidence intervals. 

5.5. Discussion 

The linear model appeared to fit the data well and the residuals did not show any 

patterns. The linear shape of the relationship implies that life-history events like 

maturation do not influence the length-weight relationship, at least not at the time of 

sampling. In linear regression, all observations are assumed to be independent. 

However, sampling took place in a grouped way: each sampling station provided a 

number of length- weight observations. If the observations within hauls are strongly 

correlated, this assumption might be violated and the variances might not be estimated 

correctly. Lai and Helser (2004) suggest using linear mixed-effects models for 

grouped samples but the sample sizes are often too small to allow separate models to 

be fitted to data from individual stations. The data on the sample and individual 

condition indices suggested that there was some correlation within the hauls but that 

most (around 73-78%) of the variability was due to other factors than location. So for 

the purpose of variance estimation, the observations could be assumed to be 
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effectively independent. However, for the purpose of estimating biomass, the spatial 

structure does appear to be significant. 

The analysis showed that, after ln(length), the factor stratum appeared the most 

influential variable. Although the stratification was based on bottom depth, the term 

bottom depth itself did not reduce the residual sum of squares much when added into 

the model for either species. The factor age might play a small role, suggesting a 

possible year-class effect. The interaction terms suggest that not only the intercept, 

but also the slope might differ between strata and age classes. However, these effects 

are very small compared to the stratum effect. It is also interesting to note that the 

term sex was not a significant variable at any point in the stepwise selection procedure 

for either species. This suggests that there are no significant differences between the 

sexes in their length-weight relationship at the time of sampling. 

The variograms of the sample condition index showed that there was a moderate 

spatial component in the distribution of the condition indices: stations that were close 

to each other were more similar than stations with large distance between them. 

However, most of the variability does not depend on location, but is due to other 

sources of variation. This might explain why no spatial trends could be discerned in 

the condition of fish of either species: the condition did not appear to vary with depth, 

longitude or latitude in a straightforward way. The observed variability is therefore 

possibly due to a more complicated set of parameters than spatial factors alone. 

Temperature has been linked to variation in condition of cod (Lloret and Rätz, 2000; 

Yaragina and Marshall, 2000; Chouinard and Swain, 2002; Rätz and Lloret, 2003). 

However, these authors refer to variation in temperature on a much larger spatial scale 

than covered by the present study. Local differences in other environmental 

conditions, food availability and parasites could also play a role (Lambert and Dutil, 

1997; Yaragina and Marshall, 2000), as well as individual differences in energy 

allocation (Chouinard and Swain, 2002).  

The length-weight relationships of some neighbouring stocks varied enough to result 

in significantly different biomass estimates when applied to the same length-

frequency distribution. On the other hand, the length-weight relationships within the 

stocks generally did not appear to vary significantly. In the current study, the largest 

difference in biomass estimates was between the length-weight relationships obtained 

from the West of Ireland and Celtic Sea whiting stocks. The estimated weight of the 

average length distribution of mature fish per haul over the entire survey was 28.4kg 
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using the West of Ireland length-weight relationship, while the estimated weight of 

the same length distribution of whiting was 31.3kg using the Celtic Sea relationship. 

This is a difference of 10% (bootstrapped 95% confidence limits of 6-15%). Although 

the magnitude of this error is relatively small to other errors involved in stock 

assessment (e.g. Gerritsen et al., 2006), it is certainly not insignificant. Considering 

the relatively low cost of obtaining precise length-weight relationships, it seems 

worthwhile to ensure that this bias is avoided and length-weight data are only applied 

for areas from which they were obtained. 
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Figure 5.1. The survey area. The crosses represent the sample locations. The survey 

covers ICES Divisions VIa, VIIa, VIIb, VIIg and VIIj, each of which was stratified into 

shallow, medium and deep (where present) depth bands. 
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Figure 5.2. Linear models and residuals of the length-weight relationship for haddock 

and whiting. All data combined. The parameters a and b refer to equation (1), R2 is 

the coefficient of determination. A locally weighted running-line smoother (loess) with 

a span of 25% was fitted through the residuals. 
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Figure 5.3. Normalised variograms for the sample condition index of haddock and 

whiting. The dots indicate the values of the experimental variogram and the numbers 

indicate the number of paired observations in each distance bin. The solid line is the 

model with the optimum goodness-of-fit (gof). The model parameters and gov are 

given in the bottom of the plots. 
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Figure 5.4. Biomass estimates obtained by applying separate length-weight 

relationships for each stratum to the same length distribution of mature fish. The 

error bars indicate the 95% confidence limits, obtained by bootstrapping. The strata 

are indicated by their ICES Division followed by S, M or D for the shallow, medium 

and deep strata. The shallow stratum in VIIa was further divided into an eastern (e) 

and western (w) part. The stocks are identified by WSco for West of Scotland; ISea for 

Irish Sea; WIre for West of Ireland and CSea for the Celtic Sea. Differences within 

stocks appeared to be limited, but some consistent differences existed between stocks. 
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 Table 5.1. The terms and interactions that were added to the linear model using a 

stepwise selection procedure. 

 

Haddock        

Term ∆dfa 
∆SSb RSSc AICd Fe Pf  

null 1 333 973.1      

+ln(length) 1 958.6 14.6 -2233 87565 <0.001 *** 

+stratum 13 1.2 13.4 -2322 9.1516 <0.001 *** 

+age 3 0.3 13.1 -2347 10.248 <0.001 *** 

+ln(length).age 3 0.1 12.9 -2355 4.6027 0.003 ** 

+ln(length).stratum 13 0.3 12.6 -2361 2.4407 0.003 ** 

        

Whiting        

Term ∆dfa 
∆SSb RSSc AICd Fe Pf  

null 1 185 806.4      

+ln(length) 1 790.6 15.8 -1749 59226 <0.001 *** 

+stratum 13 2.7 13.1 -1950 18.958 <0.001 *** 

+ln(length).stratum 13 1.0 12.1 -2016 7.2279 <0.001 *** 

+age 3 0.1 12.0 -2020 3.0524 0.028 * 

+ln(length).age 3 0.1 11.9 -2022 2.5532 0.054 . 

 
a Change in degrees of freedom when the term is added. 
b Change is the sum of squares. 
c Residual sum of squares. 
d Akaike Information Criterion. 
e F-statistic. 
f Result of the F-test. P<0.001 ***; P<0.01 **; P<0.05 * 
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Chapter 6 

Differences in depth distribution between male and 
female megrim (Lepidorhombus whiffiagonis, Walbaum) 

associated with differences in life-history strategies 

This chapter has been submitted to the Journal of Fish Biology as: 

Gerritsen, HD, McGrath, D, Lordan, C (Submitted) Differences in depth 

distribution of male and female megrim (Lepidorhombus whiffiagonis, 

Walbaum) associated with differences in life-history strategies. J Fish Biol 

XX:XX-XX 

An earlier version of the paper has been presented to the FSBI Annual International 

Symposium:  

Gerritsen, H, McGrath D (2006) Spatial structure of biological parameters in 

fish populations: Life-history strategies and the sex ratio of megrim. FSBI 

Annual International Symposium, Aberdeen, 10-14 July 2006. 

6.1. Abstract 

The sex ratio in the catches of megrim (Lepidorhombus whiffiagonis, Walbaum) on 

groundfish surveys varied systematically with depth. Female megrim dominated the 

shallow catches, while males were more common in catches from deeper waters. This 

pattern was consistent over five surveys that took place off the west coast of Ireland in 

autumn and spring of the years 2003-5. The observed trend was not likely to be an 

artefact of sampling, nor was it likely that spawning migrations or differences in 

preference for temperature, oxygen or salinity could explain the trend. Although size-

selective fishing pressure or size-specific habitat preferences could play a role through 

differences in mean size between the sexes, the patterns in sex ratio remained after 

size had been taken into account. The most likely explanation, relates to differences in 

foraging activity between males and females. In order to achieve a large size and high 

fecundity, females require a higher food intake than males; therefore they have 

different requirements from their habitat, resulting in differences in the depth 

distribution between the sexes. An understanding of the mechanisms behind these 

patterns can improve sampling design and inform fisheries management advice. 
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6.2. Introduction 

The sex ratio of fish can be difficult to estimate, as differences in morphology and 

behaviour between the sexes can influence their catchability (Trippel, 2003). These 

differences in catchability between males and females are particularly common in 

flatfish (Beverton, 1964; Rijnsdorp and Witthames, 2005), although they have also 

been noted for other species (e.g. Armstrong et al., 2004). It is important to 

understand differences in behaviour and morphology between the sexes if one aims to 

obtain unbiased samples from a population, for example for the purpose of stock 

assessment. 

Sex ratios close to 1:1 are very common in nature: parents generally invest equally in 

male and female offspring as neither sex has a selective advantage over the other 

(Fisher, 1930). If the sex ratio in a population is not even, the average reproductive 

success of individuals of the minority sex will be higher than that of the majority sex. 

Natural selection will then favour parents who invest more resources in the minority 

sex until a balance of equal allocation of resources to male and female offspring is 

restored. However, if the sexes suffer different mortality rates after parental care has 

ceased, this will not lead to a selective advantage of parents who invest more in the 

minority sex because the increased average reproductive success will be offset by the 

higher mortality. In this way skewed sex ratios can arise. 

Skewed sex ratios are not uncommon in survey or commercial catches (e.g. Hannan, 

2002; Robson, 2004; King et al., 2006). In some cases, these skewed sex ratios might 

not reflect the sex ratio in the population, but result from differences in catchability 

between the sexes (e.g. Armstrong et al., 2004; Rijnsdorp and Witthames, 2005). 

However, apparent differences in mortality rates are also commonly observed 

(Beverton, 1964; Fahy and Fannon, 1991; Landa et al., 1996; Sánchez et al., 1998; 

Landa and Pineiro, 2000) and it is unlikely that such differences are an artefact of 

sampling. In addition to this, differences in distribution of the sexes have been noted 

for many species, resulting in spatial tends in their sex ratio (Trippel, 2003).  Some of 

these trends might be the result of differences in migration behaviour during the 

spawning season (e.g. Warnes and Jones, 1995; Morgan and Trippel, 1996; Stoner et 

al., 1999). However, trends in sex ratio have also been observed outside the spawning 

season for a number of flatfish species (Swain and Morin, 1996; Swain, 1997; Poulard 
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et al., 1999; González and Paz, 2005). In many of these cases, the sex ratio was found 

to vary with bottom depth. Bottom depth, in turn, is often related to temperature, prey 

distribution, productivity, dissolved oxygen levels, salinity and sediment type (Swain 

and Morin, 1997) and is therefore a useful indicator of habitat for groundfish. 

Swain (1997) found that differences in temperature preferences between male and 

female American plaice (Hippoglossoides platessoides) determined the differences in 

their distribution. He suggested that females might prefer warmer waters, as it allows 

them to have a higher growth rate. Swain and Morin (1996; 1997) also found that 

females of the same species had a larger stock range than males, possibly reflecting 

more intensive foraging activity amongst females. The sex ratio of megrim 

(Lepidorhombus whiffiagonis) in the Celtic sea and the Bay of Biscay has also been 

observed to vary with depth, but no explanation has been proposed as yet (Boon, 

1984; Poulard et al., 1999).  

Megrim are an valuable by-catch of the Irish mixed fisheries and are caught in large 

numbers on the groundfish surveys that are undertaken by the Marine Institute in 

waters around Ireland in the 1st and 4th quarter of each year. The highest densities of 

megrim are usually found close to the continental break (100-300m; Sánchez et 

al.,1998; Poulard et al., 1999).  Spawning of megrim to the west of Scotland takes 

place between February and April (Anon., 2001). Du Buit (1984) found that megrim 

to the west of Scotland mainly prey on fish (mostly sprat and small gadoids) and small 

crustaceans. Similar results were obtained for megrim in the Celtic Sea (Trenkel et al., 

2003). Significant differences in growth between sexes appear after the age of two, 

around the time of first maturation: females grow faster and reach older ages and 

larger sizes than males (Landa et al., 1996; Landa and Pineiro, 2000). 

Spatial trends in the sex ratio of megrim might be observed for a number of reasons. 

We propose the following hypotheses: (1) Spatial trends in the catches might be an 

artefact of sampling as males and females could respond differently to changes in the 

geometry of the gear and the available light at different depths. (2) Males and females 

might display differences in their migration patterns to and from the spawning 

grounds. (3) Males and females might respond differently to abiotic variables like 

temperature, dissolved oxygen or salinity. (4) Large fish might have different depth 

preferences than small fish or they could be selectively removed from certain areas by 

the fishery. Due to sexual dimorphism in growth, large fish tend to be females, so the 

trend in sex ratio with depth could be a consequence, rather than a cause, of the size 
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distribution of megrim. (5) Females might have different feeding habits to males, 

resulting in different habitat requirements and therefore different depth distributions. 

The current paper is aimed at describing the patterns in the sex ratio of megrim in 

Irish waters and attempting to identify the mechanisms that cause these patterns.  

6.3. Materials and methods 

Data were collected on three IBTS Irish Groundfish Surveys, carried out on RV 

“Celtic Explorer” in October and November of 2003, 2004 and 2005 as well as two 

Biological Sampling Groundfish Surveys, carried out on RV “Celtic Voyager” in 

February and March of 2004 and 2005. On both survey series, trawling took place 

during daylight hours using a GOV trawl (ICES, 1999). The gear was towed over the 

bottom at 3 knots for 30 minutes. The dataset was limited to the area west of Ireland 

from 51ºN to 54ºN where all surveys had a good spatial coverage (Table 6.1). 

The entire catch was generally sexed and measured to the nearest cm below the total 

length. Occasionally, sub-samples of the catch were sexed and measured if the catch 

was very large. Megrim were sexed by holding the fish up to the light and checking 

for the presence of ovaries. Small fish were dissected if their sex was unclear. This 

method of sexing was verified by dissecting all fish in a sample of 150 megrim after 

they had been sexed in the normal way (the persons who sexed the fish were not 

aware that their work would be checked). In the entire sample, only one mistake was 

found so the error rate in sexing of this sample was less than 1%. 

A length-stratified sample of megrim was taken from each catch for the determination 

of age, weigh, sex and maturity. The maturity stages were determined by visual 

examination of the gonads. In autumn it can be difficult to distinguish mature-resting 

gonads from virgin gonads, so maturity data from this period needs to be treated with 

caution. In addition to this, the assignment of male maturity stages is based on 

somewhat subjective criteria and immature and spent fish can be confused, even 

during the spawning season.  

Generalised Additive Models (GAM; Hastie and Tibshirani, 1990) with a binomial 

link function were fitted to the proportion of females, weighted by the numbers of 

observation in each sample. The following explanatory variables were evaluated: 

depth, latitude, longitude, survey and season. As only one of the surveys extended 

into deep water, the models were fitted to data up to 200m depth. A cubic regression 

spline with 4 degrees of freedom was used as a smooth function. Separate smooth 
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functions were fitted for each season or survey if these factors were included in the 

model. The Un-Biased Risk Estimator (UBRE) score was used to evaluate the trade-

off between the model degrees of freedom and the deviance explained by the various 

models. The mcgv package in R 2.1.1 was used to fit and evaluate the models (R-

Development-Core-Team, 2005). 

Data on temperature, dissolved oxygen and salinity near the bottom were obtained 

from a CTD dataset from the International Council for the Exploration of the Sea 

(ICES) oceanographic database (ICES, 2006a). The dataset was limited to the same 

geographic area as covered by the survey data. The data available for the period 2003-

5 were sparse; therefore all data from 1991 to 2005 were combined. The deepest 

measurement at any CTD station was taken as a near-bottom measurement. 

6.4. Results 

The depth distributions of male and female megrim are shown in Figure 6.1. The 

highest catch rates of females were around 125-150m while the highest catch rates of 

males were around 200-300m. The female distribution extended further inshore than 

the male distribution. The males appear to outnumber females from depths of around 

200m and more, however any information from depths greater than 250m is based on 

a single survey only.  

The GAMs indicate that inclusion of any of the parameters into the model resulted in 

a reduction of the UBRE score, compared to the model with an intercept only, 

indicating that there were significant trends with depth, longitude and latitude, 

although the latter only reduced the UBRE score marginally (Table 6.2). The model 

with the lowest UBRE score, despite its large number of degrees of freedom, was the 

model that contained a separate smooth function for depth for each survey. However, 

Figure 6.2 shows that the differences between surveys or seasons were slight and no 

systematic differences between seasons were apparent. In all surveys, the proportion 

of females in the catches decreased from near unity in the shallow catches to around 

50% at 150m. The most recent survey extended into deeper water and it appears that 

the proportion of females continued to decrease with depth after 200m, although 

males never fully dominated the catches.  

During the autumn surveys, 97% of fish that were identified as mature, were ripening, 

but not ready to spawn yet: vitellogenesis had started but none of the oocytes were 

hydrated. During the spring surveys, most mature fish were either in spawning 
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condition (33%) or recently spent (60%). This suggests that the autumn surveys took 

place before the spawning season had started and the spring surveys took place during 

the latter part of the spawning season. Figure 6.3 shows that in the shallow regions, 

where males are scarce, virtually no ripe females were caught in spring; nearly all 

mature females in these areas were spent. Spawning seems to occur at depths greater 

than 100m with the largest proportion of spawning females found around 125m. 

Figure 6.4 shows that bottom temperature displayed a strong trend with depth which 

was reversed between spring and autumn. The same figure shows that in spring the 

levels of dissolved oxygen near the bottom tended to be highest in shallow areas, but 

in autumn this trend was not clear. Lastly, the salinity was quite variable at depths up 

to 200m; in deeper water the salinity was quite stable. The relationship between sex 

ratio and depth did not show a seasonal pattern, it is therefore unlikely that this 

relationship is driven by gradients in temperature. The oxygen and salinity gradients 

were quite variable and it is unlikely that either of these variables can explain the 

strong and consistent differences in depth distribution between the sexes of megrim.  

Females are generally more common in the larger size classes due to differences in 

growth, so size-specific habitat selection or size-specific fishing mortality might 

account for the trend in sex ratios. However, within size classes, the proportion of 

males in the catches still tended to increase with depth (Figure 6.5), so the difference 

in the depth distribution between the sexes persists after size has been taken into 

account. This suggests that the trend in sex ratio cannot be fully explained by 

differences in mean size between the sexes: the sex of the fish is a better predictor of 

its distribution than its size alone. 

6.5. Discussion 

The present results allow a number of hypotheses to be rejected. The first hypothesis 

states that the observed trends in the sex ratio of megrim are an artefact of gear 

selectivity. It is possible that there are differences in catchability between males and 

females. However, the sex ratios in the catches were not only biased, they showed a 

strong trend with depth. For this to occur, males and females would have to respond 

differently to variations in the gear that occur with depth. The geometry of the net 

varies with depth and differences in vertical swimming behaviour might exist between 

males and females, resulting in varying levels of catchability (e.g. Rijnsdorp, 1993). 

However, although the door- and wingspread are strongly related to depth, the 
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headline height decreased by less than 5% for each 100m increase in depth in the 

present study. Therefore, it is unlikely that vertical swimming behaviour is 

responsible for the observed trends. Another important factor regarding catchability of 

flatfish is visual avoidance of the net (Gibson, 2005). As the available light will vary 

strongly with depth. However, there is no evidence to suggest that male and female 

megrim have vastly different visual capabilities, so the amount of light that penetrates 

at depth is unlikely to explain the observed trends in sex ratio. Lastly, although the 

same gear type was used in all studies that identified trends in the sex ratio of megrim 

(The present study; Boon, 1984; Warnes and Jones, 1995; Poulard et al., 1999) similar 

trends were observed using a number of different vessels and gear modifications. So, 

although it cannot be ruled out entirely, it is unlikely that the observed trend in sex 

ratio is an artefact of gear selectivity. 

The second hypothesis, stating that the trends in sex ratio might be explained by 

differences in the spawning migrations of males and females, can be refuted by the 

fact that the same pattern was found before (autumn surveys) and during (spring 

surveys) the spawning season. However, it was surprising to find mature females at 

depths where males were nearly absent during the spawning season. Figure 6.3 

indicates that these females were recently spent, suggesting that they migrated there 

after spawning. A broader temporal coverage during the entire spawning season 

would be necessary to resolve the details of migration during the spawning season. 

The third hypothesis relates to abiotic variables. In order to explain the consistent 

differences in the distribution of males and females, the abiotic variables would have 

to display a seasonally consistent gradient with depth. None of the three variables 

examined (temperature, oxygen and salinity) displayed strong, consistent trends, so it 

is unlikely that the trend in sex ratio is driven by any of these variables.  

The fourth hypothesis states that the trend in sex ratio is a consequence of differences 

in growth; size selective fishing could skew the sex ratio in certain areas or, 

alternatively, the habitat preference of megrim might change with size. The mean 

length of megrim in the survey catches does tend to decrease with depth (Boon, 

1984). However, Figure 6.5 shows that the trend in sex ratio remains apparent after 

size has been taken into account: both small and large females dominated the catches 

from shallow areas, while males of all size classes were relatively more common in 

the deeper catches. So the size difference between the sexes alone cannot explain the 

differences in distribution, although it might have a confounding effect. 
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The last hypothesis points towards differences in feeding activities between the sexes 

as an explanation for the differences in habitat selection. This could not be tested with 

the available data, but evidence from the literature indicates that food intake of many 

female flatfish is higher than that of males (Lozán, 1992; Stoner et al., 1999; 

Villarroel et al., 2001). In many flatfish species, females grow not only larger, but 

also faster than males, while producing a larger amount of gonadal material (Pauly, 

1994; Rijnsdorp and Witthames, 2005). Therefore, one might assume that it is 

common for female flatfish to have higher energy requirements than males. 

Differences in feeding behaviour are likely to result in different distributions of male 

and female megrim, either due to prey availability or higher levels of competition 

forcing females towards the margins of their distribution.  

The cost associated with high growth rates for females might include increased 

exposure to predation (Milinski and Heller, 1978; Roff, 1982; Abrahams and Dill, 

1989; Holtby and Healey, 1990). Flatfish tend to be well camouflaged when they are 

not actively swimming, therefore it might be particularly advantageous for flatfish to 

reduce their foraging activity. However, as fecundity is directly related to size 

(Rijnsdorp and Witthames, 2005), females might have to accept the costs of a high 

growth rate in order to maximise their reproductive output. The reproductive output of 

male flatfish does not seem to increase once a critical size has been reached 

(Rijnsdorp and Witthames, 2005), therefore, males might take advantage of reduced 

predation risks by reducing their food intake (Rijnsdorp and Witthames, 2005).  

In summary, it appears that the observed trend in sex ratio with depth is not likely to 

be an artefact of sampling. The lack of seasonal differences suggests that the trend in 

sex ratio is not related to spawning activity either. No abiotic factors were identified 

as likely causes for the trend in sex ratio. Although localised size-selective fishing 

pressure or size-specific habitat preferences might play a role through differences in 

mean size between the sexes, the patterns in sex ratio remain after size has been taken 

into account. The most likely explanation for these patterns is related to the higher 

energetic requirements for females, resulting in differences in habitat selection. 

Although the present data provide no direct evidence for this explanation, it is 

supported by a large amount of evidence from the literature. 

Although the trend in the sex ratio of megrim was particularly pronounced, it is likely 

that males and females of other flatfish species display similar differences in 

distribution. Sexual dimorphism is common in flatfish, particularly species attaining a 
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large size (Rijnsdorp and Witthames, 2005). As differences in growth rate are likely to 

impact on the distribution of the sexes, one can expect to find spatial trends in the sex 

ratio of these species. 

An understanding of the differences in habitat selection and life-history strategies of 

males and females can improve sampling design and inform fisheries management 

advice. Many flatfish stocks are assessed without distinguishing between the sexes, 

despite well-known differences in weight-at-age (e.g. ICES, 2005b). Any bias in 

sampling due to differences in distribution between the sexes can therefore have 

important consequences on the stock assessment. An understanding of the differences 

between males and females is also required for the use of female-only spawning stock 

biomass estimates, which might provide an improved index of reproductive potential 

(Marshall et al., 2003; Marshall et al., 2006). Finally, an understanding of life-history 

strategies might give an insight into the effect of changes in the fishery or in the 

ecosystem.  
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6.7. Tables and figures 

Table 6.1. Summary statistics for the five surveys used. 

Survey Year Period Number of Depth Spatial coverage 

code   Stations Range Latitude Longitude 

IGFS03 2003 Oct/Nov 150 37 - 289 50-56ºN 12-6ºW 

BSS04 2004 Feb/Mar 89 36 - 177 51-56ºN 11-6ºW 

IGFS04 2004 Oct/Nov 160 35 - 253 50-56ºN 12-6ºW 

BSS05 2005 Feb/Mar 36 60 - 185 51-54ºN 11-9ºW 

IGFS05 2005 Oct/Nov 140 66 - 549 50-56ºN 13-6ºW 
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Table 6.2. Generalized Additive Models for the sex ratio (R). The smooth function is 

indicated by s(); if the factors Season or Survey were included in the model, separate 

smooth functions were fitted for each of the seasons or surveys, each with 4 degrees of 

freedom (df).  

Model Null df. 

Model 

df. 

Null 

deviance 

Deviance 

explained 

UBRE 

score 

R~s(Depth) 124 4 681.6 37.9% 2.748 

R~s(Depth by Season) 124 8 681.6 43.0% 2.297 

R~s(Depth by Survey) 124 20 681.6 47.7% 2.140 

R~s(Longitude) 124 4 681.6 18.0% 2.945 

R~s(Longitude by Season) 124 8 681.6 22.7% 2.851 

R~s(Longitude by Survey) 124 20 681.6 30.7% 2.572 

R~s(Latitude) 124 4 681.6 2.1% 3.557 

R~s(Latitude by Season) 124 8 681.6 14.2% 3.118 

R~s(Latitude by Survey) 124 20 681.6 31.9% 2.506 
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Figure 6.1. The average catch per unit effort (CPUE; numbers per half hour trawled; 

all surveys combined). Although the sexes generally overlap in their depth 

distribution, the females are more common in the shallow hauls while males dominate 

the deeper hauls. 
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Figure 6.2. The observed sex ratios at depth with cubic regression splines with 4 

degrees of freedom. Smooth curves for individual surveys are shown as dashed lines 

and the solid line represents the common curve for all surveys. Similar trends in the 

sex ratio were observed in all years and seasons. 
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Figure 6.3. The proportions of immature, ripe (or ripening) and spent fish in the 

samples taken in spring. Sample sizes by depth class are shown between brackets.  
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Figure 6.4. Temperature, dissolved oxygen and salinity near the bottom in the study 

area during autumn and spring. The trend in bottom temperature was reversed 

between the two seasons. Oxygen levels showed a trend with depth in spring, but no 

strong trend in autumn. Salinity levels were variable up to bottom depths of around 

200m after which they stabilised. 
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Figure 6.5. The sex ratio by size class (2cm intervals). The proportion of males 

increase with depth for all size classes from 18 to 26cm. 
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Chapter 7 

Spatial patterns in maturity: Cod (Gadus morhua L.) in 
the Irish Sea 

This chapter is an extract of the following original publication: 

Armstrong MJ, Gerritsen HD, Allen M, McCurdy WJ, Peel JAD (2004) 

Variability in maturity and growth in a heavily exploited stock: cod (Gadus 

morhua L.) in the Irish Sea. ICES J. Mar. Sci. 61: 98-112 

See Appendix D, page 116 for details on authorship 

7.1. Introduction 

Along with the physiological changes that take place when fish mature, their 

migration patterns also tend to change with maturation. Mature fish might migrate to 

spawning grounds, while immature fish of the same age class do not, resulting in 

regional variation in the proportion mature-at-age. If samples are taken from 

commercial sources, which tend to target spawning aggregations, maturity estimates 

might be biased. An example of cod in the Irish Sea will be used illustrate and 

quantify this bias. 

7.2. Methods 

A time-series of data on length, age, maturity and sex of cod was available from 

eleven groundfish surveys of the northern Irish Sea in March of the years 1992-2002 

using the RV “Lough Foyle” operated by the Department of Agriculture and Rural 

Development in Northern Ireland. The gear used was a rock-hopper otter trawl with 

an average headline height of 3m and average door spread of 40m. The surveys 

comprised of 45 fixed-position stations with a standard tow distance of 3nm at 3 knots 

of speed over the ground. In most cases, the entire catch of cod was aged and their sex 

and maturity stage were determined. On relatively few occasions, catches were so 

large that the most abundant size classes had to be subsampled. Subsampling took 

place on a length-stratified basis: all fish were measured and up to 25 fish were 

retained for biological analysis (age, sex and maturity). The subsample was evenly 

spread out over the size range available. Subsampling affected mainly the smallest 

size classes: overall, one third of one-year-olds were retained for biological analysis, 

85% of two year olds and virtually all older fish were sampled. A total of 3849 cod 
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were sampled for biological analysis. Three geographic regions were specified based 

on prior known aspects of cod biology and distribution. Regions 1 and 3 (Figure 7.1) 

represent areas with high egg production during the spawning season, whilst region 2 

is characterised by a low abundance of cod eggs (Nichols et al., 1993; Fox et al., 

1997).  

Age classes were assigned according to the number of translucent rings in the sagittal 

otoliths, which were sectioned through the nucleus, embedded in clear resin and 

viewed by transmitted light under a binocular microscope. Maturity stages were 

assigned by visual examination of the gonads (Bowers, 1954). Fish were considered 

mature when they had started producing clearly detectable amounts of milt or yolked 

oocytes or if they appeared spent. This definition of maturity was considered 

appropriate for surveys taking place close to the peak of spawning and was supported 

by histological studies of ovary development in Irish Sea cod in 1995 and 2000 

(Armstrong et al., 2001; Anon, 2002) 

7.3. Results and discussion 

Virtually all cod first matured either at the age of two or three: over the entire time 

series, less than 0.5% of the one-year-olds in the catches were mature, more than 

99.5% of the three-year-olds were mature and a variable proportion of the two-year-

olds were mature. Figure 7.1 shows the mean proportions of mature two-year-old cod 

for each station over the period 1992-2002. For both sexes, the highest proportions of 

mature two-year-olds were found to northwest and the east of the sampling area, 

which largely corresponds to regions 1 and 3. 

For both sexes, the proportion of mature two-year-olds was higher in the spawning 

areas (regions 1 and 3) than in region 2 for nearly all length classes (Figure 7.2). 

Within this age class, length only appeared to play a minor role: a small two-year-old 

fish was almost as likely to be mature as a large two-year-old fish (Figure 7.2). 

Similar regional patterns were found over the years (Figure 7.3): in most years the 

highest proportions of mature two-year-olds were found in regions 1 and 3. 

As maturity within the two-year-olds was virtually independent of length, the bias 

caused by length-stratified subsampling would have been minimal (Morgan and 

Hoenig, 1997) and the proportions of mature two-year-olds in the samples will 

accurately reflect those in the catches without the need to raise the samples to the total 

length distribution. 
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If the catches are considered to be representative for each area, an index of abundance 

can be obtained by multiplying the surface area of each region by the mean catch rate 

per standardised tow. This can be used to obtain estimates of maturity-at-age over the 

survey area, weighted by the abundance in each area (Table 7.1). If all areas are 

included, the estimated proportion of mature two-year-olds over all years is 63% for 

males and 30% for females. However, if sampling had only taken place on the 

spawning grounds, as might happen when samples are taken from commercial 

sources, these estimates would have been much higher: 95% for males and 60% for 

females. This is an extra 30% mature at the age of two for both sexes. As the as two-

year-olds contributed around 40% of the total weight of cod in the survey catches, the 

spawning stock biomass (SSB) estimate might therefore be overestimated by 12% 

(average over all years). On a yearly basis, this potential bias varied from 6% to 16% 

of the SSB, is this would be estimated directly from the survey. 

Cod in the Irish Sea appear to have fairly well-defined spawning areas e.g. in contrast 

to whiting in the same area (Gerritsen et al., 2003) and a large proportion of the 

population is at an age class where both mature an immature fish are found. The 

example given above is therefore possibly a worst-case scenario. However any 

species that undertakes a spawning migration and has one or more age classes with 

both immature and mature fish, would be sensitive to a bias in the proportions mature-

at-age if sampling is not carried out representatively or weighted appropriately. As 

commercial fisheries tend to target spawning aggregations, it might not be appropriate 

to obtain maturity samples from commercial sources. 
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7.4. Figures and Table 

 
6° W 5° W 4° W 3° W

53° N

54° N

55° N

0-1
1-2½

2½-5

5-10

>10
Scotland

E
ng

la
nd

Wales

Ir
e

la
nd

a

Region 2

Region 3

Region 2

6° W 5° W 4° W 3° W

0-1
1-2½

2½-5

5-10

>10
Scotland

E
ng

la
nd

Wales

Ir
e

la
nd

b

Region 2

Region 3

Region 2

 

Figure 7.1. Average proportions mature of male (a) and female (b) two-year-old cod 

over the period 1992-2002, represented by the grey area of the pie charts. The size of 

the circles represents the average sample numbers per haul. 
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Figure 7.2. Proportions of mature cod at age two in the biological samples for the 

three geographical regions. The error bars represent the 95% confidence regions for 

each length class. Data from 1992-2002 combined. 
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Figure 7.3. Proportions of mature cod at age two in the biological samples for the 

three geographical regions. The error bars represent the 95% confidence regions for 

each length class. Data from 1992-2002 combined. No samples of female two-year-

olds were available for region 3 in 1994. 

 

Table 7.1 Average proportions of mature two-year-old cod by region and estimates 

weighted by the surface area and mean catch rate of two-year-olds in each region. 

Data from 1992-2002 combined. 

 Surface Catch rate (nos per ½ hr ) Prop mature at age 2 

Region area (nm2) Males Females Males Females 

1 2770 3.3 1.0 0.93 0.55 

2 5400 3.8 3.6 0.37 0.24 

3 2950 2.5 0.5 0.98 0.69 

Weighted, regions 1, 2 & 3 0.63 0.30 

Weighted, regions 1 & 3 (spawning areas only) 0.95 0.60 
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Chapter 8 

Comparison of the magnitude of errors involved in 
parameter estimates from trawl surveys 

An earlier version of the paper has been presented to the ICES Annual Science 

Conference:  

Gerritsen H, McGrath D (2006) An overview of sources of bias and 

uncertainty in trawl surveys: a biased overview of errors. ICES Annual 

Science Conference, Maastricht, 19-23 September 2006. ICES CM 2006/1:19 

8.1. Introduction 

In Chapter 1, an overview has been given of different sources of errors that influence 

the parameter estimates produced from trawl surveys (survey outputs). These sources 

of error were further explored through case studies in the following chapters. The 

precision of length samples was described in Chapter 2 and the errors in assigning 

maturity stages were estimated in Chapter 3. The next four chapters concerned spatial 

variability in the following parameters: the age-length structure (Chapter 4); length-

weight relationship (Chapter 5); sex ratio (Chapter 6); and proportion of mature fish 

(Chapter 7). These case studies provide insight into the nature of various sources of 

error. However, it is not immediately apparent how these errors will interact in the 

errors of the survey outputs.  

The overall error is the result of a combination of sampling error and measurement 

error, each of which are determined by a number of factors. Sampling errors are 

determined by the variability of the parameter and by the sample size (Zar, 1999). 

Therefore, the number of observations at each sampling station, the number of 

sampling stations and the variability within and between stations will all influence the 

sampling error. The interaction of various sources of sampling error is further 

complicated by the two-stage sampling scheme that is often used (Cochran, 1977). 

Under this scheme, a sample of the catch is taken to estimate the length distribution 

and catch numbers. A smaller length-stratified biological sample is taken for the 

determination of age, weight, sex and maturity of individual fish. The total sampling 

error is therefore influenced by: 

i) The variability in the length samples within stations and the sample size per 

station 
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ii)  The variability in the length samples between stations and the number of 

stations sampled 

iii)  The variability in the biological samples within stations and the sample size 

per station 

iv) The variability in the biological samples between stations and the number of 

stations sampled 

The precision associated with these four factors can be assessed separately by 

obtaining bootstrap estimates with different bootstrapping units. By using 

observations on individual fish as bootstrapping units, the variability within stations 

can be assessed. The variability between stations can be assessed by using the 

sampling stations as bootstrapping units: for each bootstrap iteration, stations numbers 

are drawn with replacement and the data from the selected stations are used to 

produce an estimate of the survey outputs. The distribution of these estimates is then 

used as a proxy for the error distribution in the survey outputs (Efron and Tibshirani, 

1993). 

The main measurement errors that might occur are: 

v) Ageing error 

vi) Errors in assigning maturity stages 

Measurement errors cannot be assessed using bootstrapping techniques, but they can 

be simulated using a Monte Carlo approach (Efron and Tibshirani, 1993). A 

measurement error distribution is estimated and random samples are drawn from this 

distribution. These random samples are then used to obtain a distribution of parameter 

estimates of survey outputs from which an uncertainty estimate can be obtained. 

Bootstrapping and Monte Carlo techniques can be combined to estimate the overall 

error in the various survey outputs. Additionally, the contribution of each source of 

error to the survey outputs are investigated by allowing only one source of error to 

vary and keeping all other sources of error constant. 

The influence of the various sources of error will vary between stocks and surveys, so 

they have to be assessed in each separate case. A single example will be given here 

for one stock, west of Ireland haddock. 

8.2. Methods 

Data were collected on the Biological Sampling Survey in March 2005, which was 

carried out to the west of Ireland. An estimated total of nearly 17.000 haddock were 
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caught at 38 sampling stations, 4,631 haddock were measured and the age, weight, sex 

and maturity stages were determined for 573 fish.  

Error estimates were obtained for the following survey outputs:  

Catch numbers-at-age – Time series of catch numbers per unit effort from surveys are 

an integral part of the stock assessment models used for this stock (ICES, 

2006b). The initial model parameters are adjusted (tuned) until the model 

outputs become consistent with the survey time series. 

Mean weight-at-age – Used in stock assessment to transform numbers-at-age to a 

biomass estimate (Haddon, 2001). 

Mean length-at-age – Used in stock assessment to estimate the mean weight-at-age 

from a length-weight relationship (Haddon, 2001). 

Maturity-at-age – Used to estimate the proportion of the stock that is mature, although 

maturity data are usually not updated annually (ICES, 2006b). 

Sex ratio – Rarely used in stock assessment, even when differences in maturation, 

growth and mortality between the sexes are known to exist (e.g. ICES, 2005b). 

Catch weight of mature females – Analogous to female-only SSB, for stocks where 

the sex ratio of mature fish is not constant over time, this is likely to be a more 

sensitive index of reproductive potential than SSB alone (Marshall et al., 

2006). 

In the present analysis, catch numbers-at-age and mean length-at-age were estimated 

by applying the total catch length distribution to an Age-Length-Key (ALK) for the 

whole survey area. Mean weight-at-age was estimated by applying a length-weight 

relationship to the estimated mean lengths-at-age. Maturity-at-age was estimated 

using a Maturity-Age-Length-Key (MALK). Maturity was only estimated for one-

year-old fish, as virtually all (99.5%) older fish were mature. The sex ratio (by 

numbers) was estimated by applying the proportion of females at each length class to 

the total catch length distribution. The catch weight of mature females was estimated 

by multiplying the weight-at-age by the sex-ratio-at-age and by the proportion mature-

at-age. For the purposes of this analysis, no spatial stratification was used as the 

number of sampling stations in most strata was less than 10, which is too few to 

perform bootstrapping routines (Efron and Tibshirani, 1993). If, due to re-sampling, 

gaps occurred in the ALK or MALK, the predicted proportions for the length class(es) 

concerned were estimated by applying a multinomial logistic model following the 

methods described in Chapter 4. 
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The Marine Institute recently took part in a number of otolith exchanges (Egan et al., 

2004; Duarte et al., 2005; Easey et al., 2005; Worsøe Clausen et al., 2005; Woods, 

unpubl.). Data from these exchanges were used to quantify the measurement error of 

age readings. This was done by estimating the standard deviations of the distributions 

of the assigned ages around the modal ages assuming a discrete normal distribution, 

following Clark (2004). Figure 8.1 indicates that the spread in the error distributions 

tends to increase linearly with age. The position of the regression line could be 

regarded as a measure of how consistently a species or stock can be aged. No data 

were available for haddock, but this species is regarded as relatively easy to age. 

However, in order to obtain a conservative estimate, the ageing error of haddock was 

taken to be similar to megrim, a species which is considered to be moderately difficult 

to age (Figure 8.1). The age reading error of haddock was assumed to follow a 

discrete normal distribution with a standard deviation (SD) of: 

(8.1)  ASD 05.05.0 +=  

where A is the canonical age. 

The measurement error distribution of the assignment of maturity stages was also 

estimated in a conservative way. Results from Chapter 3 suggest that disagreement in 

the assignment of maturity stages is largely confined to consecutive stages. The 

measurement error in the distinction between mature and immature fish might 

therefore be simulated by assuming the worst-case scenario where maturity stage 2 

(developing but immature) and maturity stage 3 (early maturing) cannot be 

distinguished and are assigned at random with equal likelihood. 

Other measurement errors occur in the effort estimates, in length measurements, in 

weight measurements and in sex determination. These errors were not considered in 

the present analysis as they are likely to contribute very little to the overall error. Pilot 

experiments on length, weight and sex determination errors suggest that none of these 

are likely to have CVs of more than 1% (Gerritsen, unpublished). 

The errors around the survey outputs were estimated using bootstrapping procedures, 

Monte Carlo simulation, or a combination of both methods. Estimates of catch 

numbers-at-age, weight-at-age, length-at-age, sex ratio and the catch weight of mature 

females were obtained for each bootstrap and Monte Carlo iteration. The distribution 

of these re-sampled parameter estimates was then used to obtain error estimates for 

the survey outputs. The uncertainty in the estimates of catch numbers-at-age, mean 
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weight-at-age and mean length-at-age were expressed as a Mean Weighted 

Coefficient of Variation (MWCV; Chapter 2). The standard errors at each age class 

were estimated from the standard deviations of the re-sampled parameter estimates 

and expressed as CVs by dividing by the means. The mean CV was then estimated by 

weighting the CV at each age class by the catch numbers in each age class. The CV of 

the proportions mature and the sex ratio were directly estimated from the standard 

deviation of the re-sampled parameter estimates. Finally, the CV of the catch weight 

of mature females was estimated from the standard deviation of the re-sampled 

parameter estimates, divided by the mean. 

The relative contribution of various sources of errors to the overall error in the survey 

outputs was quantified in the following ways: 

Resampling individual length observations – For this approach, individual length 

measurements were taken as bootstrapping units, simulating the variability 

that would occur in the survey outputs if all length samples were random 

samples from the population and all other sources of error were non-existent. 

Resampling length samples by station – This approach uses the sampling stations as 

bootstrapping units, re-sampling the length distributions. This acknowledges 

the variability in the abundance and length distributions between stations, but 

ignores all other sources of error. 

Resampling individual biological observations – The individual biological samples 

(age, weight, sex and maturity of individual fish) were used as bootstrapping 

units. This approach estimates the errors in the survey outputs that would 

occur if individual biological samples were random samples from the 

population and ignores all other sources of error. 

Resampling biological samples by station – The sampling stations were used as 

bootstrapping units and the sets of biological samples taken at each station 

were re-sampled. This estimates the sampling error in the biological samples 

between stations and ignores all other sources of error. 

Simulating ageing error – Random samples were drawn from the simulated ageing 

error distributions and survey outputs estimated for each iteration. This 

estimates the error in the survey outputs that are due ageing errors and ignores 

all other sources of error. 

Simulate maturity staging error – Errors in the assignment of maturity stages were 

simulated and random samples were drawn from this distribution. This 
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estimates the error in the survey outputs that are due assigning maturity stages 

and ignores all other sources of error. This source of error is only relevant to 

estimates of maturity-at-age and estimates of the catch weight of mature 

females. 

Overall error – By simultaneously simulating and re-sampling all the relevant sources 

of error mentioned above, the overall error in the survey outputs was 

estimated. 

Figure 8.2 summarises the procedure for estimating the errors for the various survey 

outputs.  

8.3. Results 

Catch numbers-at-age – The main objective of most trawl surveys is to provide an 

estimate of numbers-at-age per unit effort. Figure 8.3 indicates that in the present 

case, the catch numbers-at-age are estimated with a CV of 22%. The figure also 

indicates that if the variability in the length frequency distributions between stations 

would be the only source of error, the CV of the catch numbers at age would still be 

20%. This suggests that the only way to significantly improve the precision is by 

reducing this variability between stations. This might be achieved by increasing the 

number of sampling stations or by spatial stratification of sampling. The variability 

due to the biological samples was relatively small (CV<10%) 

Mean weight-at-age – The total error in this survey output is quite small (Figure 8.3). 

It appears that no single source of error dominates the total error. This indicates that 

all of these errors would need to be reduced in order to further improve the precision.  

Mean length-at-age – This survey output tends to be estimated with very high 

precision (Figure 8.3), it is quite robust to any variability between or within stations 

and to ageing error. 

Maturity-at-age-one – The proportion mature was also estimated with high precision 

(Figure 8.3). Errors in the assignment of maturity stages (staging error) did not seem 

to contribute significantly to the overall error. The largest source of error appears to 

be due to the sample size and variability of the biological parameters. 

Sex ratio – The proportion of females was estimated with high precision (Figure 8.3). 

The main source of error appears to result from the sample size and variability of the 

biological parameters. 
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Catch weight of mature females – This estimate is the result of combining estimates of 

catch rate-at-age, length-at-age, length-weight relationship, maturity-at-age and the 

sex ratio. It is therefore not surprising that many sources of error contribute to the 

total error. The largest single source of error was the sampling error in biological 

samples between-stations. The error in assigning maturity stages appeared to be 

inconsequential. 

8.4. Discussion 

One of the conclusions that can be drawn from Figure 8.3, is that the total error 

estimate is often close to the largest single source of error. The reason for this is that 

errors propagate quadratically (Taylor, 1997), so the largest errors become relatively 

more important in the total error estimate. This means that the only way to improve 

the precision of the estimates is to reduce the variability in the main source(s) of error. 

The smaller errors have a rapidly diminishing effect on the overall error. 

For the catch numbers-at-age estimate, the variability due to the length distributions 

between stations was by far the most important source of error, suggesting that the 

number of sampling stations needs to be increased to improve the precision. This is in 

contrast to the findings by Kimura (1997), stating that the precision of the estimated 

age distribution improves rapidly with increasing numbers in the aged sample. Figure 

8.3 suggests that increasing the biological sample numbers would have very little 

effect on the total error. This might seem surprising, but one has to remember that it 

not just the shape of the length distribution that varies between stations, but also the 

absolute numbers. The catch rate can vary quite dramatically between stations; 

therefore a small number of stations with very high catch numbers can have a very 

large influence on the catch numbers-at-age estimate for an entire survey. Most of the 

work done on finding optimum sample sizes, ignores this between-station variability 

(Flatman, 1990; Gutreuter and Krzoska, 1994; Kimura, 1997; Oeberst, 2000). In the 

present case, ignoring this source of error would have resulted in an overestimate of 

the relative importance of the sample size of biological samples to the total error in 

the catch-numbers-at-age estimate. 

Another conclusion that can be drawn from Figure 8.3 is that the variability in the 

length distributions within stations only contributed a small error for all parameters. 

This finding is in line with conclusions from Pennington et al. (2002) and indicates 

that the number of haddock measured at each station may be reduced without 
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significantly affecting the overall error in most parameter estimates. However, 

reducing the sample sizes might be undesirable, as precise length distributions at each 

sampling location can be useful for fine-scale spatial analysis (Chapter 2). 

Ageing errors seemed to have a small influence on the total precision of most 

parameters, despite the fact that the simulated ageing errors are likely to be larger than 

the actual ageing errors. However, ageing errors do tend to result in biased estimates. 

The catch numbers in the most common age class tended to be underestimated. The 

mean length-at-age and mean weight-at-age tended to be under-estimated for age 

classes that were older than the most common age class, while they were over-

estimated for younger age classes (data not shown). If the random ageing error is 

known, this bias can be corrected for by estimating the error matrix (Richards et al., 

1992).  

Errors in assigning maturity stages appeared to have very little effect on the estimated 

proportion mature-at-age in the present case. This is probably due to the fact that only 

10% of all the maturity stages were assigned as stage 2 or stage 3, all the other 

samples were either undeveloped or in an advanced state of development, leaving 

little scope for misclassification. This highlights the importance of the timing of 

sampling for maturity: in autumn of the same year, 83% of haddock sampled were 

assigned stages 2 or 3, which would have led to a very imprecise estimate of the 

proportion of mature fish. 

The catch weight of mature females was estimated with a similar precision to the 

catch numbers-at-age estimate, despite the fact that a larger number of parameters 

need to be estimated to produce this survey output. The catch rate of mature females 

is likely to be a more sensitive index of reproductive potential than SSB as it does not 

require the assumption that the proportion of mature females in a population is 

constant over time (Marshall et al., 2006). Including more parameters in an index of 

reproductive potential, for example fecundity estimates, would further reduce the 

precision of this estimate. However, if these additional parameters are estimated with 

reasonably good precision, the reduction on precision on the overall estimate might be 

negligible. 

If one aims to improve the precision of any of the parameter estimates, the most 

efficient way of doing so would be to reduce the main source of error. For catch 

numbers-at-age, the focus should be on reducing the between-station variability in the 

length distributions. The simplest way to do this is to increase the number of stations. 
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However, this would have large resource implications. The alternative is to optimise 

the spatial stratification around the variability in abundance and mean length, 

assuming that this variability is related to the sampling location. However, as most 

surveys are directed at a number of species, a compromise needs to be found between 

the optimum sampling designs for the various target species. 

In the current analysis, the CV of the estimated catch numbers-at-age was in the order 

of 22%. This is consistent with the results of the EVARES study (Beare et al., 2003), 

which found sampling CVs of estimated numbers-at-age for a number of surveys to be 

in the range of 10-30%. The current Irish Groundfish Survey series has not been 

running for long enough to be used as a time series of abundance indices for the 

assessment of West of Ireland haddock (ICES, 2006b). However, its predecessor, the 

Irish West Coast Groundfish survey, has traditionally been used in the assessment. 

Figure 8.4 shows that the inter-annual variation in the numbers-at-age estimates from 

this survey series is very large: five-fold increases or decreases from one year to the 

next were not uncommon. If one assumes that the CV for this survey series is similar 

to the current estimate of 22%, one would expect the survey to provide a good 

description of the inter-annual changes in numbers-at-age for West of Ireland 

haddock. However, data for species with a less variable recruitment and lower catch 

rates are likely to have a much higher noise-to-signal ratio. 

The EVARES study, evaluating the impact of research surveys on management 

advice (Beare et al., 2003), found that stock assessment outputs for the recent year-

classes tend to be very sensitive to survey information, although the impact varies 

between surveys. Information on recruiting year-classes is particularly important for 

forecasting and management considerations (Smith and Gavaris, 1993). Therefore the 

precision of the survey data will have a significant influence on the final assessment 

estimates. The current results also show that surveys can provide additional biological 

information with reasonable precision. This type of information is readily available 

for a large number of stocks (Tomkiewicz et al., 2003a), and management advice 

would benefit from inclusion of this information as long as the uncertainty levels are 

explicitly stated. 

8.5. Overall conclusions 

The previous chapters have highlighted the valuable information that can be obtained 

from standard fisheries surveys. There is a vast amount of biological data available 
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from these surveys (e.g. Tomkiewicz et al., 2003a) but these data are mainly used for 

recruitment and tuning indices. Detailed analysis of the available survey data can lead 

to increased understanding of the stock structure and life-history of many stocks. 

These analyses can be very cost-effective as most of the data are already available, 

while the findings can be great significance to fisheries science. Additionally, it is 

very easy to conduct small experiments during surveys; these can lead to valuable 

insights at negligible costs. A particular strength of survey data is the fine spatial 

resolution at which they are collected. The work presented here has highlighted some 

of the spatial structures that exist in biological data and the potential bias that might 

occur if these spatial structures are ignored.  

Past survey data can be used to optimise future data collection. However, the optimum 

sampling strategy is an elusive target that varies between years, areas and stocks. In 

general, it is nearly always best to sample as representatively as possible. For 

example, it is inefficient to obtain a large number of otoliths from an area where catch 

rates are low, as the weighting that will be given to those age data will be very small 

compared to age data from an area with high catch rates. Unfortunately it is difficult 

to predict the spatial distribution of fish and a common strategy is to collect a fixed 

number of otoliths per size class. The advantage of length stratified sampling is that it 

ensures that the extremes of the distribution are sampled while avoiding over-

sampling of the most common length classes. However, it would be very useful to 

critically evaluate the usefulness of ALKs versus random sampling or a third 

possibility: random sampling within a small number of size categories (e.g. small-

medium-large). The present work has supplied and explored some of the tools 

necessary to conduct such an analysis. 

Incorporation of more detailed biological information into the stock assessment 

process, will inevitably lead to incorporation of additional sources of error: the rules 

of error propagation state that the total random error will increase with each variable 

that is added to a parameter estimate. This argument might be used to argue that an 

estimate of female-only SSB or Total Egg Production (TEP) will always be less 

precise than an SSB estimate alone. However, the same rules state that errors 

propagate quadratically, therefore the largest source(s) of error will contribute 

disproportionally to the total error estimate. Therefore, adding variables that have a 

relatively small error, will increase the total error estimate only by a very small 

amount. Female-only SSB or TEP estimates are conceptually a better index of 
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reproductive potential than SSB alone and they might not reduce the precision to a 

great extent as long as the sex ratio of fecundity data are estimated with good 

precision, relative to the other variables like catch per unit effort. 

Biological data can also be used in stock assessment for other purposes than 

improving stock measures of reproductive potential. Data on the age structure of a 

stock can be indicative of the resilience of a stock to a number of years of bad 

recruitment. Changes in mean length-at-age, condition, maturity or sex ratio can all be 

indicative of over-exploitation and it is essential that these parameters are monitored 

and analysed. 

In summary: surveys are a rich source of data that appear to be under-utilised. 

Biological data from surveys have to potential to increase our understanding of the 

stock structure and life-history of stocks and can contribute to the stock assessment 

process.  

8.6. Figures 
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Figure 8.1. Standard deviation of the distribution of assigned ages around the modal 

age of anglerfish (Duarte et al., 2005), megrim (Egan et al., 2004), blue whiting 

(Worsøe Clausen et al., 2005), whiting (Easey et al., 2005) and cod (Woods, unpubl.). 
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Figure 8.2. Flow diagram of the error estimation process. The total error was 

estimated by including all sources of error. The relative contribution of each source 

of error was also estimated by only allowing one source of error to vary and ignoring 

all other errors. 
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Figure 8.3. The estimated coefficient of variation of a number of survey outputs 

resulting from a range of error sources. The same scale was used for all plots. L-ind 

is the error in the survey outputs that is estimated by resampling individual length 

measurements. L-stat is the error estimate obtained from resampling length 

distributions by station. B-ind and B-stat are the respective error estimates obtained 

from resampling individual biological samples and resampling sets of biological 

samples by station. Ageing and staging refer to the simulated errors in ageing and 

staging. The overall error is the error estimate that takes all relevant sources of error 

into account. See methods section for more details. 
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Figure 8.4. Abundance indices (catch numbers-at-age) from the Irish West Coast 

Groundfish Survey, which was part of the tuning fleet for the assessment of West of 

Ireland Haddock (ICES, 2006b). 
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Appendix A 

Glossary of terms 

Age-at-length – Age distribution by length class 

AIC – Akaike Information Criterion, used to evaluate the fit of a model versus the 

number of parameters required, mainly used in Generalised Linear Models 

(Sakamoto et al., 1986) 

ALK – Age-Length Key, a matrix with proportions of each age class at each length 

class 

Bayesian statistics – A statistical method that includes prior knowledge in uncertainty 

estimates and requires likelihood functions to be explicitly defined 

Bias – Difference between a parameter estimate and the true value of the parameter 

Bonferroni correction – Correction used when a number of independent hypotheses 

are tested: the significance level for accepting each hypothesis is reduced to 

avoid false-positive outcomes 

Biological data – Demographic data from individual fish like age, weight, sex or 

maturity stage 

Biomass – The sum of weights of individuals in a fish stock 

Bootstrap – Re-sampling, with replacement, from a dataset in order to simulate the 

variability that would result from replicate samples (Efron and Tibshirani, 

1993) 

Bottom trawl survey – See groundfish survey 

Canonical age – Assumed ‘true’ age of a fish 

Catchability – The efficiency with which a certain gear type and configuration catches 

fish of a certain size, shape and behaviour 

Commercial data – Data collected from catches of commercial fisheries vessels 

Confidence interval – Range of values within which the true value most likely lies 

CV – Coefficient of variation, a measure of precision defined as the standard error 

divided by the mean 

Demersal – Living close to the bottom of the sea 

Fecundity – Number of (viable) eggs produced by an individual 

GAM – Generalized Additive Model, a combination of multiple regression and 

additive models (Hastie and Tibshirani, 1990) 
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Geostatistics - A collection of statistical methods describing spatial autocorrelation 

among sample data, which can then be used in various types of spatial models 

GOV – Grande Overture Verticale, otter trawl used on IBTS surveys (ICES, 2002) 

GLM – Generalized Linear Model, generalisation of ordinary least-squares regression 

(McCullagh and Nelder, 1989) 

Groundfish survey – A survey directed at demersal fish. 

Histology – A technique to section and stain tissues for microscopic analysis. 

Length-at-age – Length distribution by age class 

Length-stratified sampling – Non-random sampling whereby a target number of 

individuals are collected for each length class, usually for the determination of 

biological parameters 

Macroscopic maturity determination – Determination of the maturity stage of a fish 

by examining the gonads without visual aids 

MALK – Maturity-Age-Length Key, a matrix with the proportions of each age class 

and maturity state at each length class 

Maturity-at-age – Proportion of mature fish by age class 

Maturity-at-length – Proportion of mature fish by length class 

Maturity stage – Classification of development of the gonads. Maturity stages might 

be assigned either by macroscopic or microscopic examination of the gonads 

Maturity state – Distinction between mature and immature fish 

Measurement error – Error due to the measuring device or the interpretation of the 

observer 

Observer error – Error due to the interpretation of the observer 

Ogive – S-shaped curve, describing expected proportions by age or length class, 

usually describing maturity or size selection 

Oocyte – Female reproductive cell 

Otolith – Calcified structure, routinely used for age determination in fish. 

Random error – Variability between replicate samples 

Recruitment – The addition of young fish to a stock. 

Reproductive potential – A measure that is assumed to correlate with the amount of 

offspring that a stock produces, e.g. SSB or annual egg production. 

Re-sampling – Taking random samples from an existing dataset, usually with 

replacement 

Sampling error – Error related to the sampling design 
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Selectivity – See catchability  

Sexual dimorphism – Differences in growth between the sexes. 

SSB – Spawning Stock Biomass, the biomass of the proportion of the population that 

is mature 

Spline – A smooth function consisting of a number of polynomial functions 

Stock assessment – The process of estimating the retrospective development of a stock 

and making quantitative predictions about the current and future state of the 

stock 

Stratum – A subdivision of a population. This can be a spatial subdivision or a 

categorical subdivision like in length-stratified sampling. Within each stratum 

sampling is usually random. 

Subsample – A random sample from the catch (see also length-stratifed sampling) 

Systematic error – See bias 

Tuning – Use of an index of abundance to calibrate an assessment model. Time series 

with constant catch efficiency (usually survey data) are used to correct for 

changes in efficiency in the commercial fleet by adjusting the initial model 

parameters until it becomes consistent with the time series data. 

Two-stage sampling – Obtaining a random sample of the catch for length 

measurements as well as a (non-random) length-stratified biological sample 

Variogram – Geostatistical tool to describe spatial correlation 

Vitellogenesis – Yolk formation in an oocyte, giving it an opaque yellowish 

appearance 

Year class – Group of fish of the same age 
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Appendix B 

Unpublished data by the author 

There are a number of references in the main text to unpublished work by the author. 

Below are some brief results of these experiments. The first experiment investigated 

the variability and bias in length measurements using electronic measuring boards. 

During the Biological Sampling Survey 2005, three people were asked to repeatedly 

measure three randomly selected samples of 30 whiting (Figure 1). Electronic 

measuring boards were used. These have a barcode for each 1cm length class that is 

read with a light pen (Figure 2). Person 3 consistently estimated the mean length to be 

lower by around 0.5cm. The difference was not significant using ANOVA or non-

parametric tests. Perhaps more interesting is the fact that there were significant 

differences between the samples, which were selected from a larger sample by 

haphazardly selecting fish (P<0.05, t-test). Further work on subsampling techniques 

will be carried out. 

The second experiment examined the size distribution of oocytes at different 

developmental stages (Figure 3). These data illustrate that the gap in size between 

previtellogenic and vittelogenic oocytes is much larger in plaice than it is in whiting. 

This might explain why there was some confusion between immature and early 

maturing whiting ovaries in Chapter 3. 

The last experiment was conducted to investigate the precision of a number of 

weighing scales used on the Irish Groundfish Survey 2006. The scales were calibrated 

at the start of the experiment and calibration weights were placed on the scales at 

regular intervals to measure the deviation from the ‘true’ weight (Figure 4).  Most 

scales remained accurate within 1% over a two-day period. It is normal practice to 

calibrate all the scales at the beginning of each day. 
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Figure 1. Mean length of three samples of 30 whiting, 

measured three times by three people. Person 3 

consistently estimated the mean length to be around 0.5 

cm lower than the others. 

 

Figure 2. Electronic 

measuring board. Each 

1cm length class 

corresponds to a barcode 

that is read with a light 

pen. 
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Figure 3. Size 

frequency 

analysis of 

oocytes of 

plaice (PLE) 

and whiting 

(WHG) at 

various 

developmental 

stages (1-7) in 

ICES 

divisions VIa, 

VIIa and  

VIIbjg. 

 

PLE VIIa 1a n=659 *

PLE VIIa 1b n=547 *

PLE VIIa 1c n=471 *

PLE VIIa 1d n=447 *

PLE VIIa 1e n=948 *

PLE VIIa 2a n=590 *

PLE VIIa 2b n=579 *

PLE VIIa 2c n=1085 *

PLE VIIa 2d n=788 *

PLE VIIa 2e n=438 *

PLE VIIa 2f n=407 *

PLE VIIa 2g n=342 *

PLE VIIa 2h n=513 *

PLE VIIa 2i n=1153 *

PLE VIIa 2j n=574 *

PLE VIIa 4a n=380 *

PLE VIIa 4b n=223 *

PLE VIIa 4c n=303 *

PLE VIIa 4d n=310 *

PLE VIIa 4e n=184 *

PLE VIIa 4f n=172 *

PLE VIIa 5a n=98 *

PLE VIIa 5b n=117 *

PLE VIIa 5c n=177 *

PLE VIIa 5d n=148 *

PLE VIIa 5e n=200 *

PLE VIIa 6a n=20 *

PLE VIIa 6b n=122 *

PLE VIIa 6c n=21 *

PLE VIIa 6d n=138 *

PLE VIIa 6e n=213 *

PLE VIIa 7a n=304 *

PLE VIIa 7b n=223 *

PLE VIIa 7c n=686 *

PLE VIIa 7d n=368 *

PLE VIIa 7e n=3 *

PleVia1a n=231 *

PleVia1b n=112 *

PleVia1c n=123 *

PleVia1d n=167 *

PleVia1e n=137 *

PleVia2a n=152 *

PleVia2b n=118 *

PleVia2c n=199 *

PleVia2d n=155 *

PleVia7a n=217 *

PleVia7b n=117 *

PleVia7c n=142 *

PleVia7d n=216 *

PleVia7e n=220 *

PleViibjg1a n=83 *

PleViibjg1b n=461 *

PleViibjg1c n=387 *

PleViibjg1d n=165 *

PleViibjg1e n=314 *

PleViibjg2a n=157 *

PleViibjg2b n=145 *

PleViibjg2c n=115 *

PleViibjg2d n=151 *

PleViibjg2e n=151 *

PleViibjg2f n=319 *

PleViibjg2g n=104 *

PleViibjg2h n=153 *

PleViibjg2i n=68 *

PleViibjg2j n=213 *

PleViibjg3a n=231 *

PleViibjg3b n=242 *

PleViibjg3c n=194 *

PleViibjg4a n=204 *

PleViibjg5a n=141 *

PleViibjg7a n=123 *

Whg VIa 1e n=42 *

Whg VIa 2a n=188 *

Whg VIa 2b n=156 *

Whg VIa 2c n=132 *

Whg VIa 2d n=223 *

Whg VIa 2e n=266 *

Whg VIa 4a n=204 *

Whg VIa 4b n=194 *

Whg VIa 4c n=214 *

Whg VIa 4d n=196 *

Whg VIa 4e n=228 *

Whg VIa 4f n=195 *

Whg VIa 4g n=221 *

Whg VIa 4h n=171 *

Whg VIa 4j n=399 *

Whg VIa 5a n=210 *

Whg VIa 5b n=216 *

Whg VIa 5c n=206 *

Whg VIa 5d n=90 *

Whg VIa 5e n=207 *

Whg VIa 6a n=194 *

Whg VIa 6b n=190 *

Whg VIa 6d n=176 *

Whg VIa 7a n=200 *

WHG VIIa 1a n=101 *

WHG VIIa 1b n=117 *

WHG VIIa 1c n=210 *

WHG VIIa 1d n=106 *

WHG VIIa 1e n=248 *

WHG VIIa 2a n=288 *

WHG VIIa 2b n=455 *

WHG VIIa 3a n=250 *

WHG VIIa 3b n=274 *

WHG VIIa 3c n=253 *

WHG VIIa 4a n=264 *

WHG VIIa 4b n=175 *

WHG VIIa 4c n=510 *

WHG VIIa 4d n=397 *

WHG VIIa 4e n=665 *

WHG VIIa 4f n=469 *

WHG VIIa 4g n=375 *

WHG VIIa 4h n=493 *

WHG VIIa 4i n=457 *

WHG VIIa 4j n=436 *

WHG VIIa 5a n=369 *

WHG VIIa 5b n=422 *

WHG VIIa 5c n=305 *

WHG VIIa 5d n=415 *

WHG VIIa 5e n=333 *

WHG VIIa 6a n=244 *

WHG VIIa 6b n=263 *

WHG VIIa 6c n=302 *

WHG VIIa 6d n=265 *

WHG VIIa 6e n=257 *

WHG VIIa 7a n=264 *

WHG VIIa 7b manual n=274 *

WHG VIIa 7b n=263 *

WHG VIIa 7c n=268 *

WHG VIIa 7d n=299 *

WHG VIIa 7e n=388 *
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Figure 4. Deviation of a number of weighing scales over time (Scales A: 45kg 

capacity; 10kg calibration weight, the other scales have 13kg capacity and a 200g 

calibration weight was used). Deviation is the difference between the ‘true’ weight of 

and the measured weight. 
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Appendix C 

Example R-code 
# This is an example of the application of a multin omial model to 
# age-length data as described in Chapter 4. The R software that  
# is required to run this code, can be obtained fro m: 
# www.R-project.org  
# This code requires the package 'nnet' to be insta lled 
 
require(nnet) 
 
# Some age-at-length data 
LENGTH=c(8,7,8,14,17,18,14,14,16,15,18,15,14,16,21, 17,17,13,20,17,15,
19,14,16,13,16,13,14,15,16,16,19,15,21,25,14,21,20, 20,17,19,20,18,14,
21,21,22,24,24,23,16,22,20,22,19,24,20,28,20,23,21, 29,24,20,19,19,24,
23,21,15,24,19,17,17,18,21,20,26,20,18,20,20,22,21, 22,23,21,27,26,27,
23,20,35,29,25,27,24,23,23,18) 
AGE=c(0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 ,1,1,1,1,1,1,1,1,1
,1,1,1,1,1,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2, 2,2,2,2,2,2,2,2,2,
2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2 ,3,3,3,3,3,3,3,3) 
AREA=c(1, 2, 2, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1,  2, 2, 2, 2, 1, 1, 
2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 
2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 1, 2, 2, 2, 2, 1, 
2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 2, 
1, 1, 2, 2, 1, 1, 2, 2, 2, 2) 
 
# Length classes for which you want to predict the proportions at age 
lengths=0:40  
 
# The model 
model=multinom(AGE~LENGTH) 
 
# The predicted values 
predicted=predict(model,data.frame(LENGTH=lengths), type='probs') 
 
# Or just predict missing proportions at age for 30 cm 
round(predict(model,data.frame(LENGTH=30),type='pro bs'),2) 
 
# Plot data and predicted values 
rawdata=table(LENGTH,AGE)/rowSums(table(LENGTH,AGE) ) 
ages=labels(rawdata)$AGE 
plot(NA,type='n',xlim=c(min(lengths),max(lengths)), ylim=c(0,1),xlab='
Length',ylab='Proportion-at-age') 
for(i in 1:length(ages)){ 
   lines(lengths,predicted[,i],col=i) 
   text(as.numeric(labels(rawdata)$LENGTH),rawdata[ ,i],ages[i],col=i) 
   } 
 
# Compare ALK from 2 regions 
 
model1=multinom(AGE~LENGTH+as.factor(AREA)) #this i s a model that 
includes the factor area as an explanatory variable  
model2=multinom(AGE~LENGTH) #this is the model with out AREA 
anova(model1,model2,test='Chisq')  
# This tests if model1 is 'better' than model2 
# No significant difference between the areas. 
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Appendix D 

Authorship of Armstrong et al. (2004) 
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