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TECHNOLOGICAL UNIVERSITY OF THE SHANNON

Abstract

There is a strong interest in designing systems that can simplify the interactions between

humans and complex digital systems. Network Operators want more straightforward

mechanisms to engage with their networks and inform their actions and goals. Intent was

proposed to meet this challenge, but comes at a cost. Intent introduces large modelling

efforts, requiring Network Operators to gain expertise in formal model notation and the

integration of these models with their network. The cost is compounded by the speed

which modern networks evolve, requiring constant adaption to maintain intent-driven

features.

This work aims to leverage the concepts of intent-based management for private net-

works, without component and formal model expertise. This will be achieved through

the coordination of three enablers, Adaptive Policy, Machine Learning and Intent. Adap-

tive Policy provides a flexible framework for context-aware decision making, utilising a

state-based approach to policy execution. Machine Learning informs the decision mak-

ing process to produce impact-aware responses based on closed-loop reporting. Intent

structures the realisation process, how abstraction is handled through inductive pro-

cesses to generate actionable output. This work is highly experimental, developed on

site at the Network Management Lab in an Ericsson Product Development Unit based in

Ireland. This work concludes with the Adaptive Intent Realisation (AIR) reference ar-

chitecture successfully demonstrated in three use cases hosted in industrial grade private

5G networks.

https://www.ait.ie
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Chapter 1

Introduction

It is not often possible to remove complexity from our lives, instead we mitigate it

through automation and digital systems. The modern person does not need to have the

same level of skill than those of the previous generation, because we have designed tools

to simplify the experience while maintaining an acceptable performance. As this is true

for the progression from the bow and arrow to the crossbow, so it is for network man-

agement to autonomous networks. This work aims to reduce the complexity of modern

network management through the coordination of technology enablers. In section 1.1

a background is provided on important network management concepts and the role of

these concepts in modern networks. This includes a detailed explanation of network

management, rules-based decision making, the evolution of networks, the expanded role

of policy in these networks and ways in which policy can influence future networks

through the selection and actioning of optimisation strategies. In section 1.2 the core

research question is presented followed by reasoning for the importance and applicabil-

ity of the study. This question is then compartmentalised into three sub-questions. In

section 1.3 the contributions of the work to date are presented, categorising them in to

major and minor contributions. In section 1.4 all publications related to this work are

listed as full citations.

1



Introduction 2

1.1 Background

The term Network Management encompasses duties related to the administration and

management of a networked system. Hegering describes network management as encom-

passing all measures which ensure the effective and efficient operations of a system, in

accordance with corporate goals [10]. Clemm’s description elaborates on these measures

as activities, methods, procedures and tools applicable to the operation, administration,

maintenance and provisioning of networked systems [11]. Network Management has four

key objectives. To ensure the system is running smoothly by monitoring and changing

configuration parameters for resources and services. To reduce management complexity

by adopting tools for automation and rules based decision making. To provide reliable

services by supporting means for fault management and repair. To track and report

network resource and service usage for cost consciousness.

Rules based decision making is often referred to as policy. Policy has played an impor-

tant role in network management systems by applying rules to manage complex network

behaviors. As networks became more complex, policy adapted to mitigate network com-

plexity while simplifying policy implementation through standardization, modeling and

the use of patterns in policy execution. However as networks evolve further and 5G net-

works are realised, policy will be required to evolve to relieve this complexity. Adaptive

policy has been proposed as a solution to manage this new level of complexity. Adaptive

Policy EXecution (APEX) is a carrier-grade, production ready environment capable of

scalable policy authoring, deployment and execution. The environment was based on

Universal Policy Theory (UPT) implementing immutable policy infrastructure accord-

ing to the Universal Policy Execution Environment (UPEE), both UPT and UPEE are

described in [12]. For policy to become adaptive policy several requirements must be

achieved, these requirements were discussed in [13] and in [14] in the context of a Self

Organising Network (SON) use case. APEX was introduced in [15] and a mobile network

security use case for adaptive management was described in [16]. Novel implementation

for context aware policies with distributed context within APEX was detailed in [17].

Policy evolution and requirements were discussed in [18] including closed control loop

management, a novel policy model and underlying resource modeling. APEX was re-

leased as open source by Ericsson in January 2018 and is currently adopted as a new

Policy Decision Point (PDP) in the ONAP Policy Framework.



Introduction 3

As networks evolved to become open and programmable this allowed for the realization

of more dynamic and adaptable networks. However this evolution also forced the sys-

tems managing these networks to be equally dynamic and adaptive. Network controllers

have the capability to mediate the programmable access to these networks and policy

based management can be used to drive these controllers. For policies to perform this

task effectively they must first support a more holistic view of the network should be

managed. This means users, services and context should be recognised and considered

when analyzing the performance of networks. Adopting a closed loop automation (e.g.

COMPA[19], ONAP[20]) approach where the network, network controller and policy

are coordinated to manage and optimise the network can allow for more autonomic net-

works where user and service aware network configuration can be adaptively controlled,

orchestrated and managed. This approach produces two apparent problems, dynamic

network which are dynamically managed and driven by adaptive high level goals are

difficult to plan and manage creating networks that are not correctly dimensioned or

demonstrate unanticipated behaviors once deployed. Also dynamic systems that are not

adequately modeled are hard to simulate or evaluate analytically before deployment or

require adjusting after deployment.

The amount of traffic on modern networks is continuously increasing, the Ericsson Mo-

bility Report [21] acknowledges video as the most prevalent service used on mobile

networks today, averaging 14 exabytes per month in the third quarter of 2017. This is

likely to increase further as popular immersive video formats generate 4 to 5 times the

traffic of standard video [22]. Assuming continuous growth, video will account for 75%

of all mobile data traffic by 2023. This demand can be relieved by the arrival of 5G

networks, promising larger data rates, low latency, higher bandwidth and a new level

of energy efficiency realised through the implementation of networking concepts such

as Virtualised Network Functions (VNF), Network Slicing and Mobile Edge Computing

(MEC) to name a few. These concepts contribute to the 5G promise, but also add more

complexity in regard to both network and video management. To combat this we have

see a drive toward automation, adaptive policy and machine learning paradigms in an

effort to mitigate this complexity.

A common scenario can be described as streaming video from a number of content

providers using specific applications or embedded in HTML pages, all on demand. New

usage scenarios use video as a facilitator for a complete, purpose driven user experience.
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An example is discussed in [23] in respect to worldwide sporting events. In this example

video plays an important part in enhancing the event experience comprising all aspects

of the event for participating and remote viewers. Increased deployment of video-enabled

devices and better QoS promised by 5G networks should create a technical environment

facilitating many new, unforeseen usage scenarios.

Approaches and solutions are available for optimising particular network nodes, cross-

layer optimization, end-to-end optimization, and optimization of OTT flows. The devel-

oped techniques include pre-selected and best-effort quality, variable bit-rate based on

network conditions or client Quality of Service (QoS) parameters, single or hierarchical

caching of videos, optimization of local or intermediate buffers, Quality of Experience

(QoE) driven methods, and of course hybrids using two or more of the above. In [24] the

authors present a cross-layer optimization algorithm using cache and buffer methods,

aiming for fast video delivery. The algorithm is evaluated in a mobile network using

relaying stations. Typically, video optimization is done out-of-network using transcod-

ing, transrating, time-shifting, and pacing [25]. In-network optimization techniques are

becoming popular, utilising available information of the underlying network. An opti-

mization of radio base stations for multi-user video streaming is detailed in [25].

HTTP-based Adaptive Streaming (HAS) is an in-network technique that allows for bet-

ter resource utilization using multi-layer information to deliver and if required adapt the

best possible video stream given network conditions. A survey of HAS can be found in

[26]. A few limitations remain: solutions are client-driven, hard to direct by network op-

erators, and not policy-driven. Combining QoE with HAS promises to overcome them.

In [27] the authors present in-network QoE management for video streams. This ap-

proach provides an interface for the network operator to steer the optimization process,

thus facilitating policy control. In [28] the authors add fairness to the QoE management

using client-transparent proxies. In February 2017, ISO has published the MPEG Server

and Network Assisted Dynamic Adaptive Streaming over HTTP (SAND DASH) stan-

dard for video streaming over the Internet[29]. A programmer’s introduction to and a

demo of SAND can be found on Github [30]. In [31], the authors develop a multi-server

multi-coordinator framework, which helps to model groups of clients accessing spatially

distributed edge servers for replicated video content.
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The rapidly changing capabilities and performance challenges of emerging telecommuni-

cations network requires a re-evaluation of traditional network configuration paradigms.

Typically, networks adopted a policy based management system to govern their be-

haviour. This policy based approach has simplified the complex task of managing a net-

work by specifying a set of preconfigured rules based on known scenarios[32]. However

the constant development of new technology along with the rise of virtual networks, NFV

and SDN has resulted in an exponential increase in complexity for network management

systems[33]. This has created issues for the current policy based approach. Traditional

policy based management systems encode logic to select from a set of predefined op-

tions rather than dynamically make a context-aware adaptive decision. Therefore, as

changes occur and the scale of management tasks increase, existing management sys-

tems inevitably become static and brittle as they get more complicated[34]. Ericsson has

developed the APEX (Adaptive Policy EXecution) engine to addresses this issue[15].

Intent based networking has been proposed as an approach to reduce complexity in

network configurations [35]. The concept takes a modeling language and uses it to de-

scribe an abstract view of an intended network model [36]. Intent is currently topical

in research, viewed as a mechanism to enhance network flexibility and management,

however there lacks a unified definition for Intent Driven Networks [37]. This suggests

intent requires more maturity before a consensus can be achieved and it can progress

towards standardization. The authors of [38] indicated that intent based networking

has not evolved since 2015 in regard to frameworks, platforms and tools however ad-

vances in artificial intelligence such as Natural Language Understanding are expected to

increase its adaption in the future. Adopting Natural Language Understanding within

an intent based system can produce abstract rules for the structuring of intent informa-

tion. This would enable flexible representations of intent but is not a core requirement

for the realization of these systems. Policy has played a core role in the realization

of many intent driven mechanisms, often used to create actionable responses from ab-

stract network statements [39]. This has been seen at multiple levels of the network

from intent driven forwarding rules for programmable switches [40] to virtual network

management platforms [41] and the orchestration of dynamic service chaining of Virtual

Network Function [42]. Today we see more and more systems support intent languages,

frameworks and interfaces. The incorporation of these approaches provide elements of

abstraction between the request and the execution. However mapping is still required
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to get from the abstract to the real. This mapping often introduces elements of rigidity

into the system.

Intent is a declarative approach to specifying goal oriented statements for the simplifica-

tion and abstraction of complex network management [39]. Intent has often been coupled

with SDN (Software Defined Networking) as a means to facilitate complex network oper-

ations through a simple objective orientated interface [43]. Recently we have seen Intent

featured in a variety of scenarios such as path optimization [44], data protection [45]

and cloud management and orchestration [46] [47]. The most prevalent incorporation

of Intent is seen in the area of SDN, through the development of Intent frameworks for

the Open Network Operating System1 (ONOS) and OpenDaylight2 (ODL) platforms.

Intent based modeling languages such as IB-NEMO have also been adopted by these

platforms, integrating a North Bound Interface for SDN controllers to allow the injec-

tion of Intent into these systems. The language has also been extended through research

to allow more flexibility for Intent descriptions [35].

The development of these components and features in the open source environment and

the expansion of capabilities through research increases the accessibility of Intent driven

network management for network operators. However a large proportion of this research

is focused on the creation of mechanisms to achieve the realization of Intent described

goals in a closed off environment. Intent driven interfaces are designed specifically for

components within the research scenario. This approach to intent would require every

component in the system to support large shared models to provide understanding of

intent between components. As a result the system is inflexible, requiring a large amount

of work to introduce new components and functionality to the system. The goal of this

work is to tackle the inflexibly and extensive modeling challenges through development

of a flexible intent interpreter that utilises already existing component models.

Large standardisation efforts have been seen in relation to intent and its role in au-

tonomous networks. The ETSI Zero-touch network and Service Management (ZSM)

group aims to accelerate the definition of required architecture and solutions for full

end-to-end automation of network and service management. In Decemeber 2020, a

study began to investigate intent as a key enabler in autonomous network and service

management within the ZSM framework. Work item ZSM-011 is currently in early

1https://opennetworking.org/onos/
2https://www.opendaylight.org/

https://opennetworking.org/onos/
https://www.opendaylight.org/
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draft, but aims to provide guidelines on utilising intent-driven management interfaces

between framework consumers and management domains. The Network Management

Research Group (NMRG) has included intent-based networking as one of their three pri-

orities for investigation for a five year period between 2017 and 2022. During this time

they have motivated intent as a research topic, identified several research challenges and

contributed in the areas of intent classification[48], concept definitions[49] and service

assurance for intent-based networking architecture[50].

1.2 Research Question

In this section we will detail the core research question of our study, followed by a

number of sub-questions that arose as our knowledge and understanding developed.

1.2.1 Core Research Question

Is it possible to leverage intent-based management for private networks, without adopting

ontology based model specifications?

Policy has played a key role in network management, as networks have evolved to be-

come more dynamic and complex traditional policy has become static leading to the

adoption of adaptive policies for dynamic decision making. The features which provide

the adaptive functionality to policy also allow for the incorporation of machine learn-

ing paradigms such as straight forward neural networks. Typically machine learning

is applied in post, generating a model that can be applied to new data to provide an

insight. Adaptive policy can take relatively lightweight learning algorithms and apply

them within the policy environment, learning from the network behavior as context in-

formation and quickly applying insights in the form of real-time decisions. Taking these

decisions and implementing them through network management, an optimization com-

ponent can introduce fast context-aware network optimization and repair. Taking this

execution further, by leveraging an intent-based approach, both the north and south

bound interfaces to this system can be abstracted. The user could then engage with

the system, while being agnostic of the underlying components. This would remove a

previously required expertise as the specificity of the components is no longer a consid-

eration of the user resulting in a more straightforward experience. This is important
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functionality when dealing with modern dynamic networks as it will mitigate some of

the complexity for the user while introducing more informed real-time decisions, in-

creasing the possible application and responsibility of policy. The flexibility provided

by adaptive policy, boosted by the insights of machine learning, exposing a user friendly

intent-based interface would allow potential new technology enabled use cases to benefit

from straightforward intuitive integration and execution.

1.2.2 Sub-Research Questions

Is it possible to design, develop and validate intent-based action generation using induc-

tive operation discovery?

Our work presents a flexible approach to intent driven systems through an interpreter

for intent realization. The mechanism of the interpreter is demonstrated through inter-

actions with mock slice manager functions running on an open source, functions as a

service platform. The interpreter accepts intent messages containing a request in the

form of an English sentence, along with required parameters for the request. This in-

formation is then used to identify the appropriate functions available to the interpreter.

These functions are described in the Functionality Template model. Once identified, the

Functionality Template guides the building of an action in response to the intent mes-

sage. This work was then extended into the Adaptive Intent Realisation (AIR) reference

architecture. The machine learning processes were refined and integrated with feedback

mechanisms. Utilising the reporting concepts outlined in Intent a running context of

the system is maintained to inform future decisions.

Is it possible to leverage machine learning paradigms to evaluate policy decisions within

the decision making process?

Our work introduces control logic for the APEX engine that implements a directed

feed forward neural network to enable network path selection for multimedia streaming

applications. Further control logic is introduced that calculates a MOS (Mean Opinion

Score) to evaluate the current performance of the service, which is fed back to the

neural network to complete the closed loop optimization. Initial results illustrate how

service specific metrics can be used to inform adaptive control within the context of a

real network control scenario implemented by the APEX engine. This was expanded to
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employ similar evaluation processes for in-the-moment decisions. Allowing the system

to learn and adapt from the outcomes of previous decisions, while also building an

awareness of potential impacts to performance or conflicts with existing goals.

Is it possible to improve user experience through adaptive decision making in low level

network control, with respect to QoS capabilities and business goals?

Expanding from our previous work we proposed adaptive policy as an integrated, unified

video optimization approach. Identifying key requirements as:

• the measurement of QoS capabilities of the network,

• translation of capabilities into Service Level Agreement (SLA) and QoE specifica-

tions,

• a closed loop monitoring and repair policy system.

Meeting these requirements we would then move towards a mathematical model for

policy that governs the network for service assurance, a very good candidate being ∆Q

(based on the model developed in [51]). We described our initial work in probing a unified

approach to video quality assurance that aims to integrate (virtually) any of the usage

scenarios discussed above with the existing in-network video optimization techniques we

described in the context of 5G mobile networks. To address the requirements of the

approach we specified a system architecture and conducted experiments which:

• generate Mean Opinion Score (MOS) to evaluate network path quality,

• deploy adaptive policy for network path consideration,

• implement decisions through the network controller.

Is it possible to test and evaluate management operations for dynamic networks in a

manner that reflects the real environment before deployment onto live systems?

Our work details a realistic test bed that emulates the network, interfaces with real

controllers using real policies and carries real traffic. Therefore, when the policy changes,

their effects can be analyzed in a realistic manner. This test bed has a number of key

requirements:
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• it must be lightweight,

• support realistic behavior such as actual analytics frameworks, policy systems and

real network controllers,

• should be open to allow for integration of new components,

• capable of fast loop times,

• support fast reproducible experiments, allowing rapid evaluation of different man-

agement strategies.

While there are numerous network simulators and emulators, several candidate network

controllers and many network analytics platforms and rule/policy systems, there lacks

an existing reusable test bed for evaluation of closed loop network management that

meet our requirements. We developed our test bed with particular focus on allowing for

quick evaluation of alternative network policies executing in APEX [15]. With this test

bed policy authors can deploy and evaluate their policies on an emulated network and

monitor the real time affect their policy has on the network.

1.3 Contributions

In this section we list the contributions of this work. The contributions are broken into

major and minor:

Major Contributions

1. The specification of an intent based architecture for the execution of translation

and inference policies evaluated by predictive ML models.

2. The specification of an adaptive architecture for execution of cognitive policies

within the COMPA closed-loop architecture.

Minor Contributions

1. The generalisation of intent definition, policy composition and execution mecha-

nism for an Adaptive Policy environment.
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2. An industry proven evaluation environment with usability parameters for end

users.

1.4 Publications Arising From This Work

[J. McNamara et al., ”NLP Powered Intent Based Network Management for Private

5G Networks,” in IEEE Access, vol. 11, pp. 36642-36657, 2023, doi: 10.1109/AC-

CESS.2023.3265894.]

[J. McNamara, E. Aumayr, L. Fallon and E. Fallon, ”A Flexible Interpreter For Intent

Realisation,” NOMS 2022-2022 IEEE/IFIP Network Operations and Management Sym-

posium, Budapest, Hungary, 2022, pp. 1-6, doi: 10.1109/NOMS54207.2022.9789910.]

[J. McNamara, L. Fallon and E. Fallon, ”A Mechanism for Intent Driven Adaptive

Policy Decision Making,” 2020 16th International Conference on Network and Service

Management (CNSM), 2020, pp. 1-3, doi: 10.23919/CNSM50824.2020.9269073.]

[J. McNamara, L. Fallon and E. Fallon, ”A Hybrid Machine Learning/Policy Approach

to Optimise Video Path Selection,” 2019 15th International Conference on Network and

Service Management (CNSM), 2019, pp. 1-5, doi: 10.23919/CNSM46954.2019.9012667.]

[J. McNamara, S. d. van Meer, L. Fallon, J. Keeney and E. Fallon, ”An Adaptive Policy

Approach to Video Quality Assurance,” 2018 14th International Conference on Network

and Service Management (CNSM), 2018, pp. 363-367.]

[J. McNamara, J. Keeney, L. Fallon, S. van der Meer and E. Fallon, ”A testbed for policy

driven closed loop network management,” NOMS 2018 - 2018 IEEE/IFIP Network Oper-

ations and Management Symposium, 2018, pp. 1-6, doi: 10.1109/NOMS.2018.8406144.]



Chapter 2

Literature Review

This chapter describes telecommunication technologies, network management strategies,

the evolution of intent and advanced analytics through machine learning paradigms.

These technologies and strategies play a large role in our modern networks. Legacy

telecommunication technologies are still used in our modern networks due its iterative

development and network management services engage with these technologies. Fourth

Generation (4G), Fifth Generation (5G) and Sixth Generation (6G) mobile networks

are described in section 2.1. Network management strategies such as policy, control

loops and the adaptive policy approach are described in section 2.2 with a focus on the

limitations of the approaches and the advancements made to produce adaptive network

management solutions while reducing operation complexity. The evolution of intent is

described in section 2.3 followed by detailed descriptions of current translation tech-

niques. Machine learning techniques are described in section 2.4, these paradigms are

expected to play a larger role on network management decision-making through stan-

dalone analytical components or embedded in policy driven components. In section 2.5

primary reference architectures are presented followed by detailed structures of open-

source network management platforms and autonomous networks. 5G platforms devel-

oped under the H2020 program in parallel with this research are also presented with

contributions relevant to this research.

12
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2.1 Telecommunications

Telecommunications is the term used to describe the exchanging of information such

as voice, data and video over wired and wireless mediums. The Fourth Generation of

mobile networks is described in subsection 2.1.1, highlighting key technologies that en-

abled new use cases and application for mobile network devices. The Fifth Generation

of mobile networks is described in subsection 2.1.2. This section highlights the core tech-

nologies of modern networks, resulting in increased complexity. The Sixth Generation

of mobile networks is described in subsection 2.1.3. This section gives a brief overview

of 6G through drivers, potential use cases and proposed technologies. Although still

an abstract concept, 6G is expected to bring further complexity as a debt to improved

performance.

2.1.1 Fourth Generation 4G

4G was designed to provide appropriate speeds for popular applications at the time

such as HD video. As common use progressed beyond emails, messaging applications

and sharing photos, networks needed to improve both speed and capacity to meet new

demands. This was achieved through a number of architectural changes to the network

along with the introduction of new technologies. This section presents two of the key

features in Fourth Generation mobile networks:

2.1.1.1 MIMO

Multiple Input and Multiple Output is widely considered a key technology in 4G. It pro-

vides significant increases in throughput and link range while not requiring an increase

in both bandwidth or power to transmit. Massive MIMO, that is MIMO deployed on

large scale networks, can utilise multiplexing to largely increase bandwidth efficiency

[52]. Energy efficiency is also achieved through an increase in the number of antennas,

allowing for a more directed signal towards the User Terminal (UE) [53].
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2.1.1.2 Frequency Domain Equalization

Orthogonal Frequency Division Multiplexing (OFDM) is used to encode data on multiple

carriers, it emerged as a leading physical layer technology in wireless communications

[54]. This technology was used to develop Orthogonal Frequency Division Multiple

Access (OFDMA) which is a multi user approach to OFDM. OFDM is used to encode

data on multiple carriers and by distributing these carriers into subsets, that can be

accessed on a user by user basis, multiple users can transmit small amounts of data

using different subsets simultaneously. [55]

2.1.1.3 Positioning Reference Signals

The ability to position outdoor devices through Global Navigation Satellite Systems

(GNSS) [56] [57] has sparked new avenues of research for indoor positioning systems

with precision. Today positioning technologies can be divided into radio and non-radio

frequency based positioning. An example of non-radio frequency based positioning is

the use of sensor data from mobile smart phones [58] [59] [60] [61]. However there are

also more specialised mechanisms such as optical based positioning or magnetic field

positioning.

Release-9 of LTE networks saw the support of positioning feature standardised under

3GPP with the introduction of positioning methods. Advanced techniques were also

investigated for Release 16 of NR [62] and 3GPP NR positioning study conclusions

were presented in [63]. In [64] the authors concluded that 3GPP NR systems should

support solutions of observed time difference of arrival (OTDOA), uplink time differ-

ence of arrival (U-TDOA), angle information, multi-cell round trip time (Multi-RTT),

and enhanced cell-ID (E-CID). Downlink based positioning is supported through the

Positioning Reference Signal (PRS). PRS has a more regular structure and larger band-

width when compared to LTE. This allows for more precise correlation and time of

arrival (ToA) estimation. The position of the UE can be determined by comparing the

ToA of a certain device to a number of base stations in the area.
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2.1.2 Fifth Generation 5G

5G will expand mobile technologies, supporting new and diverse devices and services.

5G promises more capacity and lower latency enabling new use cases such as larger

scale IoT and self driving cars. This section presents three key technologies in Fifth

Generation mobile networks.

2.1.2.1 Network Softwarization - NFV/SDN

An overall approach for designing, implementing, deploying, managing and maintaining

network equipment and/or network components by software programming [65]. It en-

ables flexibility, adaptability, and complete network reconfiguration on the fly based on

timely requirements and behaviours by considering cost and process optimization in the

overall maintenance of the network life-cycle [66]. Traditional network services are based

on proprietary appliances to provide different network services. In these purpose built

hardware systems and accompanying architectures the devices are vertically integrated

and have distributed control intelligence[67]. This introduces limitations in regard to

management, configuration and flexible implementation of high level network policies

[68].

A possible solution to this is the use of Network Function Virtualisation (NFV). The

virtualisation of network functions enables characteristics like flexible provisioning, de-

ployment and centralised management. Current network services rely on proprietary

appliances and different network devices that are diverse and purpose-built [69]. This

allows network operators and service providers to move away from purpose-built hard-

ware instead implementing network functions in a virtualised environment running on

standard servers and off the shelf hardware. Cost is also taken into consideration when

encouraging the move to NFV. Proprietary hardware and applications are expensive

to create and maintain. Both capital expenditure (CapEx) and operating expenditure

(OpEx) can be reduced through the decoupling the application from the respective hard-

ware [70] [71]. NFV supports the multi tenancy of network and service functions utilising

the same physical hardware systems for distinct services, application and tenants. NFV
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was a key factor to allow the virtualisation of networks [70] [71], breaking the connec-

tion of network functions from dedicated hardware and packaging the functionality into

a software package runnable on commercial off the shelf equipment [72] [73] [74].

New technologies and the evolution of existing technologies has identified an issue with

traditional networks, primarily a lack of flexibility. One way to address this was the

development of Software Defined Networking and the incorporation of abstractions in

the network architectures [75]. With NFV decoupling network functions from dedicated

hardware, Software Defined Networking (SDN) aims to decouple the control plane from

the data plane[76]. This is achieved by introducing elements of programmability into

the network in the form of SDN controllers and commonly associated Openflow switches

[77]. With this approach routing tables and forwarding rules can be programmatically

generated [78]. The northbound interface allows SDN controllers to be incorporated

into network control mechanisms. Guided by the control layer, high level goals can be

realised through the controllers southbound interface. Southbound APIs interface with

data plane devices allowing forwarding devices to be controlled in a programmable, goal

oriented, flexible manner. [79]

Although NFV and SDN are completely different concepts with unique aims, when

implemented in a cooperative manner they provide a new level of functionality and

flexibility to modern networks. NFV aims to decrease cost through the virtualisation of

network functions allowing for fast provisioning and deployment, while SDN aims to pro-

vide flexibility through a programmable network architecture by decoupling the control

plane from the data plane. Today we see many examples of virtualised SDN controllers

such as the Apache licensed Floodlight SDN controller and ONAP’s OpenDaylight con-

troller. This allows for NFV enabled dynamic and optimised controller placement with

the flexible control provided by SDN.

2.1.2.2 Network Slicing

The arrival of 5G networks enabled the integration of cross-domain network through

the enabling of logical slices of the network allowing distinct domain and technologies

to create tenant / service specific networks resulting in virtual networks that are highly

optimised to fulfil specific use cases such as video streaming. Network Slicing will realise

an end-to-end (E2E) vision from the mobile edge through the mobile transport layer,
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including front-haul (FH) and back-haul (BH) segments, resolving before the core net-

work (CN). The 5G architecture utilises slicing which decouples Virutal Network Func-

tions (VNFs) and Software Defined Networking (SDN) from the physical infrastructure

through resource abstraction technologies.

This technology allows for fully decoupled end-to-end (E2E) networks sitting on a shared

physical infrastructure, as a result well-known resource-sharing technologies such as

multiplexing will be implemented on the orchestration layer as oppose to the network

layer. This change will improve Quality of Experience (QoE) for subscribers as well

as increasing the network operability for Internet Service Providers (ISPs) and network

operators. [80]

The concepts, use cases and requirements for management of network slicing in 5G

mobile networks is presented in 3GPP Technical Specification [81]. Business level re-

quirements are described along with high level features such as Self-Organising Networks

(SON) and closed-loop SLA assurance. Many use cases are described for network slic-

ing involving coordinated support from Network Operators and Communication Service

Providers.

Other standardisation bodies such as ETSI have produced Group Specifications [82]

detailing E2E network slicing management solutions and related management interfaces.

These include E2E network slicing including provisioning, performance assurance and

fault management of an E2E slice instance across multiple management domains.

Network slicing introduces new and interesting capabilities to the network. However

slicing a physical infrastructure into multiple virtual networks will require a form of

management framework to handle slice configuration. More importantly given the abil-

ity to generate service-specific slices these slices may have conditions or requirements in

terms of QoS (Quality of Service) and depending on network conditions will require re-

configuration. Previously we discussed the drive toward Autonomous Networks and the

importance of the closed control loop. Utilising a closed control loop such as COMPA,

would allow Adaptive Policy to influence slice reconfiguration through informed deci-

sions as Adaptive Policy would have both network and customer information available

at decision time.
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2.1.2.3 Location Management Function

3GPP positioning is realised through a location server in the LTE domain or a Location

Management Function typically found in 5G networks. This server/function gathers and

processes data related to the positioning of devices in the network. This information

can then be forwarded to management components/functions to inform operations in

improve performance/reliability/energy efficiency etc. One or more positioning methods,

provided by the PRS, may be called or combined to report device locations depending

on the scenario and required accuracy [83].

In current research, the location where this data is computed is under discussion. Some

systems have delegated these calculations to take place and be stored on the device

while others perform these calculations on the cloud. Both of these approaches may

result in degradation of performance through incurred delay, battery usage and network

resources [84]. Hybrid approaches combining device and cloud may also affect accuracy

through the decoupling of the final position calculation and the storage of training data

sets. The authors of [85] demonstrated that offloading position information to the edge

mitigated computing complexity and reduced energy consumption at the Base Station.

This approach also encourages private network operators to leverage these calculations

for their own networks, as they can perform the calculations quickly, without requiring

their data to leave their network and can continue to comply with a 3GPP standard.

2.1.2.4 Beamforming

Beamforming is a signal processing technique used for directional signal transmission or

reception. Spatial selectivity/directionality is achieved by using adaptive transmit/re-

ceive beam patterns. When transmitting, a beamformer controls the phase and relative

amplitude of the signal at each transmitter antenna to create a pattern of constructive

and destructive interference in the wavefront. When receiving, signals from different

receiver antennas are combined in such a way that the expected pattern of radiation is

preferentially observed. [86]

Beamforming can be achieved in the digital baseband, analog baseband, or RF front end.

With digital baseband beamforming and multiple RF chains, it is possible to transmit

multiple streams of data simultaneously, thus enabling SDMA or MIMO operation. [87]
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In general, digital beamforming provides a higher degree of freedom and offers better

performance at the expense of increased complexity and cost due to the fact that sepa-

rate FFT/IFFT blocks (for OFDM systems), digital-to-analog converters (DACs), and

analog-to-digital converters (ADCs) are required per each RF chain. [88]

2.1.2.5 Management and Orchestration

The authors of [89] highlight Open Standardisation as an enabler in 5G network man-

agement and orchestration. SDN and NFV enabled networks to be programmable and

dynamically instantiated. Detailed in IETF RFC 6241 [90], NETCONF provided con-

figuration and management while being transport protocol independent meaning access

was not restricted. NETCONF also allowed administrators to set variables from fea-

tures Configuration and operation data was separated which allowed administrators

to set variables from features like statistics and alarms. Also, transaction operations

were supported to ensure the completion of configuration tasks. NETCONF defined

mechanisms for the configuration and access of network elements, the information was

described through the YANG data modelling language. YANG abstracted the configura-

tion of devices and services for the network administrator. It also simplified configuration

management by supporting validation features for input data. IETF is a leader in the

standardisation of these models for network management.

Similar to NETCONF, the RESTCONF protocol provides a programmatic interface

for create, read, update and delete (CRUD) operations that can access data defined in

YANG based on Hypertext Transfer Protocol (HTTP) transactions. This allows web-

based applications to access a variety of information models along with remote procedure

call (RPC) operations of the networking device in a flexibile manner. The purpose is

then similar to the one described for NETCONF. Regarding the orchestration of services

and the management of VNF lifecycles, Topology and Orchestration Specification for

Cloud Applications (TOSCA) was proposed as viable approach.

TOSCA is detailed in OASIS Standard [91]. This specification provides a language

to describe service components and their relationships using a service topology, and it

provides for describing the management procedures that create or modify services us-

ing orchestration processes. TOSCA templates are designed to support describing both

NS descriptors (NSDs) and VNF descriptors (VNFDs). TOSCA is a service-oriented
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description language to describe a topology of cloud-based web services, their compo-

nents, relationships, and the processes that manage them, all by the usage of templates.

TOSCA supports large areas of service configurations such as resource requirements,

VNF life-cycle management and the definition of workflows and FCAPS management of

VNFs. This allows implementations of given behaviors to be instantiated and a service

template. The system details the structure of different topologies, in template form, as a

collection of node templates with relationships. The approach creates a directed graph

template. Node and relationship templates specify the properties and the operations

(via interfaces) available to manipulate components. The inclusion of the relationships

between the nodes in the topology template allows the orchestrator to interpret the

order of instantiation through the dependencies of nodes. TOSCA templates can also

inform other life-cycle management operations such as scaling.

NETCONF, YANG and TOSCA complement each other in their approaches to network

configuration and management. The TOSCA templates can manage the life-cycle of

VNFs while dynamic configuration at run-time can be realised through YANG mod-

els over the NETCONF/RESTCONF transport protocols. The interplay is facilitated

by architectural propositions like the integrated SDN control for tenant-oriented and

infrastructure-oriented actions in the framework of NFV. [89]

2.1.3 Sixth Generation 6G

6G plans to expand further on mobile technologies, utilising higher frequencies while

supporting higher capacity and lower latency. In this section we will detail some of the

key areas of 6G through the lens of drivers, use cases and technologies.

2.1.3.1 Drivers, Use Cases and Technologies

6G brings with it the potential for new and exciting applications. The authors of [92]

highlight the limitations of existing 5G mobile networks for emerging applications such

as Internet of Everything, Holographic Telepresence, collaborative robots, and space and

deep-sea tourism. A large list of additional applications of 6G are presented in survey

papers such as [93] and the volume of work already present in this area shows that the

roles of mobile networks will continue to expand as performance improves.
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Trustworthiness has been proposed as a key driver for 6G mobile networks. It can be

broken down into a list of important areas such as: privacy, security, integrity, resilience,

reliability, availability, accountability, authenticity and device independence. Each of

these areas present unique challenges for a range of engineering disciplines.[94]

Sustainability has been a key driver of many technological advances in recent years. On

a social level we have become more environmentally aware and have made conscience

efforts towards cheaper and greener alternatives. This change is also reflected in in-

dustry where large research efforts have been put into topics like energy efficiency. 6G

provides opportunities to produce more sustainable networks in the future. The authors

of [95] aim to disseminate the latest theoretical and experimental works in the domain of

energy-efficient communication and computing technologies towards enabling massively

connected, fully intelligent and sustainable green 6G networks.

Another driver of 6G networks is the expansion of AI and Smart systems in an effort to

achieve a simplified life. The performance and capability improvements expected from

6G may enable existing smart systems to provide a wider range of more powerful ser-

vices to it users. These existing smart systems that were realised in modern 5G networks

are now being proposed in the 6G environment. The authors of [96] looked at key 6G

technologies and present a layered network approach to resource allocation problems in

dense city networks. The authors of [97] looked at the technologies of 6G and detailed

the potential advances in healthcare. These include services like smart monitoring of

remote patients through intelligent wearable devices, wireless communication of scans

with AI assisted diagnosis and the utilisation of smart vehicles in emergency services.

The authors of [98] produced a survey paper which investigated the applications of ML

technologies in the vehicular network toward the future 6G intelligentized network. Fo-

cusing on the distinctive challenges in the existing vehicular communication, networking,

and security, and investigated the corresponding ML-based solutions

Current white papers on future networks provide some insight into the industry’s per-

spective on 6G. The authors of [99] provide a detailed description of research activities

globally along with prominent industry use cases and technology scenarios such as ubiq-

uitous services, uniform coverage and smart agriculture. The authors of [100] highlight

the technology elements of 6G including the role of intent-based management in cognitive

networks.
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2.2 Network Optimisation Strategies

In this section we will provide detail on the network management tools used as part of

our research. Policy is a straightforward rules based approach to network management

through Event, Condition, Action sequence decision making. Control Loops were utilised

to add autonomic features to the network through the use of a feedback of actions and

monitoring. Adaptive Policy then introduced a context aware and dynamic decision

making mechanism which addressed some of the limitations of the control loop. Finally

Intent which has evolved from a policy approach to a fully fledged modern network

management framework.

2.2.1 Policy

This section describes policy’s role in network management and the progress of policy to

stay flexible while providing informed and context aware decisions for the volatile and

complex modern network. The section introduces traditional approaches to policy, the

limitations of the approach and the requirements of Adaptive policy.

Policy was introduced into network management to provide decision making capabilities

in the area of fault management. Policies are typically modelled and there are a number

of structures such as General Policy Modelling Language (GPML)[101] and Common

Information Model (CIM)[102]. The IETF specified the CIM in standards through

RFC 3060[103] and is a prominent reference in policy modeling. The terminology for

Policy-Based Management is defined in RFC 3198[104]. Regardless of the modelling

language used policy tends toward a pattern of execution. This can be described as

Event Condition Action (ECA) where an event has triggered the execution of the policy,

a condition is applied to the trigger generating an action as output[105]. ECA is still

prominent policy-based management technique today. ETSI produced a Group Report

detailing a gap analysis in the area of context-aware policy management[106]. This

report analysed the work done in various SDOs and open source consortia on policy-

based modelling. ECA is detailed as an example of imperative policy types and linked to

the IETF RFC 8328[107], a data model for policy abstraction in a network management

environment.
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Internet Service Providers (ISP) have adopted policy as a means to reduce Operat-

ing Expense (OPEX). Through policy decision making, ISPs can reduce the number of

human-in-the-loop interactions letting the network run in a more autonomic manner.

Autonomous Networks, networks that operate with little to no required human inter-

vention would reduce OPEX costs even further expanding the role and responsibilities

of policy in the network. Closed loop control systems have be proposed as a mechanism

to achieve autonomous networks.

2.2.2 Closed Control Loop Systems

ETSI has produced a Group Report detailing prominent control loop architectures that

can be used in modular system design[108]. The purpose of the Group Report was to

inform a Group Specification for the Experiential Networked Intelligence (ENI) System

Architecture detailed in [109]. The Group Specification defines a high-level functional

abstraction of the ENI System Architecture. The terminology for the ENI System is

specified in [110].

Figure 2.1: High Level Functional Architecture of ENI[1]

IBM introduced the Monitor Analyse Plan Execute Knowledge (MAPE-K) control loop

in 2005 which detailed an architectural plan for autonomic computing [111]. Using this

approach monitor, analyse, plan and execute share a knowledge pool which allows for

more informed decisions. The FOCALE autonomic network architecture was introduced

in [112] allowing business rule orientated resource and service allocation, self monitoring,

self adaptation, modelled data verification and had the capability to add new data dy-

namically. Ericsson introduced the Control Orchestration Management Policy Analytics

(COMPA) framework in [113]. This approach broke the network down into separate roles
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and introduced a second COMPA loop to manage that area of the network. This nest-

ing of COMPA loops provided another layer of automation to the network allowing high

level COMPA loops to communicate goals to lower level COMPA loops where changes

can be executed and monitored. However the Policy of COMPA has displayed a number

of limitations. These limitations are listed in [14]:

• Aggregates of elements may exhibit behaviour not predictable from knowledge of

individual behaviours

• Causal determinacy is still limited by simple statistical analysis and rudimentary

correlation approaches

• No ability of the system to “go beyond” static knowledge and procedures.

• No or limited feedback within the loop (leading to incorrect/sub-optimal decisions

• Only taking context into account at the decision point

• No tie back to the business or system goal in a dynamic manner.

As policy plays a key role in all control loops these limitations would have a negative

impact on the viability of autonomous networks. This has motivated the development

of Adaptive Policy.

2.2.3 Adaptive Policy

ETSI has produced a Group Report detailing a study on policy models in NFV-MANO[114].

This report primarily focused on TMF, IETF and ONAP policy models. The ONAP

Policy model used in this study was Adaptive Policy EXecution. APEX was the only

policy model deemed to have satisfied or considered all recommendations of the NFV-

MANO.

The authors in [14] discussed the need for telecommunication control and management

policies to evolve to cope with the flexibility and dynamicity of network components.

They highlighted the deficiencies and limitation with policy and proposed Adaptive

Policy as a means to address these shortfalls. The described Adaptive Policy has three

characteristics:
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• Context-aware decision making

• Can change decision-making behaviour based on external activity

• Can change decision-making behaviour based on internal activity

Instead of viewing policy as an Event Condition Action (ECA) the authors divide the

policy into four states with clear separation of concerns. These states are referred to as

Match Establish Decide Act (MEDA). These can then be executed on a flexible state

machine with interchangeable state logic carrying behaviour. The Adaptive Policy EXe-

cution (APEX) engine would allow for easy deployment and controlled policy execution.

Notable improvements were concrete models for context and new mechanisms for con-

flict detection. The integration of meta-data and context was outlined as future work

for advanced conflict detection. In [15] the authors present the APEX engine. The

policy engine was capable of running Adaptive Policies which could adapt to changes in

goals, environment and incoming event context. The advantage over ECA policies was

the incorporation of meta-data which enabled the conflict detection on a per state per

execution basis. APEX addressed the deficiencies and limitations found in the incorpo-

ration of policy into the COMPA control loop allowing policy to play a much larger role

in the development of Autonomous networks.

2.3 Intent

Intents can be thought as high-level business or operational targets that a system should

meet, without specification on how it is achieved[115]. In this section we will detail the

evolution of intent in three stages. Intent started as goal-oriented policies for network

operators. Later intent was used in the interfaces of network components creating intent-

driven interfaces. Today intent has expanded to a framework and extensive standardisa-

tion efforts from a number of different bodies has made it a viable network management

approach.

2.3.1 Goal-Oriented Policies

The goal-oriented policies of the 90’s was the first iteration of intent in network man-

agement. Policies allowed for user involvement with minimum user interaction [116].
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Examples of these policies can be found in [117] which details a variety of goal-oriented

policies for handling congestion on ATM and IP Networks. As the policies developed

they introduced more intent qualities such as pro-activeness, these goal-oriented poli-

cies could take the initiative in its decision making [118]. Further development would

enable policy management goals to govern the overall management objective and ac-

tivities [119]. Goal-oriented policy authors had to used translation to get the intents

into actionable per device configurations [120]. This translation requirement may have

motivated to move away from intent as part of policy execution and towards intent as

an interface. The translation of the goal described in the intent to the devices which

carry out actions to achieve it is something that we still see today in intent realisation.

Modern policy-driven implementations have focused on abstraction through modelling.

A straightforward example of this is the Simplified Use of Policy Abstractions (SUPA)

[107]. This approach proposed a data model which utilised network resource data models

defined by other working groups or Standards Development Organizations (SDOs).

2.3.2 Intent-Driven Interfaces

A Technical Report produced by 3GPP describes, intent driven management concept,

intent driven management scenarios, and recommendation for the way forward on stan-

dardization expression of the intent in normative phase [2]. The study addresses different

standardised reference interfaces for different users such as the communication service

provider, communication service consumer and network operator

Figure 2.2: Intent driven management vs Policy driven management[2]
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The study also provides additional information in the comparison of policy-driven and

intent-driven management. The representation shows the encapsulation of policy within

the intent, highlighting the level of abstraction expected with each approach. The level

of abstraction vary between intent-driven interfaces. This can be seen when comparing

the interfaces of different SDOs. TM Forum provide a specification which defines a set

of operations that should be offered in manage intent and intent-driven interactions in

a consistent manner [121]. This specification lists Intent Entities with relevant associ-

ations. This is a more abstracted approach compare to the Intent Driven Action and

Intent Driven Object described in the 3GPP Technical Report.

Intent-driven interfaces were largely found as the NBIs of Software Defined Network

controllers. When these interfaces started they suffered from missing NBI standards

around intent and as a result many interfaces were vendor specific. The Open Networking

Foundation (ONF) established a Work Group (WG) to manage the development of

NBI in controllers. From this many SDN controllers developed intent driven interfaces

including Floodlight, OpenDayLight, ONOS and NIC. The IB-NEMO language was

then created to translate intents into network processes and services. These projects

addressed missing NBI standards for controllers at the time. [122]

The IB-NEMO language was a transaction based Northbound API that supported de-

scriptions of proactive intents. However, functionality was limited to updating network

paths at at specified times. As a result the IB-NEMO language was extended to enable

dynamic configuration, allowing for the network environment to automatically update

in response to changes in network conditions.[35]

Modern intent driven interfaces for network controllers have moved away from the lan-

guage approach towards ML enabled translation. An example of this is the use of intent

refinement to convert intents from declarative language to a machine-readable policy.

This is achieved through an intelligent intent refinement system based on natural lan-

guage processing and deterministic finite automation. Intents are then translated into

policies where they are deployed to the infrastructure layer through the standardised

OpenFlow protocol.[123]

The use of a standardised protocol in the south bound interfaces allowed for a straightfor-

ward uniform translation of intent to actions which are understandable to any controller.

When managing a range of different network components and services through intent,
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an action vocabulary is required for the translation to take place. To allow more of the

network to become intent driven, a standard or higher level framework must provide the

semantics for the translated intent to be validated against.

2.3.3 Complete Intent-Driven Network Frameworks

Today intent has found a home in the pursuit of Autonomous Networks. Large stan-

dardisation bodies have extensively modelled intent as the primary communication tech-

nology at the business and service levels. TM Forum have proposed intent-driven APIs

with the aim of including these interfaces in the Autonomous Networks project. Intent

in Autonomous Networks is documented in three stages: Intent Modeling [124], Intent

Extension Models [125] and Intent Lifecycle Management and Interfaces [126]. These

standardised intent models are divided into common and extension types, utilising on-

tology frameworks to allow expressivity in the intent. The interfaces of autonomous

network components are moving away from the common static XML based APIs seen in

traditional networks. Autonomous networks have adopted a RDF data model approach

to component interfaces, viewing the machine reasoning and inference capabilities as

powerful tools in the intent realisation process. [127]

2.3.4 Intent Translation Techniques

Intent Translation involves the translation of abstract high level requests into low level

operations or configurations that can be carried out on the system. Intent Translation

does not involve the execution of the intents, instead focused on adapting the intent

into a usually standardised format/structure such as YANG/NETCONF models. In the

following sections we highlight a range of popular Intent Translation Techniques in the

current state of the art.

2.3.4.1 Template / Blueprint

Template / Blueprint is a straightforward technique and popular due to its commonality

with existing network management concepts. Modelling and Templates is a tried and

tested approach in network management. This approach looks to create collections of

workflows to bring about different network states. These workflows accept a variety of
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parameters as a way to fine tune and adjust these states to bring about the desired

outcome. The authors of [128] describe a database of Service Function Chains which

fulfill a wide combination of Quality of Service and Security metrics. The authors of

[129] describe how single VNF instances can be templated with adaptable parameters

for configuration. The authors of [130] shows how VNF configurations may change in

response to intent described requirements such as SLA. However in [131] the authors also

acknowledge the predefined nature and expertise required for the creation and mainte-

nance of relevant scripts. This approach is not only VNF focused, the authors of [132]

show the amalgamation of various distinct templates for network components and func-

tions into a grand model. Users would have engaged with the network through these

predefined templates. This approach meets many of the requirements of intent-based

management as it allows the user to engage with the network holistically.

2.3.4.2 Mapping

Mapping looks to break down large intents into smaller mappable segments. Mapping

techniques evaluate these segments against predefined network policies. The authors of

[133] utilise a mapping procedure to associate intents with network descriptors. The

authors of [134] identify network services to fulfill intent goals while leveraging network

functions and requirements to fulfill intent scope. The authors of [135] distributed the

mapping process across application, protocol and device levels, this allowed for different

policies to triggered depending on where the mapping process took place. The authors

of [136] linked intent labels with network specific parameters or classes, these key value

pairs could then be one to one mapped in the network. The authors of [137] adopt a

parallel mapping mechanism as a means to detect resource and dependency conflicts

between network functions. In [138] the authors highlighted the benefit of a policy

database containing all relevant network function and network information. This could

then be used to inform the mapping process giving a clearer view of the available network

policies. This approach can also include information on Quality of Service features

to be incorporated into the intent mapping [139]. The authors of [140] acknowledge

that intents may be fulfilled in several ways, thus an interactive mechanism is adopted

allowing users to select from a range of network configurations. This selection may

also be stored in policy database for future reference [141]. This approach identifies

the importance of breaking down large intent models into more digestible pieces and
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also acknowledges instances where more than one viable approach is possible to address

intent goals.

2.3.4.3 Refinement

Intent Refinement views intents as a tree like structure rather than straightforward

declaration. As a result an iterative approach is adopted to process the intent tree. A

publication as part of this work is present in this category of Intent Translation. We

adopted a recursive function to navigate the intent tree and identify keywords on the

leaves of the tree structure [142]. The depth in these tree like structures can affect the

context of the embedded information with each step. In [143] a similar step approach

is shown in the construction of networks, where first step identifies endpoints, second

finds appropriate subnets, third assigns IP addresses, fourth configures the VLANs and

finally fifth checks Access Control Lists to realise the network. Similar to the mapping

approach, users may wish to verify parameters generated as part of the translation

process [144].

2.3.4.4 Network service descriptors

Network Service Descriptors (NSD) have become a popular translation technique for

intents dealing with Service Function Chains and network slices. NSD specification can

be found here [145]. NSD is a standardised deployment template for NFV Orchestrators

(NFVO). NFVOs are used for the management and deployment of network services. In a

straightforward approach intents could be used to describe VNFs, which would then call

a mapping technique to translate the intent into implementation details for the NSD to

be stored in the network function catalogue. The translation mechanism can then build

the NSD so it is readable by the NFVO [146]. However in a scenario where VNFs are

not explicitly included in the intent, the translation mechanism must extract them from

the network service [147] or intent soft goals [148]. This information can be leveraged to

identify relevant VNFs and extract corresponding VNF descriptors. This allows flexible

intent driven configuration for large parts of the NFVO, to the point where connectivity

constraints can be expressed through intent [149]
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2.3.4.5 Inference

Templating and mapping translation mechanisms are often quite static in nature, often

due to their rule based implementations. Translation mechanisms can become more

efficient if allowed to learn and improve over time [144]. Adapting due to previous ex-

periences can benefit translation mechanisms when identifying missing parameters or

correlated elements. In [150] the authors adapted this approach with NSDs to improve

selection of VNFDs by looking at previous executions and designs. In [151] the au-

thors looked at encryption for security applications and adapted based on bandwidth

requirements. This adaptability can improve the performance of intent based systems,

for example an endpoint connection scenario. The translation mechanism can adapt

between establishing a network route between two points [152] or initialising a virtual

link forwarding policy [153]. This adaptability based on historical information can make

intent based systems more robust while also improving performance over time.

2.3.4.6 Keyword

Often associated with Natural Language Processing, translation mechanisms based on

keywords utilise model representations of labels and correlate them with actions. In

scenarios where keywords may reference several potential elements, priority can be as-

signed based on service characteristics [154]. These systems maintain a classification

of tags and service types which are associated with service templates and rules [155].

This approach benefits when coupled with an inference based approach described in the

previous section. Inference would allow for correlations between keywords improving

parser performance [156].

2.3.4.7 Machine Learning

Machine Learning can provide the classification characteristics of the keyword approach

without the manual effort require to maintain or expand this functionality. Machine

Learning provides techniques to allow intent classification while reducing required man-

ual input [157]. The IDON Framework employs a neural net to identify relationships

between intentions and service characteristics [158]. Machine Learning also brings NLP

concepts and techniques which can be utilised in the translation of intents. An NLP
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translation mechanism should provide syntactic and semantic analysis to achieve accu-

rate interpretation [159]. The authors of [160] utilise word embedding and convolutional

neural networks to produce similarity scores between keywords. The authors of [161]

utilise a sequence to sequence learning model through a recurrent neural network to pre-

dict keywords and correlations within the intent. These types of translation mechanisms

are then linked to powerful AI driven network management components. The authors

of [162] translate their intents into a chain of VNFs to instantiate a network service,

the parameters of which are generated through a Deep Reinforcement Learning model.

Additional generalised NLP based approaches will be detailed in subsection 2.4.4.

2.3.4.8 Semantics

Resource Description Framework (RDF) is heavily associated with semantic based ap-

proaches due to its ability to detail relationships between data elements. It has been

used to document combinations of network actions and conditions which can be merged

with services and parameters defined through intent [163]. RDF has been combined

with refinement translation mechanisms containing more detailed information as more

layers are added to the model. The authors of [164] describe this with basic information

found in the first layer of the model while specific tooling and network information is

embedded. RDF also works well with other semantic languages as shown in [165], where

Web Ontology Language (OWL) can provide additional information around specific data

models.

2.3.4.9 State Machine

State Machine based translation is based on Deterministic Finite Automata (DFA). DFA

can perform a lexical analysis of an intent breaking it up into tokens which can then be

applied to states. The authors of [47] describe DFA policy model which contains three

states to manage an intent request. Each state is responsible for the translation of tokens

resulting in a complete network policy. In [166] the authors ensure that default policy

states can be produced if an appropriate states cannot be found. This approach while

strict in their application utilises intent grammar which is easily interpreted by users.

Functionality can be expanded to integrate with network management tools through the

development of selection policies.
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2.4 Machine Learning

The first machine learning related algorithms appeared in the 1970s but were limited

by the technology of the time. Modern computing power allows us to apply machine

learning to more complex problems and when accompanied by the vast amount of data

being captured and stored, machine learning can be applied to a wider range of domains.

Today machine learning is utilise is many different domains including:

• Security Heuristics - Expert based analysis determining the susceptibility of a sys-

tem towards particular threat/risk using various decision rules or weighing methods

such as Multi-Criteria analysis (MCA).

• Image Analysis - The study of images to extract useful information through pattern

recognition, digital geometry and signal processing.

• Deep Learning - A multi-layer approach to progressively extract higher level fea-

tures from raw data.

• Object Recognition and Prediction - A collection of computer vision tasks involved

in identifying objects in a digital image and building a model for identification of

similar objects in further images.

• Pattern Recognition - The automatic discovery of regularities in data through the

use of computer algorithms and with the use of these regularities to take actions

such as classifying the data into different categories.[167]

Machine learning learns to perform a task based on a large amount of training data

to generate a model. This model can then be applied to new data which it has not

encountered before and carry out the task for which it was trained. [168]

This training can be implemented using a wide range of scenarios depending on the

types of available training data, the method by which training data is received and the

test data used to evaluate the generated model.

2.4.1 Supervised Learning

The learner receives a set of labeled examples as training data and makes predictions

for all unseen points. This is the most common scenario associated with classification,
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regression, and ranking problems. Instances of supervised learning include Regression,

Decision Tree, Random Forest, KNN, Logistic Regression etc.

2.4.1.1 Support Vector Machine

Used as a means of data classification. Support Vector Machine constructs a hyperplane

or set of hyper-planes in a high- or infinite-dimensional space, which can be used for clas-

sification, regression, or other tasks like outliers detection[169]. Common applications

of SVM are classification of text, hypertext, images

2.4.1.2 Linear Regression

Regression models a target prediction value based on independent variables. It is mostly

used for identifying relationships between characteristics [170]. Linear regression per-

forms the task to predict a dependent variable value (y) based on a given independent

variable (x). So, this regression technique finds out a linear relationship between x

(input) and y(output). Hence, the name is Linear Regression.

Linear regression takes external factors into account with dependant and multiple inde-

pendent variables, using this data the forecast value of the next period of time can be

calculated [171].

2.4.1.3 Decision Tree

Decision Tree is one such modern solution to the decision making problems by learning

the data from the problem domain and building a model which can be used for predic-

tion supported by the systematic analytics[172]. Decision Trees are the most popular

classification methods as they are easy to understand and has a high accuracy in decision

making [173]. However decision trees are not very robust and struggle with ”missing-

ness” or ”missing data” which has resulted in considerable study in the area to address

this issue [174].
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2.4.2 Unsupervised Learning

The learner exclusively receives unlabeled training data, and makes predictions for all

unseen points. Since in general no labeled example is available in that setting, it can be

difficult to quantitatively evaluate the performance of a learner. Instances of unsuper-

vised learning include Apriori algorithm and K-means.

2.4.2.1 K-Means

One of the popular clustering methods using the partition nodes into clusters is K-

means. K-means is unsupervised learning algorithm, developed by McQueen in 1967

[175]. K-means clustering is a mathematical, non-manageable, non-deterministic, itera-

tive method. In k-means clustering, sensors are divided into K clusters, so each sensor

node belonging to one cluster based on some similarity. The each cluster contain a

centroid or cluster head. In the k-means, a clustering input is how many clusters are

required and output also desired numbers of clusters. [176]

2.4.2.2 Auto Encoder

Auto-encoder neural network is a well-known unsupervised feature representation method

that learns low-dimensional hidden variables with the minimum reconstruction error to

the input matrix. An auto-encoder neural network can be divided into two symmetric

steps: encoder and decoder. The former aims to learn a low-dimensional feature repre-

sentation of the input data, whereas the latter is to recover the data with the minimum

reconstruction error. An encoder can be regarded as a feed-forward bottom-up step,

while a decoder can be viewed as a feedback top-down generative step. In order to

capture the certain geometrical structures of the input data, a number of variations of

auto-encoder have emerged. [177]

2.4.2.3 One Class SVM

OCSVM is a generalization of SVM in the area of unsupervised machine learning. It

is mainly used for processing outliers detection of data. Only normal data samples are

needed, which takes the origin after the kernel function projection as the negative class
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of SVM, searches for a hyperplane to separate the normal samples from the origin, and

maximizes the structural risk to ensure that the hyperplane is maximal from the sample

and contains enough normal samples. [178]

2.4.3 Reinforcement Learning

The training and testing phases are also intermixed in reinforcement learning. To collect

information, the learner actively interacts with the environment and in some cases affects

the environment, and receives an immediate reward for each action. The object of

the learner is to maximise his reward over a course of actions and iterations with the

environment. However, no long-term reward feedback is provided by the environment,

and the learner is faced with the exploration versus exploitation dilemma, since he must

choose between exploring unknown actions to gain more information versus exploiting

the information already collected. An example of reinforcement learning is the Markov

Decision Process In practice, many other intermediate and somewhat more complex

learning scenarios may be encountered. [179]

2.4.3.1 Markov Decision Process

Markov decision processes, also referred to as stochastic dynamic programs or stochastic

control problems, are models for sequential decision making when outcomes are uncer-

tain. The Markov decision process model consists of decision epochs, states, action,

rewards and transition probabilities. Choosing an action in a state generates a reward

and determines the state at the next decision epoch through a transition probability

function. Policies or strategies are prescriptions of which action to choose under an

eventually at every future decision epoch. Decision makers seek policies which are opti-

mal in some sense. An analysis of this model includes:

• providing conditions under which there exist easily implementable optimal policies,

• determining how to recognise these policies,

• developing and enhancing algorithms for computing them,

• establishing convergence of these algorithms.[180]
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2.4.3.2 Q-Learning

One of the early breakthroughs in reinforcement learning was the development of an off-

policy TD control algorithm known as Q-learning [181]. In this case, the learned action-

value function (Q) directly approximates the optimal action-value function, independent

of the policy being followed. This dramatically simplifies the analysis of the algorithm

and enabled early convergence proofs. The policy still has an effect in that it determines

which state–action pairs are visited and updated. However, all that is required for correct

convergence is that all pairs continue to be updated. This is a minimal requirement in

the sense that any method guaranteed to find optimal behavior in the general case must

require it. [182]

2.4.4 Natural Language Processing

Natural Language Processing (NLP) aims to retrieve the syntactic, semantic, and sen-

timental aspects of spoken/written language referred to as natural language. NLP is a

prevalent research topic producing solving problems such as Neural Machine Transla-

tion, Name Entity Recognition and Sentiment Analysis. NLP specialises in taking raw

data in the form of text and translating it into a mathematical format such as vectors

and matrices. Models are then designed to process the mathematical formats which can

then be translated back into text. [183]

2.4.4.1 Lemmatization and Stemming

Stemming and lemmatization are NLP preprocessing techniques to handle different ver-

sions of words [184]. Processing produces comprehensible, predictable, and analyzable

text [185]. Stemming and lemmatization are categorised under Information Retrieval

[186] [187]. Both techniques group similar words based on root or canonical citation

form [185]. Stemming reduces words to their most common stem maintaining the se-

mantic meaning [185] [188] [189] [190]. However, grammatical rule are not maintain in

this process [191]. Lemmatization maintains the actual word [192]. Lemmatization re-

moves ending to reduce the word to its dictionary form to remove variations [193] [194].

The suffix is removed or replaced to bring it to is base which is referred to as lemma

[185] [188].
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2.4.4.2 Topic Modelling

Topic Modelling is an unsupervised machine learning approach which generates a weighted

list of words based on text input [195]. Topics are interpretable and can be used to gen-

erate topic based representations of bodies of text. Topic Modelling is a popular text

analysis tool used in applications such as exploratory text analysis [196], information

retrieval [197], natural language processing [198], and topic discovery [199].

2.4.4.3 Keyword Extraction

Keyword extraction is the process of identifying key words and phrases from a body

of text with the aim of providing the user with quick insights into the text. Popular

keyword extraction tasks include opinion mining [200], text summarization [201], and

text categorization [202]. Current popular keyword extraction models are compared and

evaluated based on their recall and precision, however this can fluctuate between data

sets [203] [204].

2.4.4.4 Knowledge Graphs

Knowledge Graph is a semantic network of objects typically stored as a graph database

and visualised in a graph like structure [205] [206] [207]. In 2012, Google adopted

Knowledge Graphs to assist in search queries [208]. A knowledge graph consists of nodes

and edges. Nodes represent a body, this could be an object, resource or information

and edges represent the relationship between two nodes [209]. Knowledge graphs were

inspired by the semantic web [210]. Knowledge graphs leverage existing standards such

as RDF and OWL, but are less formal than ontology based semantic web [210].

2.5 Reference Architecture

This section describes a range of network management architectures from different do-

mains. The first group of reference architectures relate to open source, an area of in-

creased growth and utilisation in network management. In subsection 2.5.1 the ONAP

Platform Architecture is described with focus on the platforms Policy and Optimisation
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frameworks. In subsection 2.5.2 the ETSI OSM (Open Source MANO) is described with

focus on its role as a widely adopted network service orchestrator. The second group

of reference architectures is described subsection 2.5.3. This group relates to leading

Standard Development Organisations in the area of Autonomous and Intent-Based Net-

working, such as TM Forum, Zero touch network & Service Management (ZSM) and the

IRTF Network Management Research Group (NMRG). In subsection 2.5.4 the industrial

influence on this work is detailed with an example of how research is leveraged in the

industrial domain.

2.5.1 ONAP Platform Architecture

The ONAP platform is an open source network automation platform which enables

product-independent capabilities for design, creation and life-cycle management of net-

work services. ONAP provides vendor-agnostic policy-driven services with analytical

and lifecycle management capabilities. Through ONAP, network operators can orches-

trate both physical and virtual network functions allowing operators to utilise existing

network investments while providing an open platform to motivate further development

of VNFs in the network management space.

ONAP has provided blueprints of key network use cases which the industry and open

source communities have tested. The experiences of testing these use cases has fueled

the platform development ensuring a trusted framework at final release.
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Figure 2.3: Open Network Automation Platform Architecture[3]

Deployed as a cloud native application with a variety of instantiated services, ONAP

requires an advanced management system to navigate the pre and post deployment

stages. This role is fulfilled by the ONAP Operations Manager (OOM). This component

orchestrates the life-cycle management and monitoring of underlying components. As

the OOM is integrated with the micro-services bus it has access to registration and

discovery features along support for external API and SDKs. The OOM can also provide

scalability and resiliency enhancements to managed components. Kubernetes is utilised

to proved CPU efficiency and platform deployment.

ONAP provides a model driven runtime environment with analytical feedback capabili-

ties to support closed loop automation and service optimization. Tooling is also provided

for service designers and opertors with access to design time and run time environments

through the Portal Framework with supported role based access.

The design time environments provide development tools, techniques and repositories

for defining resources, services and products. This includes policy design and implemen-

tation, as well as an SDK with tools for VNF supplier packaging and validation.

The run time environment executes the content from the design environment such as

the Active & Available Inventory (A& AI) component. The component provides real

time monitoring of resources and services allowing for service assurance in a dynamic
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environment where virtual resource are continuously go through stages of deployment

and teardown. Run time services are in constant communication with closed loop mon-

itoring and analytics modules to provide insights to service designers for optimisation

opportunities.

The platform is responsible for providing the interfaces which allow separate compo-

nents and frameworks to communicate. The policy framework described in subsub-

section 2.5.1.1 outlines the goals and functionality of the framework. The optimization

framework is described in subsubsection 2.5.1.2 detailing the ONAP platform’s approach

to optimization and repair.

2.5.1.1 ONAP Policy Framework

The ONAP Policy Framework provides an environment for policy design, deployment,

and execution. The Policy Framework contains the primary decision making components

of the ONAP system. It enables the platform operator to specify, deploy, and execute

the governance of the features and functions in their ONAP system, be they closed

loop, orchestration, or more traditional open loop use case implementations. The Policy

Framework supports Policy Driven Operational Management during ONAP control loop

execution. Orchestration and and control use cases can utilise the Policy Framework to

execute their policies instead of embedding them in their applications.

The Policy Framework is deployment agnostic, separating policy execution and policy

enforcement. This allows for flexibility in what applications or functions the policy is im-

pacting in a given use case. For example policies can be deployed along side applications

as a means to improve performance, alternatively policies can be deployed as a separate

executing entity in the form of a container. The Policy Framework separates policies

from the underlying platform. The framework supports development, deployment, and

execution of any type of policy due to its metadata (model) driven approach. This is to

ensure maximum flexibility as to support modern rapid development ways of working

such as DevOps.
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2.5.1.2 Optimisation Framework

ONAP Optimisation Framework (OOF) is a policy and model driven framework used

to create optimisation applications for a wide range of use cases. OOF adopts a typical

optimization construct, this is an example provided by ONAP documentation:

• Objective: Maximize/minimize a metric, measured by appropriate key perfor-

mance indicators (KPIs)

• Technology and operating constraints, such as:

– Parameter change limits (such as power)

– Frequency of changes permitted

– Number of parameters that can be changed simultaneously

– Data latencies (typically in percentile)

– DC compute, network, storage, energy capacity

– Location based and time based energy cost

In this instance the objective metric to be adjusted could be for example, throughput

or retainability which you would wish to maximise, alternatively it could be interference

levels or cost which you would wish to minimise.

The development of OOF was based on the following core ideas:

• Most optimization problems can be solved in a declarative manner using a high-

level modelling language.

• Recent advances in open source optimization platforms allow the solution process

to be mostly solver-independent.

• By leveraging the library of standard/global constraints, optimization models can

be rapidly developed.

• By developing a focused set of platform components a policy-driven, declarative

system that allows ONAP optimization applications be composed rapidly can be

realised and managed easily

– Policy and data adapters
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– Execution and management environment

– Curated ”knowledge base” and recipes to provide information on typical op-

timization examples and how to use the OOF

• More importantly, by providing a way to support both ”traditional” optimiza-

tion applications and model-driven applications, users have a choice to adapt the

platform based on their business needs and skills/expertise.

Figure 2.4: Traditional Optimisation Framework[4]

Traditionally, optimization applications are designed to perform a specific task to achieve

an optimisation goal. Large amounts of application code are problem specific meaning

changes in the problem require code changes in various components of the application.

This approach results in large development cycles for changes in requirements. The

Optimization Framework provides platform level functionality reducing the number of

these code changes.
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Figure 2.5: ONAP Optimisation Framework[4]

OOF allows for the quick development of new optimization applications through a policy

driven, robust and scalable optimization framework. These optimization applications are

independent from the implementation of underlying optimization modules allowing for

re-usability by addressing the problems associated with application specific optimization

codes, adapter libraries and configuration logic.

The policy driven approach reduces inconsistencies and duplication by making con-

straints and other policies available across services Optimisation constraints can be

specified as policies which can be configured by service designer or operators. The

model driven approach allows Data formats and API calls to be modeled, allowing for

errors to be identified early in the design stages.

2.5.2 ETSI OSM (Open Source MANO)

ETSI OSM (Open Source MANO) is a community-driven production-quality E2E Net-

work Service Orchestrator. This widely adopted orchestrator supports the modelling

and automation of real telco-grade services in complex production environments. The

popularity of OSM has accelerated the maturation of NFV technologies and standards

allowing VNF vendors to test and validate on commercial NFV infrastructures through
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an open orchestrator. OSM minimizes integration efforts through an infrastructure-

agnostic Information Model, standard compliant unified northbound interface and sup-

port for cross-domain network services and network slice life-cycle management.

OSM provides a powerful Information Model, fully aligned with ETSI NFV standard

[211], capabale of modeling and automation of the full life-cycle of network functions,

services and slices. This covers the initial deployment, daily operation and monitoring

of each of these network technologies in an infrastructure-agnostic manner. This allows

a single model to be instantiated or deployed in a large variety of environments without

the requirement of domain-specific translation.

OSM provides a unified northbound interface, based on ETSI NFV standard [212], which

supports the full operation of system functionality along with the managed services and

slices. The OSM NBI provides, as a service, the necessary abstractions for client systems

to control, operate and supervise the life-cycles of network services (NS) and network

slice instances (NSI) without having to expose complex elements of the underlying sys-

tem.

OSM supports an extended concept of network service allowing it to span across the

virtual, physical and transport domains. This support allows the system to control

the full life-cycle of network services as they interact with virtual, physical and hybrid

network functions in a common manner with on demand transport connections. In

addition, this flexibility has also enabled the life-cycle management of network slices

allowing OSM to assume the role of Slice Manager if required. This concept if further

extended to support an integrated operation.

2.5.3 Autonomous Networks

Autonomous networks aim to leverage AI decision making capabilities to inject auton-

omy into the network. SDOs have initiated focus groups such as ITU-T Focus Group

on Autonomous Networks (FG-AN)[213]. The primary objective of the Focus Group

is to provide an open platform to perform pre-standards activities related to this topic

and leverage the technologies of others where appropriate. TM Forum and ZSM have

proposed their reference architectures towards autonomus networks. Other bodies such

as NMRG have detailed their Autonomic Networking Infrastructure (ANI). TM Forum
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and ZSM have made considerable contributions to their autonomous platforms which

will be detailed in the following sections. In subsubsection 2.5.3.1 the autonomous net-

work architecture of TM Forum is detailed highlighting some of the incorporated intent

concepts. In subsubsection 2.5.3.2 the distributed network architecture of ZSM is de-

tailed with a focus on loosely coupled management functions. In subsubsection 2.5.3.3

the autonomic architecture of NMRG is detailed emphasising the role of control loops

and features of autonomic nodes.

2.5.3.1 TM Forum - Autonomous Networks Project

TM Forum proposed the Autonomous Networks Reference Architecture which provides

a layered yet ’composable’ framework for autonomous operations. The reference archi-

tecture aligns with the architectural principles outlined in [5]. The operational layers

of the system are fully decoupled, these are consumer to business, business to service

and service to resource. Open interfaces are utilised at all integration points between

domains with a focus on intent-driven interfaces. Intelligent components are layered

and distributed near the functional blocks in the system. This approach supports fast

decision-making adaptive controls within the system, these logical units are referred

to as Autonomous Domains. The complexity in the system is decreased through the

distribution of these Autonomous Domains as they can be federated horizontally and

vertically.

Figure 2.6: TMF Autonomous Network Architecture[5]
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In Figure 2.6 a complete building block is presented for Autonomous Domain C. These

blocks are repeated at all three layers in the network architecture. Autonomous Domain

C shows some of the inner mechanisms and functions that comprise an Autonomous

Domain. The horizontal domains of each layer cooperate in a federated manner. This

allows for the Service Operations layer to perform a cross-domain collaboration of the

three domains presented in the figure, resulting in an end-to-end coordination of the

resource operation domains.

The automation of operations supports the fast deployment requirements of new 5G

services. Efficiency is a large contributing factor in enabling operators to provide the

best user experience, with full life-cycle automation of the network and maximum uti-

lization of the network resources. This approach relies on the coordination of automated

closed loops driven by intent in each of the operational layers to achieve autonomous

behaviour. Control loops in independent domains are required to exchange information

as part of the systems autonomous behaviour. This reference architecture utilised sim-

plified open interfaces to communicate between layers, adopting more of an intent driven

approach and moving away from the data-centric and parameter-heavy payloads seen in

current networks. However, the simplification of the open interfaces is restricted by the

autonomous capabilities of the domain which actuates the change.

Intent-driven autonomous systems allow for the intents of users to be inferred instead

of the processing of a detailed instruction. These systems should provide an adaptive

and robust communication with the user. An intent interface may support domain

specific terminology and semantics, enabling a dialog style interaction. This interaction

is referred to as an ”interview” style interface where the handling system enquires for

additional information from the user, clarification on translated intents, recommendation

on alternatives or changes to the intent. TMF921A provides a set of interfaces to support

intent-driven interactions[121].

2.5.3.2 ZSM - Intent-Driven Autonomous Networks

ZSM also follows the industry trend of moving away from tightly coupled management

systems, towards flexible sets of management services. Similar to the architectures

proposed by TM Forum[214] and 3GPP[215]. ZSM define architectural building blocks

which can be generated through composition and inter-operation patterns to construct
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sets of complex management services. These services are then instantiated in different

domains to manage other components and services.

Figure 2.7: ZSM Reference Architecture[6]

The ZSM framework presented in Figure 2.7 is composed of distributed management

and data services which are separated in management domains and integrated through

the integration fabric. The integration fabric allows the management services to com-

municate with other domains or other management systems. The integration fabric also

supports the sharing of data models across domains, allowing higher level management

services to troubleshoot issues that cannot managed within the domain. All management

services expose their capabilities through the integration fabric.

The ZSM framework reference architecture supports the building and composing of

loosely coupled management functions that offer management services and when dis-

tributed across domains deliver end-to-end and domain-specific capabilities for zero
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touch management. These management services expose end points for invocation and

communication.

Figure 2.8: Intent Management Entity[7]

ZSM detailed the role of intent in previously described framework, Figure 2.8 presents

the Intent Management Entity (IME). The IME is described as an autonomous entity in

a domain that can play the role of intent owner and/or intent handler and has the ability

to make and actuate decisions in order to fulfil intents. The IME contains a knowledge

base containing the intent ontology, along with machine reasoning capabilities to support

knowledge driven decision making. The interfaces of the IME are generic and domain-

independent. The objective of the IME is the manage the life-cycle of the intents and

report to higher level management systems.
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Figure 2.9: Intent Management Entity in ZSM Reference Architecture[7]

ZSM described how the IME would fit into the existing reference architecture. The

end-to-end service management domain can transform and communicate towards other

management domains or interpret the intent into a set of services offered by the manage-

ment domain. This approach also applies to the communication of intents to network

resources through the translation into resource requests. The management domain may

also reshape the offered services to match those provided through intent. [7]

Figure 2.10: ZSM Intent Control Loop[7]
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In Figure 2.10 the IME operates a closed control loop to produce and maintain the

state described through the intent expression. The intents are typically generated and

communicated through the system using the Intent API. Most IME instances behave as

an intent handler, producing and maintaining the delivery of a service state or outcome.

However, some IME instances operate as an intent owner. In this scenario an IME

(owner) will communicate with another IME (handler) in a different domain to deliver,

maintain and report on a provided service or state. This intent control loop is best

understood as a the linking or coordination of the intent owner and intent handler

control loops. These interactions and communications between closed control loops are

detailed in [216].

2.5.3.3 NMRG - Intent-Based Networking

The NMRG have provided descriptions of various network elements and autonomic func-

tions with explanations of how these elements coordinate at a high level. More detailed

descriptions of the internal working of these autonomic network elements are also pro-

vided along with the interfaces used to communicate between them.

Figure 2.11: High-Level View of an Autonomic Network[8]

Figure 2.11 presents a high level view of an Autonomic Network. The network consists

of a collection of autonomic nodes which are visible to each other and communicate over

defined interfaces. Each node provides a common set of capabilities across the network

referred to as the Autonomic Networking Infrastructure (ANI). The ANI provides func-

tionality such as negotiation, synchronisation and discovery to name a few. Autonomic
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functions are found throughout the network. The autonomic entities of an autonomic

function are referred to as Autonomic Service Agents (ASAs), which are instantiated on

the nodes in the network. Autonomic functions are expected to span across the network

horizontally while nodes implement the ANI and have access to one or more ASAs. [8]

Figure 2.12: Model of an Autonomic Node[8]

The ASAs can leverage a variety of sources of information such as self-knowledge,

network-knowledge through discovery, intents and feedback loops. The autonomic node

is shown in Figure 2.12 and is presented in two levels. The ASAs utilise the services of

the ANI as part of their execution. The ANI provides node-specific data structures and

a collection of generic functions. [217]

2.5.4 Industrial Hosting

This work involved a close working relationship with the Network Management (NM)

Lab based in an Ericsson Product Development Unit (PDU). As a result a heavy focus

was placed on experimental work which advanced the existing technology and approaches
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adopted by industry. This was primarily achieved through engagement with European

research projects under the umbrella of Horizon 20201.

Horizon 2020 aims to increase innovation within Europe, encouraging economic growth

through investment in a variety of research areas. Horizon 2020 funds collaborative

projects between industry leaders, academic institutions and governing bodies. Collabo-

rative innovation is viewed as a mechanism to drive economic growth ensuring Europe’s

global competitiveness in the future.[218]

As part of H2020 projects, Adaptive Policy has been utilised in a number of different

roles and scenarios. The work carried out as part of these projects has showcased

Adaptive Policy’s flexibility in making real-time context-aware decisions and was the

primary reason for inclusion in intent interpretation. The 5GENESIS and 5G-CLARITY

H2020 projects have significantly contributed to the expanded role of APEX providing

industrial grade testbeds and experiments to showcase adaptive decision making and

the utilisation of the system for intent driven management. In subsubsection 2.5.4.1

the role of adaptive policy as a advanced rules based management approach in a real

5G platform. In subsubsection 2.5.4.2 the role of intelligence in network management is

highlights through the creation of an Intelligence Stratum for 5G networks

2.5.4.1 5GENESIS

The 5GENESIS H2020 project started in 2018 looked towards the validation of 5G

network KPIs and the verification of 5G technologies with an end-to-end approach. To

reach this objective the project aimed to integrate a range of technologies from different

R&D projects to produce a full-stack end-to-end 5G facility to meet targeted KPIs. The

facility is composed of several platforms, each tasked with addressing a societal challenge

and existing technical challenges of 5G networks. Each platform forms a validation

setup and the combination of all platforms build and open, flexible and distributed

experimentation facility. [219]

APEX was selected as the policy engine for the 5GENESIS Slice Manager. APEX

was integrated into the slice manager software stack as a docker container. The use

case adopted by the Athens Platform utilised APEX as the decision making system for

1https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/

funding-programmes-and-open-calls/horizon-2020_en

https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-2020_en
https://research-and-innovation.ec.europa.eu/funding/funding-opportunities/funding-programmes-and-open-calls/horizon-2020_en
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the slice manager. The role of APEX is to receive alarms from the Prometheus Alert

Manager, which runs as part of the slice monitoring module. When the monitoring

framework detects that a slice is reporting abnormal behavior, Prometheus generates

an alert message and sends it to the APEX engine via the internal Kafka message bus.

APEX processes the alert and recommends a series of slice manager operations, based on

the alert and underlying network conditions. The adaptive decision making capabilities

of APEX allows for historic monitoring data to be utilised in future decisions. This

implementation of APEX shows the utilisation of the context-aware attributes of APEX.

However APEX was integrated into the platform slice manager. With a flexible intent

based approach, APEX could leverage its context aware and adaptive qualities to drive

a variety of different tools and components.

2.5.4.2 5G-CLARITY

The 5G-CLARITY project started in November 2019. The project investigates how

the concept of private 5G networks should evolve beyond the 3GPP Release 16[62].

The project aims to bring innovation in two main pillars. The project will produce

novel user and control plane components developed to deliver a private 5G network

that will integrate 5GNR, Wi-Fi and LiFi. This will enhance the capabilities of 5GNR

regarding peak data rates, area capacity, low delay and precise localisation. The project

will also investigate management enablers for network slicing, private and MNO network

integration, intent driven network operations and the incorporation of network functions

implemented through machine learning models. [220]

The project details the Intelligence Stratum, described as an almalgam of AI and intent-

based services. The Intelligence Stratum is made up of two components, the AI and

Intent Engine. The AI Engine contains and executes advanced analytics models while

the Intent Engine provides a flexible mechanism for the execution of models and network

operations. [221]
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Figure 2.13: 5G-CLARITY Architecture[9]

In Figure 2.13 the Intelligence Stratum is presented with an alternative title, Intelli-

gent Controller. The Intelligence Stratum is functionally similar to an intent-driven,

AI supported controller with monitoring capabilities. Intent messages are specified by

network operators while support AI models are designed by ML modellers. Intents are

accepted through the Intent Engine which acts as the interface for the AI Engine and

provisioning subsystems. Models contained in the AI Engine can be triggered through

intent messages to provide intelligent services and functionality to the network. The

actions requested by these models can then be realised through the intent engine by

mapping the requests onto the executable actions of the Service and Slice Provisioning

Subsystem. This component in Figure 2.13 represents any target management function

responsible for realising the request detailed in the intent message.



Chapter 3

Architectural Design

In this chapter we describe the implementation architectures of our work followed by

the evaluation methods applied to our adaptive closed-loop and intent-driven systems.

The chapter concludes with a detailed description of the architecture over several re-

visions presenting the final architecture. In section 3.1 we present the implementation

architectures and detail our interpretation of adaptive context-aware policy driven sys-

tem, coordinated as part of a closed control loop. This implementation architecture is

expanded, presenting our intent interpretation framework. In section 3.2 we present the

evaluation methods applied to our approach detailing the mechanisms used to generate

the results of our testing. In section 3.3 we present the evolution of the architecture and

approach as the research progressed over the duration of the work.

3.1 Implementation Architecture

This section describes the role of policy in the system along with an outline of the

planned implementation. Building off previous work a hybrid of machine learning and

rules based decision making will be implemented through the APEX policy engine.

3.1.1 Adaptive Policy Execution

In this section we detail our implementation of adaptive policy in a COMPA control loop.

Our work with adaptive policy has produced a working testing environment for adaptive

56
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policy execution for business, service optimisation and advanced decision-making poli-

cies. Our work to date has introduced control logic for APEX policies, implementing a

feed forward neural network for decision making in regard to network path selection for

multimedia streaming applications. Additional control logic performs an evaluation of

service QoS metrics generating a Mean Opinion Score (MOS). This MOS value is utilised

in the neural network to adjust corresponding QoS weights, completing the optimiza-

tion loop. Our solution applies the COMPA automation pattern to design a closed loop

system using components of the Open Network Automation Platform (ONAP). We can

use COMPA to break down the roles of the core components in the system, providing

an overview of each component and their application.

(C)ontrol: The network controller will be responsible for the reconfiguration of network

parameters set by the optimization framework.

(O)rchestration: The deployment and chaining of our core components will be done

in ONAP ensuring the accessibility and communication between components through

standardised interfaces.

(M)anagement: ONAP Optimisation Framework will deploy specific optimization ser-

vices directed by context aware adaptive policy. These optimisation services will change

network behavior to reflect changes of context in the network.

(P)olicy: APEX will provide adaptive decision making bolstered by a single layer neural

network. This provides a machine learning enabled adaptive policy capable of utilising

real time context and weighted algorithms in the decision making process.

(A)nalytics: The Data Collection, Analytics and Events subsystem, in conjunction with

ONAP components will gather relevant network information used in adaptive policy to

build network context. This information can be used to trigger adaptive policy based

on real time network monitoring, large changes in network context and the realization

of new business goals.

3.1.2 Intent Engine

In this section we present the implementation architecture of the Intent Engine. The

initial concept of Intent driven execution as part of the 5G-CLARITY project. Intent
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execution is described in as the triggering of an intent process resulting in the generation

of a context in the form of a report. In a scenario where an intent is requesting a slice

reconfiguration, the target management function would be the Slice Manager. This

would produce a communication between the Intent Engine and Slice Manager realising

the request detailed in in the intent message. Once realised, the underlying managed

system can be monitored and the impacts of the reconfiguration is recorded in the Data

Processing and Management subsystem.

Figure 3.1: Intent Engine Concept[9]

The realisation of intent in the 5G-CLARITY system can be broken down into four

stages. The first part covers the injection of an intent into the system, typically by the

network operator. The intent interface allows for the straightforward expression of the

intent through natural language with additional fields for specific parameters.

In the first stage, the intent triggers the execution of the Intent Engine. A high level

representation of the intent engine is shown in Figure 3.1. The intent engine stores the

intent in the run-time store and validates the request against the ML models running

on the AI Engine of the Intelligence Stratum. On the successful identification of the ML

model, a new ML model execution intent is generated and sent to the AI Engine.

The second stage of intent realisation covers the execution of the ML model. The pure

run-time system requires a fully trained ML model. The result of this model should

provide detailed instructions for the Intent Engine. These can be described as intents or

a configuration template. If the Intent Engine cannot identify an appropriate ML Model
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for execution, the Intent Engine will query internal information to generate a response.

If the ML model requires additional information, the Intent Engine may query the Data

Processing and Management Subsystem and retrieve the required information for the

model.

In the third stage the Intent Engine receives detailed instructions and processes them

for the appropriate management function. Instructions may be forwarded directly to

the selected management systems is possible. Alternatively the instructions may require

translation. This approach is expected as it allows for the decoupling of the ML models

from the management function. Monitoring and reporting systems are then engaged.

Depending on the intent request this may be resolved through the checking of status

codes on actions sent to management functions. In the situation of a prolonged intent,

a monitoring function may be required to assure the intents fulfillment.

Finally the fourth stage presents the retrieval of monitoring data through the Intent

Engine. Different from the process described in stage two, this stage describes the

scenario where monitoring data is the objective of the intent. After the data has been

requested and retrieved, the Intent Engine may compare the data to existing intents

logged on the system. The Intent Engine can check if data associated with an intent

has resulted from a configuration. If so, a negotiation can take place between existing

intents and new intents introduced to the system. In response the intent issuer may be

informed of the potential conflict and recommended an alternative action.

3.1.3 Adaptive Intent Realisation (AIR)

In this section we present the implementation of our Adaptive Intent Realisation (AIR)

architecture. The architecture went through three distinct iterations in terms of inter-

nal features and how Adaptive Intent Realisation (AIR) communicates with external

components.
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Figure 3.2: Intent Interpreter V1

In Figure 3.2 the intent interpreter shows the core features. These are Context, Inter-

preter and Intent Matching. Context stores the Functionality Templates which describe

the capabilities of Actioning Systems available in the network. These are passed to the

Interpreter when an intent is received. The Interpreter is responsible for passing the

intent and Functionality Templates to Intent Matching and processing the output to

identify the relevant Actioning System and appropriate operation. Intent Matching ap-

plies mathematical models to text representations of requests and operations to generate

a comparative scores based on similarity.
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Figure 3.3: Intent Interpreter V2

In Figure 3.3 the Intent Interpreter has been extended with a number of important

features. In previous versions monitoring was not explicitly addressed as an actioning

system. The Intent Interpreter maintains its common interface with components re-

gardless of role (Control, Orchestration, Management, Policy or Analytics) allowing it

to easily fit into the closed-control loops of a system. As intent provides an abstract

interface to simplify component communication it makes sense to also leverage this when

it comes to monitoring. In this case analytical components are treated like every other

component in the system, providing a functionality template describing its capabilities

through accepted API specification. With this approach the interpreter interacts with

every component in the same manner regardless of its role or functional capacity. With

the addition of monitoring functionality the Semantic Model was added to Context.
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The Semantic Model is used to evaluate incoming intent messages in two perspectives.

The first is from an intent reasoning perspective. This perspective looks for keywords

in the intent which can be analysed for ambiguities and based on the location of the in-

terpreter within the larger system, intents may be modified before the mapping process

is attempted. This will allow from more flexibility in the intent descriptions as loca-

tion information may provide additional context when comparing the similarity scores

from different actioning systems registered with the Intent Interpreter. The second per-

spective is in regard to monitoring and reporting. This perspective will provide intent

fulfillment information to intents received by the Intent Interpreter. Many intents only

require a reporting feature through the verification of the status code of intent driven

interactions. However, some intents may have implicit prolonged monitoring require-

ments and these requirements are known by the intent issuer. Therefore a Semantic

Model which enables the linking of provisioning actions with complementary monitoring

actions, allows for automated intent assurance for a subset of implicit intent requests.
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Figure 3.4: Intent Interpreter V3

In Figure 3.4 the Intent Interpreter goes through refinement. The Semantic model and

Monitoring information has been redesigned to an Action Evaluation Module and Pro-

posal Weight Collection. This module utilises the weights assigned to previous operations
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to impact the decision making on new intent interpretations. This approach maintains

the monitoring aspect of previous intents while improving the future decisions of Intent

Interpretation. The Context Manager and Alert Manager have been integrated into the

Interpretation process allowing the system to engage with these features through the

abstracted interface of the Intent Interpreter. This maintains a single point for entry for

users through an abstracted interface for intent-driven management

3.2 Evaluation

This section describes how results will be read, quantified and compared. Each subsec-

tion will provide an insight into the system both in terms of the mechanisms established

to bring about impact and the nature of this impact on the quality of the system as a

whole. In subsection 3.2.1 the monitoring of the underlying network and the available

features of OpenDaylight are described with a focus on those which can be influenced

through policy decision. In subsection 3.2.2 the Mininet Emulation environment is lever-

aged for the realisation of policy driven network impact. Additional monitoring features

such as probes are described to provide a complete monitored system. In subsection 3.2.3

the checks and balances within policy are described as a mechanism to increase the num-

ber of positive impacts produced through policy influence. In subsection 3.2.4 the Slice

Manager is described for the execution of intent driven slice provisioning. In subsec-

tion 3.2.5 the Positioning Server is described for the execution of intent-driven device

localisation as a Service. In subsection 3.2.6 the NFV Orchestrator is described for the

execution of intent-driven NFV Instance as a Service.

3.2.1 OpenDaylight

OpenDaylight provides a modular open source platform for network automation and

customization. The SDN controller exposes a number of monitoring and configuration

functions, such as a modular, plug-in southbound interface approach with extensive sup-

port for standard network management interfaces such as OpenFlow. Built in monitoring

applications will provide real time information of current network state accompanied by

mechanisms for policy enforcement. Through numerous APIs OpenDaylight provides a

flexible and transparent look at the network.
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3.2.2 Mininet

Mininet provides a fully emulated network test bed for testing. Unlike simulators Mininet

network traffic is real, that is traffic running on the network is generated and process

much like traffic in todays networks. A straightforward and extensible Python API

enables quick and easy network creation and configuration. This allows for the quick

generation and configurations of many different networks for testing. Additionally hosts

running on the network run standard Linux network software, allows for many different

probing softwares to run on the network in parallel with the SDN controller based

monitoring.

3.2.3 Policy Framework

Policies running within the system will implement instances of self-monitoring. This

will decrease the number of instances of unexplained drift. Alternating supervised and

unsupervised learning cycles can be an effective approach to mitigating this issue. How-

ever when accompanied by states of self-monitoring, previous network decisions will be

taken into consideration in the decision making process to help provide an insight into

the current network state.

3.2.4 Slice Manager

The Intent Interpreter was utilised in an intent-driven slice creation experiment. The

creation of a 5G-CLARITY slice is a complex process requiring multiple interactions with

the Slice Manager function. These interactions must also be informed, requiring expert

knowledge of the system and the impact of parameters and attributes. To combat the

complexity, several AI model have been generated to automate and simplify this process.

The primary model is the Slice Creation Workflow (SCW) model. The role of the SCW

model is to encapsulate all the required interactions with the Slice Manager in a single

AI model. This allows for the Intent Interpreter to have a single point of contact for slice

instantiation. Complementary models include the Radio Node Selection (RNS) model,

the Compute Requirements (CR) model and the Slice QoS (SQS) model. Each of these

models provide additional parameters to the SCW through the Intent Interpreter. The

RNS model determines what radio access nodes are required for the provisioning of the
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slice. The CR model determines the compute resources required in the Edge cluster to

service the slice. The SQS model allows for the configuration of QoS parameters for the

underlying system and determines required parameters for the provisioned slice. The

Intent Interpreter enables the straightforward execution of these models in a flexible way

while allowing for new models to be integrated on the fly.

3.2.5 Positioning Server

The Intent Interpreter was utilised in an intent-driven line of sight experiment. In

Release 16, 3GPP specified extensions to include Positioning Reference Signals (PRS)

in the physical layer as well as a Location Managmenet Function (LMF) in the 5G

Core. PRS provides methods to measure device signals and sends them to the LMF

which processes the data using localisation algorithms to estimate device location. The

accuracy of localisation algorithms is heavily impacted by obstacles between the device

and the gNB. To address this challenge a use case was designed in which an intent

message would be generated by the LMF to the 5G-CLARITY Intelligence Stratum to

verify link condition of a UE and gNB pair.

A machine learning model referred to as the Non-Line of Sight (NLoS) model is instanti-

ated on the AI Engine and registered with the Intent Interpreter through a Functionality

Template. The NLoS model contains a pretrained prediction algorithm which predicts

line of sight based on Channel Impluse Response (CIR) data. The experiment begins

when the LMF generates an intent for the Intent Interpreter to verify the line of sight

condition between a gNB and UE. The intent is processed by the Intent Interpreter and

an API call to the NLoS model is generated. When communication between the Intent

Interpreter and the NLoS model is established, the NLoS model generates a second in-

tent requesting the CIR data for the UE and gNB defined in the initial intent. This

intent is processed by the Intent Interpreter and an API call to the Data Lake is gener-

ated. The CIR data is retrieved and forwarded to the NLoS model fulfilling the second

intent. The results of the prediction is retrieved from the NLoS model and forwarded to

the LMF, fulfilling the initial intent.
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3.2.6 NFV Orchestrator

The Intent Interpreter was utilised in an intent-driven NFVI as a service experiment.

Private 5G operators need to connect their enterprise services to deployed 5G networks

slices, similar to those described in subsection 3.2.4. Virtualised enterprise services

are represented by network service descriptors (NSDs) which can be on boarded to

the NFVO. However, direct operation of the NFVO is challenging for private network

operators not formally trained in 5G systems. To address this challenge a use case was

designed in which an intent message would deploy NFV services on an NFVO.

Similar to the approach described in subsection 3.2.4, workflow models are used to

sequence the generation of follow up intents to fulfill the initial intent request. The

NFVi workflow model is triggered by the Intent Interpreter. Each model in this process

requests information from the NFVO through the generation on intents passed through

the Intent Interpreter. The intent parameters are used to identify the appropriate NSD

which is then passed to the NS selection model. The NS selection model resolves the

NSD identifier generating parameter based on those provided in the initial intent. The

VIM model then selects appropriate compute resources for the for the NFV service.

The NFVi workflow model now containing all the information required to instantiate

the network service requests this through the Intent Interpreter providing the required

parameters. A record of intents is provided back to the intent issuer detailing the process

automated by the models.

3.3 Architecture Maturity

This section details the transition of the work as it matured during the lifespan of the

research. The contributions from the publications are highlighted with reference to the

architectural adaptations.
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Figure 3.5: Initial Architectures Adopted by the Adaptive Policy testbed

In Figure 3.5 the testbed for policy driven closed loop network management is presented.

This work validated Adaptive Policy in a realistic network environment for business goals

and high-level network management. This work produced the first open-source network

emulation environment for the testing of Adaptive Policy.
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(b) Video Stream Monitoring

Figure 3.6: Architecture and Results for Video Quality Assurance

In Figure 3.6 the adaptive policy Approach to video quality assurance is presented. This

work validated the use of Adaptive Policy for lightweight, low-level decision-making.

Leveraging context to adapt network routing decisions based on QoE metrics. This

work with the previous testbed shows Adaptive Policy as a viable mechanism at any

level of the network.
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Figure 3.7: Architecture and results for ML/Policy approach

In Figure 3.7 the hybrid machine learning/policy approach to optimise video path se-

lection is presented. This work shows machine learning paradigms executed within an

adaptive policy decision making system. This leverages powerful mathematical models

to adaptive policy decisions before they are realized.
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Figure 3.8: Architecture and input for intent mechanism

In Figure 3.8 the mechanism for intent driven adaptive policy decision making is pre-

sented. This work presented the use of recursive model structures. Highlighting their

machine readability and LoD when utilized for intent definition. This work also validated

the use of a dictionary for intent context mapping.
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Figure 3.9: Architecture and execution times for the intent interpreter

In Figure 3.9 the flexible interpreter for intent realisation is presented. This work pre-

sented an embedded NLP based component for fast evaluation of intent requests This

work also validated the functionality template (an extension of the dictionary from pre-

vious work) for the inductive generation of intent-based actions.
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Figure 3.10: Architecture and intent driven UC execution times

In Figure 3.10 NLP powered intent-based network managmeent for private 5G networks

is presented. This work validates our approach through 3 varied use cases in real indus-

trial private networks. This work also demonstrates Adaptive Intent Realization (AIR)

concepts in Management, Orchestration and near RT RIC applications.



Chapter 4

Detailed Design and Evaluation

This chapter presents the publications as part of this work in chronological order. The

core concepts, results and evaluation of each publication is described to illustrate the

evolution of the work from the initial adoption of reference based architectures to the

adaption and incorporation new concepts resulting in the Adaptive Intent Realisation

(AIR) architecture. In section 4.1 Adaptive Policy is validated in a realistic network

environment for business goals and high-level network management. This work produced

the first open-source network emulation environment for the testing of Adaptive Policy.

In section 4.2 Adaptive Policy is validated for lightweight, low-level decision-making.

Leveraging context to adapt network routing decisions based on QoE metrics. This

work with the previous testbed shows Adaptive Policy as a viable mechanism at any

level of the network. In section 4.3 machine learning paradigms are executed within an

adaptive policy decision making system. This leverages powerful mathematical models

to adaptive policy decisions before they are realized. In section 4.4 recursive model

structures are presented for intent-based communication. Highlighting their machine

readability and LoD when utilized for intent definition. This work also validated the

use of a dictionary for intent context mapping. In section 4.5 an embedded NLP based

component is presented for fast evaluation of intent requests. This work also validated

the functionality template (an extension based on dictionary from previous work) for

the inductive generation of intent-based actions In section 4.6 our approach is validated

through 3 varied use cases in real industrial private networks. This work demonstrated

Adaptive Intent Realization (AIR) concepts in Management, Orchestration and near RT

RIC applications.

70
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4.1 A Testbed For Policy Driven Closed Loop Network

Management

Testing network management use cases is extremely challenging. Presenting the output

configurations from policy is straightforward, however testing and validating the impact

from policy decisions in a network management scenario is difficult. This experience of

policy authors motivated the need for a flexible testing architecture utilising emulated

network scenarios to allow real data to be analysed in real time. The test bed was

divided into four parts (Control, Analytics, Policy and Orchestration and Management)

and testers could use components provided in the test bed or exchange components as

long as they fulfilled a similar role.

4.1.1 Previous Work

As an introduction to Network Management Systems, policy has played a key role in

decision making for these systems. Identifying the traditional role of policy versus the

responsibilities of policy today shows that not only has policy expanded to influence

larger areas of the network, but these networks have become exponentially more complex.

There are a number of mechanisms and systems proposed to enable policy to adapt to

this new level of complexity, one of which is APEX.

4.1.1.1 The APEX System

Adaptive Policy EXecution (APEX) is a policy engine for the execution of Adaptive

Policy. The adaptive nature of this policy approach related to the policies ability to

change its decision making process based on criteria outside of the execution cycle. The

characteristics of Adaptive Policy is listed as:

• Decisions are made at run-time, rather than selection of predefined actions,

• Context information is used in the decision making, rather than information con-

fined to the trigger event.

• Self-adaption to decision making is possible at run-time.
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The Context feature is utilised to expose external information, such as business goals to

adapt policy decisions. This information is shared between all running policies in the

engine allowing for conflict detection capabilities. Context can also be exposed by the

engine, allowing multiple engines in the same domain to share a common resource. The

distribution, locking and persistence of context information is handled by the engine.

The component which initialises the policy is referred to as a Trigger System. The

component which receives policy output is referred to as an Actioning System. APEX

supports a range of communication protocols and interfaces resulting in plug and play

integration.
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Figure 4.1: APEX: Linking Policy to goals and context

APEX provides a lightweight engine with flexible policy authoring features. Policy

authors design policies with collections of states and tasks, then the steps and conditions

used to navigate the policy is defined. This allows policies to adapt in real-time in

response to changes in the domain as shown in Figure 4.1.
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Figure 4.2: Policy Model

In Figure 4.2 policies are presented as a collection of state which are sequenced through

context and event driven conditions. The number of states is determined by the policy

author, however decision making patterns such as ECA (Event Condition Action) can

be adopted.
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Figure 4.3: APEX Architecture

In Figure 4.3 the subsystems of the adaptive policy architecture are presented. These

subsystems are compatmentaised into five distinct roles:

• AP-AUTH contains the tooling policy authors with repositories for policy and task

specificaiton,

• AP-DEP contains the functionality for engine deployment,

• AP-EN contains the policy engine,

• AP-CTXT contains the connectors for distributed context between running en-

gines,

• AP-KB contains knowledge based for policy metadata.

As part of the demonstration four APEX features are showcased. These are authoring,

deployment, execution and monitoring. Three use cases were presented to illustrate

the capabilities of adaptive policy. These use cases included video closed loop control,

context-aware policy and international sales policy realisation. All use cases were made

public available on Github [222].
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4.1.2 Testbed Architecture
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Figure 4.4: The Closed Loop System Testbed Architecture

This section describes the architecture of our closed loop testbed. The architecture,

shown in Figure 4.4, is designed to be as open and repeatable as possible, in line with the

test bed requirements described in section 1.1. The testbed is designed as an autonomic

closed loop system. Inspired by the COMPA [19] reference architecture, it has the four

main components shown in Figure 4.4. Communication in the architecture is realised

using a distributed component approach [223].

The testbed provides a closed loop system which enables an adaptive policy to continu-

ously manage the virtual network in an autonomic manner. When the virtual network

experiences a change, information gathered in the SDN controller is packaged as an

event. This event is analysed by the Analytics component to assess its significance.

Significant events trigger adaptive policies in the Policy component. The response of

the policies is sent to the SDN controller of the virtual network for deployment as a

reconfiguration on the network.
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The Managed Network : The Managed Network is a virtual network executing in the

Mininet1 virtual network emulator. We selected Mininet because it provides a well doc-

umented and extensible Python API (Application Programming Interface) and supports

a wide range of features such as hosts capable of running basic networking applications

and virtual switches that support the OpenFlow standard [224] for SDN. Mininet’s

lightweight nature avoids the need for installing, configuring and administering multiple

orchestration systems [225] and the ease of building new virtual networks through the

Python API allows for the quick and easy testing of different network scenarios. Another

important capability for the testbed was Mininet’s ability to scale to emulate very large

networks.

The Network Controller: We selected the Floodlight2 SDN controller as our network

controller. The Network Controller is used to read the network configuration and status

from the network and to configure modifications on the network. Floodlight supports

OpenFlow on its southbound side through a well-defined forwarding instruction set.

Floodlight exposes a RESTful (REpresentational State Transfer) northbound API, which

is used by clients to monitor and configure the underlying network..

The Analytics Component: This component implements the domain specific analytic

logic for the domain in our closed loop system. It monitors the network and if it arrives

at an insight for its domain that may require intervention, it forwards that insight to

the Policy component. As we used relatively straightforward scenarios in our testbed

to date, we developed our own domain specific LinkMonitor analytics component as a

Python program. There are many network analytic toolkits and platforms that can be

used in more complex closed loop domains such as the DCAE component from ONAP

[20].

The Policy Component: This component makes decisions on whether interventions

should be made on the network. It uses the insights produced by the Analytics com-

ponent to check if the operational goals set up for the network are being breached. If

the goals are breached, the Policy component decides if and how to intervene in the

network to mitigate those breaches. In our testbed, we used the APEX [15] adaptive

policy engine running a set of adaptive policies designed for our scenario. We used a

4 stage Match, Establish, Decide and Act (MEDA) pattern based on the well-known

1http://mininet.org
2http://www.projectfloodlight.org/floodlight/

http://mininet.org
http://www.projectfloodlight.org/floodlight/


Detailed Design and Evaluation 76

OODA loop [226] for our adaptive policy. The Match stage links an external trigger to

a task, Establish reads the processed trigger and relevant context information, Decide

identifies a response for the situation and finally Act takes the decision and generates

an actionable response. During each of these stages/states, context information is con-

tinually being updated resulting in policies making informed decisions throughout each

stage of the decision making process.

In addition to the main components, we used the Kafka3 stream processing platform

as a message bus for reliable communication between our distributed components. As

Floodlight uses a RESTful interface, we developed a Kafka/REST interface in Python

for interaction between Floodlight and the Analytics and Policy components.

4.1.3 Scenario

We have used a VPN networking domain to illustrate how our testbed can be used to

build and actively manage a network in a closed loop manner using SDN, Analytics,

and Policy. We have identified two scenarios, one where a VPN link failure threatens to

breach customer SLAs (Service Level Agreements) and another for when SLAs become

breached. We have developed and deployed solutions that mitigate against the failure

in an adaptive and autonomic manner for those two scenarios.

4.1.3.1 Temporary Failure Scenario

The temporary failure scenario examines how an adaptive policy should handle the

failure of a link which is shared between two customers. For the purpose of the scenario

both customers are configured with a sample SLA that allows for 90 seconds of downtime

per customer per year. One of the customers (Customer B) has already experienced 30

seconds of downtime in the year to date (YTD). Using the context information gathered

from the virtual network the adaptive policy tries to mitigate the effect of the network

loss on the SLA of Customer B by reducing the level of service to other customers who

have experienced less down time in the year to date.

3https://kafka.apache.org/

https://kafka.apache.org/
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4.1.3.2 Prolonged Failure Scenario

The prolonged failure scenario examines how should adaptive policy handle the pro-

longed failure of a link which is shared between the a set of customers. In the case of a

prolonged failure, the SLAs of all customers will eventually be breached. Using context

information gathered from the virtual network, the adaptive policy prioritises a specific

subset of customers as a form of damage control.

4.1.4 Implementation

In this section, we describe the algorithms we have developed and implemented on our

testbed for the scenarios described in subsection 4.1.3.

Algorithm 1 Network Initialisation and Control

Create a Mininet Object;

Based on topology information create and add all hosts(4),

switches(7) and links(11) to the Mininet Object;

Create and add the Floodlight controller to the

Mininet Object;

Start the Mininet Object;

while Pingall not successful do

Ping all hosts;

end while

Create Kafka Consumer Object and subscribe

to APEX output;

while Message in Kafka broker do

if Action in message then

Read action from message;

Post REST request containing action

to SDN controller;

end if

end while

Stop Mininet Object;
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Figure 4.5: VPN Domain Network Topology

Algorithm 1 initialises and controls the Mininet and Floodlight components in the

testbed. In Algorithm 1, a Mininet virtual network is initialised using the predefined

topology and configuration shown in Figure 4.5. When the virtual network has been

built, the algorithm starts the Floodlight controller. It then starts a Kafka Consumer

which listens for configuration events sent from the APEX engine. When an event re-

questing a configuration change is received, it is parsed into a REST request and is

forwarded to the Floodlight SDN controller. The controller then executes the configu-

ration change on the network in Mininet.
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Algorithm 2 Monitoring and Analysis

Create Floodlight Static Flow Pusher Object;

Create REST call to retrieve links on virtual network

from SDN controller;

Create Kafka Producer Object;

while Virtual network exists do

Sleep for 30 seconds;

Retrieve links from network;

if First iteration then

Send virtual link information to APEX;

Send virtual Customer information to APEX;

else

while List of links has next do

if Link is not healthy then

Send message to APEX containing

context information;

end if

end while

end if

end while

Algorithm 2 monitors and analyses the networking domain to check if any insights are

observed. It is the implementation of the Analysis component of Figure 4.4 for the

testbed. Algorithm 2 sends a REST request to the Floodlight SDN controller every

30 seconds (configurable), returning a summary of all the links in the virtual network.

On the first iteration of the loop the information retrieved is set as the current known

steady state of the system. In further iterations, the links are checked for irregularities

by determining if the system has deviated from its steady state. If an irregularity is

found, then this irregularity is forwarded to the Policy component as an event.



Detailed Design and Evaluation 80

Algorithm 3 The Adaptive Policy For VPN SLA Mitigation

MATCH:

Read incoming information;

Check fields against Context album;

Update Context album;

Output incoming information with additional status

information;

ESTABLISH:

Read information from the Match state;

Use context information to find if the issue is new

or reoccurring;

Output link context information along with the specific

problem information;

DECIDE:

Read information from the Establish state;

Read SLA information

if Unbroken SLA exits then

Read customer context information and extract

affected customers;

Select customer who is furthest away from breaking

their SLA;

else

Read customer priority information and extract

customer priorities;

Select customer with the lowest priority value;

end if

Output selected customer context;

ACT:

Read information from the Decide state;

Extract necessary customer context information for

the generation of the Floodlight REST request.

Package the information into an event along with

any additional information for the transportation

of the response;

Output the response;
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Figure 4.6: The Adaptive Policy as a Flowchart

Algorithm 3 performs SLA mitigation in the event of link failures on the VPN network.

The algorithm, shown as a flowchart in Figure 4.6, is composed of four MEDA states.

In the Match state, the content of the incoming event is analysed and an update is made

to the current state of the network if required.

The Establish state compares the state of the link reported on the incoming event with

the current steady state of the link in its network model. It checks if the update is

reporting that a link that was up has failed or if a link that had failed has recovered. It

forwards this result to the next state.

The Decide state examines the SLA values for the customers on the link that has failed

or has come up and determines in what manner traffic should be steered to give the best

possible overall SLA mitigation outcome for the given link failure and customer SLA

values.

The Act state packages the appropriate response and sends it to the SDN controller over

Kafka.

4.1.5 Results & Experiences

In this section we will present the results from our experiment, highlighting the impact

of adaptive policy through monitoring data of video stream during the scenario. A

screenshot showing the user perceived quality of the video stream is also presented to

better convey the user experience.
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Figure 4.8: Customer A and B Sharing two Links: Stream Quality

At the beginning of the scenario, Customers A and B share the bandwidth of two

links. In Figure 4.7 we see both customers experiencing between 100-150KB/s. This is

sufficient bandwidth for both streams to be viewed without a reduction in image quality

as seen in Figure 4.8.
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Figure 4.10: Customer A and B Sharing one Link: Stream Quality

As the scenario progresses, one of the shared links is brought down. The Floodlight con-

troller quickly reconfigures the flow tables allowing for the stream to continue. However,

as both streams are now using a single link, a bottleneck situation arises. In Figure 4.9

we see the bandwidth received by both customers drops to 60-80KB/s. This bandwidth

drop causes a reduction in the image quality of both customer streams, as we can see in

Figure 4.10. While the two streams are carried over the remaining link, neither of the

streams provide a watchable experience.
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Figure 4.12: Policy cuts Customer A Stream: Stream Quality

To mitigate this situation, one of the streams must be restricted in order to release

bandwidth to allow the quality of the other stream to recover. Our adaptive policy

uses context information gathered from the Floodlight SDN Controller to decide which

stream to restrict. In Figure 4.11 we can see the effect of the policy on the network. The

policy ensures that at least one customer has an acceptable viewing experience during

the fault situation.

In Figure 4.12 we observe the viewing experience of Customer A and B while A has

been restricted on the network. Customer B returns to an optimal viewing experience

similar to what we saw in Figure 4.8.
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(a) Customer A (b) Customer B

Figure 4.13: Policy cuts Customer B Stream: Stream Quality

As the scenario progresses, the policy realises that Customer A’s SLA is closer to being

violated compared to Customer B. It now changes its restricting decision and restricts

the stream of Customer B so that Customer A’s session is restored. This check is

performed at 30 second intervals which is reflected in Figure 4.11. The variation in time

of each cycle can be contributed to the time it takes for the execution of the control

loop. In our testbed this execution time averaged 2.8 seconds. In Figure 4.13 we see the

result of this decision, with Customer B being restricted and Customer A receiving a

clear image.
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Figure 4.14: Customer Stream Overview

After a prolonged period of time both customers will violate their SLAs. At this point

the policy’s decision making strategy changes, instead focusing on the customer with

the higher priority. The prioritised customer’s stream will return to its optimal image
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quality at the expense of other. Figure 4.14 shows the prioritisation of Customer B near

the end of the test when the policy shifts its decision making criteria from being SLA

based to being priority based.

This work validated Adaptive Policy in a realistic network environment for business

goals and high-level network management. This work also produced the first open-

source network emulation environment for the testing of Adaptive Policy. The next step

in our work was to investigate adaptive policy as a viable low level execution approach

which require high performance, such as low latency decision making.

4.2 An Adaptive Policy Approach to Video Quality As-

surance

There are a number of roles adaptive policy can have in networks today, one of which is

a decision making mechanism for network or service optimisation. Given the prevalence

of video in modern networks, adaptive policy could provide dynamic decision making to

video service optimisation strategies while also acting as a layer of abstraction between

different strategies. Policy has the capabilities to interact with many different network

features and optimisation strategies, this work describes the initial steps into probing

a unified approach to video quality assurance. Two requirements for this system are

access and interaction to a network evaluation mechanism and an actioning system for

decision implementation. This work presents a video quality assurance usage scenario

through network path evaluation and selection.

4.2.1 System Architecture

This section presents the extension of the testbed architecture described in our previous

work [227].
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Figure 4.15: System Architecture

The architecture of our closed loop system shown in Figure 4.15 is expanded through the

utilization of component capabilities and the addition of a video evaluation framework.

Full description of the core components of the system architecture can be found at [228].

Modifications to the previous architecture include the Context Builder and the EvalVid

tool-set.

Context Builder realizes a mediator between the deployed SDN controller and APEX.

The main output of the context builder is default MOS and predefined paths, which

become a basis for decision making. The component is realized as a script to facilitate

fast changes and adaptation.

EvalVid tool-set4 is used to evaluate the quality of the video stream. It allows for the

generation of a MOS [229], which is a QoE metric. In this initial experimentation, we

focus on packet loss, mainly to keep the dynamicity of the testbed low. A full QoS

metric (jitter, delay, throughput) can be added later.

Policy Component is the implementation of our APEX engine [15] to deploy, trigger,

and execute policies. For this paper we have defined a single policy, which uses a video

quality evaluation metric to influence network configuration to optimize video streams.

Policy decisions are implemented through Floodlight to reroute network streams.

All components in the architecture are Free and Open Source Software (FOSS). This

means that our experimentation can be easily repeated using the instructions from [228].

4http://www2.tkn.tu-berlin.de/research/evalvid/fw.html

http://www2.tkn.tu-berlin.de/research/evalvid/fw.html
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4.2.2 Testbed and Policy

This section details the implementation of our approach in four algorithms, presented

in pseudocode.

Algorithm 4 Configure and Run Mininet

1: procedure Mininet ▷ Mininet, Floodlight, and Kafka

2: FLC ← new Floodlight Controller

3: MO ← Mininet Object (TCLink)

4: MO ← Node A, Node B & 9 switches

5: MO ← 14 (link × packetLossPercentage)

6: MO ← FLC

7: start MO ▷ topology & controller

8: while ¬Pingall do ▷ wait for nodes

9: pinghosts()

10: end while

11: FLC ← enableFirewall()

12: FLC ← cfgDefPath() ▷ configure default path

13: while ¬Pingall do ▷ wait for configurations

14: pinghosts()

15: end while

16: MOCL ← Mininet Object Command Line

17: MOCL ← Kafka Consumer Object

18: MOCL ← APEX output subscription

19: while message do ▷ process Kafka messages

20: if activePath ∈ message then

21: ap ← activePath(message)

22: FLC ← cfgFirewall(ap)

23: end if

24: end while

25: stop MO ▷ cleanup

26: end procedure
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Figure 4.16: Network Diagram containing packet loss information for links

Algorithm 4 shows the creation of the Mininet emulated network topology displayed in

Figure 4.16, connection of the Floodlight SDN controller and the enabling of the firewall

used to enforce video stream paths. Hosts are then pinged to ensure the successful

configuration of the network (lines 1-15). Access is then given to the Mininet Object

Command Line for the execution of the VLC stream and client laid out in Algorithm

5. The script concludes with a messaging loop responsible for reconfiguring the firewall

to adopt a new path specified by our policy running in APEX (lines 16-24). When the

experiment is finished, we simply stop the MO (line 25).

Algorithm 5 Video Stream

1: procedure Video stream ▷ Node B ← Node A

2: MOCL ← Mininet Object Command Line

3: XTB ← MOCL.xterm(NodeB)

4: XTB ← vlcwrapper(url).record()

5: XTA ← MOCL.xterm(NodeA)

6: XTA ← vlcwrapper(stream).start(XTB.IP)

7: XTA ▷ use RTP/MPEG, deactivate transcoding

8: end procedure

Algorithm 5 shows the procedure to generate a video stream from the server (Node A) to

the client (Node B) where it is recorded for analyses. VLC is executed on Node B where

it is configured to receive and record the video stream (lines 2-4). VLC is also executed

on Node A where it is configured to stream video to our client using the RTP/MPEG

protocol (lines 5-7).
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Algorithm 6 Generating MOS

1: procedure reference ▷ reference PSNR

2: yuv ← decodeYuv(file)

3: craw ← compRawVideo(yuv, fps, false)

4: refmp4 ← mp4(craw) ▷ hint RTP transport track

5: yuvMp4 ← decodeYuv(refmp4)

6: refPsnr ← psrn(yuvMp4)

store(refPsnr)

7: end procedure

8: procedure mos ▷ streamed vs. reference PSNR

9: yuvStream ← decodeYuv(streamedMp4)

10: streamPsnr ← psrn(yuvStream)

store(streamPsnr)

generateMOS(refPsnr, streamPsnr)

11: end procedure

Algorithm 6 shows the procedure to generate each MOS. The original video is used to

generate a Peak Signal to Noise Ratio (PSNR) (lines 1-7) and this is stored as a reference

PSNR (refPsnr). A PSNR is also generated for the streamed video (streamPsnr). Both

PSNRs are used to generate a MOS through the EvalVid Tool-set (lines 8-11).
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Algorithm 7 MOS/Active Path Policy

1: procedure match ▷ Match state

2: eom ← eim.mos

3: eom ← eim.vidParam

4: end procedure

5: procedure establish ▷ Establish state

6: ap ← ctxt(path)

7: pr ← ctxt(prevRes)

8: pf ← ctxt(prevFps)

9: if eie.mos > ctxt(maxMos) then

10: ctxt(maxMos)← eie.mos

11: ctxt(optRes)

12: ctxt(optFps)

13: end if

14: end procedure

15: procedure decide ▷ Decide state

16: if pr = eid.vidParam.res then

17: if pf = eid.vidParam.fps then

18: ap ← rand(path)

19: eod ← ap

20: end if

21: end if

22: if eid.mos >= ctxt(maxMos) then

23: if eid.vidParam.res != maxRes then

24: eod ← increaseRes

25: end if

26: else if eid.vidParam.fps != maxFps then

27: eod ← increaseFps

28: end if

29: end procedure

30: procedure act ▷ Act state

31: if eod.ap then

32: eoa ← genCmd(eod.ap)

33: else if eod.increaseRes then

34: eoa ← genCmd(eod.increaseRes)

35: else if eod.increaseFps then

36: eoa ← genCmd(eod.increaseFps)

37: end if

38: end procedure
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Algorithm 7 consumes the MOS of a streamed video and updates the recorded MOS for

the path in the policy’s context. The policy then determines whether this new MOS

should cause the path for video streaming in the network to be amended or not. Match:

the MOS of the incoming event is verified to ensure an expected value is received (i.e.

a value between 1 and 5). After verification the MOS is passed on to the next state.

Establish: compares the stored max MOS against the incoming MOS and records the

greater in policy context. Decide: examine the possible paths stored in the policy context

and the path with the best MOS is selected as the active path. If a new active path is

selected the path identifier is passed onto the next state. Act : take the path identifier for

the new active path and packages it into a response. This response is used to configure

the new path for the video stream through the Floodlight SDN controller. The defined

policy realizes a context-aware MEDA (Match, Establish, Decide, Act) policy [14].

4.2.3 Preliminary Evaluation

Using the network configuration outline in Figure 4.16 we created a brute force analysis

of media streaming characteristics using MOS for six network paths with the packet loss

rates; Path 1=0.5%, Path 2=1.0%, Path 3=1.5%, Path 4=3.0%, Path 5=2.5% and Path

6=2.0%. The brute force analysis involved the streaming of the Akiyo video sample at

15, 30 and 60 frames per second at resolutions of 480p, 720p and 1080p for each of the

six paths. This created a baseline brute force analysis of 54 separate tests illustrated in

Figure 4.17.

Our results found that the overall maximum MOS was achieved for path 1 which had the

lowest packet loss rate at 0.5%. Path 4 generated the lowest maximum MOS, 2.82, and

experienced the largest packet loss rate, 3.0%. While the highest and lowest generated

path MOSs align with their packet loss rates the distribution of MOSs in Figure 4.17

show the association is not tight, making the path selection decision more challenging.
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Figure 4.17: Brute force analysis results

The policy described in Algorithm 7 attempts to use a path climbing approach to opti-

mize the video stream. In this experiment, Path 5 is arbitrarily selected and the MOS

for a resolution of 480p at 15fps is calculated as 2.7. Path 5 is implemented by the adap-

tive path selection policy as optimal with the corresponding frame rate and resolution.

In the 2nd cycle the Akiyo video sample is streamed with a resolution of 720p at 15fps.

As the MOS attained is 1.58 and less than the previous optimal no path re-selection

occurs and the stream configuration of 480p at 15fps remains optimal. Given that a

resolution increase degraded the MOS, policy decides to increase the frame rate to 30fps

and return the resolution to 480p. This configuration results in a MOS of 3.04. As this

value exceeds the current maximum MOS the optimal stream configuration is updated

to 480p at 30fps. No path re-selection is required, Path 5 is still considered optimal.

Paths 3 and 1 are then considered. Path 1 with a resolution of 480p and a frame rate

of 60fps results in a MOS of 3.55. This value exceeds the current optimal MOS. The

optimal path is reconfigured to 1 and the optimal stream configuration is set to 480p at

60fps. The final remaining paths do not alter the optimal path selection.
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Figure 4.18: Current and Optimal Stream Comparison

Figure 4.18 shows the MOS for each tested path along side the MOS generated from the

optimal path.

This work validated the use of Adaptive Policy for lightweight, low-level decision-making.

Leveraging context to adapt network routing decisions based on QoE metrics. In co-

operation with a collection of probes, network operators may adapt this approach to

optimise video streams by leveraging low-level network context. This work with the pre-

vious testbed shows Adaptive Policy as a viable mechanism at any level of the network.

The next step in our work was to explore the decision making capabilities of adaptive

policy context awareness with state based execution. This lead to an investigation into

machine learning paradigms and their application in adaptive policies.
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4.3 A Hybrid Machine Learning/Policy Approach to Op-

timise Video Path Selection

Policy was introduced to network management as a mechanism for simplifying the com-

plex task of managing a network. As networks are evolving becoming more complex,

policy based management systems using predefined rules are struggling to manage these

new dynamic networks. Context aware decisions are now required to manage these

networks, as oppose to the predefined rule selection of traditional policy. A machine

learning and policy hybrid could produce the level of adaptability needed to accurately

and efficiently manage these networks in a context aware manner. This approach was

applied to a real time network path selection use case.

4.3.1 System Architecture

This section presents the system architecture for the hybrid machine learning / policy

approach. The approach is compartmentalised into three roles, these are policy context,

network emulation and video evaluation.

Mininet(linkParams)

APEX

linkParams

Feedback
Policy

Perceptron
Policy

Policy Context

EvalVid

Figure 4.19: System Architecture

The diagram in Figure 4.19 shows our system architecture. The system runs a closed

loop supervised learning cycle, with each cycle starting with initialisation of a predefined

Mininet emulated network and closing with the update of the network metric weights
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stored in the Adaptive Policy EXecution engine. In this section we describe the primary

components of system architecture and their role within the system.

Policy Context is handled by the APEX (Adaptive Policy Execution) engine. In this

work we have defined two policies. The Perceptron Policy applies weights for specific

Quality of Service metrics to predefined network configurations, both of which are stored

as context information on the policy engine. The policy outputs the optimum network

configuration for a video, based on weights stored in context. This configuration event

is sent to Mininet which builds the appropriate network for the cycle and the video is

stream and evaluated. The returning event triggers the Feedback Policy. The Feedback

Policy stores the video evaluation metric in context and compares this value with the

metric received from the previous cycle. The degree of change from the video evaluation

metrics is used to adjust the weights stored in the policy context.

The Mininet Framework creates an emulated network. Mininet supports rapid config-

uration and emulation of a virutal network running real kernel, switch and application

code5. Transmission of real video streams over this network is the foundation of our

testing environment. As network characteristics and scenario configuration can be au-

tomated without the need for simulation, emulation maintains the integrity of obtaining

real data in a flexible networking environment.

Video Evaluation is carried out by the Eval-Vid toolset6. This application runs on the

client side of the network, generating Peak Signal to Noise Ratio, the ratio of signal power

and corrupting noise of both the original and streamed videos, The toolset functionality

enables automated generation of a Mean Opinion Score. This Mean Opinion Score is

generated by comparing the PSNR of each frame in the original reference video with the

streamed video, counting the number of frames with a MOS worse than the original in a

given interval. The MOS generated by Eval-Vid provides an insight to whether changes

made to network characteristics have contributed to a positive or negative impact on

video stream quality.

5http://www.mininet.org
6http://www2.tkn.tu-berlin.de/research/evalvid/fw.html

http://www.mininet.org
http://www2.tkn.tu-berlin.de/research/evalvid/fw.html
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4.3.2 Implementation

This section describes the implementation of the policies, network emulation and the

video evaluation process for our approach, detailed as four algorithms in pseudocode.

Algorithm 8 Perceptron Policy

1: procedure match ▷ Match state

2: while eim.pathList.hasNext() do ▷ process pathList

3: eom ← eim.pathList.next()

4: end while

5: end procedure

6: procedure establish ▷ Establish state

7: eoe ← eie.paths

8: eoe ← ctxt(metricWeights.bwWeight)

9: eoe ← ctxt(metricWeights.latencyWeight)

10: eoe ← ctxt(metricWeights.lossWeight)

11: end procedure

12: procedure decide ▷ Decide state

13: for p in eid.paths do ▷ Loop paths

14: weightedBw ← normalise(p.bw) ∗ bwWeight

15: weightedLatency ← normalise(p.latency) ∗ latencyWeight

16: weightedLoss← normalise(p.loss) ∗ lossWeight

17: weightedSum← weightedBw + weightedLatency + weightedLoss

18: if weightedSum > largestWeightedSum then

19: largestWeightedSum← weightedSum

20: largestPathId← p.id

21: end if

22: end for

23: eod ← largestWeightedSum

24: eod ← largestPathId

25: end procedure

26: procedure act ▷ Act state

27: eoa ← parse(eia.largestPathId, eia.largestWeightedSum)

28: end procedure
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Figure 4.20: Graphical Representation of a Perceptron

The Perceptron Policy (Algorithm 8) presents the four states used in the policy’s ap-

plication of a single layer neural network approach. Match: Processes a list of optional

paths, one of which will be recommended for video streaming. Establish: Queries policy

engine context information for weights corresponding to predefined link characteristic-

s/attributes. Decide: Applies a perceptron single layer neural network approach through

normalisation of path attributes, application of respective weights and extraction of the

path identifier with the largest weighted sum of attributes. This processes in shown in

Figure 4.20. Act : Parses the output of the Decide state, prepares and outputs an event

from the policy.
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Algorithm 9 Mininet Topology & Video Stream

1: procedure Mininet ▷ Mininet, Floodlight, and Kafka

2: MO ← Mininet Object (TCLink)

3: bwMetric ← (float) sys.arg[1]

4: ltMetric ← (float) sys.arg[2]

5: lsMetric ← (float) sys.arg[3]

6: linkParam ← [bwMetric, ltMetric, lsMetric]

7: MO ← c1 ▷ Controller C1

8: MO ← n[a1, a2] ▷ Node A1, A2

9: MO ← s1 ▷ Switch S1

10: l1 ← l(linkParam)

11: MO ← [l1, l2] ▷ Link L1 L2

12: start MO ▷ topology & controller

13: while ¬Pingall do ▷ wait for nodes

14: pinghosts()

15: end while

16: MOCL ← Mininet Object Command Line

17: XTB ← MOCL.xterm(NodeA2)

18: XTB ← vlcwrapper(url).record()

19: XTA ← MOCL.xterm(NodeA1)

20: XTA ← vlcwrapper(stream).start(XTB.IP)

21: XTA ▷ use RTP/MPEG, deactivate transcoding

22: stop MO ▷ cleanup

23: end procedure

The Mininet Topology & Video Stream (Algorithm 9) shows initialisation of the Mininet

emulated network topology and recording of the video streamed across the network. The

network is configured with parameters for bandwidth (bwMetric), latency (ltMetric),

and packet loss (lsMetric). A Pingall is executed to ensure successful initialisation of

the network. VLC is used as the video streaming tool, executed on Node A1 and A2,

configured to record the streamed mp4.
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Algorithm 10 Video Evaluation

1: procedure reference ▷ reference PSNR

2: yuv ← decodeYuv(file)

3: craw ← compRawVideo(yuv, fps, false)

4: refmp4 ← mp4(craw) ▷ hint RTP transport track

5: yuvMp4 ← decodeYuv(refmp4)

6: refPsnr ← psrn(yuvMp4)

store(refPsnr)

7: end procedure

8: procedure mos ▷ streamed vs. reference PSNR

9: if newStreamedMp4 then

10: yuvStream ← decodeYuv(streamedMp4)

11: streamPsnr ← psrn(yuvStream)

store(streamPsnr)

12: mos ← generateMOS(refPsnr, streamPsnr)

13: output ← policyEvent(mos)

14: end if

15: end procedure

The Video Evaluation (Algorithm 10) shows how the video MOS (Mean Opinion Score)

is generated using the Eval-Vid toolset. Firstly, a PSNR (Peak Signal to Noise Ratio) is

generated for the original video file, described in the reference procedure. Next a PSNR

is generated for the recorded streamed video. The comparison of the PSNR files results

in a MOS value, a QoS metric with a range 1 to 5 with 1 representing exceptionally

poor quality and 5 representing no degradation in quality.
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Algorithm 11 Feedback Policy

1: procedure match ▷ Match state

2: eom ← parse(eim.mos)

3: end procedure

4: procedure establish ▷ Establish state

5: eoe ← eie.mos

6: eoe ← ctxt(mosV alues.size())

7: if ctxt(mosV alues.size())− 1 < 0 then

8: isF irstMos← true

9: previousMos← 0

10: else

11: isF irstMos← false

12: previousMos← mosV alues[size− 1]

13: end if

14: eoe ← (isF irstMos, previousMos)

15: end procedure

16: procedure decide ▷ Decide state

17: if eid.firstMos! = true then

18: slope← eid.mos−eid.previousMos

2−1

19: learningConst← 0.1

20: weightChange← slope ∗ learningConst

21: if mosV alues.size()%5! = 0 then

22: randomBw = 0

23: randomLt = 0

24: randomLs = 0

25: else

26: randomBw = (random() ∗ 10)− 0.05

27: randomLt = (random() ∗ 10)− 0.05

28: randomLs = (random() ∗ 10)− 0.05

29: end if

store()ctxt(metricWeights.bwWeight) + weightChange+ randomBw

store()ctxt(metricWeights.ltWeight) + weightChange+ randomLt

store()ctxt(metricWeights.lsWeight) + weightChange+ randomLs

30: metricWeightsUpdated← true

31: eod ← metricWeightsUpdated

32: else

33: metricWeightsUpdated← false

34: eod ← metricWeightsUpdated

35: end if

36: end procedure

37: procedure act ▷ Act state

38: eoa ← parse(eia.metricWeightsUpdated)

39: end procedure



Detailed Design and Evaluation 102

The Feedback Policy (Algorithm 11) presents the four states used to adjust weight values

when our video evaluation metric is received by the policy. Match: Processes the MOS

into a workable format for the policy. Establish: Queries policy engine context infor-

mation for last received MOS value. Decide: Using context information accompanied

by the MOS value, a slope is generated to represent the improvement/degradation in

video quality. A learning constant is then applied to create our weight change variable.

A random adjustment is implemented every 5 cycles of the policy ranging from -0.05 to

0.05. Our new weights are then stored in our policy engine context information and a

report is prepared for the next state. Act : Prepares the report from the Decide state

the policy output.

4.3.3 Preliminary Evaluation

In this section we present results of the preliminary evaluation of our approach. One

goal of our preliminary evaluation is to get initial indications on the approaches appli-

cability. Another goal is to assess if the selected learning parameters and weightings are

appropriate and to determine the degree and length of time for which learning should

be applied.

Cycle: MOS: Bandwidth Weight Latency Weight Loss Weight

1 1.75 0.5 0.3 0.8

2 2.33 0.55799997 0.358 0.858

3 2.54 0.579 0.379 0.879

4 2.57 0.582 0.382 0.882

5 3.05 0.63 0.43 0.93

Table 4.1: Weight adjustment for cycles 1-5

The first five results of a 50 cycle test are shown in Table 4.1. Bandwidth, Latency and

Loss Weights are the configured path metric for the video stream in Mininet for the

current test cycle. The initial value of the weights are set manually.

Packet loss of I-frame packets can have a significant impact on video quality[230]. There-

fore, we have assigned packet loss the largest weight of the three metrics. Bandwidth is

assigned a lower weight and latency is assigned the lowest weight. In the first cycle we
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see a reported MOS value of 1.75, as this is the first test the weights are not affected

and we continue to cycle two. Cycle two reports a MOS value of 2.33, this increase in

MOS from 1.75 generates a slope of approx 0.58, after applying the learning constant of

0.1 we are left with a proposed weight change of 0.058. This cycle is repeated for the

remainder of the test, with weights adjusted accordingly.

Figure 4.21: Weight Adjustment for 50 Cycle Test

The observed weights for a 50 cycle test are presented in Figure 4.21, detailing the

weight adjustment made in each cycle and the overall weight trends. From Figure 4.21

we see the Loss Weight (green) exhibits an overall increase from 0.8 to 0.91, showing that

although it had been assigned the largest initial weight, it did not increase significantly

after 50 cycles. The Bandwidth weight (red) was assigned the second largest weight

and at the end of our 50 cycle test the weight value had increased from 0.5 to 0.86, a

notable increase. This increase of 0.36 shows that bandwidth had more of an impact on

the MOS generated from video than initially thought, observable in the upward trend

depicted in the graph. The Latency weight (yellow) had the most significant increase

of the three weights. Increasing from 0.3 initially to end the 50 cycle test at 0.83. This

steady upward trend shows that latency had a much larger impact on of video stream

quality than our initial weights represent.

The results indicate that 50 cycles are not sufficient to allow weight to plateau at their
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representative values. Nevertheless, we were encouraged by the results. With adjust-

ments to the our Perceptron policy learning rate in tests with more cycles, we are

confident we can achieve a representative weighted path evaluation algorithm for video

streams.

This work shows machine learning paradigms executed within an adaptive policy decision

making system. This work also leverages powerful mathematical models to adaptive

policy decisions before they are realized. However, deploying these models in a network

management scenario is challenging. The next step in our work aimed to abstract

the policy selection and execution from the user. We investigated intent as a viable

abstraction technique for engagement with adaptive policy.

4.4 A Mechanism for Intent Driven Adaptive Policy De-

cision Making

This demonstration focuses on the comparison and identification of conflicts between

independent goals described through intent. Our approach, implemented in the Adaptive

Policy EXecution system, is presented in 3 stages:

• Intent generation, describing the structure of an intent,

• Intent comparability, detailing the requirements allowing for the effective compar-

ison of goals,

• Conflict resolution, detailing the process of identifying appropriate responses in

accordance with already established intent goals.

Our demonstration adopts intent as a driving mechanism for a network configuration us-

age scenario. The usage scenario describes a network emulation tool influenced through

policy. Intent events received by policy and trigger a validation cycle where active in-

tents are compared and influence new network configurations. The objective of the

demonstration is to identify the requirements of an intent driven approach and provide

processes to meet these requirements. In subsection 4.4.1 we detail the structuring of

the intent information. In subsection 4.4.2 we discuss the granularity required in intent
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information to produce actionable responses and identify achieved goals. In subsec-

tion 4.4.3 we describe the mechanism responsible for identifying and mitigating conflicts

between distinct intents. In subsection 4.4.4 the usage scenario is described for this

paper.

4.4.1 Intent Generation

The structuring of intent for this system was influenced by two factors. The maintaining

of readability for humans and machine while not limiting the level of descriptive detail

possible in the intent. From a generic policy perspective, allowing for a high level of

detail is important as information stored within the event can be used to provide context

to the situation requiring a decision. In this case our policy is less concerned with highly

detailed events given the concept of intent based networking, however the intent must

provide a condition to be met with the detail necessary to identify the violation of the

condition. Our approach builds intent as a recursive structure with the keywords Who,

What, When, Where and How. Who: Can describe the agent responsible for the intent

creation or the module or component to be affected. What : Can describe the job to be

undertaken or the goal to be achieved. When: Can describe a time frame for the intent to

be enforced as a once off or as a reoccurring goal. Where: Can describe the components

to be affected or a condition / situation where the intent is to be implemented. How :

Can describe conditions on to which the goal is achieved or can define done in regard to

the intent goal.
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Figure 4.22: Usage Scenario Intent

The Usage Scenario Intent (Figure 4.22) describes a KPI enforcement goal with a time

frame condition. The intent describes who generated it along with a general description

of what the intent is. The goals and conditions are then described lower in the intent

structure.

4.4.2 Intent Comparison

On receiving an intent the policy engine triggers an intent validation cycle. This cycle is

used to ensure that newly received intents are in accordance with already active intents

in the policy engine. The first step is the translation of the new intent event into a

common internal structure. The use of an internal common structure allows the policy to

map the intent to a supported framework without introducing additional dependencies

to external systems. As a result formatting issues are avoided and adjusting to new

industry formats can be done through a small policy update. A recursive function is

used to navigate the intent parsing the data into a collection of path like statements

similar to a folder directory. This collection of statements produces a tree structure

which, through the keywords, can be navigated to identify the depth of the tree and the

associations between values.



Detailed Design and Evaluation 107

Figure 4.23: Intent Path Collection

The Intent Path Collection (Figure 4.23) shows the parsed intent for our usage scenario

shown in Figure 4.22. Navigating the intent path collection is straightforward allowing

new intents and current network state information to be evaluated quickly. Building

intent as a recursive structure provides a number of important features for the system.

When parsing the intent, the structure can be broken down into a collection of paths

which are easily navigated and stored by the APEX system. This allows for the direct

comparison of different intents within the policy framework.

4.4.3 Intent Resolution

Direct comparison of independent intent path collections can only identify commonality

between intents based on the overlapping of keywords. The system can identify that

two independent intents are referring to a similar condition, however the system has

no context to what the condition is or how it can be impacted. Our solution was to

implement a dictionary designed with our policies role in mind. With a dictionary the

system can map the values of the intent to a predefined structure. This structure provide

attributes to recognized values, allowing them to be compared on a common level given

they share comparable features An ontological approach introduces a dependency into

the system, the modeling of intent values, however the standardization of these values

internally provides the meta data required to enable informed comparisons. Without

informed comparisons the policy cannot resolve independent intents impacting common

network attributes.
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4.4.4 Usage Scenario

In this section we present the system architecture for our experiment and demonstrate

the impact of our intent driven approach on an emulated network

APEX

Network Configuration

Validation
Policy

Context

Intent

Intent
Conflict

Figure 4.24: Architecture

The architecture shown in Figure 4.24 describes the relationships between our compo-

nents. Intents are generated and sent to the APEX engine. The intent received by the

APEX system is shown in Figure 4.22. These intents are processed and compared, as

a result a new Mininet configuration is generated. After the generation of the Mininet

configuration a new intent is introduced to the system, triggering a new validation at-

tempt. During this validation attempt new intents are processed into the path collection

format shown in Figure 4.23. Using the dictionary, value identifiers are mapped to the

corresponding structures. Newly mapped values are then compared, generating values

that share validity across stored intents. These values are used in the generation of a

network configuration file.
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Figure 4.25: Network Traffic Data

Figure 4.25 presents the impact of these intent driven network configurations. The

monitoring data shows the start up of the default network which is unrestricted in

regards to bandwidth. This results in full utilisation of the available resources, hence

the fluctuation in performance. The impact of the intent driven approach is then seen

with a reconfiguration of the network resulting in an threshold placed on user speed.

The system rejects conflicting intents only allowing for reconfiguration for new intents

compliant with the existing established intent collection.

This work presented the use of recursive model structures. Highlighting their machine

readability and LoD when utilized for intent definition. This work also validated the

use of a dictionary for intent context mapping. The next step in our work aimed at

addressing intent mapping in adaptive policy. Regardless of the abstraction technique,

intent mapping was required at some point in the execution chain to get from an abstract

entity to an executable action. Our approach required extensive semantic modeling to

expand functionality trigger-able through intent. This lead to an investigation into an

inductive approach to intent realisation.
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4.5 A Flexible Interpreter For Intent Realisation

This work presents our intent interpretation approach. In subsection 4.5.1 papers pub-

lished around the topic of intent are discussed, with a focus on translation/mapping and

comparison between model and mathematical based approaches. In subsection 4.5.2 our

approach to flexible intent interpretation in introduced. In subsection 4.5.3 an in depth

description of the implementation is provided accompanied by figures and example in-

put. In subsection 4.5.4 the preliminary results are presented, the execution times for

the interpreter are inspected and notable interpreter decisions are discussed.

4.5.1 Representations and Semantics

In this section we describe two high level approaches to intent representation from both

a mathematical and model driven perspective. This is followed by an explanation of

each approach and how it is adopted for the purposes of Intent representation.

4.5.1.1 Mathematical

A mathematical approach to intent representation can be realised using graph theory

as seen in [231] [232]. The authors of [232] propose a graph based abstraction model for

user defined intent, which undergoes a compilation process to authorize, check feasibility

and map to appropriate controller executions. Intent is described as a directed graph

comprised of a collection of network policies between endpoints. The underlying network

is abstracted allowing the controller to map these policies how it sees fit at the time of

execution.

4.5.1.2 Model-based

Due to the abstract nature of intent based goals and objectives, modeling is a popular

approach to Intent representation. Models provide an agreed upon structure for Intent

descriptions while providing templates and dictionaries to map meaning to elements

of the Intent. The authors of [150] developed an extensive model and meta-model

collection allowing for Intents which describe network functions and conditions at a high

level to be translated and parsed to lower level actions. This model driven approach
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is effective as functionality is triggered through modeled interactions, abstracting the

complexity by allowing internal component decision makers to actualize based on high

level parameters. The authors of [161] introduce an intent definition language called

Nile. This language acts as an intermediate between a natural language processed intent

and the relevant actioning systems. The Nile language provides a wrapper for identified

entities from the initial intent description and output is returned to the network operator

for verification. This approach solves two problems. By applying the intent entities to a

known template, this allows for the information to be easily navigated. Also by applying

the dictionary characteristics of the wrapper, only identifiable entities will be outputted

back to the network operator. This compliments the bottom up approach of what the

system can do versus what the intent wants. The authors of [233] and [132] extended

the Nile language to identify key entities related to their use case, which in turn trigger

associated executions to achieve the goals described. The authors of [155] generated

Intent descriptor rules, from an analysis on a history of user requirements recorded

by cloud consultants. Through this analysis they identified a number of common key

categories and then provided models for basic expressions and rules. This generation

of expressions based on user requirements reduces the required modeling to produce

actionable Intent statements.

Mathematical and model based intent representations provide structuring to intent de-

scriptions through different methods. However, the ability to derive meaning from these

statements still require mapping to match identified intent properties to appropriate ac-

tions. This mapping is usually achieved in two ways. Through a purpose built mapper

before triggering the actioning system, i.e., the system executing the action. Or by the

actioning system internally, provided that it supports an intent driven interface that rec-

ognizes the incoming intent. Mapping must occur at one or more levels in the execution

chain, but as the intent translates towards execution the context around intent proper-

ties may change how the intent is to be realized. In this scenario extensive mapping is

required to maintain meaning behind the initial intent and the executions required for

realization. In our initial work we have an approach more akin to an interpreter with a

core focus on flexible interactions which we have broken into three stages.
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4.5.2 Flexible Interpretation

In this section we describe our initial work on a flexible interpreter for intent driven

systems. The interpreter aims for the flexible handling of intent expressions. The inter-

preter is broken down into 3 core functions. The first function is the discover-ability of

action system capabilities. When an actioning system is added to the network it must

provide a functionality template. This functionality template serves the same purpose as

API documentation which is to identify the syntax and parameters of executable phrases

and the context in which they are useful. The second function is the matching of intent

with the descriptions of functions present in the functionality templates available to the

Interpreter. The third function is the translation of an intent. This function takes the

processed intent message and uses it to inform the building of the appropriate action

in response to the original intent message. The action is then performed fulfilling the

intent.

4.5.2.1 Functionality Templates

A functionality template describes the capabilities/functions of an actioning system

within the system. This is requested by the interpreter when an actioning system is

connected. The functionality template contains information similar to what would be

included in REST API documentation. In this paper we have prepared a Functionality

Template for the OpenFaaS framework [234][235]. Using the OpenFaaS API documented

with Swagger7 as a resource we developed a functionality template to describe the de-

ploy and invoke functions of OpenFaaS. Swagger documentation identifies the required

parameters of requests, this is an important attribute for the intent driven building of

the API call. The functionality template is expressed in JSON format and is sent to the

interpreter at the beginning of the scenario. The interpreter stores this information and

it is called when a new intent is received by the interpreter.

4.5.2.2 Intent Matching

One big challenge in intent-based networking is translating the user generated intent

(natural language) into a concrete executable network function. The approach used

7https://swagger.io/
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here is to employ natural language processing (NLP) to match the given intent with

available network functions that are registered in the functionality template. The NLP

model determines the semantic similarity between the user input and the functional

description of each network function. This similarity is evaluated as a score from 0 - 1.

The functional description can come from the documentation that describes the various

available network functions (e.g. through an API description like Swagger) or have been

provided manually during the registration of the function.

Figure 4.26: Intent Matching

Figure 4.26 exemplifies the mapping between user-generated intent and the available

network functions that are known to the interpreter. In this example, the user wants

to create a new network slice. The Interpreter has a number of functionality templates

stored, along with their description and service location (URL). The task of the intent

matching module is to find the closest match of function to the user’s intent. In this

example, the intent “I want to create a slice” is matched to the function/service that is

located at ”http://slice-manager/create”.

4.5.2.3 Translation

Translation only occurs when the intent matching identifies a meaningful request in the

intent description and a functionality template exists to realize the request. Translation

first looks at the intent description and compartmentalizes the request. The parameters
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of the intent are extracted and used to populate the associated fields of the identified

function. A one to one mapping can occur in this scenario, matching the parameters

described in the intent with the parameters described in the functionality template.

For our scenario we are informing our intent Interpreter with the capacity to deploy and

invoke functions of the OpenFaaS framework. This framework is used to model common

Slice Manager functions which will be driven by intents received by the Interpreter. The

scenario can be broken into 3 stages:

• Informing - The process of injecting a Functionality Template into the system.

• Matching - The process of collecting Functionality Template descriptions and pro-

viding them to the intent matching component.

• Realisation - The process of dynamically building the identified function and de-

livery to the appropriate actioning systems.

4.5.3 Implementation

In this section, we present an overview of our implementation and describe the algorithms

we have developed.

Functionality
Template

Intent Handling

Template
Identication

Action Builder

NBI

Actioning
System

Context Interpreter

APEX

Intent
Matching

Figure 4.27: System Architecture
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The system architecture presented in Figure 4.27 provides a high level representation

of the system implemented in this paper. A North Bound Interface is used to inject an

intent message into our system. This intent message is received by Adaptive Policy EX-

ecution (APEX)[15][227]. APEX is an adaptive policy engine built like a state machine

executor which allows for flexible and adaptive executions of policies. The functionality

template is stored on the APEX engine through the Context feature. This allows infor-

mation to be available to policies at the time of execution. The Interpreter receives an

intent message from a North Bound Interface containing the request “I want to deploy

a network function”. At this point the interpreter checks the content of the request

against all functionality templates stored in Context.

Figure 4.28: Functionality Template Event Message

The event message presented in Figure 4.28 shows a packaged functionality template

that contains one function to generate a mock network slice using default parameters.

The functionality template is passed into the interpreter while it is running. This allows

for more actioning systems to be added dynamically, provided they produce the required

information for communication and detail executable commands which can be triggered

externally.

Once the request of the intent message has been extracted the interpreter triggers the

template collection state. A recursive search is performed on each functionality template

stored within the system, extracting each field with the keyword ”summary”. The
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summary keyword contains a description of what an operation does. This is a fixed field

in the Swagger specification. Each description is packaged into a large collection which

is sent, along with the original intent request, to the intent matching component. Intent

matching is performed using pre-trained language models to compute semantic text

similarity. These models were trained on Wikipedia using fastText8. These vectors in

dimension 300 were obtained using the skip-gram model described in [236] with default

parameters.

On reception of intent matching output, the interpreter is provided with the scored

descriptions of the most similar functions to the original intent request. At this point

the interpreter identifies the functionality template of the highest scoring description

and checks the functionality template type. This identifies the appropriate process for

navigating and building the function based on the model used for the functionality

template. As Swagger API documentation in a JSON format was used to build the

OpenFaas functionality template this triggers Swagger specific logic inside the interpreter

to build the Swagger defined functions. Parameters provided in the initial intent request

are now compared to the parameters of the identified function. If a required parameter

is not provided in the intent this would be flagged to the intent issuer. When the

mapping of parameters to the function is complete, the location of the actioning system

is processed and the function is executed.

8https://fasttext.cc/docs/en/pretrained-vectors.html
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Algorithm 12 Interpreter

1: procedure Intent Handling ▷ State 1

2: intentMessage ← incomingEvent

3: context ← intentMessage

4: intentRequest ← parse(intentMessage)

5: for template in FunctionalityTemplates[] do

6: for description in recursiveSearch(template) do

7: descriptionCollection[] ← description

8: end for

9: end for

10: stateOutput ← intentRequest

11: interpreterOutput ← descriptionCollection[]

12: end procedure

13: procedure Template Identification ▷ State 2

14: intentRequest ← stateInput

15: scoredDescriptions[] ← matchingInput

16: highestDescription ← scoredDescriptions[]

17: for template in FunctionalityTemplates[] do

18: if highestDescription in recurciveSearch(template) then

19: identifiedTemplate ← template

20: identifiedFunction ← template.function

21: end if

22: end for

23: stateOutput ← identifiedTemplate

24: stateOutput ← identifiedFunction

25: end procedure

26: procedure Action Builder ▷ State 3

27: identifiedTemplate ← stateInput

28: identifiedFunction ← stateInput

29: intentMessage ← context

30: intentParameters ← intentMessage.parameters

31: if identifiedTemplate.format == swagger then

32: Trigger swagger navigation logic

33: functionParameters ← identifiedFunction

34: populatedFunction ← (functionParameters, intentParameters)

35: end if

36: interpreterOutput ← populatedFunction

37: end procedure
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Algorithm 12 provides a formalized description of the interpreter in a three state execu-

tion.

4.5.4 Preliminary Results

This section presents the timing for 120 independent intent executions through the in-

terpreter. At the beginning of the scenario the interpreter is started and is provided with

3 unique functionality templates. The first is a dummy template to provide a variety of

function descriptions that will be checked during the intent matching stage. The second

is the functionality template for the OpenFaaS Framework. The third is an expanded

version of the functionality template shown in Figure 4.28 populated with additional

operations. The Slice Manager mock-up is an OpenFaaS function that exposes API

endpoints similar to what would be expected from a generic slice manager component.
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Figure 4.29: Intent Realisation Timeframe

The timings shown in Figure 4.29 are the duration from the moment the intent is re-

ceived by the interpreter to the time the action is outputted by the system. The initial

interpreter executions record timings around the 400ms mark. This is primarily due

to the absence of cached data on the system. In the following executions, the timings

decrease to around the 200ms mark and occasionally going as low as 100ms. The system

reaches its shortest consistent executions between the 70th and 80th mark. After which
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the timings become more volatile averaging around the 500ms mark with a number of

large outliers.
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Figure 4.30: Internal Interpreter Execution Times

To get a better insight into what is causing this increase in execution time, Figure 4.30

shows the execution time of logic inside the Interpreter. Similar to the overall timing,

executions start high and as more processes are cached by the Interpreter this number

decreases as low as 25ms. In the latter part of the scenario the inconsistency is mirrored

by the overall timings however many of these executions are below 100ms. This iden-

tifies the REST interfaces used in the system as a significant contributor to the overall

execution time. In some cases the REST interfaces contribute over 400ms to the overall

execution time of the interpreter. As latency is a key performance indicator in many

network management scenarios the results show that there is room for improvement in

respect to how the Interpreter engages with its REST interface. In future work, overall

latency can be improved through integration of the intent matching component with the

interpreter. This would decrease the reliance on the REST interface to communicate

large volumes of data.

The consistency of the fastText pre-trained model provided the interpreter with a robust

mechanism for matching intent requests with concrete executable actions. During the

scenario a variety of intent requests were sent to the interpreter. Issues primarily arose

due to descriptions of functions in the functionality templates. Descriptions being too
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short, not providing enough descriptive material for the intent matching to work with,

and the absence of defined required data were the main causes of failed intent executions.

Different functions that perform similar or augmented versions of the same tasks were

identified as potential problem areas if not described adequately.

This work presented an embedded NLP based component for fast evaluation of intent

requests. This work also validated the functionality template (an extension based on

dictionary from previous work) for the inductive generation of intent-based actions. The

next step in our work aimed to validate and demonstrate our approach in real network

environments.

4.6 NLP Powered Intent Based Network Management for

Private 5G Networks

5G-CLARITY is a novel architecture for 5G private networks integrating 5GNR, Wi-

Fi and Li-Fi access networks. The 5G-CLARITY architecture is composed of three

strata, namely an infrastructure stratum, a virtualised network and application function

stratum and a management and orchestration stratum, and provides support for multi-

connectivity, positioning and slice provisioning. Thus, deploying end-to-end network

services in 5G-CLARITY requires the provisioning and configuration of both virtual

and physical network functions (V/PNFs), imposing a steep learning curve for private

network operators that are not familiar with 5G technologies.

4.6.1 Intent Engine

The Intent Engine is built upon Adaptive Policy EXecution (APEX), a state machine

approach to policy execution that incorporates a context functionality into the decision

making mechanism. APEX was initially published in [15] and was later adopted as a

Policy Decision Point (PDP) in the Open Network Automation Platform9. The work

published in [237] provides the core NLP-based interpretation mechanism for the Intent

Engine.

9https://docs.onap.org/projects/onap-policy-parent/en/latest/apex/APEX-Introduction.html
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The mechanism was then adapted to expand the action and interface generation features

to incorporate the AI Engine, ML models and orchestration type components. This

allowed the Intent Engine to communicate with slice provisioning systems, active ML

models running in the AI Engine and production-quality Network Service Orchestrators

(NSO). Next, we describe the key design principles of our Intent Engine, namely:

• Intent Design, describing how intents are built,

• Intent Matching Engine, describing how intents are matched to specific API end-

points,

• South-bound provider integration, describing how different management functions

can be integrated with the Intent Engine.

4.6.1.1 Intent design

An Intent message has two fields: request and parameters. The request field contains an

intent in the form of an English sentence. This is used in the matching process to compare

the users request with operations available to the Intent Engine. The parameters field

contains information the user would like to inject into the action building process. This

is required information that is not provided through component defaults or through a

supplementary ML model in the AI Engine.
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{

"intent ": {

"request ": "Create a slice",

"parameters ": {

"name": "nova",

"user -list": [

{

"imsi": "001035432100005"

}

],

"location ": {

"latitude ": 0.0,

"longitude ": 0.0

},

"technology ":[

"AMARISOFT_CELL",

"SUB6_ACCESS"

]

}

}

}

Listing 4.1: Slice provisioning intent example.

The request and parameters fields can be seen in Listing 4.1 in the form of an example,

namely a Slice Provisioning Intent. In the example, the request details the creation of

a slice through an ML model in the AI Engine. As this is a complex process containing

several sequenced executions the ML model populates many of the sequenced operations,

however some parameters cannot be queried or generated. These parameters are detailed

in the example such as user-list, location and technology.

4.6.1.2 Intent Matching Engine

The Intent Engine adopts an NLP-based matching process to correlate intents with ex-

ecutable operations available in the moment. This is achieved through a text distancing

algorithm trained on Wikipedia data, which scores the intent request against a range of

operation descriptions. The model used in this scenario is pretained word vector model

provided by FastText. The model is trained on 2017 Wikipedia dataset, UMBC web-

base corpus and statmt.org news dataset (16B tokens)[238]. The operation descriptions

are stored in a model referred to as the Functionality Template. The user provides the
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Functionality Template to the Intent Engine through a registration process, informing

the Intent Engine how and where to communicate with the component. This template

follows OpenAPI Specification allowing it to be processed in the intent matching and

action generation stage of the execution. Information from this model also informs the

dynamic building of the interface to allow communication between the Intent Engine

and the target component as a result of the processed intent.

4.6.1.3 South-bound provider integration

Informed through the Functionality Template, the Intent Engine dynamically builds the

interfaces for the south-bound communications. Through the use cases we show the

Intent Engine communicating several requests to three components operating in two

independent strata. These interfaces are built at execution time to ensure the most

up to date information is used during the action building and interface building stage

of execution. As a result, changes or re-configurations of components do not require a

hard restart of the Intent Engine. Instead, the reissuing of an updated Functionality

Template would restore the communication.

4.6.2 Demonstration

This section will describe the demonstration of three use cases in industrial settings.

Each demonstration was benchmarked based on intent execution time. This records the

amount of time from the communication of the first intent message to the point were

the intent is enforced in the network.
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Figure 4.31: Intent based slice provisioning through POSTMAN based interface

Figure 4.31 depicts a snapshot from our demonstration where an intent request is readied

to be sent using the Postman API platform. To benchmark the execution time the

experiment was repeated 10 times averaging in an execution time of approximately 3

minutes (presented in Table 4.2). This time is considered to be reasonable given the

configuration time of 5G cells and access points as well as spanning new core network

related VNFs.
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Figure 4.32: Intent based NLoS identification, with object blocking line of sight

Figure 4.32 depicts a snapshot of the demonstrator where a board is blocking line of

sight between the UE and the gNB. Later in the demonstration the board is removed

and the experiement is repeated to reflect and change in the line of sight prediction. The

time recorded for this experiment was averaged to approximately 1 second (presented

in Table 4.2). Given that the model is pretrained this time is primarily due to the

communication of CIR data to the model and the return of the prediction result to the

user.
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Figure 4.33: Intent based network service deployment, depicting the robot mounted
360◦ camera

Figure 4.33 depicts a snapshot of the robot mounted 360 degree camera. The demon-

stration enacted a smart tourism service in which surveillance video from the robot was

requested through a mobile device using intents generated by a public safety officer. Us-

ing intent, the user provisioned a virtual media forwarding unit at the edge in a smart

museum environment. The feed from the robot camera is then forwarded to the user

device. The average time to instantiate the video service through intent is 234 second or

approximately 4 minutes (presented in Table 4.2). This time is accounted for through

the layers of interaction between the OSM, Intent Interpreter and video resolution.

Table 4.2: Average intent execution time per use case.

Slice

provisioning

NLoS

identification

NS

deployment

Average intent

execution time
≈ 3 minutes ≈ 1 second ≈ 4 minutes

Table 4.2 presents the average intent execution times for each of the use cases. These

times are acceptable given the complexity of the operations being handled in by the

system. All recordings created as part of this project are hosted on Youtube10 along

with the three demonstrations described in this work.
10https://www.youtube.com/@5g-clarity458

https://www.youtube.com/@5g-clarity458
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This work validates our approach through 3 varied use cases in real industrial private

networks. Demonstrating Adaptive Intent Realization (AIR) concepts in Management,

Orchestration and near RT RIC applications.



Chapter 5

Conclusions and Future Work

This chapter consists of two sections: section 5.1 discusses the conclusions of the work

to date and section 5.2 describes future work and the next steps in the research.

5.1 Conclusions

The scenarios and results presented in section 4.1 demonstrate how effective the test

bed is at managing a virtual network through adaptive policy execution. The test bed

gives policy writers a testing environment where they can push the boundaries of their

adaptive policies by applying them to emulated networks. The network configuration

can be extended and made more complex by amending and building up the configuration

of the virtualised network in Mininet.

A key feature of the test bed was the inclusion of an virtual network emulator rather

than a simulator. While both have their advantages, tests carried out on an emulated

network provide a level of authenticity to the results of the test. The tester can trust

in the integrity of the results as they replicate the hardware and software, and pass real

data around rather than simulating it.

The inclusion of an industrial grade SDN controller adds to the legitimacy of the test bed

by providing more flexible and dynamic routing capabilities to the emulated network.

The Floodlight SDN controller is straightforward and very well documented. However,

drawbacks have been identified with Floodlight. In particular, the REST API lacks

128
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expressivity and support for performing many fundamental operations. Since the initial

selection of Floodlight there has been little in terms of contributions from the Floodlight

community to the development of the controller. Without an active community behind

it, the controller will quickly stagnate. Other controllers, such as the OpenDaylight

controller [239], have an strong community behind them. OpenDaylight in particular

supports most of the features Floodlight provided and has additional features that would

be useful for the test bed.

Designing and implementing policies with the APEX engine was relatively straightfor-

ward and the scenarios used in the early stages of this work did not push the limits of

the test bed nor the potential of the APEX engine. The state machine approach to the

policy execution resulted in policies which are easy to implement while also allowing for

ongoing iterative authoring/validation cycles to handle more complex scenarios.

The importance of current OTT and network-centric video optimization strategies is

discussed in section 4.2 while motivating the need for a closed control, policy-driven

approach for 5G operators to mitigate between OTT, other service offerings, and the

available video optimization techniques. This work describes a starting point for the role

of adaptive policy, in service assurance, for video quality control through the evaluation

of network resources using MOS.

Policy controlled closed control loop mechanisms that can steer video optimization

frameworks are important when considering new technologies such as MEC and VNFs.

The network resource evaluation described in section 4.2, although preliminary, is one of

many ways adaptive policy can be incorporated into specific optimization strategies and

with the inclusion of APEX in the Open Networking Automation Platform (ONAP),

adaptive policy may play a bigger role in 5G networks. All components, scripts, and

other artifacts for the experiment are available online [222]. The provided instructions

allow any interested party to run the experiment.

The paper described in section 4.3 proposes a directed feed forward neural network for

network path selection for multimedia streaming applications within the APEX Adaptive

Policy Execution Engine, which outputs the optimum network configuration for a video,

based on a context established through a weighted score. The selected configuration is

sent to Mininet, which builds the appropriate network for the cycle, over which video is

streamed and evaluated. The returning event triggers a video quality evaluation policy.
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The degree of change in the video evaluation metrics is used to adjust weights for the

next cycle. The results generated from initial tests produced some notable insights. A

clear trend is apparent in the adjustments of the weights stored in policy context. It is

also clear that the policy would benefit from an increased number of cycles in a testing

scenario, to allow the changes in weights to plateau. The directed feed forward neural

network policy would also benefit from a larger array of network configurations during

the testing phase which would increase the learning rate of the policy.

The paper described in section 4.4 introduced a straightforward intent approach where

the network traffic displayed in Figure 4.25 showed the realization of three intents. The

first intent is described in Figure 4.22, the second intent is the same as the first except

reducing bandwidth to 366KB/s and the third reduces bandwidth further to 184KB/s.

In the event that a newly received intent directly conflicts with an existing intent a

notification event is generated containing information on the owners of the conflicting

intent and the values responsible for the conflict.

The paper described in section 4.5 presented the interpreter and the use of the func-

tionality template. Often intent languages package the semantics of statements and

functionality together. This is a successful approach in a closed environment. Mod-

ern networks exhibit many dynamic traits and with the ability to spin up a variety of

virtual functions, it is important for the system to know what capabilities it has at

its disposal. By decoupling the semantic and the function and implementing through

the functionality template, new virtual functions can express their functionality to the

interpreter and become intent driven. Many network components already expose the

information required to produce a functionality template, for example Swagger UI is

a popular API documentation tool which exposes API resources and is automatically

generated from an OpenAPI Specification. In summary we have presented our initial

work in the development of a flexible interpreter for intent realization. Its capabilities

have been demonstrated through intent driven executions utilising a simulated network

management components.

Our approach in section 4.5 requires that the user provides functionality templates for

actioning systems they wish to incorporate into the intent driven system. As func-

tionality templates can be accepted during run-time this allows for the new actioning

systems to be dynamically incorporated which is a useful feature with the increasing
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role virtualisation plays in modern networks. This work aims at shifting focus from the

rigid mapping of component specific intents to predefined executions. Instead opting

for dynamic interpretation of intent messages through the lens of functionality available

to the system. Moving away from direct mapping introduces a level of variability in

the approach. This requires additional safeguards to be put in place to protect against

instances of mismatching, mapping intent requests to undesired functionality.

The work described in section 4.6 highlights a strong interest in designing systems that

can simplify the interactions between humans and complex digital systems through the

use of natural language based interfaces. Intent based networking has been devised as

the architectural framework to achieve this simplification in the management of mobile

networks, where advances in this regard are especially needed in the area of private 5G

networks owned by verticals that often lack skilled 5G personnel. The Intent Engine al-

lowed users to input intents in the form of English level sentences, and in coordination of

components of the Intelligence Stratum provide low-level context missing in the original

intent definition. This intent driven management was demonstrated in three private 5G

network use cases, namely a slice provisioning use case, an indoor positioning use case,

and a network service deployment use case. All use cases were benchmarked in terms of

intent provisioning time.

5.2 Future Work

The core objective of the future work is to apply the lessons learned in the development

of the test bed, policies interaction with optimisation techniques and the implementa-

tion of straightforward learning algorithms in the policy to create a closed control loop

mechanism within ONAP which uses machine learning techniques in an adaptive policy

environment for dynamic context-aware network optimisation and repair.

The development of the test bed validated the adoption of the COMPA automation pat-

tern motivating the further development of the test bed by integrating more advanced

analytics and adding additional (application, network, radio) controllers to extend the

scope of the testbed to much more complex scenarios. A DevOps inspired iterative au-

thoring/validation approach to verify policy specifications and analytics tasks is a fun-

damental requirement for supporting autonomic management. Incorporating elements
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for network simulation into the test bed can also compliment and augment the approach

presented. Simulation can play a vital role in validating the properties of management

control loops at authoring/pre-deployment time, but with the caveat that properly con-

figured emulators such as Mininet provide a more accurate result. As a result of the

test bed we experienced more users engaging with adaptive policy, this is an important

note in regard to Adaptive Intent Realisation (AIR) as a reliable and applicable testing

environment is an important feature of new technology.

The work incorporating policy and video quality assurance produced a number important

lessons for future work, especially in regard to policy placement. In previous work policy

was visualised as low in the network, working closely with the SDN controller. While

this in itself is not an issue, it limited its application as without a layer of abstraction

between the decision making and the actioning of the decision, policy becomes a static,

expressing specialised application specific behaviours. This motivated an alternative

approach. Utilising the compartmentalisation of the COMPA pattern along with the

separation of concerns design principle, would reduce the responsibilities of policy by

focusing on decision making process while Analytics and components associated with

Orchestration and Management act as buffers either side of policy. This understanding

is important as with the flexibility of Adaptive Intent Realisation (AIR) it may be

necessary to assign generalised roles to different instances of AIR in the same domain.

As part of our future work, we plan to continue investigating how recent advances in

NLP, e.g. based on the use of Large Language Models (LLMs) [240], can be leveraged to

further simplify the operation of private 5G networks. For example, an LLM could learn

to map a user intent directly to a complex sequence of API endpoints, thus simplifying

the need for the manually handcrafted workflow models that are needed in our current

system to support different use cases.
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[19] Göran Rune, Erik Westerberg, Torbjörn Cagenius, Ignacio Mas, Balázs

Varga, Henrik Basilier, and Lars Angelin. Architecture Evolution for

Automation and Network Programmability. Ericsson Review, 11(3):2–10,

2014. URL http://www.ericsson.com/res/thecompany/docs/publications/

ericsson_review/2014/er-evolved-network-architecture.pdf.

[20] The Linux Foundation. The open network automation platform (onap), 2017.

URL https://www.onap.org/.

[21] Ericsson. The Ericsson Mobility Report, June 2017. URL https:

//www.ericsson.com/assets/local/mobility-report/documents/2017/

ericsson-mobility-report-june-2017.pdf.

[22] Ericsson. Mobile traffic analysis by application, November 2017. URL

https://www.ericsson.com/en/mobility-report/reports/november-2017/

mobile-traffic-analysis-by-application.

[23] Ericsson. Enhancing the event experience, November 2017. URL

https://www.ericsson.com/en/mobility-report/reports/november-2017/

enhancing-the-event-experience.

[24] Lin Xiang, Derrick Wing Kwan Ng, Toufiqul Islam, Robert Schober, Vincent

W. S. Wong, and Jiaheng Wang. Cross-layer optimization of fast video deliv-

ery in cache- and buffer-enabled relaying networks. IEEE Transactions on Vehic-

ular Technology, 66(12):11366–11382, December 2017. doi: 10.1109/TVT.2017.

2720481. URL http://ieeexplore.ieee.org/document/7959207/.

[25] Harish Viswanathan, Danny De Vleeschauwer, Andre Beck, Steven Benno, Ray-

mond B. Miller, Gang Li, Mark M. Clougherty, and David C. Robinson. Mobile

video optimization at the base station: Adaptive guaranteed bit rate for http adap-

tive streaming. Bell Labs Technical Journal, 18(2):157–174, September 2013. doi:

10.1002/bltj.2161. URL http://ieeexplore.ieee.org/document/6772140/.

http://ict-arcfire.eu
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2014/er-evolved-network-architecture.pdf
http://www.ericsson.com/res/thecompany/docs/publications/ericsson_review/2014/er-evolved-network-architecture.pdf
https://www.onap.org/
https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-june-2017.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-june-2017.pdf
https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-june-2017.pdf
https://www.ericsson.com/en/mobility-report/reports/november-2017/mobile-traffic-analysis-by-application
https://www.ericsson.com/en/mobility-report/reports/november-2017/mobile-traffic-analysis-by-application
https://www.ericsson.com/en/mobility-report/reports/november-2017/enhancing-the-event-experience
https://www.ericsson.com/en/mobility-report/reports/november-2017/enhancing-the-event-experience
http://ieeexplore.ieee.org/document/7959207/
http://ieeexplore.ieee.org/document/6772140/


Bibliography 136

[26] M. Seufert, S. Egger, M. Slanina, T. Zinner, T. Hoßfeld, and P. Tran-Gia. A

survey on quality of experience of http adaptive streaming. IEEE Communications

Surveys Tutorials, 17(1):469–492, Firstquarter 2015. ISSN 1553-877X. doi: 10.

1109/COMST.2014.2360940.
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De Turck. Qoe-driven rate adaptation heuristic for fair adaptive video stream-

ing. ACM Trans. Multimedia Comput. Commun. Appl., 12(2):28:1–28:24, Octo-

ber 2015. ISSN 1551-6857. doi: 10.1145/2818361. URL http://doi.acm.org/

10.1145/2818361.

[29] ISO/IEC. Information technology – dynamic adaptive streaming over http (dash)

– part 5: Server and network assisted dash (sand). Edition 1, February 2017. URL

https://www.iso.org/standard/69079.html.

[30] TNO. MPEG-DASH SAND, 2017. URL https://tnomedialab.github.io/

sand/.

[31] Abbas Mehrabi, Matti Siekkinen, and Antti Ylä-Jääski. Joint optimization of
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[74] Adam Greenhalgh, Felipe Huici, Mickaël Hoerdt, Panagiotis Papadimitriou, Mark

Handley, and Laurent Mathy. Flow processing and the rise of commodity network

hardware. ACM SIGCOMM Computer Communication Review, 39:20–26, 03 2009.

doi: 10.1145/1517480.1517484.

[75] S. H. Yeganeh, A. Tootoonchian, and Y. Ganjali. On scalability of software-

defined networking. IEEE Communications Magazine, 51(2):136–141, February

2013. ISSN 1558-1896. doi: 10.1109/MCOM.2013.6461198.

[76] W. Xia, Y. Wen, C. H. Foh, D. Niyato, and H. Xie. A survey on software-defined

networking. IEEE Communications Surveys Tutorials, 17(1):27–51, Firstquarter

2015. ISSN 2373-745X. doi: 10.1109/COMST.2014.2330903.

[77] B. A. A. Nunes, M. Mendonca, X. Nguyen, K. Obraczka, and T. Turletti. A

survey of software-defined networking: Past, present, and future of programmable

networks. IEEE Communications Surveys Tutorials, 16(3):1617–1634, Third 2014.

ISSN 2373-745X. doi: 10.1109/SURV.2014.012214.00180.

[78] W. Wassapon, P. Uthayopas, C. Chantrapornchai, and K. Ichikawa. Real-time

monitoring and visualization software for openflow network. In 2017 15th Inter-

national Conference on ICT and Knowledge Engineering (ICT KE), pages 1–5,

Nov 2017. doi: 10.1109/ICTKE.2017.8259622.



Bibliography 142

[79] Wolfgang Braun and Michael Menth. Software-defined networking using openflow:

Protocols, applications and architectural design choices. Future Internet, 6:302–

336, 05 2014. doi: 10.3390/fi6020302.

[80] 5G PPP Architecture Working Group. View on 5G Architec-

ture, July 2018. URL https://5g-ppp.eu/wp-content/uploads/

2017/07/5G-PPP-5G-Architecture-White-Paper-2-Summer-2017_

For-Public-Consultation.pdf.

[81] 3GPP. Management and orchestration; Concepts, use cases and requirements.

Technical specification (TS) 28.530, 3rd Generation Partnership Project (3GPP),

09 2020. URL https://portal.3gpp.org/desktopmodules/Specifications/

SpecificationDetails.aspx?specificationId=3273. Version 16.3.0.

[82] ETSI. Zerotouch network and Service Management (ZSM); End-to-end

management and orchestration of network slicing. GROUP SPECIFI-

CATION (GS) 003, European Telecommunications Standards Institute, 06

2021. URL https://www.etsi.org/deliver/etsi_gs/ZSM/001_099/003/01.

01.01_60/gs_ZSM003v010101p.pdf. Version 1.1.0.

[83] 3GPP. 5G System (5GS) Location Services (LCS); Stage 2. Techni-

cal specification (TS) 23.273, 3rd Generation Partnership Project (3GPP),

03 2020. URL https://portal.3gpp.org/desktopmodules/Specifications/

SpecificationDetails.aspx?specificationId=3577. Version 16.3.0.
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