
Derivations of Group Algebras with

Applications

Kieran Hughes

Supervisor: Dr. Leo Creedon

A thesis presented for the degree of

Doctor of Philosophy

Submitted to Quality and Qualifications Ireland, June 2020



Abstract

Derivations of Group Algebras with Applications

This thesis is a study of derivations of group algebras. Derivations are
shown to be trivial for semisimple group algebras of abelian groups. The
derivations of a group algebra are classified in terms of the generators and
defining relations of the group. If RG is a group ring, where R is commutative
and S is a set of generators of G then necessary and sufficient conditions on
a map from S to RG are established, such that the map can be extended to
an R-derivation of RG. This theorem is utilised to construct a basis for the
vector space of derivations of abelian group algebras, dihedral group algebras
and quaternion group algebras.

Derivations of group algebras are considered as linear finite dynamical
systems and their associated directed graphs are studied. The motivation
for this comes from the fact that if DerpKGq and DerpKHq are not isomor-
phic as additive groups then KG and KH are not isomorphic as rings. It
is shown that if R and S are ring isomorphic, then there is a bijection from
DerpRq onto DerpSq such that corresponding derivations have isomorphic
associated digraphs. Therefore properties of the linear finite dynamical sys-
tem associated with a derivation can be used to distinguish between group
rings.

Derivations of a group algebra form a Lie algebra and it is shown that this
Lie algebra DerpKGq is a complete Lie algebra, when G is a finite abelian
group such that its Sylow p-subgroup is elementary abelian.

Derivations can be used to show that two group algebras are not iso-
morphic as rings. As an example dihedral and quaternion group algebras
are contrasted by showing that their respective derivation Lie algebras have
different dimension and centers of different dimension. The thesis concludes
by giving an alternative proof of Deskins’ Theorem using derivations.
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Chapter 1

Introduction

This thesis is an analysis of the structure and applications of derivations of finite

group algebras. We are primarily motivated by the desire to better understand

the underlying structure of the group algebra but also by the application to error

correcting codes. These applications include the error correcting codes necessary for

applications where the signal is subject to heavy interference (a high noise channel)

and where there is a requirement to have low energy inputs for the transmitting

device. Such applications include transmitting data from offshore wind and wave

energy devices and the software for wireless body area networks (WBANs) (also

known as body sensor networks (BSNs)). The WBAN application may be useful in

the software applications needed in designing portable biomedical diagnostics and

veterinary applications.

The codes used in these applications need to be particularly efficient. This is

due both to the high levels of noise on the channel and due to the small size of

the devices comprising the WBAN. In particular, it is desirable that they have no

short cycles. Codes (in particular Low Density Parity Check Codes (LDPC) and

Convolution Codes) can be constructed algebraically using group algebras [30].

Functions, namely derivations, defined on a group algebra are examined. The
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motivation is to answer structural questions relating to group algebras and in par-

ticular: Does there exist a ring isomorphism between group algebras of two noniso-

morphic groups over the same field? This thesis will primarily be concerned with

finite group algebras of positive characteristic. This focus is again motivated by

the application to error correcting codes. Particular attention will be given to finite

modular group algebras. We start by discussing both key players, namely group

algebras and derivations.

Rings 

Finite modular 

group algebras 

Finite group 
algebras 

Vector 
spaces 

Group algebras 

Figure 1.1: Finite modular group algebras within the class of rings and vector
spaces

A group algebra can be considered as a ring, a vector space and a Lie algebra.

Let G be a group and let K be a field. Then we shall denote the group algebra

formed from K and G by KG. Considering group algebras as vector spaces has

proven useful in the study of linear block codes. As an example, in [28], linear

block codes have been generated from elements of group algebras of certain types

(zero divisors and units).

Derivations are additive group homomorphisms. However they are not ring

homomorphisms since they are in general not multiplicative. They do however,
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obey a different multiplication rule known as Leibniz’s rule. As such, derivations

are generalisations of the differentiation of real functions discovered by Leibniz and

Newton.

In their 2014 paper “Linear codes using skew polynomials with automorphisms

and derivations” [9] D. Boucher and F. Ulmer generalise codes as modules over skew

polynomial rings of automorphism type to those skew polynomial rings whose mul-

tiplication is defined using an automorphism and a derivation. Codes constructed

in this way have in some cases produced better distance bounds than that of other

codes of the same length and dimension. This means that they can detect and or

correct more errors in a transmission. They also introduce the notion of evalua-

tion codes using these rings. M. Boulagouaz and A. Leroy in “pσ, δq-codes” [10]

introduce the notion of cyclic pfptq, σ, δq-codes, where fptq is an element of a skew

polynomial ring. The use of derivations in coding theory has thus far been restricted

to the setting of skew polynomial rings. A goal of this thesis is to better understand

derivations of group rings. As a consequence this opens up the possibility to apply

derivations to coding theory from a group rings perspective.

We begin our study of derivations of group algebras with some naive ques-

tions. Are there any derivations defined on group algebras? Assuming the set

of derivations of a particular group algebra is non-empty: Are all the derivations

of the group algebra inner derivations or do there exist outer derivations? What

structure and size does the set of derivations have? These questions ultimately

lead us to the central question of this thesis.

What, if anything can the set of derivations of a group algebra

tell us about the structure of the group algebra itself?
(1.1)

Chapter 2 introduces the notion of a group algebra and also defines a derivation of

a ring. The set of derivations of a ring R, is denoted by DerpRq. Theorem 2.2.5
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classifies the derivations of group algebras in terms of the generators and defining

relations of the group. If RG is a group ring, where R is commutative and S is a

set of generators of G then necessary and sufficient conditions on a map from S to

RG are established, such that the map can be extended to an R-derivation of RG.

If the group is abelian then our focus is directed towords studying modular group

algebras. This is a consequence of the fact that the only derivation defined on a

semisimple group algebra of an abelian group is the zero map. The derivations of

finite group algebras are constructed and listed in the commutative case and in

the case of dihedral groups. In the dihedral case, the inner derivations are also

classified. Lastly, these results are applied to construct well known binary codes as

images of derivations of group algebras. The results in this chapter were published

in [12].

Derivations of a modular group algebra KG are the subject of Chapter 3. A

subring of KG that will prove useful in this and subsequent chapters, namely the

ring of constants, CpKGq is introduced. The connection between derivations and

homomorphisms is studied and the concept of a differential ideal is introduced.

The augmentation ideal ∆pG,Hq is shown to be a differential ideal with respect

to a derivation if and only if the image of the subgroup H under the derivation is

contained in the augmentation ideal. As a consequence, H P CpKGq implies that

the augmentation ideal∆pG,Hq is a differential ideal. It is shown in Theorem 3.1.18

that a ring isomorphism from R to S induces an isomorphism of additive groups

between DerpRq and DerpSq. It is also shown in Section 3.1 that if two group

algebras over K are isomorphic as K-algebras, then their respective derivation

algebras are isomorphic as Lie algebras. These results provide a tool for gleaning

information about the structure of a group algebra from that of its derivation

algebra. As an example, if there are more derivations of KG than of KH, then

KG and KH are not isomorphic as rings by Theorem 3.1.18. F2D8 is studied as
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an example of a modular group algebra. Its derivations, ideals and unit group are

found as well as the image of an element of the group algebra under conjugation

by units. It is shown that no outer derivation of KH becomes inner in KG, where

H is a subgroup of G. This chapter concludes with a brief look at generating error

correcting codes from derivations of modular group algebras.

A derivation of a commutative group algebra KG is considered as a linear

finite dynamical system (LFDS) in Chapter 4. The resulting LFDS corresponds to

a directed graph with the elements ofKG as vertices and an arc between each vertex

and its image under the derivation. As previously stated, the results of Chapter 3

provide a tool for gleaning information about the structure of a group algebra

from that of its derivation algebra. Counting derivations can be used to show that

group algebras are not isomorphic as rings. However, this may not always work

since for example F2pC4ˆC4q and F2pC2ˆC8q both have 232 derivations. Therefore

we will seek to use other properties of the LFDSs associated with the derivations

of group algebras to distinguish between the nonisomorphic group algebras. The

maximum value of the preperiod of a LDFS is one such property and is used to show

that F2pC4 ˆ C4q and F2pC2 ˆ C8q are not ring isomorphic. When the derivation

is nilpotent, the maximum value of the preperiod corresponds to the nilpotency

index of the derivation.

The set of derivations of a commutative group algebra over a finite field is

again the subject of Chapter 5. However, this chapter studies the Lie algebra

formed from this set of derivations by defining multiplication as the Lie commu-

tator. This Lie algebra is know as the derivation algebra. The motivation comes

from Theorem 3.1.20, which states that a K-algebra isomorphism between two

finite group algebras implies that their derivation algebras are isomorphic as Lie

algebras. It is shown that the derivation algebra of a commutative group algebra

over a finite field has trivial center. A Lie algebra that has trivial center and whose
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derivations are all inner is called complete. It is proven in Theorem 5.4.14 that

if K is a finite field of characteristic p and G is a finite abelian group such that

its Sylow p-subgroup is elementary abelian, then the derivation algebra of KG is

complete.

A very interesting problem in group rings is whether the group ring determines

the group. This question is referred to as the Isomorphism Problem of Group Rings

[40]. The set of derivations of a group algebra can be trivial. For example the zero

map is the only derivation of the semisimple group algebra F2Cn, where n is an

odd integer. In contrast, by Theorem 2.3.4 of Chapter 2 the group algebra FpP

where P is a finite abelian p-group always has non trivial derivations. This simple

observation motivates the application of the results of Chapters 2 - 5 to the study

of the Isomorphism Problem within the following context: Let P and Q be finite

p-groups and K the field with p elements. The Modular Isomorphism Problem asks

if the following statement is true:

KP » KQ ùñ P » Q.

The Modular Isomorphism Problem was solved for abelian groups in 1956 by De-

skins [14]. Chapter 6 begins by studying the derivation algebras of F2tD2m`1 and

F2tQ2m`1 . These results are then used to prove that F2tD2m`1 and F2tQ2m`1 are not

isomorphic as K-algebras or in fact as rings. Therefore these group algebras do not

provide a counterexample to the Modular Isomorphism Problem. The information

discovered about derivations of group algebras provided the tools necessary to give

an alternative proof of Deskins Theorem in Theorem 6.2.16.
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Chapter 2

Derivations of Group Algebras

and Codes

2.1 Introduction

Group rings and derivations of rings have both been studied for more than 60 years.

For a history of group rings see Polcino Milies and Sehgal [40] and for a survey

article on derivations see Ashraf, Ali, and Haetinger [3]. The results of Posner [41]

and Herstein [24] attracted particular attention. Prime, semiprime and 2-torsion

free rings were a focus of the resulting research.

Derivations of C˚-algebras have been studied by several authors. In [44], Sakai

proved that every derivation of a simple C˚-algebra becomes inner in its multiplier

algebra. Mathieu and Villena, in [36] study the structure of Lie derivations of

C˚-algebras. In the 2000 paper Derivations on Group Algebras [19], Ghahramani,

Runde and Willis, examine the first cohomology space of the group algebra L1pGq,

where G is a locally compact group. The derivation problem asks whether ev-

ery derivation from L1pGq to MpGq is inner, where G is a locally compact group

and MpGq is the multiplier algebra of L1pGq. It was solved in the affirmative by

7



Losert [34]. The 2017 preprint “Derivations of Group Algebras”, [2] by Arutyunov,

Mishchenko and Shtern describes the outer derivations of L1pGq.

Group rings have been used to construct new codes as well as to study existing

codes. In [28] Hurley and Hurley present techniques for constructing codes from

group rings. The codes constructed consist primarily of two types, zero-divisor

codes and unit-derived codes. The structure of group ring codes is examined in

[27]. The author gives a decomposition of a group ring code into twisted group

ring codes and proves the nonexistence of self-dual group ring codes in particular

cases.

Derivations have also been employed in coding theory. In [9] codes are con-

structed as modules over skew polynomial rings, where the multiplication is defined

by a derivation and an automorphism. In this chapter derivations of group algebras

and their application to coding theory are considered.

However, there has not been as much research into derivations of group alge-

bras with positive characteristic. Notable exceptions include Smith [49], Spiegel

[50], Ferrero, Giambruno and Polcino Milies [17] and Artemovych, Bovdi and Salim

[1]. In [17] the authors prove the following theorem.

Theorem 2.1.1. [17] Let R be a semiprime ring and G a torsion group such that

rG : ZpGqs ă 8, where ZpGq denotes the center of G. Suppose that either char

R “ 0 or for every characteristic p of R, p ffl opgq, for all g P G. Then every

R-derivation of RG is inner.

In this thesis we are particularly interested in finite group algebras. This is

motivated in part by applications to error correcting codes. Theorems 2.1.1 and

2.3.1 direct our focus, in the commutative case, to the study of derivations of

modular (nonsemisimple) group algebras with positive characteristic.

Theorem 2.2.2 shows that when K is an algebraic extension of a prime field
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all derivations of a K-algebra are K-derivations. If RG is a group ring, where

R is commutative and S is a set of generators of G then necessary and sufficient

conditions on a map f : S Ñ RG are established, in Theorem 2.2.5, such that f

can be extended to an R-derivation of RG. Section 2.3 outlines some applications

of the results of Section 2.2. All derivations of finite commutative group algebras

of positive characteristic are determined in Theorem 2.3.4. If G is a finite abelian

group and K a finite field of positive characteristic p then the image of a minimum

set of generators of the Sylow p-subgroup of G under a derivation of KG can

be chosen arbitrarily, however this is not always the case in the noncommutative

setting. An inner derivation of a ring R maps a P R to ba ´ ab, for some element

b P R. In the case of finite dihedral group algebras of characteristic 2, a basis is

given for the space of derivations in Theorem 2.3.11 and also for those that are

inner in Theorem 2.3.13.

The extended binary Golay r24, 12, 8s code and the extended binary quadratic

residue r48, 24, 12s code are both presented as images of derivations of group alge-

bras in Section 2.3.3.

Definition 2.1.2. Notation: N, Z and Q denote the natural numbers, the in-

tegers and the rational numbers, and Fpn denotes the finite field with pn ele-

ments. The group ring RG denotes the set of all formal linear combinations of

the form
ř

gPG agg, of finite support where ag P R, together with the operations of

addition (componentwise) and multiplication defined as p
ř

gPG aggqp
ř

hPG bhhq “
ř

g,hPG agbhgh. We adopt the usual convention that empty sums are 0 and empty

products are 1.

Definition 2.1.3. A derivation of a ring R is a mapping d : RÑ R satisfying

dpa` bq “ dpaq ` dpbq, for all a, b P R. (2.1)

dpabq “ dpaqb` adpbq, for all a, b P R. (2.2)
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Equation (2.2) is known as Leibniz’s rule. Write DerpRq for the set of derivations

of a ring R. Note that if R is a unital ring then dp1q “ 0, since dp1q “ d
`

1p1q
˘

“

dp1q1` 1dp1q.

Definition 2.1.4. Let d P DerpRq and r P R for a ring R. Then the map r ¨d : RÑ

R is defined as a ÞÑ rdpaq for all a P R.

Lemma 2.1.5. Let Z be a central subring of a ring R. Then DerpRq together with

the action ¨ is a Z-module.

Definition 2.1.6. Let RG be a group ring. Then a derivation d : RGÑ RG is an

R-derivation if dpRq “ t0u.

Definition 2.1.7. Given a ring R and a, b P R, define the Lie commutator ra, bs

“ ab´ba. A derivation d on a ring R is inner if for all a P R we have dpaq “ ba´ab

for some b P R. In this case we write d “ db.

2.2 Derivations of Group Rings

In this section we establish necessary and sufficient conditions on a map f : S Ñ

RG, such that f can be extended to an R-derivation of the group ring RG, where

S is a set of generators of G and R is commutative. First, some identities and

preliminary results are presented.
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Lemma 2.2.1. Let d be a derivation of a ring R. Then

piq dp
m
ź

i“1

aiq “
m
ÿ

i“1

˜

p

i´1
ź

j“1

ajqdpaiqp
m
ź

j“i`1

ajq

¸

, for all ai in R. (2.3)

piiq dpamq “
m´1
ÿ

i“0

aidpaqapm´1´iq, for all a P R and m P N. (2.4)

piiiq
n´1
ÿ

i“0

aidpaqapn´1´iq
“ 0, for all units a in R of order n. (2.5)

pivq dpakq “ kak´1dpaq, for all a P R which commute with dpaq and k P N.

(2.6)

pvq dpakq “ kak´1dpaq, for all units a P R which commute with dpaq and k P Z.

(2.7)

Proof. piq We will prove Equation 2.3 by induction on m.

Base case: m “ 1. This is true as dpa1q “
ř1
i“1 1dpa1q1.

Assume that dp
śm

i“1 aiq “
řm
i“1

´

p
śi´1

j“1 ajqdpaiqp
śm

j“i`1 ajq
¯

. Then

dp
m`1
ź

i“1

aiq “ dp
m
ź

i“1

aiqam`1 `

´

m
ź

i“1

ai

¯

dpam`1q

“

m
ÿ

i“1

´

p

i´1
ź

j“1

ajqdpaiqp
m
ź

j“i`1

ajq
¯

am`1 `

´

m
ź

i“1

ai

¯

dpam`1q

“

m`1
ÿ

i“1

´

p

i´1
ź

j“1

ajqdpaiqp
m`1
ź

j“i`1

ajq
¯

.

Therefore Equation 2.3 holds for all m P N.

piiq Let ai “ a in Equation 2.3. Then for all m P N

dpamq “
m
ÿ

i“1

´

p

i´1
ź

j“1

aqdpaqp
m
ź

j“i`1

aq
¯

“

m
ÿ

i“1

ai´1dpaqapm´iq “
m´1
ÿ

i“0

aidpaqapm´1´iq.
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piiiq Setting m “ n in Equation 2.4 implies

0 “ dp1q “ dpanq “
n´1
ÿ

i“0

aidpaqapn´1´iq.

pivq Let a be an element of R that commutes with dpaq. Then using Equation 2.4

dpakq “
k´1
ÿ

i“0

aidpaqapk´1´iq
“

k´1
ÿ

i“0

ak´1dpaq “ kak´1dpaq.

pvq Let a be a unit which commutes with dpaq. Then a´1 is also a unit

which commutes with dpaq since a´1dpaq “ a´1dpaqaa´1 “ a´1adpaqa´1 “ dpaqa´1.

Therefore 0 “ dp1q “ dpa´1aq “ dpa´1qa`a´1dpaq and so dpa´1q “ ´a´1dpaqa´1 “

´a´2dpaq. Moreover, a´1 commutes with dpa´1q since a´1dpa´1q “ a´1p´a´2dpaqq

“ ´a´2dpaqa´1 “ dpa´1qa´1. Therefore for any positive integer k

dpa´kq “ dppa´1
q
k
q “ kpa´1

q
k´1dpa´1

q “ kpa´k`1
qp´a´2dpaqq “ ´kpa´k´1

qdpaq.

Furthermore, 0 “ dp1q “ dpa0q “ 0a´1dpaq and so Equation (2.7) holds for all

integers k.

The following Theorem shows that when K is an algebraic extension of a prime

field all derivations of a K-algebra are K-derivations.

Theorem 2.2.2. Let A be a K-algebra where K is an algebraic extension of a

prime field F and let d P DerpAq. Then dpKq “ t0u and d is a K-linear map.

Proof. Let d P DerpAq. If charpF q ą 0 then for b P F , dpbq “ dp1` 1` ¨ ¨ ¨ ` 1q “

dp1q ` dp1q ` ¨ ¨ ¨ ` dp1q “ bdp1q “ b0 “ 0, and so dpF q “ 0. Let F “ Q and let

a, b P Z with b ą 0. Note that 0 “ dp0q “ dp1 ´ 1q “ dp1q ` dp´1q “ 0 ` dp´1q,

so dp´1q “ 0. Then bdpa{bq “ dpa{bq ` ¨ ¨ ¨ ` dpa{bq “ dpa{b` ¨ ¨ ¨ ` a{bq “ dpaq “
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˘dp1` ¨ ¨ ¨ ` 1q “ ˘pdp1q ` ¨ ¨ ¨ ` dp1qq “ 0. Therefore dpa{bq “ 0, so dpF q “ 0 for

all prime fields F .

Let a be a nonzero element of K and let mapxq “
řna

j“0 bajx
j P F rxs be the

minimal polynomial of a over F . a is a central unit in K and so Equation 2.7 of

Lemma 2.2.1 applies. Note that for b P F and α P K we have dpbαq “ bdpαq, since

dpF q “ 0. Thus applying a derivation d to mapaq “ 0 and using Equation 2.7

0 “ dp0q “ dpmapaqq “ dp
na
ÿ

j“0

baja
j
q “

na
ÿ

j“0

bajdpa
j
q

“

na
ÿ

j“0

bajja
j´1dpaq “

´

na
ÿ

j“1

bajja
j´1

¯

dpaq “ qpaqdpaq,

where q is a polynomial in F rxs. Moreover, qpaq ‰ 0 as this would contradict the

minimality of the degree of mapxq. Therefore dpaq “ 0, since qpaq is invertible as

it is a non zero element of the field K. Hence dpKq “ t0u.

The K-linearity of d is immediate since d is additive and if a P A and k P K

then dpkaq “ dpkqa` kdpaq “ 0` kdpaq.

Corollary 2.2.3. Let K be an algebraic extension of a prime field F . Let G be

a torsion group such that rG : ZpGqs ă 8, where ZpGq denotes the center of G.

Suppose that either charpKq “ 0 or that charpKq “ p ą 0, and p does not divide

the order of g, for all g P G. Then every derivation of KG is inner.

Proof. By Theorem 2.2.2, every derivation of KG is a K-derivation and since every

field is semiprime, Theorem 2.1.1 implies that every derivation of KG is inner.

Note that in Corollary 2.2.3 if “derivation” is replaced by “K-derivation” then

this is a special case of Theorem 2.1.1. Also the requirement that K is algebraic

over F is necessary in Theorem 2.2.2 as the following example shows.

Example 2.2.4. Let Qptq be a transcendental extension of the rationals (the field
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of rational functions of t). Since Qptq is a Q-algebra, Theorem 2.2.2 implies that

dpQq “ t0u for all derivations d of Qptq. However, by Proposition 5.2 of Chapter

VIII in [33], there exists a nonzero derivation d of Qptq, since Qptq is a finitely

generated extension over Q that is not separable algebraic.

Theorem 2.2.5. Let G “ xS | T y be a group, where S is a generating set and T a

set of relators. Let FS be the free group on S and φ : FS Ñ G the homomorphism

of FS onto G. Let R be a commutative unital ring and f a map from S to RG.

Then

(i) f can be uniquely extended to a map f˚ from FS to RG such that

f˚puvq “ f˚puqφpvq ` φpuqf˚pvq, for all u, v P FS, (2.8)

(ii) the map f from S to RG can be extended to an R-derivation of RG if and

only if f˚ptq “ 0, for all t P T ,

(iii) if f can be extended to an R-derivation of RG, then this extension is unique.

Proof. Let f be a map from S to RG. φ is the identity map on S, so for s P S,

φps´1sq “ φps´1qφpsq “ φps´1qs “ φp1q “ 1, so φps´1q “ s´1. Thus φ is the

identity map on S Y S´1.

(i) We wish to extend f to f˚ : FS Ñ RG, which satisfies Equation 2.8.

Define f˚ : FS Ñ RG as follows:

f˚pwiq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

fpwiq if wi P S,

´wifpw
´1
i qwi if wi P S

´1,

0 if wi “ 1

(2.9)
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and letting w “
śk

i“1wi, where wi P S Y S
´1, define

f˚pwq “
k
ÿ

i“1

´

p

i´1
ź

j“1

wjqf
˚
pwiqp

k
ź

j“i`1

wjq
¯

. (2.10)

Let 0 ď l ď k and u “
śl

i“1wi and v “
śk

i“l`1wi. Then by Equations 2.9

and 2.10

f˚puvq “
k
ÿ

i“1

´

p

i´1
ź

j“1

wjqf
˚
pwiqp

k
ź

j“i`1

wjq
¯

“

´

l
ÿ

i“1

p

i´1
ź

j“1

wjqf
˚
pwiqp

l
ź

j“i`1

wjq
¯

k
ź

j“l`1

wj

`

l
ź

j“1

wj

k
ÿ

i“l`1

p

i´1
ź

j“l`1

wjqf
˚
pwiqp

k
ź

j“i`1

wjq

“ f˚puq
k
ź

j“l`1

φpwjq `
l

ź

j“1

φpwjqf
˚
pvq

“ f˚puqφpvq ` φpuqf˚pvq.

Therefore f˚ defined by Equations 2.9 and 2.10 satisfies Equation 2.8.

If w is a word on S, denote the reduced word by w. In order for f˚ to be well

defined on FS we need to show that f˚pwq “ f˚pwq for all words w on S. Let u, v

be words on S and let a P S.

Then by Equation 2.9, f˚paqa´1 ` af˚pa´1q “ fpaqa´1 ´ aa´1fpaqa´1 “ 0.

Similarly, f˚paqa´1 ` af˚pa´1q “ 0 for all a P S´1. Let a P S Y S´1. Then by

Equation 2.10, f˚paa´1q “ 0 and so by Equation 2.8

f˚puaa´1vq “ f˚puqφpaa´1vq ` φpuqf˚paa´1vq

“ f˚puqφpvq`φpuqf˚paa´1
qφpvq`φpuaa´1

qf˚pvq “ f˚puqφpvq`φpuqf˚pvq “ f˚puvq.

Therefore f˚pwq “ f˚pwq for all words w on S. We now prove the uniqueness of
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f˚.

Assume that there exists a map f˚ : FS Ñ RG, distinct from f˚ which is also an

extension of f and which also satisfies Equation 2.8. Let 1 be the identity element of

FS. Then f˚p1q “ f˚p1p1qq “ f˚p1q1`1f˚p1q, which implies that f˚p1q “ 0 “ f˚p1q.

Let s P S. Then f˚psq “ fpsq “ f˚psq and 0 “ f˚ps
´1sq “ f˚ps

´1qs`s´1f˚psq. This

implies that f˚ps
´1q “ ´s´1f˚psqs

´1 “ f˚ps´1q. Therefore there exists an element

x of FS, of positive length c ą 1, such that f˚pxq ‰ f˚pxq and f˚pzq “ f˚pzq for

all words z in FS of length less than c. Write x “
śc

i“1 xi, where xi P S Y S´1.

Thus f˚p
śc´1

i“1 xiq “ f˚p
śc´1

i“1 xiq and f˚pxcq “ f˚pxcq, since
śc´1

i“1 xi and xc are

both elements of FS whose length is less than c. Therefore by Equation 2.8

f˚pxq “ f˚p
c´1
ź

i“1

xiqφpxcq`φp
c´1
ź

i“1

xiqf˚pxcq “ f˚p
c´1
ź

i“1

xiqφpxcq`φp
c´1
ź

i“1

xiqf
˚
pxcq “ f˚pxq.

This contradiction implies that f˚ is the unique extension of f to FS, such that

f˚puvq “ f˚puqφpvq ` φpuqf˚pvq, for all u, v P FS. This proves (i).

(ii) Considering S as a subset of G, suppose that the map f : S Ñ RG can

be extended to an R-derivation d of RG. Then for any s P S, dpsq “ fpsq and

0 “ dps´1sq “ dps´1qs ` s´1dpsq and so dps´1q “ ´s´1dpsqs´1 “ ´s´1fpsqs´1.

Therefore dpaq “ f˚paq, for all a P S Y S´1 by Equation 2.9. Let t “
śm

i“1 ti P T ,

where ti P S Y S
´1 for i “ 1, 2, . . . ,m. Then by Equations 2.10 and 2.3

f˚ptq “
m
ÿ

i“1

´

p

i´1
ź

j“1

tjqf
˚
ptiqp

m
ź

j“i`1

tjq
¯

“

m
ÿ

i“1

´

p

i´1
ź

j“1

tjqdptiqp
m
ź

j“i`1

tjq
¯

“ dptq “ 0.

This proves the implication in (ii).

Conversely, assume f˚ptq “ 0, for all t P T . Let t P T . Then φptq “ 1 and

f˚pt´1q “ 0, since 0 “ f˚ptt´1q “ f˚ptqφpt´1q ` φptqf˚pt´1q “ 0p1q ` p1qf˚pt´1q “
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f˚pt´1q. Let ε P t1, ´1u. Then for all w P FS

f˚pw´1tεwq “ f˚pw´1
qφptεwq ` φpw´1

qf˚ptεwq

“ f˚pw´1
qφptεwq ` φpw´1

qf˚ptεqφpwq ` φpw´1tεqf˚pwq

“ f˚pw´1
qφpwq ` φpw´1

qf˚pwq “ f˚pw´1wq “ 0.

(2.11)

Let N “ xT FSy be the normal closure of T . Any non-identity element n of N can

be written as
śk

i“1w
´1
i tεii wi, where wi P FS, ti P T and εi P t´1, 1u. Therefore by

Equations 2.10 and 2.11

f˚pnq “ f˚
`

k
ź

i“1

w´1
i tεii wi

˘

“

k
ÿ

i“1

φ
´

i´1
ź

j“1

w´1
j t

εj
j wj

¯

f˚pw´1
i tεii wiqφ

´

k
ź

j“i`1

w´1
j t

εj
j wj

¯

“ 0.

Also φpnq “ 1, for all n P N and so for any w P FS, f˚pwnq “ f˚pwqφpnq `

φpwqf˚pnq “ f˚pwq. Let g, h P G “ xS | T y »
FS
xT FSy

and let u, v be elements

of FS, such that g “ φpuq and h “ φpvq. Extend f : S Ñ RG to f̂ : G Ñ RG

by defining f̂pgq “ f˚puq. Then f̂pghq “ f˚puvq “ f˚puqφpvq ` φpuqf˚pvq “

f̂pgqh ` gf̂phq. Suppose f̃ is also an extension of f distinct from f̂ that satisfies

f̃pghq “ f̃pgqh ` gf̃phq for all g, h P G. Let l : G Ñ N be the minimum length of

an element of G, defined by lpgq “ mintk | g “
śk

i“1 gi, gi P S Y S´1u. Then

there exists an x P G of minimum length such that f̃pxq ‰ f̂pxq. For all s P S,

0 “ f̃pss´1q “ f̃psqs´1 ` sf̃ps´1q and f̃psq “ f̂psq. Thus f̃ps´1q “ ´s´1f̂psqs´1 “

´s´1fpsqs´1 “ f˚ps´1q “ f̂ps´1q. Therefore f̃pgq “ f̂pgq for all g P G such that

lpgq ă 2 and so x can be written as x “ yz, where y, z P G such that lpyq ă lpxq

and lpzq ă lpxq. Then f̃pxq “ f̃pyzq “ f̃pyqz ` yf̃pzq “ f̂pyqz ` yf̂pzq “ f̂pxq.

This contradiction implies that f̂ is the unique extension of f such that f̂pghq “

f̂pgqh`gf̂phq for any g, h P G. Extend f̂ , R-linearly to RG and denote this unique

17



extension also by f̂ . Let α “
ÿ

gPG

agg and β “
ÿ

hPG

bhh be elements of RG, where

ag, bh P R. Then f̂pα ` βq “ f̂pαq ` f̂pβq as f̂ is an R-linear map. Moreover

f̂pαqβ ` αf̂pβq “
´

ÿ

gPG

agf̂pgq
¯´

ÿ

hPG

bhh
¯

`

´

ÿ

gPG

agg
¯´

ÿ

hPG

bhf̂phq
¯

“
ÿ

g,h

agbhf̂pgqh`
ÿ

g,h

agbhgf̂phq “
ÿ

g,h

agbhpf̂pgqh` gf̂phqq

“
ÿ

g,h

agbhf̂pghq “ f̂
´

ÿ

g,h

agbhgh
¯

“ f̂
´

ÿ

g

agg
ÿ

h

bhh
¯

“ f̂pαβq.

Therefore the map f̂ obeys Leibniz’s rule for all products of elements of RG and

so is an R-derivation of RG. This proves (ii) and (iii).

Corollary 2.2.6. Let G “ xS | T y be a group, where S is a generating set and T

a set of relators. Let FS be the free group on S and φ : FS Ñ G the homomorphism

of FS onto G. Let K be an algebraic extension of a prime field and f a map from

S to KG. Then

(i) f can be uniquely extended to a map f˚ from FS to KG that satisfies Equa-

tion 2.8,

(ii) f can be extended to a derivation of KG if and only if f˚ptq “ 0, for all

t P T ,

(iii) if f can be extended to a derivation of KG, then this extension is unique.

Proof. By Theorem 2.2.2 all derivations of KG are K-derivations and so the result

follows from Theorem 2.2.5.

Remark 2.2.7. The restriction that R be a commutative ring in Theorem 2.2.5

is necessary. To demonstrate this, let r1, r2 be noncommuting elements in a ring

R and let G be the infinite cyclic group generated by S “ tsu, that is the free

group on S. Let f : S Ñ RG be the map defined by s ÞÑ r1 and extend f to a
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map f˚ : G Ñ RG as in Theorem 2.2.5 (i). Assume that f can be extended to an

R-derivation d of RG. Then

dpsqr2s` sdpr2sq “ r1r2s` sr2dpsq “ r1r2s` sr2r1 “ pr1r2 ` r2r1qs.

However

dpsr2sq “ r2dps
2
q “ r2pr1s` sr1q “ 2r2r1s.

Therefore the Leibniz rule does not apply since dpsr2sq ‰ dpsqr2s ` sdpr2sq. This

contradicts the assumption that f can be extended to an R-derivation of RG.

2.3 Applications

We will now apply the results of the previous sections to finite commutative group

algebras in Section 2.3.1 and then to finite dihedral group algebras in Section 2.3.2.

The study of finite group algebras is motivated in part by applications to coding

theory which appear in Section 2.3.3, where the extended binary Golay r24, 12, 8s

code and the extended binary quadratic residue r48, 24, 12s code are presented as

images of derivations of group algebras.

2.3.1 Derivations of Commutative Group Algebras

The next result directs our study of derivations of commutative group algebras to

the nonsemisimple case.

Theorem 2.3.1. Let R be a commutative unital ring. Let H be a torsion central

subgroup of a group G, where the order of h is invertible in R, for all h P H. Then

dpRq “ t0u if and only if dpRHq “ t0u, for all d P DerpRGq.

Proof. Let d be any element of DerpRGq. Assume that dpRq “ t0u. Let h be
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an element of H of order s. Applying d to hs “ 1 implies shs´1dphq “ 0 by

Equation 2.7 of Lemma 2.2.1. By assumption s is invertible in R and so s is also

invertible in RG. Therefore dphq “ 0 for any d P DerpRGq. Let α “
ÿ

hPH

ahh be

any element of RH. Then

dpαq “ dp
ÿ

hPH

ahhq “
ÿ

hPH

dpahhq “
ÿ

hPH

ahdphq “
ÿ

hPH

ahp0q “ 0,

by Leibniz’s rule since dpRq “ t0u and so dpRHq “ t0u. The converse is immediate.

Corollary 2.3.2. (i) Let G be a finite abelian group and F either the rational

numbers or an algebraic extension of the rationals. Then FG has no nonzero

derivations.

(ii) Let H be a p-regular subgroup of a finite abelian group G and F “ Fpn. Then

all derivations of FG are FH-derivations.

Proof. For part (i) let H “ G. In both cases F is a commutative unital ring and

H is a torsion central subgroup of G, where the order of h is invertible in F for all

h P H. Also dpF q “ t0u for all d P DerpFGq, by Theorem 2.2.2. Therefore the

results follow from Theorem 2.3.1.

Note that (i) of this Corollary also follows from Theorem 2.1.1.

Remark 2.3.3. In Theorem 2.3.1, the requirement that the subgroup H is central

is necessary. For example, there are 26 non zero derivations of F3D8. Moreover the

27 derivations of F3D8 are inner by Theorem 2.1.1 or Corollary 2.2.3.

In Theorem 2.3.4 we determine all derivations of finite commutative group

algebras of positive characteristic p.

20



Theorem 2.3.4. Let K be a finite field of positive characteristic p. Let G » HˆX

be a finite abelian group, where H is a p-regular group and X is a p-group with the

following presentation

X “ xx1, . . . , xn | x
pmk

k “ 1, rxk, xls “ 1, for all k, l P t1, 2, . . . nuy,

where n,mk P N. For i, j P t1, . . . , nu, let fi : tx1, . . . , xnu Ñ KG be defined by

fipxjq “

$

’

’

&

’

’

%

1 if i “ j and

0 otherwise.

Then fi can be uniquely extended to a derivation of KG denoted by Bi. Moreover

DerpKGq is a vector space over K with basis tgBi | g P G, i “ 1, . . . , nu.

Proof. By Corollary 2.3.2 (ii) all derivations of KG are KH-derivations. Let S “

tx1, . . . , xnu and let f be any map from S to KG. By Theorem 2.2.5 f can be

uniquely extended to a map f˚ : FS Ñ KG satisfying Equation 2.8. Moreover, f

can be extended to a derivation ofKG if and only if f˚ptq “ 0 for t P trxk, xls, x
pmk

k |

k, l “ 1, 2, . . . , nu. Let a, b P S. Then

f˚pa´1b´1abq “ f˚pa´1
qb´1ab` a´1f˚pb´1

qab` a´1b´1f˚paqb` a´1b´1af˚pbq

“ ´a´1fpaqa´1b´1ab´ a´1b´1fpbqb´1ab` a´1b´1fpaqb` a´1b´1afpbq

“ ´a´1fpaq ´ b´1fpbq ` a´1fpaq ` b´1fpbq “ 0.

Therefore f˚prxk, xlsq “ 0, for all k, l “ 1, 2, . . . , n. Also by Equation 2.10

f˚pxp
mk

k q “

pmk
ÿ

i“1

´

p

i´1
ź

j“1

xkqf
˚
pxkqp

pmk
ź

j“i`1

xkq
¯

“ pmkx
ppmk´1q
k f˚pxkq “ 0,

since KG has characteristic p. Therefore any map f : S Ñ KG can be uniquely

extended to a derivation of KG. By Lemma 2.1.5 DerpKGq is a vector space over

K. Let B “ tgBi | g P G, i “ 1, . . . , nu. Any map f : S Ñ KG can be written
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as
řn
i“1

ř

gPG ki,ggfi, where ki,g P K. The extension of f to a derivation of KG is
řn
i“1

ř

gPG ki,ggBi. Therefore any derivation of KG can be written as a K-linear

combination of the elements of B. Furthermore, if p
řn
i“1

ř

gPG ki,ggBiqpxjq “ 0,

then
ř

gPG kg,jg “ 0, which implies kg,j “ 0 for all g P G. Therefore the elements

of B are K-linearly independent and so form a basis of DerpKGq.

Remark 2.3.5. Derivations of finite commutative group algebras FpnG are either

the zero derivation (in the semisimple case by Corollary 2.3.2(ii)) or can be decom-

posed as in Theorem 2.3.4 as the sum of derivations of the group algebras of the

cyclic direct factors of G.

As we will see in the next section, derivations of noncommutative finite group

algebras are more involved.

2.3.2 Derivations of Dihedral Group Algebras

Let n be an integer greater than 2 and let D2n denote the dihedral group with 2n

elements and presentation xx, y | xn “ y2 “ pxyq2 “ 1y. This section classifies the

derivations of the group algebra F2mD2n.

Definition 2.3.6. Let RG be a group ring. The augmentation ideal of RG, denoted

by ∆pGq, is the kernel of the homomorphism from RG to R defined by
ř

gPG agg ÞÑ
ř

gPG ag.

Lemma 2.3.7. [38, pp.113] The centre of the group algebra KG has as a K-basis

the set of all finite conjugacy class sums.

Lemma 2.3.8. If n is even, ZpF2mD2nq, the center of F2mD2n is a subspace of

F2mD2n of dimension n
2
` 3 and a basis t1, x

n
2 , x1 ` x´1, x2 ` x´2, . . . , x

n
2
´1
`

x´
n
2
`1, y ` x2y ` x4y ` ¨ ¨ ¨ ` xn´2y, xy ` x3y ` x5y ` ¨ ¨ ¨ ` xn´1yu.

If n is odd, ZpF2mD2nq has dimension n`3
2

and a basis t1, x1 ` x´1, x2 `

x´2, . . . , x
n´1

2 ` x
´n`1

2 , y ` xy ` x2y ` ¨ ¨ ¨ ` xn´1yu.
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Proof. If n is even the conjugacy classes of D2n are as follows: t1u, tx
n
2 u, txi, x´iu,

for i “ 1, 2, . . . , n
2
´ 1, ty, x2y, x4y, . . . , xn´2yu and txy, x3y, x5y, . . . , xn´1yu. If n is

odd the conjugacy classes of D2n are as follows: t1u, txi, x´iu, for i “ 1, 2, . . . , n´1
2

and ty, xy, x2y, . . . , xn´1yu. The result follows from counting the conjugacy classes

and by Lemma 2.3.7.

Corollary 2.3.9. Let Cpyq and Cpxyq denote respectively the centralisers of y and

xy in F2mD2n. Then the following are bases for Cpyq and Cpxyq.

Case (1): n is even

Bepyq “ t1, x
n
2 , y, x

n
2 yu Y tpxi ` x´iq, pxi ` x´iqy | i “ 1, 2, . . . , n

2
´ 1u

Bepxyq “ t1, x
n
2 , xy, x

n
2 xyu Y tpxi ` x´iq, xpxi ` x´iqy | i “ 1, 2, . . . , n

2
´ 1u.

Case (2): n is odd

Bopyq “ t1, yu Y tpx
i
` x´iq, pxi ` x´iqy | i “ 1, 2, . . . , n´1

2
u

Bopxyq “ t1, xyu Y tpx
i
` x´iq, xpxi ` x´iqy | i “ 1, 2, . . . , n´1

2
u.

Proof. Let g P D2n and denote by Orbpgyq the subset tg, gyu of D2n. The set

tOrbpgyq | g P Gu is a partition of D2n. The set of elements formed by taking the

partition sums forms a basis Bepyq for Cpyq, when n is even and Bopyq, when n is

odd. The map α : D2n Ñ D2n defined by y ÞÑ xy and x ÞÑ x is an automorphism

of D2n. Extend α F2m-linearly to an F2m-algebra automorphism of F2mD2n.

Let c “ a` by, where a, b P F2mxxy. Assume that c P Cpyq. Then pa` byqy “

ypa ` byq, which implies that ay “ ya and by “ yb and so a, b P ZpF2mD2nq.

Therefore αpcq P Cpxyq, since

xyαpcq “ xypa` bxyq “ axy ` bxyxy “ pa` bxyqxy “ αpcqxy.
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Conversely, assume αpcq “ a` bxy P Cpxyq. Then

ayxy ` by “ xypa` bxyq “ pa` bxyqxy “ axy ` b.

This implies a “ ay and b “ by and so c P Cpyq. Therefore c P Cpyq if and only if

αpcq P Cpxyq. Applying α to the basis Bepyq gives Bepxyq and applying α to Bopyq

gives Bopxyq.

Definition 2.3.10. Given a derivation d of F2mD2n, denote it by d “ dx1,y1 , where

x1 “ dpxq and y1 “ dpyq. Note that dpxq and dpyq uniquely determine this deriva-

tion.

By Lemma 2.1.5, DerpF2mD2nq forms a vector space over F2m . The following

Theorem exhibits a basis for DerpF2mD2nq.

Theorem 2.3.11. If n is even, DerpF2mD2nq has dimension 2n` 4 and a basis

tdx1,y1 | px
1, y1q P tpλy, 0q, pxωy, ωq | λ P Bepxyq, ω P Bepyquu .

If n is odd, DerpF2mD2nq has dimension 3n`1
2

and a basis

 

dx1,y1 | px
1, y1q P tppxi ` x´iqy, 0q, pp1` xqy, 1q, p0, yq,

pxpxi ` x´iqy, xi ` x´iq, p0, pxi ` x´iqyq | i “ 1, . . . , n´1
2
u
(

.

Proof. The relators of D2n are y2, pxyq2 and xn. Therefore by Corollary 2.2.6,

f : tx, yu Ñ F2mD2n can be extended to a derivation of F2mD2n if and only if

f˚py2q “ f˚ppxyq2q “ f˚pxnq “ 0. f˚py2q “ 0 if and only if fpyq P Cpyq. Also

f˚ppxyq2q “ 0 if and only if fpxqy ` xfpyq P Cpxyq, since f˚ppxyq2q “ f˚pxyqxy `

xyf˚pxyq and f˚pxyq “ fpxqy ` xfpyq. We now treat the cases where n is even

and n is odd separately.
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Case (1): n is even. f˚pxnq “ f˚px
n
2 x

n
2 q “ f˚px

n
2 qx

n
2 ` x

n
2 f˚px

n
2 q “ 0, for

all fpxq P F2mD2n, since x
n
2 P ZpF2mD2nq. Therefore f : tx, yu Ñ F2mD2n can be

extended to a derivation of F2mD2n if and only if fpyq P Cpyq and fpxqy` xfpyq P

Cpxyq.

Let fpyq and f˚pxyq be arbitrary elements of Cpyq and Cpxyq, respectively.

Write fpyq “ Ω “
řn`2
i“1 riωi and f˚pxyq “ Λ “

řn`2
i“1 kiλi, where ri, ki P F2m , ωi P

Bepyq and λi P Bepxyq. Then Λ “ f˚pxyq “ fpxqy ` xΩ and so fpxq “ Λy ` xΩy.

Therefore

DerpF2mD2nq “ tdpΛy`xΩy,Ωqu “ tdp
ř

kiλiy`
ř

rixωiy,
ř

riωiqu.

Define Be “ tdpλy,0q, dpxωy,ωq | λ P Bepxyq, ω P Bepyqu. Then Be is a spanning set

for DerpF2mD2nq, since r1 ¨dpx1,y1q`r2 ¨dpx2,y2q “ dpr1x1`r2x2,r1y1`r2y2q for r1, r2 P F2m

and x1, x2, y1, y2 P F2mD2n. We now show that the elements of Be are linearly

independent. Assume

n`2
ÿ

i“1

kidpλiy,0q `
n`2
ÿ

i“1

ridpxωiy,ωiq “ dp
ř

kiλiy`
ř

rixωiy,
ř

riωiq “ dp0,0q

This implies ri “ ki “ 0 for i “ 1, 2, . . . , n` 2. Therefore DerpF2mD2nq has a basis

Be “ tdx1,y1 | px
1, y1q P tpλy, 0q, pxωy, ωq | λ P Bepxyq, ω P Bepyquu and dimension

2n` 4.

Case (2): n is odd. Let fpxq “ a ` by, where a, b P F2mxxy. Assume that

f can be extended to a derivation of DerpF2mD2nq. So f˚pxnq “ 0. Applying

Equation 2.10 gives

0 “
n
ÿ

i“1

´

p

i´1
ź

j“1

xqf˚pxqp
n
ź

j“i`1

xq
¯

“

n´1
ÿ

t“0

xtpa` byqxn´1´t
“ naxn´1

`

n´1
ÿ

t“0

x2t`1by.

Right multiplying this equation by x and using n ” 1 (mod 2) and
řn´1
t“0 x

2t “
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p
řn´1
t“0 x

tq2 “ n
řn´1
t“0 x

t gives a `
řn´1
t“0 x

tby “ 0. This implies that a “ 0 and

b P ∆pxxyq. Therefore there is a third condition when n is odd, namely fpxq “ by,

where b P ∆pxxyq.

Let fpyq “ Ω P Cpyq and let f˚pxyq “ Λ P Cpxyq. Then Λ “ f˚pxyq “

fpxqy`xΩ and so fpxq “ Λy`xΩy. Therefore DerpF2mD2nq “ tdpΛy`xΩy,Ωq | Λ P

Cpxyq, Ω P Cpyq, Λ ` xΩ P ∆pxxyqu. Write Λ and Ω as F2m-linear combinations

of Bopxyq and Bopyq respectively, that is

Λ “ k11` k2xy `

n´1
2
ÿ

i“1

k3,ipx
i
` x´iq `

n´1
2
ÿ

i“1

k4,ixpx
i
` x´iqy,

Ω “ r11` r2y `

n´1
2
ÿ

i“1

r3,ipx
i
` x´iq `

n´1
2
ÿ

i“1

r4,ipx
i
` x´iqy and so

Λ` xΩ “ k11` r1x` pk2 ` r2qxy `

n´1
2
ÿ

i“1

k3,ipx
i
` x´iq

`

n´1
2
ÿ

i“1

r3,ixpx
i
` x´iq `

n´1
2
ÿ

i“1

pk4,i ` r4,iqxpx
i
` x´iqy.

Then pΛ ` xΩq P ∆pxxyq implies that k1 “ r1, k2 “ r2 and k4,i “ r4,i, for

i “ 1, 2, . . . , n´1
2

. Therefore DerpF2mD2nq “ tdpΛy`xΩy,Ωqu, where

Λy ` xΩy “ r1p1` xqy `

n´1
2
ÿ

i“1

k3,ipx
i
` x´iqy `

n´1
2
ÿ

i“1

r3,ixpx
i
` x´iqy

and Ω “ r11` r2y `

n´1
2
ÿ

i“1

r3,ipx
i
` x´iq `

n´1
2
ÿ

i“1

r4,ipx
i
` x´iqy.

Define Bo “ tdx1,y1u where px1, y1q P tpp1 ` xqy, 1q, ppxi ` x´iqy, 0q, pxpxi `

x´iqy, xi ` x´iq, p0, yq, p0, pxi ` x´iqyq | i “ 1, 2, . . . , n´1
2
u. Bo is a spanning set

for DerpF2mD2nq. The elements of Bo are linearly independent since dpΛy`xΩy,Ωq “

dp0,0q implies that r1 “ r2 “ r3,i “ r4,i “ k3,i “ 0, for i “ 1, 2, . . . , n´1
2

.

Therefore DerpF2mD2nq has a basis Bo “ tdx1,y1u where px1, y1q P tpp1 `
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xqy, 1q, ppxi ` x´iqy, 0q, pxpxi ` x´iqy, xi ` x´iq, p0, yq, p0, pxi ` x´iqyq | i “

1, 2, . . . , n´1
2
u. Thus DerpF2mD2nq has dimension 3pn´1

2
q ` 2 “ 3n`1

2
.

Lemma 2.3.12. [42] Let a and c be elements of a ring R and let dc be the map

from R to R defined by dcpaq “ rc, as “ ca´ ac for all a P R. Then

1. The Lie commutator is anti-symmetric, i.e. ra, bs “ ´rb, as.

2. The map dc is an inner derivation for all c P R.

3. dc “ 0 if and only if c P ZpRq.

We now give a basis for the set of inner derivations of F2mD2n.

Theorem 2.3.13. The set of inner derivations of F2mD2n is an F2m-vector space

with dimension 3tn´1
2

u and basis

 

db | b P tx
i
| i “ 1, 2, . . . , tn´1

2
uu Y txiy | i “ 0, 1, . . . , 2tn´1

2
u´ 1u

(

.

Proof. By Lemma 2.3.12 the Lie commutator is anti-symmetric and so it is sym-

metric in characteristic 2. Let a, b, c P F2mD2n. Then da`bpcq “ dcpa ` bq “

dcpaq ` dcpbq “ dapcq ` dbpcq and so the inner derivations of F2mD2n are closed un-

der addition. If k P F2m , then kdb “ dkb and thus the inner derivations of F2mD2n

form a vector subspace of DerpF2mD2nq. Let B “ txi | i “ 1, 2, . . . , tn´1
2

uu Y

txiy | i “ 0, 1, . . . , 2tn´1
2

u´ 1u.

Case(1) n is even. Write n “ 2c. By Lemma 2.3.8, ZpF2mD2nq is a pn
2
` 3q-

dimensional subspace of F2mD2n with basisBZ “ t1, x
c, x`x´1, x2`x´2, . . . , xpc´1q`

xpc`1q,
řc´1
i“0 x

2iy,
řc´1
i“0 x

2i`1yu. The union of the disjoint sets B and BZ is a basis

for F2mD2n.

Case(2) n is odd. Write n “ 2c ` 1. By Lemma 2.3.8, ZpF2mD2nq is a pn`3
2
q-

dimensional subspace of F2mD2n with basis BZ “ t1, x ` x´1, x2 ` x´2, . . . , xc `

x´c,
ř2c
i“0 x

iyu. Again, the disjoint union of B and BZ is a basis for F2mD2n.
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Write a “ za `
ř3tn´1

2
u

i“1 aibi, where za P ZpF2mD2nq, ai P F2m and bi P B, for

i “ 1, 2, . . . , 3tn´1
2

u. dc “ 0 if and only if c P ZpF2mD2nq and so

da “ dza `

3tn´1
2

u
ÿ

i“1

daibi “

3tn´1
2

u
ÿ

i“1

daibi .

Therefore the set tdb | b P Bu spans the set of inner derivations of F2mD2n. More-

over, if
ř3tn´1

2
u

i“1 daibi “ d0 then
ř3tn´1

2
u

i“1 aibi P ZpF2mD2nq which implies that ai “ 0,

for i “ 1, 2, . . . , 3tn´1
2

u and so the set tdb | b P Bu forms a basis for the vector space

of inner derivations of F2mD2n.

The derivation problem asks whether every derivation from L1pGq to MpGq

is inner, where G is a locally compact group and MpGq is the multiplier algebra

of L1pGq. It was solved by Losert [34]. We can ask a similar question for finite

group algebras. Let KG be a group algebra where both K and G are finite. Are

all derivations of KG inner? Theorems 2.3.11 and 2.3.13 show that the dimension

of DerpF2mD2nq is greater than the dimension of the inner derivations of F2mD2n

and so not all derivations of F2mD2n are inner. However does there exist an algebra

A Ą KG such that all derivations of KG become inner in A? Theorem 2.3.15

answers this question.

Definition 2.3.14. [42] Let R be a ring and δ a derivation of R. The ring

Rrx; δs “

#

n
ÿ

i“0

aix
i
| n P N, ai P R

+

, where addition is performed componentwise

and multiplication satisfies the relation xa “ ax ` δpaq, for all a P R is called a

differential polynomial ring.

Theorem 2.3.15. Let G be a finite group and KG be the group algebra over the

finite field K. Let Ad “
KGrx; ds

px2 ´ 1q
, where d P DerpKGq and px2 ´ 1q is the 2-sided

ideal of KGrx; ds generated by x2 ´ 1. Then all derivations d of KG are inner on

Ad.
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Proof. Let Dx be the inner derivation of Ad induced by x, that is Dx : Ad Ñ

Ad, defined by a ÞÑ xa ´ ax. By the multiplication relation of Ad defined in

Definition 2.3.14, xa´ ax “ ax` dpaq´ ax “ dpaq. Therefore the restriction of Dx

to KG is equal to d.

2.3.3 Applications to Coding Theory

Example 2.3.16. Let C24 “ xx | x24 “ 1y and let d : F2C24 Ñ F2C24 be the

derivation defined by x ÞÑ 1`x`x3`x4`x5`x7`x9`x12 (by Theorem 2.3.4 this

uniquely defines a derivation). Then by Lemma 2.2.1, dpx2nq “ 0 and dpx2n`1q “

x2ndpxq, for n P t0, 1, . . . , 11u. The image of the group algebra under this derivation

is a binary code of length 24 and dimension 12. A generator matrix G24 of this

code is given in Figure 2.1.

Figure 2.1: Generator matrix of the binary r24, 12, 8s code defined by the derivation
d.

G24 “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1 0 1
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 0 1
0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 1 1 1 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Permuting the columns of G24 using the permutation

p6, 19, 12, 10, 11, 22, 8, 21, 15, 16, 18, 9, 24, 13, 20qp7, 23, 17, 14q

and then transforming it to reduced row echelon form produces the matrix given
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as the generator of the extended binary Golay code in [25]. So the image of F2C24

under the derivation is equivalent to the extended binary Golay r24, 12, 8s code. It

has minimum distance 8 and is a doubly even and self dual extremal code.

Figure 2.2: The right hand block of a generator matrix of the binary r48, 24, 12s
code defined by the derivation δ.

A “

»

—

—

—

—

—
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1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1
0 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0
0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0
1 0 0 0 1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1
0 0 0 1 0 0 0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1
0 1 0 0 0 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0
0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 1 0 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1
1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1 0 0
1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0 0
0 0 1 1 1 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 0 0 1
0 0 1 1 0 1 0 1 1 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0
0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1 0 0
1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1 0 0
0 0 0 1 1 0 1 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 1 1
0 0 1 0 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 0 1 1 1
1 1 1 1 0 0 0 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0 0 1
1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 1 0 1 0 0 0 1 1 0
0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 1 0 0 1 0 0 0 1 0
1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0 0 0
1 0 0 0 0 1 1 1 0 1 1 0 1 1 1 0 0 0 0 1 0 0 0 1
0 0 1 0 1 0 1 1 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 0
0 1 0 0 0 1 1 1 0 0 0 1 0 0 1 1 0 1 1 0 0 1 1 0
1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 1 0 0 0 1 0 0 1

fi
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fl

Example 2.3.17. Let C48 “ xx | x
48 “ 1y and δ : F2C48 Ñ F2C48 be the derivation

defined by

x ÞÑ 1` x24
` x27

` x31
` x32

` x33
` x37

` x40
` x41

` x43
` x44

` x47.

Again by Theorem 2.3.4 this uniquely defines a derivation of F2C48. The image

of the group algebra under this derivation is a binary r48, 24, 12s doubly even self
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dual code (verified using GAP 4.8.6 [18]). It is equivalent to the extended binary

quadratic residue code of length 48 [26]. A generator matrix for this code is given

by the block matrix rI24 | As, where I24 is the identity of the ring of 24ˆ24 matrices

over F2 and A is the matrix given in Figure 2.2.

31



Chapter 3

Derivations of Modular Group

Algebras and Codes

In this chapter we examine the derivations of a modular group algebra KG and

briefly discuss an application to the theory of error correcting codes. The ring

of constants, CpKGq is introduced. This subring of KG will prove useful in this

and subsequent chapters. Necessary and sufficient conditions on a subgroup H of

G are given such that the augmentation ideal ∆pG,Hq is a differential ideal. An

implication of this result is that, H being contained within the ring of constants is

a sufficient condition for the augmentation ideal ∆pG,Hq to be a differential ideal.

It is shown in Theorem 3.1.18 that if φ : R Ñ S is a ring isomorphism, then

Φ : DerpRq Ñ DerpSq defined by d ÞÑ φ ˝ d ˝ φ´1 is an isomorphism of addi-

tive groups. If KG and KH are isomorphic as K-algebras, then DerpKGq and

DerpKHq are isomorphic as Lie algebras. An ideal of KG generated by constants

of KG is shown in Corollary 3.1.16 to be a differential ideal for all derivations of

KG.

Section 3.2 examines the modular group algebra F2D8. A basis for its deriva-

tion algebra is given and those derivations that are inner are identified. Table 3.1
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combined with Lemma 3.2.22 gives all conjugates of elements of D8 by units of

F2D8. Summing these gives the conjugates of all elements of F2D8 by units of

F2D8. The ideals of F2D8 are shown in Figure 3.1 and for specific ideals, the

derivations that map the ideal to itself are identified. A presentation of the unit

group of F2D8 is also given.

The existence of an algebra A such that outer derivations of KG become inner

on A, is discussed briefly in Section 3.3. It is shown in Lemma 3.3.3 that no outer

derivation of KH becomes inner in KG, where H is a subgroup of G. A list of

theorems from linear algebra that are used in the subsequent section and chapters

is given in Section 3.4. The final section of this chapter looks at generating error

correcting codes from derivations of modular group algebras.

3.1 Derivations, Ideals and Homomorphisms

Definition 3.1.1. Let R be a ring and H a subgroup of a group G. The augmen-

tation ideal denoted by ∆RpG,Hq or ∆pG,Hq is the left ideal of RG generated by

the set th ´ 1 | h P Hu. That is, ∆RpG,Hq “

"

ÿ

hPH

αhph ´ 1q | αh P RG

*

.

∆pG,Gq is denoted by ∆pGq.

Lemma 3.1.2. [40] Let S be a set of generators of a subgroup H of a group G.

Then, the set ts´1 | s P Su is a set of generators of ∆pG,Hq as a left ideal of RG.

Definition 3.1.3. Denote by T “ tqi | i P Iu a complete set of representatives of

left cosets of H in G. The identity element is always chosen as the representative

of H.

Proposition 3.1.4. [40] Let R be a ring and H a subgroup of a group G. Then

the set BH “ tqph´ 1q | q P T , h P H, h ‰ 1u is a basis of ∆RpG,Hq over R.
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Lemma 3.1.5. [40] Let R be a ring and let H be a subgroup of a group G. Then

the ideal ∆pG,Hq is a two-sided ideal of RG if and only if H is a normal subgroup

of G.

Proposition 3.1.6. [40] Let H be a normal subgroup of a group G. Then

1. The canonical group homomorphism ψ : G Ñ G{H can be extended to an

epimorphism ψ : RGÑ RpG{Hq such that ψ

ˆ

ÿ

gPG

agg

˙

“
ÿ

gPG

agψpgq

2. kerpψq “ ∆pG,Hq

3.
RG

∆pG,Hq
» RpG{Hq

Definition 3.1.7. A differential ring is a unital ring R together with a distin-

guished derivation d of R, and is denoted by the pair pR, dq.

Definition 3.1.8. Let pA, dq be a differential ring. Then a (left / right / two-sided)

ideal I of A is a differential ideal of pA, dq, if dpaq P I, for all a P I, i.e. dpIq Ă I.

Also, I is a differential (left / right / two-sided) ideal of A, if dpIq Ă I, for all

d P DerpAq.

Lemma 3.1.9. Let I be a differential two-sided ideal of a differential ring pA, dq.

Then d : A{I Ñ A{I defined by dpa ` Iq “ dpaq ` I is a derivation of A{I and is

independent of the choice of representative in the coset.

Definition 3.1.10. Let pA, dq and pB, dq be differential rings. A differential homo-

morphism φ from pA, dq to pB, dq is a ring homomorphism which commutes with

the derivations. That is, φ ˝ d “ d ˝ φ.

Lemma 3.1.11. Let I be a differential two-sided ideal of a ring A. Then the

homomorphism φ : AÑ A{I defined by a ÞÑ a` I is a differential homomorphism

from pA, dq to pA{I, dq for all d P DerpAq.
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Proof. Let d P DerpAq and let d : A{I Ñ A{I be defined by dpa ` Iq “ dpaq ` I,

where a P A. Then by Lemma 3.1.9, d P DerpA{Iq and

pd ˝ φqa “ dpa` Iq “ dpaq ` I “ pφ ˝ dqpaq.

Lemma 3.1.12. Let I and Ia both be (left / right / two-sided) ideals of a finite

unital ring R such that Ia is the principal ideal generated by the element a and

Ia Ă I. Then for any d P DerpRq, dpIaq Ă I if and only if dpaq P I.

Proof. Let d P DerpRq. Assume that dpIaq Ă I. Then dpaq P I since a P Ia.

Conversely, assume that dpaq P I. Let α P Ia and write α “
řn
i“1 riasi where

ri, si P R, for i “ 1, 2, . . . , n and n is a positive integer. Then

dpαq “
n
ÿ

i“1

dpriasiq “
n
ÿ

i“1

`

dpriqasi ` ridpaqsi ` riadpsiq
˘

.

If Ia and I are left ideals, then it can be assumed that si “ 1 and so dpsiq “ 0.

Also, dpriqa P I, since a P Ia Ă I and ridpaq P I, since it is assumed that dpaq P I.

Therefore dpαq “
n
ÿ

i“1

`

dpriqa ` ridpaq
˘

P I, since it is a sum of elements of I.

Likewise, if Ia and I are right ideals, then then it can be assumed that ri “ 1.

Also, adpsiq P I and dpaqsi P I and so dpαq “
n
ÿ

i“1

`

dpaqsi ` adpsiq
˘

P I. Finally,

if Ia and I are two-sided ideals, then dpαq P I, since dpriqasi, ridpaqsi and riadpsiq

are all in I. Therefore in each case dpαq P I and so dpIaq Ă I.

Lemma 3.1.13. Let I be the (left / right / two-sided) ideal of a finite unital ring

R generated by the elements a1, a2, . . . , an. Then dpIq Ă I if and only if dpajq P I

for all j “ 1, 2, . . . , n.

Proof. Let Iaj be the principal ideal of R generated by aj with the same sidedness

as I. Then I “ Ia1 ` Ia2 ` ¨ ¨ ¨ ` Ian . Assume that dpIq Ă I. For all j “ 1, 2, . . . , n,

aj P I and so dpajq P I. Conversely, assume that dpajq P I for all j “ 1, 2, . . . , n.
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Then dpIajq Ă I, for all j by Lemma 3.1.12. Let α P I and write α “
řn
j“1 αj,

where αj P Iaj . Then dpαjq P I for all j “ 1, 2, . . . , n and so

dpαq “ d

˜

n
ÿ

j“1

αj

¸

“

n
ÿ

j“1

dpαjq P I.

Corollary 3.1.14. Let H be a subgroup of a finite group G, let K be a finite field

and let d P DerpKGq. Then ∆pG,Hq is a differential ideal of pKG, dq if and only

if dpHq Ă ∆pG,Hq.

Proof. Let d P DerpKGq. ∆pG,Hq is a left ideal of KG generated by the set

th ´ 1 | h P Hu. Therefore by Lemma 3.1.13, ∆pG,Hq is a differential ideal of

pKG, dq if and only if dph´ 1q “ dphq P ∆pG,Hq, for all h P H.

Definition 3.1.15. Let d be a derivation of a unital ring R and let ∆ be a subset

of DerpRq. Then the subring of R defined by C∆ “ tc P R | dpcq “ 0 for all d P ∆u

is called the ring of constants of ∆. If ∆ is a set with one element d then C∆ will

be denoted by Cd and if ∆ “ DerpRq then C∆ will be denoted by CpRq and is then

called the ring of constants of R.

Corollary 3.1.16. Let K be a finite field and let G be a finite group. Let I be a

(left / right / two-sided) ideal of KG generated by a subset of the ring of constants,

CpKGq. Then I is a differential ideal of KG.

Proof. Let I be a (left / right / two-sided) ideal of KG generated by C Ă CpKGq.

The dpCq “ 0 P I, for all d P DerpKGq. Therefore I is a differential ideal of KG,

by Lemma 3.1.13.

Corollary 3.1.17. Let G be a finite group and let K be a finite field. Let H be a

subgroup of G such that H Ă CpKGq, the ring of constants of KG. Then ∆pG,Hq

is a differential ideal of KG.
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Proof. ∆pG,Hq is a left ideal of KG generated by the set th ´ 1 | h P Hu. The

result now follows by Corollary 3.1.16.

Theorem 3.1.18. Let R and S be rings and let φ : RÑ S be a ring isomorphism.

Let Φ : DerpRq Ñ DerpSq be defined by d ÞÑ φ˝d˝φ´1. Then Φ is an isomorphism

of additive groups.

Proof. Let d P DerpRq. Φpdq “ φ ˝ d ˝ φ´1 is an additive map since it is the

composition of additive maps. Let α, β P R and let a “ φpαq and b “ φpβq. Then

Φpdqpabq “ φ ˝ d ˝ φ´1
pabq “ φ

`

dpαβq
˘

“ φ
`

dpαqβ ` αdpβq
˘

“ φ
`

dpαqβ
˘

` φ
`

αdpβq
˘

“ φ
`

dpαq
˘

φpβq ` φpαqφ
`

dpβq
˘

“ φ
`

dpαq
˘

b` aφ
`

dpβq
˘

“ Φpdqpaqb` aΦpdqpbq.

Therefore, Φpdq satisfies Equations 2.1 and 2.2 and so is a derivation of S. The

map Φ´1 : DerpSq Ñ DerpRq defined by D ÞÑ φ´1 ˝D ˝ φ is a two-sided inverse of

Φ and so Φ is a bijection. Let d1 P DerpRq. Then

Φpd` d1qpαq “ φpd` d1qpaq “ φpdpaq ` d1paqq

“ φpdpaqq ` φpd1paqq “ Φpdqpαq ` Φpd1qpαq.

Therefore Φ preserves the additive group structure of DerpRq and so is an additive

group isomorphism.

Lemma 3.1.19. Let p be a prime number, let Fp be the field with p elements and

let K be a finite field of characteristic p. Let G and H be finite p-groups and let

φ : KGÑ KH be a ring isomorphism. Then φ is an Fp-algebra isomorphism.

Proof. φ is a ring isomorphism and so is bijective. Let α be an arbitrary element

of KH and let a “ φ´1pαq. Denote the multiplicative identity of KG and KH as
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eG and eH respectively. Then

φpeGqα “ φpeGaq “ φpaq “ φpaeGq “ αφpeGq.

Therefore φpeGq “ eH . Also for any k P Fp

φpkeGq “
k
ÿ

i“1

φpeGq “
k
ÿ

i“1

eH “ keH .

Therefore φpkeGaq “ φpkeGqφpaq “ keHφpaq “ kφpaq and so φ is an Fp-linear

map.

Theorem 3.1.20. Let φ : RÑ S be a K-algebra isomorphism. Then Φ : DerpRq Ñ

DerpSq, defined by d ÞÑ φ ˝ d ˝ φ´1 is a Lie algebra isomorphism.

Proof. Let d,D P DerpRq and let k P K. By Theorem 3.1.18, Φpdq is a derivation

of S and Φ is an additive map. Therefore

Φpkdq “ φ ˝ kd ˝ φ´1
“ kφ ˝ d ˝ φ´1

“ kΦpdq,

rΦpdq, ΦpDqs “ rφ ˝ d ˝ φ´1, φ ˝D ˝ φ´1
s “ φ ˝ d ˝D ˝ φ´1

´ φ ˝D ˝ d ˝ φ´1

“ φ ˝ rd,Ds ˝ φ´1
“ Φprd,Dsq.

Therefore Φ is a lie algebra homomorphism. Φ is a bijection by Theorem 3.1.18.

Theorem 3.1.21. Let I be a differential two-sided ideal of a unital ring R and

let d P DerpRq. Let d : R{I Ñ R{I be defined by dpa ` Iq “ dpaq ` I. Then

Φ : DerpRq Ñ DerpR{Iq defined by d ÞÑ d is a Lie algebra homomorphism.

Proof. d P DerpR{Iq for all d P DerpRq by Lemma 3.1.9. The homomorphism

φ : R Ñ R{I defined by a ÞÑ a ` I is differential by Lemma 3.1.11. Let d,D P
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DerpRq, let k P K and let a P R. Then

Φpd`Dqpa` Iq “ pd`Dqpaq ` I “ dpaq ` I `Dpaq ` I

“ Φpdqpa` Iq ` ΦpDqpa` Iq,

Φpkdqpa` Iq “ kdpaq ` I “ kpdpaq ` Iq “ kΦpdqpa` Iq, and

rΦpdq, ΦpDqspa` Iq “ ΦpdqpΦpDqpa` Iqq ´ ΦpDqpΦpdqpa` Iqq

“ ΦpdqpDpaq ` Iq ´ ΦpDqpdpaq ` Iqq

“ dDpaq ` I ´Ddpaq ` I

“ rd,Dspaq ` I “ Φprd,Dsqpa` Iq.

Therefore Φ is a Lie algebra homomorphism.

Corollary 3.1.22. Let K be a finite field and let N be a normal subgroup of

a finite group G such that dpNq Ă I “ ∆pG,Nq for all d P DerpKGq. Then

Φ : DerpKGq Ñ DerpKG{Iq defined by d ÞÑ d is a Lie algebra homomorphism.

Proof. I is a two-sided ideal of KG by Lemma 3.1.5 and is a differential ideal for

all d P DerpKGq by Corollary 3.1.14. Therefore Φ is a Lie algebra homomorphism

by Theorem 3.1.21.

3.2 An Example: F2D8

Let D8 be the dihedral group of order 8 with presentation

D8 “ xx, y | y
2 “ x4 “ pxyq2 “ 1y.

Let x̂ “ 1` x` x2 ` x3.

Remark 3.2.1. The group algebra F2D8 is purely modular in the sense that it has

no nontrivial idempotents. This is a consequence of the following theorem and the

fact that |D8| “ 23.
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Theorem 3.2.2. [48, pp. 378] If RG is the group ring of a finite group over a

commutative unital ring R such that every prime divisor of the order of G is a

non-unit of R and R has no nontrivial idempotents then RG has no nontrivial

idempotents.

Remark 3.2.3. The conjugacy classes of D8 are: t1u, tx2u, tx, x3u, ty, x2yu,

txy, x3yu. Note that conjugation either fixes an element of D8 or it multiplies it

by x2.

Remark 3.2.4. Letting n “ 4 in Lemma 2.3.8 implies the set BZ “ t1, x
2, xp1`

x2q, p1` x2qy, xp1` x2qyu, is a basis for ZpF2D8q, the centre of F2D8.

Lemma 3.2.5. Let I be the two-sided ideal generated by the element 1 ` x2 of

F2D8. Then I “ ∆pD8, xx
2yq and is a central nilpotent ideal of index 2 with the set

tp1` x2q, xp1` x2q, yp1` x2q, xyp1` x2qu as a basis.

Proof. p1 ` x2q is central and so by Definition 3.1.1, I “ ∆pD8, xx
2yq. T “

t1, x, y, xyu is a complete set of representatives of left cosets of xx2y in D8.

By Proposition 3.1.4, B “ tp1 ` x2q, xp1 ` x2q, p1 ` x2qy, xp1 ` x2qyu is a basis

for ∆pD8, xx
2yq. For any b P B, b P ZpF2D8q such that b2 “ 0 and so ∆pD8, xx

2yq

is a central nilpotent ideal of index 2.

Lemma 3.2.6. [38, pp.114] Let G be a group and K a field.

1. If F is an extension field of K, then ZpFGq » FbK ZpKGq

2. If R is a subring of K and if M is a maximal ideal of R, then under the natural

homomorphism RG Ñ pR{MqG the centre ZpRGq maps onto ZppR{MqGq.

Definition 3.2.7. Let A be a subset of a ring R. The centraliser of A in R,

denoted CpA,Rq is tr P R | ra “ ar, @a P Au.
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Remark 3.2.8. By letting n “ 4 in Lemma 2.3.9 we get the following bases for

Cpy,F2D8q and Cpxy,F2D8q respectively:

Bepyq “ t1, x
2, y, x2y, px` x3

q, px` x3
qyu (3.1)

Bepxyq “ t1, x
2, xy, x3y, px` x3

q, p1` x2
qyu. (3.2)

Remark 3.2.9. Bepyq contains units and so dim
`

Cpy,F2D8q X∆pD8q
˘

ď 5. Let

B “ t1`x2, 1`y, 1`x2y, px`x3q, px`x3qyu and let ci P F2 for i P t0, 1, 2, 3, 4u.

Then

0 “ c0p1` x
2
q ` c1p1` yq ` c2p1` x

2yq ` c3px` x
3
q ` c4px` x

3
qy

“ pc0 ` c1 ` c2q1` c0x
2
` c1y ` c2x

2y ` c3px` x
3
q ` c4px` x

3
qy.

Thus ci “ 0, for i P t0, 1, 2, 3, 4u since Bepyq is a linearly independent set. Therefore

B is also a linearly independent set. Each element of B commutes with y and has

augmentation 0. Thus the F2-span of B is a 5-dimensional subspace contained in

Cpy,F2D8q X∆pD8q. Therefore B is a basis for Cpy,F2D8q X∆pD8q.

Likewise the set t1 ` x2, 1 ` xy, 1 ` x3y, px ` x3q, p1 ` x2qyu is a basis for

Cpxy,F2D8q X∆pD8q.

3.2.1 Derivations

Let x1 and y1 denote respectively the image of x and y under a given derivation.

Letting n “ 4 in Theorem 2.3.11 gives the following basis for DerpF2D8q of size

12:

B “ tdx1,y1 | px1, y1q P tpλy, 0q, pxωy, ωq | λ P Bepxyq, ω P Bepyquu , (3.3)

Remark 3.2.10. Let d P DerpF2D8q. Then d is a linear combination of elements
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of B in Equation (3.3). Therefore an element Λ of Cpxy,F2D8q and an element Ω

of Cpy,F2D8q defines the derivation d by dpxq “ pΛ` xΩqy and dpyq “ Ω.

Remark 3.2.11. Write x1 “
3
ÿ

i“0

1
ÿ

j“0

ai,jx
iyj and y1 “

3
ÿ

i“0

1
ÿ

j“0

bi,jx
iyj. Then by

Equations (3.1) - (3.3):

1. b1,0 “ b3,0 and b1,1 “ b3,1

2. a0,0 “ a2,0 and a3,1 “ a1,1 ` b0,0 ` b2,0.

Remark 3.2.12. By Theorem 2.3.4, there are 216 derivations of the commutative

group algebra F2pC4 ˆ C2q, where Cn denotes the cyclic group of order n.

Lemma 3.2.13. Let D8 “ xx, y | y
2 “ x4 “ pxyq2 “ 1y and let d P DerpF2D8q.

Write x1 “ dpxq “ a ` by where a, b P F2xxy. Then x1 and x commute if and only

if b is an element of the ideal p1` x2q of F2xxy.

Proof. Write x1 “ dpxq “ a` by where a, b P F2xxy. Then

x1x` xx1 “ ax` byx` xa` xby “ ax` ax` bx3y ` bxy “ bxp1` x2
qy.

Therefore, x1 and x commute if and only if b P Annp1 ` x2q in F2xxy. Con-

sidering the group algebra F2xxy, the ideal p1` x2q Ă Annp1` x2q, since 1` x2 is

central and p1`x2q2 “ 0. Conversely, let c “ c0` c1x` c2x
2` c3x

3 P Annp1`x2q.

Then

0 “ p1` x2
qpc0 ` c1x` c2x

2
` c3x

3
q “ pc0 ` c2qp1` x

2
q ` pc1 ` c3qxp1` x

2
q.

That is, c0 “ c2 and c1 “ c3 and so c “ pc0`c1xqp1`x
2q. Therefore, Annp1`x2q Ă

p1 ` x2q and so Annp1 ` x2q “ p1 ` x2q. Thus, x1 and x commute if and only if b

is in the ideal p1` x2q of F2xxy.
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The following basis for the vector space of inner derivations of F2D8 is provided

by letting n “ 4 in Theorem 2.3.13:

 

db | b P tx, y, xyu
(

. (3.4)

3.2.2 Conjugation by Units

Remark 3.2.14. [42, pp.71] Replacing the usual multiplication of an associative

algebra A by the Lie commutator ra1, a2s yields a nonassociative algebra which is

a Lie algebra.

Definition 3.2.15. Let D denote the Lie algebra of F2D8 formed by defining

ra, bs “ ab ´ ba, for all a, b P F2D8. Also, denote by D1 “ rF2D8,F2D8s the set of

all Lie commutators of elements of F2D8.

Remark 3.2.16. By Remark 3.2.3, group conjugation in D8 either fixes an element

of D8 or it multiplies it by x2. For any g, h P D8, rg, hs “ gh` hg “ hpgh ` gq “ 0

or hgp1 ` x2q. The Lie bracket is bilinear and so D1 is contained in p1 ` x2q “

∆pD8, xx
2yq, which by Lemma 3.2.5 is a central nilpotent ideal of index 2.

We will now consider conjugation of an element of F2D8 by units of F2D8.

Definition 3.2.17. Let u be a unit of a group algebra KG and a an element of

KG. Then the conjugation of a by u, is the element u´1au and is denoted by au.

Lemma 3.2.18. a2 is central for any element a of F2D8.

Proof. Write a “
ř8
i“1 aigi, where ai P F2 and gi P D8. Then

a2
“

˜

8
ÿ

i“1

aigi

¸˜

8
ÿ

j“1

ajgj

¸

“

8
ÿ

i,j“1

aiajgigj “
ÿ

iăj

aiajpgigj ` gjgiq `
ÿ

i“j

a2
i g

2
i .

43



These last 2 sums are central elements since

ÿ

iăj

aiajpgigj ` gjgiq “
ÿ

iăj

aiajrgi, gjs P ∆pD8, xx
2
yq Ă ZpF2D8q, by Remark 3.2.16

and g2
i P t1, x

2
u Ă ZpF2D8q.

Therefore, a2 is the sum of 2 central elements and so is itself central.

Remark 3.2.19. The units of F2D8 are the elements of augmentation 1.

Lemma 3.2.20. Let u be a unit of F2D8. Then u´1 “ u`z where z P ∆pD8, xx
2yq.

Proof. Write u´1 “ u` z, for some z P F2D8. Then 1 “ upu` zq “ u2` uz and so

uz “ u2`1. We know that u2 is central by Lemma 3.2.18 and has augmentation 1.

By Remark 3.2.4 the set BZ “ t1, x
2, xp1`x2q, p1`x2qy, xp1`x2qyu, is a basis for

ZpF2D8q, the centre of F2D8. Therefore, by Lemma 3.2.5 we can write u2 “ e` i,

where e “ 1 or x2 (e ‰ 1 ` x2, since it has augmentation 1) and i P ∆pD8, xx
2yq.

This implies that 1`u2 “ i or p1`x2q` i and so uz “ 1`u2 P ∆pD8, xx
2yq. Thus,

z P ∆pD8, xx
2yq since u is a unit.

Lemma 3.2.21. Let u be a unit of F2D8 and i P ∆pD8, xx
2yq. Then, u` i is also

a unit of F2D8 and pu` iq´1 “ u´1 ` i.

Proof. Let ε : F2D8 Ñ F2 be the augmentation map. Then εpu` iq “ εpuq ` εpiq “

1 ` 0 “ 1. Therefore u ` i is a unit. By Lemma 3.2.20, u´1 “ u ` z for some

z P ∆pD8, xx
2yq and so

pu` iqpu´1
` iq “ uu´1

` ui` iu´1
` i2 “ 1` ui` ipu` zq ` 0 “ 1` ru, is ` iz.

However, i “ rp1 ` x2q for some r P F2D8 (by Lemma 3.2.5) and so ru, is “

p1`x2qru, rs “ 0 by Remark 3.2.16. Also iz “ 0, since ∆pD8, xx
2yq2 “ 0. Therefore

u´1 ` i is the inverse of the unit u` i.
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Lemma 3.2.22. Let u be a unit of F2D8 and i P ∆pD8, xx
2yq. Then au`i “ au, for

all a P F2D8.

Proof. Let g be an element of D8. Then,

gu`i “ pu` iq´1gpu` iq “ pu´1
` iqpgu` giq “ u´1gu` u´1gi` igu` igi.

Write u´1 “ u` z, for some z P ∆pD8, xx
2yq and i “ rp1` x2q for some r P F2D8.

u´1gi` igu “ ugi` zgi` igu “ p1` x2
qpugr ` rguq

since zgi “ 0 as both z and i are in ∆pD8, xx
2yq. Write r “ rc ` rn, where rc is

the sum of elements in the support of r that commute with g and rn is the sum of

elements in the support of r that do not commute with g. Then

p1` x2
qpugr ` rguq “ p1` x2

qpugrc ` rcguq ` p1` x
2
qpugrn ` rnguq

“ p1` x2
qpugrc ` grcuq ` p1` x

2
qpugrn ` x

2grnuq

“ p1` x2
qpugrc ` grcu` ugrn ` grnuq

“ p1` x2
qpru, grcs ` ru, grnsq “ 0,

by Remark 3.2.16. Moreover, igi “ 0 as ∆pD8, xx
2yq2 “ 0. Therefore, gu`i “ gu,

for any i P ∆pD8, xx
2yq.

Write a “
ř8
j“1 aigi, where ai P F2 and gi P D8. Then

au`i “
8
ÿ

j“1

aig
u`i
i “

8
ÿ

j“1

aig
u
i “ au.
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Definition 3.2.23. Define

U{I “ t 1, x, y, xy, 1` x` y, 1` x` xy, 1` y ` xy, x` y ` xy u .

Then U{I is a set of representatives of the units of F2D8 mod the ideal I “

∆pD8, xx
2yq, since F2D8{∆pD8, xx

2yq » F2pD8{xx
2yq by Proposition 3.1.6.

Table 3.1 lists the image of the elements of D8 under conjugation by the units

of U{I. In the table ζ is the element 1` x2.

Remark 3.2.24. Table 3.1 combined with Lemma 3.2.22 gives all conjugates of

elements of D8 by units of F2D8. Partial sums of the entries in each row of Table 3.1

give all conjugates of elements of F2D8 by units of F2D8. Therefore there are 8

inner automorphisms of F2D8. The exponent of the inner automorphism group of

F2D8 is 2. This has also been verified using GAP [18] and can also be calculated

using Table 3.1. Therefore the inner automorphism group of F2D8 is C3
2 .

46



g
P
D

8
1

x
x

2
x

3
y

x
y

x
2
y

x
3
y

g
1

1
x

x
2

x
3

y
x
y

x
2
y

x
3
y

g
x

1
x

x
2

x
3

x
2
y

x
3
y

y
x
y

g
y

1
x

3
x

2
x

y
x

3
y

x
2
y

x
y

g
x
y

1
x

3
x

2
x

x
2
y

x
y

y
x

3
y

g
1
`
x
`
y

1
x

3
`
x̂
y

x
2

x
`
x̂
y

x
2
y
`
ζ
px
`
x
y
q

x
y
`
ζ
px
`
y
q

y
`
ζ
px
`
x
y
q

x
3
y
`
ζ
px
`
y
q

g
1
`
x
`
x
y

1
x

3
`
x̂
y

x
2

x
`
x̂
y

y
`
ζ
px
`
x
y
q

x
3
y
`
ζ
px
`
y
q

x
2
y
`
ζ
px
`
x
y
q

x
y
`
ζ
px
`
y
q

g
1
`
y
`
x
y

1
x
`
x̂
y

x
2

x
3
`
x̂
y

x
2
y
`
ζ
px
`
x
y
q

x
3
y
`
ζ
px
`
y
q

y
`
ζ
px
`
x
y
q

x
y
`
ζ
px
`
y
q

g
x
`
y
`
x
y

1
x
`
x̂
y

x
2

x
3
`
x̂
y

y
`
ζ
px
`
x
y
q

x
y
`
ζ
px
`
y
q

x
2
y
`
ζ
px
`
x
y
q

x
3
y
`
ζ
px
`
y
q

T
ab

le
3.

1:
T

h
e

im
ag

e
of
D

8
u
n
d
er

co
n
ju

ga
ti

on
b
y

th
e

u
n
it

s
of

F 2
D

8
,

w
h
er

e
ζ
“

1
`
x

2
P
F 2
D

8
.

47



Example 3.2.25 uses Table 3.1 to compute the conjugation of an element of

F2D8 by a unit of F2D8.

Example 3.2.25. let a “ 1 ` x2y ` x3y, v “ x ` x2 ` y and u “ 1 ` x ` y be

elements of F2D8. Then v “ u`1`x2 and so by Lemma 3.2.22 av “ au. Therefore

using Table 3.1

av “ au “ 1u ` px2yqu ` px3yqu “ 1` y ` p1` x2
qpx` xyq ` x3y ` p1` x2

qpx` yq

“ 1` y ` x3y ` p1` x2
qpy ` xyq “ 1` xy ` x2y.

Lemma 3.2.26. Let z be a central element of a unital ring R and let d P DerpRq.

Then dpzq is also be central in R.

Proof. Let a P R and let z be any central element of R. Then

dpaqz ` adpzq “ dpazq “ dpzaq “ dpzqa` zdpaq “ dpzqa` dpaqz.

Therefore, dpaqz ` adpzq “ dpzqa ` dpaqz and subtracting dpaqz from both sides

gives adpzq “ dpzqa.

3.2.3 The Ideals of F2D8

Definition 3.2.27. Let RG be a group ring. Denote by Ĝ the group ring element

defined by Ĝ “
ř

gPG g.

Definition 3.2.28. Let S and T be sets of elements of the group ring RG. Define

pS, T q “ tps, tq | s P S and t P T u.

Definition 3.2.29. Let R be a a finite ring. Then a two sided ideal I of R generated

by the subset A Ă R is the set all finite sums of the form ras, where r, s, P R and

a P A.
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Remark 3.2.30. Let α P F2xxy. Consider α as an element of F2D8. Then α P

∆pD8, xx
2yq if and only if supppαq contains an even number of both even and odd

powers of x.

Definition 3.2.31. Define b “ 1` p1` xqp1` yq.

Lemma 3.2.32. The set t1 ` b, 1 ` x2, xp1 ` x2q, yp1 ` x2q, yxp1 ` x2qu is a

basis for the two-sided ideal I “ p1` bq `∆pD8, xx
2yq of F2D8.

Proof. It is first shown that p1` gqp1` bq P ∆pD8, xx
2yq for all g P D8. Let g “ xi

for i P t0, 1, 2, 3u. Then

p1` gqp1` bq “ p1` xiqp1` xqp1` yq “ p1` x` xi ` xi`1
qp1` yq P ∆pD8, xx

2
yq,

by Remark 3.2.30. Let g “ xiy for i P t0, 1, 2, 3u. Then

p1` gqp1` bq “ p1` xiyqp1` x` y ` xyq

“ 1` x` y ` xy ` xiy ` xi´1y ` xi ` xi´1

“ p1` x` xi ` xi´1
qp1` yq P ∆pD8, xx

2
yq, by Remark 3.2.30.

Therefore p1` gqp1` bq P ∆pD8, xx
2yq, for all g P D8 and so gp1` bq “ p1` bq` z1,

where z1 P ∆pD8, xx
2yq. Also, p1 ` bqp1 ` gq “ p1 ` gqp1 ` bq ` r1 ` b, 1 ` gs and

so p1 ` bqp1 ` gq P ∆pD8, xx
2yq, by Remark 3.2.16. Thus p1 ` bqg “ p1 ` bq ` z2,

where z2 P ∆pD8, xx
2yq. By Lemma 3.2.5, the set B “ tp1` x2q, xp1` x2q, yp1`

x2q, yxp1 ` x2qu is a basis for ∆pD8, xx
2yq. Thus the principal ideal generated by

1` b is contained in the F2-linear span of t1` bu
Ť

B. Therefore t1` bu
Ť

B is a

basis for I “ p1` bq `∆pD8, xx
2yq.

Remark 3.2.33. By Proposition 3.1.4, B1 “ t1 ` x, 1 ` x2, 1 ` x3, 1 ` y, 1 `

xy, 1`x2y, 1`x3yu is a basis for ∆pD8q. Let P be the invertible matrix shown in
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Equation (3.5). Then multiplication by P´1 changes the basis for ∆pD8q from B1

to B2, where B2 “ t1`xy, 1` y, 1` b, 1`x2, xp1`x2q, yp1`x2q, xyp1`x2qu.

P “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 1 0 1 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 1 1 0 0 1 0

1 0 1 0 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and P´1
“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 0 1 0 1 0 1

1 0 1 1 0 1 0

1 0 1 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (3.5)

Definition 3.2.34. The classical involution of KG, denoted by f is a map from

KG to KG defined by p
ř

gPG aggq
f ÞÑ

ř

gPG agg
´1.

Lemma 3.2.35. The set t1` y, 1` b, p1`x2q, xp1`x2q, yp1`x2q, xyp1`x2qu

is a basis for the two-sided ideal I “ p1` yq of F2D8.

Proof. p1 ` xqp1 ` yq “ 1 ` b and x3p1 ` yqxy ` 1 ` y “ 1 ` x2. Therefore the

5-dimensional ideal p1 ` bq ` ∆pD8, xx
2yq is contained in the ideal p1 ` yq. If

1 ` y P p1 ` bq ` ∆pD8, xx
2yq, then y “ b ` z, where z P ZpF2D8q. This is a

contradiction since y` b “ x` xy R ZpF2D8q and so 1` y R p1` bq `∆pD8, xx
2yq.

It is now shown that 1` x R p1` yq and so the dimension of p1` yq is 6.

Assume by way of contradiction that 1 ` x P p1 ` yq. Note that for r1, r2 P

F2xxy, pr1 ` r2yqp1` yq “ pr1 ` r2qp1` yq. Let r, s, t P F2xxy. Then

rp1` yqps` tyq “ rps` ty ` sfy ` tfq “ rps` tfq ` rpsf ` tqy.

Therefore elements of the ideal p1`yq are sums of elements of the form rps` tfq`
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rpsf ` tqy. Thus for some nonnegative integer n

1` x` 0y “
n
ÿ

i“0

ripsi ` t
f
i q `

n
ÿ

i“0

rips
f
i ` tiqy

“

n
ÿ

i“0

ripsi ` t
f
i ` s

f
i ` tiq, since

n
ÿ

i“0

rips
f
i ` tiq “ 0.

However, α ` αf P ∆pD8, xx
2yq for all α P F2D8. Therefore 1 ` x P ∆pD8, xx

2yq.

This is a contradiction by Lemma 3.2.5 and so 1` x R p1` yq.

By Remark 3.2.33, ∆pD8q is a 7-dimensional ideal with basis B2 “ t1`xy, 1`

y, 1`b, 1`x2, xp1`x2q, yp1`x2q, xyp1`x2qu. Therefore p1`yq is a 6-dimensional

ideal with basis t1` y, 1` b, 1` x2, xp1` x2q, yp1` x2q, xyp1` x2qu.

Remark 3.2.36. All Ideals of F2D8 are finitely generated.

Lemma 3.2.37. ∆pD8, xx
2yq is a differential two-sided ideal of F2D8.

Proof. xx2y is a normal subgroup of D8 and so ∆pD8, xx
2yq is a two-sided ideal of

F2D8 by Lemma 3.1.5. Let d P DerpF2D8q. Then by Lemma 3.1.13, ∆pD8, xx
2yq “

p1 ` x2q is a differential ideal of pF2D8, dq if and only if dp1 ` x2q P ∆pD8, xx
2yq.

However, dp1`x2q “ dpx2q “ rdpxq, xs P ∆pD8, xx
2yq by Remark 3.2.16. Therefore,

∆pD8, xx
2yq is a differential ideal of pF2D8, dq for all derivations d on F2D8.

Corollary 3.2.38. Let d P DerpF2D8q and let I “ ∆pD8, xx
2yq. Define d :

F2D8{I Ñ F2D8{I by dpa ` Iq “ dpaq ` I. Then Φ : DerpF2D8q Ñ DerpF2D8{Iq

defined by d ÞÑ d is a Lie algebra homomorphism.

Proof. I is a differential two-sided ideal of F2D8 by Lemma 3.2.37. The result now

follows from Theorem 3.1.21.

Remark 3.2.39. Let Φ : DerpF2D8q Ñ DerpF2D8{Iq be the map defined in Corol-

lary 3.2.38. By Remark 3.2.10, d P DerpF2D8q is defined by an element Λ P

Cpxy,F2D8q and an element Ω P Cpy,F2D8q. Thus by the Leibniz rule, dpF2D8q Ă
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I if and only if dpyq “ Ω P I and dpxq “ pΛ`xΩqy P I. Therefore d is in the kernel

of Φ if and only if Ω P I and Λ P I. By Lemma 3.2.5, I is a 4-dimensional ideal of

F2D8. Therefore the kernel of Φ is an 8-dimensional vector space and so the image of

Φ is a 4-dimensional vector space since by Theorem 2.3.11, dimpDerpF2D8qq “ 12.

By Proposition 3.1.6, F2D8{I » F2pD8{xx
2yq » F2pC2 ˆ C2q and so DerpF2D8{Iq

is an 8-dimensional vector space by Theorem 2.3.4. Therefore Φ is not onto.

Lemma 3.2.40. Let I be the two-sided ideal of F2D8 generated by the element

1` y. Then I is a differential ideal of pF2D8, dq if and only if dpyq P I. Also, there

are 211 derivations d of F2D8 such that I is a differential ideal of pF2D8, dq.

Proof. Let d be the derivation of F2D8 defined by Λ P Cpxy,F2D8q and Ω P

Cpy,F2D8q. By Lemma 3.1.13, I is a differential ideal of pF2D8, dq if and only if

dp1` yq “ dpyq “ Ω P I and so Ω P I X Cpy,F2D8q.

By Remark 3.2.8, Bepyq “ t1, x
2, y, x2y, px ` x3q, px ` x3qyu is a basis for

Cpy,F2D8q. The set B “ t1, 1 ` x2, 1 ` y, 1 ` x2y, px ` x3q, px ` x3qyu is also

a basis for Cpy,F2D8q, since spanpBq “ spanpBepyqq and B also has size 6. 1 R I

but the other elements of B are in I by Lemma 3.2.35 and so Cpy,F2D8q X I is a

5-dimensional subspace of F2D8.

Therefore Λ can be any element of Cpxy,F2D8q, which by Remark 3.2.8 is a

6-dimensional subspace of F2D8. Also, Ω can be any element of Cpy,F2D8q X I

which is a 5-dimensional subspace of F2D8. Thus there are 211 derivations of F2D8

that correspond to I being a differential ideal.

Remark 3.2.41. By Proposition 3.1.4, the set t1 ` x, 1 ` x2, 1 ` x3, yp1 `

xq, yp1 ` x2q, yp1 ` x3qu is a basis for the ideal ∆pD8, xxyq. Let r P F2xxy. Then

p1 ` xqry “ ry ` ryx3 “ ryp1 ` x3q and so ∆pD8, xxyq is in fact a two-sided ideal

of F2D8 of dimension 6.
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Lemma 3.2.42. There are 210 derivations d of F2D8 such that p1` xq is a differ-

ential ideal of pF2D8, dq.

Proof. Let d be the derivation of F2D8 defined by Λ P Cpxy,F2D8q and Ω P

Cpy,F2D8q. Let I “ p1 ` xq. Then by Lemma 3.1.13, dpIq Ă I if and only if

dp1` xq “ dpxq “ pΛ` xΩqy P I.

Assume that I is a differential ideal with respect to d and so pΛ ` xΩq P I.

Ω P Cpy,F2D8q and so by Remark 3.2.8, xΩ “ w0x`w1x
3`w2xy`w3x

3y`w4p1`

x2q `w5p1` x
2qy, for some wi P F2. Let ρ “ w0 `w1p1` x` x

3q `w2xy `w3x
3y.

By Remark 3.2.8, the set Bepxyq “ t1, x2, xy, x3y, px ` x3q, p1 ` x2qyu is a

basis for Cpxy,F2D8q. Therefore ρ P Cpxy,F2D8q. Also, ρ ` xΩ “ pw0 ` w1qp1 `

xq ` w4p1 ` x2q ` w5p1 ` x2qy and so is an element of I. Let z “ Λ ` ρ. Then

pΛ`xΩq “ pz`ρ`xΩq P I and so z P Cpxy,F2D8qXI. Therefore for any element

Ω of Cpy,F2D8q, Λ “ ρ` z, where z P Cpxy,F2D8q X I.

It is now shown that Cpxy,F2D8q X I “ ∆pD8, xx
2yq. By Remark 3.2.9, t1 `

x2, 1 ` xy, 1 ` x3y, px ` x3q, p1 ` x2qyu is a basis for Cpxy,F2D8q X ∆pD8q.

Assume by way of contradiction that 1`xy P I. Then 1`x`p1`xyqx “ 1`y P I

and so p1 ` yq Ă I. Appending 1 ` xy to the basis given in Lemma 3.2.35 for

p1 ` yq gives the basis B2 given for ∆pD8q in Remark 3.2.33. Therefore I “

∆pD8q and so by Remark 3.2.41, 6 “ dimpIq “ dimp∆pD8qq “ 7, a contradiction.

Therefore 1` xy R I and so the dimension of Cpxy,F2D8q X I is less than 5 and so

Cpxy,F2D8q X I “ ∆pD8, xx
2yq.

Let Ω be any element of the 6-dimensional subspace Cpy,F2D8q and let z

be any element of the 4-dimensional subspace ∆pD8, xx
2yq. Then Λ “ ρ ` z P

Cpxy,F2D8q and Λ ` xΩ “ z ` ρ ` xΩ P I, since both z and ρ ` xΩ are in I.

Therefore there are 210 derivations of F2D8 such that I is a differential ideal.

Lemma 3.2.43. There are 210 derivations d of F2D8 for which the augmentation
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ideal ∆pD8q is a differential ideal of pF2D8, dq.

Proof. Let d be the derivation of F2D8 defined by Λ P Cpxy,F2D8q and Ω P

Cpy,F2D8q. The augmentation map is a ring homomorphism and so ∆pD8q is a

differential ideal with respect to d if and only if dpxq and dpyq are both in ∆pD8q.

However, dpxq “ pΛ`xΩqy and dpyq “ Ω are both in ∆pD8q if and only if Λ and Ω

are both in ∆pD8q. By Remark 3.2.9, Cpxy,F2D8qX∆pD8q and Cpy,F2D8qX∆pD8q

are both 5-dimensional subspaces of F2D8. Therefore there are 210 derivations of

F2D8 such that ∆pD8q is a differential ideal.

Figure 3.1 shows the lattice of all two-sided ideals of F2D8. The inclusions

were computed in GAP [18].
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F2D8

J “ ∆pD8q

p1 ` yxqp1 ` yq p1 ` xq

p1 ` yxqp1 ` xq ` p1 ` x2q

p1 ` yxqp1 ` xqp1 ` yqp1 ` xq p1 ` x2q

p1 ` yxqp1 ` x2q ` x̂

p1 ` yxqp1 ` x2qp1 ` yqp1 ` x2q x̂ “ p1 ` xq3

D̂8

p0q

Figure 3.1: The lattice of two-sided ideals of F2D8
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3.2.4 The Unit Group of F2D8

Definition 3.2.44. An ideal I of a ring is a nil ideal if each of its elements is

nilpotent, i.e. for all a P I, an “ 0 for some natural number n.

Definition 3.2.45. An ideal I of a ring is a nilpotent ideal if there exists a natural

number n such that In “ p0q.

Theorem 3.2.46. [40, pp. 110] Let R be an Artinian ring. Then the Jacobson

radical J is a nilpotent ideal of R and every nil ideal is nilpotent.

Lemma 3.2.47. Let I be a proper ideal of F2D8. Then 1` I is a normal subgroup

of the unit group of F2D8.

Proof. The units of F2D8 are the elements of augmentation 1 and so UpF2D8q “

1`∆pD8q. Therefore∆pD8q is the unique maximal ideal of F2D8 and so J “ ∆pD8q.

By Theorem 3.2.46, J is nilpotent. Let n be the index of nilpotency of J . Then

In “ 0 for all proper ideals I of F2D8, since I Ă J .

Let a and b be elements of the ideal I. Then p1`aqp1`bq “ 1`a`b`ab P 1`I.

Therefore 1`I is closed under multiplication. The inverse of the unit 1` b is given

by p1` bq´1 “

n´1
ÿ

m“0

bm P 1` I since

˜

n´1
ÿ

m“0

bm

¸

p1` bq “ p1` bq

˜

n´1
ÿ

m“0

bm

¸

“ 1` bn “ 1.

Therefore 1 ` I is closed under inversion and so 1 ` I is a subgroup of UpF2D8q.

Also, 1` I is a normal subgroup since for all i P I and j P J

p1` jqp1` iqp1` jq´1
“ p1` jqp1` jq´1

` p1` jqpiqp1` jq´1

“ 1` p1` jqpiqp1` jq´1
P 1` I.
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Lemma 3.2.48. Let D8 “ xx, y | x
4 “ y2 “ pxyq2 “ 1y and b “ 1` p1` xqp1` yq.

The following is a presentation of the unit group of F2D8, denoted by UpF2D8q:

UpF2D8q “

ˆ

´

pxby ˆ xbbyyq ¸ xyy
¯

ˆ xx2
y ˆ xx2

` x̂y

˙

¸ xxyy

»

ˆ

´

pC4 ˆ C2q ¸ C2

¯

ˆ C2 ˆ C2

˙

¸ C2,

where the actions of the semidirect products are:

by “ pb3
qpbbyq, pbbyqy “ bby, bxy “ pbqpbbyqpx2

qpx2
` x̂q,

pbbyqxy “ bby, yxy “ yx2, px2
q
xy
“ x2, px2

` x̂qxy “ x2
` x̂.

Proof. Let ζ “ 1`x2. By Lemma 3.2.47, 1`pζq is a normal subgroup of UpF2D8q.

By Lemma 3.2.5, ∆pD8, xx
2yq “ pζq and is a central nilpotent ideal of index 2

with the set S “ tζ, xζ, yζ, xyζu as a basis. Let r, t P ∆pD8, xx
2yq. Then

p1` rqp1` tq “ 1` r ` t and so the set 1` S “ t1` s | s P Su generates 1` pζq.

Also, 1` pζq is an elementary abelian 2-group and so 1` pζq » C4
2 .

Let I “ p1`bq`∆pD8, xx
2yq. By Lemma 3.2.32, the set t1`b, ζ, xζ, yζ, xyζu

is a basis for the 5-dimensional ideal I and by Lemma 3.2.35 y R 1 ` I. By

Lemma 3.2.47, 1 ` I is a normal subgroup of UpF2D8q of order 25. b P 1 ` I and

b R 1`pζq, which is a normal subgroup of 1`I of order 24 and so 1`I is generated

by tb, 1 ` ζ, 1 ` xζ, 1 ` yζ, 1 ` xyζu. It is an abelian group as ∆pD8, xx
2yq is

central. Also

b2
“ px` y ` xyqpx` y ` xyq “ 1` D̂8 “ p1` ζqp1` xζqp1` yζqp1` xyζq.

The order of b is 4 since b3 “ b` D̂8 and b4 “ b2 ` D̂8 “ 1. by “ px` y ` xyqy “
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1` x` xy and so

bby “ pbyq2 “ p1` x` xyqp1` x` xyq

“ 1` x` xy ` x` x2
` x2y ` xy ` y ` 1 “ x2

` x2y ` y

“ 1` ζ ` yζ “ p1` ζqp1` yζq P ZpF2D8q.

Therefore 1` I “ xby ˆ xbbyy ˆ x1` ζy ˆ x1` xζy » C4 ˆ C
3
2 .

By Lemma 3.2.35, the set t1 ` y, 1 ` b, ζ, xζ, yζ, xyζu is a basis for the

ideal p1 ` yq. Therefore 1 ` p1 ` yq is a normal subgroup of UpF2D8q of order 26

generated by the set ty, b, 1`ζ, 1`xζ, 1`yζ, 1`xyζu. 1`p1`yq is the product

of the normal subgroup 1 ` I and xyy. y does not commute with b and 1 ` I and

xyy have trivial intersection. Thus 1 ` p1 ` yq “ 1 ` I ¸ xyy. Also, by “ pb3qpbbyq.

bby, 1` ζ and 1` xζ are central and so

1` p1` yq “
`

xby ˆ xbbyy ˆ x1` ζy ˆ x1` xζy
˘

¸ xyy

“

´

pxby ˆ xbbyyq ¸ xyy
¯

ˆ x1` ζy ˆ x1` xζy.

By Remark 3.2.33, the set t1 ` xy, 1 ` y, 1 ` b, ζ, xζ, yζ, xyζu is a basis for

∆pD8q. 1`p1`yq and xxyy have trivial intersection. Therefore UpF2D8q is a group

of order 27 generated by the set txy, y, b, 1` ζ, 1` xζ, 1` yζ, 1` xyζu. Thus

UpF2D8q is the product of the normal subgroup 1` p1` yq and xxyy.

UpF2D8q “

ˆ

´

pxby ˆ xbbyyq ¸ xyy
¯

ˆ x1` ζy ˆ x1` xζy

˙

¸ xxyy

»

ˆ

´

pC4 ˆ C2q ¸ C2

¯

ˆ C2 ˆ C2

˙

¸ C2.

By Table 3.1, bxy “ x3`xy`x2y. Also pbqpbbyqp1`ζqp1`xζq “ p1`D̂8qb
yp1` x̂q “

byp1` x̂` D̂8q “ byp1` x̂yq “ px3` y`x3yqp1` x̂yq “ x3` x̂y` y` x̂`x3y` x̂ “

x3`xy`x2y. Therefore, bxy “ pbqpbbyqp1`ζqp1`xζq. Also yxy “ xy2xy “ yp1`ζq
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and bby, 1` ζ and 1` xζ are central and so commute with xy.

Remark 3.2.49. The structure of the unit group of the group algebra F2kD8 was

found in [13].

3.3 Do Outer Derivations Become Inner?

In Theorem 2.3.15 it was shown that there exists an algebra A Ą KG such that all

derivations of KG become inner in A. In this section we show that derivations of

KH do not become inner on KG, where H is a subgroup of G.

Let d be a derivation of A that is not inner. Does there exist an algebra B Ą A

such that the derivation d becomes inner when extended to B? That is, does there

exist an element b of B such that db “ d on A? A necessary condition on db is that

dbpAq Ă A.

Lemma 3.3.1. Let R be a commutative ring. Then a derivation of R is inner if

and only if it is the zero map.

Proof. let a P R and let d be an inner derivation of R. Then dpaq “ ba ´ ab “ 0,

for some b P R. If d is the zero map then dpaq “ 0a´ a0.

Definition 3.3.2. A derivation of a ring is called outer if it is not an inner deriva-

tion.

Theorem 3.3.3. Let H be a subgroup of the group G and let R be a unital ring.

Then there are no outer R-derivations of RH that become inner on RG.

Proof. Let g P G and h P H. Then gh P H ðñ g P H and hg P H ðñ g P H.

Therefore rg, hs “ gh ´ hg P RH ðñ rg, hs “ 0 or g P H. Let Gh “ tg P G |

rg, hs P RHu “ H Y tg P G | rg, hs “ 0u.
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Let b P RG and write b “
ÿ

gPG

bgg. Assume that the restriction of db to RH is

an R-derivation of RH. Then dbpRHq is contained in RH and so for any h P H,

rb, hs “
ÿ

gPGh

bgrg, hs `
ÿ

gRGh

bgrg, hs P RH.
ÿ

gPGh

bgrg, hs P RH and so
ÿ

gRGh

bgrg, hs P

RH. However
ÿ

gRGh

bgrg, hs is an R-linear combination of elements of G that are not

in H and so
ÿ

gRGh

bgrg, hs “ 0. Therefore

rb, hs “
ÿ

gPGh

bgrg, hs “
ÿ

gPH

bgrg, hs “
”

ÿ

gPH

bgg, h
ı

“ rβ, hs,

where β “
ÿ

hPH

bhh P RH. By assumption the restriction of db to RH is an R-

derivation of RH. Therefore for any r P R and h P H

brh´ rhb “ rb, rhs “ dbprhq “ rdbphq “ rrb, hs “ rbh´ rhb.

Thus br “ rb and so
ÿ

gPG

bgrg “ br “ rb “
ÿ

gPG

rbgg. Therefore bg commutes with r

for all g P G and so in particular bg commutes with r for all g P H which implies

that βr “ rβ for all r P R. Therefore dβ is an R-derivation of RH.

Let a P RH and write a “
ÿ

hPH

ahh. Then

dbpaq “ db
`

ÿ

hPH

ahh
˘

“
ÿ

hPH

ahdbphq “
ÿ

hPH

ahdβphq “ dβ
`

ÿ

hPH

ahh
˘

“ dβpaq.

Therefore the restriction of db to RH is an inner derivation of RH and so no outer

R-derivations of RH become inner on RG.

The following lemma and example show that although R-derivations of group

rings do not become inner on larger group rings, derivation of ideals of group rings

can become inner on the group ring.

Lemma 3.3.4. Let L “ p1 ` yq be the two-sided ideal of F2D8 generated by the
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element 1 ` y. Let b P F2D8. Then the restriction of db to L denoted dbæL is not

inner on L if and only if x P supppbq.

Proof. Let I “ p1 ` x2q be the two-sided ideal of F2D8 generated by the element

1`x2. By Lemma 3.2.5, I is a central nilpotent ideal of index 2 with the following

set as a basis: BI “ tp1 ` x2q, xp1 ` x2q, yp1 ` x2q, yxp1 ` x2qu. Let BL “

BI Y tp1 ` yq, p1 ` yqxu. Then by Lemma 3.2.35, BL is a basis for L Ą I.

L “ I ‘F2p1` yq‘F2p1` yqx and note that rp1` yq, p1` yqxs “ p1` yqp1` yqx`

p1` yqxp1` yq “ 0` p1` yqpx` yx3q “ x` x3 ` yx` yx3 and so

rL,Ls “ rI ‘ F2p1` yq ‘ F2p1` yqx, I ‘ F2p1` yq ‘ F2p1` yqxs

“ rF2p1` yq ‘ F2p1` yqx,F2p1` yq ‘ F2p1` yqxs

“ t0u Y tr1` y, p1` yqxsu Y tr1` y, p1` yqxsu “ t0, x` x3
` yx` yx3

u.

Let a P L and b P F2D8. Then dbpaq P L since L is a two-sided ideal of

F2D8 and so dbæL is a derivation of L. BL can be extended to a basis for F2D8

by appending the elements 1 and x. Write b “ b01 ` b1x ` b2l for some l P L and

b0, b1, b2 P F2 and a “ a0p1` yq` a1p1` yqx` a2pzq where z P I and a0, a1, a2 P F2.

Then

dbpaq “ rb01` b1x` b2l, as “ rb01, as ` rb1x, as ` rb2l, as “ rb1x, as ` rb2l, as,

where rb2l, as P rL,Ls. Also if a R I then

rx, as “ rx, a0p1` yqs ` rx, a1p1` yqxs ` rx, a2zs

“ a0xp1` yq ` a0p1` yqx` a1xp1` yqx` a1p1` yqx
2

“ a0yxp1` x
2
q ` a1yp1` x

2
q R rL,Ls.

Therefore if x P supppbq and a R I then dbpaq R rL,Ls and so db is not inner on L.
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Conversely, if x R supppbq then b1 “ 0 and so db “ db01`b2l “ db2l, which is an inner

derivation of L.

Example 3.3.5. Let L “ p1` yq be the two-sided ideal of F2D8 generated by the

element 1` y. The map dx : F2D8 Ñ F2D8, defined by c ÞÑ xc´ cx for all c P F2D8

is an inner derivation of F2D8. Also for all l P L, dxplq “ xl ` lx P L since L is

a two-sided ideal and so the map dxæL is a derivation of L. However, dxæL is not

inner as dxp1`yq “ dxpyq “ yxp1`x2q R rL,Ls “ t0, x`x3`yx`yx3u. Therefore

dxæL is a non-inner derivation of L “ p1` yq that becomes inner on F2D8.

This example raises an interesting question: If I is a proper ideal of KG, does

every derivation of I become inner on KG?

3.4 Some Linear Algebra Results

This section contains known results from linear algebra and is included for later

reference. It may be skipped if desired by the reader.

A derivation of a group algebra is a linear transformation, by Corollary 3.5.1.

We wish to study the structure of these derivations and so we will employ some

theorems from linear algebra to better understand how these derivations transform

a group algebra. This section contains the main results used namely the primary

decomposition theorem and the cyclic decomposition theorem. Both of these theo-

rems allow us to decompose the group algebra, considered as a vector space, into a

direct sum of derivation-invariant subspaces. These decompositions can be used to

write the matrix representing the derivation in rational canonical form. Moreover,

if the eigenvalues all lie in the field, then a Jordan form can also be achieved. In the

case where the matrix cannot be written in Jordan form, it is still possible to write

it in generalised Jordan form. We begin with some definitions and preliminary
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results. Throughout this section we let T be a linear transformation on a vector

space V .

Theorem 3.4.1. [52, pp. 17] Let V be a finite-dimensional vector space and

let T : V Ñ W be a linear transformation. Then dimpkerpT qq ` dimpImpT qq “

dimpV q.

Definition 3.4.2. [52, pp. 111] The T-annihilator of a vector v P V denoted

mT,vpxq is the unique monic polynomial of least degree such that mT,vpT qpvq “ 0.

Definition 3.4.3. [52, pp. 112] The minimum polynomial of T denoted mT pxq is

the unique monic polynomial of least degree such that mT pT qpvq “ 0 for all v P V .

Lemma 3.4.4. [52, pp. 112] Let V be a vector space and let T : V Ñ V be a

linear transformation. Let v1, . . . , vk P V with T-annihilators pipxq “ mT,vipxq for

i “ 1, . . . , k and suppose that p1pxq, . . . , pkpxq are pairwise relatively prime. Then

v “ v1 ` ¨ ¨ ¨ ` vk has T-annihilator polynomial mT,vpxq “ p1pxq . . . pkpxq.

Theorem 3.4.5. [52, pp. 113] Let V be a finite-dimensional vector space and let

T : V Ñ V be a linear transformation. Then there is a vector v P V such that the

T -annihilator mT,vpxq of v is equal to the minimum polynomial mT pxq of T .

Definition 3.4.6. [52, pp. 114] Let A be a square matrix. The characteris-

tic polynomial cApxq of A is the polynomial cApxq “ detpxI ´ Aq. Let V be a

finite-dimensional vector space and let T : V Ñ V be a linear transformation. Fur-

thermore, let B be any basis of V and let A be the matrix of T with respect to

the basis B, that is, A “ rT sB. Then the characteristic polynomial cT pxq is the

polynomial cT pxq “ detpxI ´ Aq.

Definition 3.4.7. [52, pp. 115] Let fpxq “ xn ` an´1x
n´1 ` ¨ ¨ ¨ ` a0 be a monic

polynomial in Frxs of degree n ě 1. The companion matrix Cpfpxqq of fpxq is the

63



nˆ n matrix

Cpfpxqq “

»

—

—

—

—

—

—

—

—

—

—

—

–

´an´1 1 0 . . . 0

´an´2 0 1 . . . 0

...
. . .

´a1 0 0 . . . 1

´a0 0 0 . . . 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Theorem 3.4.8. [52, pp. 115] Let fpxq “ xn ` an´1x
n´1 ` ¨ ¨ ¨ ` a0 be a monic

polynomial and let A “ Cpfpxqq be its companion matrix. Let V “ Fn for any

field F and let T “ TA : V Ñ V be the linear transformation T pvq “ Av. Let v “

r0 0 . . . 0 1sᵀ be the nth standard basis vector. Then the subspace W of V defined

by W “ tgpT qpvq | gpxq P Frxsu is V . Furthermore, mT pxq “ mT,vpxq “ fpxq.

Remark 3.4.9. [52, pp. 116] The characteristic polynomial of the companion

matrix of a monic polynomial fpxq is equal to fpxq. That is, cCpfpxqqpxq “ fpxq.

Definition 3.4.10. [52, pp. 117] Let T : V Ñ V be a linear transformation. A

subspace W of V is T-invariant if T pW q Ă W , i.e., if T pwq P W for every w P W .

Remark 3.4.11. The restriction of a linear transformation T to a T -invariant

subspace W of V is a linear transformation, denoted TæW .

Definition 3.4.12. [52, pp. 117] Let T : V Ñ V be a linear transformation. Let

B “ tv1, . . . , vku be a set of vectors in V . The T-span of B is the subspace

W “

#

k
ÿ

i“1

pipT qpviq | pipxq P Frxs

+

.

In this situation B is said to T-generate W .

The image (range) of a linear transformation, denoted ImpT q is a T -invariant

subspace of V . Let v P ImpT q. Then v “ Tw for some w P V and so Tv “ T pTwq P
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ImpT q. In fact, for each k P N we have that T kpV q is a T -invariant subspace of V .

This gives us a non-ascending sequence of T -invariant subspaces:

V Ą T pV q Ą T 2
pV q Ą . . .

Since V is finite-dimensional this sequence must eventually stabilise. That is, there

is a positive integer m such that T jpV q “ TmpV q for all j ě m. We will refer to

the image TmpV q as the generalised range space of T and denote it by R8pT q [22,

pp. 411].

Remark 3.4.13. The fact that this non-ascending sequence of T -invariant sub-

spaces must eventually stabilise, means that the restriction of T to R8pT q, denoted

by TæR8pT q is an isomorphism.

Lemma 3.4.14. [52, pp. 117] Let T : V Ñ V be a linear transformation and let

ppxq P Frxs be any polynomial. Then kerpppT qq “ tv P V | ppT qpvq “ 0u is a

T-invariant subspace of V .

In particular, letting ppT q “ T k for k “ 1, 2, . . . in Lemma 3.4.14 gives us a

non-descending chain of T -invariant subspaces:

0 Ă kerpT q Ă kerpT 2
q Ă . . .

Again, since V is finite-dimensional this sequence must eventually stabilise. That

is, there is a positive integer m such that kerpT jq “ kerpTmq for all j ě m. We

will refer to kerpTmq as the generalised null space of T and denote it by N8(T)

[22, pp. 411].

Theorem 3.4.15. [22, pp. 412] Let T : V Ñ V be a linear transformation. Then

V “ R8pT q ‘N8pT q.
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Theorem 3.4.16. [52, pp. 119] Let V be a finite-dimensional vector space and

let T : V Ñ V be a linear transformation. Then mT pxq divides cT pxq and every

irreducible factor of cT pxq is an irreducible factor of mT pxq.

Corollary 3.4.17. [52, pp. 119] A vector space V is T -generated by a single

element if and only if mT pxq “ cT pxq.

Definition 3.4.18. [52, pp. 123] Let T : V Ñ V be a linear transformation. Then

V “ W1 ‘ ¨ ¨ ¨ ‘Wk is a T-invariant direct sum if V “ W1 ‘ ¨ ¨ ¨ ‘Wk is the direct

sum of W1, . . . ,Wk and each Wi is a T -invariant subspace. If V “ W1 ‘W2 is a

T -invariant direct sum decomposition, then W2 is called a T -invariant complement

of W1.

We now state the Primary Decomposition Theorem, which allows a decompo-

sition of a vector space into a direct sum of T -invariant subspaces.

Theorem 3.4.19 (Primary Decomposition Theorem). [52, pp. 125] Let V be a vec-

tor space and let T : V Ñ V be a linear transformation. Let mT pxq “ p1pxq . . . pkpxq

be the minimum polynomial of T , where the pi are pairwise relatively prime poly-

nomials. Let Wi “ kerppipT qq for i “ 1, . . . , k. Then each Wi is a T -invariant

subspace and V “ W1 ‘ ¨ ¨ ¨ ‘Wk.

Let V “ W1‘ ¨ ¨ ¨ ‘Wk be the T -invariant direct sum decomposition given by

Theorem 3.4.19. Let Ui be a T -invariant subspace of Wi, for i “ 1, . . . , k. Then

U “ U1 ‘ ¨ ¨ ¨ ‘ Uk is a T -invariant subspace of V, and every T -invariant subspace

of V arises in this way [52, pp. 126].

Theorem 3.4.20. [52, pp. 129-130] Let V be a finite-dimensional vector space

and let T : V Ñ V be a linear transformation. Let w1 P V be any vector with

mT,w1pxq “ mT pxq and let W1 be the subspace of V , T -generated by w1. Then W1

has a T -invariant complement W2, i.e., there is a T -invariant subspace W2 of V

such that V “ W1 ‘W2.

66



Definition 3.4.21. Let V be a finite-dimensional vector space and let T : V Ñ V

be a linear transformation. An ordered set C “ tw1, . . . , wku is a rational canonical

T -generating set of V if the following conditions are satisfied:

1. V “ W1 ‘ ¨ ¨ ¨ ‘Wk where Wi is the subspace of V that is T -generated by wi

2. pipxq is divisible by pi`1pxq for i “ 1, . . . , k´1, where pipxq “ mT,wi
pxq is the

T -annihilator of wi

We now state the Cyclic Decomposition Theorem.

Theorem 3.4.22 (Cyclic Decomposition Theorem). [52, pp. 132] Let V be a finite-

dimensional vector space and let T : V Ñ V be a linear transformation. Then V

has a rational canonical T -generating set C “ tw1, . . . , wku. If C 1 “ tw11, . . . , w
1
lu

is any rational canonical T -generating set of V , then k “ l and p1ipxq “ pipxq for

i “ 1, . . . , k, where p1ipxq “ mT,w1i
pxq and pipxq “ mT,wi

pxq.

Definition 3.4.23. An nˆn matrix M is in rational canonical form if it is a block

diagonal matrix of the form

M “

»

—

—

—

—

—

—

—

–

Cpp1pxqq

Cpp2pxqq

. . .

Cppkpxqq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where Cppipxqq denotes the companion matrix of pipxq, for some sequence of poly-

nomials p1pxq, p2pxq, . . . , pkpxq with pipxq divisible by pi`1pxq for i “ 1, 2, . . . , k´1.

Definition 3.4.24. If T has rational canonical form as in Definition 3.4.23, then the

sequence of polynomials p1pxq, p2pxq, . . . , pkpxq are called the elementary divisors

of T .

Theorem 3.4.25. [52, pp. 134]
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1. Let V be a finite-dimensional vector space and let T : V Ñ V be a linear

transformation. Then V has a basis B such that rT sB “ M is in rational

canonical form. Furthermore, M is unique.

2. Let A be an nˆn matrix. Then A is similar to a unique matrix M in rational

canonical form.

Corollary 3.4.26. [52, pp. 135] Let T have elementary divisors tp1pxq, . . . , pkpxqu.

Then mT pxq “ p1pxq and cT pxq “ p1pxqp2pxq . . . pkpxq.

Definition 3.4.27. [52, pp. 137] A kˆk matrix is called a Jordan block associated

with the eigenvalue λ if it has the form

»

—

—

—

—

—

—

—

—

—

—

—

–

λ 1

λ 1

. . .
. . .

λ 1

λ

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

A matrix J is said to be in Jordan canonical form if J is a block diagonal matrix

with each Ji a Jordan block.

J “

»

—

—

—

—

—

—

—

–

J1

J2

. . .

Jl

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Theorem 3.4.28. [52, pp. 138]

1. Let V be a finite-dimensional vector space over a field F and let T : V Ñ V

be a linear transformation. Suppose that the characteristic polynomial of T
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factors into a product of linear factors, cT pxq “ px ´ a1q
e1 . . . px ´ amq

em.

Then V has a basis B with rT sB “ J a matrix in Jordan canonical form. J

is unique up to the order of the blocks.

2. Let A be an n ˆ n matrix over a field F. Suppose that cApxq the charac-

teristic polynomial of A, factors into a product of linear factors, cApxq “

px´ a1q
e1 . . . px´ amq

em. Then A is similar to a matrix J in Jordan canoni-

cal form. J is unique up to the order of the blocks.

When cT pxq does not factor into a product of linear factors we do not get a

Jordan canonical form. However, there are generalisations of Definition 3.4.27 and

Theorem 3.4.28 that can be used in this case.

Definition 3.4.29. A kl ˆ kl matrix is called a generalised Jordan block if it has

the form
»

—

—

—

—

—

—

—

—

—

—

—

–

C N

C N

.. .
. . .

C N

C

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where there are k blocks of the lˆ l matrix C “ Cpppxqq along the diagonal and N

is a matrix with an entry of 1 in row l column 1 and all other entries being zero. A

matrix Ĵ is said to be in generalised Jordan canonical form if Ĵ is a block diagonal

matrix with each Ĵi a generalised Jordan block.

Ĵ “

»

—

—

—

—

—

—

—

–

Ĵ1

Ĵ2

. . .

Ĵl

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Theorem 3.4.30. [52, pp. 140]

1. Let V be a finite-dimensional vector space over a field F and let cT pxq factor

as cT pxq “ p1pxq
e1 . . . pmpxq

em for irreducible polynomials p1pxq, . . . , pmpxq.

Then V has a basis B with rV sB “ Ĵ a matrix in generalised Jordan canonical

form. Ĵ is unique up to the order of the generalised Jordan blocks.

2. Let A be an n ˆ n matrix over a field F and let cApxq factor as cApxq “

p1pxq
e1 . . . pmpxq

em, for irreducible polynomials p1pxq, . . . , pmpxq. Then A is

similar to a matrix Ĵ in generalised Jordan canonical form. Ĵ is unique up

to the order of the generalised Jordan blocks.

3.5 Error Correcting Codes from Derivations

In this section we will consider derivations of group rings KG, where K is a finite

field and G is a finite abelian group. Let d P DerpKGq. The next lemma shows

that d is a kerd-module homomorphism and so it is also a K-linear transformation.

Lemma 3.5.1. Let R be a ring. Then d is a Cd-module homomorphism for all

d P DerpRq.

Proof. Let d P DerpRq, let c P Cd and let a P R. d is an additive group homomor-

phism. dpcq “ 0 so dpcaq “ dpcqa` cdpaq “ cdpaq.

Remark 3.5.2. Note that d is also a CpRq-module homomorphism for all d P

DerpRq.

Definition 3.5.3. Given a derivation d : KG Ñ KG, define dn : KG Ñ KG to

be the composition of d with itself n times. That is, for all a in KG, dnpaq “

dpdp. . . dpaq . . . qq
looooooooomooooooooon

n times

.
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Remark 3.5.4. Let d be a derivation of KG. Then dn is a K-linear transformation

(K-module homomorphism) for all positive integers n.

Given a derivation d on a group algebra KG, the Primary Decomposition

Theorem (Theorem 3.4.19) gives a way of producing d-invariant subspaces of KG.

Example 3.5.5. Let d be a derivation of a group algebra KG. Let mdpxq “

p1pxq . . . pkpxq be the minimum polynomial of d, which factors as a product of pair-

wise relatively prime polynomials pi. Moreover, let Wi “ kerppipdqq for i “ 1, . . . , k.

Then applying The Primary Decomposition Theorem (Theorem 3.4.19) we get that

each Wi is a d-invariant subspace and KG has the vector space decomposition

V “ W1 ‘ ¨ ¨ ¨ ‘Wk.

In particular, By Theorem 3.4.15

KG “ R8pdq ‘N8pdq.

Remark 3.5.6. [25, pp. 41, 47] A linear block code over a finite field K is a

subspace of the vector space V of ordered n-tuples over K for some positive integer

n. In particular, if d : V Ñ V then the generalised range space of d, R8pdq is a

linear block code over K.

Definition 3.5.7. A q-ary rn, k, δs code is a code of length n, dimension k and

minimum distance δ over a field of order q.

We will now consider particular derivations of the group ring F3C6 where C6

is the cyclic group of order 6 with presentation xx | x6 “ 1y. For a derivation

d on F3C6 we can choose any element of F3C6 to be the image of x under d, by

Theorem 2.3.4.

Example 3.5.8. Let C6 “ xx | x
6 “ 1y and let d be the derivation d : F3C6 Ñ F3C6

defined by x ÞÑ 1. This is the classical derivative map over F3. It is an F3-linear
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map or linear transformation and so can be represented by a 6ˆ 6 matrix over F3.

We will denote this matrix by rdsB, where B “ t1, x, x2, x3, x4, x5u is a basis for

F3C6. Note that

rdsB

„

1 0 0 0 0 0

ᵀ

“

„

0 0 0 0 0 0

ᵀ

,

rdsB

„

0 1 0 0 0 0

ᵀ

“

„

1 0 0 0 0 0

ᵀ

,

rdsB

„

0 0 1 0 0 0

ᵀ

“

„

0 2 0 0 0 0

ᵀ

,

rdsB

„

0 0 0 1 0 0

ᵀ

“

„

0 0 0 0 0 0

ᵀ

,

rdsB

„

0 0 0 0 1 0

ᵀ

“

„

0 0 0 1 0 0

ᵀ

,

rdsB

„

0 0 0 0 0 1

ᵀ

“

„

0 0 0 0 2 0

ᵀ

.

In summary, rdsB

„

a0 a1 a2 a3 a4 a5

ᵀ

“

„

a1 2a2 0 a4 2a5 0

ᵀ

, for any ai P F3.

Thus the matrix rdsB is given by

rdsB “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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The matrix rdsB acts on column vectors from the left. For example, let u be the

column vector representing 1`2x4. Then the column vector representing the image

of 1` 2x4 under the derivation d is given by

rdsBu “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

0

0

0

2

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0

0

0

2

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Example 3.5.9. Let d be the derivation d : F3C6 Ñ F3C6 defined by x ÞÑ 1`x2`

2x5. Let B “ t1, x, x2, x3, x4, x5u. Then B is a basis for F3C6. It can be shown

by performing the computation as in Example 3.5.8 that the matrix representing

d is given by

rdsB “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 2

0 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 2 0

0 0 0 0 0 1

0 0 0 0 0 0

0 2 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 1 0 0 2

0 0 2 0 0 0

0 1 0 0 2 0

0 0 2 0 1 1

0 0 0 0 0 2

0 2 0 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The minimal and characteristic polynomials of d were calculated using the com-

puter algebra system Sage [43] and are as follows: mdpxq “ px ` 1qpx ` 2qpx3q

and cdpxq “ px ` 1qpx ` 2qpx4q. Let α “
5
ÿ

i“0

aix
i
P F3C6 and so α can be writ-

ten as the vector ra0, a1, a2, a3, a4, a5s
ᵀ with respect to B. Applying mdpxq gives

prds5B ` 2rds3Bqra0, a1, a2, a3, a4, a5s
ᵀ “ 0. Using the Primary Decomposition Theo-

rem (Theorem 3.4.19), F3C6 “ E2 ‘ E1 ‘ N8pdq, where Eλ is the 1-dimensional
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eigenspace associated with the eigenvalue λ and N8pdq is the d invariant subspace

associated with the factor x3, that is N8pdq “ kerpd3q. The minimal polynomial

factors into a product of linear factors and so by Theorem 3.4.28, we can find a basis

B1 such that rdsB1 is in Jordan canonical form. We will now look at each eigenvalue

separately. Firstly consider the eigenvalue 2. Let d2 denote the restriction of d to

E2. E2 is a d-invariant subspace of F3C6 and so d2 is a linear transformation on

the 1-dimensional subspace E2 such that p2pd2qpE2q “ 0, where p2pxq “ px ` 1q.

Therefore md2pxq “ cd2pxq “ px ` 1q and so the Jordan block associated with the

eigenvalue 2 is r2s. Likewise the Jordan block associated with the eigenvalue 1 is r1s.

Let dR denote the restriction of d to R8pdq. Then mdRpxq “ cdRpxq “ px`1qpx`2q

and so by Theorem 3.4.28

rdRsB “

»

—

–

2 0

0 1

fi

ffi

fl

where the basis B is given by B “ tv2, v1u and vλ is the eigenvector associated

with the eigenvalue λ. v1 “

„

1 2 1 2 1 2

ᵀ

and v2 “

„

0 2 2 0 1 1

ᵀ

.

We now turn our attention to the generalised nullspace N8pdq = kerpd8q. Let

dN denote the restriction of d to N8pdq. We have mdN pxq “ x3 and cdN pxq “

x4. N8pdq is not dN -generated by a single vector. Thus we can use the Cyclic

Decomposition Theorem (Theorem 3.4.22) and Corollary 3.4.26 to write N8pdq “

N1‘N2, where Ni is the subspace that is dN -generated by wi for i “ 1, 2. We have

that mdN ,w1pxq “ x3 and mdN ,w2pxq “ x. w1 “

„

0 0 1 0 0 1

ᵀ

dN -generates N1 and

w2 “

„

1 0 0 0 0 0

ᵀ

dN -generates N2.

We now have a basis B1 “ tv2, v1, rds
2
B1w1, rdsB1w1, w1, w2u and can write the
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matrix rdsB1 in Jordan canonical form

rdsB1 “ P´1
rdsBP “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

2 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, where P “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 2 0 0 1

1 2 0 2 0 0

1 1 0 0 1 0

0 2 2 0 0 0

2 1 0 2 0 0

2 2 0 0 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

R8pdq is a 2 dimensional subspace of F3C6 over F3. A generator matrix for

the ternary code R8pdq is G “

»

—

–

v1

v2

fi

ffi

fl

“

»

—

–

1 2 1 2 1 2

0 1 1 0 2 2

fi

ffi

fl

. The codewords (elements)

of R8pdq are

r000000s, r121212s, r212121s, r011022s, r102201s, r220110s, r022011s, r110220s, r201102s.

The minimum distance of this code is 4 by inspection and so R8pdq is a 3-ary

r6, 2, 4s code. It is an optimal code as the Griesmer bound for a linear code of

length 6 and dimension 2 over F3 is 4 [21].

Remark 3.5.10. Let KG be a finite group algebra, let d P DerpKGq and let B

be some listing of the elements of G. Then the generalised null space of rdsB is not

a good code since the multiplicative identity 1, is a vector of weight one that is

mapped to 0 on the first iteration and so 1 P N8pdq. Therefore N8pdq is a rn,m, 1s

code, where m is the algebraic multiplicity of the eigenvalue zero.

Example 3.5.11. Let d be the derivation d : F3C6 Ñ F3C6 defined by x ÞÑ 1 `

x` 0x2 ` x3 ` x4 ` x5. Let B “ t1, x, x2, x3, x4, x5u. Then the matrix over F3
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representing d with respect to B is given by

rdsB “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 2 0 0 0

0 0 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 2

0 0 0 0 0 0

0 1 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 2 0 1 0

0 1 2 0 1 2

0 0 2 0 1 2

0 1 0 0 1 2

0 1 2 0 1 2

0 1 2 0 0 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The minimal and characteristic polynomials of d were calculated using the

computer algebra system Sage. They were found to be mdpxq “ x3px2 ` 1q and

cdpxq “ x4px2 ` 1q. Using Theorem 3.4.15 we get F3C6 “ kerpd3q ‘ kerpd2 ` 1q “

R8pdq ‘ N8pdq. The matrix rdsB does not have a Jordan canonical form as the

polynomial x2 ` 1 is irreducible over F3. However, Theorem 3.4.30 states that we

can find a basis B1 such that rdsB1 is in generalised Jordan canonical form. We will

now look at each summand separately. Firstly consider R8pdq. Let dR denote the

restriction of d to R8pdq. mdRpxq “ cdRpxq “ x2` 1 and so by Theorem 3.4.30 and

Definitions 3.4.29 and 3.4.7 the generalised Jordan block associated with R8pdq is

rdRsB “ rCpcdRpxqqs “ rCpx
2
` 1qs “

»

—

–

0 1

2 0

fi

ffi

fl
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where the basis B is given by B “ tdv, vu and v is any vector of F3C6 that d-

generates R8pdq according to Definition 3.4.12. An example of such a vector v is
„

0 1 0 0 1 0

ᵀ

.

We now turn our attention to N8pdq. Let dN denote the restriction of d

to N8pdq. We have mdN pxq “ x3 and cdN pxq “ x4. Therefore N8pdq is not

d-generated by a single vector. By the Cyclic Decomposition Theorem (Theo-

rem 3.4.22) N8pdq “ N1 ‘ N2, where Ni is the subspace that is d-generated

by wi for i “ 1, 2. By Theorem 3.4.22, mD,w1pxq “ x3 and mD,w2pxq “ x.

w1 “

„

0 1 2 0 2 1

ᵀ

and w2 “

„

1 0 0 0 0 0

ᵀ

are 2 such vectors.

Therefore B1 “ tDv, v,D2w1, Dw1, w1, w2u is a basis for F3C6 such that rdsB1

is in generalised Jordan canonical form

rdsB1 “ P´1
rdsBP “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0 0 0

2 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where P “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

2 0 1 1 0 1

2 1 0 0 1 0

1 0 0 2 2 0

2 0 2 2 0 0

2 1 0 0 2 0

1 0 0 1 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

R8pdq is a 2 dimensional subspace of F3C6 over F3 and so has 9 elements.

rdRsB “

»

—

–

0 1

2 0

fi

ffi

fl

, where B “ tdv, vu and v “

„

0 1 0 0 1 0

ᵀ

.

Therefore the orbit of dv and dv ` v under d are respectively

„

1 0

ᵀ

Ñ

„

0 2

ᵀ

Ñ

„

2 0

ᵀ

Ñ

„

0 1

ᵀ

Ñ

„

1 0

ᵀ

and
„

1 1

ᵀ

Ñ

„

1 2

ᵀ

Ñ

„

2 2

ᵀ

Ñ

„

2 1

ᵀ

Ñ

„

1 1

ᵀ

.
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Therefore the graph of R8pdq consists of two 4-cycles and the fixed point 0. The

matrix rdN sB1 is nilpotent with an index of nilpotency of 3. This shows that after 3

iterations of d the group algebra has been mapped onto R8pdq. That is d3pF3C6q “

R8pdq. The codewords (elements) of R8pdq are

r000000s, r112112s, r010010s, r221221s, r020020s, r211211s, r102102s, r122122s, r201201s.

The minimum distance of this code is 2 by inspection and so R8pdq is a 3-ary

r6, 2, 2s code.

In both this Example and Example 3.5.9 the generalised range space R8pdq

is a d-invariant subspace of F3C6. However, by varying the derivation used, the

minimum distance decreased from 4 to 2.

Example 3.5.12. Let d be the derivation d : F3C6 Ñ F3C6 defined by x ÞÑ 1 `

x ` 2x2 ` x3 ` x4 ` x5 where C6 “ xx | x6 “ 1y. Note that we have changed

only the coefficient of the x2 term in the image of x under d from the one used

in Example 3.5.11. The matrix representing the F3-linear transformation d with

respect to the basis B “ t1, x, x2, x3, x4, x5u is

rdsB “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 2 0 1 1

0 1 2 0 1 2

0 2 2 0 1 2

0 1 1 0 1 2

0 1 2 0 1 2

0 1 2 0 2 2

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Using the method detailed in the previous examples a change of basis matrix
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P is obtained and rdsB can be written in Jordan canonical form.

P “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1 1 1 0 0 1

1 2 0 0 1 0

0 1 0 1 0 0

1 1 2 0 0 0

1 2 0 0 2 0

0 1 0 2 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and P´1
rdsBP “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

2 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

R8pdq is a 2 dimensional subspace of F3C6. A graph with the elements of

R8pdq as vertices and pu, vq as a directed edge if rdsBu “ v is given in Figure 3.2.

The codewords (elements) of R8pdq are

r000000s, r110110s, r220220s, r121121s, r201201s, r011011s, r212212s, r022022s, r102102s.

The minimum distance of this code is 4 by inspection and soR8pdq is a 3-ary r6, 2, 4s

code. Let a “ 1 ` x ` x3 ` x4 pr110110sq and b “ 2 ` x2 ` 2x3 ` x5 pr201201sq.

Then a and b are both elements of R8pdq, however their product ab “ x ` 2x2 `

x4 ` 2x5 pr012012sq is not an element of R8pdq. This shows that in general R8pdq

is not closed under multiplication.

022022 102102 110110 220220 011011 201201

000000 121121 212212

Figure 3.2: The subgraph of the graph Γ induced by R8pdq in Example 3.5.12,
where Γ is the graph with the elements of F3C6 as vertices and pu, vq is a directed
edge if Du “ v.
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Chapter 4

Graphs Of Derivations

In this chapter the directed graphs of derivations of group algebras are explored,

that is, a derivation of a group algebra is considered as a linear finite dynamical

system (LFDS). The motivation for this comes from Theorem 3.1.18, which tells

us that if DerpKGq and DerpKHq are not isomorphic as additive groups then

KG and KH are not isomorphic as rings. It is shown in Theorem 4.1.8 that

if φ : R Ñ S is a ring isomorphism, then there is a bijection from DerpRq onto

DerpSq such that corresponding derivations have isomorphic associated digraphs.

Therefore properties of the LFDS associated with a derivation can be used to

distinguish between group rings. The groups considered in this chapter are abelian.

In Section 4.1 the preperiod of DerpF2Gq is shown to be less than or equal to the

size of the group G. Also, when G “ C2 ˆ C2, this bound is attained.

The digraph of a particular element of DerpF2pC2 ˆ C2qq is studied and it

is shown to contain a 7-cycle. The digraphs of DerpF2C4q are partitioned by

conjugacy class in Table 4.1. Also, permutations of F2C4 are exhibited such that

conjugation by these permutations give a way of permuting between any pair of

derivations of F2C4 whose matrix representations with respect to a basis are similar.

By way of contrast it is shown that no digraph of a derivation of F2C4 contains a
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7-cycle. Therefore by examining the properties of the digraphs of F2pC2ˆC2q and

F2C4, it has been shown that the group algebras are not isomorphic as rings.

It is shown in Section 4.4 that an involution of a group algebra KG permutes

DerpKGq, however in the case when KG is not commutative it is not an element

of AutpKGq. The automorphism group of F2pC2 ˆ C2q and the size of the auto-

morphism group of F2pC4 ˆ C4q are given in Section 4.5 as well as the unit group

of F2pC4 ˆ C4q.

By Theorem 3.1.18, if KG and KH are isomorphic as rings then |DerpKGq| “

|DerpKHq|. Thus counting derivations can be used to distinguish between group

algebras. The smallest example where counting derivations does not suffice is for

F2pC4ˆC4q and F2pC2ˆC8q, where |DerpF2pC4ˆC4qq| “ |DerpF2pC2ˆC8qq| “ 232.

Therefore other properties of DerpKGq and DerpKHq will need to be employed.

The maximum nilpotency index is one property of the derivations of a group algebra

that is investigated. It is shown in Lemma 4.6.5 that the maximum nilpotency

index for DerpF2nC2mq is 2m´1 ` 1. Maximum nilpotency index is then used to

distinguish between F2pC4 ˆ C4q and F2pC2 ˆ C8q. It is shown that the maximum

nilpotency index of F2pC4 ˆ C4q is 8, whereas the maximum nilpotency index of

F2pC2 ˆ C8q is at least 13.

4.1 Digraphs and Finite Dynamical Systems

Definition 4.1.1. [23] A finite dynamical system (FDS) is a pair pX, fq, where X

is a finite set and f is a function from X to X.

Definition 4.1.2. Let pX, fq be an FDS and let x P X. Then the orbit of x is

defined to be Opxq “ tfnpxq | n “ 0, 1, . . . u, where f 0pxq “ x.

Definition 4.1.3. [23] A linear finite dynamical system (LFDS) is an FDS, pV, fq,
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where V is a finite dimensional vector space over a finite field K and f is a K-linear

map from V to V .

Definition 4.1.4. [23] Let pX, fq and pY, gq be finite dynamical systems. An FDS-

morphism is a map φ : X Ñ Y such that φ ˝ f “ g ˝ φ. Therefore we have the

following commuting diagram:

X Y

X Y

f

φ

g

φ

pX, fq is isomorphic to pY, gq if there exists a bijective FDS-morphism from X to

Y .

Definition 4.1.5. A directed graph or digraph is an ordered pair Γ “ pVpΓ q, EpΓ qq,

where VpΓ q is a set whose elements are called vertices and EpΓ q is a set of ordered

pairs on the set VpΓ q, called directed edges or arcs.

A linear finite dynamical system, pV, fq has an associated digraph denoted

Γ pfq, where VpΓ pfqq “ tv | v P V u and EpΓ pfqq “ tpv, fpvqq | v P V u.

In order to study the dynamics of an FDS we seek a description of the set of

orbits, tOpxq | x P Xu. That is, we are looking for a description of the digraph

associated with the FDS.

Definition 4.1.6. Let Γ1 “ pVpΓ1q, EpΓ1qq and Γ2 “ pVpΓ2q, EpΓ2qq be digraphs.

An isomorphism φ between Γ1 and Γ2 is a bijection from VpΓ1q onto VpΓ2q such

that pa, bq P EpΓ1q if and only if pφpaq, φpbqq P EpΓ2q. Note that the direction of

the arcs is preserved.

Remark 4.1.7. [23] Isomorphic finite dynamical systems have isomorphic associ-

ated digraphs.
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Theorem 4.1.8. Let R and S be finite rings and let φ : R Ñ S be a ring isomor-

phism. Then there is a bijection Φ from DerpRq onto DerpSq such that Γ pΦpdqq

and Γ pdq are isomorphic digraphs, for all d P DerpRq.

Proof. By Theorem 3.1.18, Φ : DerpRq Ñ DerpSq defined by d ÞÑ φ ˝ d ˝ φ´1 is a

bijection. By Definition 4.1.4, φ : R Ñ S is an FDS-isomorphism from pR, dq to

pS, Φpdqq, for all d P DerpRq. Therefore by Remark 4.1.7, Γ pdq and Γ pΦpdqq are

isomorphic digraphs, for all d P DerpRq.

Definition 4.1.9. [23] Let pX, fq and pY, gq be FDS. Define the sum of pX, fq and

pY, gq, denoted by pX, fq ` pY, gq, to be the FDS pX \ Y, f \ gq, where X \ Y is

the disjoint union of the sets X and Y and f \ g : X \ Y Ñ X \ Y defined by

pf \ gqpaq “

$

’

’

&

’

’

%

fpaq if a P X,

gpaq if a P Y.

Definition 4.1.10. Let Γ1 and Γ2 be graphs. Define the sum of Γ1 and Γ2, denoted

Γ1`Γ2 to be the graph with vertex set VpΓ1q \VpΓ2q and edge set EpΓ1q \ EpΓ2q.

Remark 4.1.11. Let pX, fq and pY, gq be FDS. The digraph of the sum of pX, fq

and pY, gq is the sum of the digraphs of pX, fq and pY, gq. That is Γ pf \ gq “

Γ pfq ` Γ pgq.

Definition 4.1.12. [23] Let pX, fq and pY, gq be FDS. Define the product of pX, fq

and pY, gq, denoted by pX, fq ˆ pY, gq, to be the FDS pX ˆ Y, f ˆ gq, where X ˆ Y

is the cartesian product of the sets X and Y , and pf ˆ gqpx, yq “ pfpxq, gpyqq.

Definition 4.1.13. [20] Let v0 and vl be vertices of a graph or digraph, Γ . Then a

path from v0 to vl, of length l is a sequence v0, v1, . . . , vl of vertices of Γ such that

pvi, vi`1q P EpΓ q, for i “ 0, 1, . . . , l ´ 1. A weak path is a sequence v0, v1, . . . , vl of

vertices of a directed graph Γ such that either pvi, vi`1q or pvi`1, viq is an arc in Γ ,

for i “ 0, 1, . . . , l ´ 1.
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Definition 4.1.14. [20] A digraph is said to be strongly connected if there is a

path between any pair of vertices and weakly connected if there is a weak path

between any pair of vertices. An induced strongly / weakly connected subgraph

of Γ that is maximal with respect to inclusion of vertices is called a strong / weak

component of the digraph.

Definition 4.1.15. Let v be a vertex of a digraph Γ . The out degree of v, denoted

Outpvq, is the number of arcs whose first coordinate is v, that is Outpvq “ |tpv, aq P

EpΓ q | a P V pΓ qu|. Similarily, the in degree of v, denoted Inpvq, is the number of

arcs whose second coordinate is v.

Definition 4.1.16. [20] A cycle is a strongly connected digraph such that Inpvq “

Outpvq “ 1, for every vertex v.

Definition 4.1.17. The circumference of a digraph Γ is the length of the longest

cycle in the graph and is denoted by ΛpΓ q.

Definition 4.1.18. Let pV, fq be an FDS. An element t P V is called a terminal

element of the FDS if fptq “ t and for all v P V, fnpvq “ t for some positive integer

n.

Definition 4.1.19. [23] An FDS pV, fq is called a tree if it has a terminal element, t.

For a tree pV, fq, define the height of any v P V as the least nonnegative integer hpvq

such that fhpvqpvq “ t. Define the height of the tree as hpV q “ maxthpvq | v P V u.

Remark 4.1.20. Let the FDS, pV, fq be a tree. The associated digraph, Γ pfq will

also be referred to as a tree. Note that using the terminology from graph theory it

would be called a directed rooted tree (in-tree) with an added loop (an arc from a

vertex to itself) at the root (terminal vertex).

Definition 4.1.21. [23] The order of a polynomial f P KrXs denoted ordpfq is

the least positive integer r such that fpXq divides Xr´1. In [23] it was also noted
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that if f is irreducible and such that fp0q ‰ 0 and ordpfq “ e, for any s P N, then

ordpf sq “ ept, where p “ charpKq and t is the smallest integer satisfying pt ě s.

Definition 4.1.22. Let n be a positive integer and V an n-dimensional vector

space over a field K with B “ tb1, b2, . . . , bnu a basis for V . Let d : V Ñ V be a

K-linear map. Then define

rdsB “

»

—

—

—

—

—

—

—

–

a1,1 a1,2 . . . a1,n

a2,1 a2,2 . . . a2,n

...
...

. . .
...

an,1 an,2 . . . an,n

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, where dpbjq “
n
ÿ

i“1

ai,jbi.

Definition 4.1.23. Let V be a vector space. Then a map N : V Ñ V is nilpotent

if Nm is the zero map for some positive integer m. The least such integer m is

called the nilpotency index of N .

Definition 4.1.24. [23] Let V be a finite dimensional vector space over a field K.

Then a nilpotent map N : V Ñ V is a pure nilpotent map if the nilpotency index

of N is equal to the dimension of the generalised null space N8. This implies that

the dimension of the kernel of N is 1 and that there exists a basis B of V such that

the matrix rN sB has 1’s in the superdiagonal (the diagonal just above the main

diagonal) and 0’s in all other positions.

Definition 4.1.25. Let G be a finite group and let K be a finite field. Let d be

a derivation of KG, with associated digraph Γ pdq. Denote by ΛpDerpKGqq the

length of the longest cycle contained in the digraphs Γ pdq for any derivation d of

KG. That is, ΛpDerpKGqq “ maxtΛpΓ pdqq | d P DerpKGqu.

Definition 4.1.26. By the results of [23], the associated digraph of a LFDS is the

product of a tree and a sum of cycles. Therefore the orbit of any vertex v terminates

with a cycle, the length of this cycle is called the period of v and is denoted by
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perpvq. The length of the shortest path from v to any vertex in the terminating

cycle is called the preperiod of v and is denoted by pperpvq. Figure 4.1 illustrates an

example of a vertex (vertex 0) with period 4 and preperiod 3. Let d be a derivation

of a group algebra KG. Then the period (preperiod) of d, denoted perpdq (pperpdq)

is the maximum of the periods (preperiods) of the vertices of Γ pdq. Moreover, the

period (preperiod) of DerpKGq, denoted perpDerpKGqq (pperpDerpKGqq) is the

maximum of the periods (preperiods) of the derivations of KG.

0 1 2 3 4

56

Figure 4.1: The vertex 0 has preperiod 3 and period 4

Lemma 4.1.27. Let G be a group. Then the preperiod of DerpF2Gq is less than

or equal to |G|.

Proof. Let d P DerpF2Gq. Then by [23], Γ pdq “ Γ pNq ˆ Γ pBq, where Γ pNq is a

tree and Γ pBq is a sum of cycles. The preperiod of DerpF2Gq is the height of the

tree Γ pNq. By Theorems 2 and 3 of [23] the preperiod of DerpF2Gq is less than or

equal to |G|.

Remark 4.1.28. The preperiod of DerpF2pC2ˆC2qq attains the bound established

in Lemma 4.1.27 as the following example shows.

Example 4.1.29. Let d “ yBx ` By be a derivation of F2pC2 ˆ C2q. Then by

Lemma 4.1.27, the preperiod of DerpF2pC2 ˆ C2qq ď 4. However, the preperiod of

d is equal to 4, since xy ÞÑ 1` x ÞÑ y ÞÑ 1 ÞÑ 0.
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4.2 The Digraph of a derivation of F2pC2 ˆ C2q

In this section we look at the digraph of a particular element d of DerpF2pC2ˆC2qq.

It is shown that the digraph of d, denoted Γ pdq, contains a cycle of length 7. This

property of the digraph Γ pdq is used in Section 4.3 to contrast with the properties

of the digraphs of the elements of DerpF2C4q.

The following Theorems from [23] will be used in this section. Let V be a

finite dimensional vector space.

Definition 4.2.1. A nilpotent linear transformation T : V Ñ V is pure nilpotent

when its nilpotency index is equal to the dimension of V .

Theorem 4.2.2. [23] Let u : V Ñ V be a pure nilpotent map and let n be the

dimension of V . The digraph of u is a tree of height n with terminal point zero.

Each nonzero vector of the kernel belongs to a branch of height n of the tree. All

points with height n are sources and all the points of height less than n have in

degree q.

Theorem 4.2.3. [23] The graph of a nilpotent map is a product of pure trees

whose heights correspond to the size of the blocks in the Jordan canonical form of

the matrix representing the map.

Theorem 4.2.4. [23] Let pE, fq be a bijective FDS. Let cf pxq “ P r1
1 P

r2
2 . . . P rs

s

be the characteristic polynomial of f , where the polynomials Pi are irredudible and

pairwise relatively prime. Then the graph of f is the product of the graphs associated

with each P ri
i . For each i, there is an additional decomposition of each preceding

block into graphs of elementary components (rational decomposition).

Definition 4.2.5. The order of a polynomial g denoted ordpgq, is defined to be

the least positive integer r such that gpxq divides xr ´ 1.
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Theorem 4.2.6. [23] Let K be a finite field of characteristic p with q elements.

Let V be a vector space over K of finite dimension n. Let T : V Ñ V be a bijective

linear map. Suppose that the minimal polynomial of T is f “ gs, where g is an

irreducible polynomial of degree m. Then the cycle structure of the graph of f is

given by:

Γ pT q “ 1`
s
ÿ

i“1

qmi ´ qmpi´1q

ri
Cri ,

where 1 is the 0-cycle, Cri is a cycle of length ri and ri “ ordpgiq.

Theorem 4.2.7. [23] Let pV, fq be a LFDS. Then the digraph of f is equal to the

product of a tree, corresponding to the nilpotent part of f, by the cycles corresponding

to the bijective part of f.

Example 4.2.8. Let C2 ˆ C2 “ xx, y | x2 “ y2 “ rx, ys “ 1y. Let d be the

derivation of F2pC2 ˆ C2q defined by x ÞÑ 1 ` y ` xy and y ÞÑ xy. Then dp1q “ 0

and dpxyq “ dpxqy ` xdpyq “ p1 ` y ` xyqy ` xpxyq “ y ` 1 ` x ` y “ 1 ` x. We

now determine Γ pdq, the digraph of d. d is an F2-linear transformation and so we

can represent d as a 4 ˆ 4 matrix over F2. C2 ˆ C2 “ t1, x, y, xyu is a basis for

F2pC2 ˆC2q. For i “ 1, 2, 3, 4, let vi be the column vector of length 4 over F2 with

1 in position i and 0 in the other 3 positions. We use the following correspondence:

1 Ø v1 “

»

—

—

—

—

—

—

—

–

1

0

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

xØ v2 “

»

—

—

—

—

—

—

—

–

0

1

0

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

y Ø v3 “

»

—

—

—

—

—

—

—

–

0

0

1

0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

xy Ø v4 “

»

—

—

—

—

—

—

—

–

0

0

0

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Let B “ tvi | i “ 1, 2, 3, 4u. Then B is a basis for the vector space F4
2 and so by
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Definition 4.1.22

rdsB “

»

—

—

—

—

—

—

—

–

0 1 0 1

0 0 0 1

0 1 0 0

0 1 1 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The characteristic polynomial cdpXq and the minimal polynomial mdpXq of

rdsB were found using the computer algebra system SAGE [43] to be:

cdpXq “ mdpXq “ XpX3
`X ` 1q. (4.1)

Applying the Primary Decomposition Theorem 3.4.19 to d we can write the

vector space F2pC2ˆC2q as a direct sum of d-invariant subspaces. That is, F2pC2ˆ

C2q “ N8 ‘ R8, where N8 “ kerpdq and R8 “ kerpd3 ` d ` Iq, where I is the

identity map on F2pC2ˆC2q. Let dN and dR denote the restriction of d to N8 and

R8 respectively.

We first look at N8. N8 “ kerpdq and so the nilpotency index of dN is 1.

Moreover, let α “ a01` a1x` a2y ` a3xy P F2pC2 ˆ C2q. Then

dpαq “ dpa01` a1x` a2y ` a3xyq “ a1p1` y ` xyq ` a2pxyq ` a3p1` xq

“ pa1 ` a3qp1q ` a3x` a1y ` pa1 ` a2qxy.

Therefore dpαq “ 0 if and only if a1 “ a2 “ a3 “ 0, that is, dpαq “ 0 if and only

if α “ 0 or 1. Thus the dimension of N8 “ kerpdq is 1. This implies that the

nilpotency index of dN is equal to the dimension of N8 and so by Definition 4.1.24,

dN is a pure nilpotent map. Therefore by Theorem 4.2.2, the digraph of dN , Γ pdNq

is a tree of height 1 and terminal vertex 0. Γ pdNq, the digraph of dN is drawn in

Figure 4.2.
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01

Figure 4.2: Γ pdNq, the digraph of dN

We now look at R8. R8 “ kerpd3 ` d ` Iq and so the minimal polynomial

of dR is mdRpXq “ X3 ` X ` 1. Neither 0 nor 1 is a root of X3 ` X ` 1 and

so X3 `X ` 1 is irreducible over F2. Also ordpX3 `X ` 1q was computed using

SAGE [43] to be 7. Therefore by Theorem 4.2.6 the digraph of dR is given by

Γ pdRq “ 1` C7, where 1 is the loop at the node 0 and C7 is a 7-cycle. Γ pdRq, the

digraph of dR is drawn in Figure 4.3.

0 1` x

1` y ` xy 1` x` xy x` y ` xy

x` y1` yxy

Figure 4.3: Γ pdRq, the digraph of dR

By Theorem 4.2.7 the digraph of the derivation d, Γ pdq is the product of Γ pdRq

with Γ pdNq, that is, Γ pdq “ Γ pdRq ˆ Γ pdNq and is illustrated in Figure 4.4. The

vertex pa, bq corresponds with the element a` b of F2pC2 ˆ C2q.

4.3 Digraphs of the Derivations of F2C4

In this section we look at the digraph of the elements of DerpF2C4q. It is shown that

none of the digraphs contain a cycle of length 7. Therefore the digraph Γ pdq illus-

trated in Figure 4.4 is not isomorphic to the digraph of any element of DerpF2C4q.

The elements of DerpF2C4q are partitioned by conjugacy class and the associated
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p0, 0q

p0, 1q

p1` x, 0q

pxy, 1q

p1` y ` xy, 0q

p1` x, 1q

p1` x` xy, 0q

p1` y ` xy, 1q

px` y ` xy, 0q

p1` x` xy, 1q

px` y, 0q

px` y ` xy, 1q

p1` y, 0q

px` y, 1q

pxy, 0q

p1` y, 1q

Figure 4.4: Γ pdq, the digraph of d

digraphs are drawn in Figures 4.5 - 4.10. Also, permutations of F2C4 are exhibited

such that conjugation by these permutations, maps any derivation of F2C4 to any

similar derivation of F2C4, that is the matrices representing the derivations are

similar.

Example 4.3.1. Let C4 “ xz | z
4 “ 1y. Let D be any derivation of F2C4 and let

Dpzq “ a01` a1z ` a2z
2 ` a3z

3. Recall that for any derivation of a group algebra,

Dp1q “ 0. D is an F2-linear transformation and so we can represent D as a 4 ˆ 4

matrix over F2. For i “ 1, 2, 3, 4, let vi be the column vector of length 4 over

F2 with a 1 in position i and a 0 in the other 3 positions. We use the following

correspondence:

1 Ø v1 z Ø v2 z2
Ø v3 z3

Ø v4.

Let B “ tvi | i “ 1, 2, 3, 4u. Then B is a basis for the vector space F4
2 and so by
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Definition 4.1.22

rDsB “

»

—

—

—

—

—

—

—

–

0 a0 0 a2

0 a1 0 a3

0 a2 0 a0

0 a3 0 a1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (4.2)

At least 2 of the 4 columns contain all zeros and so dimpN8q ě 2, for all

D P DerpF2C4q. Therefore by Theorem 3.4.15 dimpR8q ď 2 and so there are not

enough elements in R8 to form a 7-cycle. Therefore the digraph Γ pDq cannot

contain a 7-cycle for any D P DerpF2C4q. Let d be the derivation of F2pC2 ˆ C2q

defined in Example 4.2.8. Then Γ pdq contains a 7-cycle and so it is not isomorphic

to Γ pDq, for any D P DerpF2C4q. Therefore by Theorem 4.1.8, F2pC2 ˆ C2q and

F2C4 are not isomorphic as rings.

Remark 4.3.2. Derivations and their associated digraphs have been used to show

that two modular group algebras are not ring isomorphic. This has the potential

to be a useful tool.

Definition 4.3.3. Let n be a positive integer and let A and B be nˆ n matrices

over a field K. Then B is a conjugate of A, if there exists an invertible nˆn matrix

P over K, such that B “ P´1AP . The conjugacy classes partition the set of nˆn

matrices over a field K. Matrices that are in the same conjugacy class are called

similar.

Remark 4.3.4. Let V be a finite dimensional vector space over a finite field K

and let f : V Ñ V be a K-linear map. Then f can be represented by a matrix

over the field K which is dependant on the chosen basis. A change of basis ma-

trix represents a bijective K-linear map and will induce an isomorphism of finite

dynamical systems [23]. Thus by Remark 4.1.7 similar matrices have isomorphic

associated digraphs.
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Remark 4.3.5. Let G be a finite group of order n and K a finite field. Let

d P DerpKGq and let P be a bijective K-linear map from KG to KG. Let B be a

basis for the vector space Kn and define rDsB “ rP
´1sBrdsBrP sB. By Remark 4.3.4

similar matrices have isomorphic associated digraphs. However, as Example 4.3.6

shows the matrix rDsB may not represent a derivation of KG, with respect to the

basis B.

Example 4.3.6. Let C4 “ xz | z4 “ 1y and let B be the basis for F4
2 as in

Example 4.3.1. Moreover, let

M “

»

—

—

—

—

—

—

—

–

0 a0 0 a2

0 a1 0 a3

0 a2 0 a0

0 a3 0 a1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, rP sB “

»

—

—

—

—

—

—

—

–

1 1 0 1

0 1 0 0

0 1 1 0

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, rdsB “

»

—

—

—

—

—

—

—

–

0 0 0 0

0 0 0 1

0 0 0 0

0 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and rDsB “

»

—

—

—

—

—

—

—

–

0 1 0 1

0 0 0 1

0 0 0 1

0 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where ai P F2 for i “ 0, 1, 2, 3. By Equation 4.2 any derivation of F2C4 is repre-

sented by the matrix M for some ai P F2. Note that d is the derivation of F2C4

defined by dpzq “ z3. The matrix rP´1sBrdsBrP sB was computed using SAGE [43]

to be the matrix rDsB listed above. Note that M ‰ rDsB for any ai P F2. Therefore

rDsB does not represent a derivation of F2C4 with respect to the basis B.

Remark 4.3.7. As stated in Example 4.3.6 any derivation of F2C4 is represented

by the matrix M for some ai P F2. The product of 2 such matrices is given by:

M1M2 “

»

—

—

—

—

—

—

—

–

0 a0 0 a2

0 a1 0 a3

0 a2 0 a0

0 a3 0 a1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

—

—

—

–

0 b0 0 b2

0 b1 0 b3

0 b2 0 b0

0 b3 0 b1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

0 a0b1 ` a2b3 0 a0b3 ` a2b1

0 a1b1 ` a3b3 0 a1b3 ` a3b1

0 a0b3 ` a2b1 0 a0b1 ` a2b3

0 a1b3 ` a3b1 0 a1b1 ` a3b3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

The product M1M2 represents the derivation of F2C4 defined by z ÞÑ pa0b1`a2b3q`

pa1b1 ` a3b3qz ` pa0b3 ` a2b1qz
2 ` pa1b3 ` a3b1qz

3. Therefore DerpF2C4q is closed
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under composition. However as Example 4.3.8 shows, DerpRq is not closed under

composition for a general ring R. It would be interesting to find all KG such that

DerpKGq is closed under multiplication. In such cases DerpKGq would form a

K-algebra.

Example 4.3.8. Let C4 ˆ C4 “ xx, y | x4 “ y4 “ rx, ys “ 1y. Let Bx be the

derivation of F2pC4 ˆ C4q defined by x ÞÑ 1, y ÞÑ 0. Similarly Let By be the

derivation of F2pC4 ˆ C4q defined by x ÞÑ 0, y ÞÑ 1. Then

pBx ˝ Byqpxyq “ Bxpxq “ 1, and

pBx ˝ Byqpxqy ` xpBx ˝ Byqpyq “ 0` 0 “ 0.

Therefore pBx ˝ Byq R DerpF2pC4 ˆ C4qq, since it does not obey Leibniz’s rule.

Remark 4.3.9. Let R be a unital ring. Then although DerpRq is not closed under

composition it does form a Lie algebra. This is the subject of Chapter 5.

Definition 4.3.10. Let n and m be positive integers and let p be a prime number.

Denote by Mpn, pmq the ring of nˆ n matrices over Fpm and by GLpn, pmq be the

set of invertible elements of Mpn, pmq.

Definition 4.3.11. Let A P Mpn, pmq. Define CpAq to be the centraliser of A in

Mpn, pmq. That is, CpAq “ tM PMpn, pmq |MA “ AMu.

Example 4.3.12. Let C4 “ xz | z
4 “ 1y. By Theorem 2.3.4 a derivation of F2C4

is defined by dpzq. We now consider conjugating the matrix representation of d

by elements of GL4pF2q. Table 4.1 shows the partition of DerpF2C4q according to

conjugacy class. The contents of Table 4.1 were computed using SAGE [43].

Let d P DerpF2C4q. By Definition 4.3.11, M´1rdsBM “ rdsB, for all M P

CprdsBqXGLp4, 2q. Moreover, let P be an element of GLp4, 2q, such that P´1rdsBP

“ rDsB, for some D P DerpF2C4q. Then pMP q´1rdsBpMP q “ rDsB, for all
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class dpzq cdpXq mdpXq

1 0 X4 X

2 z3, 1` z3, z2 ` z3, 1` z2 ` z3 X2pX ` 1q2 XpX ` 1q2

3 1, z2 X4 X2

4 z, 1` z, z ` z2, 1` z ` z2 X2pX ` 1q2 XpX ` 1q

5 1` z2, z ` z3, 1` z ` z2 ` z3 X4 X2

6 1` z ` z3, z ` z2 ` z3 X4 X3

Table 4.1: The elements of DerpF2C4q partitioned by conjugacy class

M P CprdsBq X GLp4, 2q. Let T be a right transversal of CprdsBq X GLp4, 2q

in GLp4, 2q. Then conjugating rdsB by an element of T may not result in a matrix

which represents a derivation with respect to the basis B. This was highlighted

in Example 4.3.6. The non zero derivations of F2C4 form 5 conjugacy classes. In

Table 4.2 a representative rds is chosen for each of the 5 classes. For each represen-

tative and for every other derivation D in the same conjugacy class, a matrix P is

given such that P conjugates rds to rDs.

The digraphs associated with the derivations in each conjugacy class are illus-

trated in Figures 4.5 - 4.10.

0

1 1` z z
1` z2

`z3
z2 ` z3

1` z

`z3
z ` z3

z ` z2

`z3

1` z`

z2 ` z3
z ` z2

1` z

`z2
1` z2z2z3

1` z3

Figure 4.5: The digraph of the derivation in class 1 of Table 4.1
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class d P1 P´1
1 rdsP1 P2 P´1

2 rdsP2

2

»

—

–

0 0 0 0
0 0 0 1
0 0 0 0
0 1 0 0

fi

ffi

fl

»

—

–

1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

fi

ffi

fl

»

—

–

0 1 0 0
0 0 0 1
0 0 0 1
0 1 0 0

fi

ffi

fl

»

—

–

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

fi

ffi

fl

»

—

–

0 0 0 1
0 0 0 1
0 1 0 0
0 1 0 0

fi

ffi

fl

»

—

–

1 1 0 1
0 1 0 0
0 1 1 1
0 0 0 1

fi

ffi

fl

»

—

–

0 1 0 1
0 0 0 1
0 1 0 1
0 1 0 0

fi

ffi

fl

3

»

—

–

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

fi

ffi

fl

»

—

–

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

fi

ffi

fl

»

—

–

0 0 0 1
0 0 0 0
0 1 0 0
0 0 0 0

fi

ffi

fl

4

»

—

–

0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

fi

ffi

fl

»

—

–

1 0 0 1
0 1 0 0
0 1 1 0
0 0 0 1

fi

ffi

fl

»

—

–

0 0 0 1
0 1 0 0
0 1 0 0
0 0 0 1

fi

ffi

fl

»

—

–

1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

fi

ffi

fl

»

—

–

0 1 0 0
0 1 0 0
0 0 0 1
0 0 0 1

fi

ffi

fl

»

—

–

1 1 0 1
0 1 0 0
0 1 1 1
0 0 0 1

fi

ffi

fl

»

—

–

0 1 0 1
0 1 0 0
0 1 0 1
0 0 0 1

fi

ffi

fl

5

»

—

–

0 1 0 1
0 0 0 0
0 1 0 1
0 0 0 0

fi

ffi

fl

»

—

–

0 1 1 0
1 1 0 1
0 0 0 1
1 0 0 0

fi

ffi

fl

»

—

–

0 0 0 0
0 1 0 1
0 0 0 0
0 1 0 1

fi

ffi

fl

»

—

–

1 0 1 1
1 0 0 1
0 0 0 1
1 1 0 0

fi

ffi

fl

»

—

–

0 1 0 1
0 1 0 1
0 1 0 1
0 1 0 1

fi

ffi

fl

6

»

—

–

0 1 0 0
0 1 0 1
0 0 0 1
0 1 0 1

fi

ffi

fl

»

—

–

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

fi

ffi

fl

»

—

–

0 0 0 1
0 1 0 1
0 1 0 0
0 1 0 1

fi

ffi

fl

Table 4.2: Derivations of the same class exhibited as conjugates
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13

67
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10 11 1214

15 16

Figure 4.6: The digraph of the 4 derivations in class 2 of Table 4.1

1

2

3 4 5

7

6 8

14

910 11 12 13 15 16

Figure 4.7: The digraph of the 2 derivations in class 3 of Table 4.1

1

2

3

4

5

67 8

15

910 11 12 1314 16

Figure 4.8: The digraph of the 4 derivations in class 4 of Table 4.1
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Figure 4.9: The digraph of the 3 derivations in class 5 of Table 4.1

1
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12
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Figure 4.10: The digraph of the 2 derivations in class 6 of Table 4.1

Example 4.3.13. In Example 4.3.12 the graphs were computed using GAP [18].

In this example we show how the graphs of the derivations of F2C4 defined by

ds,tpzq “ s ` z ` tz2, for s, t P F2 can be determined using the Invariant Factor
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Decomposition Algorithm [16, p. 480]. By Example 4.3.6

rds,ts “

»

—

—

—

—

—

—

—

–

0 s 0 t

0 1 0 0

0 t 0 s

0 0 0 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Let F2rxs be the polynomial ring over the indeterminate x and let I be the iden-

tity element of M4pF2q, the full ring of 4 ˆ 4 matrices over F2. We now perform

elementary row and column operations on xI ´ rds,ts to transform xI ´ rds,ts into

the unique matrix of the form

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

1

. . .

1

f1pxq

. . .

fmpxq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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such that fipxq P F2rxs for i “ 1, 2, . . .m and f1pxq | f2pxq | ¨ ¨ ¨ | fmpxq.

xI ´ rds,ts “

»

—

—

—

—

—

—

—

–

x s 0 t

0 x` 1 0 0

0 t x s

0 0 0 x` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

r1`r2`r3 ÞÑr2
ÝÝÝÝÝÝÝÝÑ

»

—

—

—

—

—

—

—

–

x s 0 t

x x` s` t` 1 x s` t

0 t x s

0 0 0 x` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

c2`c3`c4 ÞÑc2
ÝÝÝÝÝÝÝÝÑ

»

—

—

—

—

—

—

—

–

x s` t 0 t

x 1 x s` t

0 x` s` t x s

0 x` 1 0 x` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

r1Ør2
ÝÝÝÝÑ
c1Øc2

»

—

—

—

—

—

—

—

–

1 x x s` t

s` t x 0 t

x` s` t 0 x s

x` 1 0 0 x` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

r2`r3 ÞÑr3
ÝÝÝÝÝÝÝÝÝÝÑ
r1`r2`r3`r4 ÞÑr4

»

—

—

—

—

—

—

—

–

1 x x s` t

s` t x 0 t

x x x s` t

0 0 0 x` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ps`tqr1`r2 ÞÑr2
ÝÝÝÝÝÝÝÝÝÑ
xr1`r3 ÞÑr3

»

—

—

—

—

—

—

—

–

1 x x s` t

0 ps` t` 1qx ps` tqx s

0 x2 ` x x2 ` x ps` tqpx` 1q

0 0 0 x` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

c2`c3 ÞÑc2
ÝÝÝÝÝÝÑ

»

—

—

—

—

—

—

—

–

1 0 x s` t

0 x ps` tqx s

0 0 x2 ` x ps` tqpx` 1q

0 0 0 x` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

r2`r4 ÞÑr2
ÝÝÝÝÝÝÑ
c2`c4 ÞÑc4

»

—

—

—

—

—

—

—

–

1 0 x s` t

0 x ps` tqx s` 1

0 0 x2 ` x ps` tqpx` 1q

0 0 0 x` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Notice that the entries of the last 2 matrices are the same except for the entry

in row 2 column 4, one of which is a 1 and the other a zero. Therefore we can

transform xI ´ rds,ts to

»

—

—

—

—

—

—

—

–

1 0 x s` t

0 x ps` tqx 1

0 0 x2 ` x ps` tqpx` 1q

0 0 0 x` 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

c4 ÞÑc2, c2 ÞÑc3
ÝÝÝÝÝÝÝÝÑ

c3 ÞÑc4

»

—

—

—

—

—

—

—

–

1 s` t 0 x

0 1 x ps` tqx

0 ps` tqpx` 1q 0 x2 ` x

0 x` 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Note the entry in row 3 column 2. It is either 0 (if s ` t “ 0) or performing the
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row operation r3 ` r4 ÞÑ r3 leaves the matrix unchanged except for changing the

entry in row 3 column 2 to a 0. Therefore we can transform xI ´ rds,ts to

»

—

—

—

—

—

—

—

–

1 s` t 0 x

0 1 x ps` tqx

0 0 0 x2 ` x

0 x` 1 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

px`1qr2`r4 ÞÑr4
ÝÝÝÝÝÝÝÝÝÑ

»

—

—

—

—

—

—

—

–

1 s` t 0 x

0 1 x ps` tqx

0 0 0 x2 ` x

0 0 x2 ` x ps` tqpx2 ` xq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

r3Ør4
ÝÝÝÝÑ

»

—

—

—

—

—

—

—

–

1 s` t 0 x

0 1 x ps` tqx

0 0 x2 ` x ps` tqpx2 ` xq

0 0 0 x2 ` x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

ÝÑ

»

—

—

—

—

—

—

—

–

1 0 0 0

0 1 0 0

0 0 x2 ` x 0

0 0 0 x2 ` x

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Therefore f1pxq “ f2pxq “ xpx ` 1q. The polynomials f1 and f2 are called the

invariant factors of rds,ts. The elementary factors of rds,ts are the set of factors of

the invariant factors of rds,ts [16, p. 494]. That is the set of elementary factors of

ds,t is tx, x, px`1q, px`1qu. rds,ts has a Jordan form J , since the eigenvalues 0 and

1 are in the field. Therefore the Jordan blocks of J are r0s, r0s, r1s and r1s. Thus

by [23] the derivations ds,t are the derivations in class 4 of Example 4.3.12 and the

graph associated with these derivations is illustrated in Figure 4.8.

Remark 4.3.14. The ring of constants of a unital ring R was defined in Defini-

tion 3.1.15. Let C4 “ xz | z
4 “ 1y. Then the ring of constants of F2C4 is given by

CpF2C4q “ t0, 1, z2, 1` z2u.

Lemma 4.3.15. Let C4 “ xz | z
4 “ 1y and let c P CpF2C4q “ t0, 1, z2, 1 ` z2u.

Furthermore, let ρc : C4 Ñ F2C4 be the map defined by 1 ÞÑ 1, z ÞÑ z ` c, z2 ÞÑ z2

and z3 ÞÑ z2pz ` cq. Extend ρc, F2-linearly to F2C4 and denote this function also

by ρc. Then

(i) ρc is a permutation of F2C4 of order 2.
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(ii) ρc ˝ d ˝ ρc is a derivation of F2C4, where d is the derivation of F2C4 defined

by dpzq “ z.

(iii) Every derivation of F2C4 whose associated digraph is isomorphic to Γ pdq is

of the form ρc ˝ d ˝ ρc, for some c P CpF2C4q.

Proof. (i) CpF2C4q is the subspace of F2C4 with basis t1, z2u. ρc is the identity

map on CpF2C4q, since it is an F2-linear mapping which is the identity on a basis

for CpF2C4q. Therefore ρcpcq “ c and ρcpz
2cq “ z2c. Thus

ρ2
cpzq “ ρcpz ` cq “ ρcpzq ` ρcpcq “ z ` c` c “ z and

ρ2
cpz

3
q “ ρcpz

2
pz ` cqq “ ρcpz

3
q ` ρcpz

2cq “ z3
` z2c` z2c “ z3.

Therefore ρc is a permutation of F2C4 of order 2.

(ii) Let D “ ρc˝d˝ρc. Then Dpzq “ ρc˝d˝ρcpzq “ ρc˝dpz`cq “ ρcpzq “ z`c. By

Theorem 2.3.4 there is a unique derivation of F2C4 which maps z to z` c. D is an

F2-linear map since it is the composition of F2-linear maps. If i ” 0 (mod 2), then

Dpziq “ ρc ˝ d ˝ ρcpz
iq “ ρc ˝ dpz

iq “ 0 “ izi´1Dpzq. If i ” 1 (mod 2), then Dpziq “

ρc ˝ d ˝ ρcpz
iq “ ρc ˝ dpz

i ` zi´1cq “ ρcpz
iq “ zi´1pz ` cq “ izi´1Dpzq. Therefore

Dpzi`jq “ pi` jqzi`j´1Dpzq “ izi´1Dpzqzj ` zijzj´1Dpzq “ Dpziqzj ` ziDpzjq, for

all integers i and j. Let α “
3
ÿ

i“0

aiz
i and β “

3
ÿ

i“0

biz
i. Then

Dpαβq “
3
ÿ

i“0

3
ÿ

j“0

aibjDpz
i`j
q “

3
ÿ

i“0

3
ÿ

j“0

aibjpDpz
i
qzj ` ziDpzjqq “ Dpαqβ ` αDpβq.

Therefore D is the unique derivation of F2C4 which maps z to z ` c.

(iii) The derivations of F2C4 that have an associated digraph isomorphic to Γ pdq

are the 4 derivations of class 4 in Table 4.1. They are the derivations ρc ˝ d ˝ ρc for

c P CpF2C4q. In Table 4.2, on the first row of class 4 the matrix P1 represents ρz2

and P2 represents ρ1. The matrix P1 on the second row represents ρ1`z2 .
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Remark 4.3.16. Similarly it can be shown that conjugation by ρc permutes the

derivations of class 2 of Table 4.1.

Lemma 4.3.17. Let C4 “ xz | z
4 “ 1y and let ρ : C4 Ñ F2C4 be the map defined

by 1 ÞÑ 1, z ÞÑ z3, z2 ÞÑ z2 and z3 ÞÑ z. Extend ρ F2-linearly to F2C4 and denote

this function also by ρ. Then ρ is a permutation of F2C4 of order 2 and for k P F2,

conjugation by ρ permutes the derivations d and δ of F2C4, defined by dpzq “ 1`kẑ

and δpzq “ z2 ` kẑ.

Proof. ρ2 is the identity map on F2C4, since it is an F2-linear map that is the

identity map on a basis for F2C4, namely the elements of the group C4. Therefore

ρ is a permutation of F2C4 of order 2.

Let k P F2, let d be the derivation of F2C4 defined by dpzq “ 1 ` kẑ and let

D “ ρ˝d˝ρ. We will now show that D “ δ, by showing that D is an F2-linear map

that agrees with δ on a basis for F2C4, namely C4. D is an F2-linear map since it

is the composition of F2-linear maps. Note that ρpkẑq “ kẑ and so

for i ” 0 (mod 2), Dpziq “ ρ ˝ d ˝ ρpziq “ ρ ˝ dpziq “ 0 “ izi´1
pz2
` kẑq “ δpziq

and for i ” 1 (mod 2), Dpziq “ ρ ˝ d ˝ ρpziq “ ρ ˝ dpzi`2
q “ ρppi` 2qzi`1

p1` kẑqq

“ ρpzi`1
p1` kẑqq “ ρpzi`1

` kẑq “ zi`1
` kẑ “ zi´1

pz2
` kẑq “ izi´1δpzq “ δpziq.

Therefore D “ ρ˝d˝ρ “ δ, the unique derivation of F2C4 which maps z to z2`kẑ.

This implies that d “ ρ˝δ˝ρ. Therefore conjugation by ρ permutes the derivations

d and δ of F2C4.

Lemma 4.3.18. Let C4 “ xz | z
4 “ 1y and let ψ : C4 Ñ F2C4 be the map defined

by 1 ÞÑ 1` z ` z3, z ÞÑ z3, z2 ÞÑ 1 and z3 ÞÑ 1` z ` z2. Extend ψ, F2-linearly to

F2C4 and denote this function also by ψ. Let d,D and δ be the derivations of F2C4

defined by dpzq “ 1` z2, Dpzq “ z ` z3 and δpzq “ ẑ. Then ψ is a permutation of

F2C4 of order 3. Moreover, D “ ψ ˝ d ˝ ψ2 and δ “ ψ2 ˝ d ˝ ψ.
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Proof. The proof follows along the same lines as those of Lemmas 4.3.15 and 4.3.17

and is omitted.

Remark 4.3.19. The conjugacy classes of the derivations of F2C4 are given in

Table 4.1. In Table 4.2 classes 2 and 4 have the same 3 permutation matrices P1

and P2 (note that there are 2 P1 matrices as there are 2 rows in the table for these

classes). These matrices represent ρc, where c P z2, 1, 1` z2. Therefore the maps ρc

of Lemma 4.3.15 permute the derivations of Class 2 and 4 by conjugation. The map

ρ of Lemma 4.3.17 permute the derivations of Class 3 and 6 by conjugation. The

maps ψ and ψ2 of Lemma 4.3.18 permute the derivations of Class 5 by conjugation.

Therefore conjugation by these maps gives a way of permuting any pair of similar

derivations of F2C4.

4.4 Permutations of Derivations

By Theorem 3.1.20, conjugation by θ P AutpKGq is a permutation on DerpKGq.

The converse of this statement is not true. If conjugation by a map θ : KGÑ KG

permutes DerpKGq, then θ does not have to be an algebra automorphism of KG.

The permutations ρc of Lemma 4.3.15 are not additive and so are not algebra

automorphisms of F2C4. Example 4.4.2 presents another interesting example of a

map θ R AutpKGq such that conjugation by θ permutes DerpKGq.

Definition 4.4.1. An involution is defined to be an anti-automorphism of order

2 of a ring. Let θ be an involution on the group algebra KG. Then for α, β P KG

1. θpα ` βq “ θpαq ` θpβq,

2. θpθpαqq “ α,

3. θpαβq “ θpβqθpαq.
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Example 4.4.2. Let K be a finite field and G a finite non commutative group.

Further, let θ be an involution of the group algebra KG and let g1 and g2 be

non commuting elements of G. Then since θ is bijective, θpg1g2q ‰ θpg2g1q and

so θpg2qθpg1q ‰ θpg1qθpg2q. Therefore θ is not an automorphism of KG since

θpg1g2q “ θpg2qθpg1q ‰ θpg1qθpg2q “ θpg2g1q. We now show that D “ θ´1 ˝ d ˝ θ

is a derivation of KG whenever d is a derivation of KG. Let d P DerpKGq and

α, β P KG. Write α “
ř

gPG agg and β “
ř

hPG bhh. Then since θ´1 “ θ,

Dpαβq “ θ ˝ d ˝ θpαβq “ θ ˝ d
`

θpβqθpαq
˘

“ θ
´

d
`

θpβq
˘

θpαq ` θpβqd
`

θpαq
˘

¯

“ θ
´

d
`

θpβq
˘

θpαq
¯

` θ
´

θpβqd
`

θpαq
˘

¯

“ θ2
pαq

`

θ ˝ d ˝ θpβq
˘

`
`

θ ˝ d ˝ θpαq
˘

θ2
pβq “ αDpβq `Dpαqβ.

Therefore D is a derivation of KG. We have shown that conjugation by an invo-

lution θ is a permutation on DerpKGq and θ R AutpKGq.

In particular, the classical involution θ ofKG, defined by
ř

gPG agg ÞÑ
ř

gPG agg
´1

is an example of an involution. θ does permute DerpKGq, however in the case when

KG is not commutative it is not an element of AutpKGq.

4.5 Automorphisms of Small Group Algebras

Lemma 4.5.1. Let KG “ F2pC2ˆC2q, where C2ˆC2 “ xx, y | x
2 “ y2 “ rx, ys “

1y. Let θpa,i,b,jq : KGÑ KG be the F2-linear extension of the map from G into KG

defined by

1 ÞÑ 1, x ÞÑ a` iĜ, y ÞÑ b` jĜ and xy ÞÑ ab` pi` jqĜ,
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where a P tx, y, xyu, b P tx, y, xyuztau and i, j P F2. Then θpa,i,b,jq are the

automorphisms of KG and AutpKGq » S4, the symmetric group on 4 objects.

Proof. Let UpKGq denote the unit group of KG. Then any automorphism of KG

is an F2-linear extension of a map from G into UpKGq, such that 0 ÞÑ 0 and 1 ÞÑ 1.

The units of KG are the elements of augmentation 1 and so t1, x, y, xy, 1`Ĝ, x`

Ĝ, y` Ĝ, xy` Ĝu is the set of elements of UpKGq. Let θ be an automorphism of

KG. Then θ is an F2-linear extension of a map defined by

1 ÞÑ 1, x ÞÑ u, y ÞÑ v and xy ÞÑ uv,

where u, v P UpKGq. However θ is a bijection and so u ‰ 1, v ‰ 1 and u ‰ v.

Therefore write u “ 1` z1 and v “ 1` z2, where z1 and z2 are distinct elements of

∆pGqzt0u. Therefore

θpĜq “ θp1q ` θpxq ` θpyq ` θpxyq “ 1` 1` z1 ` 1` z2 ` p1` z1qp1` z2q “ z1z2.

θpĜq ‰ 0, since θp0q “ 0. Ĝ P annp∆pGqq and z2 “ 0, for all z P ∆pGq. Thus

z1 ‰ Ĝ, z2 ‰ Ĝ and z2 ‰ z1` Ĝ. This implies that u “ a` iĜ and v “ b` jĜ, for

some a P tx, y, xyu, b P tx, y, xyuztau and i, j P F2 and so θ “ θpa,i,b,jq.

Note that θpĜq “ Ĝ, since for some g, h P G such that g ‰ h and i, j P F2,

z1z2 “ p1` uqp1` vq “ p1` g ` iĜqp1` h` jĜq

“ 1` h` jĜ` g ` gh` jĜ` iĜ` iĜ` 0 “ 1` g ` h` gh “ Ĝ.

Let a P tx, y, xyu, b P tx, y, xyuztau and i, j P F2 and let θ “ θpa,i,b,jq. We now

show that θ P AutpKGq. Let ε be the augmentation map of KG. Then εpαq “ α2,

for any α P KG. Moreover, KG is commutative and so θpghq “ θpgqθphq, for any
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g, h P G. Let α, β P KG and write α “
ř

gPG agg and β “
ř

hPG bhh. Then

θpαβq “ θp
ÿ

gPG

ÿ

hPG

agbhghq “
ÿ

gPG

ÿ

hPG

agbhθpghq

“
ÿ

gPG

ÿ

hPG

agbhθpgqθphq “
ÿ

gPG

agθpgq
ÿ

hPG

bhθphq “ θpαqθpβq.

Therefore θ is an algebra endomomorphism.

We will now show that θ is invertible and has order less than or equal to 4.

Recall that θpĜq “ Ĝ. There are 2 cases which we shall treat separately.

Case 1. a ‰ x, b ‰ y and ab ‰ xy.

There are 2 subcases. The first is a “ y and the second is a “ xy.

Case 1(a). Let a “ y and i, j P F2. Then b “ xy, since b ‰ y and if b “ x, then

ab “ xy. The order of θpa,i,b,jq is 3, since

θ3
pa,i,b,jqpxq “ θ2

pa,i,b,jqpy ` iĜq “ θpa,i,b,jqpxy ` pi` jqĜq “ ab “ x and

θ3
pa,i,b,jqpyq “ θ2

pa,i,b,jqpxy ` jĜq “ θpa,i,b,jqpx` iĜq “ y.

Case 1(b). a “ xy and i, j P F2. Then b “ x, since b ‰ y. The order of θpa,i,b,jq is

3, since

θ3
pa,i,b,jqpxq “ θ2

pa,i,b,jqpxy ` iĜq “ θpa,i,b,jqpy ` jĜq “ x and

θ3
pa,i,b,jqpyq “ θ2

pa,i,b,jqpx` jĜq “ θpa,i,b,jqpxy ` pi` jqĜq “ y.

Therefore the order of θpa,i,b,jq is 3 in Case 1.

Case 2. Either a “ x or b “ y or ab “ xy.

Case 2(a) a “ x: Then θ2
pa,i,b,jqpxq “ θpa,i,b,jqpx` iĜq “ x.

Case 2(b) a ‰ x and b “ y: Thus a “ xy and so ab “ x. Therefore θ2
pa,i,b,jqpxq “

θpa,i,b,jqpxy ` iĜq “ x` jĜ.

Case 2(c) a ‰ x, b ‰ y and ab “ xy: Thus a “ y and b “ x. Therefore θ2
pa,i,b,jqpxq “
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θpa,i,b,jqpy ` iĜq “ x` pi` jqĜ.

Therefore θ2
pa,i,b,jqpxq “ x ` lĜ, for some l P F2. Likewise it can be shown that

θ2
pa,i,b,jqpyq “ y `mĜ, for some m P F2 and so θ4

pa,i,b,jq is the identity map.

Therefore θpa,i,b,jq is invertible and thus is an automorphisim of KG. There are

6 elements a` iĜ and 4 elements b` jĜ, where a P tx, y, xyu, b P tx, y, xyuztau

and i, j P F2. Thus AutpKGq is a group of order 24 such that the maximum order

of an element is 4. Therefore AutpKGq » S4, the symmetric group on 4 objects

[18].

Example 4.5.2. Let KG “ F2pC2ˆC2q, where C2ˆC2 “ xx, y | x
2 “ y2 “ rx, ys “

1y. There are 28 derivations of KG by Theorem 2.3.4. Theorem 3.1.20 implies that

the elements of AutpKGq permute the derivations of KG by conjugation. In this

example, the graph isomorphism classes of the derivations of KG are determined

and categorised by preperiod length. Let d be a derivation of KG and let mdpXq “

XmfpXq, where fp0q ‰ 0 be the minimal polynomial of d. Then the preperiod of d

is m [23]. The 28 derivations of KG are partitioned into subsets via conjugation by

automorphisms of KG. The associated digraph of a representative of each subset

is also determined. [43] was used to perform these computations and the results

are summarised in Table 4.3.

class representative pper |class| cdpXq mdpXq

1 0 1 1 X4 X

2 xyBy 1 36 X2pX ` 1q2 XpX ` 1q2

3 yBy 1 28 X2pX ` 1q2 XpX ` 1q

4 xyBx ` yBy 1 56 XpX ` 1qpX2 `X ` 1q XpX ` 1qpX2 `X ` 1q

5 xyBx ` py ` xyqBy 1 24 XpX3 `X ` 1q XpX3 `X ` 1q

6 py ` xyqBy 2 9 X4 X2

7 xBy 2 12 X4 X2

8 xyBx ` xBy 2 48 X2pX ` 1q2 X2pX ` 1q2

9 px` y ` xyqBy 3 18 X4 X3

10 yBx ` By 4 24 X4 X4

Table 4.3: The conjugacy classes of the derivations of F2pC2 ˆ C2q
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0

Figure 4.11: The digraph of the derivation in class 1 of Table 4.3

0

Figure 4.12: The digraph of the derivations in class 2 of Table 4.3

0

Figure 4.13: The digraph of the derivations in class 3 of Table 4.3

0

Figure 4.14: The digraph of the derivations in class 4 of Table 4.3
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0

Figure 4.15: The digraph of the derivations in class 5 of Table 4.3

0

Figure 4.16: The digraph of the derivations in class 6 of Table 4.3

0

Figure 4.17: The digraph of the derivations in class 7 of Table 4.3

0

Figure 4.18: The digraph of the derivations in class 8 of Table 4.3
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0

Figure 4.19: The digraph of the derivations in class 9 of Table 4.3

0

Figure 4.20: The digraph of the derivations in class 10 of Table 4.3

It can be seen from Figures 4.11 - 4.20, that perpDerpF2pC2 ˆ C2qqq “ 7 and

pperpDerpF2pC2 ˆ C2qqq “ 4.

Lemma 4.5.3. Let KG “ F2pC4ˆC4q, where C4ˆC4 “ xx, y | x
4 “ y4 “ rx, ys “

1y. Then B “ tp1`x2q, xp1`x2q, yp1`x2q, xyp1`x2q, p1`y2q, xp1`y2q, yp1`

y2q, xyp1`y2q, p1`x2qp1`y2q, xp1`x2qp1`y2q, yp1`x2qp1`y2q, xyp1`x2qp1`y2qu

is a basis for the kernel of the Frobenius endomorphism ψ of F2pC4ˆC4q. Moreover,

as vector spaces, KG “ V ‘ker ψ, where V is the F2-linear span of t1, x, y, xyu.

Proof. Let ψ : F2pC4ˆC4q Ñ F2pC4ˆC4q be the Frobenius endomorphism defined

by ψpαq “ α2. Write α “
ř3
i“0

ř3
j“0 ai,jx

iyj. Then

α2
“

ÿ

iPt0,2u

ÿ

jPt0,2u

ai,j `
ÿ

iPt1,3u

ÿ

jPt0,2u

ai,jx
2
`

ÿ

iPt0,2u

ÿ

jPt1,3u

ai,jy
2
`

ÿ

iPt1,3u

ÿ

jPt1,3u

ai,jx
2y2.

111



This implies that α2 “ 0 if and only if

ÿ

iPt0,2u

ÿ

jPt0,2u

ai,j “ 0,
ÿ

iPt1,3u

ÿ

jPt0,2u

ai,j “ 0,
ÿ

iPt0,2u

ÿ

jPt1,3u

ai,j “ 0 and
ÿ

iPt1,3u

ÿ

jPt1,3u

ai,j “ 0.

Therefore kerpψq has dimension equal to 12.

Let B “ tp1`x2q, xp1`x2q, yp1`x2q, xyp1`x2q, p1`y2q, xp1`y2q, yp1`y2q,

xyp1`y2q, p1`x2qp1`y2q, xp1`x2qp1`y2q, yp1`x2qp1`y2q, xyp1`x2qp1`y2qu.

b2 “ 0 for all b P B and so the F2-linear span of B is contained in kerpψq. Let bi

be the ith element of B in the above listing. Assume that γ “
ř12
i“1 kibi “ 0 for

some ki P F2.

x2y2 P supppbjq ðñ j “ 9, x3y2 P supppbjq ðñ j “ 10, x2y3 P

supppbjq ðñ j “ 11 and x3y3 P supppbjq ðñ j “ 12. Therefore k9 “

k10 “ k11 “ k12 “ 0 and so it can be assumed that γ “
ř8
i“1 kibi “ 0.

y2 P supppγq ðñ k5 “ 1, xy2 P supppγq ðñ k6 “ 1, y3 P supppγq ðñ

k7 “ 1 and xy3 P supppγq ðñ k8 “ 1. Therefore k5 “ k6 “ k7 “ k8 “ 0 and so it

can be assumed that γ “
ř4
i“1 kibi “ 0.

1 P supppγq ðñ k1 “ 1, x P supppγq ðñ k2 “ 1, y P supppγq ðñ k3 “ 1

and xy P supppγq ðñ k4 “ 1. Therefore k1 “ k2 “ k3 “ k4 “ 0 and so
ř12
i“1 kibi “ 0 if and only if ki “ 0 for i “ 1, 2, . . . , 12.

Therefore B is a linearly independent set of elements of kerpψq of size 12 and

so B is a basis for kerpψq.

Let B2 “ t1, x, y, xyu. B2 Ă G and so B2 is a linearly independent set.

Denote by V the F2-linear span of B2. Let v P V and write v “ c11`c2x`c3y`c4xy,

where ci P F2. Then v2 “ c11` c2x
2 ` c3y

2 ` c4x
2y2 and so v P kerpψq if and only

if ci “ 0 for i “ 1, 2, 3 and 4. Therefore extending B by the set t1, x, y, xyu gives

a basis for KG and so as vector spaces, KG “ V ‘ ker ψ.
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Corollary 4.5.4. Let KG “ F2pC4 ˆ C4q, where C4 ˆ C4 “ xx, y | x4 “ y4 “

rx, ys “ 1y and let w “ 1 ` x ` y ` xy. Let ψ : F2pC4 ˆ C4q Ñ F2pC4 ˆ C4q be the

Frobenius endomorphism defined by ψpαq “ α2. Then annpw2q “ ker ψ.

Proof. Let V be the F2-linear span of t1, x, y, xyu. By Lemma 4.5.3 any element

α of KG can be written as v1 ` v2p1 ` x2q ` v3p1 ` y2q ` v4p1 ` x2qp1 ` y2q,

where vi P V for i “ 1, 2, 3 and 4. Let v1 “ c11 ` c2x ` c3y ` c4xy. Then

αw2 “ v1w
2 “ pc11 ` c2x ` c3y ` c4xyqw

2. Note that w3 “ Ĝ and so the set

tw2, xw2, yw2, xyw2u is linearly independent. Therefore αw2 “ 0 if and only if

ci “ 0 for i “ 1, 2, 3 and 4. Thus annpw2q “ ker ψ.

Lemma 4.5.5. The unit group of F2pC4ˆC4q, denoted UpF2pC4ˆC4qq is isomor-

phic to C9
2 ˆ C

3
4 .

Proof. The map ε : F2pC4 ˆ C4q Ñ F2pC4 ˆ C4q defined by α ÞÑ α4 is the augmen-

tation map. Therefore the units of F2pC4 ˆ C4q are the elements of augmentation

1 and so there are 215 units in F2pC4ˆC4q. The unit group has exponent 4 and so

UpF2pC4 ˆ C4qq » Cn
2 ˆ C

m
4 , for some positive integers m and n.

Let ψ : F2pC4 ˆ C4q Ñ F2pC4 ˆ C4q be the Frobenius endomorphism defined

by ψpαq “ α2. Let V be the F2-linear span of t1, x, y, xyu. By Lemma 4.5.3

KG “ V ‘ ker ψ and so any unit of KG can be written as v ` z, where v is an

element of V of augmentation 1 and z P ker ψ. pv ` zq2 “ v2 ` z2 “ v2 and so the

units of order dividing 2 are the 212 elements 1` z such that z P kerpψq. Cn
2 ˆC

m
4

has 2n`2m elements, 2n`m of which have order dividing 2 and so n` 2m “ 15 and

n`m “ 12. Solving these equations simultaneously gives n “ 9 and m “ 3.

Lemma 4.5.6. Let KG “ F2pC4ˆC4q, where C4ˆC4 “ xx, y | x
4 “ y4 “ rx, ys “

1y. Let ψ be the algebra endomorphism from KG into KG defined by α ÞÑ α2. Let

u P tx, y, xyu, v P tx, y, xyuztuu, w “ 1`x`y`xy and let r, s P kerpψq. Define
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θpu,m,r,v,n,sq : KGÑ KG to be the F2-linear extension of the map from G into KG

defined by xiyj ÞÑ pu `mw ` rqipv ` nw ` sqj, for i, j “ 0, 1, 2, 3 and m,n P F2.

Then θ is an algebra automorphism of KG if and only if θ “ θpu,m,r,v,n,sq, for some

u,m, r, v, n and s.

Proof. Let θ be an algebra automorphism of KG and let UpKGq denote the

unit group of KG. Then θ is a permutation of UpKGq such that θp1q “ 1.

Let α “
ř3
i“0

ř3
j“0 ai,jx

iyj. θ is multiplicative and F2-linear and so θpαq “
ř3
i“0

ř3
i“0 ai,jθpxq

iθpyqj. Thus θ is determined by θpxq and θpyq. Moreover, since

θ is an automorphism it preserves the order of a unit, that is, the order of θpµq is

equal to the order of µ for all µ P UpKGq.

Let w “ 1 ` x ` y ` xy. By the proof of Lemma 4.5.5, any unit of KG can

be written as u ` mw ` r, for some u P t1, x, y, xyu, m P F2 and r P kerpψq.

Therefore θpxq “ u`mw` r and θpyq “ v`nw` s, for some u, v P t1, x, y, xyu,

m,n P F2 and r, s P kerpψq. w2 “ 1` x2 ` y2 ` x2y2 and so

θpw2
q “ θp1q ` θpxq2 ` θpyq2 ` θpxq2θpyq2

“ 1` u2
`mw2

` v2
` nw2

` pu2
`mw2

qpv2
` nw2

q

“ 1` u2
`mw2

` v2
` nw2

` u2v2
` nu2w2

`mv2w2
`mnw4

“ 1` u2
`mw2

` v2
` nw2

` u2v2
` nw2

`mw2
` 0

“ 1` u2
` v2

` u2v2
“ p1` u2

qp1` v2
q,

since u2w2 “ v2w2 “ w2.

w2 ‰ 0 and so θpw2q ‰ 0 which implies that u ‰ 1, v ‰ 1 and u ‰ v.

Therefore θ “ θpu,m,r,v,n,sq, for some u P tx, y, xyu, v P tx, y, xyuztuu, m,n P F2

and r, s P kerpψq. Note that for θ “ θpu,m,r,v,n,sq

θpw2
q “ 1` u2

` v2
` u2v2

“ w2. (4.3)
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Conversely, let θ “ θpu,m,r,v,n,sq, for some u P tx, y, xyu, v P tx, y, xyuztuu,

m,n P F2 and r, s P kerpψq. Let g “ xiyj and h “ xlyk be elements of the group

G. Then

θpghq “ θpxi`lyj`kq “ θpxqi`lθpyqj`k “ θpxqiθpyqjθpxqlθpyqk “ θpgqθphq.

Let α “
ř

gPG agg and β “
ř

hPG bhh. Then

θpαβq “ θ
´

ÿ

gPG

ÿ

hPG

agbhgh
¯

“
ÿ

gPG

ÿ

hPG

agbhθpghq “
ÿ

gPG

ÿ

hPG

agbhθpgqθphq

“
ÿ

gPG

agθpgq
ÿ

hPG

bhθphq “ θpαqθpβq.

Therefore θ is a ring endomorphism of KG.

Let α be any element of KG. It is now shown that θpαq “ 0 if and only if

α “ 0 and hence θ is bijective. Let V be the F2-linear span of the set t1, x, y, xyu.

Let v P V and write v “ c11 ` c2x ` c3y ` c4xy, where ci P F2. Then since

w “ 1` u` v ` uv

θpvq ” c11` c2pu`mwq ` c3pv ` nwq ` c4pu`mwqpv ` nwq (mod ker ψq

” c11` c2u` c3v ` c4uv ` pc2m` c3n` c4nu` c4mvqw (mod ker ψq

” c11` c2u` c3v ` c4uv

` pc2m` c3n` c4nu` c4mvqp1` u` v ` uvq (mod ker ψq

” pc1 ` c2m` c3nq1` pc2 ` c2m` c3nqu` pc3 ` c2m` c3nqv

` pc4 ` c2m` c3nquv ` c4nuw ` c4mvw (mod ker ψq.

Assume that θpvq ” 0 (mod ker ψq. Then c4pnuqw “ c4pmvqw “ 0, since u2 P

supppuwq, u2 R supppvwq, v2 P supppvwq and v2 R supppuwq. Thus c4n “ c4m “ 0.

There are 2 cases, the first is c4 “ 0 and the second is m “ n “ 0.
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Case 1. c4 “ 0. The coefficient of uv equals 0 and so c2m ` c3n “ 0 and so

θpvq ” c11` c2u` c3v (mod ker ψ) and so c1 “ c2 “ c3 “ c4 “ 0, since 1, u and v

are distinct elements of G and so are linearly independent.

Case 2. m “ n “ 0. Then θpvq ” c11` c2u` c3v` c4uv (mod ker ψ) and so again

c1 “ c2 “ c3 “ c4 “ 0. Therefore θpvq P ker ψ if and only if v “ 0. Thus V is a

θ-invariant subspace of KG.

By Lemma 4.5.3, α can be written as α “ v1` v2p1`x
2q` v3p1` y

2q` v4p1`

x2qp1` y2q, where vi P V for i “ 1, 2, 3 and 4. Assume that θpαq “ 0. Then using

Equation 4.3, 0 “ θpαqθpw2q “ θpαw2q “ θpv1w
2q “ θpv1qθpw

2q “ θpv1qw
2 and so

θpv1q P annpw
2q. By Corollary 4.5.4, annpw2q “ ker ψ, hence θpv1q P ker ψ and so

v1 “ 0. Therefore α “ v2p1` x
2q ` v3p1` y

2q ` v4p1` x
2qp1` y2q and so

0 “ θpαqθpp1` x2
qq “ θpαp1` x2

qq “ θpv3p1` y
2
qp1` x2

qq “ θpv3w
2
q “ θpv3qw

2

and 0 “ θpαqθpp1` y2
qq “ θpαp1` y2

qq “ θpv2w
2
q “ θpv2qw

2.

Therefore θpv2q and θpv3q P annpw
2q “ ker ψ, hence v2 “ v3 “ 0. Thus α “ v4w

2

and 0 “ θpαq “ θpv4w
2q “ θpv4qw

2 which implies θpv4q P annpw
2q “ ker ψ, hence

v4 “ 0. Therefore θpαq “ 0 if and only if α “ 0. Thus θ is a bijection and so it is

an algebra automorphism of KG.

Lemma 4.5.7. Let KG “ F2pC4ˆC4q, where C4ˆC4 “ xx, y | x
4 “ y4 “ rx, ys “

1y. Let ψ be the Frobenius endomorphism from KG into KG defined by α ÞÑ α2

and let θ be a map from KG to KG. Then θ is an algebra automorphism of KG

if and only if

1. θæG is a group isomorphism and

2. θ is the K-linear extension of θæG and

3. θækerpψq is injective.
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Proof. Let θ be a map from KG to KG. Assume that θæG is a group isomorphism,

that θ is the K-linear extension of θæG and also that θækerpψq is injective. Let

α “
ř

gPG agg and β “
ř

hPG bhh be elements of KG. Then

θpαβq “ θ
´

ÿ

gPG

ÿ

hPG

agbhgh
¯

“
ÿ

gPG

ÿ

hPG

agbhθpghq “
ÿ

gPG

ÿ

hPG

agbhθpgqθphq

“
ÿ

gPG

agθpgq
ÿ

hPG

bhθphq “ θ
´

ÿ

gPG

agg
¯

θ
´

ÿ

hPG

bhh
¯

“ θpαqθpβq.

Therefore θ is a algebra endomorphism. This implies that θpkq “ k for all k P F2.

Let V be the F2-linear span of the set t1, x, y, xyu. By Lemma 4.5.3, as

vector spaces KG “ V ‘ kerpψq. θ maps units to units and so for any g P G,

we can write θpgq “ vg ` zg, where vg is an element of V of augmentation 1 and

zg P kerpψq.

Let v P V and write v “ c11` c2x` c3y ` c4xy, where ci P F2. Then

θpvq “ c1θp1q ` c2θpxq ` c3θpyq ` c4θpxyq

” c11` c2vx ` c3vy ` c4vxy (mod kerpψqq.

Suppose θpvq P kerpψq. Then c11` c2vx` c3vy ` c4vxvy “ 0. The elements 1, vx, vy

and vxy all have augmentation 1 and so an even number of the ci’s are equal to 1.

Case 1. None of the ci’s are equal to 1. That is, c1 “ c2 “ c3 “ c4 “ 0.

Case 2. Two of the ci’s are equal to 1. Therefore vg`vh “ 0, for 2 distinct elements

g, h of t1, x, y, xyu. Thus θpg2q “ v2
g “ v2

h “ θph2q, however this contradicts the

assumption that θæG is a group isomorphism and so this case does not occur.

Case 3. All four of the ci’s are equal to 1. Then 1 ` vx ` vy ` vxy “ 0. Let

w “ 1` x` y ` xy. Then w2 is a nonzero element of kerpψq and θpw2q ‰ 0, since

θp0q “ 0 and θækerpψq is injective. Therefore 0 ‰ θpw2q “ 1 ` v2
x ` v2

y ` v2
xy and so

1` vx ` vy ` vxy ‰ 0. Thus this case does not occur.
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Therefore the only solution of c11`c2vx`c3vy`c4vxvy “ 0 is c1 “ c2 “ c3 “ c4 “ 0

and so θpvq P kerpψq implies v “ 0. Thus V is a θ-invariant subspace of KG.

Let α be any element of KG and write α “ v`z, where v P V and z P kerpψq.

Assume that θpαq “ 0. Then 0 “ θpαq “ θpvq`θpzq which implies that θpvq “ θpzq.

Therefore θpvq P kerpψq, since θpvq2 “ θpzq2 “ θpz2q “ θp0q “ 0 which implies that

v “ 0. Thus α “ z P kerpψq, which implies that α “ 0, since θækerpψq is injective.

Therefore θ is an algebra endomorphism with kernel equal to t0u and so θ is an

algebra automorphism of KG.

Conversely, assume θ is an algebra automorphism of KG. Then by definition

θ is a K-linear extension of θæG and θækerpψq is injective. Also θpghq “ θpgqθphq for

any g, h P G, since θ is an algebra automorphism.

Remark 4.5.8. The size of kerpψq was calculated using [18] to be 212. Therefore

by Lemma 4.5.6 AutpF2pC4 ˆ C4qq has size 3p2qp212qp2qp2qp212q “ 3p227q.

4.6 Distinguishing Group Algebras using Digraphs

Example 4.6.1. In this example the derivations of F2C2 are listed. Let C2 “ xxy.

By Theorem 2.3.4 the derivations of F2C2 are :

x ÞÑ 0, x ÞÑ 1, x ÞÑ x, x ÞÑ 1` x

The derivations are represented below by 2 ˆ 2 matrices over F2 with respect to

the basis B “ t1, xu:

„

0 0
0 0



,

„

0 1
0 0



,

„

0 0
0 1



,

„

0 1
0 1



. (4.4)

„

0 1
0 1

 „

1
1



“

„

1
1


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is the matrix representation of dp1 ` xq “ 1 ` x, where d P DerpF2C2q such that

dpxq “ 1 ` x. There is only one nonzero nilpotent derivation of F2C2, namely the

derivation defined by x ÞÑ 1 and its index of nilpotency is 2.

Definition 4.6.2. Let r0sn be the n ˆ n matrix, where each entry is zero and let

rEsn be the nˆ n matrix, where each entry is one.

Example 4.6.3. Let K be the finite field with 2 elements. Let G “ xx | x4 “ 1y

and let B “ t1, x, 1`x2, xp1`x2qu be a basis of KG. Let H be the subgroup of G

generated by x2 and let B̄ “ tH, xHu be a basis of KpG{Hq. In this example the

derivations of KG are listed as 2 ˆ 2 block matrices, with respect to the basis B.

Each block is a 2ˆ 2 matrix over K. By Corollary 3.1.17, ∆pG,Hq is a differential

ideal of pKG, dq, for all derivations d of KG. Therefore by Lemma 3.1.11 any

derivation D of KG has the form:

rDsB “

»

—

–

rdsB̄ r0s2

A rdsB̄

fi

ffi

fl

,

where d P DerpF2pG{Hqq and so rdsB̄ is one of the matrices listed in Equation 4.4

and A is a 2 ˆ 2 matrix over K. Moreover, since dp1q “ 0, the first column of

rDsB is all zeros and so A is also one of the matrices listed in Equation 4.4, that

is, A “ rδsB̄, for some δ P DerpF2C2q.

Definition 4.6.4. An nˆ n matrix M is called circulant if it is of the form:

M “

»

—

—

—

—

—

—

—

—

—

—

—

–

a0 a1 a2 . . . an´1

an´1 a0 a1 . . . an´2

an´2 an´1 a0 . . . an´3

...
...

...
. . .

...

a1 a2 a3 . . . a0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Lemma 4.6.5. Let K be the finite field of characteristic 2 and let G “ xx |

x2m “ 1y, where m is a positive integer. Then the maximum nilpotency index for

a derivation of KG is 2m´1 ` 1.

Proof. Let B “ t1, x2, . . . , x2m´2, x, x3, . . . , x2m´1u. Then B is a basis of KG.

The first 2m´1 elements of B in the above listing are in the ring of constants of

KG. By Lemma 2.2.1, dpxk`2q “ x2dpxkq, for any integer k and so any derivation

D of KG has the form:

rDsB “

»

—

–

r0s2m´1 A

r0s2m´1 B

fi

ffi

fl

,

where A and B are 2m´1 ˆ 2m´1 circulant matrices over K.

rDs2B “

»

—

–

r0s2m´1 A

r0s2m´1 B

fi

ffi

fl

»

—

–

r0s2m´1 A

r0s2m´1 B

fi

ffi

fl

“

»

—

–

r0s2m´1 AB

r0s2m´1 B2

fi

ffi

fl

, and

rDsnB “

»

—

–

r0s2m´1 ABn´1

r0s2m´1 Bn

fi

ffi

fl

, for all positive integers n.

Therefore D is nilpotent if and only if B is nilpotent. Let H “ xyy be the cyclic

group of order 2m´1. By [29] there is a bijective ring homomorphism between

KH and the ring of 2m´1 ˆ 2m´1 circulant matrices over K. Therefore A and B

correspond respectively to elements α, β P KH. Assume D is nilpotent. Then B

and hence β is also nilpotent. Let ψ : KH Ñ KH be the Frobenius endomorphism

and let ε : KH Ñ K be the augmentation map. H is a 2-group of exponent 2m´1

and K is a field of characteristic 2 and so ψm´1 : KH Ñ K such that ψm´1 “

ψm´1 ˝ ε, since for any α “
ř

hPH ahh P KH

ψm´1
pαq “ ψm´1

p
ÿ

hPH

ahhq “
ÿ

hPH

ψm´1
pahqψ

m´1
phq “ ψm´1

p
ÿ

hPH

ahq “ ψm´1
˝ εpαq.

120



ε is a ring endomorphism and so maps nilpotent elements to nilpotent elements.

Since the image of ε is a field, ε maps nilpotent elements to 0 and so ψm´1pαq “ 0

for all nilpotent elements α. Therefore the elements of the augmentation ideal of

KH are the nilpotent elements of KH. The augmentation ideal of KH is the ideal

generated by p1`yq and so β “ bp1`yq, for some b P KH. Thus β2m´1
“ ψm´1pβq “

pψm´1 ˝ εqpβq “ 0 and αβ2m´1´1 “ αb2m´1´1p1` yq2
m´1´1 “ αb2m´1´1ŷ “ kŷ, where

k “ εpαb2m´1´1q P K. By Section 3.1 of [29] and Definition 4.6.2, B2m´1´1 “

krEs2m´1 . Therefore

rDs2
m´1

B “

»

—

–

r0s2m´1 AB2m´1´1

r0s2m´1 B2m´1

fi

ffi

fl

“

»

—

–

r0s2m´1 krEs2m´1

r0s2m´1 r0s2m´1

fi

ffi

fl

.

Choosing α “ 1 and β “ p1 ` yq implies k “ 1 and so in this case rDs2
m´1

B ‰ 0.

Also

rDs2
m´1`1

B “

»

—

–

r0s2m´1 A

r0s2m´1 B

fi

ffi

fl

»

—

–

r0s2m´1 krEs2m´1

r0s2m´1 r0s2m´1

fi

ffi

fl

“

»

—

–

r0s2m´1 r0s2m´1

r0s2m´1 r0s2m´1

fi

ffi

fl

.

Definition 4.6.6. Let V be a finite dimensional vector space over a finite field

K and let pV, fq and pV, gq be LFDS. Define pV, fq ˚ pV, gq to be the LFDS pV ˆ

V, f ˚gq, where V ˆV is the cartesian product of the vector space V with itself and

f ˚ g : V ˆ V Ñ V ˆ V , defined by pf ˚ gqpu, vq “ pfpuq, gpuq ` fpvqq. Also define

the associated digraphs similarly, that is, Γf ˚ Γg “ Γf˚g.

Lemma 4.6.7. Let K be the finite field with 2 elements and let G “ xx | x4 “ 1y.

Let H be the subgroup of G generated by x2 and let D be a K-linear map from KG

to KG. Then
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(i) D P DerpKGq if and only if rDsB “

»

—

–

rdsB̄ r0s2

rδsB̄ rdsB̄

fi

ffi

fl

, where d, δ P DerpKpG{Hqq,

B “ t1, x, 1` x2, xp1` x2qu and B̄ “ tH, xHu.

(ii) For any D P DerpKGq, ΓD » Γd ˚ Γδ, where d and δ are the derivations of

DerpKpG{Hqq defined by part piq.

Proof. (i) Let D P DerpKGq and let B “ t1, x, 1` x2, xp1` x2qu. Then

rDsB “

»

—

–

A1 A2

A3 A4

fi

ffi

fl

, where A1, . . . , A4 are 2ˆ 2 matrices over K.

By Corollary 3.1.17, ∆pG,Hq is a differential ideal of pKG,Dq, for all derivations

D of KG. By Proposition 3.1.6, KG
∆pG,Hq

» KpG{Hq. Therefore by Lemma 3.1.11,

A1 “ rdsB̄, for some d P DerpKpG{Hqq and A2 “ r0s2, the 2ˆ2 matrix whose entries

are all zeros. Moreover, p1` x2q P CpKGq and so Dpαp1` x2qq “ Dpαqp1` x2q for

all α P KG and so A4 “ A1. Lastly, since dp1q “ 0, the first column of rDsB is all

zeros and so A3 is also one of the matrices listed in Equation 4.4 and so A3 “ rδsB̄,

for some δ P DerpKpG{Hqq.

Conversely, let T be a K-linear map from KG to KG such that

rT sB “

»

—

–

rdsB̄ r0s2

rδsB̄ rdsB̄

fi

ffi

fl

,

where d, δ P DerpKpG{Hqq, B “ t1, x, 1 ` x2, xp1 ` x2qu and B̄ “ tH, xHu.

Then by Example 4.6.1

rdsB̄ “

„

0 a0

0 a1



and rδsB̄ “

„

0 a2

0 a3



, for some ai P K and so rT sB “

»

—

—

–

0 a0 0 0
0 a1 0 0
0 a2 0 a0

0 a3 0 a1

fi

ffi

ffi

fl

.
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Let D be the derivation of KG defined by Dpxq “ a0`a1x`a2p1`x
2q`a3xp1`x

2q.

Then Dp1q “ Dp1 ` x2q “ 0 and Dpxp1 ` x2qq “ Dpxqp1 ` x2q “ a0p1 ` x2q `

a1xp1` x
2q. Therefore

rDsB “

»

—

—

–

0 a0 0 0
0 a1 0 0
0 a2 0 a0

0 a3 0 a1

fi

ffi

ffi

fl

and so T P DerpKGq, since T “ D. (4.5)

(ii) Let V be the subspace of KG with basis t1, xu. Let Φ : KG Ñ V ˆ V ,

that is, Φ is a map from KG to the Cartesian product of the vector space V with

itself. B “ t1, x, 1 ` x2, xp1 ` x2qu is a basis of KG and so any α P KG

can be written uniquely as α “ r ` sp1 ` x2q, where r, s P V . Define Φ by

r ` sp1 ` x2q ÞÑ pr, sq. Therefore Φ is a bijection from the vertex set of ΓD to

the vertex set of Γd˚δ. It is now shown that Φ is a graph isomorphism, that is,

Φ is bijection between vertex set of ΓD to the vertex set of Γd˚δ that preserves

adjacency. Dpαq “ Dpr ` sp1 ` x2qq “ Dprq ` Dpsqp1 ` x2q. By Equation 4.5

Dprq “ dprq ` δprqp1` x2q and Dpsq “ dpsq ` δpsqp1` x2q. Therefore

Dpαq “ dprq`δprqp1`x2
q`dpsqp1`x2

q`δpsqp1`x2
q
2
“ dprq`

`

δprq`dpsq
˘

p1`x2
q.

Therefore ΦpDpαqq “ pdprq, δprq ` dpsqq. By Definition 4.6.6, Φpαq “ pr, sq is

adjacent to pdprq, δprq ` dpsqq in Γd˚δ and so Φ preserves adjacency and thus is a

graph isomorphism.

Definition 4.6.8. Let CMnpKq be the vector space of n ˆ n circulant matrices

over a field K. Define g : CMnpKq Ñ CMnpKq by gpCqi,j “

$

’

’

&

’

’

%

Ci,j if j ą i

0 otherwise.
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That is gpCq is given by the following upper triangular matrix:

gpCq “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 an´1 an´2 an´3 . . . a2 a1

0 0 an´1 an´2 . . . a3 a2

0 0 0 an´1 . . . a4 a3

...
...

...
. . .

. . .
. . .

...

0 0 0 0 . . . 0 an´1

0 0 0 0 . . . 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, where C “

»

—

—

—

—

—

—

—

—

—

—

—

–

a0 an´1 an´2 . . . a1

a1 a0 an´1 . . . a2

a2 a1 a0 . . . a3

...
...

...
. . .

...

an´1 an´2 an´3 . . . a0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Further if M is a block matrix consisting of blocks Mi for i “ 1, 2, . . . ,mpnq, such

that Mi P CMnpKq for each i. Then define gpMq to be the block matrix whose

blocks are gpMiq keeping the positions unchanged. That is:

gpMq “

»

—

—

—

—

—

—

—

–

gpM1q gpM2q . . . gpMmq

gpMm`1q gpMm`2q . . . gpM2mq

...
...

...

gpMpn´1qm`1q gpMpn´1qm`2q . . . gpMnmq

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, where

M “

»

—

—

—

—

—

—

—

–

M1 M2 . . . Mm

Mm`1 Mm`2 . . . M2m

...
...

...

Mpn´1qm`1 Mpn´1qm`2 . . . Mnm

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Definition 4.6.9. Let Γ1 and Γ2 be graphs. A mapping f : VpΓ1q Ñ VpΓ2q is a

homomorphism of graphs if fpuq and fpvq are adjacent in Γ2, whenever u and v

are adjacent in Γ1.

Definition 4.6.10. Let Γ2 be a subgraph of a graph Γ1. A retraction is a homo-

morphism f from VpΓ1q Ñ VpΓ2q such that the restriction, fæVpΓ2q
of f to VpΓ2q

is the identity map.
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Example 4.6.11. Let K be the finite field with 2 elements and let G “ xx, y | x2 “

y2 “ rx, ys “ 1y. Let B “ t1, x, y, xyu and let d be an arbitrary derivation of KG.

Then by Theorem 2.3.4, d “ aBx ` bBy, for some a “
ř

gPG agg and b “
ř

gPG bgg

where ag, bg P K, for all g P G. Therefore dp1q “ 0, dpxq “ a, dpyq “ b and

dpxyq “ ay ` bx and so

rdsB “

»

—

—

—

—

—

—

—

–

0 a1 b1 ay ` bx

0 ax bx axy ` b1

0 ay by a1 ` bxy

0 axy bxy ax ` by

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

—

–

0 a1 0 ay

0 ax 0 axy

0 ay 0 a1

0 axy 0 ax

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

—

—

—

–

0 0 b1 bx

0 0 bx b1

0 0 by bxy

0 0 bxy by

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

“

»

—

–

rd1sB̄ rd2sB̄

rd2sB̄ rd1sB̄

fi

ffi

fl

`

»

—

–

r0s2 c1

r0s2 c2

fi

ffi

fl

,

where d1, d2 P DerpF2xxyq, B̄ “ t1, xu and c1 and c2 are 2 ˆ 2 circulant matrices

over F2.

Lemma 4.6.12. [31][pp. 8] Let d be a derivation of a not necessarily associative

algebra A and let a, b P A. Then

dmpabq “
m
ÿ

i“0

ˆ

m

i

˙

dm´ipaqdipbq, for any positive integer m. (4.6)

The following result is a direct consequence of the discussion in [31][pp. 186].

Lemma 4.6.13. Let p be a prime number and let K be a finite field of characteristic

p. Let G be a group and let d be a derivation of KG. Then dp
k

is a derivation of

KG for all positive integers k.

Remark 4.6.14. Let G and H be finite abelian p-groups and let K be the finite

field with p elements. Suppose that KG and KH are isomorphic as rings. Then

KG and KH have the same dimension as K-algebras and so |G| “ |H|. By
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Theorem 2.3.4, the vector space of derivations of KG has dimension n|G|, where

n is the minimum number of generators of G. By Theorem 3.1.18, DerpKGq and

DerpKHq are isomorphic as additive groups and so have the same dimension. This

simple counting argument can sometimes be used to show that group algebras are

not isomorphic as rings. For example |DerpF2C4q| “ 24 whereas |DerpF2pC2 ˆ

C2qq| “ 28 and so by Theorem 3.1.18 or Theorem 4.1.8, F2C4 and F2pC2 ˆ C2q

are not isomorphic as rings. The smallest example such that the above argument

fails to distinguish between non-isomorphic group algebras is when the groups are

C4 ˆ C4 and C2 ˆ C8 and the field K has 2 elements. Example 4.6.18 shows that

these two group algebras are non-isomorphic using the graphs of their derivations.

Definition 4.6.15. Define the map f : M4pF2q ÑM4pF2q by

A “ pai,jq ÞÑ

»

—

—

—

—

—

—

—

–

0 0 0 a3,2

0 0 0 a4,2

0 0 0 0

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Definition 4.6.16. Define the map g : M4pF2q ÑM4pF2q by

A “ pai,jq ÞÑ

»

—

—

—

—

—

—

—

–

0 0 0 a2,3

0 0 0 0

0 0 0 a4,3

0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Lemma 4.6.17. Let K be the finite field with 2 elements and let G “ xx, y | x4 “

y4 “ rx, ys “ 1y. Let D be a derivation of KG. Then D is nilpotent if and only if

D8 “ 0.

Proof. Assume that D is a nilpotent derivation of KG. It can be shown that B “

t1, x, y, xy, p1`x2q, xp1`x2q, yp1`x2q, xyp1`x2q, p1` y2q, xp1` y2q, yp1` y2q,
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xyp1`y2q, p1`x2qp1`y2q, xp1`x2qp1`y2q, yp1`x2qp1`y2q, xyp1`x2qp1`y2qu,

is a basis for KG. Let H “ xx2, y2y and further choose B̄ “ tH, xH, yH, xyHu

as a basis of KpG{Hq. Let bi be the ith element of B in the above listing. Then

by Theorem 2.3.4, D “ rBx ` sBy for some r “
ř16
i“1 ribi and s “

ř16
i“1 sibi where

ri, si P K, for i “ 1, 2, . . . , 16. Therefore

Dp1q “ 0,

Dpxq “ r “
16
ÿ

i“1

ribi,

Dpyq “ s “
16
ÿ

i“1

sibi, and

Dpxyq “ Dpxqy ` xDpyq “ ry ` sx “
16
ÿ

i“1

ribiy `
16
ÿ

i“1

sibix.

Multiplying r by y and writing the product as a linear combination of the elements

of B implies

16
ÿ

i“1

ribiy “ r3 ` r4x` r1y ` r2xy `
`

r7 ` r8x` r5y ` r6xy
˘

p1` x2
q

`
`

pr11 ` r3q ` pr12 ` r4qx` r9y ` r10xy
˘

p1` y2
q

`
`

pr15 ` r7q ` pr16 ` r8qx` pr13qy ` pr14qxy
˘

p1` x2
qp1` y2

q.

Multiplying s by x and writing the product as a linear combination of the elements

of B implies

16
ÿ

i“1

sibix “ s2 ` s1x` s4y ` s3xy `
`

ps6 ` s2q ` s5x` ps8 ` s4qy ` s7xy
˘

p1` x2
q

`
`

s10 ` s9x` s12y ` s11xy
˘

p1` y2
q

`
`

ps14 ` s10q ` s13x` ps16 ` s12qy ` s15xy
˘

p1` x2
qp1` y2

q.

Therefore since p1` x2q, p1` y2q and p1` x2qp1` y2q are in CpKGq and since
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p1` x2q2 “ 0 “ p1` y2q2, rDsB “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 r1 s1 r3 ` s2 0 0 0 0 0 0 0 0 0 0 0 0

0 r2 s2 r4 ` s1 0 0 0 0 0 0 0 0 0 0 0 0

0 r3 s3 r1 ` s4 0 0 0 0 0 0 0 0 0 0 0 0

0 r4 s4 r2 ` s3 0 0 0 0 0 0 0 0 0 0 0 0

0 r5 s5 r7 ` s6 ` s2 0 r1 s1 r3 ` s2 0 0 0 0 0 0 0 0

0 r6 s6 r8 ` s5 0 r2 s2 r4 ` s1 0 0 0 0 0 0 0 0

0 r7 s7 r5 ` s8 ` s4 0 r3 s3 r1 ` s4 0 0 0 0 0 0 0 0

0 r8 s8 r6 ` s7 0 r4 s4 r2 ` s3 0 0 0 0 0 0 0 0

0 r9 s9 r11 ` s10 ` r3 0 0 0 0 0 r1 s1 r3 ` s2 0 0 0 0

0 r10 s10 r12 ` s9 ` r4 0 0 0 0 0 r2 s2 r4 ` s1 0 0 0 0

0 r11 s11 r9 ` s12 0 0 0 0 0 r3 s3 r1 ` s4 0 0 0 0

0 r12 s12 r10 ` s11 0 0 0 0 0 r4 s4 r2 ` s3 0 0 0 0

0 r13 s13 r15 ` s14 ` r7 ` s10 0 r9 s9 r11 ` s10 ` r3 0 r5 s5 r7 ` s6 ` s2 0 r1 s1 r3 ` s2

0 r14 s14 r16 ` s13 ` r8 0 r10 s10 r12 ` s9 ` r4 0 r6 s6 r8 ` s5 0 r2 s2 r4 ` s1

0 r15 s15 r13 ` s16 ` s12 0 r11 s11 r9 ` s12 0 r7 s7 r5 ` s8 ` s4 0 r3 s3 r1 ` s4

0 r16 s16 r14 ` s15 0 r12 s12 r10 ` s11 0 r8 s8 r6 ` s7 0 r4 s4 r2 ` s3

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Therefore by Example 4.6.11

rDsB “

»

—

—

—

—

—

—

—

–

rd1sB̄ r0s4 r0s4 r0s4

rd2sB̄ ` gprd1sB̄q rd1sB̄ r0s4 r0s4

rd3sB̄ ` fprd1sB̄q r0s4 rd1sB̄ r0s4

rd4sB̄ ` fprd2sB̄q ` gprd3sB̄q rd3sB̄ ` fprd1sB̄q rd2sB̄ ` gprd1sB̄q rd1sB̄

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

where di P DerpKpG{Hqq for i “ 1, 2, 3, 4 and f and g are the maps defined in

Definitions 4.6.15 and 4.6.16 respectively. rDsB is a lower block triangular matrix

with rd1sB on the main diagonal and so D is nilpotent if and only if d1 is nilpotent.

Also d1 is nilpotent if and only if d4
1 “ 0.
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Assume that d1 P DerpKpG{Hqq such that d4
1 “ 0. Therefore

rDs2B “

»

—

—

—

—

—

—

—

–

rd1s
2
B̄ r0s4 r0s4 r0s4

t2 rd1s
2
B̄ r0s4 r0s4

t3 r0s4 rd1s
2
B̄ r0s4

t4 t3 t2 rd1s
2
B̄

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, for some 4ˆ 4 matrices ti.

Recall that d4
1 “ 0 and so squaring rDs2B gives

rDs4B “

»

—

—

—

—

—

—

—

–

r0s4 r0s4 r0s4 r0s4

w2 r0s4 r0s4 r0s4

w3 r0s4 r0s4 r0s4

w4 w3 w2 r0s4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, for some 4ˆ 4 matrices wi.

Therefore

rDs8B “

»

—

—

—

—

—

—

—

–

r0s4 r0s4 r0s4 r0s4

r0s4 r0s4 r0s4 r0s4

r0s4 r0s4 r0s4 r0s4
”

w3, w2

ı

r0s4 r0s4 r0s4

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

. (4.7)

It has been verified by SageMath [43], that for each nilpotent derivation d1 P

DerpKpG{Hqq and any derivations d2, d3 P DerpKpG{Hqq, rw3, w2s “ r0s4.

Example 4.6.18. Let C8 ˆ C2 “ xx, y | x
8 “ y2 “ rx, ys “ 1y and let d be the

derivation of F2G defined by x ÞÑ xy and y ÞÑ 1` y`xy`x`x3. It can be shown

that B “ t1, x, y, xy, p1`x2q, xp1`x2q, yp1`x2q, xyp1`x2q, p1`x2q2, xp1`

x2q2, yp1`x2q2, xyp1`x2q2, p1`x2q3, xp1`x2q3, yp1`x2q3, xyp1`x2q3u is a basis

for F2pC8 ˆ C2q. The matrix representation rdsB of d with respect to the basis B

and its Jordan form rJsB are given below. The Jordan form of rdsB was calculated
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using SageMath [43]. The diagonal entries of rJsB are all zeros. Therefore d is a

nilpotent derivation of F2pC8 ˆ C2q. The largest Jordan block of rJsB has length

13 and so d12 ‰ 0 and d13 “ 0. Recall that Lemma 4.6.17 states that D8 “ 0 for

any nilpotent derivation D of F2pC4 ˆ C4q. We have shown that the digraph Γ pdq

associated with the derivation d of F2pC8 ˆ C2q is not isomorphic to Γ pδq for any

δ P DerpF2pC4 ˆC4qq. Therefore by Theorem 4.1.8, F2pC8 ˆC2q is not isomorphic

to F2pC4 ˆ C4q.

rdsB “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

, rJsB “

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl
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Chapter 5

Derivation Towers

This chapter considers the set of derivations of a commutative group algebra over

a finite field. The Lie algebra formed from this set by defining multiplication as the

Lie commutator is shown to have trivial center. Also, the Lie algebra of derivations

of the group algebra KG is complete, when K is a finite field of characteristic p and

G is a finite abelian group such that its Sylow p-subgroup is elementary abelian.

Group algebras have a rich structure and have been studied by many math-

ematicians. Particular attention has been devoted to the characteristic 0 case.

Connections between properties of a group algebra and properties of the underly-

ing group have been established. In this chapter group rings are studied via the Lie

algebra of derivations of the group algebra. Let G be a finite abelian group and let

K be a finite field. The set of derivations of the group algebra KG is denoted by

DerpKGq. A Lie algebra is formed from this set by defining multiplication as the

Lie commutator and is denoted by g. Let A be an associative and commutative

algebra over a field K. Then the Lie algebra formed by taking the tensor product of

A with a nonzero K-vector space of commuting K-derivations of A is a Witt type

algebra and is studied in [39]. Therein necessary and sufficient conditions are given

for this Lie algebra to be simple. Further results on these Lie algebras can be found
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in [32]. It is shown in [37] that a complete Lie algebra can be decomposed into a

direct sum of simple complete ideals. If the derivation algebra of a Lie algebra is

perfect and has trivial center then it is complete [51].

Definitions and lemmas on Lie algebras which will be useful are introduced

in Section 5.1 as well as the aforementioned result from [51]. In Section 5.2 it is

shown that the derivations of KG are a proper subset of the Lie derivations of

KG. A basis for the K-vector space of derivations of KG is given and the Lie

algebra g “ DerpKGq is shown to have trivial center. Modular elementary abelian

group algebras are shown in Theorem 5.3.8 to be complete. Extensions of this

result are explored in Section 5.4. Let d be a derivation of KG and let H be a

subgroup of an abelian group G. It is shown that the augmentation ideal ∆pG,Hq

is a differential ideal of the ring pKG, dq if and only if the image of H under d

is contained within the augmentation ideal ∆pG,Hq. This provides a method for

constructing a proper nonzero ideal of the Lie algebra DerpKGq from ∆pG,Hq,

when the Sylow p-subgroup of G is not elementary abelian. In Example 5.4.3 a

derivation of F2pC4ˆC2q is constructed and is proven to be outer by showing that

it does not map this ideal into itself. Therefore Theorem 5.3.8 does not extend

to all finite commutative group algebras. However as Example 5.4.4 shows the

existence of an ideal of g constructed from ∆pG,Hq does not imply that g is not

complete. However, it is shown in Theorem 5.4.14 that DerpKGq is a complete

Lie algebra, when G is a finite abelian group such that its Sylow p-subgroup is

elementary abelian.

5.1 Introduction

We begin with a brief introduction to Lie algebras.

Definition 5.1.1. [31] A Lie algebra L is a not necessarily associative algebra
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over a field such that its multiplication, denoted by r , s, satisfies the following

conditions:

rx, xs “ 0 and (5.1)

rx, ry, zss ` rz, rx, yss ` ry, rz, xss “ 0. (5.2)

Equation (5.2) is known as the Jacobi identity.

Definition 5.1.2. Let A and B be subspaces of a Lie algebra L. Define rA,Bs to

be the subspace spanned by the set tra, bs | a P A, b P Bu. A subspace I of L is an

ideal of L if and only if rI,Ls Ď I.

Definition 5.1.3. Let L be a Lie algebra. Define L1 “ Lp1q to be rL,Ls, the

ideal of L generated by all products ra, bs, where a, b P L. Further define Lpkq “

rLpk´1q,Lpk´1qs, where k is a positive integer. The derived series of ideals of L is

L Ě L1 Ě Lp2q Ě ¨ ¨ ¨ Ě Lpkq Ě . . . . A Lie algebra L is said to be solvable if Lpkq “ 0,

for some positive integer k.

Definition 5.1.4. Let L be a Lie algebra over a field K and let D be a map from

L to L. Then D is a (Lie) derivation of L if D is K-linear and satisfies the follow

identity known as Leibniz’s rule for any a, b P L:

Dpra, bsq “ rDpaq, bs ` ra,Dpbqs. (5.3)

Also denote by DerpLq the set of (Lie) derivations of L. A derivation d P DerpLq

is called inner if for all b P L, dpbq “ ra, bs for some a P L.

Definition 5.1.5. Let S be a subset of a Lie algebra L. Define the centraliser of

S in L, denoted CpS,Lq to be the set of elements c of L such that rs, cs “ 0, for

all s P S. CpS,Lq is a subalgebra of the Lie algebra L by [31].
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Definition 5.1.6. Let L be a Lie algebra. Define the center of L, denoted by CpLq

to be the set of elements c of L such that ra, cs “ 0, for all a P L. The center, CpLq

is an ideal of L, by [31]. L is called abelian if L1 “ 0.

Definition 5.1.7. Let A be an associative algebra. A Lie algebra, denoted by

AL is constructed from A by defining the Lie product as rx, ys “ xy ´ yx, for all

x, y P A.

The next lemma shows that DerpAq forms a Lie algebra for any not necessarily

associative algebra A.

Lemma 5.1.8. [31] Let A be a not necessarily associative algebra. Then DerpAq,

the set of derivations of A is a (Lie) subalgebra of EL, where E is the algebra of

linear transformations of the vector space A.

Definition 5.1.9. A Lie algebra L is called simple if it has no nonzero proper

ideals and L1 “ L.

Definition 5.1.10. A Lie algebra, L is called perfect if it equals its own commu-

tator ideal, that is L1 “ L.

Definition 5.1.11. [31] A Lie algebra, L is called complete if its center is t0u and

all its derivations are inner.

Theorem 5.1.12. [51] Let L be a perfect Lie algebra with center t0u. Then the

derivation algebra DerpLq is complete.

Lemma 5.1.13. [47] Let L be a Lie algebra with center t0u, and let D1 be the

derivation algebra of L and let D0 be the algebra of all inner derivations of L.

Then

1. L is isomorphic to D0

2. D0 is an ideal of D1
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3. The centraliser of D0 in D1 is t0u

Definition 5.1.14. [35] Let L be a finite dimensional Lie algebra with center

t0u. For i ě 1, let DeripLq “ DerpDeri´1pLqq, where Der0pLq “ L. Then by

Lemma 5.1.13 each DeripLq has center t0u and is an ideal of Deri`1pLq and so:

L “ Der0pLqCDer1pLqCDer2pLqC . . .

This sequence is called the derivation tower of L. In [47] it is shown that DernpLq

has only inner derivations for some n. So Lemma 5.1.13 implies that DernpLq »

Dern`jpLq, for all j ě 1. In other words the sequence stabilises. The minimal n

such that the sequence stabilises is called the height of the derivation tower.

Special cases of Lemmas 5.1.15 and 5.1.16 are used in the proofs of Section 5.3.

Lemma 5.1.15. Let g be a Lie algebra and let r, s, c P g and let D P Derpgq such

that Dprq “ rc, rs and Dprr, ssq “ rc, rr, sss. Then Dpsq ´ rc, ss P Cpr, gq.

Proof. The Lie bracket is anticommutative and so applying D to 0 “ rr, ss ` rs, rs

and using the Jacobi identity gives

0 “ Dprr, ssq ` rDpsq, rs ` rs,Dprqs “ rc, rr, sss ` rDpsq, rs ` rs, rc, rss

“ rc, rr, sss ` rDpsq, rs ´ rr, rs, css ´ rc, rr, sss

“ rDpsq, rs ´ rrc, ss, rs “ rDpsq ´ rc, ss, rs,

since the bracket is bilinear. Therefore Dpsq ´ rc, ss P Cpr, gq,

Lemma 5.1.16. Let g be a Lie algebra over a field K and let r, s, c P g, such that

rr, ss “ ks, for some k P K. Further, let D P Derpgq such that Dprq “ rc, rs. Then

rr, bs “ kb, where b “ Dpsq ´ rc, ss.
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Proof. Applying D to 0 “ rr, ss ´ ks gives

0 “ rDprq, ss ` rr,Dpsqs ´ kDpsq “ rrc, rs, ss ` rr, rc, ss ` bs ´ kprc, ss ` bq. (5.4)

However by the Jacobi identity

rrc, rs, ss “ ´rs, rc, rss “ rr, rs, css ` rc, rr, sss “ rr, rs, css ` rc, kss.

Substituting into Equation (5.4) gives

0 “ rr, rs, css ` rc, kss ` rr, rc, sss ` rr, bs ´ krc, ss ´ kb

“ rr, rs, css ´ rr, rs, css ` krc, ss ´ krc, ss ` rr, bs ´ kb “ rr, bs ´ kb.

Therefore rr, bs “ kb.

5.2 The Lie Algebra of Derivations of a Group

Algebra

It is shown that all derivations of a group algebra (as defined in [12] and else-

where) are Lie derivations but the converse is false in general. In particular, finite

commutative group algebras are considered and a basis for the K-vector space of

derivations of these group algebras is presented in Theorem 2.3.4. Theorem 5.2.9

shows that the Lie algebra of derivations of a finite commutative group algebra has

trivial center.

Lemma 5.2.1. Let K be a finite field, let G be a group and let L “ KGL. Then

DerpKGq Ď DerpLq.

Proof. Let a, b P L and d P DerpKGq. By Theorem 2.2 of [12] d is a K-linear map
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from KG to KG. Moreover

dpra, bsq “ dpab´ baq “ dpabq ´ dpbaq

“ dpaqb` adpbq ´ dpbqa´ bdpaq “ rdpaq, bs ` ra, dpbqs.

Therefore d P DerpLq.

Example 5.2.5 shows that in general DerpKGq ‰ DerpLq.

The following notation is used for the rest of this chapter.

Notation 5.2.2. Let K be a finite field of positive characteristic p and let G be

a finite abelian group. So G » H ˆX, where H is a p-regular group and X is an

abelian p-group with the following presentation

X “ xx0, x1, . . . , xn´1 | x
pmk

k “ 1, x´1
k x´1

l xkxl “ 1, for all k, l P t0, 1, . . . n´ 1uy,

where n and mk are positive integers.

Definition 5.2.3. Let G be a finite abelian group. Using the above notation,

for j P t0, 1, . . . , n ´ 1u define the set S “ txi | i “ 0, 1, . . . , n ´ 1u and define

Sj “ Sztxju. Also, define Gj to be HˆX̃, where X̃ is the subgroup of G generated

by Sj. Thus
n´1
č

i“0

Gi “ H.

Remark 5.2.4. Theorem 2.3.4 gives a basis for the K-vector space of derivations

of KG. By Lemma 2.2.1, Bxipx
m
i q “ mxm´1

i and Bxipx
m
j q “ 0, for all j ‰ i.

It is now shown that equality does not hold in Lemma 5.2.1.

Example 5.2.5. Let F2 be the field with 2 elements and let C4 “ xx | x4 “ 1y

be the cyclic group with 4 elements. Then by Theorem 2.3.4, tgBx | g P C4u is a

K-vector space basis for DerpF2C4q. Therefore DerpF2C4q has dimension 4.
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Let L “ pF2C4qL and let f be an arbitrary F2-linear map from F2C4 to F2C4.

Then since F2C4 is a commutative algebra all multiplications in L are zero. Also

fpra, bsq “ fp0q “ 0 “ rfpaq, bs ` ra, fpbqs, for any a, b P L. Therefore f P DerpLq

for all F2-linear maps f . f is a linear transformation and so can be represented by a

4ˆ4 matrix over F2 and so DerpLq has dimension 16. Thus DerpLq Ę DerpF2C4q.

Let ι be the identity map on L. Then ι is K-linear and ιpra, bsq “ ιp0q “ 0

and rιpaq, bs ` ra, ιpbqs “ 0 ` 0 “ 0. Thus ι P DerpLq. However, ι R DerpF2C4q,

since for any units a, b in F2C4, ιpabq “ ab ‰ 0 “ ab` ab “ ιpaqb` aιpbq.

Definition 5.2.6. Let F be the prime subfield of the finite field K and let g P G.

Then g can be written as g “ xh, where x “
n´1
ź

i“0

xrii P X and h P H. Define

Rj : GÑ F by g “
n´1
ź

i“0

xrii h ÞÑ rj (mod p), for j “ 0, 1, . . . , n´ 1.

Remark 5.2.7. Let g P G and so g can be written as g “ x
rj
j yh, where y “

ź

i‰j

xrii P X and h P H. Then Bxjpgq “ Bxjpx
rj
j yhq “ Bxjpx

rj
j qyh ` x

rj
j Bxjpyqh `

x
rj
j yBxjphq. However by Theorem 2.3.4 and Lemma 2.1 of [12], Bxjpx

rj
j q “ rjx

rj´1
j

and Bxjpyq “ 0. Furthermore by Theorem 3.1 of [12], Bxjphq “ 0. Therefore

Bxjpgq “ rjx
rj´1
j yh “ Rjpgqx

´1
j g. Thus Bxjpgq “ 0 ðñ g P Gj.

The following identities are used throughout this chapter.

Lemma 5.2.8. Let K be a finite field of positive characteristic p and let G be a

finite abelian group such that its Sylow p-subgroup is generated by tx0, x1, . . . xn´1u.

Let α, β P KG. Then for i, j P t0, 1, . . . , n´ 1u

rBxi , Bxj s “ 0, (5.5)

rαBxi , βBxj s “ αBxipβqBxj ´ βBxjpαqBxi and (5.6)

rBxi , βBxj s “ BxipβqBxj . (5.7)
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Proof. Let i, j P t0, 1, . . . , n´ 1u and let g P G. By Equation (5.1), Equation (5.5)

is immediate when i “ j. Let i ‰ j. Then by Remark 5.2.7

BxiBxjpgq “ Bxi
`

Rjpgqx
´1
j g

˘

“ Rjpgqx
´1
j Bxipgq “ Rjpgqx

´1
j Ripgqx

´1
i g

“ Ripgqx
´1
i Rjpgqx

´1
j g “ Ripgqx

´1
i Bxjpgq “ Bxj

`

Ripgqx
´1
i g

˘

“ BxjBxipgq.

Therefore rBxi , Bxj spgq “ 0 for any g P G. Hence rBxi , Bxj s “ 0, for any i, j P

t0, 1, . . . , n´ 1u, since G is a K-vector space basis for KG.

Let α, β P KG. Then since KG is commutative

rαBxi , βBxj s “ αBxipβBxjq ´ βBxjpαBxiq

“ αBxipβqBxj ` αβBxiBxj ´ βBxjpαqBxi ´ αβBxjBxi

“ αBxipβqBxj ´ βBxjpαqBxi ` αβrBxi , Bxj s

“ αBxipβqBxj ´ βBxjpαqBxi , since rBxi , Bxj s “ 0.

In particular letting α “ 1 in Equation (5.6), gives Equation (5.7).

Theorem 5.2.9. Let K be a finite field and let G be a finite abelian group. Then

DerpKGq has trivial center.

Proof. Let G be a finite abelian group such that its Sylow p-subgroup is generated

by tx0, x1, . . . , xn´1u and let B “ tgBxi | g P G, i “ 0, 1, . . . , n ´ 1u. Then

by Theorem 2.3.4, B is a K-vector space basis for g “ DerpKGq. Let a be an

arbitrary element of the center of g and so a can be written as a “
n´1
ÿ

i“0

ÿ

gPG

ai,ggBxi ,

where ai,g P K. By Equation (5.7), rBxj , gBxis “ BxjpgqBxi and so for any j P
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t0, 1, . . . , n´ 1u

0 “ rBxj , as “ rBxj ,
n´1
ÿ

i“0

ÿ

gPG

ai,ggBxis “
n´1
ÿ

i“0

ÿ

gPG

ai,grBxj , gBxis

“

n´1
ÿ

i“0

ÿ

gPG

ai,gBxjpgqBxi “
n´1
ÿ

i“0

´

ÿ

gPG

ai,gBxjpgq
¯

Bxi .

Therefore
ÿ

gPG

ai,gBxjpgq “ 0, for all i, j P t0, 1, . . . , n ´ 1u, since Bxi P B for all

i. Let Gj be the group defined in Definition 5.2.3. Then by Remark 5.2.7,

0 “
ÿ

gPG

ai,gBxjpgq “
ÿ

gRGj

ai,gRjpgqx
´1
j g. Multiplying this equation by xj gives

ÿ

gRGj

ai,gRjpgqg “ 0 and since Gj is a subset of G, the elements of Gj are linearly

independent in KG and so ai,gRjpgq “ 0, for all g R Gj and i P t0, 1, . . . , n ´ 1u.

By Definition 5.2.6, Rjpgq ‰ 0 (mod p), for all g R Gj. Therefore for any

j P t0, 1, . . . , n´ 1u, ai,g “ 0 for all g R Gj and i P t0, 1, . . . , n´ 1u.

Let g P G. If g R H “

n´1
č

j“0

Gj, then g R Gj for some j P t0, 1, . . . , n´ 1u and so

ai,g “ 0 for all g R H and i P t0, 1, . . . , n´1u. Thus we can write a “
n´1
ÿ

i“0

ÿ

gPH

ai,ggBxi .

Note that for g P H, Bxjpgq “ 0, for all j (by Theorem 3.1 of [12]). Hence, for any

j P t0, 1, . . . , n´ 1u, by Equation (5.6)

0 “ ra, xjBxj s “ r
n´1
ÿ

i“0

ÿ

gPH

ai,ggBxi , xjBxj s “
n´1
ÿ

i“0

ÿ

gPH

ai,grgBxi , xjBxj s

“

n´1
ÿ

i“0

ÿ

gPH

ai,g
`

gBxipxjqBxj ´ xjBxjpgqBxi
˘

“

n´1
ÿ

i“0

ÿ

gPH

ai,ggBxipxjqBxj “
ÿ

gPH

aj,ggBxj .

The set tgBxj | g P H, j P t0, 1, . . . , n ´ 1uu is linearly independent, since it is a

subset of B. Therefore aj,g “ 0, for all g P H and j P t0, 1, . . . , n´ 1u. Thus a “ 0

and so g “ DerpKGq has trivial center.

Definition 5.2.10 is used in the statement of Theorem 5.2.11.
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Definition 5.2.10. Let G be a multiplicative abelian group, let K` be the additive

group of a field K and let λ P HompG,K`q. Define λ# : KGÑ KG by
ř

gPG kgg ÞÑ
ř

gPG kgλpgqg.

Theorem 5.2.11. [39] Let G be a multiplicative abelian group, let A “ KrGs,

and let Λ be a non zero K-subspace of HompG,K`q. Then ∆ “ Λ# is a nonzero

K-vector space of commuting derivations of A and A b ∆ “ A∆ is a simple Lie

algebra if and only if GΛ “ x1y and dimKΛ ě 2 when charK “ 2.

Remark 5.2.12. Let K be a finite field of positive characteristic p and let G be a

finite abelian group such that its Sylow p-subgroup is generated by tx0, x1, . . . xn´1u.

Let Λ “ HompG,K`q and for i “ 0, 1, . . . , n´1 let λi be the element of Λ such that

λipxiq “ 1 and λipxjq “ 0 for all j ‰ i. By Definition 5.2.10 and Theorem 5.2.11

λ#
i “ xiBxi . Therefore txiBxi | i “ 0, 1, . . . , n´1u Ď ∆ “ Λ# and so A∆ “ Ab∆ “

DerpKGq. Let KG “ FpmCn
p . Then GΛ “ tg P G | λpgq “ 0 for all λ P Λu “ x1y,

since for any g P Gzt1u, Bxjpgq ‰ 0, for some j “ 0, 1, . . . , n ´ 1. Conversely, let

h P G and so ordphq “ plr, where p - r. If l ą 1 or r ą 1 , then 1 ‰ hp P GΛ.

Therefore by Theorem 5.2.11, DerpKGq is simple if and only KG “ FpmCn
p , where

n ą 1, if p “ 2.

The main result of Section 5.4 is the following:

Theorem 5.4.14. Let K be a finite field of characteristic p and let G be a finite

abelian group such that G “ XˆH, where X is an elementary abelian p-group and

H is a p-regular group. Then DerpKGq is a complete Lie algebra.

It is often useful when studying algebraic properties to have examples of al-

gebraic structures that possess these properties. To this end, Figure 5.1 is a Venn

diagram partitioning DerpKGq by the properties of being complete, simple or per-

fect Lie algebras, where G is a finite group and K is a finite field. Examples are
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given in Figure 5.1 of each of these subsets and are fully classified in the simple

case.

It is clear from the definitions that all simple Lie algebras are perfect. The

group algebras KG such that DerpKGq is simple are classified in Theorem 5.2.11.

By Theorem 5.4.14, the simple Lie algebras are complete, as are the Lie alge-

bras DerpF3C6q, DerpF2C2q and DerpF2C6q. In Example 5.4.4, DerpF2pC4ˆC4ˆ

C2qq is shown to be complete. DerpF2pC4 ˆ C2qq is shown to be noncomplete in

Example 5.4.3. The Lie algebras DerpF2pC4 ˆ C4qq, DerpF2C4q and DerpF2C8q

were verified to be noncomplete using GAP [18].

The perfectness or nonperfectness of all of these examples was also verified

using GAP [18].

Lemma 5.2.13. Let K be a finite field of characteristic p and let G be the direct

product of n ą 1 copies of the cyclic group of order p. Further, let g “ DerpKGq.

Then the derivation algebra Derpgq is complete.

Proof. By Theorem 5.2.9, g has trivial center. By [39], DerpKGq is simple and

so it is perfect. Therefore by Theorem 5.1.12 the derivation algebra Derpgq is

complete.

Lemma 5.2.13 motivates the following question: When is g “ DerpKGq com-

plete? Table 5.1 illustrates the dimensions of Deripgq where g “ DerpKGq, for

small KG. The dimensions were computed using GAP [18]. By Lemma 5.1.13, the

derivation tower stabilises and so the dimensions of Deripgq will cease to increase

for some i. It can be seen from Table 5.1 that the tower stabilises quickly (i ă 6)

for the small group algebras chosen. Memory restrictions on the computer used

prevented the computation of dimpDer2pgqq, where g “ DerpF2C128q. A pattern

that seems to emerge from Table 5.1 is that g “ DerpKGq is complete when G is

elementary abelian.
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DerpKGq

Complete Perfect

Simple

DerpF2C2q

DerpF2C6q

DerpFpmC
n
p q, where

n ą 1, if p “ 2

DerpF2pC4 ˆ C4 ˆ C2))

DerpF3C6)

DerpF2pC4 ˆ C2qq

DerpF2pC4 ˆ C4qq

DerpF2C4q, DerpF2C8q

Figure 5.1: A Venn diagram showing examples of derivation algebras of finite group
algebras for all possible subsets of the set of properties tcomplete, simple, perfectu.

5.3 The Derivations of Modular Elementary Abelian

Group Algebras are Complete

Let p be a prime number, let n be a positive integer and let K be a finite field of

positive characteristic p. Furthermore, let G be the direct product of n copies of

the cyclic group of order p. Let g be the Lie algebra of derivations of KG and let

B “ tgBxi | g P G, i P t0, . . . , n ´ 1uu. Then by Theorem 2.3.4, B is a K-vector

space basis of g “ DerpKGq. The main Theorem of this section shows that g is a

complete Lie algebra.

Definition 5.3.1. Let a be a nonzero element of a Lie algebra g over a field K
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g i 0 1 2 3 4 5 6

DerpF2C2q dimpDeripgqq 2 2 2 2 2 2 2

DerpF2C4q dimpDeripgqq 4 6 6 6 6 6 6

DerpF2pC2 ˆ C2qq dimpDeripgqq 8 8 8 8 8 8 8

DerpF2C8q dimpDeripgqq 8 12 14 14 14 14 14

DerpF2pC4 ˆ C2qq dimpDeripgqq 16 18 18 18 18 18 18

DerpF2C
3
2q dimpDeripgqq 24 24 24 24 24 24 24

DerpF2D8q dimpDeripgqq 12 16 16 16 16 16 16

DerpF2Q8q dimpDeripgqq 10 26 29 29 29 29 29

DerpF2C16q dimpDeripgqq 16 24 28 28 28 28 28

DerpF2pC8 ˆ C2qq dimpDeripgqq 32 36 36 36 36 36 36

DerpF2pC4 ˆ C4qq dimpDeripgqq 32 40 40 40 40 40 40

DerpF2C
4
2q dimpDeripgqq 64 64 64 64 64 64 64

DerpF2C32q dimpDeripgqq 32 48 56 56 56 56 56

DerpF2pC16 ˆ C2qq dimpDeripgqq 64 72 72 72 72 72 72

DerpF2pC8 ˆ C4qq dimpDeripgqq 64 80 80 80 80 80 80

DerpF2pC
2
4 ˆ C2qq dimpDeripgqq 96 96 96 96 96 96 96

DerpF2C64q dimpDeripgqq 64 96 112 112 112 112 112

DerpF2C128q dimpDeripgqq 128 192 ?

DerpF2C
n
2 q dimpDeripgqq n2n ?

Table 5.1: A table showing the dimension of Deripgq, where g “ DerpKGq for
selected small KG.

and let V be the 1-dimensional K-vector subspace of g generated by a. Define the

range of a, denoted Rpaq to be rV, gs. Rpaq is a K-vector subspace of g.

Recall the set S “ txi | i “ 0, 1, . . . , n ´ 1u which was defined in Defini-

tion 5.2.3.

Lemma 5.3.2. The set tgBxi | g P Gj, xi P Su is a K-vector space basis for the

centraliser of Bxj in g.

Proof. Let b be an arbitrary element of g and write b “
n´1
ÿ

i“0

p´1
ÿ

e“0

βi,ex
e
jBxi , where
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βi,e P KGj. Then by Equation (5.7)

rBxj , bs “
n´1
ÿ

i“0

p´1
ÿ

e“0

rBxj , βi,ex
e
jBxis “

n´1
ÿ

i“0

p´1
ÿ

e“0

βi,eBxjpx
e
jqBxi “

n´1
ÿ

i“0

p´1
ÿ

e“0

βi,eex
e´1
j Bxi .

Therefore b P CpBxj , gq if and only if
p´1
ÿ

e“1

βi,eex
e´1
j “ 0, that is, if and only if βi,e “ 0,

for all i “ 0, 1, . . . , n ´ 1 and e “ 1, 2, . . . , p ´ 1. Thus b P CpBxj , gq if and only if

b “
n´1
ÿ

i“0

βi,0Bxi , where βi,0 P KGj. This implies that the set tgBxi | g P Gj, xi P Su

is a K-vector space basis for CpBxj , gq.

Lemma 5.3.3. CpBx0 , gq
n´1
č

j“0

CpxjBx0 , gq “ t0u.

Proof. Let b P CpBx0 , gq
n´1
č

j“0

CpxjBx0 , gq. Therefore by Lemma 5.3.2, b “
n´1
ÿ

i“0

βiBxi ,

for some βi P KG0. Thus for any j P t0, 1, . . . , n´ 1u

0 “ rb, xjBx0s “
n´1
ÿ

i“0

rβiBxi , xjBx0s “ βjBx0 .

Therefore βj “ 0, for all j P t0, 1, . . . , n´ 1u and so b “ 0.

Lemma 5.3.4. The set tBxi | i “ 0, 1, . . . , n ´ 1u is a K-vector space basis for
n´1
č

i“0

CpBxi , gq.

Proof. By Lemma 5.3.2, for each i P t0, 1, . . . , n´1u the set tgBxj | g P Gi, xj P Su

is a K-vector space basis for CpBxi , gq. This K-vector space basis is a subset of

B for each i P t0, 1, . . . , n ´ 1u. Therefore the set
n´1
č

i“0

tgBxj | g P Gi, xj P Su is a

K-vector space basis for
n´1
č

i“0

CpBxi , gq. However

n´1
č

i“0

tgBxj | g P Gi, xj P Su “ tgBxj | g P
n´1
č

i“0

Gi, xj P Su “ tBxj | xj P Su.
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Definition 5.3.5. Let G be the direct product of n copies of the cyclic group of

order p, where S “ txi | i “ 0, 1, . . . , n ´ 1u is a generating set for G. Let g P G

and write g “ xe00 x
e1
1 . . . x

en´1

n´1 , where ei P t0, 1, . . . , p ´ 1u for i P t0, 1, . . . , n ´ 1u.

Define the weight of g, denoted wtpgq to be the number of nonzero exponents of g,

that is, wtpgq “
ÿ

ei‰0

1. Also, define the exponent sum of g, denoted Epgq to be the

integer sum of the exponents of g, that is, Epgq “
n´1
ÿ

i“0

ei.

Lemmas 5.3.6 and 5.3.7 are now established before the proof of Theorem 5.3.8

is given.

Lemma 5.3.6. Let p be a prime number, let n be a positive integer and let K be

a finite field of positive characteristic p. Let G be the direct product of n copies

of the cyclic group of order p, where S “ txi | i “ 0, 1, . . . , n ´ 1u is a generating

set for G. Let g “ DerpKGq and let B “ tgBxi | g P G, xi P Su and so B is

a K-vector space basis for g. Further, Let D P Derpgq and let g P G such that

wtpgq ď 1 and so g “ xej, for some j P t0, 1, . . . , n ´ 1u and e P t0, 1, . . . , p ´ 1u.

Write DpgBx0q “
n´1
ÿ

i“0

αi,gBxi, where αi,g P KG. Then for all i P t0, 1, . . . , n´ 1u

Bx0pαi,xej q “ xejBx0pαi,1q ´ Bx0pxiqex
e´1
j αj,1 ` eBx0pxjqαi,xe´1

j
. (5.8)

Also, αi,g “ gαi,1, for all i P t1, 2, . . . , n´ 1u. (5.9)

Proof. Let g P G such that wtpgq ď 1 and so g “ xej , for some j P 0, 1, . . . , n ´ 1

and e P t0, 1, . . . , p´ 1u. Then by Equation (5.7),

rBx0 , x
e
jBx0s “ Bx0px

e
jqBx0 “ Bx0pxjqex

e´1
j Bx0 .
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Therefore 0 “ rBx0 , x
e
jBx0s ´ Bx0pxjqex

e´1
j Bx0 . Applying D to this equation gives

0 “ rDpBx0q, x
e
jBx0s ` rBx0 , Dpx

e
jBx0qs ´ Bx0pxjqeDpx

e´1
j Bx0q

“

n´1
ÿ

i“0

rαi,1Bxi , x
e
jBx0s `

n´1
ÿ

i“0

rBx0 , αi,xejBxis ´ Bx0pxjqe
n´1
ÿ

i“0

αi,xe´1
j
Bxi .

Therefore by Equations (5.6) and (5.7)

0 “
n´1
ÿ

i“0

´

αi,1Bxipx
e
jqBx0 ´ x

e
jBx0pαi,1qBxi ` Bx0pαi,xej qBxi ´ Bx0pxjqeαi,xe´1

j
Bxi

¯

“ αj,1ex
e´1
j Bx0 ´ x

e
j

n´1
ÿ

i“0

Bx0pαi,1qBxi `
n´1
ÿ

i“0

Bx0pαi,xej qBxi ´ Bx0pxjqe
n´1
ÿ

i“0

αi,xe´1
j
Bxi .

Equating the coefficients of Bx0 gives

αj,1ex
e´1
j ´ xejBx0pα0,1q ` Bx0pα0,xej

q ´ Bx0pxjqeα0,xe´1
j
“ 0 and so

Bx0pα0,xej
q “ xejBx0pα0,1q ´ αj,1ex

e´1
j ` Bx0pxjqeα0,xe´1

j
. (5.10)

Equating the coefficients of Bxi , for i ą 0 gives

´xejBx0pαi,1q ` Bx0pαi,xej q ´ Bx0pxjqeαi,xe´1
j
“ 0 and so

Bx0pαi,xej q “ xejBx0pαi,1q ` Bx0pxjqeαi,xe´1
j
. (5.11)

Equations (5.10) and (5.11) combine to give Equation (5.8).

Let k P t1, 2, . . . , n ´ 1u. Then by Equation (5.6), rxekBx0 , x0Bx0s “ xekBx0 .

Applying D gives

0 “ rDpxekBx0q, x0Bx0s ` rx
e
kBx0 , Dpx0Bx0qs ´Dpx

e
kBx0q

“

n´1
ÿ

i“0

rαi,xekBxi , x0Bx0s `

n´1
ÿ

i“0

rxekBx0 , αi,x0Bxis ´
n´1
ÿ

i“0

αi,xekBxi .
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Therefore by Equations (5.6) and (5.7)

n´1
ÿ

i“0

´

αi,xekBxipx0qBx0 ´ x0Bx0pαi,xekqBxi ` x
e
kBx0pαi,x0qBxi ´ αi,x0Bxipx

e
kqBx0 ´ αi,xekBxi

¯

“ α0,xek
Bx0 ´ x0

n´1
ÿ

i“0

Bx0pαi,xekqBxi `
n´1
ÿ

i“0

xekBx0pαi,x0qBxi ´ αk,x0ex
e´1
k Bx0 ´

n´1
ÿ

i“0

αi,xekBxi

“ 0.

Therefore

0 “ pα0,xek
´ x0Bx0pα0,xek

q ` xekBx0pα0,x0q ´ αk,x0ex
e´1
k ´ α0,xek

qBx0

` p´x0Bx0pαi,xekq ` x
e
kBx0pαi,x0q ´ αi,xekqBxi .

(5.12)

Equating the coefficients of Bx0 gives

´x0Bx0pα0,xek
q ` xekBx0pα0,x0q ´ αk,x0ex

e´1
k “ 0. (5.13)

and equating the coefficients of Bxi for i ą 0 gives

´x0Bx0pαi,xekq ` x
e
kBx0pαi,x0q ´ αi,xek “ 0. (5.14)

Letting i ą 0, j “ 0 and e “ 1 in Equation (5.8) implies

Bx0pαi,x0q “ x0Bx0pαi,1q ` αi,1. (5.15)

It remains to prove Equation (5.9). The proof is divided into 4 cases, namely

when g “ 1, g “ x0, g P txek | k P t1, 2, . . . , n ´ 1u, e P t1, 2, . . . , p ´ 1uu and

g P txe0 | e P t2, 3, . . . , p´ 1uu.

Case (1): g “ 1. For all i P t1, 2, . . . , n´ 1u, αi,g “ αi,1 “ gαi,1.
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Case (2): g “ x0. Letting i “ 0 and j “ k ą 0 in Equation (5.8) implies

Bx0pα0,xek
q “ xekBx0pα0,1q ´ ex

e´1
k αk,1. (5.16)

Letting i “ j “ 0 and e “ 1 in Equation (5.8) implies

Bx0pα0,x0q “ x0Bx0pα0,1q ´ α0,1 ` α0,1 “ x0Bx0pα0,1q. (5.17)

Using Equations (5.16) and (5.17) in Equation (5.13) gives

0 “ ´x0

`

xekBx0pα0,1q ´ ex
e´1
k αk,1

˘

` xek
`

x0Bx0pα0,1q
˘

´ αk,x0ex
e´1
k

“ ex0x
e´1
k αk,1 ´ αk,x0ex

e´1
k “ exe´1

k

`

x0αk,1 ´ αk,x0
˘

.

for any e P t0, 1, . . . , p ´ 1u. Letting e “ 1 implies αk,x0 “ x0αk,1. Therefore

Equation (5.9) holds for g “ x0.

Case (3): g P txek | k P t1, 2, . . . , n ´ 1u, e P t1, 2, . . . , p ´ 1uu. Letting i ą 0 and

j “ k ą 0 in Equation (5.8) implies

Bx0pαi,xekq “ xekBx0pαi,1q. (5.18)

Using Equations (5.18) and (5.15) in Equation (5.14) gives

0 “ ´x0

`

xekBx0pαi,1q
˘

` xek
`

x0Bx0pαi,1q ` αi,1
˘

´ αi,xek

“ xekαi,1 ´ αi,xek .

Therefore Equation (5.9) holds for g P txek | k P t1, 2, . . . , n ´ 1u, e P t1, 2, . . . , p ´

1uu.

Case (4): g P txe0 | e P t2, 3, . . . , p ´ 1uu. Equation (5.21) will be useful in proving
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Equation (5.9) in this case and is now established. By Equation (5.6),

rx0Bx0 , x
e
0Bx0s “ x0ex

e´1
0 Bx0 ´ x

e
0Bx0 “ pe´ 1qxe0Bx0 .

Applying D gives

0 “ rDpx0Bx0q, x
e
0Bx0s ` rx0Bx0 , Dpx

e
0Bx0qs ´ pe´ 1qDpxe0Bx0q

“

n´1
ÿ

i“0

rαi,x0Bxi , x
e
0Bx0s `

n´1
ÿ

i“0

rx0Bx0 , αi,xe0Bxis ´ pe´ 1q
n´1
ÿ

i“0

αi,xe0Bxi .

Therefore by Equation (5.6)

α0,x0ex
e´1
0 Bx0 ´ x

e
0

n´1
ÿ

i“0

Bx0pαi,x0qBxi `
n´1
ÿ

i“0

x0Bx0pαi,xe0qBxi

´α0,xe0
Bx0 ´ pe´ 1q

n´1
ÿ

i“0

αi,xe0Bxi “ 0.

Equating the coefficients of Bxi for i ą 0 gives

´xe0Bx0pαi,x0q ` x0Bx0pαi,xe0q ´ pe´ 1qαi,xe0 “ 0. (5.19)

Letting i ą 0 and j “ 0 in Equation (5.8) implies

Bx0pαi,xe0q “ xe0Bx0pαi,1q ` eαi,xe´1
0
. (5.20)

Using Equations (5.15) and (5.20) in Equation (5.19) gives

0 “ ´xe0
`

x0Bx0pαi,1q ` αi,1
˘

` x0

`

xe0Bx0pαi,1q ` eαi,xe´1
0

˘

´ pe´ 1qαi,xe0

“ ´xe0αi,1 ` ex0αi,xe´1
0
´ pe´ 1qαi,xe0 .
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Therefore

pe´ 1qαi,xe0 “ ex0αi,xe´1
0
´ xe0αi,1. (5.21)

It is now shown by induction on e that Equation (5.9) holds for g P txe0 | e P

t1, 2, . . . , p ´ 1uu. Case (2) is the base case (e “ 1). Let r P t2, 3, . . . , p ´ 1u and

assume that αi,xr´1
0
“ xr´1

0 αi,1, for all i P t1, 2, . . . , n´1u. Then by Equation (5.21)

pr ´ 1qαi,xr0 “ rx0αi,xr´1
0
´ xr0αi,1 “ rx0px

r´1
0 αi,1q ´ x

r
0αi,1 “ pr ´ 1qxr0αi,1.

Therefore αi,xr0 “ xr0αi,1, since r ´ 1 P K˚. Thus by induction αi,xe0 “ xe0αi,1, for all

i P t1, 2, . . . , n´ 1u and e P t1, 2, . . . p´ 1u. This completes the proof.

Lemma 5.3.7. Let p be a prime number, let n be a positive integer and let K be a

finite field of positive characteristic p. Let G be the direct product of n copies of the

cyclic group of order p, where S “ txi | i “ 0, 1, . . . , n ´ 1u is a generating set for

G. Also, let D P g “ Derpgq and g P G. Suppose that the exists distinct elements

t and j of t0, 1, . . . , n´ 1u and an element c of g such that

(i) g “ xmt g
1, for some m P F˚p and g1 P Gt,

(ii) DphBxjq “ rc, hBxj s, for all h P G where Ephq ă Epgq,

(iii) DpxtBxtq “ rc, xtBxts.

Then DpgBxjq ´ rc, gBxj s “ ktBxt, where kt P K and kt “ 0 if m ‰ p´ 1.

Proof. Assume that the exists distinct elements t and j of t0, 1, . . . , n ´ 1u and

an element c of g such that conditions piq ´ piiiq are satisfied. By Equation (5.7),

rBxi , gBxj s “ BxipgqBxj . Note that Bxipgq “ 0 or Bxipgq “ kg̃, where k P K and

Epg̃q “ Epgq ´ 1. Therefore DpBxipgqBxjq “ rc, BxipgqBxj s. Also DpBxiq “ rc, Bxis,

by condition piiq. Therefore letting r “ Bxi and s “ gBxj in Lemma 5.1.15 implies
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b “ DpgBxjq ´ rc, gBxj s P CpBxi , gq, for all i P t0, 1, . . . , n ´ 1u. Therefore by

Lemma 5.3.4, b “
n´1
ÿ

i“0

kiBxi , where ki P K. Note that g “ xmt h, for some m P F˚p ,

h P Gt and t ‰ j and so by Equation (5.6)

rxtBxt , gBxj s “ xtBxtpx
m
t hqBxj ´ gBxjpxtqBxt “ mxmt hBxj ´ 0 “ mgBxj .

Letting r “ xtBxt , s “ gBxj and k “ m in Lemma 5.1.16 implies rxtBxt , bs “ mb.

Thus

0 “ mb´ rxtBxt , bs “ m
n´1
ÿ

i“0

kiBxi ´
n´1
ÿ

i“0

kirxtBxt , Bxis “ m
n´1
ÿ

i“0

kiBxi ` ktBxt .

Therefore ki “ 0 for all i ‰ t, since m P F˚p and so 0 “ pm` 1qktBxt . If m ‰ p´ 1,

then pm ` 1q P F˚p and so kt “ 0. Therefore b “ ktBxt , where kt P K and kt “ 0 if

m ‰ p´ 1.

Theorem 5.3.8. Let p be a prime number, let n be a positive integer and let K

be a finite field of positive characteristic p. Let G be the direct product of n copies

of the cyclic group of order p. Then DerpKGq is a complete Lie algebra (i.e. its

center is trivial and all its derivations are inner).

Proof. Let g “ DerpKGq. By Theorem 5.2.9, g has trivial center and so it remains

to show that all derivations of g are inner.

Let S “ txi | i “ 0, 1, . . . , n ´ 1u be a generating set for G and let B “

tgBxi | g P G, xi P Su. Then by Theorem 2.3.4, B is a K-vector space basis for

g. For j P t0, 1, . . . , n ´ 1u, let Sj and Gj be respectively the set and the group

defined in Definition 5.2.3. Let g P G and let D be an element of Derpgq. Write

DpgBx0q “
n´1
ÿ

i“0

αi,gBxi , where αi,g P KG. We will prove that D is the inner derivation

induced by

c “
n´1
ÿ

i“0

pα0,xi ´ xiα0,1qBxi .
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The following is an outline of the proof. It is shown that Dpdq “ rc, ds, for all d P g.

The proof is divided into five steps

(i) d “ gBx0 , for all g P G such that Epgq ď 1, where Epgq is defined in Defini-

tion 5.3.5.

(ii) d “ gBxl , for all l P t1, 2, . . . , n´ 1u and g P G such that Epgq ď 1. This step

is superfluous when n “ 1 and so we assume n ą 1.

(iii) d “ gBxi , for all i P t0, 1, . . . , n ´ 1u and g P G such that wtpgq ď 1. This

step is superfluous when p “ 2 and so we assume p ą 2.

(iv) d P B. This step is superfluous when n “ 1, since in this case wtpgq ď 1 for

all g P G and so we assume n ą 1.

(v) d is an arbitrary element of g.

Step (i): Let g P G such that Epgq ď 1 and so g “ xlj, for some j P t0, 1, . . . , n´

1u and l P t0, 1u. We will prove that DpgBx0q “ rc, gBx0s. By Equation (5.6)

rc, gBx0s “
n´1
ÿ

i“0

rpα0,xi ´ xiα0,1qBxi , x
l
jBx0s

“

n´1
ÿ

i“0

pα0,xi ´ xiα0,1qBxipx
l
jqBx0 ´

n´1
ÿ

i“0

xljBx0pα0,xi ´ xiα0,1qBxi .

Note that by the Leibniz rule Bx0pxiα0,1q “ Bx0pxiqα0,1 ` xiBx0pα0,1q. In Equa-

tion (5.8), let i “ 0 and e “ 1. Then Bx0pα0,xjq “ xjBx0pα0,1q ´ αj,1 ` Bx0pxjqα0,1.

Relabelling j as i gives Bx0pα0,xiq “ xiBx0pα0,1q´αi,1`Bx0pxiqα0,1. Thus, Bx0pα0,xi´

xiα0,1q “ Bx0pα0,xiq ´ Bx0pxiα0,1q “ ´αi,1. Therefore

rc, gBx0s “ lpα0,xj ´ xjα0,1qBx0 ´ x
l
jp´α0,1qBx0 ´

n´1
ÿ

i“1

xljp´αi,1qBxi

“ lpα0,xj ´ xjα0,1qBx0 ` x
l
jα0,1Bx0 `

n´1
ÿ

i“1

αi,xljBxi , (by Equation 5.9q.
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If l “ 0, then g “ 1 and

rc, gBx0s “ rc, Bx0s “ 0` α0,1Bx0 `

n´1
ÿ

i“1

pαi,1qBxi “
n´1
ÿ

i“0

αi,1Bxi “ DpgBx0q.

If l “ 1, then g “ xj and

rc, gBx0s “ pα0,xj ´ xjα0,1qBx0 ` xjα0,1Bx0 `

n´1
ÿ

i“1

αi,xjBxi “
n´1
ÿ

i“0

αi,xjBxi “ DpgBx0q.

Therefore DpgBx0q “ rc, gBx0s, for all g P G such that Epgq ď 1.

Step (ii): This step is superfluous when n “ 1 and so we assume n ą 1. Let

l P t1, 2, . . . , n´1u, g P G such that Epgq ď 1 and let b “ DpgBxlq´rc, gBxls. It will

be shown that b “ 0. The cases when g ‰ x0 and g “ x0 are treated separately.

Case (1): g ‰ x0. Let h P G such that Ephq ď 1. Then

rhBx0 , gBxls “ hBx0pgqBxl ´ gBxlphqBx0 “ ´gBxlphqBx0 .

Note that Bxlphq “ 0 or 1 and so by the linearity ofD and Step (i), Dp´gBxlphqBx0q “

rc,´gBxlphqBx0s and also DphBx0q “ rc, hBx0s. Therefore letting r “ hBx0 and

s “ gBxl in Lemma 5.1.15 implies b P CphBx0 , gq, for all h P G such that Ephq ď 1.

Therefore by Lemma 5.3.3, b “ 0.

Case (2): g “ x0. By Equation (5.7), for all i P t0, 1, . . . , n´ 1u

rBxi , x0Bxls “ Bxipx0qBxl “

$

’

’

&

’

’

%

Bxl if i “ 0

0 if i ‰ 0.

By Case (1) and Step (i), DpBxiq “ rc, Bxis for all i P t0, 1, . . . , n ´ 1u. Thus,

letting r “ Bxi and s “ x0Bxl in Lemma 5.1.15 implies b P CpBxi , gq, for all i P

t0, 1, . . . , n ´ 1u. Therefore by Lemma 5.3.4, b “
n´1
ÿ

i“0

kiBxi , where ki P K. By
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Step (i) Dpx0Bx0q “ rc, x0Bx0s and by Equation (5.6), rx0Bx0 , x0Bxls “ x0Bxl . Letting

r “ x0Bx0 , s “ x0Bxl and k “ 1 in Lemma 5.1.16 implies rx0Bx0 , bs “ b. Then, by

Equation (5.7)

0 “ b`rb, x0Bx0s “

n´1
ÿ

i“0

kiBxi`
n´1
ÿ

i“0

kirBxi , x0Bx0s “

n´1
ÿ

i“0

kiBxi`k0Bx0 “ 2k0Bx0`

n´1
ÿ

i“1

kiBxi .

If p ą 2, then ki “ 0 for all i P t0, 1, . . . , n´ 1u and so b “ 0. If p “ 2, then ki “ 0

for all i ‰ 0 and so b “ k0Bx0 . However, by Equation (5.6), rx0Bx0 ` xlBxl , x0Bxls “

x0Bxl ´ x0Bxl “ 0. By Step (i), Dpx0Bx0q “ rc, x0Bx0s and by Case (1), DpxlBxlq “

rc, xlBxls. Therefore by the K-linearity of D and the Lie bracket, Dpx0Bx0`xlBxlq “

rc, x0Bx0 ` xlBxls. Letting r “ x0Bx0 ` xlBxl and s “ x0Bxl in Lemma 5.1.15 implies

b P Cpx0Bx0 ` xlBxl , gq. Thus 0 “ rb, x0Bx0 ` xlBxls “ rk0Bx0 , x0Bx0 ` xlBxls “ k0Bx0

and so b “ 0. Therefore b “ 0 for all primes p and so DpgBxiq “ rc, gBxis for all

i P t0, 1, . . . , n´ 1u and for all g P G such that Epgq ď 1.

Step (iii): This step is superfluous when p “ 2 and so it is assumed that p ą 2.

Let g P G such that wtpgq ď 1 and so g “ xeq for some q P t0, 1, . . . , n ´ 1u and

e P t0, 1, . . . , p ´ 1u. Let be “ DpxeqBxjq ´ rc, x
e
qBxj s, where j P t0, 1, . . . , n ´ 1u. It

is now shown by induction on e that be “ 0, for all e P t0, 1, . . . , p´ 1u.

Base case (e “ 0): It was shown in Steps (i) and (ii) that DpBxjq “ rc, Bxj s,

for all j P t0, 1, . . . , n´ 1u and so b0 “ 0. Let v P t1, 2, . . . , p´ 1u and assume that

bv´1 “ 0. Then for all i P t0, 1, . . . , n´ 1u, Equation (5.7) gives

rBxi , x
v
qBxj s “ Bxipx

v
qqBxj “

$

’

’

&

’

’

%

vxv´1
q Bxj if i “ q

0 otherwise.

Also, Dpvxv´1
q Bxjq “ vDpxv´1

q Bxjq “ vrc, xv´1
q Bxj s “ rc, vx

v´1
q Bxj s, since both D and

the Lie bracket are K-linear and bv´1 “ 0 by assumption. Therefore, letting q “ Bxi

and s “ xvqBxj in Lemma 5.1.15, implies bv P CpBxi , gq, for all i P t0, 1, . . . , n ´ 1u.
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Thus by Lemma 5.3.4, bv “
n´1
ÿ

i“0

kiBxi , for some ki P K.

If n “ 1, then bv “ k0Bx0 “ kjBxj . It is now shown that bv “ kjBxj , for n ą 1.

Assume n ą 1. Then, rxlBxm , x
v
qBxj s “ 0, for any l,m P t0, 1, . . . , n ´ 1u such that

l ‰ j and m ‰ q. Thus, letting r “ xlBxm and s “ xvqBxj in Lemma 5.1.15, implies

bv P CpxlBxm , gq, for all l ‰ j and m ‰ q. Therefore by Equation (5.7)

0 “ rbv, xlBxms “
n´1
ÿ

i“0

rkiBxi , xlBxms “ klBxm .

Thus kl “ 0 for all l ‰ j and so bv “ kjBxj . Therefore we have shown that

bv “ kjBxj , for all positive integers n.

Also

rxqBxq , x
v
qBxj s “ vxvqBxj ´ x

v
qBxjpxqqBxq “

$

’

’

&

’

’

%

pv ´ 1qxvqBxj if j “ q

vxvqBxj if j ‰ q.

Letting r “ xqBxq , s “ xvqBxj and k “

$

’

’

&

’

’

%

v ´ 1 if j “ q

v if j ‰ q

in Lemma 5.1.16 implies

rxqBxq , bvs “ kbv and so if j “ q

0 “ pv ´ 1qkjBxj ` rkjBxj , xqBxq s “ pv ´ 1qkjBxj ` kjBxjpxqqBxq “ vkjBxj

and if j ‰ q

0 “ vkjBxj ` rkjBxj , xqBxq s “ vkjBxj ` kjBxjpxqqBxq “ vkjBxj .

Therefore in either case vkjBxj “ 0 and so kj “ 0, since v P F˚p . Thus bv “ 0 and so

by induction be “ 0 for all e P t0, 1, . . . , p ´ 1u. Therefore it has now been shown

that DpgBxiq “ rc, gBxis for all i P t0, 1, . . . , n ´ 1u and for all g P G such that
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wtpgq ď 1.

Step (iv): This step is superfluous when n “ 1, since in this case wtpgq ď 1

for all g P G and so we assume n ą 1. Let H “ th P G | wtphq ě 2u. It is now

shown that DpgBxiq “ rc, gBxis for all i P t0, 1, . . . , n ´ 1u and for all g P H. Let j

be a fixed element of t0, 1, . . . , n´1u and let bg “ DpgBxjq´ rc, gBxj s, for all g P H.

The proof will proceed by induction on the exponent sum of the elements of H.

Base case : Epgq “ 2 and so g “ xuxv for some distinct u, v P t0, 1, . . . , n ´ 1u.

At least one of u and v is distinct from j. Without loss of generality it is assumed

that u ‰ j. Letting t “ u, m “ 1 and g1 “ xv in Lemma 5.3.7 implies bg “ kuBxu .

There are 3 cases which are treated separately.

Case (1): p ą 2. Then by Lemma 5.3.7, bg “ 0, since m “ 1 ă p´ 1.

Case (2): p “ 2 and v ‰ j. Letting t “ v, m “ 1 and g1 “ xu in Lemma 5.3.7

implies bg “ kvBxv . Thus bg “ kuBxu “ kvBxv and so bg “ 0.

Case (3): p “ 2 and v “ j. rxuBxj , xuxjBxj s “ Bxj and so letting r “ xuBxj and s “

xuxjBxj in Lemma 5.1.15 implies bg P CpxuBxj , gq. Therefore 0 “ rkuBxu , xuBxj s “

kuBxj and so ku “ 0 which implies that bg “ 0.

Therefore bg “ 0 in each case and so DpgBxjq “ rc, gBxj s, for all g P H such that

Epgq “ 2.

Let w be an integer greater than or equal to 2. Assume that DphBxjq “ rc, hBxj s

for all h P H such that Ephq ď w. Let g P H such that Epgq “ w ` 1. There are 3

cases which are treated separately.

Case (1): There exist u, v P t0, 1, . . . , n ´ 1u distinct from j and each other such

that g R Gu and g R Gv. Therefore letting t “ u in Lemma 5.3.7 implies bg “ kuBxu

and letting t “ v in Lemma 5.3.7 implies bg “ kvBxv . Thus bg “ kuBxu “ kvBxv and

so bg “ 0.

Case (2): g “ xejx
m
u for some e,m P t1, 2, . . . , p ´ 1u such that m ‰ p ´ 1 and

j ‰ u P t0, 1, . . . , n´ 1u. Then letting t “ u in Lemma 5.3.7, gives bg “ 0.
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Case (3): g “ xejx
p´1
u , for some e P t1, 2, . . . , p ´ 1u and j ‰ u P t0, 1, . . . , n ´ 1u.

Then letting t “ u in Lemma 5.3.7, gives bg “ kuBxu . Also rxuBxj , x
e
jx

p´1
u Bxj s “

exe´1
j Bxj and so letting r “ xuBxj and s “ xejx

p´1
u Bxj in Lemma 5.1.15 implies

bg P CpxuBxj , gq. Therefore 0 “ rkuBxu , xuBxj s “ kuBxj and so ku “ 0 which implies

that bg “ 0.

Therefore, in each case bg “ 0 and so DpgBxjq “ rc, gBxj s for all g P H such

that Epgq “ w ` 1. Thus by induction, DpgBxjq “ rc, gBxj s for all g P H and for

any j P t0, 1, . . . , n´ 1u. Hence Dpdq “ rc, ds for all d P B.

Step (v): By Definition 5.1.4, D is a K-linear map and since B is a K-vector

space basis for g, D is the inner derivation induced by c.

Therefore since D was an arbitrary element of Derpgq, all derivations of g are

inner and so g “ DerpKGq is a complete Lie algebra.

5.4 The Lie Derivation Algebra of Abelian Group

Algebras

In this Section, g “ DerpKGq is considered, firstly when G is a finite abelian p-

group which is not elementary abelian and secondly when G “ X ˆH, where X is

an elementary abelian p-group and H is a p-regular abelian group.

Let H be a subgroup of an abelian group G such that H is contained within the

ring of constants of KG. Then it is shown that the augmentation ideal, ∆pG,Hq

is a differential ideal of pKG, dq, for all derivations d of KG. This result allows

for the construction of a proper nonzero ideal of DerpKGq from ∆pG,Hq, when

the Sylow p-subgroup of G is not elementary abelian. If DerpKGq is complete,

then every element of DerpKGq must map this ideal into itself. Example 5.4.3

shows that when KG “ F2pC4ˆC2q, this is not the case. Therefore Theorem 5.3.8
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does not extend to all finite commutative group algebras. However, it is shown

in Example 5.4.4, that DerpF2pC4 ˆ C4 ˆ C2qq is complete. Thus, the Sylow p-

subgroup of G not being elementary abelian does not imply the existence of outer

derivations. Theorem 5.4.14 proves that DerpKGq is a complete Lie algebra, when

G be a finite abelian group such that G “ XˆH, where X is an elementary abelian

p-group and H is a p-regular group.

Definition 5.4.1. Let R be a ring. Define the ring of constants of R to be the set

of elements of R whose image under any derivation of R is zero and is denoted by

CpRq.

Lemma 5.4.2. Let K be a finite field, let G be a finite abelian group and let

c1, c2 P CpKGq. Then for all a, b P DerpKGq

rc1a, c2bs “ c1c2ra, bs (5.22)

Proof.

rc1a, c2bs “ c1apc2bq ´ c2bpc1aq “ c1c2apbq ´ c2c1bpaq “ c1c2ra, bs.

Example 5.4.3. Let K be the finite field with 2 elements and let G “ xx, y | x4 “

y2 “ x´1y´1xy “ 1y. By Theorem 2.3.4 the set tgBx, hBy | g, h P Gu is a basis for

g “ DerpKGq. Let S “ tBx, xBx, yBx, xyBx, By, xBy, yBy, x
2Bx ` xyByu and so

SYx2S is another basis for g. Let D : gÑ g be the K-linear extension of the map

defined by s ÞÑ 0 and x2s ÞÑ x2s for all s P S. It is shown that D is an element

Derpgq that is not inner and so DerpKGq is not a complete Lie algebra.

Let s be the K-span of S. It can be easily checked that s is a Lie subalgebra

of g. Let a, b P S and let ra, bs “ c and so c P s. Thus Dpaq “ Dpbq “ Dpcq “ 0. It
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is now shown that D obeys Equation (5.3) (Leibniz’s rule) on the products ra, bs,

ra, x2bs and rx2a, x2bs.

rDpaq, bs ` ra,Dpbqs `Dpcq “ r0, bs ` ra, 0s ` 0 “ 0,

rDpaq, x2bs ` ra,Dpx2bqs `Dpx2
ra, bsq (5.23)

“ r0, x2bs ` ra, x2bs `Dpx2cq “ x2
ra, bs ` x2c “ 0,

rDpx2aq, x2bs ` rx2a,Dpx2bqs `Dpra, bsq “ rx2a, x2bs ` rx2a, x2bs `Dpcq “ 0.

Let a, b P g and so a “ a0 ` x2a1 and b “ b0 ` x2b1 for some a0, a1, b0, b1 P s.

Then ra, bs is a K-linear combination of products of the form in Equation (5.4.3).

Therefore by Equation (5.4.3), Dpra, bsq “ rDpaq, bs` ra,Dpbqs and so D P Derpgq.

Let H “ xx2y and let I “ tuBx ` vBy | u, v P ∆pG,Hqu. It is shown that I is

an ideal of g. ∆pG,Hq is an ideal of KG and so it is closed under addition and

scalar multiplication. Thus I is a subspace of g.

Let d P g and let z P I and so z “ z0Bx ` z1By, for some z0, z1 P ∆pG,Hq.

Therefore

rz, ds “ rz0Bx, ds ` rz1By, ds “ z0Bxpdq ` dpz0qBx ` z1Bypdq ` dpz1qBy.

Note that Bxpdq and Bypdq are in g and z0, z1 P ∆pG,Hq so z0Bxpdq, z1Bypdq P I.

Also, H Ă CpKGq and so by Corollary 3.1.17, ∆pG,Hq is a differential ideal of

pKG, dq, for all derivations d of KG. Therefore dpz0q, dpz1q P ∆pG,Hq and so

dpz0qBx, dpz1qBy P I. Thus rz, ds P I and so I is an ideal of g. However, Bx`x
2Bx P I

and DpBx ` x
2Bxq “ DpBxq `Dpx

2Bxq “ x2Bx R I and so D is not inner.

Example 5.4.4. Let K be the finite field with 2 elements and let G “ xx0, x1, x2 |

x4
0 “ x4

1 “ x2
2 “ x´1

i x´1
j xixj “ 1y. Let g “ DerpKGq. Then, by Theorem 5.2.9, g

has a trivial center. It has been verified using GAP [18], that the dimension of both
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Derpgq and g is 96. Therefore all derivations of g are inner and so g a complete

Lie algebra.

Definition 5.4.5. Let K be a finite field of characteristic p and let G be a finite

abelian group such that G “ X ˆ H, where X is an elementary abelian p-group

and H is a p-regular group. Let g “ DerpKGq, D P Derpgq and h P H. Define the

maps fpD, hq : gÑ g by a ÞÑ Dphaq ´ hDpaq.

Remark 5.4.6. Fix D P Derpgq and h P H. Denote fpD, hq by f . Then for

a, b P g and k P K

fpa` bq “ Dpha` hbq ´ hDpa` bq “ Dphaq `Dphbq ´ hDpaq ´ hDpbq

“ fpaq ` fpbq,

fpkaq “ Dphkaq ´ hDpkaq “ Dpkhaq ´ hkDpaq “ kpDphaq ´ hDpaqq “ kfpaq.

Therefore the maps fpD, hq are K-linear.

Lemma 5.4.7. Let K be a finite field of characteristic p and let G be a finite abelian

group such that G “ X ˆH, where X is an elementary abelian p-group and H is

a p-regular group. Let g “ DerpKGq. Then fpD, hqpra, bsq “ rfpD, hqpaq, bs “

ra, fpD, hqpbqs, for all D P Derpgq, h P H and a, b P g.

Proof. Fix D P Derpgq and h P H. Denote fpD, hq by f . Note that H Ă CpKGq

and so by Lemma 5.4.2, hra, bs “ rha, bs “ ra, hbs for all a, b P g. Applying D to

hra, bs gives

Dphra, bsq “ Drha, bs “ rDphaq, bs ` rha,Dpbqs

“ rhDpaq, bs ` rfpaq, bs ` hra,Dpbqs

“ hprDpaq, bs ` ra,Dpbqsq ` rfpaq, bs

“ hpDra, bsq ` rfpaq, bs.
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Therefore fpra, bsq “ rfpaq, bs. The bracket is antisymmetric and f is K-linear and

so fpra, bsq “ fp´rb, asq “ ´fprb, asq “ ´rfpbq, as “ ra, fpbqs.

Corollary 5.4.8. Let a, b P g such that a is in the centraliser of b in g. Then

fpD, hqpaq is also in the centraliser of b in g, for all D P Derpgq and h P H.

Proof. Let a P Cpb, gq, D P Derpgq and h P H. Then by Lemma 5.4.7, rfpD, hqpaq, bs

“ fpD, hqpra, bsq “ fpD, hqp0q “ 0. Therefore, for all D P Derpgq and h P H

a P Cpb, gq implies fpD, hqpaq P Cpb, gq.

Note that in Lemmas 5.4.9 and 5.4.10, the usual convention for an empty

intersection is used, that is S
Ş

kP∅ Tk “ S, for all subsets S and Tk of a set.

Lemma 5.4.9. Let K be a finite field of characteristic p and let G be a finite

abelian group such that G “ X ˆ H, where X is an elementary abelian p-group

with minimum generating set txi | i “ 0, 1, . . . , n´ 1u and H is a p-regular group.

Let g “ DerpKGq. Then

n´1
č

j“0

CpBxj , gq
n´1
č

m“1

CpxmBxm , gq “ CpKGqBx0 .

Proof. Let a P g and write a “
n´1
ÿ

i“0

αiBxi , for some αi P KG. Then for all j “

0, 1, . . . , n´ 1

rBxj , as “
n´1
ÿ

i“0

rBxj , αiBxis “
n´1
ÿ

i“0

BxjpαiqBxi .

Therefore a P
n´1
č

j“0

CpBxj , gq if and only if Bxjpαiq “ 0, for all i, j “ 0, 1, . . . , n ´ 1,

that is αi P CpKGq, for i “ 0, 1, . . . , n ´ 1. Thus the lemma is proved for the case

n “ 1. Assume n ą 1 and a P
n´1
č

j“0

CpBxj , gq. Then for all m “ 1, 2, . . . , n´ 1

ra, xmBxms “
n´1
ÿ

i“0

rαiBxi , xmBxms “
n´1
ÿ

i“0

αiBxipxmqBxm “ αmBxm .
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Therefore a P
n´1
č

j“0

CpBxj , gq
n´1
č

m“1

CpxmBxm , gq if and only if αm “ 0, for all m “

1, 2, . . . , n´ 1, that is a “ α0Bx0 , where α0 P CpKGq.

Lemma 5.4.10. Let K be a finite field of characteristic p and let G be a finite

abelian group such that G “ X ˆ H, where X is an elementary abelian p-group

with minimum generating set txi | i “ 0, 1, . . . , n´ 1u and H is a p-regular group.

Let g “ DerpKGq. Then

n´1
č

j“1

CpBxj , gq
n´1
č

m“0

CpxmBxm , gq “ CpKGqx0Bx0 .

Proof. Let a P g and write a “
n´1
ÿ

i“0

αiBxi , where αi P KG. Then for all m “

0, 1, . . . , n´ 1

ra, xmBxms “
n´1
ÿ

i“0

rαiBxi , xmBxms “
n´1
ÿ

i“0

`

αiBxipxmqBxm ´ xmBxmpαiqBxi
˘

“ αmBxm ´
n´1
ÿ

i“0

xmBxmpαiqBxi

“
`

αm ´ xmBxmpαmq
˘

Bxm ´
ÿ

i‰m

xmBxmpαiqBxi .

Therefore a P
n´1
č

m“0

CpxmBxm , gq if and only if αm “ xmBxmpαmq and Bxmpαiq “ 0,

for all i ‰ m, that is, αi “ γixi, where γi P CpKGq, for i “ 0, 1, . . . , n ´ 1 . Thus

the lemma is proved for the case n “ 1. Assume n ą 1 and a P
n´1
č

m“0

CpxmBxm , gq.

Then for all j “ 1, 2, . . . , n´ 1

rBxj , as “
n´1
ÿ

i“0

rBxj , αiBxis “
n´1
ÿ

i“0

BxjpαiqBxi “
n´1
ÿ

i“0

γiBxjpxiqBxi “ γjBxj .

Therefore a P
n´1
č

j“1

CpBxj , gq
n´1
č

m“0

CpxmBxm , gq if and only if γj “ 0, for all j “

1, 2, . . . , n´ 1, that is, a “ γ0x0Bx0 , where γ0 P CpKGq.
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Lemma 5.4.11. Let K be a finite field of characteristic p and let G be a finite

abelian group such that G “ X ˆ H, where X is an elementary abelian p-group

with minimum generating set txi | i “ 0, 1, . . . , n´ 1u and H is a p-regular group.

Let g “ DerpKGq. Then Dphaq “ hDpaq, for all D P Derpgq, h P H and a P g.

Proof. Fix D P Derpgq, h P H and denote fpD, hq by f . It is shown that f “ 0. Let

ρ P CpKGq. Then by Lemma 5.4.9, ρBx0 P CpKGqBx0 “
n´1
č

j“0

CpBxj , gq
n´1
č

k“1

CpxkBxk , gq.

Therefore by Corollary 5.4.8, fpρBx0q is also an element of CpKGqBx0 and so

fpρBx0q “ γρBx0 , where γρ P CpKGq. Moreover, by Lemma 5.4.10, ρx0Bx0 P

CpKGqx0Bx0 “

n´1
č

j“1

CpBxj , gq
n´1
č

k“0

CpxkBxk , gq. Therefore by Corollary 5.4.8, fpρx0Bx0q

“ τρx0Bx0 , where τρ P CpKGq. However, by Lemma 5.4.7

γρBx0 “ fpρBx0q “ fprρBx0 , x0Bx0sq “ rρBx0 , fpx0Bx0qs “ ρrBx0 , τ1x0Bx0s “ τ1ρBx0

and so γρ “ τ1ρ for all ρ P CpKGq.

The following formula is established by induction on the nonnegative integer

m.

DphmBx0q “ hmDpBx0q `mτ1h
m´1

Bx0 . (5.24)

Base case: Let m “ 0. Dph0Bx0q “ h0DpBx0q ` 0τ1h
´1Bx0 . Assume that Equa-

tion (5.24) holds for m “ k ´ 1. Then

DphkBx0q “ hDphk´1
Bx0q ` fph

k´1
Bx0q

“ h
`

hk´1DpBx0q ` pk ´ 1qτ1h
k´2
Bx0

˘

` γhk´1Bx0

“ hkDpBx0q ` pk ´ 1qτ1h
k´1
Bx0 ` τ1h

k´1
Bx0 “ hkDpBx0q ` kτ1h

k´1
Bx0 .

Therefore Equation (5.24) holds for m “ k and so by induction it holds for all m.

Letting m equal to the order of h, ( denoted ordphq ) in Equation (5.24) implies

ordphqτ1h
´1Bx0 “ 0. Therefore τ1 “ 0, since ordphqh´1 is a unit in KG. Thus
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fpx0Bx0q “ τ1x0Bx0 “ 0 and fpρBx0q “ γρBx0 “ τ1ρBx0 “ 0, for all ρ P CpKGq. Also

τρ “ 0, for all ρ P CpKGq, since

0 “ rfpBx0q, ρx0Bx0s “ rBx0 , fpρx0Bx0qs “ rBx0 , τρx0Bx0s “ τρrBx0 , x0Bx0s “ τρBx0 .

It has now been shown that fpρBx0q “ fpρx0Bx0q “ 0, for all ρ P CpKGq.

Assume that n “ 1 and p “ 2. Then for any g P G, either g P CpKGq or

g P x0CpKGq and so in either case fpgBx0q “ 0. Therefore f “ 0, since it is

K-linear and is zero on a basis for g.

It is now assumed that if n “ 1 then p ą 2. For any j ą 0 and m ě 0

fpxmj Bxjq “ fprBx0 , x0x
m
j Bxj sq “ rfpBx0q, x0x

m
j Bxj s “ r0, x0x

m
j Bxj s “ 0.

Let a P g and write a “
n´1
ÿ

i“0

αiBxi , where αi P KG for all i. It is now shown that a

can be written as a sum of products of elements whose image under f is zero.

Case 1 : αi P KGj for some j. Then rBxj , xjαiBxis “ αiBxi .

Case 2a : αi R KGj for any j and n ą 1. Then for t ‰ i, rxtBxtαiBxis “ kαiBxi ,

where k P K˚.

Case 2b : αi R KGj for any j, n “ 1 and p ą 2. Then α0 “ xe0α̃0, where α̃0 P KG0.

If e ą 1, then pe´1q´1rx0Bx0 , x
e
0α̃0Bx0s “ pe´1q´1pexe0α̃0Bx0´x

e
0α̃0Bx0q “ xe0α̃0Bx0 “

α0Bx0 . If e “ 1, then r2´1Bx0 , x
2
0α̃0Bx0s “ 2´12x0α̃0 “ α0Bx0 .

Therefore a “
ř

jrbj, cjs, for some bj, cj P g such that fpbjq “ 0 and so

fpaq “ f
`

ÿ

j

rbj, cjs
˘

“
ÿ

j

fprbj, cjsq “
ÿ

j

rfpbjq, cjs “
ÿ

j

r0, cjs “ 0.

Definition 5.4.12. Let I be an ideal of a Lie algebra L. Then I is a characteristic

ideal of L if dpIq Ď I for all d P DerpLq. This definition can be found in [37, pp.
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5474]

Lemma 5.4.13. Let K be a finite field of characteristic p and let G be a finite

abelian group such that G “ X ˆ H, where X is an elementary abelian p-group

with minimum generating set txi | i “ 0, 1, . . . , n´ 1u and H is a p-regular group.

Then the set

I “

#

n´1
ÿ

i“0

αiBxi | αi P ∆pG,Hq, for i “ 0, 1, . . . , n´ 1

+

(5.25)

is a characteristic ideal of g “ DerpKGq.

Proof. By Lemma 3.1.2, the set th ´ 1 | h P Hu is a set of generators of ∆pG,Hq

as an ideal of KG. Let b P I. Then b “
n´1
ÿ

i“0

ÿ

hPH

ph´ 1qβi,hBxi , where βi,h P KG. Let

D P Derpgq. Then by Lemma 5.4.11, Dphaq “ hDpaq for all a P g. Therefore

Dpbq “
n´1
ÿ

i“0

ÿ

hPH

D
`

ph´ 1qβi,hBxi
˘

“

n´1
ÿ

i“0

ÿ

hPH

ph´ 1qDpβi,hBxiq P I.

Theorem 5.4.14. Let K be a finite field of characteristic p and let G be a finite

abelian group such that G “ XˆH, where X is an elementary abelian p-group and

H is a p-regular group. Then DerpKGq is a complete Lie algebra.

Proof. Let g “ DerpKGq. By Lemma 5.2.9, g has trivial center and so it remains

to show that all derivations of g are inner.

Let Φ : KG Ñ KG be the K-linear extension of the group homomorphism

defined by x ÞÑ x and h ÞÑ 1, for all x P X and h P H. Therefore, kerpΦq is the

augmentation ideal ∆pG,Hq. Let txi | i “ 0, 1, . . . , n´1u be a minimum generating

set for X and let a “
n´1
ÿ

i“0

αiBxi P g. Define φ : g Ñ g by a ÞÑ
n´1
ÿ

i“0

ΦpαiqBxi . φ is

a Lie algebra homomorphism since, φpaq “ 0, if and only if, Φpαiq “ 0, for all
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i “ 0, 1, . . . n´ 1 and so kerpφq “ I, where I is the characteristic ideal of g defined

by Equation (5.25).

Fix D P Derpgq. Let h “ g{I and define d : h Ñ h by dpφpaqq “ φpDpaqq,

for all a P g. Let a, b P g such that φpaq “ φpbq, then Dpa ´ bq P kerpφq, since

a´b P kerpφq “ I, which is a characteristic ideal of g. Therefore dpφpaqq´dpφpbqq “

dpφpa ´ bqq “ φpDpa ´ bqq “ 0 and so the map d is well defined. Moreover, d is a

linear map as it is the composition of the linear maps φ and D. Also, d satisfies

the Leibniz rule, since for any a, b P g

dprφpaq, φpbqsq “ dpφra, bsq “ φpDra, bsq “ φprDpaq, bs ` ra,Dpbqsq

“ rφpDpaqq, φpbqs ` rφpaq, φpDpbqqs

“ rdpφpaqq, φpbqs ` rφpaq, dpφpbqqs.

Therefore d P Derphq. By Theorem 5.3.8, h is complete and so d is inner, induced

by some element φpcq P h. It has been shown that the following diagram commutes:

g g

h h

φ

D

φ

d

φpDpaqq “ dpφpaqq “ rφpcq, φpaqs “ φprc, asq and so Dpaq ´ rc, as P kerpφq. Let

δ “ D ´ adpcq and so δ : g Ñ I is an element of Derpgq. Consider the restriction

of δ to h, denoted by δæh. Let r, s P h, k P K and H1 “ Hzt1u. Then

δæhprq “
ÿ

hPH1

ph´ 1qrh, δæhpkrq “
ÿ

hPH1

ph´ 1qkrh,

δæhpsq “
ÿ

hPH1

ph´ 1qsh, δæhpr ` sq “
ÿ

hPH1

ph´ 1qprh ` shq,
(5.26)

for some rh, sh P h. Define the maps δh : hÑ h by r ÞÑ rh, for all h P H1. Then by
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Equation (5.26), δh is K-linear. Also by Equation (5.26)

ÿ

hPH1

ph´ 1qδhprr, ssq “ δæhprr, ssq “ rδæhprq, ss ` rr, δæhpsqs

“
ÿ

hPH1

ph´ 1qrrh, ss `
ÿ

hPH

ph´ 1qrr, shs

“
ÿ

hPH1

ph´ 1q
`

rrh, ss ` rr, shs
˘

“
ÿ

hPH1

ph´ 1q
`

rδhprq, ss ` rr, δhpsqs
˘

.

Therefore for all h P H1, δh satisfies liebniz’s rule and so is an element of Derphq.

Thus δh is inner induced by some element of h, denoted by th. Thus

δæhprq “
ÿ

hPH1

ph´ 1qrh “
ÿ

hPH1

ph´ 1qδhprq “
ÿ

hPH1

ph´ 1qrth, rs “
”

ÿ

hPH1

ph´ 1qth, r
ı

.

Denote
ř

hPH1
ph´ 1qth by t. Then, by Lemma 5.4.11, for any h P H and any r P h

δphrq “ hδprq “ hrt, rs “ rt, hrs,

and so δ is inner induced by t. Therefore Dpaq “ rc, as ` δpaq “ rc, as ` rt, as “

rc` t, as and hence D is inner induced by c` t.

5.5 Derivations of Abelian p-Groups

Lemma 5.5.1. DerpFptCpnq is a perfect Lie algebra for all prime numbers p ą 2.

Proof. Let g “ DerpFptCpnq, let Cpn “ xxy and let B “ txiBx | i “ 0, 1, . . . , pn´1u.

Then by Theorem 2.3.4, B is a basis for g. It is shown that each element of B is a

product in g. There are 2 cases which are treated separately.
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Case 1: xiBx, where i ı ´1 (mod p). Then

rpi` 1q´1
Bx, x

i`1
Bxs “ pi` 1q´1

Bxpx
i`1
qBx ´ 0 “ pi` 1q´1

pi` 1qxiBx “ xiBx.

Case 2: xiBx, where i ” ´1 (mod p). Then i´ 1 is invertible since p ą 2 and so

rpi´ 1q´1xBx, x
i
Bxs “ pi´ 1q´1

`

xBxpx
i
qBx ´ x

i
BxpxqBx

˘

“ pi´ 1q´1
pixxi´1

Bx ´ x
i
Bxq “ pi´ 1q´1

pi´ 1qxiBx “ xiBx.

Therefore all elements of B are in g1 and so g1 “ g.

Definition 5.5.2. A set S of elements of a Lie algebra L, generate L if the smallest

subalgebra of L containing the set S is L.

Lemma 5.5.3. Let g be a Lie algebra and let a, b, c, d P g, such that ra, bs “ d.

Further, let D P Derpgq such that Dpaq “ rc, as and Dpbq “ rc, bs. Then Dpdq “

rc, ds.

Proof. This is a direct consequence of the Jacobi identity. Applying D to d “ ra, bs

gives

Dpdq “ rDpaq, bs ` ra,Dpbqs “ rrc, as, bs ` ra, rc, bss “ rc, ra, bss “ rc, ds.

Lemma 5.5.4. Let S be a generating set for a Lie algebra g. Further, let D P

Derpgq such that Dpsq “ rc, ss, for all s P S. Then D is the inner derivation of g,

induced by c.

Proof. Let T “ tt P g | Dptq “ rc, tsu and let a “ rt0, t1s, where t0, t1 P T . Then by

Lemma 5.5.3, a P T . Therefore T “ g, since S Ď T and S generates g.
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Lemma 5.5.5. DerpFptCpnq is a complete Lie algebra for all prime numbers p ą 3.

Proof. Let Cpn “ xxy and let g “ DerpFptCpnq. Then B “ txiBx | i “ 0, 1, . . . , pn´

1u is a basis for g. By Theorem 5.2.9, g has trivial center and so it remains to show

that all derivations of g are inner. Multiplication of elements of B is given by the

following equation.

rxiBx, x
j
Bxs “ xijxj´1

Bx ´ x
jixi´1

Bx “ pj ´ iqx
i`j´1

Bx. (5.27)

Therefore xmBx is not in the support of any element of the range of xiBx if and

only if m ” 2i´ 1 (mod p). Let D P Derpgq and write DpBxq “
pn´1
ÿ

i“0

kix
i
Bx, where

ki P Ftp. Then

rDpBxq, xBxs “
pn´1
ÿ

i“0

kirx
i
Bx, xBxs “

pn´1
ÿ

i“0

kip1´ iqx
i
Bx.

ApplyingD to the equation Bx “ rBx, xBxs, givesDpBxq “ rDpBxq, xBxs`rBx, DpxBxqs.

Equating the coefficients of xmBx, where m ” ´1 (mod p) implies km “ kmp1 ´

p´1qq ` 0, since xmBx is not in the support of any element of the range of Bx and

so km “ 0. Therefore DpBxq P RpBxq and so DpBxq “ rc, Bxs, for some c P g.

Let βiBx “ DpxiBxq ´ rc, x
iBxs, for all i P t0, 1, . . . , pn ´ 1u and so β0 “ 0.

Applying D to Equation (5.27) implies

0 “ pi´ jqDpxi`j´1
Bxq ` rDpx

i
Bxq, x

j
Bxs ` rx

i
Bx, Dpx

j
Bxqs

“ pi´ jqrc, xi`j´1
Bxs ` pi´ jqβi`j´1Bx ` rrc, x

i
Bxs, x

j
Bxs

` rβiBx, x
j
Bxs ` rx

i
Bx, rc, x

j
Bxss ` rx

i
Bx, βjBxs

“ pi´ jqrc, xi`j´1
Bxs ` pi´ jqβi`j´1Bx ` rx

i
Bx, rx

j
Bx, css ` rc, rx

i
Bx, x

j
Bxss

` rβiBx, x
j
Bxs ´ rx

i
Bx, rx

j
Bx, css ` rx

i
Bx, βjBxs.
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Therefore

pi´ jqβi`j´1Bx ` rβiBx, x
j
Bxs ` rx

i
Bx, βjBxs “ 0. (5.28)

By Equation (5.27), ra, ζbs “ rζa, bs “ ζra, bs, for any ζ P Fptxxpy.

Letting j “ 1 and i “ 0 in Equation (5.28), implies 0Bx “ β0Bx “ rBx, β1Bxs

and so β1 P Fptxxpy.

Letting j “ 2 and i “ 0 in Equation (5.28), implies 2β1Bx “ rBx, β2Bxs and

hence β2 “ 2xβ1 ` β̄2, where β̄2 P Fptxxpy.

Letting j “ 2 and i “ 1 in Equation (5.28), implies

0 “ ´β2Bx ` rβ1Bx, x
2
Bxs ` rxBx, β2Bxs

“ ´2xβ1Bx ´ β̄2Bx ` β1rBx, x
2
Bxs ` rxBx, 2xβ1Bxs ` rxBx, β̄2Bxs

“ ´2xβ1Bx ´ β̄2Bx ` β12xBx ` 2β1rxBx, xBxs ` β̄2rxBx, Bxs “ ´2β̄2Bx.

Therefore β̄2 “ 0 and so β2 “ 2xβ1.

Letting j “ 3 and i “ 0 in Equation (5.28), implies 3β2Bx “ rBx, β3Bxs and

hence β3 “ 3xβ2 ` β̄3, where β̄3 P Fptxxpy. Thus β3 “ 6x2β1 ` β̄3.

Letting j “ 3 and i “ 1 in Equation (5.28), implies

0 “ ´2β3Bx ` rβ1Bx, x
3
Bxs ` rxBx, β3Bxs

“ ´12x2β1Bx ´ 2β̄3Bx ` β1rBx, x
3
Bxs ` β1rxBx, 6x

2
Bxs ` β̄3rxBx, Bxs

“ ´12x2β1Bx ´ 2β̄3Bx ` β13x2
Bx ` β16x2

Bx ´ β̄3Bx “ ´3x2β1Bx ´ 3β̄3Bx.

Therefore β1 “ β̄3 “ 0 and so 0 “ β0 “ β1 “ β2 “ β3.

x2Bx and x3Bx generate the Lie algebra g, since for any m ı 2 (mod p) by

Equation (5.27), rx2Bx, x
mBxs “ pm ´ 2qxm`1Bx and for any m ” 2 (mod p),

rx3Bx, x
m´1Bxs “ ´2xm`1Bx. Therefore by Corollary 5.5.4, D is an inner derivation
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of g. Thus, since D is a arbitrary derivation, g is a complete Lie algebra.

Lemma 5.5.6. Let p be an odd prime and let G “ xx0, x1 | x
p2

0 “ xp1 “ x´1
0 x´1

1 x0x1 “

1y » Cp2 ˆ Cp. Then the set tBx0 , x0Bx1 , x
p2´1
0 xp´1

1 Bx0u generates DerpFptGq as a

Lie algebra.

Proof. Let g “ DerpFptGq and let B “ tgBxi | g P G, i “ 0, 1u. Then by The-

orem 2.3.4, B is a basis for g. Let s be the subalgebra of g generated by the set

tBx0 , x0Bx1 , x
p2´1
0 xp´1

1 Bx0u. Then Bx1 P s since, rBx0 , x0Bx1s “ Bx1 . Let i be an in-

teger such that xi0x
p´1
1 Bx0 P s. Then xi0x

j
1Bx0 P s, for all j “ 0, 1, . . . , p ´ 1, since

rBx1 , x
i
0x

j
1Bx0s “ jxi0x

j´1
1 Bx0 . Thus in particular xp

2´1
0 Bx0 P s.

It is now shown that xi0x
j
1Bx0 P s, for all i “ 0, 1, . . . , p2´1 and j “ 0, 1, . . . , p´

1. Let i ı ´1 (mod p). Then, rpi ` 1q´1Bx0 , x
i`1
0 xp´1

1 Bx0s “ xi0x
p´1
1 Bx0 . Now let

i ” ´1 (mod p). Then, rxp
2´1

0 Bx0 , x
i`2
0 xp´1

1 Bx0s “ 2xi0x
p´1
1 Bx0 . Therefore xi0x

p´1
1 Bx0 P

s, for all i “ 0, 1, . . . , p2 ´ 1 since, p ą 2 and xp
2´1

0 xp´1
1 Bx0 P s. However, it has

already been shown that for j “ 0, 1, . . . , p´1, xi0x
j
1Bx0 P s, whenever xi0x

p´1
1 Bx0 P s.

Therefore xi0x
j
1Bx0 P s, for all i “ 0, 1, . . . , p2 ´ 1 and j “ 0, 1, . . . , p´ 1.

Also, for any i and j, rxi0x
j
1Bx0 , x0Bx1s “ xi0x

j
1Bx1´jx

i`1
0 xj´1

1 Bx0 and so xi0x
j
1Bx1 P

s since jxi`1
0 xj´1

1 Bx0 P s. Therefore B Ď s and so s “ g.

Lemma 5.5.7. Let p be a prime number, let G “ xx0, x1 | x
p2

0 “ xp1 “ x´1
0 x´1

1 x0x1 “

1y » Cp2 ˆ Cp and let g “ DerpFptGq. Then DpBx0q P RpBx0q, for all D P Derpgq.

Proof. rBx0 , x
i
0x

j
1Bxks “ ixi´1

0 xj1Bxk and so RpBx0q “ txi0x
j
1Bxk | i ı ´1u. Let D P

Derpgq and write DpBx0q “
ř

i,j,k ai,j,kx
i
0x

j
1Bxk . Applying D to rBx0 , x0Bx0s “ Bx0
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implies

0 “ DpBx0q ` rx0Bx0 , DpBx0qs ` rx0Bx0 , DpBx0qs

“
ÿ

i,j,k

ai,j,kx
i
0x

j
1Bxk `

ÿ

i,j,k

ai,j,krx0Bx0 , x
i
0x

j
1Bxks ` rx0Bx0 , DpBx0qs

“
ÿ

i,j,k

ai,j,kp1` i´ δ0,kqx
i
0x

j
1Bxk ` rx0Bx0 , DpBx0qs,

where δ is the Kronecker delta function. Therefore
ř

i,j,k ai,j,kp1` i´ δ0,kqx
i
0x

j
1Bxk P

RpBx0q and so for i ” ´1 (mod p), 0 “ ai,j,kp1 ` i ´ δ0,kq “ ai,j,kpδ0,kq. Thus

ai,j,0 “ 0, for all j and i ” ´1 (mod p). Therefore DpBx0q “
ÿ

iı´1,j,k

ai,j,kx
i
0x

j
1Bxk `

ÿ

i”´1,j

ai,j,1x
i
0x

j
1Bx1 .

Let m P t0, 1, . . . , p ´ 1u. Then applying D to rBx0 , x
m
1 Bx1s “ 0 implies

rDpBx0q, x
m
1 Bx1s ` rBx0 , Dpx

m
1 Bx1sq “ 0 and so rDpBx0q, x

m
1 Bx1s P RpBx0q. Therefore

ÿ

iı´1,j,k

ai,j,krx
i
0x

j
1Bxk , x

m
1 Bx1s `

ÿ

i”´1,j

ai,j,1rx
i
0x

j
1Bx1 , x

m
1 Bx1s P RpBx0q.

Note that
ÿ

iı´1,j,k

ai,j,krx
i
0x

j
1Bxk , x

m
1 Bx1s P RpBx0q since the exponent of x0 in each

summand is not congruent to ´1 modulo p and so

ÿ

i”´1,j

ai,j,1rx
i
0x

j
1Bx1 , x

m
1 Bx1s “

ÿ

i”´1,j

ai,j,1pm´ jqx
i
0x

m`j´1
1 Bx1 P RpBx0q.

Therefore ai,j,1pm ´ jq “ 0, for all j,m P t0, 1, . . . , p ´ 1u and so ai,j,1 “ 0, for all

j ı m. Letting m “ 0 and then letting m “ 1 implies ai,j,1 “ 0, for all i ” ´1

(mod p). Thus DpBx0q “
ÿ

iı´1,j,k

ai,j,kx
i
0x

j
1Bxk P RpBx0q.

Lemma 5.5.8. Let p be a prime number and let K be a finite field of characteristic

p. Let G be a finite abelian group, let X be the Sylow p-subgroup of G and let Y ă G

such that G “ X ˆ Y . Let S “ txi | i “ 0, 1, . . . , n´ 1u be a minimum generating

set for X and let H “ xxp0y ˆ xx
p
1y ˆ ¨ ¨ ¨ ˆ xx

p
n´1y ˆ Y . Then KH is the ring of
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constants of KG.

Proof. Let i, j P t0, 1, . . . , n´1u. Then Bxipx
p
jq “ 0 and by Corollary 2.3.2 Bxipyq “

0, for all y P Y . Therefore dphq “ 0, for all d P DerpKGq and h P H and so

KH Ď CpKGq.

Let L “

" n´1
ź

i“0

xrii | ri P t0, 1, . . . , p ´ 1u

*

. Then L is a transversal of H in G.

Let α P CpKGq and write α “
ř

lPL all, where al P KH. Then, by Definition 5.2.6

0 “ Bxipαq “
ÿ

lPL

alBxiplq “
ÿ

l‰1

alRiplqx
´1
i l “

ÿ

l‰1

alRiplql,

for all i P t0, 1, . . . , n ´ 1u. Let 1 ‰ l P L. Then Riplq ‰ 0, for some i and so

al “ 0, for all l ‰ 1. Thus α “ a1 P KH. Therefore CpKGq Ď KH and so

CpKGq “ KH.
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Chapter 6

Derivations and the Modular

Isomorphism Problem

This chapter begins by examining the derivation algebras of F2tD2m`1 and F2tQ2m`1 .

A basis for the derivation algebra of F2tQ2m`1 is found and its dimension is shown

to be 2m`1`2. In Section 6.1.2 the centers of the derivation algebras are computed.

DerpF2tD2m`1q is shown to have trivial center, whereas the dimension of the center

of DerpF2tQ2m`1q is 2. These results are used in Section 6.1.3 to show that F2tD2m`1

and F2tQ2m`1 are not isomorphic as rings.

The ring of constants of a group algebra is a subring of the group algebra

and is studied in Section 6.2. A ring homomorphism preserves subrings and so the

restriction of a ring homomorphism to the ring of constants is a ring homomor-

phism. Groups of constants are also considered and are used to show once again

that F2pC4 ˆ C4q and F2pC2 ˆ C8q are not isomorphic as rings. The ring of con-

stants of an abelian p-group algebra over Fp is shown to be the image of the group

algebra under the Frobenius endomorphism. The Modular Isomorphism Problem

is an important open problem in the area of group rings. It was solved for abelian

groups in 1956 by Deskins [14]. The chapter concludes by giving an alternative
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proof of Deskins’ Theorem using derivations.

6.1 Derivations of F2tD2m`1 and F2tQ2m`1

Let n be an integer greater than 2 and let D2n denote the dihedral group with 2n

elements and presentation xx, y | xn “ y2 “ pxyq2 “ 1y.

Let m be a positive integer greater than 1 and let Q2m`1 denote the generalised

quaternion group with 2m`1 elements and presentation xa, b | b2 “ a2m´1
, abab´1 “

1y.

Remark 6.1.1. A presentation of the generalised quaternion group Q2m`1 often

includes the relator a2m which is now shown to be redundant.

bpb2
qb´1

“ b2
pb2
“ a2m´1

q

bpa2m´1

qb´1
“ a2m´1

pba “ a´1bq

a´p2
m´1qbb´1

“ a2m´1

a´p2
m´1q

“ a2m´1

Therefore b4 “ a2m “ 1.

Let m be an integer greater than 1 and let F2t be a finite field with 2t elements.

Assuming that F2tD2m`1 and F2tQ2m`1 are isomorphic as rings, then Theorem 3.1.18

states that DerpF2tD2m`1q and DerpF2tQ2m`1q are isomorphic as additive groups.

In this Section it is shown that no such isomorphism exists and so the group rings

F2tD2m`1 and F2tQ2m`1 are not isomorphic as rings. This is a known result which

can also be found in [4] and [8].

Using n “ 2m in Theorem 2.3.11 implies that the dimension of the vector space

of derivations of F2tD2m`1 is 2n` 4 “ 2m`1 ` 4.
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6.1.1 The Derivation Algebra of F2tQ2m`1

Theorem 6.1.3 refers to the maps f˚ and the classical involution of a group algebra.

The definitions of these maps are now recalled.

Definition 6.1.2. Let G “ xS | T y be a group, where S is a generating set and

T is a set of defining relations for G. Let FS be the free group on S. Let R be

a commutative unital ring and f a map from S to RG. Define f˚ : FS Ñ RG as

follows:

f˚pwiq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

fpwiq if wi P S,

´wifpw
´1
i qwi if wi P S

´1,

0 if wi “ 1

(6.1)

and letting w “
śk

i“1wi, where wi P S Y S
´1, define

f˚pwq “
k
ÿ

i“1

´

p

i´1
ź

j“1

wjqf
˚
pwiqp

k
ź

j“i`1

wjq
¯

. (6.2)

Definition 3.2.34 is repeated here for ease of access.

Definition 3.2.34. The classical involution of KG, denoted by f is a map from

KG to KG defined by p
ř

gPG aggq
f ÞÑ

ř

gPG agg
´1.

Let g “ DerpF2tQ2m`1q, let d P g and let dpaq “ r ` sb, where r, s P F2txay.

Then for j P t1, 2, . . . , 2m´1 ´ 1u

dpa2j
q “

2j´1
ÿ

i“0

aidpaqa2j´i´1
“

2j´1
ÿ

i“0

aipr ` sbqa2j´i´1

“

2j´1
ÿ

i“0

a2j´1r `
2j´1
ÿ

i“0

a2i´2j`1sb “ 2ja2j´1r ` a1´2j
2j´1
ÿ

i“0

a2isb

“ a1´2j
2j´1
ÿ

i“0

a2isb.

(6.3)
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Theorem 6.1.3. The dimension of the vector space of derivations of F2tQ2m`1 is

2m`1 ` 2.

Proof. The relators chosen for Q2m`1 are a2m´1
b2 and abab´1. Therefore by Theo-

rem 2.2.5, f : ta, bu Ñ F2tQ2m`1 can be extended to a derivation of F2tQ2m`1 if and

only if

f˚pa2m´1

b2
q “ 0 and (6.4)

f˚pabab´1
q “ 0. (6.5)

Assume that f can be extended to a derivation of F2tQ2m`1 and write fpaq “ r`sb

and fpbq “ u ` vb, where r, s, u, v P F2txay. Write r “
2m´1
ÿ

i“0

ria
i, s “

2m´1
ÿ

i“0

sia
i,

u “
2m´1
ÿ

i“0

uia
i and v “

2m´1
ÿ

i“0

via
i, where ri, si, ui, vi P F2t . By Equations (6.2) and

(6.4) and since b2 “ a2m´1
is a central unit in F2tQ2m`1 ,

0 “ f˚pa2m´1

b2
q “ f˚pa2m´1

qb2
` a2m´1

f˚pb2
q “ f˚pa2m´1

q ` f˚pb2
q.

Therefore by Definition 6.1.2, Equation (6.3) and denoting
2m´1´1
ÿ

i“0

a2i by pa2

0 “ f˚pa2m´1

q ` fpbqb` bfpbq

“ a2m´1`1
2m´1´1
ÿ

i“0

a2isb` pu` vbqb` bpu` vbq

“ sa pa2b` ub` vb2
` ufb` vfb2

“ pv ` vfqa2m´1

` psa pa2 ` u` ufqb.
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Now by Equations (6.5), (6.2) and (6.1)

0 “ f˚pabab´1
q “ fpaqbab´1

` afpbqab´1
` abfpaqb´1

` abaf˚pb´1
q

“ pr ` sbqbab´1
` apu` vbqab´1

` abpr ` sbqb´1
` abab´1fpbqb´1

“ pr ` sbqbab´1
` apu` vbqab´1

` abpr ` sbqb´1
` abab´1

pu` vbqb´1

“ ra´1
` sab` ua2b3

` v ` rfa` sfab` ub3
` v

“ ra´1
` sab` ua2a2m´1

b` rfa` sfab` ua2m´1

b

“ ra´1
` rfa`

`

ps` sfqa` ua2m´1

p1` a2
q
˘

b.

Therefore the map f can be extended to a derivation of F2tQ2m`1 if and only if

v ` vf “ 0, (6.6)

sa pa2 ` u` uf “ 0, (6.7)

ra´1
` rfa “ 0, and (6.8)

ps` sfq ` ua2m´1

pa´1
` aq “ 0. (6.9)

Each of these equations will be considered. First note that for any element

c “
2m´1
ÿ

i“0

cia
i of F2txay,

c` cf “
2m´1
ÿ

i“0

pci ` c´iqa
i
“

2m´1´1
ÿ

i“0

pci ` c´iqpa
i
` a´iq “

2m´1´1
ÿ

i“1

pci ` c´iqpa
i
` a´iq.

(6.10)

By Equations (6.6) and (6.10)

0 “ v ` vf “
2m´1´1
ÿ

i“1

pvi ` v´iqpa
i
` a´iq.

ai` a´i “ 0 if and only if i “ 0 or i “ 2m´1. Thus vi “ v´i, for i “ 1, . . . , 2m´1´ 1
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and so

v “ v0 ` v2m´1a2m´1

`

2m´1´1
ÿ

i“1

vipa
i
` a´iq. (6.11)

Equation (6.8) shall be considered next.

0 “ ra´1
` rfa “

2m´1
ÿ

i“0

ri`1a
i`1a´1

`

2m´1
ÿ

i“0

r´pi´1qa
i´1a “

2m´1
ÿ

i“0

pri`1 ` r´i`1qa
i

“

2m´1´1
ÿ

i“0

pri`1 ` r´i`1qpa
i
` a´iq “

2m´1´1
ÿ

i“1

pri`1 ` r´i`1qpa
i
` a´iq.

Therefore ri`1 “ r´i`1, for i “ 1, 2, . . . , 2m´1 ´ 1 and so

r “ r1a` r2m´1`1a
2m´1`1

`

2m´1´1
ÿ

i“1

ri`1pa
i`1
` a´i`1

q. (6.12)

Now consider Equation (6.7). Let k0 “

2m´1´1
ÿ

i“0

s2i and let k1 “

2m´1´1
ÿ

i“0

s2i`1.

Then sa pa2 “ k1
pa2 ` k0a pa2. Also, 1 is not in the support of u ` uf and so by

Equation (6.7), 1 is not in the support of sa pa2, hence k1 “ 0. Therefore by

Equation (6.10)

0 “ sa pa2 ` u` uf “ k0a pa2 `

2m´1´1
ÿ

i“1

pui ` u´iqpa
i
` a´iq.

Furthermore, for any i, a2i is not in the support of a pa2 and so

u2i ` u´2i “ 0, for i “ 1, 2, . . . , 2m´2
´ 1 and (6.13)

k0 “ u2i`1 ` u´2i´1, for i “ 0, 1, . . . , 2m´2
´ 1. (6.14)

Thus using Equation (6.13)

u “ u0 ` u2m´1a2m´1

`

2m´2´1
ÿ

i“1

u2ipa
2i
` a´2i

q `

2m´1´1
ÿ

i“0

u2i`1a
2i`1. (6.15)
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By Equation (6.14)

2m´1´1
ÿ

i“0

u2i`1a
2i`1

“

2m´2´1
ÿ

i“0

u2i`1a
2i`1

`

2m´2´1
ÿ

i“0

u´p2i`1qa
´p2i`1q

“

2m´2´1
ÿ

i“0

u2i`1a
2i`1

`

2m´2´1
ÿ

i“0

pu2i`1 ` k0qa
´p2i`1q

“

2m´2´1
ÿ

i“0

u2i`1pa
2i`1

` a´p2i`1q
q `

2m´2´1
ÿ

i“0

k0a
´p2i`1q.

Therefore by Equation (6.15)

u “ u0 ` u2m´1a2m´1

`

2m´1´1
ÿ

i“1

uipa
i
` a´iq `

2m´2´1
ÿ

i“0

k0a
´2i´1. (6.16)

Equation (6.9) shall now be considered. Using Equation (6.10)

0 “ ps` sfq ` ua2m´1

pa´1
` aq “

2m´1
ÿ

i“0

psi ` s´i ` u2m´1`i`1 ` u2m´1`i´1qa
i. (6.17)

a2m´1
is not in the support of s` sf and so 1 is not in the support of upa´1 ` aq.

Thus u1 ` u´1 “ 0 and so by Equation (6.14), k0 “ u2i`1 ` u´p2i`1q “ 0, for i “

0, 1, . . . , 2m´2´1. Also, si`s´i “ u2m´1`i`1`u2m´1`i´1, for all i “ 0, 1, . . . , 2m´1.

Thus since k1 “ 0

0 “
2m´1´1
ÿ

i“0

s2i`1 “

2m´2´1
ÿ

i“0

ps2i`1 ` s´p2i`1qq “

2m´2´1
ÿ

i“0

pu2m´1`2i`2 ` u2m´1`2iq

“

´

2m´2´2
ÿ

i“0

u2m´1`2i`2

¯

` u2m´1`2p2m´2´1q`2 ` u2m´1`2p0q `

2m´2´1
ÿ

i“1

u2m´1`2i

“

2m´2´1
ÿ

i“1

pu2m´1`2i ` u2m´1`2iq ` u0 ` u2m´1 “ u0 ` u2m´1 .
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Therefore u0 “ u2m´1 and since k0 “ 0, Equation (6.16) can be written as

u “ u0p1` a
2m´1

q `

2m´1´1
ÿ

i“1

uipa
i
` a´iq. (6.18)

So ui “ u´i for all i and by Equation (6.17), si`s´i “ u2m´1`i`1`u2m´1`i´1, for

i “ 1, 2, . . . , 2m´1´1. Thus si`s´i “ u2m´1´i´1`u2m´1´i`1, for i “ 1, 2, . . . , 2m´1´

1. Recall that
2m´1´1
ÿ

i“0

s2i “ k0 “ 0 and so

s0 “

2m´1´1
ÿ

i“1

s2i “ s2m´1 `

2m´2´1
ÿ

i“1

ps2i ` s´2iq

“ s2m´1 `

2m´2´1
ÿ

i“1

pu2m´1´2i´1 ` u2m´1´2i`1q “ s2m´1 ` u2m´1´1 ` u1,

since the first summand of the ith term of the sum cancels with the second summand

of the i` 1st term of the sum. Therefore

s “ s2m´1p1`a2m´1

q`u2m´1´1`u1`

2m´1´1
ÿ

i“1

sipa
i
`a´iq`

2m´1´1
ÿ

i“1

pu2m´1´i´1`u2m´1´i`1qa
´i.

Let j “ i´ 2. Then

2m´1´1
ÿ

i“1

pu2m´1´i´1 ` u2m´1´i`1qa
´i
“

2m´1´1
ÿ

i“1

u2m´1´i´1a
´i
`

2m´1´3
ÿ

j“´1

u2m´1´j´1a
´j´2

“

2m´1´3
ÿ

i“1

u2m´1´i´1pa
´i
` a´i´2

q

` u1a
2m´1`2

` u0a
2m´1`1

` u2m´1a´1
` u2m´1´1a

´2.
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However by Equation (6.18), u2m´1 “ u0 and so

u2m´1´1 ` u1 `

2m´1´1
ÿ

i“1

pu2m´1´i´1 ` u2m´1´i`1qa
´i

“ u0pa
2m´1`1

` a´1
q ` u1p1` a

2m´1`2
q ` u2m´1´1p1` a

´2
q

`

2m´1´3
ÿ

i“1

u2m´1´i´1pa
´i
` a´i´2

q.

Therefore

s “ s2m´1p1` a2m´1

q `

2m´1´1
ÿ

i“1

sipa
i
` a´iq `

2m´1´3
ÿ

i“1

u2m´1´i´1pa
´i
` a´i´2

q

` u0pa
2m´1`1

` a´1
q ` u1p1` a

2m´1`2
q ` u2m´1´1p1` a

´2
q.

(6.19)

Therefore by Equations (6.12), (6.18), (6.19) and (6.11), f can be extended to

a derivation of F2tQ2m`1 if and only if

r “ r1a` r2m´1`1a
2m´1`1

`

2m´1´1
ÿ

i“1

ri`1pa
i`1
` a´i`1

q,

u “ u0p1` a
2m´1

q `

2m´1´1
ÿ

i“1

uipa
i
` a´iq,

s “ s2m´1p1` a2m´1

q `

2m´1´1
ÿ

i“1

sipa
i
` a´iq `

2m´1´3
ÿ

i“1

u2m´1´i´1pa
´i
` a´i´2

q

` u0pa
2m´1`1

` a´1
q ` u1p1` a

2m´1`2
q ` u2m´1´1p1` a

´2
q and

v “ v0 ` v2m´1a2m´1

`

2m´1´1
ÿ

i“1

vipa
i
` a´iq,

(6.20)

where r1, r2, . . . , r2m´1`1, s1, s2, . . . , s2m´1 , u0, u1, . . . , u2m´1´1 and v0, v1, . . . , v2m´1

are elements of F2t . Therefore by counting the coefficients the dimension of the

vector space of derivations of F2tQ2m`1 is 2m´1 ` 1 ` 2m´1 ` 2m´1 ` 2m´1 ` 1 “

2m`1 ` 2.

Remark 6.1.4. Equations (6.20) can be used to form a basis for the derivation
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algebra of F2tQ2m`1 .

6.1.2 The Centers of the Derivation Algebras of the Dihe-

dral and Quaternion Group Algebras

In this subsection the centers of DerpF2tD2m`1q and DerpF2tQ2m`1q are found.

Definition 6.1.5. Let I be the ideal of F2tQ2m`1 generated by 1` a2 and let J be

the ideal of F2tQ2m`1 generated by pa2 “

2m´1´1
ÿ

i“0

a2i.

Remark 6.1.6. Let α P F2tQ2m`1 and write α “ x` yb, where x, y P F2txay. Then

p1`a2
qpx`ybq “ xp1`a2

q`yb`yba´2
“ xp1`a2

q`yba´2
p1`a2

q “ px`ya2bqp1`a2
q.

Thus the two-sided ideal I is the principal left ideal generated by the element 1`a2.

Also JI “ 0, since pa2 is central and pa2p1` a2q “ 0. Let β “
2m´1
ÿ

i“0

cia
i
`

2m´1
ÿ

i“0

kia
ib P

AnnpIq, where ci, ki P F2t . Therefore

0 “ βp1` a2
q “

2m´1
ÿ

i“0

`

pci ` ci´2qa
i
` pki ` ki´2qa

ib
˘

,

which implies ci “ ci´2 and ki “ ki´2 for i “ 0, 1, . . . , 2m ´ 1. Therefore β “

c0
pa2 ` c1a pa2 ` k0

pa2b ` k1a pa2b and so β P J . Therefore J is the annihilator of I in

F2tQ2m`1 .

Remark 6.1.7. Let E “ te P F2xa
2y | |supppeq| is evenu. Then E Ă I since

p1 ` a2 ` a4 ` ¨ ¨ ¨ ` a2i´2qp1 ` a2q “ 1 ` a2i P I, for any integer i. Thus aE Ă I.

Note that for any integer i, ai ` a´i is either in E or aE and so ai ` a´i P I. Let

d P DerpF2tQ2m`1q and write dpaq “ r ` sb and dpbq “ u ` vb, where r, s, u, v P
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F2txay. Then by Equations (6.20),

r “ r1a` r2m´1`1a` r2m´1`1ap1` a
2m´1

q `

2m´1´1
ÿ

i“1

ri`1pa
i`1
` a´i`1

q

“ pr1 ` r2m´1`1qa` r2m´1`1ae0 `

2m´1´1
ÿ

i“1

ri`1ei,

where ej P E Ă I for j “ 0, 1, . . . 2m´1´ 1. Similar computation for u, s and v give

r “ pr1 ` r2m´1`1qa` r̄, where r̄ P I,

u P I,

s P I, and

v “ pv0 ` v2m´1q ` v̄, where v̄ P I.

(6.21)

Lemma 6.1.8. pa2 P CpF2tQ2m`1q.

Proof. Let d P DerpF2tQ2m`1q and let dpaq “ r ` sb, where r, s P F2txay. Then by

Equation (6.3)

dpa2m´2j
q “ a1´p2m´2jq

p2m´2jq´1
ÿ

i“0

a2isb “ a1`2j
2m´2j´1
ÿ

i“0

a2isb.

Letting k “ i` 2j gives

dpa2m´2j
q “ a1`2j

2m´1
ÿ

k“2j

a2pk´2jqsb “ a1´2j
2m´1
ÿ

k“2j

a2ksb. (6.22)

Also
2m´1
ÿ

i“0

a2i
“

2m´1´1
ÿ

i“0

a2i
`

2m´1
ÿ

i“2m´1

a2i
“ pa2 ` pa2 “ 0. (6.23)

Thus by Equation (6.23), adding Equations (6.3) and (6.22) gives

dpa2j
q ` dpa2m´2j

q “ a1´2j
2m´1
ÿ

i“0

a2isb “ a1´2j
p0qsb “ 0. (6.24)
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Therefore Letting k “ ´i` 2m´1 gives

dp pa2q “

2m´1´1
ÿ

i“0

dpa2i
q “

2m´2´1
ÿ

i“0

dpa2i
q `

2m´1´1
ÿ

i“2m´2

dpa2i
q

“

2m´2´1
ÿ

i“0

dpa2i
q `

2m´2
ÿ

k“1

dpa2m´2k
q

“ dp1q ` dpa2m´1

q `

2m´2´1
ÿ

i“1

´

dpa2i
q ` dpa2m´2i

q

¯

“ 0` a1´2m´1
2m´1´1
ÿ

i“0

a2isb` 0 “ a1´2m´1
pa2sb “ 0,

since by Remark 6.1.7, s P I and J is the annihilator of I.

Remark 6.1.9. Recall from Definition 3.1.8 that an ideal I of a ring R is a differen-

tial ideal of R if dpIq Ă I for all d P DerpRq. By Lemma 6.1.8 and Corollary 3.1.16,

J is a differential ideal of F2tQ2m`1 .

Lemma 6.1.10. Let δ P g “ DerpF2tQ2m`1q and write δpaq “ w ` xb and δpbq “

y`zb, where w, x, y, z P F2txay. Then δ is in the center of g if and only if x “ y “ 0,

w “ c1a pa2 and z “ c2
pa2, where c1, c2 P F2t.

Proof. Let d be an arbitrary element of g and write dpaq “ r`sb and dpbq “ u`vb,

where r, s, u, v P F2txay.

Assume that δ is in the center of g, denoted by Zpgq. Then rδ, ds “ 0, that is,

δpdpaqq ` dpδpaqq “ 0 and δpdpbqq ` dpδpbqq “ 0.

Let v “ 1 and r “ s “ u “ 0 and so dpaq “ 0 and dpbq “ b. Then

0 “ δpdpaqq ` dpδpaqq “ δp0q ` dpw ` xbq “ dpwq ` dpxqb` xdpbq “ xb, and

0 “ δpdpbqq ` dpδpbqq “ δpbq ` dpy ` zbq “ y ` zb` zdpbq “ y.

Therefore x “ y “ 0.
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Let r “ a and s “ u “ v “ 0 and so dpaq “ a and dpbq “ 0. Write

w “
2m´1
ÿ

i“0

wia
i and z “

2m´1
ÿ

i“0

zia
i. Then

0 “ δpdpaqq ` dpδpaqq “ δpaq ` dpwq “ w `
2m´1
ÿ

i“0

widpa
i
q “ w `

ÿ

odd i

wia
i, and

0 “ δpdpbqq ` dpδpbqq “ 0` dpzbq “ dpzqb “
2m´1
ÿ

i“0

zidpa
i
qb “

ÿ

odd i

zia
ib.

Therefore wi “ 0 for all even i and zi “ 0 for all odd i.

Let v “ a ` a´1 and r “ s “ u “ 0 and so dpaq “ 0 and dpbq “ pa ` a´1qb.

Then

0 “ δpdpbqq ` dpδpbqq “ δ
`

pa` a´1
qb
˘

` dpzbq

“ δpa` a´1
qb` pa` a´1

qδpbq ` zdpbq

“ δpa` a´1
qb` pa` a´1

qzb` zpa` a´1
qb “ δpa` a´1

qb.

Thus by Equation (6.1), 0 “ δpaq ` δpa´1q “ w ` a´1wa´1 and so wp1 ` a2q “ 0.

Therefore w P J . However, wi “ 0 for all even i and so w “ c1a pa2, where c1 P F2t .

Let s “ a` a´1 and r “ u “ v “ 0 and so dpaq “ pa` a´1qb and dpbq “ 0. By

Lemma 6.1.8, pa2 P CpF2tQ2m`1q and so

0 “ δpdpaqq ` dpδpaqq “ δppa` a´1
qbq ` dpc1a pa2q

“ δpa` a´1
qb` pa` a´1

qδpbq ` c1
pa2dpaq

“ c1a pa2b` a´1
pc1a pa2qa´1b` pa` a´1

qzb` c1
pa2pa` a´1

qb

“ pa` a´1
qzb.

Therefore, zp1`a2q “ 0 and so z P J . However, zi “ 0 for all odd i and so z “ c2
pa2,

where c2 P F2t .
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Conversely, let δ P g and assume δpaq “ c1a pa2 and δpbq “ c2
pa2b, where c1, c2 P

F2t . Therefore δpxq P J , for all x P F2tQ2m`1 . Let z P I and so by Remark 6.1.6, z “

z̄p1`a2q, for some z̄ P F2tQ2m`1 . Also, δp1`a2q “ δpaqa`aδpaq “ c1
pa2` c1

pa2 “ 0.

Hence δpzq “ δ
`

z̄p1`a2q
˘

“ δpz̄qp1`a2q “ 0, since δpz̄q P J and J is the annihilator

of I. Therefore δpIq “ 0. By Remark 6.1.7, s P I and r “ r̃a ` r̄, where r̃ P F2t

and r̄ P I. Therefore

δpdpaqq ` dpδpaqq “ δpr ` sbq ` dpc1a pa2q

“ δpr̃a` r̄q ` δpsqb` sδpbq ` c1
pa2pr ` sbq

“ r̃pc1a pa2q ` 0` 0b` spc2
pa2bq ` c1

pa2pr̃a` r̄ ` sbq

“ r̃pc1a pa2q ` 0` c1
pa2pr̃aq ` 0` 0 “ 0.

Also by Remark 6.1.7, u P I and v “ ṽ ` v̄, where ṽ P F2t and v̄ P I. Thus

δpuq “ δpvq “ 0. Therefore

δpdpbqq ` dpδpbqq “ δpu` vbq ` dpc2
pa2bq “ 0` vδpbq ` c2

pa2dpbq

“ vpc2
pa2bq ` c2

pa2pu` vbq “ c2
pa2puq “ 0.

Therefore δ is in the center of g.

Lemma 6.1.11. The derivation algebra DerpF2tD2m`1q has trivial center.

Proof. Let g “ DerpF2tD2m`1q and let d be an element of g. Then by Theorem 3.11

of [12], dpxq “ Λy ` xΩy and dpyq “ Ω, where Λ P Cpxyq, the centraliser of xy in

F2tD2m`1 and Ω P Cpyq, the centraliser of y in F2tD2m`1 .

Let δ P g and so δpxq “ ρy`xσy and δpyq “ σ, where ρ P Cpxyq and σ P Cpyq.

Assume that δ is in the center of g and so rδ, ds “ 0.
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Let Ω “ 0 and Λ “ 1 and so dpxq “ y and dpyq “ 0. Therefore

0 “ δpdpyqq ` dpδpyqq “ δp0q ` dpσq “ dpσq, and

0 “ δpdpxqq ` dpδpxqq “ δpyq ` dpρy ` xσyq “ σ ` dpρqy ` yσy “ dpρqy.

Therefore dpσq “ dpρq “ 0.

Let Ω “ y and Λ “ xy and so dpxq “ 0 and dpyq “ y. Therefore

0 “ δpdpyqq ` dpδpyqq “ δpyq ` dpσq “ σ, and

0 “ δpdpxqq ` dpδpxqq “ δp0q ` dpρyq “ ρdpyq “ ρy.

Therefore σ “ ρ “ 0 and so δ is the zero derivation. Hence DerpF2tD2m`1q has

trivial center.

6.1.3 Using Derivations to Distinguish F2tD2m`1 and F2tQ2m`1

Assuming that F2tD2m`1 and F2tQ2m`1 are isomorphic as rings, then Theorem 3.1.18

states that DerpF2tD2m`1q and DerpF2tQ2m`1q are isomorphic as additive groups.

The results of Sections 6.1.1 and 6.1.2 are now used to show that no such isomor-

phism exists and so the group rings F2tD2m`1 and F2tQ2m`1 are not isomorphic as

rings.

Lemma 6.1.12. F2tD2m`1 and F2tQ2m`1 are not isomorphic as rings.

Proof. By Theorem 2.3.11 the dimension of DerpF2tD2m`1q is 2n ` 4 “ 2m`1 ` 4.

By Theorem 6.1.3 the dimension of DerpF2tQ2m`1q is 2m`1 ` 2. Therefore by

Theorem 3.1.18, F2tD2m`1 is not isomorphic to F2tQ2m`1 as rings.

Alternatively using the results of Section 6.1.2 we can show that they are not

isomorphic as K-algebras.

189



Proof. By Lemma 6.1.11 the dimension of the center of DerpF2tD2m`1q is 0, whereas

by Lemma 6.1.10 the dimension of the center of DerpF2tQ2m`1q is 2. Therefore by

Theorem 3.1.20, F2tD2m`1 is not isomorphic to F2tQ2m`1 as K-algebras.

6.2 The Ring of Constants and the Modular Iso-

morphism Problem

Remark 6.2.1. Let φ : R Ñ T be a ring homomorphism. Then the restriction of

φ to a subring S of R is a ring homomorphism from S into T .

Definition 6.2.2. Let R be a ring with 1. Denote the group of units (invertible

elements) of R by UpRq.

Definition 3.1.15 is repeated here for ease of access.

Definition 3.1.15. Let d be a derivation of a unital ring R and let ∆ be a subset

of DerpRq. Then the subring of R defined by C∆ “ tc P R | dpcq “ 0 for all d P ∆u

is called the ring of constants of ∆. If ∆ is a set with one element d then C∆ will

be denoted by Cd and if ∆ “ DerpRq then C∆ will be denoted by CpRq and is then

called the ring of constants of R.

Lemma 6.2.3. Let R be a ring with 1 and let V be a subgroup of the unit group

of R. Then V
Ş Ş

dP∆

Cd is a subgroup of V for all subsets ∆ of DerpRq.

Proof. Let d P DerpRq and let H “ V
Ş

Cd. Then H is non empty as 1 is an

element of both V and Cd. Let u, v P H. Then dpuvq “ dpuqv ` udpvq “ 0` 0 “ 0

and so uv P H. Also, 0 “ dp1q “ dpuu´1q “ dpuqu´1 ` udpu´1q and so u´1 P H.

Thus H is a subgroup of V . Therefore V
Ş Ş

dP∆

Cd is a subgroup of V for all subsets

∆ of DerpRq, since it is an intersection of subgroups of V .

190



Definition 6.2.4. Let R be a ring with 1, let V be a subgroup of UpRq and let

∆ be a subset of DerpRq. Then denote by V C∆ the subgroup of V defined by

V
Ş Ş

dP∆

Cd. If ∆ is a set with one element d then V C∆ will be denoted by V Cd

and if ∆ “ DerpRq then V C∆ will be denoted by V CpRq. Also, define the group of

constants of R, denoted by UCpRq to be UpRq
Ş

CpRq.

Remark 6.2.5. Let K be a finite field and let G be a finite group. Then for

a, b P ZpKGq and α P KG

αpa` bq “ αa` αb “ aα ` bα “ pa` bqα, and

αab “ aαb “ abα.

Therefore ZpKGq is a subalgebra of KG.

Lemma 6.2.6. Let K be a finite field and let G be a finite group. Then CpKGq

the ring of constants of KG, is a subalgebra of ZpKGq, the center of KG.

Proof. Let α be an element of KG such that α R ZpKGq. Then there exists an

element β of KG such that rβ, αs ‰ 0. Thus dβpαq ‰ 0, where dβ is the inner

derivation of KG induced by β. Therefore α R CpKGq and so CpKGq Ă ZpKGq.

Let a, b P CpKGq and let k P K. Then for any d P DerpKGq

dpabq “ dpaqb` adpbq “ p0qb` ap0q “ 0` 0 “ 0,

dpa` bq “ dpaq ` dpbq “ 0` 0 “ 0,

dpkaq “ kdpaq “ kp0q “ 0.

Therefore CpKGq is a subalgebra of ZpKGq.

Lemma 6.2.7. Let G and H be a finite abelian groups, let K be a finite field and

let V be a subgroup of UpKGq. Let φ : KG Ñ KH be a ring homomorphism
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such that I “ kerpφq is a differential ideal of the differential ring pKG, dq. Define

d : KG{I Ñ KG{I by dpa ` Iq “ dpaq ` I. Let ∆ be a subset of DerpKGq, let

∆ “ td | d P ∆u and let V “ φpV q. Then the restriction of φ to V C∆ is a group

homomorphism to V C∆.

Proof. By Lemma 3.1.9, d P DerpKG{Iq and by Lemma 3.1.11, φ ˝ d “ d ˝ φ.

Therefore the restriction of φ to V Cd is a group homomorphism to V Cd. Thus the

restriction of φ to V C∆ is a group homomorphism to V C∆ since V C∆ “
Ş

dP∆

V Cd.

Remark 6.2.8. Let G and H be finite groups (not necessarily abelian) and let K

be a finite field. Let φ : KG Ñ KH be a ring isomorphism, let d P DerpKGq and

define d “ φ ˝ d ˝ φ´1. Then by Theorem 3.1.20, d P DerpKHq. Let ∆ be a subset

of DerpKGq and let ∆ “ td | d P ∆u. Let V be a subgroup of UpKGq and let

V “ φpV q. Then the restriction of φ to V C∆ is a group isomorphism onto V C∆. In

particular the unit group of the ring of constants of KG is isomorphic to the unit

group of the ring of constants of KH.

In Section 4.6, it was shown that all nilpotent derivations of F2C4ˆC4 have a

nilpotency index less than or equal to 8 and also that there is a nilpotent derivation

of F2C8ˆC2 that has a nilpotency index of 13. This shows that the group algebras

are not isomorphic as K-algebras. It is now shown that they are not isomorphic as

rings by computing their respective unit groups of constants.

Example 6.2.9. Let G “ xx, y | x4 “ y4 “ x´1y´1xy “ 1y and let K be the

field with 2 elements. Then CpKGq is the K-span of t1, x2, y2, x2y2u. Therefore

UCpKGq “ t1, x2, y2, x2y2, 1`z, x2`z, y2`z, x2y2`zu, where z “ p1`x2qp1`

y2q. pa` zq2 “ a2 for all a P KG and so UCpKGq » C3
2 since it has exponent 2.

Example 6.2.10. Let H “ xx, y | x8 “ y2 “ x´1y´1xy “ 1y and let K be the

field with 2 elements. Then CpKHq is the K-span of t1, x2, x4, x6u. Therefore
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UCpKHq “ t1, x2, x4, x6, 1`z, x2`z, x4`z, x6`zu, where z “ p1`x2qp1`x4q.

pa`zq2 “ a2 for all a P KH and so UCpKHq » C4ˆC2 since it is an abelian group

of order 8 with elements of order 4 but none of order 8.

Examples 6.2.9 and 6.2.10 show that UCpKGq and UCpKHq are not isomorphic

as groups and so by Remark 6.2.8, KG and KH are not isomorphic as rings.

Theorem 6.2.11. [40] Let θ : GÑ H be a group homomorphism. Then there exists

a unique ring homomorphism, Θ : RGÑ RH such that Θpgq “ θpgq, for all g P G.

If R is commutative, then Θ is a homomorphism of R-algebras. Moreover, if θ is

an epimorphism (monomorphism), then Θ is an epimorphism (monomorphism).

6.2.1 The Ring of Constants of Dihedral Group Algebras

Let K be a finite field of characteristic 2 and let D2m`1 “ xx, y | x2m “ y2 “

pxyq2 “ 1y be the dihedral group of order 2m`1, where m P t2, 3, 4, . . . u. In this

section CpKD2m`1q, the ring of constants of the dihedral group algebra KD2m`1 is

calculated.

Theorem 6.2.12. Let K be a finite field of characteristic 2 and let D2m`1 be the

dihedral group of order 2m`1, where m P t2, 3, 4, . . . u. Then the set

B “ t1, x2i
` x´2i

| i “ 1, 2, . . . , 2m´2
´ 1u

is a basis for CpKD2m`1q, the ring of constants of KD2m`1.

Proof. By Lemma 6.2.6, CpKD2m`1q Ă ZpKD2m`1q. By Lemma 2.3.8, ZpKD2m`1q

is a 2m´1`3 dimensional subspace of KD2m`1 with the set t1, x2m´1
, x1`x´1, x2`

x´2, . . . , x2m´1´1 ` x2m´1`1, px2y, x px2yu acting as a basis. Let V be the K-span

of B. It is now shown that V Ă CpKD2m`1q.
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Let d P DerpKD2m`1q and write dpxq “ a ` by, where a, b P Kxxy. Then by

Lemma 2.2.1

dpxiq “
i´1
ÿ

j“0

xjpa` byqxi´j´1
“

i´1
ÿ

j“0

xi´1a` x1´i
i´1
ÿ

j“0

x2jby

“ ixi´1a` x1´i
i´1
ÿ

j“0

x2jby.

(6.25)

Therefore dpxiq “ ixi´1a ` γy, for some γ P Kxxy. Also 0 “ dp1q “ dpxix´iq and

so dpx´iq “ x´idpxiqx´i. Therefore

dpxi ` x´iq “ ixi´1a` γy ` x´ipixi´1a` γyqx´i

“ ixi´1a` γy ` ixi´1ax´2i
` γy “ ixi´1ap1` x´2i

q.
(6.26)

By Equation (6.26), dpx2i ` x´2iq “ 0 for i “ 1, 2, . . . , 2m´2 ´ 1. Also dp1q “ 0 and

so V Ă CpKD2m`1q.

It is now shown that CpKD2m`1q Ă V . Let c P CpKD2m`1q and write c “

k0
px2y ` k1x px2y ` ζ, where k0, k1 P K and ζ P Kxxy. Theorem 2.3.11 gives a basis

for DerpKD2m`1q. Let d1 be the derivation of KD2m`1 defined by d1pxq “ 0 and

d1pyq “ y. This implies d1pKxxyq “ 0 and so

0 “ d1pcq “ d1pk0
px2y`k1x px2y` ζq “ k0

px2d1pyq`k1x px2d1pyq`0 “ k0
px2y`k1x px2y.

Therefore k0 “ k1 “ 0 and so c P CpKD2m`1q
Ş

Kxxy.

Let d2 be the derivation of KD2m`1 defined by d2pxq “ x ` y and d2pyq “ y.

Letting i “ 2m´1, a “ x and b “ 1 in Equation (6.25) gives

d2px
2m´1

q “ 2m´1x2m´1

` x1´2m´1
2m´1´1
ÿ

j“0

x2jy “ 0` xx2m´1
px2y “ x px2y. (6.27)
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Letting a “ x in Equation (6.26) gives

d2px
i
` x´iq “ ixip1` x´2i

q “ xi ` x´i, for odd i. (6.28)

It has been shown that c P CpKD2m`1q
Ş

Kxxy and so c can be written as c “

c0x
2m´1

`

2m´2
ÿ

i“1

cipx
2i´1

` x´p2i´1q
q ` v, where cj P K for j P t0, 1, . . . , 2m´2u and

v P V Ă CpKD2m`1q. Therefore by Equations (6.27) and (6.28)

0 “ d2pcq “ c0d2px
2m´1

q `

2m´2
ÿ

i“1

cid2px
2i´1

` x´p2i´1q
q ` d2pvq

“ c0x px2y `
2m´2
ÿ

i“1

cipx
2i´1

` x´p2i´1q
q ` 0.

Therefore cj “ 0, for j P t0, 1, . . . , 2m´2u and so CpKD2m`1q Ă V . B is a linearly

independent set and so B is a basis for V “ CpKD2m`1q.

6.2.2 The Ring of Constants of Quaternion Group Algebras

Let K be a finite field of characteristic 2 and let m be a positive integer greater

than 1. Let Q2m`1 denote the generalised quaternion group with 2m`1 elements

and presentation xa, b | b2 “ a2m´1
, abab´1 “ 1y.

Lemma 6.2.13. The set

t1, a2m´1

, pa2b, a pa2bu Y tai ` a´i | i “ 1, 2, . . . 2m´1
´ 1u

forms a basis for ZpKQ2m`1q.

Proof. By Lemma 2.3.7, the set of all finite conjugacy class sums forms a basis

for ZpKQ2m`1q. Let g, h P Q2m`1 and write g “ aibj and h “ akbl, where i, k P
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t0, 1, . . . , 2m ´ 1u and j, l P t0, 1u. Then

gh “ h´1gh “ b´la´kaiakbl “ b´laibl “ ap´1qli, for j “ 0,

gh “ b´la´kaibakbl “ b´lai´2kbbl “ ap´1qlpi´2kqb´lbbl “ ap´1qlpi´2kqb, for j “ 1.

Therefore the 2m´1 ` 3 conjugacy classes are:

t1u, ta2m´1

u, tai, a´iu for i “ 1, 2, . . . 2m´1
´ 1,

ta2jb | j “ 0, 1, . . . 2m´1
´ 1u and ta2j`1b | j “ 0, 1, . . . 2m´1

´ 1u.

The result follows by summing over each class and the fact that
2m´1´1
ÿ

j“0

a2j
“ pa2.

Theorem 6.2.14. Let K be a finite field of characteristic 2 and let Q2m`1 be the

generalised quaternion group of order 2m`1, where m P t2, 3, 4, . . . u. Then the set

B “ t1, b2, a2i
` a´2i

| i “ 1, 2, . . . , 2m´2
´ 1u

is a basis for CpKQ2m`1q.

Proof. By Lemma 6.2.6, CpKQ2m`1q Ă ZpKQ2m`1q. By Lemma 6.2.13, ZpKQ2m`1q

is a 2m´1 ` 3 dimensional subspace of KQ2m`1 with the set t1, b2, pa2b, a pa2bu Y

tai ` a´i | i “ 1, 2, . . . 2m´1 ´ 1u acting as a basis. Let V be the K-span of B. It is

now shown that V Ă CpKQ2m`1q.

Let d P DerpKQ2m`1q. Write dpaq “ r`sb and dpbq “ u`vb, where r, s, u, v P

Kxay. By Equation (6.20) u, v P ZpKQ2m`1q. Therefore

dpb2
q “ pu` vbqb` bpu` vbq “ ub` vb2

` bu` bvb “ 0. (6.29)

196



Also

dpaiq “
i´1
ÿ

j“0

ajpr ` sbqai´j´1
“

i´1
ÿ

j“0

ai´1r ` γb “ iai´1r ` γb, (6.30)

for some γ P Kxay. Also 0 “ dp1q “ dpaia´iq and so dpa´iq “ a´idpaiqa´i.

Therefore

dpai ` a´iq “ iai´1r ` γb` a´ipiai´1r ` γbqa´i

“ iai´1r ` γb` iai´1ra´2i
` γb “ iai´1rp1` a´2i

q.
(6.31)

By Equation (6.31), dpa2i ` a´2iq “ 0 for i “ 1, 2, . . . , 2m´2 ´ 1. Also dp1q “ 0 and

dpb2q “ 0 by Equation (6.29) and so V Ă CpKQ2m`1q.

It is now shown that CpKQ2m`1q Ă V . Let c P CpKQ2m`1q and write c “

k0
pa2b ` k1a pa2b ` z, where k0, k1 P K and z P Kxay. Let d1 be the derivation of

KQ2m`1 defined by letting r “ s “ u “ 0 and v “ 1 in Equation (6.20). Thus

d1paq “ 0 and d1pbq “ b. This implies d1pKxayq “ 0 and so

0 “ d1pcq “ d1pk0
pa2b` k1a pa2b` zq “ k0

pa2d1pbq ` k1a pa2d1pbq ` 0 “ k0
pa2b` k1a pa2b.

Therefore k0 “ k1 “ 0 and so c P ZpKQ2m`1q XKxay. Therefore c can be written

as c “
2m´2
ÿ

i“1

cipa
2i´1

` a´p2i´1q
q ` v, where ci P K for i P t1, 2, . . . , 2m´2u and

v P V Ă CpKQ2m`1q. Let d2 be the derivation of KQ2m`1 defined by letting

s “ u “ v “ 0 and r “ a in Equation (6.20). Thus d2paq “ a and d2pbq “ 0.

Letting r “ a in Equation (6.31) implies d2pa
i ` a´iq “ aip1` a´2iq “ ai ` a´i, for

odd i and so

0 “ d2pcq “ d2

`

2m´2
ÿ

i“1

cipa
2i´1

` a´p2i´1q
q ` v

˘

“

2m´2
ÿ

i“1

cid2pa
2i´1

` a´p2i´1q
q ` d2pvq “

2m´2
ÿ

i“1

cipa
2i´1

` a´p2i´1q
q.
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Therefore ci “ 0, for i P t1, 2, . . . , 2m´2u and so CpKQ2m`1q Ă V . B is a linearly

independent set and so B is a basis for V “ CpKQ2m`1q.

Corollary 6.2.15. KD2m`1 and KQ2m`1 are not isomorphic as rings.

Proof. By Theorem 6.2.12 the dimension of CpKD2m`1q is 2m´2. By Theorem 6.2.14

the dimension of CpKQ2m`1q is 2m´2 ` 1. A ring isomorphism preserves subrings

and so the restriction of a ring isomorphism to the ring of constants is a ring

isomorphism. Therefore KD2m`1 and KQ2m`1 are not isomorphic as rings.

6.2.3 A proof of Deskins’ Theorem using derivations

The Modular Isomorphism Problem asks if the following statement is true:

KP » KQ ùñ P » Q,

where P and Q are finite p-groups and K is the field with p elements. It was

solved for abelian groups in 1956 by Deskins [14]. Since then there have been some

further developments. The following list of cases where the Modular Isomorphism

Problem has been solved can be found in [8]:

• abelian p-groups (Deskins’ Theorem) [14]

• p-groups of class 2 with elementary abelian commutator subgroup [45]

• metacyclic p-groups, where p ą 3 [5] and [46]

• 2-groups of maximal class [11]

• p-groups of maximal class, p ‰ 2, when |G| ď pp`1 and G contains an abelian

maximal subgroup [7]

• elementary abelian-by-cyclic groups [6]
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• p-groups with center of index p2 [15]

It has also been solved for p-groups containing a cyclic subgroup of index p2 and

groups of order p5 and 27 [8].

An alternative proof to the theorem of Deskins’ is now given using derivations.

Theorem 6.2.16. Let G and H be finite abelian p-groups and let K be the field

with p elements. Then KG is ring isomorphic to KH if and only if the groups G

and H are isomorphic.

Proof. By way of contradiction, assume G and H are minimal non-isomorphic p-

groups such that KG is ring isomorphic to KH. Let φ : KG Ñ KH be a ring

isomorphism. Then KG and KH have the same dimension as K-algebras and

so |G| “ |H| “ pm, for some non-negative integer m. By Theorem 2.3.4, the

vector space of derivations of KG has dimension npm, where n is the minimum

number of generators of G. By Theorem 3.1.18, DerpKGq and DerpKHq are

isomorphic as additive groups and so have the same dimension. Therefore G and H

have the same number of generators in their decomposition using the fundamental

theorem of finite abelian groups. Let Ap denote the group tap | a P Au, for

any abelian group A. Then by Lemma 5.5.8, CpKGq “ KpGpq. The restriction

of φ to the ring of constants CpKGq of KG is a ring isomorphism onto CpKHq.

Therefore there is a ring isomorphism from KpGpq onto KpHpq. By the minimality

assumption Gp » Hp. This implies G are H are isomorphic groups which is a

contradiction. Therefore KG » KH implies G » H. The converse follows from

Theorem 6.2.11.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The primary aim of this thesis is to improve our understanding of the structure

of group algebras. The methodology implemented was to study certain functions

defined on the group algebras, namely derivations. For the most part the group

algebras studied were finite and of positive characteristic. This focus was motivated

by a potential application to error correcting codes. Also particular attention was

given to finite modular group algebras. Recall Question 1.1 from Chapter 1:

What, if anything can the set of derivations of a group algebra

tell us about the structure of the group algebra itself?
(1.1 revisited)

However, in order to be in a position to answer this question, we must first estab-

lish a good understanding of the derivations defined on the group algebra. For a

particular group algebra, KG: Do derivations of KG exist? Are the derivations

K-derivations? Do outer derivation exist? When are there only trivial derivations?

How many derivations are there? What structure do they possess? Given a func-

tion on KG can you decide whether it is a derivation or not? These questions are

200



answered in Chapter 2. The zero map is always a derivation of KG. Theorem 2.2.2

shows that when K is an algebraic extension of a prime field all derivations of a K-

algebra are K-derivations. Corollary 2.2.3 states if K is an algebraic extension of a

prime field F , G is a torsion group whose center is of finite index and if charpKq “ 0

or charpKq “ p ą 0, and p does not divide the order of g, for all g P G, then every

derivation of KG is inner. By Theorem 2.3.1 if R is a commutative unital ring and

H is a torsion central subgroup of a group G, where the order of h is invertible in

R, for all h P H, then dpRq “ t0u if and only if dpRHq “ t0u, for all d P DerpRGq.

Therefore if R is an algebraic extension of a prime field, the only derivation is the

trivial derivation. In Theorem 2.3.4 a basis for the vector space of derivations of a

finite commutative group algebra of positive characteristic is found. Theorem 2.2.5

classifies the derivations of group algebras in terms of the generators and defining

relations of the group. If RG is a group ring, where R is commutative and S is a

set of generators of G then necessary and sufficient conditions on a map from S

to RG are established, such that the map can be extended to an R-derivation of

RG. This theorem provides a way of deciding if a particular function on KG is a

derivation or not.

We continue to explore the connection between a group algebra KG and its

derivations DerpKGq in Chapter 3. Corollary 3.1.14 shows that the augmentation

ideal ∆pG,Hq is a differential ideal with respect to a derivation if and only if the

image of the subgroup H under the derivation is contained in the augmentation

ideal. A consequence of this theorem is: H is a group of constants implies the

augmentation ideal ∆pG,Hq is a differential ideal. The Lie algebra of derivations

of a group algebra is an interesting subject to study in its own right. However, the

usefulness of studying the derivation Lie algebra to glean structural information

regarding the group algebra is derived from the following 3 theorems:

Theorem 3.1.18. Let R and S be rings and let φ : RÑ S be a ring isomorphism.
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Let Φ : DerpRq Ñ DerpSq be defined by d ÞÑ φ˝d˝φ´1. Then Φ is an isomorphism

of additive groups.

Theorem 3.1.20. Let φ : RÑ S be a K-algebra isomorphism. Then Φ : DerpRq Ñ

DerpSq, defined by d ÞÑ φ ˝ d ˝ φ´1 is a Lie algebra isomorphism.

Theorem 4.1.8. Let R and S be finite rings and let φ : R Ñ S be a ring isomor-

phism. Then there is a bijection Φ from DerpRq onto DerpSq such that Γ pΦpdqq

and Γ pdq are isomorphic digraphs, for all d P DerpRq.

The contrapostive statements of these theorems have been utilised in this thesis

to prove that group algebras are not isomorphic (as rings or sometimes K-algebras).

A simple example of this technique is counting the derivations of KG. If

|DerpKGq| ‰ |DerpKHq|, then KG and KH are not isomorphic as rings. How-

ever, as was discussed in Chapter 4 this may not always distinguish the group

algebras. For instance, F2pC4 ˆ C4q and F2pC2 ˆ C8q both have 232 derivations.

As a consequence, a different approach was required. In Chapter 4 a derivation

was considered as a linear finite dynamical system (LFDS). This allowed for the

comparison of properties of the LFDSs associated with the derivations of group

algebras. It is then possible to distinguish between 2 group algebras by contrasting

these LDFSs. As an example of this technique, the maximum value of the prepe-

riod of a LDFS of a nilpotent derivation of F2pC4 ˆ C4q is less than or equal to

8, whereas there is a nilpotent derivation of F2pC2 ˆ C8q which has a maximum

preperiod of 13. Therefore F2pC4 ˆ C4q and F2pC2 ˆ C8q are not isomorphic as

rings.

Theorem 3.1.20, states that a K-algebra isomorphism between 2 finite group

algebras implies that their derivation Lie algebras are isomorphic as Lie algebras.

This theorem in the context of Question 1.1, motivates the study of the vector

space of derivations of a group algebra as a Lie algebra, where the multiplication
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is defined as the Lie commutator. It is shown that the derivation Lie algebra of

a commutative group algebra over a finite field has trivial center. Theorem 5.4.14

proves that if K is a finite field of characteristic p and G is a finite abelian group

such that its Sylow p-subgroup is elementary abelian, then all the derivations of

g “ DerpKGq are inner and so g is a complete Lie algebra.

The Modular Isomorphism Problem was solved for abelian groups in 1956 by

Deskins [14]. However it is still an important open problem for nonabelian groups.

The Modular Isomorphism Problem asks if the following statement is true:

KP » KQ ùñ P » Q,

where P and Q are finite p-groups and K is the field with p elements. Chapter 6

uses derivations to rule out the dihedral and generalised quaternion group algebras

as possible counterexamples to the Modular Isomorphism Problem. Section 6.1

compares and contrasts the vector space of derivations of F2tD2m`1 and F2tQ2m`1 .

A basis of size 2m`1`2 is exhibited for the vector space of derivations of F2tQ2m`1 .

In Theorem 2.3.11 a basis of size 2m`1`4 was found for the vector space of deriva-

tions of F2tD2m`1 . Therefore by Theorem 3.1.18, F2tD2m`1 and F2tQ2m`1 are not

isomorphic as rings. The centers of the respective derivation Lie algebras are found

in Section 6.1.2. It was shown that DerpF2tD2m`1q has a trivial center, whereas

the center of DerpF2tQ2m`1q is 2 dimensional. This fact was used in Section 6.1.3

to show that F2tD2m`1 and F2tQ2m`1 are not isomorphic as K-algebras. Moreover,

in Section 6.2 derivations of group algebras were used to give an alternative proof

of Deskins’ Theorem.
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7.2 Future Work

Theorem 2.2.5 was applied to finite commutative group algebras in Section 2.3.1

and to dihedral group algebras of characteristic 2 in Section 2.3.2. However, it may

be possible to derive an algorithm to generate a basis for DerpKGq in general. Note

that using GAP Version 4.8.6, to compute the derivation Lie algebra of F2D256

results in a memory allocation error. The memory allocated to GAP was 2000

megabytes. Appendix 7.2 gives the details of the commands that were run. However

Theorem 2.3.11, gives a basis for the vector space of derivations of F2D256. Thus it

may be possible to use Theorem 2.2.5 to generate a basis for the derivation algebra

of a group algebra in a computer algebra system like GAP [18] or SageMath [43].

Even if this is not feasible in general it seems likely to be possible for a selection

of group algebras.

Section 2.3.3 exhibits well known extremal codes as the image of a derivation

of a group algebra. Thus at least in certain cases derivations can be considered

as generating good codes. However not much was known about derivations of

finite group algebras of positive characteristic and so as a result this idea was not

explored much within this thesis. However, the results contained within this thesis

make exploring the idea of generating codes from derivations more accessible. This

endeavour would benefit from the aforementioned algorithm for generating a basis

for DerpKGq. Considering a derivation as generating a linear block code, the

dimension of the ring of constants represents the redundancy of the code. Let

d0, d1, . . . dn´1 P DerpKGq for some group algebra KG and let f be a polynomial

in n indeterminates. Then, the image of fpd0, d1, . . . dnq can be considered as a

code of length |G| over K.

The results of Chapter 6 demonstrate that properties of the derivation algebras

of group algebras can be very useful in gleaning information about the structure
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of the group algebra itself. It has been shown that derivations can be used to

distinguish between group algebras and also to give an alternative proof to the

Modular Isomorphism Problem, for abelian groups. This gives a partial answer

to Question 1.1. This question has not been explored fully. There have been

developed within this thesis a number of invariants of a group algebra KG based

on derivations.

1. The number of derivations, |DerpKGq|

2. The maximum preperiod (period) of a derivation

3. The dimensions of the derivation Lie algebras in the derivation tower of KG

4. The center of the Lie algebra DerpKGq

5. The ring of constants, CpKGq

This is not an exhaustive list and others may also prove useful. It would be very

interesting to apply these and other invariants to the Modular Isomorphism Prob-

lem.
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Computing the Derivation Lie

Algebra of F2D256

GAP version 4.8.6 was used to try to compute the derivation Lie algebra of F2D256.

The .bat file was used to run the GAP program is shown in Figure 1. Note the

command line argument -m 2000m. This allocates 2000 megabytes of memory to

the process.

Figure 1: The .bat used to run GAP

Figure 2 shows the commands that were run in the GAP console. The Small-

Group(256, 539) is the Dihedral group of order 256. The group algebra F2D256 is

then constructed using the function “GroupRing”. It is then attempted to con-

struct the derivation Lie algebra DerpF2D256q. However, an error occurs: “Error,

reached the pre-set memory limit”. Note that a basis for DerpF2D256q is given in

Theorem 2.3.11.
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[5] Bagiński, Czes law. “The isomorphism question for modular group algebras of

metacyclic p-groups”. In: Proceedings of the American Mathematical Society

104.1 (1988), pp. 39–42.
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