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Abstract

Derivations of Group Algebras with Applications

This thesis is a study of derivations of group algebras. Derivations are
shown to be trivial for semisimple group algebras of abelian groups. The
derivations of a group algebra are classified in terms of the generators and
defining relations of the group. If[RGlis a group ring, where R is commutative
and S is a set of generators of G then necessary and sufficient conditions on
a map from S to RG are established, such that the map can be extended to
an R-derivation of RG. This theorem is utilised to construct a basis for the
vector space of derivations of abelian group algebras, dihedral group algebras
and quaternion group algebras.

Derivations of group algebras are considered as linear finite dynamical
systems and their associated directed graphs are studied. The motivation
for this comes from the fact that if Der(KG) and Der(K H) are not isomor-
phic as additive groups then KG and K H are not isomorphic as rings. It
is shown that if R and S are ring isomorphic, then there is a bijection from
Der(R) onto Der(S) such that corresponding derivations have isomorphic
associated digraphs. Therefore properties of the linear finite dynamical sys-
tem associated with a derivation can be used to distinguish between group
rings.

Derivations of a group algebra form a Lie algebra and it is shown that this
Lie algebra Der(KG) is a complete Lie algebra, when G is a finite abelian
group such that its Sylow p-subgroup is elementary abelian.

Derivations can be used to show that two group algebras are not iso-
morphic as rings. As an example dihedral and quaternion group algebras
are contrasted by showing that their respective derivation Lie algebras have
different dimension and centers of different dimension. The thesis concludes
by giving an alternative proof of Deskins’ Theorem using derivations.
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Chapter 1

Introduction

This thesis is an analysis of the structure and applications of derivations of finite
group algebras. We are primarily motivated by the desire to better understand
the underlying structure of the group algebra but also by the application to error
correcting codes. These applications include the error correcting codes necessary for
applications where the signal is subject to heavy interference (a high noise channel)
and where there is a requirement to have low energy inputs for the transmitting
device. Such applications include transmitting data from offshore wind and wave
energy devices and the software for wireless body area networks (WBANSs) (also
known as body sensor networks (BSNs)). The WBAN application may be useful in
the software applications needed in designing portable biomedical diagnostics and

veterinary applications.

The codes used in these applications need to be particularly efficient. This is
due both to the high levels of noise on the channel and due to the small size of
the devices comprising the WBAN. In particular, it is desirable that they have no
short cycles. Codes (in particular Low Density Parity Check Codes (LDPC) and

Convolution Codes) can be constructed algebraically using group algebras [30].

Functions, namely derivations, defined on a group algebra are examined. The



motivation is to answer structural questions relating to group algebras and in par-
ticular: Does there exist a ring isomorphism between group algebras of two noniso-
morphic groups over the same field? This thesis will primarily be concerned with
finite group algebras of positive characteristic. This focus is again motivated by
the application to error correcting codes. Particular attention will be given to finite
modular group algebras. We start by discussing both key players, namely group

algebras and derivations.

Group algebras

Finite group

algebras
g Vector

spaces
Finite modular

group algebras

Figure 1.1: Finite modular group algebras within the class of rings and vector
spaces

A group algebra can be considered as a ring, a vector space and a Lie algebra.
Let G be a group and let K be a field. Then we shall denote the group algebra
formed from K and G by KG. Considering group algebras as vector spaces has
proven useful in the study of linear block codes. As an example, in [28], linear
block codes have been generated from elements of group algebras of certain types

(zero divisors and units).

Derivations are additive group homomorphisms. However they are not ring

homomorphisms since they are in general not multiplicative. They do however,



obey a different multiplication rule known as Leibniz’s rule. As such, derivations
are generalisations of the differentiation of real functions discovered by Leibniz and

Newton.

In their 2014 paper “Linear codes using skew polynomials with automorphisms
and derivations” [9] D. Boucher and F. Ulmer generalise codes as modules over skew
polynomial rings of automorphism type to those skew polynomial rings whose mul-
tiplication is defined using an automorphism and a derivation. Codes constructed
in this way have in some cases produced better distance bounds than that of other
codes of the same length and dimension. This means that they can detect and or
correct more errors in a transmission. They also introduce the notion of evalua-
tion codes using these rings. M. Boulagouaz and A. Leroy in “(o,d)-codes” [10]
introduce the notion of cyclic (f(t), 0, 0)-codes, where f(t) is an element of a skew
polynomial ring. The use of derivations in coding theory has thus far been restricted
to the setting of skew polynomial rings. A goal of this thesis is to better understand
derivations of group rings. As a consequence this opens up the possibility to apply

derivations to coding theory from a group rings perspective.

We begin our study of derivations of group algebras with some naive ques-
tions. Are there any derivations defined on group algebras? Assuming the set
of derivations of a particular group algebra is non-empty: Are all the derivations
of the group algebra inner derivations or do there exist outer derivations? What
structure and size does the set of derivations have? These questions ultimately

lead us to the central question of this thesis.

What, if anything can the set of derivations of a group algebra 1)
1.1

tell us about the structure of the group algebra itself?

Chapter [2] introduces the notion of a group algebra and also defines a derivation of

a ring. The set of derivations of a ring R, is denoted by Der(R). Theorem m



classifies the derivations of group algebras in terms of the generators and defining
relations of the group. If RG is a group ring, where R is commutative and S is a
set of generators of G then necessary and sufficient conditions on a map from S to
RG are established, such that the map can be extended to an R-derivation of RG.
If the group is abelian then our focus is directed towords studying modular group
algebras. This is a consequence of the fact that the only derivation defined on a
semisimple group algebra of an abelian group is the zero map. The derivations of
finite group algebras are constructed and listed in the commutative case and in
the case of dihedral groups. In the dihedral case, the inner derivations are also
classified. Lastly, these results are applied to construct well known binary codes as
images of derivations of group algebras. The results in this chapter were published

in [12).

Derivations of a modular group algebra K'G are the subject of Chapter [3] A
subring of K G that will prove useful in this and subsequent chapters, namely the
ring of constants, C(KG) is introduced. The connection between derivations and
homomorphisms is studied and the concept of a differential ideal is introduced.
The augmentation ideal A(G, H) is shown to be a differential ideal with respect
to a derivation if and only if the image of the subgroup H under the derivation is
contained in the augmentation ideal. As a consequence, H € C(KG) implies that
the augmentation ideal A(G, H) is a differential ideal. It is shown in Theorem [3.1.1§
that a ring isomorphism from R to S induces an isomorphism of additive groups
between Der(R) and Der(S). It is also shown in Section that if two group
algebras over K are isomorphic as K-algebras, then their respective derivation
algebras are isomorphic as Lie algebras. These results provide a tool for gleaning
information about the structure of a group algebra from that of its derivation
algebra. As an example, if there are more derivations of KG than of K H, then

KG and KH are not isomorphic as rings by Theorem |3.1.18 FyDg is studied as



an example of a modular group algebra. Its derivations, ideals and unit group are
found as well as the image of an element of the group algebra under conjugation
by units. It is shown that no outer derivation of K'H becomes inner in K'G, where
H is a subgroup of G. This chapter concludes with a brief look at generating error

correcting codes from derivations of modular group algebras.

A derivation of a commutative group algebra KG is considered as a linear
finite dynamical system (LFDS) in Chapter 4. The resulting LEDS corresponds to
a directed graph with the elements of K'G as vertices and an arc between each vertex
and its image under the derivation. As previously stated, the results of Chapter
provide a tool for gleaning information about the structure of a group algebra
from that of its derivation algebra. Counting derivations can be used to show that
group algebras are not isomorphic as rings. However, this may not always work
since for example Fy(Cy x Cy) and Fo(Cy x Cg) both have 232 derivations. Therefore
we will seek to use other properties of the LEFDSs associated with the derivations
of group algebras to distinguish between the nonisomorphic group algebras. The
maximum value of the preperiod of a LDF'S is one such property and is used to show
that Fo(Cy x Cy) and Fo(Cy x Cy) are not ring isomorphic. When the derivation
is nilpotent, the maximum value of the preperiod corresponds to the nilpotency

index of the derivation.

The set of derivations of a commutative group algebra over a finite field is
again the subject of Chapter However, this chapter studies the Lie algebra
formed from this set of derivations by defining multiplication as the Lie commu-
tator. This Lie algebra is know as the derivation algebra. The motivation comes
from Theorem [3.1.20, which states that a K-algebra isomorphism between two
finite group algebras implies that their derivation algebras are isomorphic as Lie
algebras. It is shown that the derivation algebra of a commutative group algebra

over a finite field has trivial center. A Lie algebra that has trivial center and whose



derivations are all inner is called complete. It is proven in Theorem [5.4.14] that
if K is a finite field of characteristic p and G is a finite abelian group such that
its Sylow p-subgroup is elementary abelian, then the derivation algebra of KG is

complete.

A very interesting problem in group rings is whether the group ring determines
the group. This question is referred to as the Isomorphism Problem of Group Rings
[40]. The set of derivations of a group algebra can be trivial. For example the zero
map is the only derivation of the semisimple group algebra FyC,,, where n is an
odd integer. In contrast, by Theorem of Chapter [2| the group algebra F,P
where P is a finite abelian p-group always has non trivial derivations. This simple
observation motivates the application of the results of Chapters [2]- [5| to the study
of the Isomorphism Problem within the following context: Let P and () be finite
p-groups and K the field with p elements. The Modular Isomorphism Problem asks

if the following statement is true:

KP~K@Q = P~Q.

The Modular Isomorphism Problem was solved for abelian groups in 1956 by De-
skins [14]. Chapter |§| begins by studying the derivation algebras of Fot Dom+1 and
Fot(Qym+1. These results are then used to prove that Fot Dom+1 and Fot(Qym+1 are not
isomorphic as K-algebras or in fact as rings. Therefore these group algebras do not
provide a counterexample to the Modular Isomorphism Problem. The information
discovered about derivations of group algebras provided the tools necessary to give

an alternative proof of Deskins Theorem in Theorem [6.2.16



Chapter 2

Derivations of Group Algebras

and Codes

2.1 Introduction

Group rings and derivations of rings have both been studied for more than 60 years.
For a history of group rings see Polcino Milies and Sehgal [40] and for a survey
article on derivations see Ashraf, Ali, and Haetinger |3]. The results of Posner [41]
and Herstein [24] attracted particular attention. Prime, semiprime and 2-torsion

free rings were a focus of the resulting research.

Derivations of C*-algebras have been studied by several authors. In [44], Sakai
proved that every derivation of a simple C*-algebra becomes inner in its multiplier
algebra. Mathieu and Villena, in [36] study the structure of Lie derivations of
C*-algebras. In the 2000 paper Derivations on Group Algebras [19], Ghahramani,
Runde and Willis, examine the first cohomology space of the group algebra L'(G),
where G is a locally compact group. The problem asks whether ev-
ery derivation from L'(G) to M(G) is inner, where G is a locally compact group

and M (G) is the multiplier algebra of L'(G). It was solved in the affirmative by

7



Losert [34]. The 2017 preprint “Derivations of Group Algebras”, [2] by Arutyunov,

Mishchenko and Shtern describes the outer derivations of L'(G).

Group rings have been used to construct new codes as well as to study existing
codes. In [28] Hurley and Hurley present techniques for constructing codes from
group rings. The codes constructed consist primarily of two types, zero-divisor
codes and unit-derived codes. The structure of group ring codes is examined in
[27]. The author gives a decomposition of a group ring code into twisted group
ring codes and proves the nonexistence of self-dual group ring codes in particular

cases.

Derivations have also been employed in coding theory. In [9] codes are con-
structed as modules over skew polynomial rings, where the multiplication is defined
by a derivation and an automorphism. In this chapter derivations of group algebras

and their application to coding theory are considered.

However, there has not been as much research into derivations of group alge-
bras with positive characteristic. Notable exceptions include Smith [49], Spiegel
[50], Ferrero, Giambruno and Polcino Milies [17] and Artemovych, Bovdi and Salim

[1]. In [17] the authors prove the following theorem.

Theorem 2.1.1. [17] Let R be a semiprime ring and G a torsion group such that
(G : Z(G)] < w0, where[Z(G)| denotes the center of G. Suppose that either [char]

R = 0 or for every characteristic p of R, p f o(g), for all g € G. Then every

R-derivation of RG is inner.

In this thesis we are particularly interested in finite group algebras. This is
motivated in part by applications to error correcting codes. Theorems and
direct our focus, in the commutative case, to the study of derivations of

modular (nonsemisimple) group algebras with positive characteristic.
Theorem [2.2.2] shows that when K is an algebraic extension of a prime field

8



all derivations of a K-algebra are K-derivations. If RG is a group ring, where
R is commutative and S is a set of generators of G then necessary and sufficient
conditions on a map f: S — RG are established, in Theorem [2.2.5 such that f
can be extended to an R-derivation of RG. Section [2.3] outlines some applications
of the results of Section [2.2] All derivations of finite commutative group algebras
of positive characteristic are determined in Theorem If G is a finite abelian
group and K a finite field of positive characteristic p then the image of a minimum
set of generators of the Sylow p-subgroup of G under a derivation of KG can
be chosen arbitrarily, however this is not always the case in the noncommutative
setting. An inner derivation of a ring R maps a € R to ba — ab, for some element
b € R. In the case of finite dihedral group algebras of characteristic 2, a basis is

given for the space of derivations in Theorem [2.3.11] and also for those that are

inner in Theorem 2.3.131

The extended binary Golay [24, 12, 8] code and the extended binary quadratic
residue [48,24, 12] code are both presented as images of derivations of group alge-

bras in Section 2.3.3]

Definition 2.1.2. Notation: N, Z and [(Q| denote the natural numbers, the in-
tegers and the rational numbers, and denotes the finite field with p™ ele-
ments. The group ring RG denotes the set of all formal linear combinations of
the form ) 9eG g9 of finite support where a, € R, together with the operations of
addition (componentwise) and multiplication defined as (3. agg9)(Dpeq brh) =
> g.heG Ggbngh. We adopt the usual convention that empty sums are 0 and empty

products are 1.

Definition 2.1.3. A derivation of a ring R is a mapping d: R — R satisfying

d(a+b) = d(a) + d(b), for all a,b € R. (2.1)
d(ab) = d(a)b + ad(b), for all a,b € R. (2.2)



Equation ({2.2)) is known as [Leibniz’s rule, Write for the set of derivations
of a ring R. Note that if R is a unital ring then d(1) = 0, since d(1) = d(1(1)) =
d(1)1 + 1d(1).

Definition 2.1.4. Let d § Der(R)|and r € R for aring R. Then the map r-d: R —
R is defined as a — rd(a) for all a € R.

Lemma 2.1.5. Let Z be a central subring of a ring R. Then together with

the action - 1s a Z-module.

Definition 2.1.6. Let RG be a group ring. Then a derivation d: RG — RG is an
R-derivation if d(R) = {0}.

Definition 2.1.7. Given a ring R and a,b € R, define the Lie commutator |[a, b||
= ab—ba. A derivation d on a ring R is [tnner]if for all a € R we have d(a) = ba —ab

for some b € R. In this case we write d = dp.

2.2 Derivations of Group Rings

In this section we establish necessary and sufficient conditions on a map f: S —
RG, such that f can be extended to an of the group ring RG, where
S is a set of generators of G and R is commutative. First, some identities and

preliminary results are presented.
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Lemma 2.2.1. Let d be a derivation of a ring R. Then

(i) d(H a;) = Z ((]‘[ a;)d(a:)( | ] aj)> , for all a; in R.

j=1 j=i+1

m—1
(1) d(a™) = ‘d(a)a™ ), for all a € R and m .
i=0

n—1
(i17) Z a‘d(a)a" ") =0, for all units a in R of order n.
i=0

Q

(iv) d(a*) = ka*~'d(a), for all a € R which commute with d(a

andk.

(2.6)

(v) d(a®) = ka"7d(a), for all units a € R which commute with d(a) and k e.

Proof. (i) We will prove Equation by induction on m.

Base case: m = 1. This is true as d(a;) = 3;_, 1d(a;)1.

(2.7)

Assume that d([ 7", a;) = 37y ((TT,2) a)d(@) ([T}, 7)) Then

d(ﬁl a;) = d(ﬁ a;)my1 + <ﬁaz)d(am+1)

i=1 j=1 Jj=1i+1 i=1
m+1 i—1 m+1

= > (Tand@)( I a»)
i=1 7j=1 j=i+1

Therefore Equation [2.3] holds for all m N]
(ii) Let a; = a in Equation 2.3} Then for all m
i—1

i ( a) ﬁ a)) = iai_ld(a)a(m_i) =

=1 7

I’

—
<.

Il

.
+

11

i=1 7

aid(a)a(m_l_i).



(iii) Setting m = n in Equation [2.4] implies
n—1 ' '
0=d(1) = d(a") = ) a'd(a)a™ .
i=0

(iv) Let a be an element of R that commutes with d(a). Then using Equation

k—1 k-1
d(a*) = Z a‘d(a)a*~179 = Z a"d(a) = ka"'d(a).
i=0 =0

(v) Let @ be a unit which commutes with d(a). Then a™! is also a unit
which commutes with d(a) since a~'d(a) = a~'d(a)aa™ = a 'ad(a)a™ = d(a)a™.
Therefore 0 = d(1) = d(a 'a) = d(a™")a+a"'d(a) and so d(a™') = —a"'d(a)a™" =
—a~2d(a). Moreover, a~! commutes with d(a™') since a~'d(a™!) = a~!(—a"2d(a))

= —a?d(a)a™! = d(a~1')a"!. Therefore for any positive integer k

d(a™) = d((a™)*) = k(a™)""d(a™") = k(a™"")(~a7?d(a)) = —k(a™"")d(a).

Furthermore, 0 = d(1) = d(a”) = 0a~'d(a) and so Equation (2.7) holds for all

integers k. O]

The following Theorem shows that when K is an algebraic extension of a prime

field all derivations of a K-algebra are K-derivations.

Theorem 2.2.2. Let A be a K-algebra where K is an algebraic extension of a

prime field F' and let d € Der(A). Then d(K) = {0} and d is a K-linear map.

Proof. Let d € Der(A). If char(F) > 0 then forbe F, d(b) =d(1+1+---+1) =
d(1) + d(1) + -+ d(1) = bd(1) = b0 = 0, and so d(F) = 0. Let F = Q and let
a,b € Z with b > 0. Note that 0 = d(0) = d(1 —1) =d(1) +d(—1) = 0+ d(-1),
so d(—1) = 0. Then bd(a/b) = d(a/b) + - - - + d(a/b) = d(a/b+ - + a/b) = d(a) =

12



+d(1+---+1) = £(d(1) +--- +d(1)) = 0. Therefore d(a/b) =0, so d(F) = 0 for
all prime fields F'.

Let a be a nonzero element of K and let m,(z) = 3/2 by;2’ € Flx] be the
minimal polynomial of a over F'. a is a central unit in K and so Equation of
Lemma [2.2.1] applies. Note that for b € F' and o € K we have d(ba) = bd(«), since
d(F) = 0. Thus applying a derivation d to m,(a) = 0 and using Equation

0 = d(0) = d(mq(a)) = d(za baja’) = Z bajd(a’)

= 3% bugiai (@) = (3] bosgel™ ) d(e) = a(a)d()

J=0

where ¢ is a polynomial in [F|z|l Moreover, g(a) # 0 as this would contradict the
minimality of the degree of m,(z). Therefore d(a) = 0, since ¢(a) is invertible as

it is a non zero element of the field K. Hence d(K) = {0}.
The K-linearity of d is immediate since d is additive and if a € A and k € K

then d(ka) = d(k)a + kd(a) = 0 + kd(a). O

Corollary 2.2.3. Let K be an algebraic extension of a prime field F'. Let G be
a torsion group such that |G : Z(G)] < oo, where Z(G) denotes the center of G.
Suppose that either char(K) = 0 or that char(K) = p > 0, and p does not divide

the order of g, for all g € G. Then every derivation of KG is inner.

Proof. By Theorem every derivation of KG is a K-derivation and since every

field is semiprime, Theorem [2.1.1| implies that every derivation of KG is inner. [

Note that in Corollary if “derivation” is replaced by “K-derivation” then
this is a special case of Theorem [2.1.1] Also the requirement that K is algebraic

over F'is necessary in Theorem as the following example shows.

Example 2.2.4. Let Q(t) be a transcendental extension of the rationals (the field
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of rational functions of ¢). Since Q(¢) is a Q-algebra, Theorem implies that
d(Q) = {0} for all derivations d of Q(t). However, by Proposition 5.2 of Chapter
VIII in [33], there exists a nonzero derivation d of Q(t), since Q(t) is a finitely

generated extension over Q that is not separable algebraic.

Theorem 2.2.5. Let G be a group, where S is a generating set and T a
set of relators. Let[Fg| be the free group on S and ¢: Fs — G the homomorphism
of Fs onto G. Let R be a commutative [unital ring and f a map from S to RG.
Then

(i) [ can be uniquely extended to a map f* from Fg to RG such that

ff(uv) = f*(u)p(v) + ¢(u) f*(v),  for all u,v € Fg, (2.8)

(ii) the map f from S to RG can be extended to an R-derivation of RG if and
only if f*(t) =0, for allte T,

(71i) if f can be extended to an R-derivation of RG, then this extension is unique.

Proof. Let f be a map from S to RG. ¢ is the identity map on S, so for s € .S,

d(s71s) = d(sV)p(s) = d(s7l)s = ¢(1) = 1, so ¢(s7!) = s~ Thus ¢ is the
identity map on S U S~L.
(i) We wish to extend f to f*: Fg — RG, which satisfies Equation [2.§

Define f*: Fg — RG as follows:

-

[ (wi) = 3 —w; f(w; Nw;  if w; € ST, (2.9)
0 if w; =

\

14



k

and letting w = [ [;_, w;, where w; € S U S™!, define

7(w) = 3 ([T (T w))- (2.10)

Let 0 <! < kandu= Hﬁzl w; and v = H,’;Hl w;. Then by Equations
and 2.10

i—1 k

([Twns ([T w)

= (i(nw] (w;) H w; ) ﬁ w;

i=1 gf j=i+1 j=l+1

ﬂ}%Z HwJQMQIw

7=1 i=l+1 j=l+1 j=i+1

Sy
*
—~
<
<
I
Ingly
VS

Therefore f* defined by Equations 2.9 and [2.10] satisfies Equation

If w is a[word on S| denote the reduced word by w. In order for f* to be well
defined on Fg we need to show that f*(w) = f*(w) for all words w on S. Let u,v

be words on S and let a € S.

Then by Equation , f*(a)a ™t +af*(a™') = fla)a™t —aa " f(a)a™! = 0.
Similarly, f*(a)a™ + af*(a’l) =0foralae S Let aeSuS! Then by

Equation [2.10) “ f*(aa™!') = 0 and so by Equation

f*(uaa™"v) = f*(u)¢(aa™'v) + ¢(u) f*(aa""v)

= [*(w)e(v)+e(u) f*(aa™)p(v)+d(uaa™") f*(v) = f*(u)d(v)+¢(u) f*(v) = f*(wv).
Therefore f*(w) = f*(w) for all words w on S. We now prove the uniqueness of
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/.

Assume that there exists a map f,: Fs — RG, distinct from f* which is also an
extension of f and which also satisfies Equation[2.8] Let 1 be the identity element of
Fs. Then f.(1) = f«(1(1)) = fe(1)1+1f.(1), which implies that f.(1) =0 = f*(1).
Let s € S. Then f.(s) = f(s) = f*(s) and 0 = fi(s7's) = fu(s™)s+s7' fi(s). This
implies that f,(s7!) = —s7!f.(s)s™! = f*(s7!). Therefore there exists an element
x of Fg, of positive length ¢ > 1, such that f*(z) # fi(x) and f*(z) = f.(2) for
all words z in Fg of length less than ¢. Write z = [];_, z;, where z; € S U S™L.
Thus f*([1Z) @) = fo((IZ) 20) and f*(x.) = fulz.), since [[2] z; and z, are

both elements of Fis whose length is less than c. Therefore by Equation 2.8

@) = R Jase+o[ edfola) = £ Tanote+o([ [z f () = £(0)

This contradiction implies that f* is the unique extension of f to Fg, such that

fH(uwv) = f*(u)p(v) + ¢(u) f*(v), for all u,v € Fg. This proves (i).

(i) Considering S as a subset of G, suppose that the map f: S — RG can
be extended to an R-derivation d of RG. Then for any s € S, d(s) = f(s) and
0 =d(s's) = d(s')s + s7td(s) and so d(s7!) = —s7ld(s)s7! = —s71f(s)s™ L.
Therefore d(a) = f*(a), for all a € S U S~* by Equation 2.9 Let ¢t = [[",t; € T,
where t; € S U S™! for i = 1,2,...,m. Then by Equations and

70 =3 ([T e [T 0) = 3 ([T T 1) = a0 -0

This proves the implication in (7).
Conversely, assume f*(t) = 0, for all t € T. Let t € T. Then ¢(t) = 1 and
FHEY) = 0, since 0= fA(Y) = fH0GE) + 60 F () = 0(1) + (1)f*() =

16



f*(™1). Let e € {1, —1}. Then for all w € Fg

frw™tw) = fHw et w) + d(w™) f*(tw)
= [*w et w) + ¢(w™) f*(t)p(w) + p(w™'t) f*(w)  (2.11)
= f*(w)o(w) + d(w™) f*(w) = f*(w™w) = 0.

Let N = (T*s) be the normal closure of T'. Any non-identity element n of N can
be written as H,’f:l w; 't w;, where w; € Fg, t; € T and ¢; € {—1, 1}. Therefore by

Equations and

k
) = £ (] Jwittiw)

=1

= ¢<Hw;1t§jwj> f*(w;lt?wi)gb( ﬁ w;ltj.jwj) =0.

k i—1
i=1 j=1 J=itl

(2

Also ¢(n) = 1, for all n € N and so for any w € Fg, f*(wn) = f*(w)o(n) +
d(w)f*(n) = f*(w). Let g,h e G = (S| T % and let u,v be elements
of Fg, such that ¢ = ¢(u) and h = ¢(v). Extend f: S — RG to f: G — RG
by defining f(g) = f*(u). Then f(gh) = f*(uv) = f*(u)e(v) + d(u)f*(v) =
F(g9)h + gf(Rh). Suppose f is also an extension of f distinct from f that satisfies
f(gh) = f(g)h + gf(h) for all g,h € G. Let I: G — N be the minimum length of
an element of G, defined by I(g) = min{k | g = [[", 9 9 € Su S™'}. Then
there exists an € G of minimum length such that f(z) # f(x). For all s € S,
0= f(ss1) = f(s)s™ 4+ sf(s™) and f(s) = f(s). Thus f(s™) = —s~f(s)s™! =
—s7 f(s)s™t = f*(s7Y) = f(s1). Therefore f(g) = f(g) for all g € G such that
l(9) < 2 and so x can be written as x = yz, where y, z € G such that I(y) < I(x)
and I(2) < I(z). Then f(z) = f(y2) = Fw)z + () = fw)> + yf(2) = f(a).
This contradiction implies that f is the unique extension of f such that f (gh) =

f (9)h+g f (h) for any g, h € G. Extend f, R-linearly to RG and denote this unique
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extension also by f . Let a = Z agg and 8 = Z bnh be elements of RG, where
geG heG

ag, by € R. Then f(a + B) = f(a) + f(B) as f is an R-linear map. Moreover

f@)g+af3) = (Y alls )(th) (Zagg)(thf )

geG

_Zagbhf h+2agbhgf Zagbh 9)h + gf(h))

_ Zagbhf(gh) - f(Zagbhgh> (Zaggz buh) = f

g;h

Therefore the map f obeys Leibniz’s rule for all products of elements of RG and

so is an R-derivation of RG. This proves (i) and (). O

Corollary 2.2.6. Let G = (S | T) be a group, where S is a generating set and T
a set of relators. Let Fg be the free group on S and ¢: Fs — G the homomorphism
of Fs onto G. Let K be an algebraic extension of a prime field and f a map from

S to KG. Then

(i) f can be uniquely extended to a map f* from Fg to KG that satisfies Equa-
tion[2.8,

(ii) f can be extended to a derivation of KG if and only if f*(t) = 0, for all
teT,

(11i) if f can be extended to a derivation of KG, then this extension is unique.

Proof. By Theorem all derivations of K G are K-derivations and so the result
follows from Theorem 2.2.5 O

Remark 2.2.7. The restriction that R be a commutative ring in Theorem [2.2.5
is necessary. To demonstrate this, let r, 75 be noncommuting elements in a ring
R and let G be the infinite cyclic group generated by S = {s}, that is the free

group on S. Let f: S — RG be the map defined by s — r; and extend f to a
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map f*: G — RG as in Theorem (i). Assume that f can be extended to an
R-derivation d of RG. Then

d(s)res + sd(rys) = 117128 + srod(8) = 11198 + Srory = (11712 + T9T1)S.

However

d(sr98) = 19d(5%) = ro(r1s 4 s11) = 21971 5.

Therefore the Leibniz rule does not apply since d(srys) # d(s)ras + sd(rgs). This

contradicts the assumption that f can be extended to an R-derivation of RG.

2.3 Applications

We will now apply the results of the previous sections to finite commutative group
algebras in Section and then to finite dihedral group algebras in Section [2.3.2]
The study of finite group algebras is motivated in part by applications to coding
theory which appear in Section [2.3.3) where the extended binary Golay [24,12, 8]
code and the extended binary quadratic residue [48,24,12] code are presented as

images of derivations of group algebras.

2.3.1 Derivations of Commutative Group Algebras

The next result directs our study of derivations of commutative group algebras to

the nonsemisimple case.

Theorem 2.3.1. Let R be a commutative unital ring. Let H be a torsion central
subgroup of a group G, where the order of h is invertible in R, for allh e H. Then
d(R) = {0} if and only if d(RH) = {0}, for all d € Der(RG).

Proof. Let d be any element of Der(RG). Assume that d(R) = {0}. Let h be
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an element of H of order s. Applying d to h* = 1 implies sh*"'d(h) = 0 by
Equation of Lemma [2.2.1] By assumption s is invertible in R and so s is also
invertible in RG. Therefore d(h) = 0 for any d € Der(RG). Let o = Z aph be

heH
any element of RH. Then

d(e) = d( ). aph) = > d(ayh) = > apd(h) = ) ax(0) =0,

heH heH heH heH

by Leibniz’s rule since d(R) = {0} and so d(RH) = {0}. The converse is immediate.

O

Corollary 2.3.2. (i) Let G be a finite abelian group and F either the rational
numbers or an algebraic extension of the rationals. Then FG has no nonzero

derivations.

(ii) Let H be a subgroup of a finite abelian group G and F' = Fyn. Then

all deriwations of FG are F'H-derivations.

Proof. For part (i) let H = G. In both cases F' is a commutative unital ring and
H is a torsion central subgroup of G, where the order of A is invertible in F for all
h e H. Also d(F) = {0} for all d € Der(FG), by Theorem [2.2.2] Therefore the
results follow from Theorem 2.3.7] O

Note that (i) of this Corollary also follows from Theorem [2.1.1{

Remark 2.3.3. In Theorem the requirement that the subgroup H is central
is necessary. For example, there are 26 non zero derivations of F3Dg. Moreover the

27 derivations of F3Dg are inner by Theorem or Corollary [2.2.3]

In Theorem [2.3.4] we determine all derivations of finite commutative group

algebras of positive characteristic p.
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Theorem 2.3.4. Let K be a finite field of positive characteristic p. Let G ~ H x X
be a finite abelian group, where H is a p-reqular group and X is a p-group with the

following presentation
X ={xq,...,2, | ximk =1, [xp,z] =1, forall k,l€{1,2,...n}),

where n,my N Fori,j e {1,...,n}, let fi: {z1,...,2,} = KG be defined by
1 of1=7and

filz;) =
0 otherwise.

Then f; can be uniquely extended to a derivation of KG denoted by 0;. Moreover

Der(KQG) is a vector space over K with basis {g0; | g€ G,i =1,...,n}.

Proof. By Corollary (i1) all derivations of KG are K H-derivations. Let S =
{z1,...,2,} and let f be any map from S to KG. By Theorem f can be
uniquely extended to a map f*: Fg — KG satisfying Equation [2.8 Moreover, f
can be extended to a derivation of K'G if and only if f*(t) = 0 for t € {[zx, z], 27 " |

k,l=1,2,...,n}. Let a,be S. Then

fHa o ab) = fF(a b rab+a L fF (0 ab + a0 f(a)b + a” o af* (D)
= —a'f(a)a b tab —a b F(B)brab + a b f(a)b + a b taf (D)
= —a'f(a) = b7 f(b) + a ' fla) + b f(b) = 0.

Therefore f*([zy,x;]) =0, for all k,1 =1,2,...,n. Also by Equation

Lo

—1 P

@™ = 2 ([ Tans @ TT e0) = o™ () = o

= j=it1

since KG has characteristic p. Therefore any map f: S — KG can be uniquely
extended to a derivation of KG. By Lemma Der(KQG) is a vector space over
K. Let B=1{g0; | g€ G,i =1,...,n}. Any map f: S — KG can be written
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as D1 Dige Kiggfi, where k; o € K. The extension of f to a derivation of KG is
PN gec Kiggdi. Therefore any derivation of K'G can be written as a K-linear
combination of the elements of B. Furthermore, if (3, >} . kig90i)(z;) = 0,
then )] gec Bgj9 = 0, which implies kg ; = 0 for all g € G. Therefore the elements

of B are K-linearly independent and so form a basis of Der(KG). O]

Remark 2.3.5. Derivations of finite commutative group algebras F,»G are either
the zero derivation (in the semisimple case by Corollary [2.3.2(ii)) or can be decom-
posed as in Theorem [2.3.4] as the sum of derivations of the group algebras of the

cyclic direct factors of G.

As we will see in the next section, derivations of noncommutative finite group

algebras are more involved.

2.3.2 Derivations of Dihedral Group Algebras

Let n be an integer greater than 2 and let D,,, denote the dihedral group with 2n
elements and presentation (x,y | 2" = y*> = (xy)? = 1). This section classifies the

derivations of the group algebra Fom Do,,.

Definition 2.3.6. Let RG be a group ring. The augmentation ideal of RG, denoted
by is the kernel of the homomorphism from RG to R defined by >’

geG (g9 —

deG Q-

Lemma 2.3.7. (38, pp.113] The centre of the group algebra KG has as a K-basis
the set of all finite conjugacy class sums. [
Lemma 2.3.8. If n is even, Z(FonDsy,), the center of Fom Do, is a subspace of
Fom Dy, of dimension § + 3 and a basis {1, R e S N F R

n

If n is odd, Z(FomDs,) has dimension ”T”' and a basis {1, ' + 27! 2% +

n—1 —n+1
ZE_2, e, X 2 4+ x 2 7y+$y+x2y+._,+xn—ly}'
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Proof. If n is even the conjugacy classes of Dy, are as follows: {1}, {2}, {z%, 277},

fori=1,2,...,2 =1, {y, 2%y, 2"y, ..., 2" 2y} and {zy, 2%y, 2"y, ..., 2" 'y}. If nis

odd the conjugacy classes of Do, are as follows: {1}, {z/, 2%}, for i =1,2,..., 2%
and {y, vy, 2%y, ..., 2" 'y}. The result follows from counting the conjugacy classes
and by Lemma [2.3.7] O]

Corollary 2.3.9. Let C(y) and C(xy) denote respectively the centralisers of y and
xy in Fom Dy,. Then the following are bases for C(y) and C(xy).

Case (1): n is even

Be(y) = {17 33%7 Y, wgy} v {(xl + x7i>7 (xl +xil)y ‘ Z = 1’27' o % - 1}

B.(xzy) = {1, :1:%, xy, 1:%$y} U {(x’ + 27", oz + 27y l1=1,2,...,5 —1}.

Case (2): n is odd

By(y) ={1, yyu{(@ +27, (" +a )y |i=1,2,..., ”T_l}

Bo(zy) ={L, sy} u{(@'+27), a(@’ +2 )y i=12,... 3}

Proof. Let g € Ds, and denote by Orb(g¥) the subset {g,¢¥} of Dy,. The set
{Orb(g¥) | g € G} is a partition of Dy,. The set of elements formed by taking the
partition sums forms a basis B.(y) for C(y), when n is even and B,(y), when n is
odd. The map «a: Dy, — D,, defined by y — xy and x — x is an automorphism

of Dy,. Extend a Faom-linearly to an Fom-algebra automorphism of Fom Do,,.

Let ¢ = a + by, where a,b € Fom{x). Assume that ¢ € C(y). Then (a + by)y =
y(a + by), which implies that ay = ya and by = yb and so a,b € Z(FomDy,).

Therefore a(c) € C(xy), since
zya(c) = zy(a + bry) = axy + bryry = (a + bry)xy = a(c)zy.
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Conversely, assume «(c) = a + bry € C(zy). Then
a’zy + b = xy(a + bry) = (a + bry)ry = axy + b.

This implies a = a¥ and b = b¥ and so ¢ € C(y). Therefore ¢ € C(y) if and only if
a(c) € C(zy). Applying a to the basis B.(y) gives B.(zy) and applying « to B,(y)

gives B,(zy). O

Definition 2.3.10. Given a derivation d of Fom Ds,, denote it by d = d,/,/, where
' =d(z) and 3 = d(y). Note that d(z) and d(y) uniquely determine this deriva-

tion.

By Lemma [2.1.5] Der(Fom Ds,) forms a vector space over Fam. The following

Theorem exhibits a basis for Der(Fym Ds,,).

Theorem 2.3.11. If n is even, Der(Fom Dy,) has dimension 2n + 4 and a basis

{doy | (2,y) € {(M,0), (zwy,w) | A€ Be(wy), we Be(y)}} .

If n is odd, Der(FymDs,) has dimension 3”—2“ and a basis

{dory | (@) € {((@" + 277)y,0), (1 + )y, 1), (0,9),

(z(a" + a7y, 2" +27),(0,(a" + 27 Yy) | i =1,..., %52} }.

Proof. The relators of Dy, are y*, (zy)? and a2™. Therefore by Corollary ,
f:{x,y} — FamDy, can be extended to a derivation of FomDs, if and only if
W) = f*((xy)?) = f*@") = 0. f*(y*) = 0 if and only if f(y) € C(y). Also
F*((xy)?) = 0 if and only if f(x)y + 2/ (y) € Clay), since f*((zy)°) = *(ry)zy +
xyf*(xy) and f*(zy) = f(x)y + xf(y). We now treat the cases where n is even

and n is odd separately.
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Case (1): nis even. f*(a") = f*(z223) = f*(x2)r2 + 22 f*(x2) = 0, for
all f(x) € FomDa,, since 22 € Z(FymDsy,). Therefore f: {x,y} — FamDs, can be
extended to a derivation of Fom Dy, if and only if f(y) € C(y) and f(z)y +zf(y) €
C(xy).

Let f(y) and f*(zy) be arbitrary elements of C(y) and C(zy), respectively.
Write f(y) = 2 = 3 riw; and f*(zy) = A = S0 2 ki), where ry, k; € Fom, w; €
B.(y) and \; € Be(xy). Then A = f*(zy) = f(x)y + 22 and so f(z) = Ay + x2y.

Therefore

DeT<F2mD2n) = {d(/ly+a:!2y,!2)} = {d(ZkiAiy+Zrixwiy, Zrlwl)}

Define B. = {d(xy,0), dwwyw) | A € Be(zy), w € Be(y)}. Then B, is a spanning set
for Der(Fom Dsy,), since 11 - d(gy ) + 72 A(wo,yo) = A(ryz1+raza,riys +rays) 0T 71,72 € Fom
and x1,T9,y1,y2 € FomDsy,. We now show that the elements of B, are linearly

independent. Assume

n+2 n+2

2 Kid(xy,0) + 2 Tid(mwiy,wi) = d(Z kidiy+X rizwiy, Driwi) T d(070)
=1 =1

This implies r; = k; = 0 for i = 1,2,...,n+ 2. Therefore Der(Fom Ds,) has a basis
B, = {dyy | (@,y) € {(A\y,0), (zwy,w) | A € Be(xy), w e B.(y)}} and dimension

2n + 4.

Case (2): n is odd. Let f(z) = a + by, where a,b € Fom{z). Assume that

f can be extended to a derivation of Der(FamDs,). So f*(z™) = 0. Applying
Equation [2.10] gives

i—1 —

n n—1
2 ( Hx H ) Z a+by)x" ' =naz"! + Z 2 by,

i=1 j=1 Jj=i+1 t=0 t=0

Right multiplying this equation by = and using n = 1 (mod 2) and 7~ 2% =
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(Z?:_OI r)? = nZ?:_OI xt gives a + Z?:_OI x2'by = 0. This implies that ¢ = 0 and

be A({x)). Therefore there is a third condition when n is odd, namely f(z) = by,

where b e A((x)).

Let f(y) = 2 € C(y) and let f*(zy) = A € C(zy). Then A = f*(zy) =
f(x)y+ 282 and so f(x) = Ay + xf2y. Therefore Der(Fom Day,) = {diay+a0y,0) | A€
C(zy), 2€Cy), A+ x2 e A({x))}. Write A and (2 as Fom-linear combinations

of B,(zy) and B,(y) respectively, that is

n—1 n—1
2

2
A =kil+ koxy + Z kai(z" +27") + Z kax(z' + 27"y,

=1 =1
n—1 n—1

= =
Q=ril+nry+ Z 7“372-(301' + a:_i) + Z ?"4,i(xi + 27"y and so
i—1 i—1
n—1
2 . .
A+ 202 =kl +rix+ (ke +ro)zy + Z kgi(x' +a7")
i—1

n—1
2

ry(a’ + 7" + Z (kyi +rag)z(a’ + 27"y,
i=1

fun

e

e

+

.
—_

Then (A + z82) € A((z)) implies that ky = ry, ke = o and ky; = ry,, for
i=1,2,..., %2 Therefore Der(FomDsy,) = {d(ay+s0y,0)}, where

n—1 n—1

2 2
Ay + 20y =r(1+z)y+ 2 kai(z' + a7y + Z rax(z' + 27"y
=1 =1

n—1

n—1
2 2
and Q2 =ri1+ry+ ) rai(at + ) + ) (et a2y,

i=1 i=1

Define B, = {dy,} where (2/,v') € {((1 + 2)y,1), ((2' + 27%)y,0), (x(a’ +
ey, + 27, (0,y), (0,(z' +27%)y) |i=1,2,...,%2}. B, is a spanning set
for Der(Fam Dsy,). The elements of B, are linearly independent since d(ay1z0y,0) =

d(o,0) implies that 7 =ry =rg; =ry; = k3; =0, fori=1,2,..., "T_l

Therefore Der(FomDs,) has a basis B, = {dy,} where (z/,3) € {((1 +
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2)y, 1), (@ +27)y,0), (z(@ + 27y, 2" +277), (0,y), (0,(@" +27)y) [ i =
1,2,..., 22}, Thus Der(FamDy,) has dimension 3(251) + 2 = 325 O
Lemma 2.3.12. [/2] Let a and ¢ be elements of a ring R and let d. be the map
from R to R defined by d.(a) = [c,a] = ca — ac for alla € R. Then

1. The Lie commutator is anti-symmetric, i.e. [a,b] = —[b, a].
2. The map d. is an inner derivation for all c € R.
3. d. =0 if and only if ce Z(R).

We now give a basis for the set of inner derivations of Fom Ds,,.

Theorem 2.3.13. The set of inner derivations of Fom Do, is an Fom-vector space

with dimension 3|%5*| and basis

{dy [befa’ |i=1,2,..., |5} u{z'y | i =0,1,..., 2|22 ] — 1}}.

Proof. By Lemma the Lie commutator is anti-symmetric and so it is sym-
metric in characteristic 2. Let a,b,¢ € FomDy,. Then d,.p(c) = de(a + b) =
d.(a) + d.(b) = du(c) + dp(c) and so the inner derivations of Fom Do, are closed un-
der addition. If k € Fom, then kd, = di, and thus the inner derivations of Fom Do,
form a vector subspace of Der(FamDy,). Let B = {a' | i = 1,2,...,[%5*]} U
{zly |i=0,1,...,2|%5] — 1}.

Case(1) n is even. Write n = 2c. By Lemma 2.3.8) Z(Fym Dy,) is a (% + 3)-
dimensional subspace of Fom Dy,, with basis By = {1, 2° x+z~ ", 2?4272, ... 2D+
et D) Sl g2y Sl 2+ y1 - The union of the disjoint sets B and By is a basis

for Fgm D2n .

Case(2) n is odd. Write n = 2¢ + 1. By Lemma [2.3.8, Z(Fon Do) is a (%52)-

dimensional subspace of Fom Dy, with basis By = {1,z + 271, 22 + 272, ..., 2° +

x ¢ ZQCO x'y}. Again, the disjoint union of B and By is a basis for Fom Dsy,,.
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n—1
Write a = 2z, + Z?le Jaibi, where z, € Z(FymDs,), a; € Fom and b; € B, for

i=1,2,...,3|%5%]. d. = 0if and only if ¢ € Z(Fam Dy,) and so

31252 | 31251
da = dza + Z daibi = 2 daibi'
=1 =1

Therefore the set {d, | b € B} spans the set of inner derivations of Fom Dy,,. More-

n—1 n

over, if Y007 1 d, = dy then L7 ayby € Z(Fam Dsy) which implies that a; = 0,

fori=1,2,...,3|%| and so the set {d, | b € B} forms a basis for the vector space

of inner derivations of Fom Do,,. O

The derivation problem asks whether every derivation from L'(G) to M(G)
is inner, where G is a locally compact group and M (G) is the multiplier algebra
of L}(@). Tt was solved by Losert [34]. We can ask a similar question for finite
group algebras. Let KG be a group algebra where both K and G are finite. Are
all derivations of KG inner? Theorems 2.3.11] and 2.3.13] show that the dimension
of Der(Fom Ds,,) is greater than the dimension of the inner derivations of Fom Dy,
and so not all derivations of Fom Do, are inner. However does there exist an algebra
A o KG such that all derivations of KG become inner in A? Theorem [2.3.15]

answers this question.

Definition 2.3.14. [42] Let R be a ring and § a derivation of R. The ring

R[x; 0] = {Z a;x' | n e N,a; € R}, where addition is performed componentwise
i=0
and multiplication satisfies the relation xa = ax + 6(a), for all a € R is called a

differential polynomial ring.

Theorem 2.3.15. Let G be a finite group and KG be the group algebra over the
KG|xz;d]
(e~ 1)
ideal of KG|x;d] generated by x* — 1. Then all derivations d of KG are inner on

Aqg.

finite field K. Let Aq = , where d € Der(KG) and (x* — 1) is the 2-sided
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Proof. Let D, be the inner derivation of A, induced by z, that is D,: A; —
Ay, defined by a — xa — ax. By the multiplication relation of A, defined in
Definition ra—ax = azx + d(a) — ax = d(a). Therefore the restriction of D,
to KG is equal to d. O

2.3.3 Applications to Coding Theory

Example 2.3.16. Let Cyy = (z | 2** = 1) and let d: F3Cy — FoCoy be the
derivation defined by x +— 1+ 2+ 23+ 2% +2° + 27 + 2% + 212 (by Theorem this
uniquely defines a derivation). Then by Lemma [2.2.1] d(2*") = 0 and d(z*"*!) =
x?"d(x), forn € {0,1,...,11}. The image of the group algebra under this derivation
is a binary code of length 24 and dimension 12. A generator matrix Gg4 of this
code is given in Figure 2.1]

Figure 2.1: Generator matrix of the binary [24, 12, 8] code defined by the derivation
d.

[110111010100100000000000 |
001101110101001000000000
000011011101010010000000
000000110111010100100000
000000001101110101001000
000000000011011101010010
100000000000110111010100
001000000000001101110101
010010000000000011011101
010100100000000000110111
110101001000000000001101
011101010010000000000011

Goy =

Permuting the columns of GGy using the permutation

(6,19,12,10,11,22,8,21, 15,16, 18,9, 24, 13, 20)(7, 23, 17, 14)

and then transforming it to reduced row echelon form produces the matrix given
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as the generator of the extended binary Golay code in [25]. So the image of FyCly
under the derivation is equivalent to the extended binary Golay [24, 12, 8] code. It

has minimum distance 8 and is a doubly even and self dual extremal code.

Figure 2.2: The right hand block of a generator matrix of the binary [48,24,12]
code defined by the derivation ¢.

[(1001000111000100110110017
011001101100100011100010
010000101011100111010100
100010000111011011100001
000100001010111001110101
010001001101010101011010
011000101110001101111111
100000001111000110001111
1110111110110100111001060
110101110011000001011000
001110111110110100111001
001101011100110000010110
011010000011001110101100
100111001011011111011100
0o0110100000110011101011
001001110010110111110111
111100011000111100000001
111111101100011101000110
010110101010101100100010
101011100111010100001000
100001110110111000010001
001010111001110101000010
010001110001001101100110

1 100110110010001110001001

Example 2.3.17. Let Cys = (x | 2% = 1) and §: FoCg — FoCyg be the derivation
defined by

x»—>1+m24+:v27+x31+x32+x33+x37+m40+x41+:E43+x44+x47.

Again by Theorem this uniquely defines a derivation of FyClys. The image

of the group algebra under this derivation is a binary [48, 24, 12] doubly even self
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dual code (verified using GAP 4.8.6 [18]). It is equivalent to the extended binary
quadratic residue code of length 48 [26]. A generator matrix for this code is given
by the block matrix [la4 | A], where Io4 is the identity of the ring of 24 x 24 matrices

over Fy and A is the matrix given in Figure [2.2]
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Chapter 3

Derivations of Modular Group

Algebras and Codes

In this chapter we examine the derivations of a modular group algebra KG and
briefly discuss an application to the theory of error correcting codes. The ring
of constants, C(KG) is introduced. This subring of KG will prove useful in this
and subsequent chapters. Necessary and sufficient conditions on a subgroup H of
G are given such that the augmentation ideal A(G, H) is a differential ideal. An
implication of this result is that, H being contained within the ring of constants is

a sufficient condition for the augmentation ideal A(G, H) to be a differential ideal.

It is shown in Theorem that if ¢: R — S is a ring isomorphism, then
@: Der(R) — Der(S) defined by d — ¢ odo ¢! is an isomorphism of addi-
tive groups. If KG and KH are isomorphic as K-algebras, then Der(KG) and
Der(K H) are isomorphic as Lie algebras. An ideal of KG generated by constants
of KG is shown in Corollary to be a differential ideal for all derivations of
KG.

Section [3.2] examines the modular group algebra FoDg. A basis for its deriva-

tion algebra is given and those derivations that are inner are identified. Table
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combined with Lemma gives all conjugates of elements of Dg by units of
FoDg. Summing these gives the conjugates of all elements of F;Dg by units of
FoDg. The ideals of FyDg are shown in Figure [3.1| and for specific ideals, the
derivations that map the ideal to itself are identified. A presentation of the unit

group of Fy Dg is also given.

The existence of an algebra A such that outer derivations of KG become inner
on A, is discussed briefly in Section [3.3] It is shown in Lemma that no outer
derivation of K H becomes inner in KG, where H is a subgroup of GG. A list of
theorems from linear algebra that are used in the subsequent section and chapters
is given in Section [3.4] The final section of this chapter looks at generating error

correcting codes from derivations of modular group algebras.

3.1 Derivations, Ideals and Homomorphisms

Definition 3.1.1. Let R be a ring and H a subgroup of a group G. The augmen-
tation ideal denoted by or A(G, H) is the left ideal of RG generated by
the set {h —1 | h € H}. That is, Agr(G,H) = { Z ap(h—1) | ap € RG }

heH
A(G,G) is denoted by A(G).

Lemma 3.1.2. [40/ Let S be a set of generators of a subgroup H of a group G.
Then, the set {s—1| s e S} is a set of generators of A(G, H) as a left ideal of RG.

Definition 3.1.3. Denote by [T]= {¢; | i € I} a complete set of representatives of
left cosets of H in G. The identity element is always chosen as the representative

of H.

Proposition 3.1.4. [40] Let R be a ring and H a subgroup of a group G. Then
the set By = {q(h—1) | qe T,he H,h # 1} is a basis of Ar(G, H) over R.
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Lemma 3.1.5. [40] Let R be a ring and let H be a subgroup of a group G. Then
the ideal A(G, H) is a two-sided ideal of RG if and only if H is a normal subgroup
of G.

Proposition 3.1.6. [40/ Let H be a normal subgroup of a group G. Then

1. The canonical group homomorphism : G can be extended to an
epimorphism ¢ : RG — R(G/H) such that 1 ( Z agg) = Z ag¥(9g)

geG geG

2. eerw) = A(G, H)

RG
5 aeam = R/

Definition 3.1.7. A differential ring is a unital ring R together with a distin-

guished derivation d of R, and is denoted by the pair (R, d).

Definition 3.1.8. Let (A, d) be a differential ring. Then a (left / right / two-sided)
ideal I of A is a differential ideal of (A,d), if d(a) € I, for all a € I, i.e. d(I) < I.
Also, [ is a differential (left / right / two-sided) ideal of A, if d(I) < I, for all
d € Der(A).

Lemma 3.1.9. Let I be a differential two-sided ideal of a differential ring (A,d).
Then d: A/ — A/I defined by d(a + I) = d(a) + I is a derivation of A/I and is
independent of the choice of representative in the coset. ]

Definition 3.1.10. Let (A, d) and (B, d) be differential rings. A differential homo-

morphism ¢ from (A,d) to (B,d) is a ring homomorphism which commutes with

the derivations. That is, dod = d o ¢.

Lemma 3.1.11. Let I be a differential two-sided ideal of a ring A. Then the

homomorphism ¢: A — A/l defined by a — a + I is a differential homomorphism

from (A,d) to (A/I,d) for all d € Der(A).
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Proof. Let d € Der(A) and let d: A/I — A/I be defined by d(a + I) = d(a) + I
where a € A. Then by Lemma|3.1.9, d € Der(A/I) and

(dog)a=d(a+1)=d(a)+ 1= (pod)(a). O

Lemma 3.1.12. Let I and I, both be (left / right / two-sided) ideals of a finite
unital ring R such that I, is the principal ideal generated by the element a and

I, c 1. Then for any d € Der(R), d(1,) < I if and only if d(a) € I.

Proof. Let d € Der(R). Assume that d([,) < I. Then d(a) € I since a € I,.
Conversely, assume that d(a) € I. Let o € I, and write o = ] | r;as; where

ri,8; € R, fori=1,2,...,n and n is a positive integer. Then

n

d(a) = Z d(r;as;) Z (ri)as; + rid(a)s; + riad(si)).
i=1 i=1

If I, and I are left ideals, then it can be assumed that s; = 1 and so d(s;) = 0.
Also, d(r;)a € 1, since a € I, < I and r;d(a) € 1, since it is assumed that d(a) € I.

n

Therefore d(a) = Z (d(r;)a + rid(a)) € I, since it is a sum of elements of I.
i=1
Likewise, if I, and I are right ideals, then then it can be assumed that r; = 1.

Also, ad(s;) € I and d(a)s; € I and so d(«a) = Z (d(a)s; + ad(s;)) € I. Finally,
i—1
if I, and I are two-sided ideals, then d(«) € I, since d(r;)as;, r;d(a)s; and r;ad(s;)

are all in /. Therefore in each case d(«) € I and so d(1,) < 1. O

Lemma 3.1.13. Let I be the (left / right / two-sided) ideal of a finite unital ring
R generated by the elements ay,as, ..., a,. Then d(I) < I if and only if d(a;) € I

forallj=1,2,....n

Proof. Let I,; be the principal ideal of R generated by a; with the same sidedness
as I. Then I = I, + I, + -+ 1,,. Assume that d(I) = I. Forall j =1,2,...,n

a; € I and so d(a;) € I. Conversely, assume that d(a;) € [ for all j = 1,2,....n.
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Then d(l,,;) = I, for all j by Lemma 3.1.12} Let o € I and write o = >77_ | oy,
where o € I,;. Then d(ca;) € I for all j =1,2,...,n and so
d(a) = d (Z @j) = Y d(aj) el
s =1
O

Corollary 3.1.14. Let H be a subgroup of a finite group G, let K be a finite field
and let d € Der(KG). Then A(G, H) is a differential ideal of (KG,d) if and only
if d(H) < A(G, H).

Proof. Let d € Der(KG). A(G,H) is a left ideal of KG generated by the set
{h — 1| h e H}. Therefore by Lemma [3.1.13] A(G, H) is a differential ideal of
(KG,d) if and only if d(h — 1) = d(h) € A(G, H), for all h € H. O

Definition 3.1.15. Let d be a derivation of a unital ring R and let A be a subset
of Der(R). Then the subring of R defined by Cy = {c€ R | d(c) =0 for all d € A}
is called the ring of constants of A. If A is a set with one element d then Cn will
be denoted by C; and if A = Der(R) then C, will be denoted by and is then

called the ring of constants of R.

Corollary 3.1.16. Let K be a finite field and let G be a finite group. Let I be a
(left / right / two-sided) ideal of KG generated by a subset of the ring of constants,
C(KG). Then I is a differential ideal of KG.

Proof. Let I be a (left / right / two-sided) ideal of KG generated by C' < C(KG).
The d(C) = 0 € I, for all d € Der(KG). Therefore I is a differential ideal of KG,
by Lemma [3.1.13] O]

Corollary 3.1.17. Let G be a finite group and let K be a finite field. Let H be a
subgroup of G such that H — C(KG), the ring of constants of KG. Then A(G, H)
1s a differential ideal of KG.
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Proof. A(G, H) is a left ideal of KG generated by the set {h —1 | h € H}. The
result now follows by Corollary [3.1.16] ]

Theorem 3.1.18. Let R and S be rings and let ¢: R — S be a ring isomorphism.
Let @: Der(R) — Der(S) be defined by d — ¢podog™t. Then @ is an isomorphism

of additive groups.

Proof. Let d € Der(R). &(d) = ¢ odo ¢! is an additive map since it is the

composition of additive maps. Let «, f € R and let a = ¢(«) and b = ¢(3). Then

o(d)(ab) = o do ¢ (ab) = ¢(d(af)) = ¢(d(a)B + ad(B))
= ¢(d(a)B) + d(ad(B)) = ¢(d(a))d(B) + d(a)d(d(B))
= ¢(d(a))b + ag(d(B)) = &(d)(a)b + ad(d)(b)

Therefore, ®(d) satisfies Equations and and so is a derivation of S. The
map @~ ': Der(S) — Der(R) defined by D — ¢! o Do ¢ is a two-sided inverse of
@ and so @ is a bijection. Let d; € Der(R). Then

P(d + di) () = ¢(d + di)(a) = ¢(d(a) + di(a))
= ¢(d(a)) + ¢(di(a)) = D(d)(@) + P(dy)(e).

Therefore @ preserves the additive group structure of Der(R) and so is an additive
group isomorphism. O

Lemma 3.1.19. Let p be a prime number, let I, be the field with p elements and
let K be a finite field of characteristic p. Let G and H be finite p-groups and let

¢: KG — KH be a ring isomorphism. Then ¢ is an F,-algebra isomorphism.

Proof. ¢ is a ring isomorphism and so is bijective. Let o be an arbitrary element

of KH and let a = ¢~ !(a). Denote the multiplicative identity of KG and K H as
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eq and ey respectively. Then

pleq)a = ¢leqa) = ¢(a) = ¢(aeq) = ap(eq).

Therefore ¢(eq) = emy. Also for any k e F,

p(keg) =

k
1=

k
oleq) = ZeH = key.
i—1

1

Therefore ¢(kega) = ¢(keg)p(a) = kegdp(a) = ko(a) and so ¢ is an F-linear

map. ]
Theorem 3.1.20. Let ¢: R — S be a K-algebra isomorphism. Then ®: Der(R) —

Der(S), defined by d — ¢podo ¢~ is a Lie algebra isomorphism.

Proof. Let d, D € Der(R) and let k € K. By Theorem [3.1.18] &(d) is a derivation

of S and @ is an additive map. Therefore

D(kd) = pokdo¢p ' =kpodoo¢™t = kd(d),
[#(d),®(D)] = [podo ¢, 60 Dod™'] = podoDog™ —goDodog™
=¢o [d,D]O¢_1 :é([daD])

Therefore @ is a lie algebra homomorphism. @ is a bijection by Theorem [3.1.18, [

Theorem 3.1.21. Let I be a differential two-sided ideal of a unital ring R and
let d € Der(R). Let d: R/I — R/I be defined by d(a + I) = d(a) + I. Then
®: Der(R) — Der(R/I) defined by d — d is a Lie algebra homomorphism.

Proof. d € Der(R/I) for all d € Der(R) by Lemma m The homomorphism
¢: R — R/I defined by a — a + I is differential by Lemma [3.1.11] Let d, D €
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Der(R), let k€ K and let a € R. Then

&(d+ D)a+1)=(d+D)(a)+I=d(a)+ 1+ D(a)+ 1
?(d)(a+ 1)+ P(D)(a+ 1),
O(kd)(a+ 1) =kd(a) + I = k(d(a) + I) = k?(d)(a + I), and
[®(d), 2(D)|(a + 1) = ¢(d)(@(D)(a + 1)) — D(D)(P(d)(a + 1))
b(d)(D(a) +I) — 2(D)(d(a) + 1))
=dD(a) + I — Dd(a) + 1
= [d,D](a) + I = @(|d, D])(a + I).

Therefore @ is a Lie algebra homomorphism. O

Corollary 3.1.22. Let K be a finite field and let N be a normal subgroup of
a finite group G such that d(N) < I = A(G,N) for all d € Der(KG). Then
®: Der(KG) — Der(KG/I) defined by d — d is a Lie algebra homomorphism.

Proof. I is a two-sided ideal of KG' by Lemma |3.1.5| and is a differential ideal for
all d € Der(KG) by Corollary [3.1.14] Therefore @ is a Lie algebra homomorphism

by Theorem |3.1.21] O]

3.2 An Example: F;Dg

Let Dg be the dihedral group of order 8 with presentation

Ds = (z,y | y* = * = (zy)* = 1).
Letftl = 1+ 2 + 22 + 23

Remark 3.2.1. The group algebra [y Dy is purely modular in the sense that it has
no nontrivial idempotents. This is a consequence of the following theorem and the

fact that |Dg| = 23.
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Theorem 3.2.2. [48, pp. 378] If RG is the group ring of a finite group over a
commutative unital ring R such that every prime divisor of the order of G is a
non-unit of R and R has no nontrivial idempotents then RG has no nontrivial

tdempotents.

Remark 3.2.3. The conjugacy classes of Dg are: {1}, {?}, {x, 23}, {y, 2%y},
{zy, z%y}. Note that conjugation either fixes an element of Dg or it multiplies it

by 2.

Remark 3.2.4. Letting n =4 in Lemmam implies the set Bz = {1, 22, z(1+

2?), (1 + 2?)y, z(1 + 2*)y}, is a basis for Z(F,Dg), the centre of FyDs.

Lemma 3.2.5. Let I be the two-sided ideal generated by the element 1 + x% of
FyDg. Then I = A(Dg,{x?)) and is a central nilpotent ideal of index 2 with the set

{(1+2?), (1 +2%), y(1+2?), zy(1 +2*)} as a basis.

Proof. (1 + z?) is central and so by Definition 3.1.1, I = A(Dg,(z?)). T =
{1, =, y, zy} is a complete set of representatives of left cosets of (z%) in Dx.
By Proposition B ={(1+2%), z(1+2?), (1+2?)y, z(1 + 2?)y} is a basis
for A(Dg,{x?)). For any b € B, b € Z(F,Dg) such that b*> = 0 and so A(Dg, {(z?))

is a central nilpotent ideal of index 2. O

Lemma 3.2.6. (38, pp.114] Let G be a group and K a field.

1. IfF is an extension field of K, then Z(FG) ~ HQk|Z(KG)

2. If R is a subring of K and if M is a mazximal ideal of R, then under the natural
homomorphism RG — (R/M)G the centre Z(RG) maps onto Z((R/M)G).
O

Definition 3.2.7. Let A be a subset of a ring R. The centraliser of A in R,
denoted is{re R|ra=ar, Yae A}.
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Remark 3.2.8. By letting n = 4 in Lemma [2.3.9 we get the following bases for
C(y,FyDg) and C(zy,FoDg) respectively:

B.(y) = {1, 2%, y, 2%y, (v +2°), (z+2°)y} (3.1)

Bo(zy) = {1, 22, 2y, 2%y, (z +2°), (1 + 2y} (3.2)

Remark 3.2.9. B.(y) contains units and so dim(C(y,F2Ds) n A(Ds)) < 5. Let
B={1+2% 1+y, 1+2%, (x+23), (z+2%)y} and let ¢; € F, for i € {0, 1,2, 3, 4}.

Then

0=co(l+2%) +cr(l+y)+ el +2%) + c3(z + 2%) + cu(w + 2°)y

= (co+ c1 + &)1 + co2® + 1y + e’y + c3(z + %) + eu(w + 2°)y.

Thus ¢; = 0, fori € {0, 1,2, 3,4} since B.(y) is a linearly independent set. Therefore
B is also a linearly independent set. Each element of B commutes with y and has
augmentation 0. Thus the Fo-span of B is a 5-dimensional subspace contained in

C(y,FyDs) n A(Dg). Therefore B is a basis for C(y, FoDg) n A(Dg).

Likewise the set {1 + 2% 1+ zy, 1+ 2%, (z + 23), (1 + 2%)y} is a basis for
C(zy,FoDg) n A(Dg).
3.2.1 Derivations

Let 2’ and 3’ denote respectively the image of x and y under a given derivation.
Letting n = 4 in Theorem [2.3.11] gives the following basis for Der(FyDs) of size
12:

B ={day | (2',y) € {(\y,0), (zwy,w) [ A€ Be(zy), w e Be(y)}}, (3-3)

Remark 3.2.10. Let d € Der(F2Dg). Then d is a linear combination of elements
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of B in Equation (3.3)). Therefore an element A of C(zy,FyDg) and an element {2
of C(y,FyDg) defines the derivation d by d(x) = (A + z2)y and d(y) = 2.

31 301
Remark 3.2.11. Write |z/| = ZZai7jxiyj and 3y = Zmexiyj. Then by
i=05=0 i=0 =0
Equations (3.1) - (:3):
1. bLQ = b370 and b171 = 6371
2. Qp,0 = Q2,0 and az1 = a1 + b0,0 + b2,0-

Remark 3.2.12. By Theorem [2.3.4] there are 2'¢ derivations of the commutative

group algebra Fy(Cy x Cy), where denotes the cyclic group of order n.

Lemma 3.2.13. Let Dg = {z,y | y* = 2* = (zy)*> = 1) and let d € Der(F,Dy).
Write ' = d(x) = a + by where a,b € Folx). Then x’ and x commute if and only

if b is an element of the ideal (1 + ) of Folx).

Proof. Write 2’ = d(x) = a + by where a,b € Fo{x). Then

v’z + 22’ = ax + byr + xa + xby = ax + ax + brdy + by = br(1 + 2?)y.

Therefore, 2/ and z commute if and only if b € Ann(1 + 2?) in Fy(x). Con-
sidering the group algebra Fo(z), the ideal (1 + z2) < Ann(1 + 2?), since 1 + 22 is
central and (1 + z2)% = 0. Conversely, let ¢ = ¢y + c17 + cox? + c32® € Ann(1 + 2?).

Then
0= (1+2%(co+ 127 + cz® + c32°) = (co + o) (1 + 22) + (c1 + c3)z(1 + 22).

That is, co = ¢ and ¢; = ¢z and so ¢ = (co+c12)(1+2%). Therefore, Ann(1+2?)
(1 + 2?) and so Ann(1 + 2?) = (1 + 2?). Thus, 2/ and x commute if and only if b

is in the ideal (1 + 2?) of Folx). O
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The following basis for the vector space of inner derivations of Fy Dy is provided

by letting n = 4 in Theorem [2.3.13

{a]lve (o, y, zy}}. (3.4)

3.2.2 Conjugation by Units

Remark 3.2.14. |42, pp.71] Replacing the usual multiplication of an associative
algebra A by the Lie commutator [ai, as] yields a nonassociative algebra which is

a Lie algebra.

Definition 3.2.15. Let ®© denote the Lie algebra of FyDg formed by defining
[a,b] = ab — ba, for all a,b € Fy3Dg. Also, denote by ®" = [y Dg, FyDg] the set of

all Lie commutators of elements of FyDg.

Remark 3.2.16. By Remark|3.2.3| group conjugation in Dg either fixes an element
of Dg or it multiplies it by z2. For any g,h € Ds, [g,h] = gh + hg = h(g" +g) =0
or hg(1l + z%). The Lie bracket is bilinear and so @’ is contained in (1 + 2?) =

A(Dg,{z*)), which by Lemma is a central nilpotent ideal of index 2.

We will now consider conjugation of an element of I Dg by units of FyDsg.

Definition 3.2.17. Let u be a unit of a group algebra KG and a an element of
KG. Then the of a by u, is the element v 'au and is denoted by a*.

Lemma 3.2.18. a? is central for any element a of FyDy.

Proof. Write a = Z§:1 a;g;, where a; € Fy and g; € Dg. Then

8 8 8
a2 = (Z aigi) (Z ajgj) = Z a;a;9:;9; = Zaiaj(gigj + gjgi) + Za?gf,
i=1

J=1 1,j=1 1<j =7
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These last 2 sums are central elements since

Eaiaj(gigj + 9j9;) = Eaiaj[gi,gj] e A(Dg,{x*)) < Z(FyDg), by Remark 3.2.16

1<j 1<j

and g7 € {1, 2°} = Z(FyDg).
Therefore, a? is the sum of 2 central elements and so is itself central. m

Remark 3.2.19. The units of FyDg are the elements of augmentation 1.

Lemma 3.2.20. Let u be a unit of FaDg. Then u™! = u+ 2z where z € A(Dg, {z?)).

Proof. Write u™! = u + z, for some z € FoDg. Then 1 = u(u + 2) = u? + uz and so
uz = u?+1. We know that «? is central by Lemma and has augmentation 1.
By Remark[3.2.4]the set By = {1, 2%, x(1+2?), (1+2?)y, z(1+2?)y}, is a basis for
Z(FyDg), the centre of Fo Dg. Therefore, by Lemma we can write u? = e + 1,
where e = 1 or 2% (e # 1 + 22, since it has augmentation 1) and i € A(Dg, (z?)).
This implies that 14+ u? =i or (14 2?)+4 and so uz = 1+u? € A(Dg,{x?)). Thus,
z € A(Dg,{x?)) since u is a O
Lemma 3.2.21. Let u be a unit of FoDg and i € A(Dg,{x?)). Then, u + i is also

a unit of FoDg and (u +14)"' =u! + 1.

Proof. Let|d: FoDs — F, be the augmentation map. Then e(u + i) = e(u) + (i) =
140 = 1. Therefore v + i is a unit. By Lemma [3.2.20, u=! = u + 2 for some
z € A(Dg,{x?)) and so

(u+i)u 4+ =wu " tuitiut +iP=1+ui+i(ut+z2)+0=1+[u,i] +iz.

However, i = r(1 + x?) for some r € FyDg (by Lemma [3.2.5) and so [u,i] =
(14+2%)[u,r] = 0 by Remark[3.2.16] Also iz = 0, since A(Dg, (x?))? = 0. Therefore

u~! + 7 is the inverse of the unit u + i. O
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Lemma 3.2.22. Let u be a unit of F3Dg and i € A(Dg,{x?)). Then a*™ = a*, for

all a € ]Fng.
Proof. Let g be an element of Dg. Then,

-1

g =(u+i)Tglu+i) = (u i) (gu+ gi) = u T gu +u Tt gi + igu + igi.

Write ™ = u + z, for some 2z € A(Dg,{x?)) and i = r(1 + 2?) for some r € FyDg.
uwtgi +igu = ugi + zgi + igu = (1 + 2%)(ugr + rgu)

since zgi = 0 as both z and ¢ are in A(Dg,{z?)). Write r = r. + 7,,, where r, is
the sum of elements in the support of r that commute with ¢g and r,, is the sum of

elements in the support of r that do not commute with g. Then

(14 2% (ugr + rgu) = (ugre + regu) + (1 + 22)(ugr, + rogu)

(ugre + greu) + (1 + 22)(ugr, + 2*grou)
(ugre + greu + ugr, + grapu)
(

[u, gre] + [u, gral) = 0,

by Remark [3.2.16f Moreover, igi = 0 as A(Dg,{z*))? = 0. Therefore, g*™ = g*,
for any i € A(Dg, {(z?)).

Write a = Z?zl a;g;, where a; € Fy and g; € Dg. Then

8 8
+ u+1i u
= 208 = D gl = a
j=1 j=1
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Definition 3.2.23. Define

Ull={1,z vy, 2y, 1l+x+y, l+z+ay, l+y+ay, x+y+ay}.

Then U/I is a set of representatives of the units of FyDg the ideal I =
A(Dg,{x?)), since FyDg/A(Dg, (x2)) ~ Fy(Dg/{z?)) by Proposition [3.1.6}

Table lists the image of the elements of Dg under conjugation by the units

of U/I. In the table ¢ is the element 1 + 22

Remark 3.2.24. Table combined with Lemma [3.2.22] gives all conjugates of
elements of Dg by units of F; Dg. Partial sums of the entries in each row of Table
give all conjugates of elements of FyDg by units of FyDg. Therefore there are 8
inner automorphisms of F; Dg. The exponent of the inner automorphism group of
FyDg is 2. This has also been verified using GAP [18] and can also be calculated
using Table Therefore the inner automorphism group of FyDyg is Cf.
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Example [3.2.25| uses Table to compute the conjugation of an element of
FyDg by a unit of Fy Dyg.

Example 3.2.25. let a = 1 + 2%y + 2%y, v=ao+2*+yand u = 1+ +y be

elements of FyDg. Then v = v+ 1+ 22 and so by Lemma [3.2.22]a* = a*. Therefore
using Table

a’=a"=1"+ (2%)" + ®y)" = 1+ y + (1 + 23 (2 + zy) + 2%y + (1 + 2?)(z + y)

=1l+y+2®y+ (1 +2H)y+ay) =1+zy+ 27y

Lemma 3.2.26. Let z be a central element of a unital ring R and let d € Der(R).

Then d(z) is also be central in R.

Proof. Let a € R and let z be any central element of R. Then
d(a)z + ad(z) = d(az) = d(za) = d(z)a + zd(a) = d(z)a + d(a)z.

Therefore, d(a)z + ad(z) = d(z)a + d(a)z and subtracting d(a)z from both sides
gives ad(z) = d(z)a. O

3.2.3 The Ideals of [F;Dg

Definition 3.2.27. Let RG be a group ring. Denote by G the group ring element
defined by G = Ygec 9-

Definition 3.2.28. Let S and T be sets of elements of the group ring RG. Define
(S,T)={(s,t) | se Sand teT}.

Definition 3.2.29. Let R be a a finite ring. Then a two sided ideal I of R generated
by the subset A c R is the set all finite sums of the form ras, where r, s,€ R and

ac A.
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Remark 3.2.30. Let a € Fo{z). Consider « as an element of FoDg. Then « €
A(Dg,{z*)) if and only if supp(«) contains an even number of both even and odd

powers of z.
Definition 3.2.31. Define b =1+ (1 + z)(1 + y).

Lemma 3.2.32. The set {1+ b, 1+ 22, z(1+ z?%), y(1 + 2?), yx(l + 2?)} is a

basis for the two-sided ideal I = (1 +b) + A(Dg,{(x?)) of FyDg.

Proof. Tt is first shown that (14 g)(1 + b) € A(Dg,{z?)) for all g € Dg. Let g = x°

for i € {0,1,2,3}. Then

14+g9)1+b)=0+2)Y1+2)(1+y) =1 +2+2" + 21 +y) e A(Dg,{z?),

by Remark [3.2.30l Let g = 2%y for i € {0,1,2,3}. Then

(1+¢)1+b) =1+ 2y)(1+x+y+ xy)
=l4+o+y+ay+ay+atly+at+ a2t

=(1+z+a" +27)(1 +y) e A(Ds,(x*)), by Remark [3.2.30]

Therefore (1 + g)(1 +b) € A(Dg,{x?)), for all g € Dg and so g(1+b) = (1+b) + 21,
where 2, € A(Dg,{(x?)). Also, (1 +b)(1+g) = (1 +g)(1 +b) + [1 +b,1 + g] and
so (1+b)(1 + g) € A(Ds,(z?)), by Remark [3.2.16 Thus (1 +b)g = (1 +b) + 2,
where z, € A(Dg,{(z%)). By Lemma [3.2.5] the set B = {(1 + 2?), z(1 + %), y(1 +
2?), yx(1 + 2?)} is a basis for A(Dg, {(x*)). Thus the principal ideal generated by
1 + b is contained in the Fy-linear span of {1 + b} | J B. Therefore {1 + b} | J B is a
basis for I = (1 + b) + A(Ds, (z?)). O

Remark 3.2.33. By Proposition 3.1.4, By = {1 +z, 1 +2% 1+23 1+y, 1+

xy, 1+2%y, 1+ 23y} is a basis for A(Dg). Let P be the invertible matrix shown in
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Equation (3.5). Then multiplication by P~! changes the basis for A(Dg) from B

to By, where By = {1 +zy, 1+vy, 1+0b, 1+2% x(1+2?), y(1+2?), zy(1+22)}.

(0010100 [1010101]

0001000 1011010

0000100 1010000
P=10110010| and P7'=10100000]- (3.5)

1010001 0010000

0000010 0000010

0000001 0000001

Definition 3.2.34. The classical involution of KG, denoted by ()] is a map from
KG to KG defined by (3. ag9)® = 2 cq 099"

Lemma 3.2.35. The set {1+y, 1+0b, (1+2?), z(1+2?%), y(1+2?), zy(1+2%)}

is a basis for the two-sided ideal I = (1 + y) of FyDs.

Proof. (1 +z)(1+y) =1+0band (1 + y)oy + 1 + y = 1 + 2°. Therefore the
5-dimensional ideal (1 + b) + A(Dg,{(z?)) is contained in the ideal (1 + y). If
1+ye (1+0) + A(Ds,{z?), then y = b+ 2, where z € Z(FyDg). This is a
contradiction since y +b =z + xy ¢ Z(FyDg) and so 1 +y & (14 ) + A(Dg, (z%)).

It is now shown that 1 + z ¢ (1 + y) and so the dimension of (1 + y) is 6.

Assume by way of contradiction that 1 + x € (1 + y). Note that for r1,7, €

Folay, (r1 +1my) (1 +y) = (11 +72)(1 +y). Let r,s,t € Folx). Then
r(14+y)(s +ty) = r(s +ty + %Y +1%) = r(s + %) + 7(s® + )y.

Therefore elements of the ideal (1+y) are sums of elements of the form (s +t®) +
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r(s® + t)y. Thus for some nonnegative integer n

n

ri(s; +t®) + Z ri(s® + )y
=0

I+z+0y=

-

~
Il
o

n
ri(si + 12 + s¥ 4+ 1,), since Zri(sf@ +t;) =0.
i=0

I
.Mg

-
Il
=}

However, a + a® € A(Dg,{x?)) for all o € FoDg. Therefore 1 + x € A(Dg, (z%)).
This is a contradiction by Lemma and so 1 +x ¢ (1+y).

By Remark [3.2.33] A(Dyg) is a 7-dimensional ideal with basis By = {1+xy, 1+
y, 1+b, 1422, z(142?), y(1+2?), zy(1+2?)}. Therefore (1+y) is a 6-dimensional

ideal with basis {1 +y, 1+ b, 1+ 2% x(1 + 2?), y(1 + 2?), zy(1 + z*)}. O
Remark 3.2.36. All Ideals of Fy Dg are finitely generated.

Lemma 3.2.37. A(Dg,{(x?)) is a differential two-sided ideal of F3Ds.

Proof. {x*) is a normal subgroup of Dg and so A(Ds,{z?)) is a two-sided ideal of
FyDg by Lemma [3.1.5] Let d € Der(FoDg). Then by Lemmal[3.1.13] A(Ds, (2?)) =
(1 + 2?) is a differential ideal of (FyDs, d) if and only if d(1 + 2?) € A(Dg,{z?)).
However, d(1+ %) = d(2?) = [d(z), 2] € A(Ds,{x?)) by Remark[3.2.16| Therefore,
A(Dg,{x*)) is a differential ideal of (FyDg,d) for all derivations d on FyDs. O

Corollary 3.2.38. Let d € Der(FyDg) and let I = A(Dg,{(z*)). Define d :

FoDg/I — FoDg/I by d(a + I) = d(a) + I. Then ®&: Der(FyDg) — Der(FoDg/I)

defined by d — d is a Lie algebra homomorphism.

Proof. I is a differential two-sided ideal of Fy Dg by Lemma The result now
follows from Theorem [B.1.21] O

Remark 3.2.39. Let ¢: Der(FyDg) — Der(FyDg/I) be the map defined in Corol-

lary [3.2.380 By Remark [3.2.10, d € Der(FyDg) is defined by an element A €
C(zy,FyDg) and an element 2 € C(y, FoDg). Thus by the Leibniz rule, d(IFyDg) <
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I'if and only if d(y) = 2 € I and d(x) = (A+x(2)y € I. Therefore d is in the kernel
of @ if and only if 2 €I and A€ I. By Lemma [3.2.5] I is a 4-dimensional ideal of
FyDg. Therefore the kernel of @ is an 8-dimensional vector space and so the image of
@ is a 4-dimensional vector space since by Theorem [2.3.11] dim(Der(F2Ds)) = 12.
By Proposition [3.1.6) FoDg/I ~ Fy(Dg/(2?)) ~ Fo(Cy x Cs) and so Der(F2Dg/I)

is an 8-dimensional vector space by Theorem [2.3.4. Therefore @ is not onto.

Lemma 3.2.40. Let I be the two-sided ideal of WoDg generated by the element
L+y. Then I is a differential ideal of (FoDs,d) if and only if d(y) € I. Also, there
are 211 derivations d of FoDg such that I is a differential ideal of (FoDg, d).

Proof. Let d be the derivation of FyDg defined by A € C(xy,FyDg) and 2 €
C(y,FyDg). By Lemma [3.1.13] I is a differential ideal of (FoDs,d) if and only if
dl+y)=d(y) =€l andso 2¢eln C(y,FyDg).

By Remark 3.2.8 B.(y) = {1, 2%, y, 2%y, (z +2%), (v + 2%)y} is a basis for
C(y,FyDg). The set B = {1, 1 +2* 1+y, 1+2%, (z+ %), (z+ 2y} is also
a basis for C(y,F2Dg), since span(B) = span(B.(y)) and B also has size 6. 1 ¢ [
but the other elements of B are in I by Lemma and so C(y,FaDg) n I is a

5-dimensional subspace of Fy Dg.

Therefore A can be any element of C(zy,FsDg), which by Remark is a
6-dimensional subspace of FoDg. Also, {2 can be any element of C(y,FyDg) n I
which is a 5-dimensional subspace of FDg. Thus there are 2! derivations of Fy Dg

that correspond to I being a differential ideal. O

Remark 3.2.41. By Proposition [3.1.4) the set {1 + z, 1+ 2, 1+ 2% y(1 +
z), y(1+2%), y(1 + %)} is a basis for the ideal A(Dg,{x)). Let r € Fo(x). Then
(1 +2)ry = ry + ryz® = ry(1 + 2%) and so A(Ds,{z)) is in fact a two-sided ideal

of Fy Dy of dimension 6.

22



Lemma 3.2.42. There are 2'° derivations d of FoDg such that (1 + z) is a differ-

ential ideal of (FyDg, d).

Proof. Let d be the derivation of FyDg defined by A € C(xy,FyDg) and 2 €
C(y,FaDsg). Let I = (14 x). Then by Lemma 3.1.13) d(I) < I if and only if
dl+zx)=d(x)=(A+z2)yel.

Assume that [ is a differential ideal with respect to d and so (A + zf2) € I.
2 € C(y,FyDg) and so by Remark [3.2.8) 282 = woz +w2° + wazy +wazdy +wy (1 +
2?) + ws(1 + 2?)y, for some w; € Fy. Let p = wo + wi(1 + 2 + 23) + woxy + wszdy.
By Remark [3.2.8] the set B.(zy) = {1, 22, a2y, 2%y, (z + %), (1 + 2y} is a
basis for C(zy,FoDg). Therefore p € C(xy,FoDg). Also, p + 22 = (wo + wq)(1 +
7) + wy(l + 22) + ws(1 + 2%)y and so is an element of I. Let z = A + p. Then
(A+282) = (z+p+axf2) e I and so z € C(xy,FoDg) nI. Therefore for any element
2 of C(y,FeDg), A = p+ z, where z € C(zy,FaDg) n I.

It is now shown that C(zy, FoDg) n I = A(Dg,{2%)). By Remark [3.2.9} {1 +
22, 1+ azy, 1+ 2%, (x+ 2%), (1 + 2%y} is a basis for C(xy, FoDg) n A(Dg).
Assume by way of contradiction that 1 +xy € I. Then 1+z+ (14+zy)r =1+yel
and so (1 +y) < I. Appending 1 + zy to the basis given in Lemma for
(1 + y) gives the basis B, given for A(Ds) in Remark [3.2.33] Therefore I =
A(Ds) and so by Remark [3.2.41] 6 = dim(I) = dim(A(Ds)) = 7, a contradiction.
Therefore 1+ zy ¢ I and so the dimension of C(zy,FaDg) N I is less than 5 and so
C(zy,FyDg) n I = A(Dg,{x?)).

Let {2 be any element of the 6-dimensional subspace C(y,FoDg) and let z
be any element of the 4-dimensional subspace A(Dg,{(z%)). Then A = p + z €
C(zy,FyDg) and A+ xf2 = z+ p + xf2 € I, since both z and p + x{2 are in [.

Therefore there are 2'° derivations of F5Dg such that I is a differential ideal. [
Lemma 3.2.43. There are 2'° derivations d of FoDg for which the augmentation
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ideal A(Dg) is a differential ideal of (FoDg, d).

Proof. Let d be the derivation of FyDg defined by A € C(xy,FyDs) and 2 €
C(y,FyDg). The augmentation map is a ring homomorphism and so A(Dg) is a
differential ideal with respect to d if and only if d(x) and d(y) are both in A(Dsg).
However, d(z) = (A+x2)y and d(y) = {2 are both in A(Ds) if and only if A and (2
are both in A(Ds). By Remark[3.2.9] C(zy, FsDs)nA(Ds) and C(y, FoDg) N A(Ds)
are both 5-dimensional subspaces of FDg. Therefore there are 2'° derivations of

IFy Dg such that A(Dg) is a differential ideal. O

Figure [3.1] shows the lattice of all two-sided ideals of FyDg. The inclusions

were computed in GAP [18].
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Figure 3.1: The lattice

of two-sided ideals of [Fy Dg
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3.2.4 The Unit Group of F;Dg

Definition 3.2.44. An ideal I of a ring is a nil ideal if each of its elements is

nilpotent, i.e. for all a € I, a™ = 0 for some natural number n.

Definition 3.2.45. An ideal I of a ring is a nilpotent ideal if there exists a natural

number n such that I"™ = (0).

Theorem 3.2.46. [/0, pp. 110] Let R be an Artinian ring. Then the Jacobson

radical J s a nilpotent ideal of R and every nil ideal is nilpotent.

Lemma 3.2.47. Let I be a proper ideal of FoDg. Then 1+ I is a normal subgroup

of the unit group of FyDsg.

Proof. The units of FoDg are the elements of augmentation 1 and so U(FyDg) =
14+ A(Dg). Therefore A(Dg) is the unique maximal ideal of Fy Dg and so J = A(Dg).
By Theorem [3.2.46, J is nilpotent. Let n be the index of nilpotency of J. Then

I™ = 0 for all proper ideals I of FyDg, since I < J.

Let a and b be elements of the ideal I. Then (14a)(1+b) = 1+a+b+abe 1+1.

Therefore 1+ I is closed under multiplication. The inverse of the unit 1+ b is given
n—1

by (1+0)7! = meel+lsince

m=0

(Sbm> (14+0)=(1+0b) (Sbm) =1+0"=1.

Therefore 1 + I is closed under inversion and so 1 + I is a subgroup of U (IFyDg).

Also, 1 + I is a normal subgroup since for all i € [ and j € J

T+)A+)A+) " =0+)0+5)" + 0 +HEA+ )"

=1+0+5)EHA+5) el + 1
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Lemma 3.2.48. Let Dy = (z,y | 2* = y? = (zy)? = D and b= 1+ (1 +z)(1 +y).

The following is a presentation of the unit group of FoDg, denoted by U(FyDg):

(e = (@] o] ) x @ x @ +8) = )

o~ (((04 X CQ) X CQ) X CQ X OQ) X Cg,

where the actions of the semidirect products are:

W= (BB)(bBY),  (BY)Y = bBY, b = (b)(bbY)(a?) (2 + ),

(bby)wy — bby’ ywy _ ny, (x2)$y _ x27 (1‘2 + i,)xy _ ZE2 + 7.

Proof. Let ¢ = 1+22. By Lemmal[3.2.47 1+ (¢) is a normal subgroup of U (FyDs).
By Lemma [3.2.5, A(Ds,(x?)) = (¢) and is a central nilpotent ideal of index 2
with the set S = {¢, z(, y¢, ry(} as a basis. Let r,t € A(Dg,{(x?)). Then
(1+7r)(1+t)=1+r+tandsotheset 1+5 ={1+s]|seS} generates 1+ (().

Also, 1 + (¢) is an elementary abelian 2-group and so 1 + (¢) ~ Cj.

Let I = (1+b)+A(Dg,{x?)). By Lemmal3.2.32] the set {1+, ¢, z¢, y(, zy(}
is a basis for the 5-dimensional ideal I and by Lemma [3.2.35| y ¢ 1 + I. By

Lemma [3.2.47, 1 + I is a normal subgroup of U (FyDg) of order 2°. b e 1+ I and
b ¢ 1+ (¢), which is a normal subgroup of 1+ I of order 2* and so 1+ I is generated
by {b, 1+¢, 1+x(, 1+y¢, 1+ ayC}. Tt is an abelian group as A(Dg,{(x?)) is

central. Also
= (r+y+ay)(xz+y+ay) =1+ Dsg =1+ (1 +z0)1+yO)(1 + zyl).

The order of b is 4 since b = b+ Dg and b* = b2 + Dy = 1. by = (x + y + ay)y =
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1+ 2+ zy and so

boY = (by)? = (1 +z +ay)(1 + 2 + zy)
=l+otayto+?+2%y+ayty+l=a+2%y+y

=14+ C+yC =1+ +y)e Z(FyDy).

Therefore 1 + I = (b) x (oY) x (1 + ) x (1 + x() ~ Cy x C3.

By Lemma [3.2.35 the set {1 +y, 1+b, ¢, z(, y(, zy(} is a basis for the
ideal (1 + y). Therefore 1 + (1 + y) is a normal subgroup of U (FFyDg) of order 2°
generated by the set {y, b, 1+, 1+z(, 1+y(, 1+zy(}. 1+ (1+y) is the product
of the normal subgroup 1 + I and {(y). y does not commute with b and 1 + I and
{y) have trivial intersection. Thus 1+ (1 +y) =1+ I x {y). Also, oY = (b*)(bb¥).

btY,1 + ( and 1 + z( are central and so

L+ (1T4y) = (b) x bb¥) x (1 + ) x {1+ x()) = {y)
((<B) x %) % (@) x (L4 €) x 1+ 2.

By Remark [3.2.33] the set {1 + zy, 1 +y, 1 +0b, ¢, ¢, y¢, zy(} is a basis for

A(Ds). 1+ (1+y) and {(xy) have trivial intersection. Therefore U(F;Dyg) is a group
of order 27 generated by the set {zy, y, b, 1 +¢, 1+ 2(, 1 +y(, 1+ x2y(}. Thus

U (FyDs) is the product of the normal subgroup 1 + (1 + y) and {(zy).

u(FaD) = ( (1) 5 O9) 9 D) % L € L) ) )
~ (((04 % Cy) 02) x Cy x 02> s Cy.
By Table[3.1} b = 23+ 2y +2%y. Also (b)(bb¥)(1+¢)(1+2¢) = (14 Dg)b¥(1+3) =

W(l+i+Dg) = W(1+iy) = (23 +y+ady)(1+dy) = 2® + dy+y+ i+ 2%y + & =

23+ xy+x?y. Therefore, b = (b)(bbY)(1+¢)(1+x¢). Also y™ = zy’zy = y(1+()
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and b0Y, 1 + ¢ and 1 + z( are central and so commute with xy. O]

Remark 3.2.49. The structure of the unit group of the group algebra Fqr Dy was
found in |13].

3.3 Do Outer Derivations Become Inner?

In Theorem [2.3.15]it was shown that there exists an algebra A > K G such that all
derivations of K'G become inner in A. In this section we show that derivations of

K H do not become inner on K G, where H is a subgroup of G.

Let d be a derivation of A that is not inner. Does there exist an algebra B > A
such that the derivation d becomes inner when extended to B? That is, does there

exist an element b of B such that d, = d on A? A necessary condition on dj, is that

dy(A) < A.

Lemma 3.3.1. Let R be a commutative ring. Then a derivation of R is inner if

and only if it is the zero map.

Proof. let a € R and let d be an inner derivation of R. Then d(a) = ba — ab = 0,

for some b e R. If d is the zero map then d(a) = 0a — a0. O

Definition 3.3.2. A derivation of a ring is called if it is not an inner deriva-

tion.

Theorem 3.3.3. Let H be a subgroup of the group G and let R be a unital ring.

Then there are no outer R-derivations of RH that become inner on RG.

Proof. Let g€ G and he H. Then gh € H <|ge H and hge H < g¢€ H.
Therefore [g,h] = gh —hge RH <= [g,h] =0orge H. Let G}, = {g e G |
lg9.h] € RH} = Hu {ge G |[g,h] =0}
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Let b € RG and write b = Z byg. Assume that the restriction of d, to RH is
geG

an R-derivation of RH. Then dy(RH) is contained in RH and so for any h € H,

[b.h] = Y bylg.h]l + . bylg.h] € RH. ) by[g,h] € RH and so Y by[g,h] €

9€Gh 9¢Gn 9€Gh 9¢Gn
RH. However Z belg, h] is an R-linear combination of elements of G that are not
g¢Gh
in H and so Z bglg, h] = 0. Therefore
9¢Gn

[bh] = 7 bylg k] = Y bylg.h] = | 3 bug. k| = (8]

geGp, geH geH

where [ = Z bprh € RH. By assumption the restriction of d, to RH is an R-

heH
derivation of RH. Therefore for any r € R and he H

brh —rhb = [b,rh] = dy(rh) = rdy(h) = r[b, h] = rbh — rhb.

Thus br = rb and so Z bgrg =br =rb = Z rbyg. Therefore b, commutes with r
geG geG
for all g € G and so in particular b, commutes with r for all g € H which implies

that Br = rf for all r € R. Therefore dg is an R-derivation of RH.

Let a € RH and write a = 2 aph. Then
heH

dy(a) = dy( Y anh) = > andy(h) = > ands(h) = ds( Y] anh) = dg(a).

heH heH heH heH
Therefore the restriction of dj to RH is an inner derivation of RH and so no outer

R-derivations of RH become inner on RG. O]

The following lemma and example show that although R-derivations of group
rings do not become inner on larger group rings, derivation of ideals of group rings

can become inner on the group ring.

Lemma 3.3.4. Let L = (1 + y) be the two-sided ideal of F3Dg generated by the
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element 1 +y. Let b € FoDg. Then the restriction of d, to L denoted dy|; is not

inner on L if and only if x € supp(b).

Proof. Let I = (1 + x?) be the two-sided ideal of FyDg generated by the element
1+ 2% By Lemma , I is a central nilpotent ideal of index 2 with the following
set as a basis: By = {(1 + 2?%), z(1 + 2%), y(1 + 2?), yz(1 + 2?)}. Let B, =
Bru{(l+y), (1 +y)z}. Then by Lemma [3.2.35, By is a basis for L > I.
L =1®Fy(1+y)®F2(1+y)x and note that [(1+y), (1+y)z] = 1+y)(1+y)z+

1+y)z(1+y) =0+ (1+y)(x+yz®) =z + 23+ yr + ya® and so

[L, L] = [[[@|F2(1 + y) @ Fao(1 + y)z, I @ Fo(1 + y) DFo(1 + y)z]
= [Fo(1 +y) @ Fa(1 + y)x, Fo(1 + y) ® Fa(1 + y)z]

={0u{[l+y, A+l u{l+y (1 +yz]}={0,z+2%+yx+yz®}.

Let a € L and b € FyDg. Then dy(a) € L since L is a two-sided ideal of
FyDg and so d,|; is a derivation of L. Bp can be extended to a basis for FyDg
by appending the elements 1 and x. Write b = byl + byx + byl for some [ € L and
bo, b1,be € Fy and a = ag(1 +y) + a1 (1 + y)x + az(z) where z € I and ag, a1, az € Fo.

Then
dp(a) = [bol + biz + bol,a] = [bol,a] + [bix, a] + [bol, a] = b1z, a] + [b2l, al,
where [bol,a] € [L, L]. Also if a ¢ I then

[z,a] = [z,a0(1 +y)] + [z,a:(1 + y)z] + [z, azz]
= apx(1 +y) + ao(1 + y)z + arz(1 + y)x + a1 (1 + y)a?

= apyx(1 + 2%) + ayy(1 + 2?) ¢ [L, L].

Therefore if x € supp(b) and a ¢ I then dy(a) ¢ [L, L] and so d, is not inner on L.
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Conversely, if = ¢ supp(b) then b; = 0 and so dy = dpy1+651 = dp,i, Which is an inner

derivation of L. N

Example 3.3.5. Let L = (1 + y) be the two-sided ideal of FyDg generated by the
element 1+ y. The map d,: FoDg — FyDg, defined by ¢ — xc— cx for all ¢ € FyDg
is an inner derivation of FoDg. Also for all [ € L, d,(I) = zl + lx € L since L is
a two-sided ideal and so the map d,[; is a derivation of L. However, d,; is not
inner as d,(1+vy) = d,(y) = yr(1+2?) ¢ [L, L] = {0,z + 2 + yx + ya®}. Therefore

d, | is a non-inner derivation of L = (1 + y) that becomes inner on FyDs.

This example raises an interesting question: If I is a proper ideal of KG, does

every derivation of I become inner on KG?

3.4 Some Linear Algebra Results

This section contains known results from linear algebra and is included for later

reference. It may be skipped if desired by the reader.

A derivation of a group algebra is a linear transformation, by Corollary [3.5.1]
We wish to study the structure of these derivations and so we will employ some
theorems from linear algebra to better understand how these derivations transform
a group algebra. This section contains the main results used namely the primary
decomposition theorem and the cyclic decomposition theorem. Both of these theo-
rems allow us to decompose the group algebra, considered as a vector space, into a
direct sum of derivation-invariant subspaces. These decompositions can be used to
write the matrix representing the derivation in rational canonical form. Moreover,
if the eigenvalues all lie in the field, then a Jordan form can also be achieved. In the
case where the matrix cannot be written in Jordan form, it is still possible to write

it in generalised Jordan form. We begin with some definitions and preliminary
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results. Throughout this section we let T" be a linear transformation on a vector

space V.

Theorem 3.4.1. (52, pp. 17] Let V be a finite-dimensional vector space and
let T:V — W be a linear transformation. Then dim(ker(T)) + dim(Im(T)) =
dim(V).

Definition 3.4.2. [52, pp. 111] The T-annihilator of a vector v € V denoted

is the unique monic polynomial of least degree such that mq,,(7")(v) = 0.

Definition 3.4.3. [52, pp. 112] The minimum polynomial of T denoted my(z) is

the unique monic polynomial of least degree such that my(7)(v) = 0 for all v e V.

Lemma 3.4.4. (52, pp. 112] Let V be a vector space and let T:V — V be a
linear transformation. Let vy, ..., v, € V with T-annihilators p;(z) = my,,(x) for
i=1,...,k and suppose that pi(x),...,pr(x) are pairwise relatively prime. Then

v =y + -+ v has T-annihilator polynomial mr,(x) = p1(x) ... pp(x).

Theorem 3.4.5. [52, pp. 113] Let V be a finite-dimensional vector space and let
T:V — V be a linear transformation. Then there is a vector v € V' such that the

T-annihilator mr,(x) of v is equal to the minimum polynomial mr(z) of T.

Definition 3.4.6. [52, pp. 114] Let A be a square matrix. The characteris-
tic polynomial cy(x) of A is the polynomial cy(z) = det(xl — A). Let V be a
finite-dimensional vector space and let T: V' — V be a linear transformation. Fur-
thermore, let B be any basis of V' and let A be the matrix of T" with respect to
the basis B, that is, A = [T'|g. Then the characteristic polynomial is the

polynomial ¢y (x) = det(xl — A).

Definition 3.4.7. [52, pp. 115] Let f(z) = 2" + a, 12" ' + .-+ + a¢ be a monic

polynomial in F[z] of degree n = 1. The companion matriz |C(f(z)) of f(x) is the
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n X n matrix

—Qp—110...0

—ap—201...0
C(f(x)) =

—a; 00...1

—ag 00...0

Theorem 3.4.8. [52, pp. 115] Let f(x) = 2" 4+ ap_12™ ' 4+ -+ + ag be a monic
polynomial and let A = C(f(x)) be its companion matriz. Let V. = F™ for any
field F and let T = Tx: V — V be the linear transformation T'(v) = Av. Let v =
[00 ... 01] be the n'" standard basis vector. Then the subspace W of V defined
by W ={g(T)(v) | g(z) € F[z]} is V. Furthermore, my(x) = mq,(z) = f(x).

Remark 3.4.9. [52, pp. 116] The characteristic polynomial of the companion

matrix of a monic polynomial f(x) is equal to f(x). That is, co(r@y)(z) = f(2).

Definition 3.4.10. [52, pp. 117] Let T: V' — V be a linear transformation. A

subspace W of V is T-invariant if T(W) < W, i.e., if T(w) € W for every w e W.

Remark 3.4.11. The restriction of a linear transformation 7' to a T-invariant

subspace W of V' is a linear transformation, denoted

Definition 3.4.12. [52| pp. 117] Let T: V' — V be a linear transformation. Let

B = {v1,...,v} be a set of vectors in V. The T-span of B is the subspace

k
W = {ZPi(T)(%) | pi(z) € F[ff]} :

In this situation B is said to T-generate W.

The image (range) of a linear transformation, denoted I'm(7T) is a T-invariant

subspace of V. Let v € Im(T). Then v = Tw for some w € V and so Tv = T'(Tw) €
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Im(T). In fact, for each k we have that T%(V) is a T-invariant subspace of V.

This gives us a non-ascending sequence of T-invariant subspaces:
VoT(V)oT*(V)>...

Since V is finite-dimensional this sequence must eventually stabilise. That is, there
is a positive integer m such that T7(V) = T™(V) for all j = m. We will refer to

the image 7™ (V) as the generalised range space of T and denote it by [Ro[T') [22,
pp. 411].
Remark 3.4.13. The fact that this non-ascending sequence of T-invariant sub-

spaces must eventually stabilise, means that the restriction of 7" to [R¢[T'), denoted

by T fT) is an isomorphism.

Lemma 3.4.14. [52, pp. 117] Let T: V — V be a linear transformation and let
p(z) € Flz] be any polynomial. Then ker(p(T)) = {v e V | p(T)(v) = 0} is a

T-invariant subspace of V.

In particular, letting p(T) = T* for k = 1,2,... in Lemma |3.4.14] gives us a

non-descending chain of T-invariant subspaces:
0 c ker(T) < ker(T?) < ...

Again, since V is finite-dimensional this sequence must eventually stabilise. That
is, there is a positive integer m such that ker(T7) = ker(T™) for all j > m. We
will refer to ker(T™) as the generalised null space of T and denote it by [N T)

[22, pp. 411].

Theorem 3.4.15. (22, pp. 412] Let T: V — V be a linear transformation. Then

V= Beo[(T) G N T).
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Theorem 3.4.16. (52, pp. 119] Let V be a finite-dimensional vector space and
let T:V — V be a linear transformation. Then my(z) divides cr(x) and every

irreducible factor of cr(x) is an irreducible factor of my(z).

Corollary 3.4.17. [52, pp. 119] A wvector space V' is T-generated by a single

element if and only if mr(x) = cr(z).

Definition 3.4.18. |52, pp. 123] Let T: V' — V be a linear transformation. Then
V=W & - -®&W;is a T-invariant direct sum if V =W, ®---@® W, is the direct
sum of Wi, ..., W, and each W; is a T-invariant subspace. If V = W; @ W is a
T-invariant direct sum decomposition, then W5 is called a T'-invariant complement

of Wl.

We now state the Primary Decomposition Theorem, which allows a decompo-

sition of a vector space into a direct sum of T-invariant subspaces.

Theorem 3.4.19 (Primary Decomposition Theorem). (52, pp. 125] Let V' be a vec-
tor space and let T': V' — V be a linear transformation. Let mp(x) = p1(z) ... pp(z)
be the minimum polynomial of T, where the p; are pairwise relatively prime poly-
nomials. Let W; = ker(p;(T)) for i = 1,...,k. Then each W; is a T-invariant

subspace and V =W, @ --- @ Wj.

Let V =W®---® W, be the T-invariant direct sum decomposition given by
Theorem [3.4.19, Let U; be a T-invariant subspace of W;, for ¢« = 1,..., k. Then
U=U® - ®Uy is a T-invariant subspace of V, and every T-invariant subspace

of V arises in this way [52, pp. 126].

Theorem 3.4.20. [52, pp. 129-130] Let V be a finite-dimensional vector space
and let T:V — V be a linear transformation. Let wy € V be any vector with
My, () = mp(x) and let Wy be the subspace of V', T-generated by wy. Then W,

has a T-invariant complement Wy, i.e., there is a T-invariant subspace Wy of V/

such that V. = W; ® Ws.
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Definition 3.4.21. Let V be a finite-dimensional vector space and let T: V — V
be a linear transformation. An ordered set ¢ = {wy, ..., wy} is a rational canonical

T-generating set of V if the following conditions are satisfied:

1. V=W @ -®W, where W, is the subspace of V' that is T-generated by w;

2. pi(x) is divisible by p;1(z) for i = 1,...,k—1, where p;(z) = mr,(x) is the

T-annihilator of w;

We now state the Cyclic Decomposition Theorem.

Theorem 3.4.22 (Cyclic Decomposition Theorem). (52, pp. 132/ Let V' be a finite-
dimensional vector space and let TV — V be a linear transformation. Then V
has a rational canonical T-generating set € = {wy,...,wg}. If €' = {w), ..., wi}
is any rational canonical T-generating set of V, then k = | and pi(z) = p;(x) for

i=1,....k, where pi(z) = mru () and p;(r) = mr, (7).

Definition 3.4.23. An n xn matrix M is in rational canonical form if it is a block

diagonal matrix of the form

C(pr()) |
where C'(p;(z)) denotes the companion matrix of p;(x), for some sequence of poly-
nomials py(z), p2(z), . .., pe(x) with p;(x) divisible by p;11(z) for i = 1,2,... k—1.

Definition 3.4.24. If T has rational canonical form as in Definition|3.4.23| then the
sequence of polynomials py(x), pa(z), ..., pr(x) are called the elementary divisors

of T.
Theorem 3.4.25. (52, pp. 134]
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1. Let V be a finite-dimensional vector space and let T:V — V be a linear
transformation. Then V' has a basis B such that [Tz = M is in rational

canonical form. Furthermore, M is unique.

2. Let A be an nxn matriz. Then A is similar to a unique matriz M in rational

canonical form.

Corollary 3.4.26. [52, pp. 135] Let T have elementary divisors {p:(x), ..., pr(x)}.

Then my(x) = p1(x) and cp(x) = pr(z)p2(x) . .. pp(z).

Definition 3.4.27. [52, pp. 137] A k x k matrix is called a Jordan block associated
with the eigenvalue \ if it has the form

Al
Al

A matrix J is said to be in Jordan canonical form if J is a block diagonal matrix

with each J; a Jordan block.

Ji
J

Theorem 3.4.28. [52, pp. 138]

1. Let V' be a finite-dimensional vector space over a field F and let T:V — V

be a linear transformation. Suppose that the characteristic polynomial of T
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factors into a product of linear factors, cp(x) = (r — a1)® ... (x — ay)".
Then V' has a basis B with [T|g = J a matriz in Jordan canonical form. J

1S5 unique up to the order of the blocks.

2. Let A be an n x n matriz over a field F. Suppose that cs(x) the charac-
teristic polynomial of A, factors into a product of linear factors, ca(x) =
(x —a1)® ... (x — ap)*™. Then A is similar to a matriz J in Jordan canoni-

cal form. J is unique up to the order of the blocks.

When ¢p(x) does not factor into a product of linear factors we do not get a
Jordan canonical form. However, there are generalisations of Definition and

Theorem [3.4.28 that can be used in this case.

Definition 3.4.29. A ki x kl matrix is called a generalised Jordan block if it has

the form

C N
C N

C N
C

where there are k blocks of the [ x [ matrix C' = C'(p(x)) along the diagonal and N
is a matrix with an entry of 1 in row [ column 1 and all other entries being zero. A
matrix J is said to be in generalised Jordan canonical form if J is a block diagonal

matrix with each J; a generalised Jordan block.

Ji

<
Il
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Theorem 3.4.30. (52, pp. 140]

1. Let 'V be a finite-dimensional vector space over a field F and let cr(x) factor
as cp(z) = pi1(x) ... pyu(x)™ for irreducible polynomials py(z),...,pm(T).
Then' V' has a basis B with [V]g = J a matriz in generalised Jordan canonical

form. J is unique up to the order of the generalised Jordan blocks.

2. Let A be an n x n matriz over a field F and let cs(x) factor as ca(z) =
p1(z) . pm(x)em, for drreducible polynomials py(z),...,pm(z). Then A is
similar to a matriz J in generalised Jordan canonical form. J is unique up

to the order of the generalised Jordan blocks.

3.5 Error Correcting Codes from Derivations

In this section we will consider derivations of group rings K'G, where K is a finite
field and G is a finite abelian group. Let d € Der(KG). The next lemma shows

that d is a kerg-module homomorphism and so it is also a K-linear transformation.

Lemma 3.5.1. Let R be a ring. Then d is a Cq-module homomorphism for all

1 {Der (7]

Proof. Let d € Der(R)| let c € Cq and let a € R. d is an additive group homomor-
phism. d(c) = 0 so d(ca) = d(c)a + cd(a) = cd(a). O

Remark 3.5.2. Note that d is also a C(R)-module homomorphism for all d €
[ Der (L)

Definition 3.5.3. Given a derivation d: KG — KG, define [d": KG — KG to

be the composition of d with itself n times. That is, for all « in KG, d"(a) =

d(d(...d(a)...)).

.
v
n times
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Remark 3.5.4. Let d be a derivation of KG. Then d" is a K-linear transformation

(K-module homomorphism) for all positive integers n.

Given a derivation d on a group algebra K, the Primary Decomposition

Theorem (Theorem [3.4.19)) gives a way of producing d-invariant subspaces of KG.

Example 3.5.5. Let d be a derivation of a group algebra KG. Let my(z) =
p1(z) ... pr(x) be the minimum polynomial of d, which factors as a product of pair-
wise relatively prime polynomials p;. Moreover, let W; = ker(p;(d)) fori = 1,... k.
Then applying The Primary Decomposition Theorem (Theorem we get that
each W; is a d-invariant subspace and KG has the vector space decomposition

V=W& &W.

In particular, By Theorem [3.4.15

KG <[ RJ(d) €[ NoJ(d).

Remark 3.5.6. [25, pp. 41, 47] A linear block code over a finite field K is a
subspace of the vector space V' of ordered n-tuples over K for some positive integer
n. In particular, if d: V' — V then the generalised range space of d, [R[d) is a

linear block code over K.

Definition 3.5.7. A g-ary |[n, k,d| code is a code of length n, dimension k£ and

minimum distance ¢ over a field of order q.

We will now consider particular derivations of the group ring F3Cg where Cg
is the cyclic group of order 6 with presentation (x | 2 = 1). For a derivation

d on F3Cs we can choose any element of F3Cs to be the image of x under d, by

Theorem 2.34]

Example 3.5.8. Let Cs = (x| 2% = 1) and let d be the derivation d: F3Cg — F3Cj

defined by x — 1. This is the classical derivative map over F3. It is an Fs-linear
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map or linear transformation and so can be represented by a 6 x 6 matrix over 3.
We will denote this matrix by [[d]g] where B = {1, z, 2%, 23, 2%, 2°} is a basis for
[F3Cs. Note that

T

[ﬂB[lOOOOO]T:lOOOOOO} :

T

[d]zs[OlOOOO]T:[lOOOOO} ,

T

[d]B[O()lOOOT:lOQOOOO} :

[d]s[ooomo]T—looooooT,

T

[dls{oooo10|l =|o00100] ,

B T B a7
[dlzs|lo0o0001| =|000020
T T
In summary, [d|s [ag a1 Qs a3 Gy a5] = [al 2a9 0 a4 2a5 0] , for any a; € Fs.

Thus the matrix [d]z is given by

010000
002000
000000
000010
000002

000000
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The matrix [d]g acts on column vectors from the left. For example, let u be the
column vector representing 1+2z*. Then the column vector representing the image

of 1+ 22* under the derivation d is given by

010000 1 0
002000 0 0
000000 0 0
[d]su = =
000010 0 2
000002 2 0
000000 0 0

Example 3.5.9. Let d be the derivation d: F3Cs — F3Cg defined by z — 1 + 2% +
22°. Let B = {1, z, 2%, 23, x*, 2°}. Then B is a basis for F3Cg. It can be shown
by performing the computation as in Example that the matrix representing

d is given by

010000 000002 001000 011002

002000 000000 000000 002000
000000 010000 000020 010020
[d]B: + + =
000010 002000 000001 002011
000002 000000 000000 000002
000000 000010 020000 020010

The minimal and characteristic polynomials of d were calculated using the com-
puter algebra system Sage [43] and are as gollows: ma(z) = (z + 1)(z + 2)(2?)
and cg(z) = (z + 1)(z + 2)(z). Let a = Zaixi € F3Cs and so « can be writ-
ten as the vector [ag, a1, ag, as, ay, as]7 Wit}izroespect to B. Applying my(z) gives

([d]% + 2[d]%)[ao, a1, az, as, as, as]T = 0. Using the Primary Decomposition Theo-
rem (Theorem [3.4.19)), F5Cs = E» @ Ey @ Ny[(d), where Ey is the 1-dimensional

73



eigenspace associated with the eigenvalue A and [Ny|(d) is the d invariant subspace
associated with the factor z3, that is |[N,|(d) = ker(d®). The minimal polynomial
factors into a product of linear factors and so by Theorem |3.4.28] we can find a basis
B’ such that [d]g is in Jordan canonical form. We will now look at each eigenvalue
separately. Firstly consider the eigenvalue 2. Let dy denote the restriction of d to
Es5. Es is a d-invariant subspace of F3Cg and so ds is a linear transformation on
the 1-dimensional subspace Ey such that pa(ds)(F2) = 0, where po(x) = (x + 1).
Therefore mg,(x) = cqy(z) = (z + 1) and so the Jordan block associated with the
eigenvalue 2 is [2]. Likewise the Jordan block associated with the eigenvalue 1 is [1].
Let d denote the restriction of d to[Re|(d). Then mg, (z) = cq,(z) = (z+1)(z+2)

and so by Theorem |3.4.28

20
[dr]B =
01

where the basis B is given by B = {vs,v1} and v, is the eigenvector associated
T

T
with the eigenvalue \. v; = ll 2121 2] and vy = [0 2201 1] .

We now turn our attention to the generalised nullspace [Ny|d) = ker(d®). Let
dy denote the restriction of d to [Nyd). We have mgy () = 2% and cqy (z) =

zt. [N,[(d) is not dy-generated by a single vector. Thus we can use the Cyclic

Decomposition Theorem (Theorem [3.4.22)) and Corollary [3.4.26| to write [Ny[(d) =
N1 @ Ny, where N; is the subspace that is dy-generated by w; for ¢ = 1,2. We have

I
that may w, () = 2° and mgy w, (2) = 2. wy = {0 0100 1] dy-generates Ny and

T
Wy = [1 0000 ()] dy-generates Ns.

We now have a basis B’ = {vy, vy, [d]g w1, [d]gw:, wr,ws} and can write the
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matrix [d]p in Jordan canonical form

200000 012001
01(000]0 120200
) 00(010]0 110010
[dlg = P~ [d|gP = ,  where P =
00(001]0 022000
00[(000]0 210200
0 0[{0 0 0]0 220010

Ryfd) is a 2 dimensional subspace of F3Cs over F3. A generator matrix for

vy 121212
the ternary code |Ry(d) is G = = . The codewords (elements)

Uy 011022

of [Ryf(d) are

[000000], [121212], [212121], [011022], [102201], [220110], [022011], [110220], [201102].

The minimum distance of this code is 4 by inspection and so [R.|(d) is a 3-ary
[6,2,4] code. Tt is an optimal code as the Griesmer bound for a linear code of

length 6 and dimension 2 over Fj is 4 [21].

Remark 3.5.10. Let KG be a finite group algebra, let d € Der(KG) and let B
be some listing of the elements of G. Then the generalised null space of [d]z is not
a good code since the multiplicative identity 1, is a vector of weight one that is
mapped to 0 on the first iteration and so 1 § Nofd). Therefore [Nj|(d) is a [n,m, 1]

code, where m is the algebraic multiplicity of the eigenvalue zero.

Example 3.5.11. Let d be the derivation d: F3Cs — F3C defined by x — 1 +

v+ 022 + 2% + 2t + 25 Let B= {1, x, 22, 23, 2*, 2°}. Then the matrix over F3
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representing d with respect to B is given by

The minimal and characteristic polynomials of d were calculated using the
computer algebra system Sage. They were found to be my(z) = 23(2? + 1) and
ca(z) = z*(2? + 1). Using Theorem we get F3Cs = ker(d®) @ ker(d®> + 1) =
| Ro|(d) @ Nyfd). The matrix [d]g does not have a Jordan canonical form as the
polynomial 22 + 1 is irreducible over F3. However, Theorem states that we
can find a basis B’ such that [d]g is in generalised Jordan canonical form. We will

now look at each summand separately. Firstly consider (d) Let dr denote the
restriction of d to[Ry|(d). ma,(2) = can(z) = 22+ 1 and so by Theorem [3.4.30] and

_010000_
002000
000000
000010
000002

000000

_000000_
000010
000002
000000
010000

002000

Definitions [3.4.29 and [3.4.7] the generalised Jordan block associated with [Re(d) is

_000000_
010000
002000
000000
000010

000002

_002000_
000000
000010
000002
000000

010000
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_000010_
000002
000000
010000
002000

000000

_012010_
012012
002012
010012
012012

012002

01

[dr]s = [Clcap(2))] = [C(a® + 1)] =
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where the basis B is given by B = {dv,v} and v is any vector of F3Cy that d-
generates [R|(d) according to Definition [3.4.12] An example of such a vector v is

T
{0100101-

We now turn our attention to [Nfd). Let dy denote the restriction of d
to [Noofd). We have mgy(z) = 23 and cqy(z) = 2*. Therefore [Nd) is not
d-generated by a single vector. By the Cyclic Decomposition Theorem (Theo-
rem [N|d) = Ny @ N,, where N; is the subspace that is d-generated
by w; for i = 1,2. By Theorem [3.4.22] mp.,(z) = 2® and mp.,(z) = =

T T
wy = l() 1202 1] and wy = [1 0000 0} are 2 such vectors.

Therefore B’ = {Dv,v, D*w;, Dwy, wy,w,} is a basis for F5Cq such that [d]s

is in generalised Jordan canonical form

0100 0]0 201101
200000 210010
) 00|01 0]0 100220
[d]g = P~ [d]gP = where =
00(001]0 202200
00[(000]0 210020
00[(000]0 100110

R,|d) is a 2 dimensional subspace of F3Cgs over F3 and so has 9 elements.

01 !
[dr]p = , where B = {dv,v} and v = [0 1001 0] :
20

Therefore the orbit of dv and dv + v under d are respectively
T T T T T
lm] H[oz] Hlm] - {011 —>l10] and
T T T T T
] =[] = 22| = [oa] o]
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Therefore the graph of [Ry(d) consists of two 4-cycles and the fixed point 0. The
matrix [dy]p is nilpotent with an index of nilpotency of 3. This shows that after 3

iterations of d the group algebra has been mapped onto [Rg|(d). That is d*(F3Cs) =
[Ro|(d). The codewords (elements) of [R.|(d) are

[000000], [112112], [010010], [221221], [020020], [211211], [102102], [122122], [201201].

The minimum distance of this code is 2 by inspection and so[R.[d) is a 3-ary

[6,2,2] code.

In both this Example and Example [3.5.9] the generalised range space [Ro|(d)
is a d-invariant subspace of F3Cs. However, by varying the derivation used, the

minimum distance decreased from 4 to 2.

Example 3.5.12. Let d be the derivation d: F3Cs — F3Cg defined by = — 1 +
r + 22 + 23 + 2 + 2° where Cg = (x | 2° = 1). Note that we have changed
only the coefficient of the 22 term in the image of = under d from the one used
in Example 3.5.11] The matrix representing the Fs-linear transformation d with

respect to the basis B = {1, z, 22, 23, 2%, 2°} is

012011
012012
022012
011012
012012

012022

Using the method detailed in the previous examples a change of basis matrix
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P is obtained and [d]g can be written in Jordan canonical form.

111001 200000

120010 010000

010100 000100
P = and P '[d]|gP =

112000 000010

120020 000000

010200 000000

R.|(d) is a 2 dimensional subspace of F3Cs. A graph with the elements of
[R|(d) as vertices and (u,v) as a directed edge if [d]su = v is given in Figure 3.2]
The codewords (elements) of [R.|(d) are

[000000], [110110], [220220], [121121], [201201], [011011], [212212], [022022], [102102].

The minimum distance of this code is 4 by inspection and so[Ry|(d) is a 3-ary [6, 2, 4]
code. Let a = 1+ x + 2% + 2* ([110110]) and b = 2 + 2% + 2z° + 2° ([201201]).
Then a and b are both elements of [R.c|d), however their product ab = x + 22% +
2% + 22° ([012012]) is not an element of [Ry(d). This shows that in general [Ry|(d)

is not closed under multiplication.

g@
§9
§g

Figure 3.2: The subgraph of the graph I" induced by (d) in Example [3.5.12]
where I” is the graph with the elements of F3Cy as vertices and (u, v) is a directed

edge if Du = v.



Chapter 4

Graphs Of Derivations

In this chapter the directed graphs of derivations of group algebras are explored,
that is, a derivation of a group algebra is considered as a linear finite dynamical
system (LFDS). The motivation for this comes from Theorem [3.1.18] which tells
us that if Der(KG) and Der(KH) are not isomorphic as additive groups then
KG and KH are not isomorphic as rings. It is shown in Theorem that
if : R — S is a ring isomorphism, then there is a bijection from Der(R) onto
Der(S) such that corresponding derivations have isomorphic associated digraphs.
Therefore properties of the LFDS associated with a derivation can be used to
distinguish between group rings. The groups considered in this chapter are abelian.
In Section the preperiod of Der(FyG) is shown to be less than or equal to the

size of the group G. Also, when G = Cy x (5, this bound is attained.

The digraph of a particular element of Der(Fy(Cy x C3)) is studied and it
is shown to contain a 7-cycle. The digraphs of Der(FyC,) are partitioned by
conjugacy class in Table 1.1} Also, permutations of FoCy are exhibited such that
conjugation by these permutations give a way of permuting between any pair of
derivations of FoCy whose matrix representations with respect to a basis are similar.

By way of contrast it is shown that no digraph of a derivation of Fo(Cy contains a
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7-cycle. Therefore by examining the properties of the digraphs of Fo(Cy x Cs) and

FyCYy, it has been shown that the group algebras are not isomorphic as rings.

It is shown in Section that an involution of a group algebra KG permutes
Der(KG), however in the case when KG is not commutative it is not an element
of Aut(KG). The automorphism group of Fo(Cy x C3) and the size of the auto-
morphism group of Fy(Cy x Cy) are given in Section as well as the unit group
of Fa(Cy x Cy).

By Theorem if KG and K H are isomorphic as rings then |Der(KG)| =
|Der(K H)|. Thus counting derivations can be used to distinguish between group
algebras. The smallest example where counting derivations does not suffice is for
Fo(Cy x Cy) and Fo(Cy x Cg), where | Der(Fy(Cy x Cy))| = |Der(Fy(Cy x Cg))| = 232
Therefore other properties of Der(KG) and Der(K H) will need to be employed.
The maximum nilpotency index is one property of the derivations of a group algebra
that is investigated. It is shown in Lemma that the maximum nilpotency
index for Der(FgnCom) is 2™~ + 1. Maximum nilpotency index is then used to
distinguish between Fo(Cy x C}) and Fy(Cy x Cy). It is shown that the maximum
nilpotency index of Fo(Cy x Cy) is 8, whereas the maximum nilpotency index of

Fo(Cy x Cy) is at least 13.

4.1 Digraphs and Finite Dynamical Systems

Definition 4.1.1. [23] A finite dynamical system (FDS)) is a pair (X, f), where X

is a finite set and f is a function from X to X.

Definition 4.1.2. Let (X, f) be an FDS and let z € X. Then the orbit of x is
defined to be[O(z)|= {f"(z) | n = 0,1,...}, where fO(z) = x.

Definition 4.1.3. |23] A linear finite dynamical system (LEDS) is an FDS, (V] f),
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where V' is a finite dimensional vector space over a finite field K and f is a K-linear

map from V to V.

Definition 4.1.4. [23] Let (X, f) and (Y, g) be finite dynamical systems. An FDS-
morphism is a map ¢: X — Y such that ¢ o f = g o ¢. Therefore we have the

following commuting diagram:

XL

"<:<T’"<

XL

(X, f) is isomorphic to (Y, g) if there exists a bijective FDS-morphism from X to
Y.

Definition 4.1.5. A directed graph or digraph is an ordered pair I' = (V(I"), (")),
where [V(I")|is a set whose elements are called vertices and |£(1)|is a set of ordered

pairs on the set V(I), called directed edges or arcs.

A linear finite dynamical system, (V) f) has an associated digraph denoted
I'(f), where V(I'(f)) = {v |ve V}and E(I'(f)) = {(v, f(v)) |ve V}.

In order to study the dynamics of an FDS we seek a description of the set of
orbits, {O(x) | x € X}. That is, we are looking for a description of the digraph

associated with the FDS.

Definition 4.1.6. Let 1 = (V(I1),E(I7)) and I = (V(I32),E(I3)) be digraphs.
An isomorphism ¢ between I} and I is a bijection from V(I7) onto V(I%) such
that (a,b) € £(I1) if and only if (¢(a),#(b)) € £(I3). Note that the direction of

the arcs is preserved.

Remark 4.1.7. [23] Isomorphic finite dynamical systems have isomorphic associ-

ated digraphs.
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Theorem 4.1.8. Let R and S be finite rings and let ¢: R — S be a ring isomor-
phism. Then there is a bijection @ from Der(R) onto Der(S) such that I'(P(d))
and I'(d) are isomorphic digraphs, for all d € Der(R).

Proof. By Theorem [3.1.18 ®@: Der(R) — Der(S) defined by d — ¢podo ¢! is a
bijection. By Definition 4.1.4) ¢: R — S is an FDS-isomorphism from (R, d) to
(S,9(d)), for all d € Der(R). Therefore by Remark [4.1.7, I'(d) and I'(d(d)) are

isomorphic digraphs, for all d € Der(R). O

Definition 4.1.9. [23] Let (X, f) and (Y, g) be FDS. Define the sum of (X, f) and
(Y, g), denoted by (X, f) + (Y, g), to be the FDS (X uY, f u g), where X[]Y is
the disjoint union of the sets X and Y and fug: X uY — X 1Y defined by

fla) ifaeX,
(f ug)a) =
gla) ifaeY.

Definition 4.1.10. Let I} and I be graphs. Define the sum of I'} and 5, denoted
It + Iy to be the graph with vertex set V(1) b V(I3) and edge set (1) L E(L).

Remark 4.1.11. Let (X, f) and (Y, g) be FDS. The digraph of the sum of (X, f)
and (Y, g) is the sum of the digraphs of (X, f) and (Y,g). That is I'(f u g) =

I'(f) + I'(g)-

Definition 4.1.12. [23] Let (X, f) and (Y, g) be FDS. Define the product of (X, f)
and (Y, g), denoted by (X, f) x (Y, g), to be the FDS (X x Y, f x g), where X x Y

is the cartesian product of the sets X and Y, and (f x g)(z,y) = (f(x), g(y)).

Definition 4.1.13. [20] Let vy and v; be vertices of a graph or digraph, I'. Then a
path from vy to vy, of length [ is a sequence vy, vy, ..., v; of vertices of I" such that
(vi,v;41) € E(I), for i = 0,1,...,1 — 1. A weak path is a sequence vy, vy, ...,v; of
vertices of a directed graph I” such that either (v;,v;41) or (v;41,v;) is an arc in I,

fori=0,1,...,0—1.
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Definition 4.1.14. [20] A digraph is said to be strongly connected if there is a
path between any pair of vertices and weakly connected if there is a weak path
between any pair of vertices. An induced strongly / weakly connected subgraph
of I' that is maximal with respect to inclusion of vertices is called a strong / weak

component of the digraph.

Definition 4.1.15. Let v be a vertex of a digraph I'. The out degree of v, denoted
Out(v), is the number of arcs whose first coordinate is v, that is = |{(v,a) €
E(I') | ae V(I')}|. Similarily, the in degree of v, denoted |[In(v)} is the number of

arcs whose second coordinate is v.

Definition 4.1.16. [20] A cycle is a strongly connected digraph such that In(v) =

Out(v) = 1, for every vertex v.

Definition 4.1.17. The circumference of a digraph I is the length of the longest

cycle in the graph and is denoted by [A({)]

Definition 4.1.18. Let (V, f) be an FDS. An element t € V' is called a terminal
element of the FDS if f(t) =t and for all v € V| f™(v) = t for some positive integer

n.

Definition 4.1.19. |23] An FDS (V, f) is called a tree if it has a terminal element, ¢.
For a tree (V, f), define the height of any v € V' as the least nonnegative integer h(v)
such that f")(v) = t. Define the height of the tree as h(V) = maz{h(v) | ve V}.

Remark 4.1.20. Let the FDS, (V, f) be a tree. The associated digraph, I'(f) will
also be referred to as a tree. Note that using the terminology from graph theory it
would be called a directed rooted tree (in-tree) with an added loop (an arc from a

vertex to itself) at the root (terminal vertex).

Definition 4.1.21. |23] The order of a polynomial f € K[X] denoted is

the least positive integer r such that f(X) divides X" — 1. In [23] it was also noted
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that if f is irreducible and such that f(0) # 0 and ord(f) = e, for any s € N, then

ord(f*) = ep', where p = char(K) and t is the smallest integer satisfying p’ > s.

Definition 4.1.22. Let n be a positive integer and V' an n-dimensional vector
space over a field K with B = {by,bs,...,b,} a basis for V. Let d: V' — V be a

K-linear map. Then define

aii1 ai2 ... Q1n
G271 A22 ... G2n n
[d]s = . where d(b;) = ) aib;.
oo T i=1
Gn1 Ap2 ... Qpn

Definition 4.1.23. Let V' be a vector space. Then a map N: V — V is nilpotent
if N™ is the zero map for some positive integer m. The least such integer m is

called the nilpotency index of N.

Definition 4.1.24. [23] Let V be a finite dimensional vector space over a field K.
Then a nilpotent map N: V — V is a pure nilpotent map if the nilpotency index
of N is equal to the dimension of the generalised null space N,. This implies that
the dimension of the kernel of N is 1 and that there exists a basis B of V' such that
the matrix [N]p has 1’s in the superdiagonal (the diagonal just above the main

diagonal) and 0’s in all other positions.

Definition 4.1.25. Let G be a finite group and let K be a finite field. Let d be
a derivation of KG, with associated digraph I'(d). Denote by [A(Der(KG))| the

length of the longest cycle contained in the digraphs I'(d) for any derivation d of
KG. That is, [A(Der(KG))|= maz{A(I'(d)) | d € Der(KG)}.

Definition 4.1.26. By the results of [23], the associated digraph of a LFDS is the
product of a tree and a sum of cycles. Therefore the orbit of any vertex v terminates

with a cycle, the length of this cycle is called the period of v and is denoted by
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. The length of the shortest path from v to any vertex in the terminating
cycle is called the preperiod of v and is denoted by Figureillustrates an
example of a vertex (vertex 0) with period 4 and preperiod 3. Let d be a derivation
of a group algebra K'G. Then the period (preperiod) of d, denoted per(d) (pper(d))

is the maximum of the periods (preperiods) of the vertices of I'(d). Moreover, the

period (preperiod) of Der(KG), denoted [per(Der(KG))| (pper(Der(KG))) is the

maximum of the periods (preperiods) of the derivations of KG.

?
OO

Figure 4.1: The vertex 0 has preperiod 3 and period 4

Lemma 4.1.27. Let G be a group. Then the preperiod of Der(FyG) is less than

or equal to |G].

Proof. Let d € Der(FoG). Then by [23], I'(d) = I'(N) x I'(B), where I'(N) is a
tree and I'(B) is a sum of cycles. The preperiod of Der(FyG) is the height of the

tree I'(N). By Theorems 2 and 3 of [23] the preperiod of Der(F2G) is less than or
equal to . O

Remark 4.1.28. The preperiod of Der(Fy(Cy x Cy)) attains the bound established

in Lemma [4.1.27] as the following example shows.

Example 4.1.29. Let d = y0, + J, be a derivation of Fy(Cy x C3). Then by
Lemma 4.1.27] the preperiod of Der(Fy(Cy x Cy)) < 4. However, the preperiod of

d is equal to 4, since zy — 1+ 2 —y—1— 0.
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4.2 The Digraph of a derivation of Fy(Cs x Cb)

In this section we look at the digraph of a particular element d of Der(Fq(Cy x Cs)).
It is shown that the digraph of d, denoted I'(d), contains a cycle of length 7. This
property of the digraph is used in Section to contrast with the properties
of the digraphs of the elements of Der(F2Cy).

The following Theorems from [23] will be used in this section. Let V' be a

finite dimensional vector space.

Definition 4.2.1. A nilpotent linear transformation 7': V' — V is pure nilpotent

when its nilpotency index is equal to the dimension of V.

Theorem 4.2.2. (23] Let u: V — V be a pure nilpotent map and let n be the
dimension of V.. The digraph of u is a tree of height n with terminal point zero.
Each nonzero vector of the kernel belongs to a branch of height n of the tree. All
points with height n are sources and all the points of height less than n have in

degree q.

Theorem 4.2.3. [25/ The graph of a nilpotent map is a product of pure trees
whose heights correspond to the size of the blocks in the Jordan canonical form of

the matrix representing the map.

Theorem 4.2.4. [25] Let (E, f) be a bijective FDS. Let cf(x) = P*Py*... Pl
be the characteristic polynomial of f, where the polynomials P; are irredudible and
pairwise relatively prime. Then the graph of f is the product of the graphs associated
with each P[". For each i, there is an additional decomposition of each preceding

block into graphs of elementary components (rational decomposition).

Definition 4.2.5. The order of a polynomial g denoted ord(g), is defined to be

the least positive integer r such that g(z) divides 2" — 1.
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Theorem 4.2.6. [23] Let K be a finite field of characteristic p with q elements.
Let V' be a vector space over K of finite dimensionn. Let T:V — V be a bijective
linear map. Suppose that the minimal polynomial of T is f = g°, where g is an
wrreducible polynomial of degree m. Then the cycle structure of the graph of f is
given by:
S mim(i—
NT)=1+ 2 %C

where 1 is the 0-cycle, C,. is a cycle of length r; and r; = ord(g').

Theorem 4.2.7. [25] Let (V, f) be a LFDS. Then the digraph of f is equal to the
product of a tree, corresponding to the nilpotent part of f, by the cycles corresponding

to the bijective part of f.

Example 4.2.8. Let Cy x Cy = {(x,y | 22 = y* = [x,y] = 1). Let d be the
derivation of Fy(Cy x Cy) defined by x — 1 + y + zy and y — zy. Then d(1) =0
and d(zy) =d(z)y + zd(y) = (1 +y+ay)y+a(zy) =y+1+z+y=1+x. We
now determine /'(d), the digraph of d. d is an Fy-linear transformation and so we
can represent d as a 4 x 4 matrix over Fo. Cy x Cy = {1, x, y, xy} is a basis for
Fy(Cy x Cs). For i =1,2,3,4, let v; be the column vector of length 4 over Fy with

1 in position 7 and 0 in the other 3 positions. We use the following correspondence:

1 0 0 0

0 1 0 0
| —|v; = T > Uy = Y <> U3 = TY > Vg =

0 0 1 0

0 0 0 1

Let B = {v; | i = 1,2,3,4}. Then B is a basis for the vector space F3 and so by
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Definition [4.1.22] ) .
0101

0001
0100

0110

The characteristic polynomial ¢4(X) and the minimal polynomial my(X) of

[d] s were found using the computer algebra system SAGE [43] to be:

ca(X) =mg(X) = X(X® + X +1). (4.1)

Applying the Primary Decomposition Theorem to d we can write the
vector space Fo(Cy x Cy) as a direct sum of d-invariant subspaces. That is, Fa(Cy x
Cs) = Ny ® Ry, where N, = ker(d) and Ry = ker(d® + d + I), where I is the
identity map on Fo(Cy x Cy). Let dy and dg denote the restriction of d to Ny, and
R, respectively.

We first look at Ny. Ny = ker(d) and so the nilpotency index of dy is 1.

Moreover, let a = agl 4+ ayz + asy + azzy € Fo(Cy x Cs). Then

d(a) = d(apl + a1x + asy + azzy) = a1(1 + y + zy) + as(zy) + az(l + )

= (a1 + a3)(1) + agz + a1y + (a1 + az)xy.

Therefore d(a)) = 0 if and only if a1 = as = ag = 0, that is, d(«a) = 0 if and only
if @« = 0 or 1. Thus the dimension of Ny, = ker(d) is 1. This implies that the
nilpotency index of dy is equal to the dimension of N, and so by Definition [4.1.24]
dy is a pure nilpotent map. Therefore by Theorem [1.2.2] the digraph of dy, I'(dy)

is a tree of height 1 and terminal vertex 0. I'(dy), the digraph of dy is drawn in
Figure
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Figure 4.2: I'(dy), the digraph of dy

We now look at Re,. Ry = ker(d® +d + I) and so the minimal polynomial
of dr is ma,(X) = X® + X + 1. Neither 0 nor 1 is a root of X* + X + 1 and
so X3 + X + 1 is irreducible over Fy. Also ord(X® + X + 1) was computed using
SAGE [43] to be 7. Therefore by Theorem the digraph of dp is given by
I'(dg) = 1+ C%, where 1 is the loop at the node 0 and C7 is a 7-cycle. I'(dg), the

digraph of dg is drawn in Figure [4.3]

O

Figure 4.3: I'(dg), the digraph of dg
By Theorem the digraph of the derivation d, I'(d) is the product of I'(dg)

with I'(dy), that is, I'(d) = I'(dg) x I'(dy) and is illustrated in Figure 4.4 The

vertex (a,b) corresponds with the element a + b of Fo(Cy x Cy).

4.3 Digraphs of the Derivations of F,Cy

In this section we look at the digraph of the elements of Der(F2Cy). It is shown that
none of the digraphs contain a cycle of length 7. Therefore the digraph I'(d) illus-
trated in Figure is not isomorphic to the digraph of any element of Der(FyCy).

The elements of Der(F,C}) are partitioned by conjugacy class and the associated
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Figure 4.4: I'(d), the digraph of d

digraphs are drawn in Figures [4.5]- [£.10 Also, permutations of FyCy are exhibited
such that conjugation by these permutations, maps any derivation of FoCy to any
similar derivation of FyC, that is the matrices representing the derivations are

similar.

Example 4.3.1. Let C; = (z | 2* = 1). Let D be any derivation of FyCy and let
D(z) = agl + a1z + asz® + azz>. Recall that for any derivation of a group algebra,
D(1) = 0. D is an Fy-linear transformation and so we can represent D as a 4 x 4
matrix over Fy. For ¢ = 1,2,3,4, let v; be the column vector of length 4 over
Fy with a 1 in position 7 and a 0 in the other 3 positions. We use the following

correspondence:

1y Z > Vg 22 o vy 23 oy

Let B = {v; | i = 1,2,3,4}. Then B is a basis for the vector space F3 and so by

91



Definition [4.1.22]

Oa00a2
0@10(13

OCLQOCLO

Oa30a1

At least 2 of the 4 columns contain all zeros and so [dim|(Ny) > 2, for all
D € Der(FyCy). Therefore by Theorem dim(R) < 2 and so there are not
enough elements in Ry to form a 7-cycle. Therefore the digraph I'(D) cannot
contain a 7-cycle for any D € Der(FyCy). Let d be the derivation of Fy(Cy x C5)
defined in Example[4.2.8) Then I'(d) contains a 7-cycle and so it is not isomorphic
to I'(D), for any D € Der(FyCy). Therefore by Theorem Fy(Cy x Cy) and

FyCy are not isomorphic as rings.

Remark 4.3.2. Derivations and their associated digraphs have been used to show
that two modular group algebras are not ring isomorphic. This has the potential

to be a useful tool.

Definition 4.3.3. Let n be a positive integer and let A and B be n x n matrices
over a field K. Then B is a conjugate of A, if there exists an invertible n x n matrix
P over K, such that B = P~'AP. The conjugacy classes partition the set of n x n
matrices over a field K. Matrices that are in the same conjugacy class are called

stmilar.

Remark 4.3.4. Let V' be a finite dimensional vector space over a finite field K
and let f: V — V be a K-linear map. Then f can be represented by a matrix
over the field K which is dependant on the chosen basis. A change of basis ma-
trix represents a bijective K-linear map and will induce an isomorphism of finite
dynamical systems [23]. Thus by Remark similar matrices have isomorphic

associated digraphs.
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Remark 4.3.5. Let G be a finite group of order n and K a finite field. Let
d € Der(KG) and let P be a bijective K-linear map from KG to KG. Let B be a
basis for the vector space K" and define [D]p = [P~1]5[d]5[P]p. By Remark [4.3.4]
similar matrices have isomorphic associated digraphs. However, as Example 4.3.6

shows the matrix [D]p may not represent a derivation of K'G, with respect to the

basis B.

Example 4.3.6. Let Cy = (z | 2* = 1) and let B be the basis for F3 as in
Example [4.3.1, Moreover, let

0 ap 0 az 1101 0000 0101

0a; 0as 0100 0001 0001
M = s [P]BZ s [d]BI and [D]BZ

0az 0 ap 0110 0000 0001

0as0a 0001 0100 0100

where a; € Fy for ¢ = 0,1,2,3. By Equation any derivation of FyC} is repre-
sented by the matrix M for some a; € Fy. Note that d is the derivation of FyC)y
defined by d(z) = 23. The matrix [P~!]|g[d]s[P]p was computed using SAGE [43]
to be the matrix [D]p listed above. Note that M # [ D]p for any a; € Fy. Therefore

[D]p does not represent a derivation of FoCy with respect to the basis B.

Remark 4.3.7. As stated in Example |4.3.6| any derivation of FoC} is represented

by the matrix M for some a; € F5. The product of 2 such matrices is given by:

0 Qo 0 a9 0 bo 0 b2 0 a0b1 + a263 0 (lobg + agbl
M1M2 _ 0 ay 0 as 0 bl 0 bg _ 0 a1b1 + agbg 0 a1b3 + a361
0 as 0 ag 0 by 0 by 0 agbs + asby 0 agby + azbs
0 as 0 aq 0 b3 0 b1 0 a1b3 + a3b1 0 (llbl + Cbgbg

The product M; M, represents the derivation of FoC)y defined by z — (agby +agbs) +

(a1by + asbz)z + (agbs + ashy)z? + (a1bs + azby)z3. Therefore Der(FyCy) is closed
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under composition. However as Example shows, Der(R) is not closed under
composition for a general ring R. It would be interesting to find all KG such that
Der(K @) is closed under multiplication. In such cases Der(KG) would form a

K-algebra.

Example 4.3.8. Let Cy x Cy = (z,y | 2* = y* = [z,y] = 1). Let [0,] be the
derivation of Fo(Cy x C4) defined by x — 1,y — 0. Similarly Let d, be the

derivation of Fo(Cy x Cy) defined by x +— 0,y — 1. Then

(0 0 0y)(xy) = 0p(z) = 1, and

(0 0 0y)(x)y + x(0r 0 0y)(y) =0+ 0=0.

Therefore (0, o 0,) ¢ Der(F2(Cy x Cy)), since it does not obey Leibniz’s rule.

Remark 4.3.9. Let R be a unital ring. Then although Der(R) is not closed under

composition it does form a Lie algebra. This is the subject of Chapter [5

Definition 4.3.10. Let n and m be positive integers and let p be a prime number.

Denote by the ring of n x n matrices over F,m and by be the

set of invertible elements of M (n,p™).

Definition 4.3.11. Let A € M(n,p™). Define C(A) to be the centraliser of A in
M (n,p™). That is, C(A) = {M € M(n,p™) | MA = AM}.

Example 4.3.12. Let Cy = {(z | 2z = 1). By Theorem a derivation of FyCy
is defined by d(z). We now consider conjugating the matrix representation of d
by elements of GL4(Fy). Table [4.1| shows the partition of Der(FyCy) according to

conjugacy class. The contents of Table were computed using SAGE [43].

Let d € Der(FyCy). By Definition [4.3.11, M~'[d]gpM = [d]g, for all M €
C([d]g) "G L(4,2). Moreover, let P be an element of GL(4,2), such that P~![d]|z P
= [D]g, for some D € Der(FyCy). Then (MP) 'd|g(MP) = [D]p, for all
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class d(z) ca(X) maq(X)
1 0 X4 X
2 |28 1+2% 22423 1+22+423 | XP(X +1)? | X(X +1)?
3 1, 22 X4 X2
4 z, 142z, z+2% 14+2z+22 | X3(X+1)?| X(X+1)
5 14+ 22, 2423 142422428 X4 X?
6 14+z+2% 2422428 X4 X3

Table 4.1: The elements of Der(FyCy) partitioned by conjugacy class

M e C([d]g) n GL(4,2). Let T be a right transversal of C([d]g) n GL(4,2)
in GL(4,2). Then conjugating [d]p by an element of 7 may not result in a matrix
which represents a derivation with respect to the basis B. This was highlighted
in Example The non zero derivations of FyCy form 5 conjugacy classes. In
Table a representative [d] is chosen for each of the 5 classes. For each represen-
tative and for every other derivation D in the same conjugacy class, a matrix P is

given such that P conjugates [d] to [D].

The digraphs associated with the derivations in each conjugacy class are illus-

trated in Figures [£.5] -

© @ >
/l 2+ 22

Figure 4.5: The digraph of the derivation in class 1 of Table 4
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Table 4.2: Derivations of the same class exhibited as conjugates
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Figure 4.6: The digraph of the 4 derivations in class 2 of Table

Figure 4.7: The digraph of the 2 derivations in class 3 of Table

Figure 4.8: The digraph of the 4 derivations in class 4 of Table
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Figure 4.9: The digraph of the 3 derivations in class 5 of Table

Figure 4.10: The digraph of the 2 derivations in class 6 of Table

Example 4.3.13. In Example [4.3.12| the graphs were computed using GAP [18].
In this example we show how the graphs of the derivations of FoCy defined by

dsi(2) = s + z + t22, for s,t € Fy can be determined using the Invariant Factor
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Decomposition Algorithm [16] p. 480]. By Example [4.3.6]

0s0t
0100
0t0s

0001

Let Fy[x] be the polynomial ring over the indeterminate = and let I be the iden-
tity element of My(Fs), the full ring of 4 x 4 matrices over Fy. We now perform
elementary row and column operations on x/ — [d,,] to transform =/ — [d,,] into

the unique matrix of the form

fi(z)
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such that fi(x) € Fo[z] fori =1,2,...m and fi(z) | fa(z) | -+ | fin(2).

_x s 0 t | —LL’ S 0 t |
I [d.,] Ox+10 O ritrotrgor, | T T FSs+HIH1 T s+ 1
’ e 0 t =z s 0 t x S
_0 0 0x+1_ _0 0 093+1_
_m s+t 0 t | I 1 a::ps+t_
otestcases | T 1 T s+t o s+t x0 t ratrgrs
Ozx+s+tz s AT |r+s+t02 s reraTs T
_O r+1 0m+1_ i r+1 00x+1_
I 1 zx s+t_ _1 T T s+t |
s+tax0 t (s4tyritramrs |0 (8 +E+ 1)z (s + 1) s

T oxxs4t| T 0 22+z 22+ (s+t)(x+1)
i 0 001)4—1_ _0 0 0 r+1 |
_10 x s+t _10 x s+t |
crtegmey | 0T (s F )2 s rotriory | 0T (8 + 1)z s+1
00 2242 (s+t)(x+1)| 27 {00 2242z (s+t)(xz+1)
_00 0 x+1 | _00 0 r+1

Notice that the entries of the last 2 matrices are the same except for the entry
in row 2 column 4, one of which is a 1 and the other a zero. Therefore we can

transform zI — [ds;] to

1 s+t 0 T

10 T s+t

0x (s+1t)x 1 0 1 r (s+t)z

c4r—>C2, C2m>C3
RN

c3—cy

00 22+z (s+t)(z+1) 0(s+t)(x+1)0 2>+

0 0

0

z+1

0 r+1

00

Note the entry in row 3 column 2. It is either 0 (if s + ¢ = 0) or performing the

100



row operation r3 + r4 — r3 leaves the matrix unchanged except for changing the

entry in row 3 column 2 to a 0. Therefore we can transform I — [ds ;] to

_1 s+t 0 =z | _1s—|-t 0 x |
0 1 2(+0)T| @ityptrasrns |0 1 x (s +t)z
0 0 0 2°+x 0 0 0 ?+z
(02z+10 0 | [0 0 .9:2+a:(s—|—t)(x2—l—az)_
_1s+t 0 T | _10 0 0 |
oy, 0 1 x (s +1t)x _ 01 0 0
0 0 2%+ (s+t)(z*+x) 0024z 0
0 0 0 x| 00 0 2%+

Therefore fi(z) = fa(x) = z(x + 1). The polynomials f; and f, are called the
invariant factors of [ds.|. The elementary factors of [ds.] are the set of factors of
the invariant factors of [ds:] [16, p. 494]. That is the set of elementary factors of
dsyis {z,z,(x + 1), (x+1)}. [ds.] has a Jordan form J, since the eigenvalues 0 and
1 are in the field. Therefore the Jordan blocks of J are [0],[0],[1] and [1]. Thus
by [23] the derivations d;; are the derivations in class 4 of Example and the

graph associated with these derivations is illustrated in Figure [4.8

Remark 4.3.14. The ring of constants of a unital ring R was defined in Defini-
tion [3.1.15] Let Cy = (z | z* = 1). Then the ring of constants of FC} is given by
C(FQC4) = {0, 1, 2’2, 1+ 22}.

Lemma 4.3.15. Let Cy = (z | 2* = 1) and let c € C(F,Cy) = {0, 1, 22, 1 + 2°}.
Furthermore, let p.: Cy — FoCy be the map defined by 1 +— 1, z — 2+ ¢, 22— 2*
and 23 — 22(z + ¢). Eztend p., Fo-linearly to FoCy and denote this function also

by p.. Then

(i) pe is a permutation of FoCy of order 2.
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(1i) peodo p. is a deriation of FoCy, where d is the derivation of FoCy defined
by d(z) = z.

(iii) Every derivation of FoCy whose associated digraph is isomorphic to I'(d) is

of the form p.odo p., for some c € C(FyCy).

Proof. (i) C(FyCy) is the subspace of FoCy with basis {1, 2%}. p. is the identity
map on C(FoCy), since it is an Fy-linear mapping which is the identity on a basis

for C(FoC,). Therefore p.(c) = c and p.(2*c) = z*c. Thus

p2(2) = pe(z + ¢) = pe(2) + pe(c) = 2+ c+c =z and

p2(2%) = po(22(2 + ) = pe(2®) + pe(2Pc) = 2° + 2Pc + 2%c = 2°.

Therefore p. is a permutation of FyC)y of order 2.

(i1) Let D = p.odop.. Then D(z) = p.odop.(z) = peod(z+¢) = p.(z) = z+¢. By
Theorem there is a unique derivation of FoC) which maps z to z +¢. D is an
Fy-linear map since it is the composition of Fa-linear maps. If i = 0 (mod 2), then
D(2") = peodop.(z') = peod(z') =0 =1i2"'D(z). If i = 1 (mod 2), then D(z") =
peodopz') = p.od(z' + 27 ¢) = p(2') = 272+ ¢) = iz 'D(z). Therefore
D(z) = (i4 )2 D(2) = iz 'D(2)27 + 2'j27 71 D(2) = D(2%)27 + 2" D(27), for
all integers ¢ and j. Let o = 23: a;z and B = 23: b;z'. Then

=0 1=0

D(aB) =Y > ab;D(z") = Y Y abi(D(2')2 + 2'D(27)) = D(a)B + aD(B).

i=0 j=0 i=0 j=0

Therefore D is the unique derivation of FyCy which maps z to z + c.

(#i) The derivations of FoC) that have an associated digraph isomorphic to I'(d)
are the 4 derivations of class 4 in Table They are the derivations p.od o p, for
c € C(FyCy). In Table , on the first row of class 4 the matrix P; represents p,2

and P, represents p;. The matrix P, on the second row represents pq 2. O
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Remark 4.3.16. Similarly it can be shown that conjugation by p. permutes the
derivations of class 2 of Table (1]

Lemma 4.3.17. Let Cy = (z | 2* = 1) and let p: Cy — FoC, be the map defined
by 11, 2+ 23, 22+ 2% and 23 — 2. Extend p Fy-linearly to FoCy and denote
this function also by p. Then p is a permutation of FoCy of order 2 and for k € Fy,
conjugation by p permutes the derivations d and 6 of FoCy, defined by d(z) = 1+ k2

and 6(z) = 2% + k2.

Proof. p? is the identity map on F,C}, since it is an Fy-linear map that is the
identity map on a basis for Fo(Cy, namely the elements of the group Cy. Therefore

p is a permutation of FyC}y of order 2.

Let k € [Fy, let d be the derivation of FyCy defined by d(z) = 1 + kZ and let
D = podop. We will now show that D = 9, by showing that D is an Fy-linear map
that agrees with 0 on a basis for FoCy, namely C4. D is an Fa-linear map since it

is the composition of Fy-linear maps. Note that p(kZ) = k2 and so

for i =0 (mod 2), D(z') = podop(z') = pod(z) =0 =1dz""'(2* + k%) = 6(z")
and for i = 1 (mod 2), D(z") = podop(z") = pod(z'?) = p((i +2)2" (1 + k2))

=p(Z"TN 1+ k2)) = p(z T + k2) = 2T + k2 =2 (2P + k2) =i 16(2) = 6(2).

Therefore D = podop = §, the unique derivation of FoCy which maps z to 2%+ k2.
This implies that d = podop. Therefore conjugation by p permutes the derivations
d and ¢ of ]F204. ]

Lemma 4.3.18. Let Cy = {z | z* = 1) and let ¢: Cy — FyCy be the map defined
byl —14+2+23 2023 22— 1and 22— 1+ 2+ 2%2. Extend ¢, Fy-linearly to
FoCy and denote this function also by . Let d, D and § be the derivations of FoCy
defined by d(z) = 1+ 2%, D(2) = z + 2® and §(z) = 2. Then v is a permutation of

FyCy of order 3. Moreover, D = 1) odo? and § = 1)?> od o).
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Proof. The proof follows along the same lines as those of Lemmas 4.3.15and [4.3.17

and is omitted. O

Remark 4.3.19. The conjugacy classes of the derivations of FyCj are given in
Table In Table classes 2 and 4 have the same 3 permutation matrices P
and P, (note that there are 2 P, matrices as there are 2 rows in the table for these
classes). These matrices represent p., where c € 22, 1,1 + 22, Therefore the maps p.
of Lemma permute the derivations of Class 2 and 4 by conjugation. The map
p of Lemma permute the derivations of Class 3 and 6 by conjugation. The
maps ¢ and 1)? of Lemma permute the derivations of Class 5 by conjugation.
Therefore conjugation by these maps gives a way of permuting any pair of similar

derivations of F5C}.

4.4 Permutations of Derivations

By Theorem [3.1.20], conjugation by 6 § Aut(KG)|is a permutation on Der(KG).

The converse of this statement is not true. If conjugation by a map : KG — KG
permutes Der(KG), then 6 does not have to be an algebra automorphism of KG.
The permutations p. of Lemma [4.3.15] are not additive and so are not algebra
automorphisms of F,Cy. Example presents another interesting example of a

map 0 ¢ Aut(KG) such that conjugation by 6 permutes Der(KG).

Definition 4.4.1. An is defined to be an anti-automorphism of order

2 of a ring. Let 6 be an involution on the group algebra KG. Then for o, f € KG

1. 8(a+B) = 6(a) + 0(8),
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Example 4.4.2. Let K be a finite field and G a finite non commutative group.
Further, let # be an involution of the group algebra KG and let g; and g9 be
non commuting elements of G. Then since 6 is bijective, 0(g1g2) # 0(g291) and
so 0(g2)0(g1) # 60(g1)0(g2). Therefore # is not an automorphism of KG since
0(g192) = 0(g2)0(g1) # 0(91)0(g2) = 6(g291). We now show that D = 61 odof
is a derivation of K'G whenever d is a derivation of KG. Let d € Der(KG) and

a,B€ KG. Write o = . . a49 and 8 = >, bph. Then since 01 =0,

D(aB) = 0o dof(af) = 0o d(B(A)0(a) = 0(d(0(3)0(a) + 0(8)d(0(a)) )
= 0(a(0(9)0(a)) + 0(0(3)d(6(c)))
= 0°(0) (60 do0(8)) + (6.0do6(a))0*(5) = aD(B) + D(a)5.

Therefore D is a derivation of KG. We have shown that conjugation by an invo-

lution 6 is a permutation on Der(KG) and 6 ¢ Aut(KG).

In particular, the classical involution 6 of KG, defined by >, . agg — > ¢ aq g !
is an example of an involution. € does permute Der(K G), however in the case when
KG is not commutative it is not an element of Aut(KG).

4.5 Automorphisms of Small Group Algebras

Lemma 4.5.1. Let KG = Fo(Cy x Cy), where Cy x Cy = (x,y | 2? = y? = [z,y] =
1). Let 0.5 KG — KG be the Fy-linear extension of the map from G into KG
defined by

1+ 1, xr—>a+ié, yHb—FjCA? and xy'—>ab+(i+j)éa
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where a € {x, y, zy}, b € {z, y, vy}\{a} and i,j € Fo. Then 04,y ;) are the

automorphisms of KG and Aut(KG) ~ Sy, the symmetric group on 4 objects.

Proof. Let U(KG) denote the unit group of KG. Then any automorphism of KG
is an Fo-linear extension of a map from G into U (K G), such that 0 — 0 and 1 — 1.
The units of KG are the elements of augmentation 1 and so {1, z, y, =y, 1 +G, z+
G, y+ G, zy + G} is the set of elements of U(KG). Let 6 be an automorphism of

KG. Then 6 is an Fsy-linear extension of a map defined by
1l—1, z—u, y—v and zy— uv,

where u,v € U(KG). However 0 is a bijection and so u # 1, v # 1 and u # v.
Therefore write u = 1+ z; and v = 1 + 25, where z; and 2 are distinct elements of

A(G)\{0}. Therefore
0(G)=0(1) +0(x)+0(y) +0(zy) =1+1+2+1+ 2+ (14 2)(1 + 22) = z125.

0(G) # 0, since 0(0) = 0. G & annf A(G)) and 22 = 0, for all z € A(G). Thus
z # @, 2 # G and 2o # 21+ G. This implies that u = a + iG and v = b—i—jé, for

some a € {z, y, vy}, be {z, y, xy}\{a} and 7,5 € Fy and s0 0 = 04 5).-

Note that 9(@) = @, since for some g, h € G such that g # h and i, j € Fs,

2z =1 +u)(1+0)=(1+g+iG)1+h+jG)

—14+h+jG+g+gh+iG+iG+iG+0=1+g+h+gh=0G.
Leta e {z, y, zy}, be {x, y, vy}\{a} and i, j € Fo and let 0 = 04, 5. We now
show that 0 € Aut(KG). Let € be the augmentation map of KG. Then e(a) = o?,

for any a € KG. Moreover, KG is commutative and so #(gh) = 0(g)0(h), for any
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g,heG. Let o, € KG and write a = dec agg and = >}, byh. Then

0(08) = 003 Y agbugh) = 3 ) aghif(gh)

geG heG g€G heG
= 2, agbb(9)0(h) = Y agb(g) ), buf(h) = 0()(5).
geG heG geG heG

Therefore 6 is an algebra endomomorphism.

We will now show that 6 is invertible and has order less than or equal to 4.
Recall that 9(@') — (3. There are 2 cases which we shall treat separately.
Case 1. a # x, b # y and ab # xy.
There are 2 subcases. The first is a = y and the second is a = zy.
Case 1(a). Let a = y and 4,5 € Fo. Then b = zy, since b # y and if b = x, then

ab = xy. The order of 0,y ;) is 3, since

anlbj ( ) = Q(Qa,i,b,j) (y + Zé) = Q(a,i,b,j)(‘ry + (Z + j)é) = ab = x and

e(a 4,b,5) (y) = 6(2a,'i,b,j) (.Z’y + ]G) = e(aﬂivbvj) (l’ + ZG) =Y.

Case 1(b). a = zy and 4,j € Fo. Then b = x, since b # y. The order of O, is

3, since

0 azbg)( ) = 9%a,i,b,j)<xy + Zé) = e(a,i,b,j) (y + ]é) = x and

0 azb])( ) = G%a,i,b,j)('I + ]é) = g(a,i,b,j)(xy + (Z + j)é) =

Therefore the order of 6, ;) is 3 in Case 1.

Case 2. Either a = z or b =y or ab = xy.

Case 2(a) a = x: Then H(Mbj () = Oaipj) (@ + iG) = x.

Case 2(b) a # = and b = y: Thus a = zy and so ab = x. Therefore 8 (wing(T) =
Oaiv vy +1iG) = z + jG.

Case 2(c) a # z, b # y and ab = xy: Thus a = y and b = z. Therefore@mbj( x) =
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Oainy(y+iG) =z + (i + )G

Therefore 0(2a7i’b7j) (z) = x + IG, for some | € Fy. Likewise it can be shown that
0ninyy(¥) =y + mG, for some m € Fy and so 0(a.ip.7 18 the identity map.

Therefore 0, ;) is invertible and thus is an automorphisim of K'G. There are
6 elements a + iG and 4 elements b+ jG, where a € {z, y, zy}, be{z, y, zy}\{a}
and i, j € Fy. Thus Aut(KG) is a group of order 24 such that the maximum order
of an element is 4. Therefore Aut(KG) ~ Sy, the symmetric group on 4 objects
[18]. O

Example 4.5.2. Let KG = Fy(Cy x Cy), where Cox Cy = (x,y | 2? = y? = [z,y] =
1). There are 2° derivations of KG by Theorem . Theorem implies that
the elements of Aut(KG) permute the derivations of KG by conjugation. In this
example, the graph isomorphism classes of the derivations of KG are determined
and categorised by preperiod length. Let d be a derivation of KG and let my(X) =
X™f(X), where f(0) # 0 be the minimal polynomial of d. Then the preperiod of d
is m [23]. The 2% derivations of KG are partitioned into subsets via conjugation by
automorphisms of KG. The associated digraph of a representative of each subset
is also determined. [43] was used to perform these computations and the results

are summarised in Table .3

class representative pper | |class| ca(X) ma(X)
1 0 1 1 x4 X
2 zYdy 1 36 X2(X +1)2 X(X +1)2
3 yd, 1 28 X2(X +1)2 X(X +1)
4 TYOy + Yoy 1 56 XX +D(X2+X+1) | X(X+1D)(X2+ X +1)
5 | ayds + (y+ay)dy | 1 24 X(X3+X+1) X(X3*+X+1)
6 (y + zy)dy 2 9 X4 X2
7 xd, 2 12 X1 X2
8 YOy + 10y 2 48 X2(X +1)? X2(X +1)2
9 (x +y+ zy)dy 3 18 x4 X3
10 Yo, + 0y 4 24 x4 X+

Table 4.3: The conjugacy classes of the derivations of Fy(Cy x Cs)

108



T\
—

Figure 4.11: The digraph of the derivation in class 1 of Table

o

Figure 4.12: The digraph of the derivations in class 2 of Table

VERVE

Figure 4.13: The digraph of the derivations in class 3 of Table

v Mf

Figure 4.14: The digraph of the derivations in class 4 of Table
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Figure 4.15: The digraph of the derivations in class 5 of Table
Figure 4.16: The digraph of the derivations in class 6 of Table

Figure 4.17: The digraph of the derivations in class 7 of Table

N i QP QY
O/O—»C)::O % %

Figure 4.18: The digraph of the derivations in class 8 of Table
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Figure 4.19: The digraph of the derivations in class 9 of Table

QP AP
Q\@p\g\Q/g}f
O,

Figure 4.20: The digraph of the derivations in class 10 of Table

It can be seen from Figures - 4.20] that per(Der(Fy(Cy x C3))) = 7 and
pper(Der(Fy(Cy x Cy))) = 4.

Lemma 4.5.3. Let KG = Fo(Cy x Cy), where Cy x Cy =z, y | 2t = y* = [z,y] =
1). Then B = {(1+2?%), z(1+2?), y(1+2%), zy(1+2?), (1+?), x(1+y?), y(1+
y?), zy(1+y?), (1+22)(1+y?), 2(1+2?)(1+y?), y(1+2?)(1+y?%), zy(1+2?)(1+y?)}
is a basis for the kernel of the Frobenius endomorphism ¢ of Fo(Cyx Cy). Moreover,

as vector spaces, KG =V @ker ¢, where V' is the Fy-linear span of {1, z, y, xy}.

Proof. Let ¢: Fy(Cy x Cy) — Fo(Cy x Cy) be the Frobenius endomorphism defined
by ¥(a) = a?. Write a = Z?:o Z?:o a; jz'y’. Then

=Y Yo+ Y Yat Y Y oart Y Y agetl

i€{0,2} j€{0,2} ie{1,3} je{0,2} i€{0,2} je{1,3} ie{1,3} je{1,3}
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This implies that o = 0 if and only if

2 2 Q5 = O, 2 Z ;5 = 0, Z Z Qg5 = 0 and Z Z Q5 = 0.

1€{0,2} j€{0,2} 1€{1,3} je{0,2} 1€{0,2} je{1,3} 1€{1,3} je{1,3}

Therefore ker(v)) has dimension equal to 12.

Let B = {(1+2?), z(1+2?%), y(1+2?%), zy(1+2?), (1+y?), x(1+y?), y(1+y?),
wy(L+37), (1+2%)(1+y2), 2(1+22)(1+3%), y(1+22)(1+12), ay(1+2?)(1+12)}.
b> = 0 for all b € B and so the Fy-linear span of B is contained in ker(w). Let b;
be the i'" element of B in the above listing. Assume that v = 221 k;b; = 0 for

some k; € [Fy.

2?y? € supp(b;)) <= j =9, 23y € supp(b;) <= j = 10, 2%’ €
supp(b;) <= j = 11 and 2°y® € supp(b;) <= j = 12. Therefore ky =

k1o = k11 = k12 = 0 and so it can be assumed that v = Zle k;b; = 0.

y? € supp(y) = ks =1, 2y® € supp(y) = k¢ = 1, y> € supp(y) =
k; = 1 and xy® € supp(y) <= kg = 1. Therefore ks = kg = k7 = kg = 0 and so it

can be assumed that v = Z?Zl k;b; = 0.

1esupp(y) < ki =1, xesupp(y) < ko=1,yesupp(y) < ky=1
and zy € supp(y) <= k4 = 1. Therefore k; = ky = k3 = k4 = 0 and so
32 kb = 0if and only if k; = 0 for i = 1,2,...,12.

Therefore B is a linearly independent set of elements of ker(v) of size 12 and

so B is a basis for ker(1)).

Let By = {1, =, y, zy}. By < G and so B, is a linearly independent set.
Denote by V' the Fa-linear span of By. Let v € V and write v = ¢y 1+cox+c3y+cqny,
where ¢; € Fy. Then v? = ¢;1 + co2? + c39* + c42%y* and so v € ker(v) if and only
if ¢; =0 fori=1,2,3 and 4. Therefore extending B by the set {1, x, y, xy} gives
a basis for KG and so as vector spaces, KG =V @ ker . n
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Corollary 4.5.4. Let KG = Fy(Cy x Cy), where Cy x Cy = (x,y | * = y* =
[z,y] =1) and let w =14z + y + zy. Let ¢: Fo(Cy x Cy) — Fo(Cy x Cy) be the

Frobenius endomorphism defined by v(a) = . Then ann(w?) = ker 1.

Proof. Let V be the Fy-linear span of {1, z, y, zy}. By Lemma [4.5.3]any element
a of KG can be written as vy + va(1 + %) + v3(1 + v?) + va(1 + 22)(1 + y?),
where v; € V for ¢ = 1,2,3 and 4. Let v; = 11 + cox + 3y + c4xy. Then
aw? = vw? = (¢11 + e + sy + caxy)w? Note that w3 = G and so the set

{w?, rw?, yw? xyw?} is linearly independent. Therefore aw? = 0 if and only if

c; =0 for i =1,2,3 and 4. Thus ann(w?) = ker 1. ]

Lemma 4.5.5. The unit group of Fo(Cy x Cy), denoted U(Fo(Cy x Cy)) is isomor-

phic to C3 x C3.

Proof. The map ¢: Fy(Cy x Cy) — Fo(Cy x Cy) defined by a — o is the augmen-
tation map. Therefore the units of Fy(Cy x C) are the elements of augmentation
1 and so there are 2'° units in Fy(Cy x Cy). The unit group has exponent 4 and so

U(Fo(Cy x Cy)) =~ C x C7, for some positive integers m and n.

Let ¢: Fo(Cy x Cy) — Fo(Cy x Cy) be the Frobenius endomorphism defined
by ¥(a) = a?. Let V be the Fo-linear span of {1, z, y, zy}. By Lemma
KG =V @ ker 1 and so any unit of KG can be written as v + z, where v is an
element of V of augmentation 1 and z € ker 1. (v + 2)? = v? + 2% = v? and so the
units of order dividing 2 are the 2'? elements 1+ z such that z € ker(¢)). C3 x CJ*
has 272" elements, 2"t of which have order dividing 2 and so n + 2m = 15 and

n + m = 12. Solving these equations simultaneously gives n = 9 and m = 3. O]

Lemma 4.5.6. Let KG = Fo(Cy x Cy), where Cy x Cy = (x,y | 2* = y* = [z,y] =
1). Let v be the algebra endomorphism from KG into KG defined by o — o?. Let

ue iz, y, vy}, ve{x, y, zy}\{u}, w = 1+x+y+zy and let r,s € ker(y)). Define
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Owmrwn,s): KG — KG to be the Fa-linear extension of the map from G into KG
defined by 'y’ — (u + mw + r)"(v + nw + s)?, fori,j = 0,1,2,3 and m,n € Fs.
Then 0 is an algebra automorphism of KG if and only if 0 = 0y m rmn.s), for some

u,m,r,v,n and s.

Proof. Let 6 be an algebra automorphism of KG and let U(KG) denote the
unit group of K'G. Then 6 is a permutation of U(KG) such that 6(1) = 1.
Let a = >0, Z?:o a; jz'y’. 0 is multiplicative and Fy-linear and so f(a) =
Z?:o Z?:o a; j0(x)"0(y)’. Thus 6 is determined by 6(z) and 6(y). Moreover, since
0 is an automorphism it preserves the order of a unit, that is, the order of 0(u) is

equal to the order of u for all u e U(KG).

Let w = 1+ x + y + xy. By the proof of Lemma [4.5.5] any unit of KG can
be written as u + mw + r, for some u € {1, x, y, zy}, m € Fy and r € ker(¢).
Therefore 0(x) = u+mw +r and 6(y) = v+ nw + s, for some u,v € {1, z, y, zy},

m,n € Fy and r, s € ker(¢). w? =1+ 22 + y* + 2%y* and so

O(w?) = 0(1) + 0(2)* + 0(y)* + 0()*0 ()"

=1+ u® +mw? + 0> + nw? + (v* + mw?)(v* + nw?)

2 4

=1+u2+mw2+v2+nw2+u202+nu w2+m02w2+mnw
=1+ 4+ muw? +v® + nw? + v*0® + nw? + mw? +0

=1+u?+0* +u*® = (1 +u?)(1+ %),
since uw*w? = v?w? = w?.
w? # 0 and so O(w?) # 0 which implies that u # 1, v # 1 and u # v.

Therefore 0 = (4 mrvn.s), for some v e {z, y, zy}, ve {z, y, zy}\{u}, m,n e,

and r, s € ker(¢). Note that for 6 = 0y mr.vn,s)

O(w?) =1+ u® +v* + u?v® = v’ (4.3)
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Conversely, let 8 = Oy mrvn,s), for some u € {z, y, zy}, v e {z, y, zy}\{u},
m,n € Fy and r,s € ker(¢). Let g = 2%y’ and h = 2'y* be elements of the group
G. Then

0(gh) = 0(z"y/ ") = 0(x)™0(y)" ™ = 0(x)'0(y)’0(x)'0(y)* = 0(g)0(h).

Let a =3, sag9 and 8 = 3, byh. Then

6(af) = 0( »y agbhgh> =3 N agbab(gh) = 3 abub(9)0(h)

geG heG geG heG geG heG

= Y ag0(g) > bub(h) = 6(c)0(B).

geG heG

Therefore 0 is a ring endomorphism of KG.

Let a be any element of KG. It is now shown that 6(«) = 0 if and only if
a = 0 and hence 0 is bijective. Let V be the Fao-linear span of the set {1, z, y, xy}.
Let v € V and write v = c;1 + cox + c3y + cqxy, where ¢; € Fy. Then since

w=1l4+u+v+uv

0(v) = 11 + co(u + mw) + c3(v + nw) + c4(u + mw)(v + nw) (mod ker )
= 11 + cou + c3v + cquv + (cam + cgn + cynu + camo)w (mod ker 1)
= c11 + cou + c3v + cquv
+ (cam + c3n + eqnu + cymo)(1 4+ u + v + wv) (mod ker 1)
= (c1 + com + c3n)l + (c2 + com + esn)u + (c3 + com + c3n)v

+ (c4 + com + czn)uv + cqnuw + cymow (mod ker ).

Assume that 6(v) = 0 (mod ker v). Then cy(nu)w = cq(mv)w = 0, since u?

€
supp(uw), u? ¢ supp(vw), v* € supp(vw) and v? ¢ supp(uw). Thus cyn = cym = 0.

There are 2 cases, the first is ¢4 = 0 and the second is m = n = 0.
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Case 1. ¢4 = 0. The coefficient of uv equals 0 and so com + c3n = 0 and so
0(v) = c11 + cou + c3v (mod ker ¥) and so ¢; = ¢y = ¢3 = ¢4 = 0, since 1,u and v
are distinct elements of G and so are linearly independent.

Case 2. m =n = 0. Then 0(v) = ¢11 + cou + c3v + cyuv (mod ker 1) and so again
¢ = ¢y = cg = ¢4 = 0. Therefore 0(v) € ker 1 if and only if v = 0. Thus V is a
f-invariant subspace of KG.

By Lemma[4.5.3] « can be written as a = vy +vo(1 +22) + v3(1 + y?) +va(1 +
2?)(1 + y?), where v; € V for i = 1,2, 3 and 4. Assume that 6(«) = 0. Then using
Equation 1.3} 0 = 0(a)8(w?) = 0(aw?) = O(v,w?) = 0(v1)0(w?) = 0(v;)w? and so
0(v1) € ann(w?). By Corollary .5.4] ann(w?) = ker 1, hence 6(v;) € ker 1 and so

vy = 0. Therefore a = vo(1 + %) + v3(1 + y?) + va(1 + 2?)(1 + y?) and so

0=0(a)0((1+2%) = 0(a(l + 2?)) = O(vs(1 + y*)(1 + 2?)) = O(vsw?) = O(vs)w?

and 0 = 0(2)0((1 + y?)) = 0(a(l + y2)) = O(vow?) = O(vs)w?.

Therefore 0(vy) and 0(vs) € ann(w?) = ker 1, hence vy = v3 = 0. Thus a = vjw?
and 0 = 0(a) = O(vsw?) = O(vs)w? which implies 6(vy) € ann(w?) = ker 1, hence
vy = 0. Therefore §(«) = 0 if and only if « = 0. Thus € is a bijection and so it is

an algebra automorphism of KG. O

Lemma 4.5.7. Let KG = Fo(Cy x Cy), where Cy x Cy = (x,y | 2t = y* = [z,y] =
1). Let ¢ be the Frobenius endomorphism from KG into KG defined by a — o?
and let 0 be a map from KG to KG. Then 0 is an algebra automorphism of KG
of and only iof

1. 014 is a group isomorphism and
2. 0 s the K-linear extension of 0, and

3. 01 per(y) 18 ingective.
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Proof. Let 6 be a map from KG to KG. Assume that 0] is a group isomorphism,
that 6 is the K-linear extension of 0], and also that 0, is injective. Let

=2 cq09 and B =3, o byh be elements of KG. Then

8(af) = 0( »y agbhgh> = 3 N agbabgh) = 33 a,bu0(9)0(h)

geG heG geG heG geG heG
= S a,0(9) 3 bab(h) = 9( 3 agg>9< 3 bhh> — B(a)0(5).
geG heG geG heG

Therefore 0 is a algebra endomorphism. This implies that 6(k) = k for all k € Fs.

Let V' be the Fa-linear span of the set {1, z, y, xy}. By Lemma {4.5.3] as
vector spaces KG = V @ ker(¢). 6 maps units to units and so for any g € G,
we can write 0(g) = v, + 24, where v, is an element of V' of augmentation 1 and

24 € ker ().

Let v € V and write v = ¢11 + cox + c3y + cqxy, where ¢; € Fy. Then

O(v) = 10(1) + c20(x) + c30(y) + c46(zy)

= 11 + v, + C3vy + 4,y (mod ker()).

Suppose 0(v) € ker(). Then ¢;1 + cov, + c3vy + cqvzv, = 0. The elements 1, v,, vy
and v, all have augmentation 1 and so an even number of the ¢;’s are equal to 1.
Case 1. None of the ¢;’s are equal to 1. That is, ¢; = ¢ = ¢c3 = ¢4 = 0.

Case 2. Two of the ¢;’s are equal to 1. Therefore v, +v;, = 0, for 2 distinct elements
g, h of {1,z,y,zy}. Thus 6(¢g*) = v2 = v; = 0(h*), however this contradicts the
assumption that 0. is a group isomorphism and so this case does not occur.
Case 3. All four of the ¢;’s are equal to 1. Then 1 + v, + vy + vy = 0. Let
w=1+2z+y+zy. Then w? is a nonzero element of ker(v) and 6(w?) # 0, since
0(0) = 0 and 61, is injective. Therefore 0 # O(w?®) = 1 + v2 + v + v2, and so

1 + vy + vy + vy # 0. Thus this case does not occur.
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Therefore the only solution of ¢;1+ cov, +c3vy +cav,vy =0iscr =co =c3 =c4, =0

and so 0(v) € ker(y) implies v = 0. Thus V' is a f-invariant subspace of KG.

Let a be any element of KG and write @ = v+ z, where v € V and z € ker(1)).
Assume that #(«) = 0. Then 0 = 0(«) = 6(v)+6(z) which implies that 6(v) = 6(z).
Therefore 6(v) € ker (i), since 0(v)? = 0(2)* = 0(2?) = 6(0) = 0 which implies that
v =0. Thus a = z € ker(¢), which implies that a = 0, since 01, is injective.
Therefore 0 is an algebra endomorphism with kernel equal to {0} and so € is an

algebra automorphism of KG.

Conversely, assume @ is an algebra automorphism of KG. Then by definition

0 is a K-linear extension of 0 and 01, is injective. Also 8(gh) = 6(g)0(h) for

ker

any g, h € G, since 6 is an algebra automorphism. O]

Remark 4.5.8. The size of ker(1) was calculated using [18] to be 2'2. Therefore
by Lemma Aut(Fo(Cy x Cy)) has size 3(2)(212)(2)(2)(2"%) = 3(227).

4.6 Distinguishing Group Algebras using Digraphs

Example 4.6.1. In this example the derivations of FoCy are listed. Let Cy = (z).
By Theorem the derivations of FyC)y are :

The derivations are represented below by 2 x 2 matrices over Fy with respect to

the basis B = {1, z}:
H e B A "
i3] =13
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is the matrix representation of d(1 + z) = 1 + x, where d € Der(F2C5) such that
d(x) = 1 + z. There is only one nonzero nilpotent derivation of FoCy, namely the

derivation defined by x — 1 and its index of nilpotency is 2.

Definition 4.6.2. Let be the n x n matrix, where each entry is zero and let

[ £,/ be the n x n matrix, where each entry is one.

Example 4.6.3. Let K be the finite field with 2 elements. Let G = (z | 2* = 1)
and let B = {1, z, 1+2?%, z(1+2?)} be a basis of KG. Let H be the subgroup of G
generated by 22 and let B = {H, xH} be a basis of K(G/H). In this example the
derivations of K G are listed as 2 x 2 block matrices, with respect to the basis B.
Each block is a 2 x 2 matrix over K. By Corollary 3.1.17, A(G, H) is a differential
ideal of (KG,d), for all derivations d of KG. Therefore by Lemma any

derivation D of K G has the form:

where d € Der(Fy(G/H)) and so [d]z is one of the matrices listed in Equation
and A is a 2 x 2 matrix over K. Moreover, since d(1) = 0, the first column of
[D]g is all zeros and so A is also one of the matrices listed in Equation [1.4] that
is, A = [d]z, for some 0 € Der(FyCs).

Definition 4.6.4. An n x n matrix M is called circulant if it is of the form:

Qo a ag ... Ap—1

ap—1 Ao Q1 ... Qp_—9

M = Ap—2 Ap—1 AQ .. Gp-3
ap o Az ... Qg
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Lemma 4.6.5. Let K be the finite field of characteristic 2 and let G = {x |

22" = 1), where m is a positive integer. Then the mazimum nilpotency index for

a derivation of KG is 2™ ! + 1.

Proof. Let B={1, 2, ..., 2*" 72 @, 23 ..., 2"~} Then B is a basis of KG.
The first 277! elements of B in the above listing are in the ring of constants of
K@G. By Lemma d(x**2) = 22d(a2%), for any integer k and so any derivation

D of KG has the form:

[O] om—1 A
[D] B = )
[O] om—1 B

where A and B are 21 x 2™~ circulant matrices over K.

Dp [Olens A | [[0]zns A| | [0]ans AB o

[O]Qm—l B [0]2m—1 B [O]Qm—l _B2

[O]Qanl ABTL—].
[D]3 = ,  for all positive integers n.
[O]Qm—l BTL

Therefore D is nilpotent if and only if B is nilpotent. Let H = (y) be the cyclic
group of order 2", By [29] there is a bijective ring homomorphism between
K H and the ring of 2™~! x 2™~ circulant matrices over K. Therefore A and B
correspond respectively to elements «, 5 € KH. Assume D is nilpotent. Then B
and hence ( is also nilpotent. Let ¢: KH — K H be the Frobenius endomorphism
and let e: KH — K be the augmentation map. H is a 2-group of exponent 271
and K is a field of characteristic 2 and so ™ ': KH — K such that ™! =

Y™ o, since for any a =Y, _aph € KH

W o) =" anh) = 34" an)p™ T () = " () an) = 07 o €(a).

heH heH heH
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€ is a ring endomorphism and so maps nilpotent elements to nilpotent elements.
Since the image of € is a field, ¢ maps nilpotent elements to 0 and so ™ !(a) =0
for all nilpotent elements . Therefore the elements of the augmentation ideal of
K H are the nilpotent elements of K H. The augmentation ideal of K H is the ideal
generated by (1+y) and so 8 = b(1+y), for some b € K H. Thus 82" = ™ 1(8) =
(" oe)(B) =0 and af" Tt = ab®" 1+ )2 T = ab®™ Y = kg, where
k = e(ab® 1) e K. By Section 3.1 of [29] and Definition [4.6.2) B2" '~ =
k[E]ym-1. Therefore

0]gm-1 AB?" -1 0]gm—1 k[E]gm-1
DR = 0] |- [0] [E]
[0]pm—s B2 [0]m—1 [0]gm—

Choosing a = 1 and # = (1 + y) implies k = 1 and so in this case [D]3" # 0.
Also

[0]om-s A | | [0]gm-s E[E]on-s [0]sm1 [0]3ms
[0]om-s B| | [0]gms [0]gm-s [0]om1 [0]3mms

Definition 4.6.6. Let V' be a finite dimensional vector space over a finite field
K and let (V, f) and (V,g) be LFDS. Define (V, f) = (V, g) to be the LFDS (V' x
V, f*g), where V x V is the cartesian product of the vector space V' with itself and
fxg:V xV -V xV, defined by (f = g)(u,v) = (f(u),g(u) + f(v)). Also define

the associated digraphs similarly, that is, I'y * Iy = I'fsg.

Lemma 4.6.7. Let K be the finite field with 2 elements and let G = (x | 2* = 1).
Let H be the subgroup of G generated by x* and let D be a K -linear map from KG
to KG. Then
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(i) D € Der(KG) if and only if [D]g = , whered,§ € Der(K(G/H)),

B={1, z, 1+2% z(1+2°)} and B={H, xH}.

(i1) For any D € Der(KQG), I'p ~ Iy« Is, where d and ¢ are the derivations of
Der(K(G/H)) defined by part ().

Proof. (i) Let D € Der(KG) and let B = {1, z, 1+ 22, (1 + 2?)}. Then

Ap| Ay
[D]s = , where Ay, ..., Ay are 2 x 2 matrices over K.

Az | Ay

By Corollary [3.1.17, A(G, H) is a differential ideal of (KG, D), for all derivations

D of KG. By Proposition [3.1.6] ﬁGH) ~ K(G/H). Therefore by Lemma 3.1.11}]

Ay = [d]g, for some d € Der(K(G/H)) and Ay = [0]2, the 2x 2 matrix whose entries
are all zeros. Moreover, (1 + %) € C(KG) and so D(a(1 + z?)) = D(a)(1 + z?) for
all « € KG and so Ay = A;. Lastly, since d(1) = 0, the first column of [D]z is all
zeros and so Aj is also one of the matrices listed in Equation 4.4 and so A3 = 4]z,

for some § € Der(K(G/H)).

Conversely, let T' be a K-linear map from KG to KG such that

where d,6 € Der(K(G/H)), B = {1, x, 1 + 2% z(1 + 2%} and B = {H, zH}.
Then by Example [£.6.1]

0ay0 0

o 0(10 o OCLQ ' B 0@100
[d]B_[OCLl] and [(5]3—[0 ag],forsomealeKandso [T = 0 as 0 ag
0@30@1
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Let D be the derivation of KG defined by D(z) = ag+a1x+as(1+2%) +azx(1+2?).
Then D(1) = D(1 + 2?) = 0 and D(z(1 + 2?)) = D(z)(1 + 2?) = ao(1 + 2?) +
arz(1 + x?). Therefore

0ay0 0
0a; 00

OCLQO(Z()
OCLgOCLl

[D]g = and so T' € Der(KG), since T = D. (4.5)

(17) Let V' be the subspace of KG with basis {1, z}. Let &: KG — V x V,
that is, @ is a map from K G to the Cartesian product of the vector space V' with
itself. B = {1, z, 1 + 2% z(1 + z?)} is a basis of KG and so any o € KG
can be written uniquely as o = r + s(1 + 2?), where r,s € V. Define & by
r + s(1 + 2?) — (r,s). Therefore @ is a bijection from the vertex set of I'p to
the vertex set of [j.s. It is now shown that @ is a graph isomorphism, that is,
@ is bijection between vertex set of I'p to the vertex set of I that preserves
adjacency. D(a) = D(r + s(1 + z?)) = D(r) + D(s)(1 + z*). By Equation
D(r) = d(r) + §(r)(1 + 2?) and D(s) = d(s) + 6(s)(1 + z?). Therefore

D(a) = d(r)+6(r)(1+2%) +d(s)(1+2?) +8(s)(1+2%)* = d(r)+ (6(r)+d(s)) (1 +27).

Therefore #(D(c)) = (d(r),8(r) + d(s)). By Definition [1.6.6), &(a) = (r,s) is
adjacent to (d(r),d(r) + d(s)) in Iy.s and so @ preserves adjacency and thus is a

graph isomorphism. O

Definition 4.6.8. Let be the vector space of n x n circulant matrices
Ci,j lfj > 1
over a field K. Define g: CM,(K) — CM,(K) by ¢(C);; =

0 otherwise.
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That is g(C) is given by the following upper triangular matrix:

0ap-1 Qpo Qp_3 ... Gz ay i T
apgp ap—1 Ap—2 ... 41
0 0 Ap—1 Qp—92 ... A3 Q9
aq ag Qap—1 ... a9
0 0 0 ap—1 -.. Aq4 Qs
g =1 _ |, whereC'=1| ay a; ay ...a3
0 0 0 0 ... 0 ap—1
Ap—1 Qp—2 Anp-3 ... Ag
0 0 0 0O ...0 O - -

Further if M is a block matrix consisting of blocks M; for i = 1,2,...,m(n), such
that M; € CM,(K) for each i. Then define g(M) to be the block matrix whose

blocks are g(M;) keeping the positions unchanged. That is:

g(My) g(Mz) ... g(M,,)

Mm+1 Mm+2 Mgm
g(M) = “ : ) 91 : ) g(: ) , where

g(M(n—l)m+1> g(M(n—l)m+2) s g(Mnm)

Ml MQ Mm
Min Mpyio ... Moy,

M(nfl)m+1 M(nfl)m+2 s Mnm

Definition 4.6.9. Let I} and I3 be graphs. A mapping f: V([7) — V([3) is a
homomorphism of graphs if f(u) and f(v) are adjacent in Iy, whenever u and v

are adjacent in I7.

Definition 4.6.10. Let I be a subgraph of a graph I'y. A retraction is a homo-
morphism f from V(I7) — V(I3) such that the restriction, fyp,) of f to V(I3)

is the identity map.
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Example 4.6.11. Let K be the finite field with 2 elements and let G = (z,y | 2* =
y? = [z,y] = 1). Let B= {1, x, y, xy} and let d be an arbitrary derivation of KG.
Then by Theorem d = ad, + bo,, for some a = dec agg and b = deG byg
where a4, b, € K, for all g € G. Therefore d(1) = 0, d(z) = a, d(y) = b and

d(zy) = ay + bz and so

0(11 b1 ay+bw Oaloay 00 b1 bm
0 ap, by ay, +0b 0 a, 0 a, 00b, b
[d]s = = "+ 1
0 ay, by ar+ by 0a, 0 a 00 by by
0 gy byy az + by 0 azy 0 a, 00 by by

[d1]5 [d2]5 [0]2 &1
— + ,

[d2]t§ [d1]8 [0]2 Ca

where dy,dy € Der(Fy(z)), B = {1, z} and ¢; and ¢, are 2 x 2 circulant matrices

over Fs.

Lemma 4.6.12. [31//pp. 8] Let d be a derivation of a not necessarily associative

algebra A and let a,be A. Then
d™(ab) = Z (T) d™ "(a)d'(b), for any positive integer m. (4.6)
i=0

The following result is a direct consequence of the discussion in [31][pp. 186].

Lemma 4.6.13. Let p be a prime number and let K be a finite field of characteristic
p. Let G be a group and let d be a derivation of KG. Then d** is a derivation of

KG for all positive integers k.

Remark 4.6.14. Let G and H be finite abelian p-groups and let K be the finite
field with p elements. Suppose that KG and K H are isomorphic as rings. Then
KG and KH have the same dimension as K-algebras and so |G| = |H|. By

125



Theorem [2.3.4] the vector space of derivations of KG has dimension n|G|, where
n is the minimum number of generators of G. By Theorem [3.1.18 Der(KG) and
Der(K H) are isomorphic as additive groups and so have the same dimension. This
simple counting argument can sometimes be used to show that group algebras are
not isomorphic as rings. For example |Der(FyCy)| = 2* whereas |Der(Fo(Cy x
(s))] = 2% and so by Theorem or Theorem , FyCy and Fo(Cy x Cy)
are not isomorphic as rings. The smallest example such that the above argument
fails to distinguish between non-isomorphic group algebras is when the groups are
Cy x C4 and (5 x Cg and the field K has 2 elements. Example [4.6.18| shows that

these two group algebras are non-isomorphic using the graphs of their derivations.

Definition 4.6.15. Define the map f: My(Fy) — My(Fy) by

000 as 2

OOOCL472
A= (aiz) —
000 O

000 O
Definition 4.6.16. Define the map g: My(F2) — My(Fs) by

000 23

000 O
A = (aij) —
000&473

000 O
Lemma 4.6.17. Let K be the finite field with 2 elements and let G = (x,y | x* =

y* = [z,y] = 1). Let D be a derivation of KG. Then D is nilpotent if and only if

D8 =0.

Proof. Assume that D is a nilpotent derivation of KG. It can be shown that B =

{1, 2, y, zy, (1 +22), z(1+2?), y(1+27), zy(1+2?), (1 +y?), 2(1+32), y(1+4?),
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ry(1+y?), (T+2?)(1+y?), o(1+2*) (1 +9%), y(1+2?)(1+y°), zy(1+2?)(1+y°)},

is a basis for KG. Let H = (22,9?) and further choose B = {H, H, yH, vyH}

as a basis of K(G/H). Let b; be the i'" element of B in the above listing. Then
16

by Theorem , D = ro, + s, for some r = 2321 r;b; and s = > .7, 5;b; where

ri, s € K, fori =1,2,...,16. Therefore

D(1) =0,
16
D(z) =r= Zﬁ'bi,
i=1
16

D(y) =s = Zsibi, and

i—1
16 16

D(zy) = D(x)y + 2D(y) = ry + sz = Zmbiy + Z sibx.
i=1 i=1

Multiplying r by y and writing the product as a linear combination of the elements

of B implies

16
Z ribiy = r3 4+ rax + ry + rowy + (r7 + sz + 5y + rexy) (1 + 2%
i=1

+ ((7”11 +73) + (r1i2 + r4)x + oY + 7’105519)(1 +97)

+ ((r15 4+ 7r7) + (r16 + 18)x + (ri3)y + (ra)zy) (1 + 22)(1 + y°).

Multiplying s by x and writing the product as a linear combination of the elements
of B implies
16

Z Sibix = 89 + S1T + Sy + S3xY + ((36 + 89) + S5z + (ss + s4)y + smy)(l + %)
i1

+ (810 + Sox + s12y + s112y) (1 + y°)

+ ((814 + 810) + 5137 + (816 + 812)y + 3153[7y)<1 + 1‘2)(1 + y2).

Therefore since (1 + z2), (1 + 3?) and (1 + 2?)(1 + y?) are in C(KG) and since
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1+22)?2=0=(1+y»? [D]s =

_O 1 S1 73 + S2 00 O 0 00 0 0 00 0 0 |
0 re s2 T4 + 81 00 O 0 000 0 000 0
0 r3 s3 71+ S84 00 O 0 00 0 0 000 0
0 ry s4 T9 + 83 00 O 0 00 0 0 00 0 0
0 r5 ss r7 4+ S¢ + So 0r s 3 + So 000 0 000 0
0 r¢g sg rs + S5 0 ry So T4+ S1 00 O 0 000 0
0 r7 st s + Sg + S4 0 r3 s3 r1+ 84 000 0 000 0
0 rg sg re + S7 0 ry s4 9 + 83 00 O 0 000 0
0 r9 s9 11 + S10 + 73 00 O 0 Ory sy rz3+se |00 0 0
0 710 S10 19 + Sg + T4 00 O 0 0ry so 14+ 81 000 0
0 r11 s11 r9 + S12 00 O 0 Orgsy ri+s4 |00 0 0
0 r12 S12 10 + S11 00 O 0 O0rgs4 m+s3 (00 0 0
0 713 813 T15 + S14 + 77 +810|0 79 S9 T11 + 810 +73|0 75 S5 77 + 56 + 52|00 1 51 T3+ 82
0 r14 S14 16 + S13 + T8 0710 810 "2+ S9+74|076 5S¢ r8+55 |07 52 74+ 51
0715 815 r13 +s16+ 512 |0 r11 S11 r9 + S12 077 87 75+ 53 +54|0 73 53 71 + 84
_0 T16 516 714 + S15 072 812 Ti0+s11 |0rgss 16+s7 |07y 84 T2 + 83 |

Therefore by Example [4.6.11

[di]5 [0]4 [0]4 [0]4
(Dl — [d2]5 + 9([d1]5) [d1]5 [0]4 [0]4 |
[ds]5 + f([di]5) [0]4 [d1]5 [0]4
| [da]s + f([d2]5) + 9([ds]s) [da]s + f([di]s) [da]s + 9([di]s) [di]s |

where d; € Der(K(G/H)) for i = 1,2,3,4 and f and g are the maps defined in

Definitions [4.6.15) and 4.6.16| respectively. [D]g is a lower block triangular matrix

with [d;]s on the main diagonal and so D is nilpotent if and only if d; is nilpotent.

Also d, is nilpotent if and only if di = 0.
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Assume that d; € Der(K(G/H)) such that d} = 0. Therefore

[di]i [0]4 [0]a [
) ty [di]z [0]s [0]s
[

, for some 4 x 4 matrices t;.

]
| , for some 4 x 4 matrices w;.
|
]

Therefore
0] [0]4 (0] 0],
N 014 |0]4 [O]4
o | O 100 [0 0 .
[0); [0 [0]s [0]4
s e [0l [0 [0]:

It has been verified by SageMath [43], that for each nilpotent derivation d; €
Der(K(G/H)) and any derivations dy, d3 € Der(K(G/H)), [ws, ws] = [0]4. O

Example 4.6.18. Let Cs x Cy = (z,y | 2® = y* = [z,y] = 1) and let d be the
derivation of FoG defined by 2 + 2y and y — 1+y + 2y + x + 2. It can be shown
that B = {1, z, y, xy, (1+2?), x(1+2%), y(1 +2?), zy(1+2?), (1 +2%)? z(1+
22)% y(1+2%)?, zy(1+22)% (1+22)3, 2(1+22)°, y(1+22)3, zy(1+22)>%} is a basis
for Fo(Cs x C3). The matrix representation [d]p of d with respect to the basis B

and its Jordan form [J]p are given below. The Jordan form of [d]p was calculated

129



using SageMath [43]. The diagonal entries of [J]p are all zeros. Therefore d is a
nilpotent derivation of Fy(Cg x Cy). The largest Jordan block of [J]p has length
13 and so d'? # 0 and d'* = 0. Recall that Lemma [4.6.17 states that D% = 0 for
any nilpotent derivation D of Fy(Cy x Cy). We have shown that the digraph I'(d)
associated with the derivation d of Fo(Cs x Cy) is not isomorphic to I'(9) for any
6 € Der(Fy(Cy x Cy)). Therefore by Theorem [4.1.8] Fo(Cs x C5) is not isomorphic
to Fo(Cy x Cy).

[ 0010/0000[0000/0000 | [ 0100000000000|0[0]0 ]
0000/0000[0000[0000 0010000000000[0[00
0011/0000[0000[0000 0001000000000[0[00
0111/0000[0000[0000 0000100000000[0[00
0001/0010[0000[0000 0000010000000[0[00
0010/0000[0000[0000 000000100000 0|0[0]o
0001/0011[0000[0000 000000010000 0|0[o0]o
0000/0111[0000[0000 000000001000 0|0[o0]o

[d]s = , s =

0001/0001[0010[0000 000000000100 0|0[o0]o
0000/0010[0000[0000 000000000010 0|0[0]o
0000/0001[0011[0000 000000000001 0|0[0]o
0000/0000[0111[0000 000000000000 1|0[0]0
0000/0001[0001[0010 000000000000 0|0[o]o
0000[0000/0010[0000 000000000000 0|0[0]o
0000/0000[0001[001 1 000000000000 0|0[0]o

[ 0000[0000(0000[0111 0000000000000[0[0[0
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Chapter 5

Derivation Towers

This chapter considers the set of derivations of a commutative group algebra over
a finite field. The Lie algebra formed from this set by defining multiplication as the
Lie commutator is shown to have trivial center. Also, the Lie algebra of derivations
of the group algebra K'G is complete, when K is a finite field of characteristic p and

G is a finite abelian group such that its Sylow p-subgroup is elementary abelian.

Group algebras have a rich structure and have been studied by many math-
ematicians. Particular attention has been devoted to the characteristic 0 case.
Connections between properties of a group algebra and properties of the underly-
ing group have been established. In this chapter group rings are studied via the Lie
algebra of derivations of the group algebra. Let GG be a finite abelian group and let
K be a finite field. The set of derivations of the group algebra KG is denoted by
Der(KG). A Lie algebra is formed from this set by defining multiplication as the
Lie commutator and is denoted by g. Let A be an associative and commutative
algebra over a field K. Then the Lie algebra formed by taking the tensor product of
A with a nonzero K-vector space of commuting K-derivations of A is a Witt type
algebra and is studied in [39]. Therein necessary and sufficient conditions are given

for this Lie algebra to be simple. Further results on these Lie algebras can be found
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in [32]. It is shown in [37] that a complete Lie algebra can be decomposed into a
direct sum of simple complete ideals. If the derivation algebra of a Lie algebra is

perfect and has trivial center then it is complete [51].

Definitions and lemmas on Lie algebras which will be useful are introduced
in Section as well as the aforementioned result from [51]. In Section it is
shown that the derivations of K G are a proper subset of the Lie derivations of
KG. A basis for the K-vector space of derivations of KG is given and the Lie
algebra g = Der(KG) is shown to have trivial center. Modular elementary abelian
group algebras are shown in Theorem to be complete. Extensions of this
result are explored in Section 5.4l Let d be a derivation of KG and let H be a
subgroup of an abelian group G. It is shown that the augmentation ideal A(G, H)
is a differential ideal of the ring (KG,d) if and only if the image of H under d
is contained within the augmentation ideal A(G, H). This provides a method for
constructing a proper nonzero ideal of the Lie algebra Der(KG) from A(G, H),
when the Sylow p-subgroup of G is not elementary abelian. In Example [5.4.3] a
derivation of Fo(Cy x Cy) is constructed and is proven to be outer by showing that
it does not map this ideal into itself. Therefore Theorem does not extend
to all finite commutative group algebras. However as Example [5.4.4] shows the
existence of an ideal of g constructed from A(G, H) does not imply that g is not
complete. However, it is shown in Theorem that Der(KG) is a complete
Lie algebra, when G is a finite abelian group such that its Sylow p-subgroup is

elementary abelian.

5.1 Introduction

We begin with a brief introduction to Lie algebras.

Definition 5.1.1. [31] A Lie algebra £ is a not necessarily associative algebra
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over a field such that its multiplication, denoted by [ , ], satisfies the following

conditions:

Equation (5.2)) is known as the Jacobi identity.

Definition 5.1.2. Let A and B be subspaces of a Lie algebra £. Define [A, B] to
be the subspace spanned by the set {[a,b] | a € A,be B}. A subspace I of £ is an

ideal of £ if and only if [I, £] < I.

Definition 5.1.3. Let £ be a Lie algebra. Define |[&| = £ to be [£, £], the
ideal of £ generated by all products [a,b], where a,b € £. Further define £*) =
[e=1) g(-=D] where k is a positive integer. The derived series of ideals of £ is
o oe@o...oelk o5 A Lie algebra £ is said to be solvable if £#) = 0,

for some positive integer k.

Definition 5.1.4. Let £ be a Lie algebra over a field K and let D be a map from
£ to £. Then D is a (Lie) derivation of £ if D is K-linear and satisfies the follow

identity known as Leibniz’s rule for any a,b e £:
D([a,b]) = [D(a),b] + [a, D(b)]. (5.3)

Also denote by Der(£) the set of (Lie) derivations of £. A derivation d € Der(£)
is called inner if for all b € £, d(b) = [a, b] for some a € £.

Definition 5.1.5. Let S be a subset of a Lie algebra £. Define the centraliser of
S in £, denoted C(S, £) to be the set of elements ¢ of £ such that [s,c| = 0, for
all s € S. C(S, £) is a subalgebra of the Lie algebra £ by [31].
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Definition 5.1.6. Let £ be a Lie algebra. Define the center of £, denoted by C'(£)
to be the set of elements ¢ of £ such that [a,c] = 0, for all a € £. The center, C'(£)

is an ideal of £, by [31]. £ is called abelian if £ = 0.

Definition 5.1.7. Let A be an associative algebra. A Lie algebra, denoted by
is constructed from A by defining the Lie product as [z,y] = xy — yz, for all

x,y € A.

The next lemma shows that Der(A) forms a Lie algebra for any not necessarily

associative algebra A.

Lemma 5.1.8. [31)] Let A be a not necessarily associative algebra. Then Der(A),
the set of derivations of A is a (Lie) subalgebra of Er, where E is the algebra of

linear transformations of the vector space A.

Definition 5.1.9. A Lie algebra £ is called simple if it has no nonzero proper

ideals and £’ = £.

Definition 5.1.10. A Lie algebra, £ is called perfect if it equals its own commu-

tator ideal, that is £’ = £.

Definition 5.1.11. [31] A Lie algebra, £ is called complete if its center is {0} and

all its derivations are inner.

Theorem 5.1.12. (51| Let £ be a perfect Lie algebra with center {0}. Then the

derivation algebra Der(£) is complete.

Lemma 5.1.13. [{7] Let £ be a Lie algebra with center {0}, and let Dy be the
derivation algebra of £ and let Do be the algebra of all inner derivations of £.

Then

1. £ is isomorphic to Dy

2. Dq 1s an ideal of Dy
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3. The centraliser of Dy in Dy is {0}

Definition 5.1.14. [35] Let £ be a finite dimensional Lie algebra with center
{0}. For i > 1, let Der;(£) = Der(Der;_1(£)), where Derg(£) = £. Then by
Lemma [5.1.13[ each Der;(£) has center {0} and is an ideal of Der;;1(£) and so:

£ = Dero(£) < Der(£) <t Dery(£) <.

This sequence is called the derivation tower of £. In [47] it is shown that Der, (£)
has only inner derivations for some n. So Lemma [5.1.13| implies that Der,(£) ~
Der,;(£), for all j = 1. In other words the sequence stabilises. The minimal n

such that the sequence stabilises is called the height of the derivation tower.

Special cases of Lemmas|[5.1.15|and [5.1.16|are used in the proofs of Section [5.3]

Lemma 5.1.15. Let g be a Lie algebra and let r,s,c € g and let D € Der(g) such
that D(r) = [c,r] and D([r,s]) = [¢, [r,s]]. Then D(s) — |c,s] € C(r,g).

Proof. The Lie bracket is anticommutative and so applying D to 0 = [r, s] + [s, 7]

and using the Jacobi identity gives

since the bracket is bilinear. Therefore D(s) — [¢, s] € C(r, g), O

Lemma 5.1.16. Let g be a Lie algebra over a field K and let v, s,c € g, such that
[r,s] = ks, for some k € K. Further, let D € Der(g) such that D(r) = [c,r]. Then
[r,0] = kb, where b= D(s) — [c, s].
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Proof. Applying D to 0 = [r, s] — ks gives
0= [D(T)v S] + [T7 D<S>] - kD(‘S) = [[Cu T]a 8] + [h [Ca S] + b] - k([cv 8] + b) (54)
However by the Jacobi identity

[[Ca 7’], 8] = _[87 [07 T’]] = [T, [87 C]] + [07 [T7 5]] = [T‘, [57 C]] + [C, ks]
Substituting into Equation gives

0=[r[s,c]] +[c, ks] +[r [c,s]] + [r,b] — klc, s] — kb
= [r,[s,c]] = [r,[s,c]] + Klc, s] — k[c, s] + [r,b] — kb = [r,b] — kb.

Therefore [r, b] = kb. O

5.2 The Lie Algebra of Derivations of a Group

Algebra

It is shown that all derivations of a group algebra (as defined in [12] and else-
where) are Lie derivations but the converse is false in general. In particular, finite
commutative group algebras are considered and a basis for the K-vector space of
derivations of these group algebras is presented in Theorem [2.3.4f Theorem [5.2.9|
shows that the Lie algebra of derivations of a finite commutative group algebra has

trivial center.

Lemma 5.2.1. Let K be a finite field, let G be a group and let £ = KGp. Then
Der(KG) < Der(£).

Proof. Let a,be £ and d € Der(KG). By Theorem 2.2 of [12] d is a K-linear map
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from KG to KG. Moreover

d([a,b]) = d(ab — ba) = d(ab) — d(ba)
= d(a)b + ad(b) — d(b)a — bd(a) = [d(a),b] + [a, d(b)].

Therefore d € Der(£). O

Example shows that in general Der(KG) # Der(£).

The following notation is used for the rest of this chapter.

Notation 5.2.2. Let K be a finite field of positive characteristic p and let G be
a finite abelian group. So G ~ H x X, where H is a p-regular group and X is an

abelian p-group with the following presentation
X ={xo,21,...,Tp_1 | ximk =1, o, 'a gy = 1, for all k,Le {0,1,...n—1}),

where n and m;, are positive integers.

Definition 5.2.3. Let G be a finite abelian group. Using the above notation,

for j € {0,1,...,n — 1} define the set S = {z; | ¢ = 0,1,...,n — 1} and define

S; = S\{z;}. Also, define G, to be H x X, where X is the subgroup of G generated
n—1

by S;. Thus ()| G; = H.

1=0

Remark 5.2.4. Theorem [2.3.4] gives a basis for the K-vector space of derivations
of KG. By Lemma [2.2.1} 0,,(z]") = ma*~" and 0,,(27") = 0, for all j +# i.
It is now shown that equality does not hold in Lemma [5.2.1]

Example 5.2.5. Let Fy be the field with 2 elements and let Cy = {(z | z* = 1)
be the cyclic group with 4 elements. Then by Theorem {90, | g € Cy} is a

K-vector space basis for Der(FyCy). Therefore Der(F2Cy) has dimension 4.
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Let £ = (FyCy)1, and let f be an arbitrary Fa-linear map from FyCy to FoCly.
Then since FoC} is a commutative algebra all multiplications in £ are zero. Also
f(la,b]) = f(0) =0 = [f(a),b] + [a, f(b)], for any a,b € £. Therefore f € Der(£)
for all Fo-linear maps f. f is a linear transformation and so can be represented by a

4 x 4 matrix over Fy and so Der(£) has dimension 16. Thus Der(£) & Der(FoCy).

Let ¢ be the identity map on £. Then ¢ is K-linear and «([a,b]) = ¢(0) =0
and [c(a),b] + [a,t(b)] = 0+ 0 = 0. Thus ¢ € Der(£). However, ¢ ¢ Der(FyCy),

since for any units a, b in FoCy, t(ab) = ab # 0 = ab + ab = (a)b + ac(b).

Definition 5.2.6. Let F be the prime subfield of the finite field K and let g € G.

n—1
Then g can be written as g = xh, where z = H:L‘: € X and h € H. Define
n—1 =
R;: G—>Fbyg=nx?hr—>rj (mod p), for j =0,1,...,n— 1.
i=0

Remark 5.2.7. Let ¢ € G and so g can be written as g = x;jyh, where y =
Hazz” € X and h € H. Then 0,,(g9) = 0, (2z;'yh) = 0, (] )yh + 270y, (y)h +
i#]

23y, (h). However by Theorem [2.3.4{ and Lemma 2.1 of [12], 0,,(2}') = rjx

ri—1
J

and J,(y) = 0. Furthermore by Theorem 3.1 of |12, d,,(h) = 0. Therefore

Oz, (9) = rjx;jflyh = R;(g9)z;'g. Thus 0,,(9) =0 < geG;.

The following identities are used throughout this chapter.

Lemma 5.2.8. Let K be a finite field of positive characteristic p and let G be a
finite abelian group such that its Sylow p-subgroup is generated by {xo, x1, ... Tp_1}.

Let a, p € KG. Then fori,je{0,1,...,n—1}

[axm ax]] = 0, (55)
[0z, BO;] = 0, (B)0r; — B0, (1) 0s, and (5.6)
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Proof. Let 1,5 €{0,1,...,n— 1} and let g € G. By Equation (5.1)), Equation (/5.5
is immediate when ¢ = j. Let ¢ # j. Then by Remark

0r,0a;(9) = 0u, (Ri(9)7; ' 9) = Ri(9)x; ' 0u,(9) = Ri(9)x; ' Ri9)x; g
= Ri(9)z; 'Rj(9)x; g = Ri(g)x; " 0x,(g) = 0x,(Ri(9)x;'g) = 0a,0x,(9)-

Therefore [0,,,0,,](9) = 0 for any g € G. Hence [0,,,0,,] = 0, for any i,j €

{0,1,...,n— 1}, since G is a K-vector space basis for KG.

Let a, 8 € KG. Then since KG is commutative

(004, B0s,] = 00y, (80,,) — B, (ad,)
0u,(B) s, + 300, O, — B, (), — B0, O,

— 0y, (B)0s, — s, ()0, + AB[Cn, On,]
(

0, (B)0x, Op; (@) 0y, since [0y, 0p,] = 0.

I
Q

In particular letting o = 1 in Equation (5.6)), gives Equation ([5.7)). O]

Theorem 5.2.9. Let K be a finite field and let G be a finite abelian group. Then

Der(KG) has trivial center.

Proof. Let G be a finite abelian group such that its Sylow p-subgroup is generated
by {zo, =1, ..., x,—1} and let B = {g0d,, | g € G,i = 0,1,...,n — 1}. Then
by Theorem B is a K-vector space basis for g = Der(KG). Let a be an
arbitrary element of the center of g and so a can be written as a = nz_:l Z 990z,

1=0 geG
where a;, € K. By Equation (5.7), [0.,,90:,] = 0,(9)0,, and so for any j €
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{0,1,...,n—1}

n—1
0 = [0s;,a] = [0, Z Z i g90y, ] Z Z ig[Ou;» 902,
1=0 geG i=0 geG
n—1 n—1
= Z Z a; gazj(g)amz = (Z a; gax (g))azl
1=0 geG =0 geG

Therefore Z ig0z;(g) = 0, for all 4,5 € {0,1,...,n — 1}, since 0,, € B for all
geG

i. Let G; be the group defined in Definition 5.2.3] Then by Remark [5.2.7]

0 = Z i,g0x, ( Z a; o R a: 'g. Multiplying this equation by x; gives
geG 9¢Gj

2 a;4Rj(g9)g = 0 and since G, is a subset of G, the elements of G; are linearly

9¢G;
independent in KG and so a;,R;(g) = 0, for all g ¢ G; and i € {0,1,...,n — 1}.

By Definition [5.2.6, R;(g) # 0 (mod p), for all g ¢ G;. Therefore for any
je{0,1,...,n—1},a,,=0forall g¢ G and i € {0,1,...,n — 1}.

n—1
Let ge G. Ifg¢ H = ﬂGj,theng¢Gj for some j € {0,1,...,n—1} and so
i=0
’ n—1
a;,g =0forallg¢ Handie {0,1,...,n—1}. Thus we can write a = Z Z 9GO0z,
i=0 geH

Note that for g € H, 0,,(g9) = 0, for all j (by Theorem 3.1 of [12]). Hence, for any

j€{0,1,...,n— 1}, by Equation ({5.6]

0= (l I] Z Z azggaxmx] w] Z Z gaac“x] m]]
1=0 geH i=0 ge
Z Z g (900, (25) 0, — 00, ( Z Z i gg0q, = Z 490z,
i=0 geH 1=0 geH geH

The set {gd,, | g€ H, j € {0,1,...,n — 1}} is linearly independent, since it is a
subset of B. Therefore a;, = 0, for all ge H and j € {0,1,...,n —1}. Thusa =0

and so g = Der(K(G) has trivial center. O

Definition £.2.10] is used in the statement of Theorem B.2.111

140



Definition 5.2.10. Let G be a multiplicative abelian group, let K+ be the additive
group of a field K and let A € Hom(G, K*). Define \*: KG — KG by Y|

deG kgA(g)g

geG kgg =

Theorem 5.2.11. [39] Let G be a multiplicative abelian group, let A = K[G],
and let A be a non zero K-subspace of Hom(G, K*). Then A = A# is a nonzero
K -vector space of commuting derivations of A and A® A = AA is a simple Lie
algebra if and only if G = (1) and dimgA = 2 when charK = 2.

Remark 5.2.12. Let K be a finite field of positive characteristic p and let G be a
finite abelian group such that its Sylow p-subgroup is generated by {xo, z1, ... Zn_1}.
Let A = Hom(G,K*)and fori =0,1,...,n—1 let \; be the element of A such that
Ai(z;) = 1 and A(x;) = 0 for all j # i. By Definition and Theorem
A = 2,0,,. Therefore {;0,, |i=0,1,...,n—1} € A= A# and so AA = AQA =
Der(KG). Let KG = FpnCy'. Then G* = {g € G | M(g) = 0 for all A e A} = (1),
since for any g € G\{1}, d;,(g) # 0, for some j = 0,1,...,n — 1. Conversely, let
h € G and so ord(h) = p'r, where pfr. If I > 1 orr > 1, then 1 # h? € G
Therefore by Theorem , Der(K@) is simple if and only KG = F,nC]', where

n>1ifp=2.

The main result of Section [5.4] is the following:

Theorem 5.4.14. Let K be a finite field of characteristic p and let G be a finite
abelian group such that G = X x H, where X is an elementary abelian p-group and

H is a p-regular group. Then Der(KG) is a complete Lie algebra.

It is often useful when studying algebraic properties to have examples of al-
gebraic structures that possess these properties. To this end, Figure [5.1]is a Venn
diagram partitioning Der(K G) by the properties of being complete, simple or per-

fect Lie algebras, where G is a finite group and K is a finite field. Examples are
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given in Figure [5.1] of each of these subsets and are fully classified in the simple

case.

It is clear from the definitions that all simple Lie algebras are perfect. The

group algebras K G such that Der(KG) is simple are classified in Theorem [5.2.11|

By Theorem [5.4.14] the simple Lie algebras are complete, as are the Lie alge-
bras Der(F3Cs), Der(FoCy) and Der(FoCs). In Examplem Der(Fy(Cy x Cy x
(3)) is shown to be complete. Der(Fo(Cy x C3)) is shown to be noncomplete in
Example [5.4.3] The Lie algebras Der(Fy(Cy x C4)), Der(F2Cy) and Der(FoCs)

were verified to be noncomplete using GAP [18].

The perfectness or nonperfectness of all of these examples was also verified

using GAP [1§].

Lemma 5.2.13. Let K be a finite field of characteristic p and let G be the direct
product of n > 1 copies of the cyclic group of order p. Further, let g = Der(KG).

Then the derivation algebra Der(g) is complete.

Proof. By Theorem [5.2.9, g has trivial center. By [39], Der(KG) is simple and
so it is perfect. Therefore by Theorem [5.1.12| the derivation algebra Der(g) is

complete. n

Lemma motivates the following question: When is g = Der(KG) com-
plete? Table illustrates the dimensions of Der;(g) where g = Der(KG), for
small KG. The dimensions were computed using GAP [18]. By Lemmal5.1.13] the
derivation tower stabilises and so the dimensions of Der;(g) will cease to increase
for some 7. It can be seen from Table that the tower stabilises quickly (i < 6)
for the small group algebras chosen. Memory restrictions on the computer used
prevented the computation of dim(Dersy(g)), where g = Der(FyChas). A pattern
that seems to emerge from Table [5.1]is that g = Der(KG) is complete when G is

elementary abelian.
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Der(KG)

Complete Perfect

Der(]Fg(C'4 X 02))

Der(F,~»Cy), where

n>1ifp=2

Der(Fy(Cy x Cy x Cy))/ Der(Fy(Cy x Cy))

Der(FgC4), DGT(FQng)

Figure 5.1: A Venn diagram showing examples of derivation algebras of finite group
algebras for all possible subsets of the set of properties {complete, simple, perfect}.

5.3 The Derivations of Modular Elementary Abelian

Group Algebras are Complete

Let p be a prime number, let n be a positive integer and let K be a finite field of
positive characteristic p. Furthermore, let G be the direct product of n copies of
the cyclic group of order p. Let g be the Lie algebra of derivations of KG and let
B = {90, | g€ G,ie€{0,...,n—1}}. Then by Theorem [2.3.4] B is a K-vector
space basis of g = Der(KG). The main Theorem of this section shows that g is a

complete Lie algebra.

Definition 5.3.1. Let a be a nonzero element of a Lie algebra g over a field K
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g i 0o 1 2 3 4 5 6
Der(FyCs) dim(Der;(g)) || 2 2 2 2 2 2 2
Der(FyCy) dim(Der;(g)) || 4 6 6 6 6 6 6

Der(Fy(Cy x Cy)) | dim(Der;(g)) || 8 8 8 8 8 8 8
Der(FyCs) dim(Der;(g)) || 8 12 14 14 14 14 14
Der(Fy(Cy x Cy)) | dim(Der;(g)) || 16 18 18 18 18 18 18
Der(FyC35) dim(Der;(g)) || 24 24 24 24 24 24 24
Der(F2Dy) dim(Der;(g)) || 12 16 16 16 16 16 16
Der(FyQs) dim(Der;(g)) || 10 26 29 29 20 29 29
Der(FyCls) dim(Der;(g)) || 16 24 28 28 28 28 28
Der(Fy(Cs x Cy)) | dim(Der;(g)) || 32 36 36 36 36 36 36
Der(Fo(Cy x Cy)) | dim(Der;(g)) || 32 40 40 40 40 40 40
Der(F,C3) dim(Der;(g)) || 64 64 64 64 64 64 64
Der(FyCsy) dim(Der;(g)) || 32 48 56 56 56 56 56
Der(Fy(Cig x Cy)) | dim(Deri(g)) || 64 72 72 72 72 72 72
Der(Fo(Cs x Cy)) | dim(Dery(g)) || 64 80 80 80 80 80 80
Der(Fo(C2 x Cy)) | dim(Deri(g)) | 96 96 96 96 96 96 96
Der(FsCyy) | dim(Deri(g)) || 64 96 112 112 112 112 112
Der(FyCiag) dim(Der;(g)) || 128 192 7
Der(F,C%) dim(Der;(g)) || n2" 7

Table 5.1: A table showing the dimension of Der;(g), where g = Der(KG) for
selected small KG.
and let V' be the 1-dimensional K-vector subspace of g generated by a. Define the

range of a, denoted R(a) to be [V, g]. R(a) is a K-vector subspace of g.

Recall the set S = {z; | ¢ = 0,1,...,n — 1} which was defined in Defini-
tion [£.2.3

Lemma 5.3.2. The set {g0,, | g € G;, x; € S} is a K-vector space basis for the
centraliser of Oy, in g.
n—1p—1

Proof. Let b be an arbitrary element of g and write b = Z Z Bi 0z, where
i=0 e=0
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Bie € KGj. Then by Equation (5.7)

n—1p— n—1p—1 n—1p—1
—1
[ax 7b:| [ax 751 GZE@@IZ = ﬁz elx; xz = Bi,eexe' axz
J J J J
1=0 e=0 =0 e=0 1=0 e=0
p—1

Therefore b € C'(0,,, g) if and only if Z Bi e ~! =0, that is, if and only if 3;. = 0,
foralli =0,1,...,n—1and e = 1, 2 ..,p— 1. Thus b € C(0,,,9) if and only if

n—1
= Z Bi.00s;, where B; g € KG;. This implies that the set {g0,, | g € G;, z; € S}
i=0
is a K-vector space basis for C(0,,, ). O
n—1
Lemma 5.3.3. C(dy,,0) [ | C(x;0:,9) = {0}.
j=0

n—1 n—1
Proof. Let b € C(0y,9) ﬂ C(xj0zy,9). Therefore by Lemma [5.3.2, b = Z Bi0s,,
Jj=0 i

for some f3; € KGy. Thus for any j € {0,1,...,n— 1}

n—1
0= [b, xjaro] = Z[Bz zis Lj a:o] ﬁ] zo-
i=0
Therefore §; = 0, for all j € {0,1,...,n— 1} and so b = 0. ]

Lemma 5.3.4. The set {0, | i = 0,1,...,n — 1} is a K-vector space basis for
n—1

() C(a,, 0)-

i=0

Proof. By Lemma 5.3.2] for each i € {0,1,...,n—1} the set {g0,, | g € G;, ;€ S}
is a K-vector space basis for C(d,,,g). This K-vector space basis is a subset of

B for each i € {0,1,...,n — 1}. Therefore the set ﬂ{g&w | ge G;, xje S}tisa

i=0
n—1
K-vector space basis for ﬂ C(0s;,9). However
i=0
n—1 n—1
(V{90s, | g€ Gi, ;€ S} =1{gds, | ge [ Gi, ;€ S} = {0y, | z; € S}
i=0 1=0
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Definition 5.3.5. Let G be the direct product of n copies of the cyclic group of

order p, where S = {x; | i = 0,1,...,n — 1} is a generating set for G. Let g € G

and write g = g’z ...z, where ¢; € {0,1,...,p— 1} for i € {0,1,...,n — 1}.

Define the weight of g, denoted wt(g) to be the number of nonzero exponents of ¢,

that is, (g) = Z 1. Also, define the ezponent sum of g, denoted |E(g)|to be the

e; #0

n—1
integer sum of the exponents of g, that is, E(g) = Z €.
i=0

Lemmas [5.3.6] and [5.3.7 are now established before the proof of Theorem [5.3.8

is given.

Lemma 5.3.6. Let p be a prime number, let n be a positive integer and let K be
a finite field of positive characteristic p. Let G be the direct product of n copies
of the cyclic group of order p, where S = {x; | i =0,1,...,n — 1} is a generating
set for G. Let g = Der(KG) and let B = {90, | g € G,z; € S} and so B is
a K-vector space basis for g. Further, Let D € Der(g) and let g € G such that

wt(g) < 1 and so g = x5, for some j € {0,1,...,n — 1} and e € {0,1,...,p— 1}.

n—1
Write D(g0,) = Z Qi g0z, , where a; ;€ KG. Then for allie {0,1,...,n — 1}
i=0
0,;0(041-73;;) = 1505, (1) — Ogg (xi)exjflaj,l + €0y, (:Cj>06i,w;,_—1. (5.8)
Also, ;4= ga;1, forallie{l,2,...,n—1}. (5.9)

Proof. Let g € G such that wt(g) < 1 and so g = x5, for some j € 0,1,...,n—1
and e € {0,1,...,p — 1}. Then by Equation (5.7)),

Opes T60p | = Ope ()04, = Oy (x;)exS 10, .
[ 0 0 0 0 J 0

L0279 J J
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Therefore 0 = [, 250s, ] — On,(x;)exS ' 0y, Applying D to this equation gives

xoo J

= [ (aﬂco) Z; axo] [awou D(xj(?%)] - 0960 (xj)eD(xiilamo)

n—1 n—1 n
Z Qi10n;, U502, ] + Z (O, 050, ] — O ()€ Z gt O, -
i=0 i=0 '

Therefore by Equations (5.6) and .

n—1
0= Z (az 10z, (@ )axo - "E;&wo (1) 0x; + Oug (O‘i,xj)&xi — Oz, (l‘j)eai,xjflaxJ
0
"~ n—1
= ajiex; 10pe — 5 Z O (1) 0, + Z 0o ( Qi 0 ¢)0y, — Ozo(T)e Z Oéi’x?—lami.
i=0 = i=0 '
Equating the coefficients of d,, gives
ajrexs ! — x50, (a0,) + Oy (Q0,25) — O (xj)e%’x;q =0 andso
Ong (@002 ) = @505, (00,1) — aj1exs ! + O, (xj)ea%;_l. (5.10)

Equating the coefficients of d,,, for i > 0 gives

— 250z, (1) + (7350(041-,955) — 0o (x])eoc e-1 =0 and so

]

8m0(04i,m§) = x?&xo(aiyl) + 8960(1;])604 (5.11)

Equations (5.10) and (5.11)) combine to give Equation ([5.8)).
Let k € {1,2,...,n — 1}. Then by Equation (5.6), [250s,, T00x,] = X50u,-

Applying D gives

O:

—

D(xza%) xoazo] [xzaﬂcov D(xoaro)] - D(xzawo)
1

(0% (9 T (9 + E (9 (67 E (0% .
1 Z 1
[ 4,25 Vs L0 a:o zor Yi,zo z 4,2, x

=0

S
I

~.
Il
o
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Therefore by Equations (5.6) and (/5.7))

[y

n—

<Oéi,:vz axl (x(])axo - 5170(7950 (az,xz)azz + LUZ(?ZO (ai,zo)axi - ai,xgaxi (xZ)axg - ai,xi 0%)

=0
n—1 n—1

n—1
—1
= Qo8 axo — o Z axo (a%xi)axz + Z xzaﬂﬂo (ai@o)aﬂﬁi - ak,xoexz axo o Z iz, 6951
1=0

=0 =0

= 0.

Therefore

0= (O‘O,xz - l‘oazo (O‘O,xz) + xzaxo (Oéo,mo) - ak,woexz_l - aO,mZ)azo

+ (—@o0y, (O‘i,wi> + T (i) — ai,xi>6w¢~

Equating the coefficients of d,, gives
—$Oam0(a07xi) + 30 (00 2y) — Ozkﬁoexzfl =0.
and equating the coefficients of 0, for i > 0 gives
— 2000 (Qize ) + Tf 0y (Qizg) — Qige = 0.
Letting s > 0, j = 0 and e = 1 in Equation implies

awo (ai,mo) = xoaxo (Oé@l) + Q1.

(5.12)

(5.13)

(5.14)

(5.15)

It remains to prove Equation (5.9). The proof is divided into 4 cases, namely

when g = 1, g = zg, g € {2, | k € {1,2,...,n—1},e € {1,2,...,p — 1}} and

ge{zi|ec{2,3,....,p—1}}.

Case (1): g=1. Forallie {1,2,...,n — 1}, a; g = ;1 = gy 1.
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Case (2): g = xp. Letting i = 0 and j = k > 0 in Equation ([5.8]) implies

Ono (0.2 ) = T§.0no (t01) — €y ' ovg1. (5.16)

Letting ¢ = j = 0 and e = 1 in Equation (5.8) implies

ﬁmo(ao,zo) = $Oazo(a071) — Qp1 + Qo1 = .Z’(]axo (Oé()’l). (5].7)

Using Equations (5.16|) and (5.17) in Equation (5.13) gives

e e—1 e e—1
0=—x (xkaxo(aojl) — exy, Oék,1) + xy (xoaxo(ao,l)) — QU 5 €5,
e—1 e—1 e—1
= exory Qg1 — Qg €T, - = exy, (xoozk,l — oz;mo).
for any e € {0,1,...,p — 1}. Letting e = 1 implies a4, = xoar1. Therefore

Equation (5.9) holds for g = .
Case (3): ge{af | ke {1,2,....n—1},e e {1,2,...,p — 1}}. Letting i > 0 and

j =k >0 in Equation (j5.8)) implies
0930 (ai,xi) = ZL'Z@IO (CK@l). (518)
Using Equations (5.18)) and (5.15)) in Equation (5.14)) gives

0= —xo (:r:z@xo (am)) + zf, (a;oﬁxo(am) + ai,l) — Qe

e
= TRl — Qe .

Therefore Equation (5.9) holds for g € {z{ | k€ {1,2,...,n—1},ee {1,2,...,p —
1}}.

Case (4): ge{z§|e€{2,3,...,p— 1}}. Equation (5.21]) will be useful in proving
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Equation (5.9)) in this case and is now established. By Equation (5.6)),

e—1 e e
[20000, TG0my | = Toexy  Opy — T(0m, = (6 — 1)x{04,-

Applying D gives

0= [ (‘roaﬂﬂo) xoaﬂto] [Ioaﬂﬁm D(‘rgaxo)] - (6 - 1) ( eal"o)
n—1 n—1
= [ai,xoaxia m(e)axo] + 2 [%axo, Q; VTG xl 6 - 1 Z Q; VT :cf
1=0 =0

Therefore by Equation (5.6))

n—1 n—1

-1 e
aO,ﬂfoexS axo — Ty Z a360 (ai,xo)aﬂﬁi + Z xoaxo (ai,xﬁ)axi

_aOzo zo_ 6_1 Zazxo ml:

Equating the coefficients of 0,, for ¢ > 0 gives
2500 (i my) + xoﬁxo(awg) —(e— 1)041-@8 = 0.
Letting ¢ > 0 and 7 = 0 in Equation implies
O (i) = (000 (1) + €0 yemt

Using Equations (5.15)) and ( in Equation ([5.19)) gives

0=—x (:1:0810 (1) + ozm) + zo (a;g(?xo(am) + eaiwgq) —(e— 1)051',18

= —2(0,1 + €Ty e — (€ — L)avige.
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Therefore

(e = Dz = T ye1 — TG 1. (5.21)

It is now shown by induction on e that Equation (5.9) holds for g € {zf | e €
{1,2,...,p — 1}}. Case (2) is the base case (e = 1). Let r € {2,3,...,p — 1} and

assume that O gr-1 = z0 tay g, forallie {1,2,...,n—1}. Then by Equation ([5.21)
T r—1 r r
(r = Dviay = 1000 jr—1 — 201 = r20(Tg 1) — 2o = (1 — 1)agov.
Therefore oy . = (a1, since r — 1 e@ Thus by induction o ze = 2§, for all

i€{l,2,...,n—1} and e€ {1,2,...p — 1}. This completes the proof. O

Lemma 5.3.7. Let p be a prime number, let n be a positive integer and let K be a
finite field of positive characteristic p. Let G be the direct product of n copies of the
cyclic group of order p, where S = {xz; | i =0,1,...,n— 1} is a generating set for
G. Also, let D € g = Der(g) and g € G. Suppose that the exists distinct elements

t and j of {0,1,...,n— 1} and an element ¢ of g such that

(i) g = x7g’, for some m € Fy and g’ € Gy,
(ii) D(hdy;) = [c,h0y,], for all h € G where E(h) < E(g),

(111) D(x40,) = [c, 240y, ]
Then D(g0.,) — [c, g0x,] = kiOx,, where ky € K and ky = 0 if m # p — 1.

Proof. Assume that the exists distinct elements ¢ and j of {0,1,...,n — 1} and
an element ¢ of g such that conditions (i) — (éi7) are satisfied. By Equation (5.7)),
[02:5 90x;] = 02,(9)0x,. Note that 0,,(g9) = 0 or 0p,(9) = kg, where k € K and
E(g) = E(g) — 1. Therefore D(0y,(9)0z;) = [¢,0x,(9)0,]. Also D(0y,) = [c, O],
by condition (47). Therefore letting r = 0,, and s = gd,, in Lemma implies
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b = D(90y,) — [¢,90s,;] € C(0y;,9), for all i € {0,1,...,n — 1}. Therefore by

n—1

Lemma [5.3.4] b = Z k;0.,, where k; € K. Note that g = z}"h, for some m € Fy,

i=0
h e G; and t # 7 and so by Equation (|5.6)
[xtamtygaxj] = Itgl’t (Iﬂtnh)aﬂij - géZ‘J (xt)alft = m‘rgnha$] - 0 = mga%]

Letting r = 240,,, s = g0, and k = m in Lemma [5.1.16| implies [x;0,,,b] = mb.

Thus

n—1 n—1 n—1
0 =mb — [20da,, ] = m Y kiCa, — Y kil10a,, 0] = m Y Kila, + ki,
1=0

1=0 1=0

Therefore k; = 0 for all i # ¢, since m € F and so 0 = (m + 1)k;0,,. lf m #p—1,
then (m+1) € [} and so k, = 0. Therefore b = k;0,,, where k, € K and k; = 0 if

m # p— 1. O

Theorem 5.3.8. Let p be a prime number, let n be a positive integer and let K
be a finite field of positive characteristic p. Let G be the direct product of n copies
of the cyclic group of order p. Then Der(KG) is a complete Lie algebra (i.e. its

center is trivial and all its derivations are inner).

Proof. Let g = Der(KG). By Theorem [5.2.9] g has trivial center and so it remains

to show that all derivations of g are inner.

Let S = {z; | i = 0,1,...,n — 1} be a generating set for G and let B =
{g0., | g € G,z; € S}. Then by Theorem , B is a K-vector space basis for
g. For j € {0,1,...,n — 1}, let S; and G; be respectively the set and the group
defined in Delﬁnition [(.2.3] Let g € G and let D be an element of Der(g). Write

D(g0y,) = 2 @ 40y,;, Where o; € KG. We will prove that D is the inner derivation
i=0
induced by

n—1
C = Z (aow - xiozm)&xi.
1=0
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The following is an outline of the proof. It is shown that D(d) = [¢, d], for all d € g.

The proof is divided into five steps

(i) d = g0y, for all g € G such that E(g) < 1, where E(g) is defined in Defini-

tion H.3.5l

(ii) d = g0y, forall 1 € {1,2,...,n—1} and g € G such that E(g) < 1. This step

is superfluous when n = 1 and so we assume n > 1.

(ili) d = g0, for all i € {0,1,...,n — 1} and g € G such that wt(g) < 1. This

step is superfluous when p = 2 and so we assume p > 2.

(iv) d € B. This step is superfluous when n = 1, since in this case wt(g) < 1 for

all g € G and so we assume n > 1.

(v) dis an arbitrary element of g.

Step (i): Let g € G such that E(g) < Landso g = «!, for some j € {0,1,...,n—

1} and [ € {0,1}. We will prove that D(gd,,) = [¢, g0x,].- By Equation (/5.6))

i
L

[¢, 90z, = [(c0,e;, — $i060,1)axi>33é~5x0]

-
Il
o

n—1

(Oéo,a;i - l’z‘Oéo,l)aa;i (%)@0 - 2 $§-5zo(ao,xi - xiao,l)axi-
i=0

? .
[y

-
Il
o

Note that by the Leibniz rule 0,,(z;001) = O (@)1 + 0z (). In Equa-
tion (5.8), let ¢ = 0 and e = 1. Then 0y (0e;) = 750z (0,1) — 1 + Ou(25) 0,1

Relabelling j as @ gives 0y, (0 2;) = Ti0zy (0,1) — i1 + 0o () 0,1 Thus, 0y (0,2, —

ZEZ'Oé()J) = @xo (Oé()@i) — (31,0 (CL’Z‘OZOJ) = Q1. Therefore
n—1
[C, gazo] = l(Oéo,xj - Ijao,l)axo - SC —Qp, 1 Z T\~ 1
i=1
n—1
= (0., — Tj00,1) 0y + z 100,10z, + Z a; 10z, (by Equation .
=1
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If I =0, then g =1 and

n—1
(¢, 90,1 = [€,00y] = 0+ 010s, + D (¥i1)h, Z 3104, = D(g0s,)-

i=1
If l =1, then g = z; and
n—1
[C7 gaxo] = (a0,x %040 1)610 + x]a[) 16360 + Z azz] x; Z azx T, gamg)
i=1

Therefore D(g0,,) = [¢, 90x], for all g € G such that E(g) < 1.

Step (i7): This step is superfluous when n = 1 and so we assume n > 1. Let
le{l,2,...,n—1}, ge G such that E(g) <1 and let b = D(g0,,) — ¢, 904,]. 1t will
be shown that b = 0. The cases when g # zy and g = x( are treated separately.

Case (1): g # xo. Let h € G such that E(h) < 1. Then

[haﬂﬁoagaﬂﬁz] = haxo (g)arz - garz<h)aro = _ga’tl(h)am'

Note that 0, (h) = 0 or 1 and so by the linearity of D and Step (i), D(—g0y,(h)0x,) =
[c, =90z, (h)0y,] and also D(ho,,) = |[c,hOy]. Therefore letting r = hd,, and
s = g0, in Lemma [5.1.15 implies b € C(h0y,, g), for all h € G such that E(h) < 1.
Therefore by Lemma [5.3.3 b = 0.

Case (2): g = zy. By Equation (5.7), for all i € {0,1,...,n — 1}

&cl ifi=0
[axwajoaxz] = axz(xO)axl

0 ifez#0.

By Case (1) and Step (i), D(0,;) = [¢,0y,] for all ¢ € {0,1,...,n — 1}. Thus,
letting r = 0,, and s = 2(0,, in Lemma [5.1.15 implies b € C(0,,,9), for all i €

n—1
{0,1,...,n — 1}. Therefore by Lemma [5.3.4 b = Z ki0y,, where k; € K. By
i=0
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Step (i) D(x00z,) = [¢, 200x, | and by Equation (5.6)), [€00x,, €00x,] = x00s,. Letting
T = 200z, S = o0z, and k = 1 in Lemma [5.1.16| implies [z(0,,,b] = b. Then, by

Equation ((5.7))

n—1 n—1 n—1 n—1
0 = b+[b, 200ug] = I kil + Y. KilOuyr 000sg] = Y kil +hoPuy = 2k0Pug+ . kil
=0 =0 =0 =1

Ifp>2 then k; =0forallie {0,1,...,n—1} andsob=0. If p =2, then k; =0
for all 7+ # 0 and so b = ky0d,,. However, by Equation , (2002 + 104, T00s, | =
200y, — o0y, = 0. By Step (i), D(x¢04,) = [¢, 00z, ] and by Case (1), D(z;0,,) =
[¢, 2,0,]. Therefore by the K-linearity of D and the Lie bracket, D(200z, +x10z,) =
[c, 200z, + 710y, ]. Letting r = x40y, + 2,0, and s = x00,, in Lemma implies
be C(xg0zy + 210s,,8). Thus 0 = [b, 200z, + 10s,] = [k00zy, T00ze + T10s,] = koOx,
and so b = 0. Therefore b = 0 for all primes p and so D(gd,,) = [c, g0,,] for all

i€{0,1,...,n— 1} and for all g € G such that F(g) < 1.

Step (#4i): This step is superfluous when p = 2 and so it is assumed that p > 2.
Let g € G such that wt(g) < 1 and so g = z{ for some q € {0,1,...,n — 1} and
ee{0,1,...,p—1}. Let b, = D(x0,,) — [¢c, 7;0,,;], where j € {0,1,...,n —1}. It

is now shown by induction on e that b, = 0, for all e€ {0,1,...,p — 1}.

Base case (e = 0): It was shown in Steps (i) and (ii) that D(d,,) = [c, 0q,],
forall je{0,1,...,n—1} and so by = 0. Let v € {1,2,...,p— 1} and assume that
by—1 = 0. Then for all : € {0,1,...,n — 1}, Equation (5.7)) gives
vx;’_lﬁxj ifi=gq

[0z, 20, ] = 0 (77) 0, =

T q q
0 otherwise.

Also, D(vzy™0,,) = vD(2y ™ 0x,)) = vle, 2071 0,] = [c,v2y 70y, ], since both D and
the Lie bracket are K-linear and b,_; = 0 by assumption. Therefore, letting ¢ = 0,
and s = x70,; in Lemma [5.1.15 implies b, € C(0,,,9), for all i € {0,1,...,n —1}.
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n—1

Thus by Lemma |5.3.4} b, = Z k;0y,, for some k; € K.

i=0

If n =1, then b, = ko0Oy, = k;j0,;. It is now shown that b, = k;0,,, for n > 1.

Assume n > 1. Then, [1,0,,,,770,] = 0, for any I,m € {0,1,...,n — 1} such that

[ # j and m # q. Thus, letting r = 2;0,,, and s = x30,, in Lemma [5.1.15 implies

b, € C(x)0,,,,8), for all [ # j and m # q. Therefore by Equation (5.7))

n—1

0 = [by, 210,,] = > [KiCs,, 210s,,] = kil
i=0
Thus k = 0 for all [ # j and so b, = kj&xj. Therefore we have shown that
b, = k;d,,, for all positive integers n.
Also

(v—1)230,;, ifj=q
(2402, T 0r;] = V000, — 00, (74)0n, =

g q
VT O, if 7 # q.
v—1 ifj=gq
Letting r = x40z, s = 2,0, and k = in Lemma [5.1.16| implies
v it j #4q

[ﬂfqaxq, bv] = kbv a:nd SO lfJ =q

0= (v—1)kj0y; + [kjOs,, 1400, = (v — 1)k;0s, + kjOu;(74) 00, = vk;0Oy,

and if j # ¢

0= Ukjarj + [kja%., xqﬁxq] = 'Ukjaxj + kjﬁxj (l'q)axq = vkj(?xj.

Therefore in either case vk;0,;, = 0 and so k; = 0, since v € Fy. Thus b, = 0 and so
by induction b, = 0 for all e € {0,1,...,p — 1}. Therefore it has now been shown
that D(g0.,) = ¢, g0s,] for all i € {0,1,...,n — 1} and for all g € G such that
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wt(g) < 1.

Step (iv): This step is superfluous when n = 1, since in this case wt(g) < 1
for all g € G and so we assume n > 1. Let H = {h € G | wt(h) = 2}. It is now
shown that D(g0d,,) = [¢, g0, ] for all i € {0,1,...,n — 1} and for all g € H. Let j
be a fixed element of {0,1,...,n—1} and let by = D(gd,,) —[c, g0,,], for all g € H.
The proof will proceed by induction on the exponent sum of the elements of H.
Base case : E(g) = 2 and so g = z,x, for some distinct u,v € {0,1,...,n — 1}.
At least one of v and v is distinct from j. Without loss of generality it is assumed
that u # j. Letting t = w, m = 1 and ¢’ = x, in Lemma implies b, = k,0s, -
There are 3 cases which are treated separately.

Case (1): p > 2. Then by Lemma [5.3.7, b, = 0, since m =1 <p — 1.

Case (2): p =2 and v # j. Letting t = v, m = 1 and ¢’ = z, in Lemma [5.3.7]
implies by, = k,0,,. Thus b, = k,0,, = k0., and so by = 0.

Case (3): p=2and v = j. [2,0,;, 74T;0,] = 0p; and so letting r = x,0,, and s =
7,;0,, in Lemma implies by € C(24,0,,,9). Therefore 0 = [k,0,,, u0s,] =
k.0, and so k, = 0 which implies that b, = 0.

Therefore b, = 0 in each case and so D(gd,,) = [c, g0,,], for all g € H such that
E(g) = 2.

Let w be an integer greater than or equal to 2. Assume that D(hd,;) = [c, ho,, ]
for all h € H such that E(h) < w. Let g € H such that E(g) = w + 1. There are 3
cases which are treated separately.
Case (1): There exist u,v € {0,1,...,n — 1} distinct from j and each other such
that g ¢ G, and g ¢ G,. Therefore letting ¢t = u in Lemma implies by = k0,
and letting ¢ = v in Lemma implies b, = k,0,,. Thus b, = k,0,, = k,0p, and
so by = 0.
Case (2): g = x§a} for some e,m € {1,2,...,p — 1} such that m # p — 1 and

j#ue{0,1,...,n—1}. Then letting ¢t = v in Lemma [5.3.7] gives b, = 0.
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Case (3): g = a5ab~", for some e € {1,2,...,p—1} and j # uw e {0,1,...,n — 1}.
Then letting t = u in Lemma gives by = ky0y,. Also [,0,,,2528710,,] =

Ju

exj_lﬁxj and so letting r = x,0,;, and s = x?xﬁ_l(?mj in Lemma [5.1.15| implies

J

by € C(240s;,9). Therefore 0 = [k,0p,, u0s,] = ku0p; and so k, = 0 which implies

that b, = 0.

Therefore, in each case by, = 0 and so D(g0,,) = [c, g0,,] for all g € H such
that E(g) = w + 1. Thus by induction, D(gd,,) = [c, g0,,] for all g € H and for
any j € {0,1,...,n —1}. Hence D(d) = [¢,d] for all d € B.

Step (v): By Definition [5.1.4, D is a K-linear map and since B is a K-vector

space basis for g, D is the inner derivation induced by c.

Therefore since D was an arbitrary element of Der(g), all derivations of g are

inner and so g = Der(KG) is a complete Lie algebra. O

5.4 The Lie Derivation Algebra of Abelian Group

Algebras

In this Section, g = Der(KG) is considered, firstly when G is a finite abelian p-
group which is not elementary abelian and secondly when G = X x H, where X is

an elementary abelian p-group and H is a p-regular abelian group.

Let H be a subgroup of an abelian group G such that H is contained within the
ring of constants of K'G. Then it is shown that the augmentation ideal, A(G, H)
is a differential ideal of (KG,d), for all derivations d of KG. This result allows
for the construction of a proper nonzero ideal of Der(KG) from A(G, H), when
the Sylow p-subgroup of G is not elementary abelian. If Der(KG) is complete,
then every element of Der(K(G) must map this ideal into itself. Example |5.4.3
shows that when K G = Fy(Cy x C5), this is not the case. Therefore Theorem m
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does not extend to all finite commutative group algebras. However, it is shown
in Example , that Der(Fy(Cy x Cy x Cy)) is complete. Thus, the Sylow p-
subgroup of G not being elementary abelian does not imply the existence of outer
derivations. Theorem proves that Der(K@G) is a complete Lie algebra, when
G be a finite abelian group such that G = X x H, where X is an elementary abelian

p-group and H is a p-regular group.

Definition 5.4.1. Let R be a ring. Define the ring of constants of R to be the set
of elements of R whose image under any derivation of R is zero and is denoted by

C(R).

Lemma 5.4.2. Let K be a finite field, let G be a finite abelian group and let
c1,c0 € C(KG). Then for all a,b e Der(KQG)

[c1a, cob] = c1e9]a, b] (5.22)
Proof.
[c1ra, cob] = cra(cad) — cab(cra) = creza(b) — cacib(a) = cieo]a, b].

]

Example 5.4.3. Let K be the finite field with 2 elements and let G = (z,y | z* =
y? = v~ 'y lzy = 1). By Theorem the set {g0,, hd, | g,h € G} is a basis for
g = Der(KG). Let S = {0y, x0s, Y0, 7Y0s, 0y, Ty, y0,, ¥°0r + xyd,} and so
S U x2S is another basis for g. Let D : g — g be the K-linear extension of the map
defined by s — 0 and 2%s — 2%s for all s € S. It is shown that D is an element

Der(g) that is not inner and so Der(K(G) is not a complete Lie algebra.

Let s be the K-span of S. It can be easily checked that s is a Lie subalgebra
of g. Let a,be S and let [a,b] = c and so c€ 5. Thus D(a) = D(b) = D(c) = 0. It
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is now shown that D obeys Equation (5.3 (Leibniz’s rule) on the products [a, b],

[a, 2?0] and [z%a, 2%b)].

[D(a),b] + [a, D(b)] + D(c) = [0,b] + [a,0] + 0 =0,
[D(a), 2*b] + [a, D(z?b)] + D(2*[a, b]) (5.23)
= [0,2%b] + [a, 2°b] + D(z%c) = 2°[a, b] + z%c = 0,

[D(x%a), 2%b] + [2%a, D(2*b)] + D([a,b]) = [2%a, 2%b] + [2%a, 2°b] + D(c) = 0.

Let a,b € g and so a = ag + 2%a; and b = by + 2%b; for some ag,ar, by, b1 € 5.
Then [a,b] is a K-linear combination of products of the form in Equation (5.4.3)).
Therefore by Equation (5.4.3)), D([a,b]) = [D(a),b] + [a, D(b)] and so D € Der(g).

Let H = (2*) and let I = {ud, + vd, | u,v € A(G, H)}. It is shown that I is

an ideal of g. A(G, H) is an ideal of KG and so it is closed under addition and

scalar multiplication. Thus [ is a subspace of g.

Let d € g and let z € I and so z = 2,0, + 210, for some 2,2, € A(G, H).

Therefore
[2,d] = [2005, d] + [210y, d] = 200,(d) + d(20) 0y + 210,(d) + d(21)0,.

Note that 0,(d) and 0,(d) are in g and zp, 21 € A(G, H) 50 200,(d), 210,(d) € I.
Also, H < C(KG) and so by Corollary 3.1.17, A(G, H) is a differential ideal of
(KG,d), for all derivations d of KG. Therefore d(zy),d(z1) € A(G, H) and so
d(20)0y, d(21)0y € I. Thus [z,d]| € I and so I is an ideal of g. However, 0, + 220, € I
and D(0, + °0,) = D(0,) + D(2%0,) = 2%0, ¢ I and so D is not inner.

Example 5.4.4. Let K be the finite field with 2 elements and let G = (xq, 21, 22 |
xg = af = a3 = x;'x; vy = 1). Let g = Der(KG). Then, by Theorem [5.2.9, g

has a trivial center. It has been verified using GAP [18], that the dimension of both
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Der(g) and g is 96. Therefore all derivations of g are inner and so g a complete

Lie algebra.

Definition 5.4.5. Let K be a finite field of characteristic p and let G be a finite
abelian group such that G = X x H, where X is an elementary abelian p-group
and H is a p-regular group. Let g = Der(KG), D € Der(g) and h € H. Define the
maps f(D,h): g — g by a — D(ha) — hD(a).

Remark 5.4.6. Fix D € Der(g) and h € H. Denote f(D,h) by f. Then for
a,begand ke K

f(a+b) = D(ha + hb) — hD(a + b) = D(ha) + D(hb) — hD(a) — hD(b)

= fla) + f(b),
f(ka) = D(hka) — hD(ka) = D(kha) — hkD(a) = k(D(ha) — hD(a)) = kf(a).

Therefore the maps f(D,h) are K-linear.

Lemma 5.4.7. Let K be a finite field of characteristic p and let G be a finite abelian
group such that G = X x H, where X is an elementary abelian p-group and H is
a p-reqular group. Let g = Der(KG). Then f(D,h)([a,b]) = [f(D,h)(a),b] =
la, f(D,h)(b)], for all D € Der(g), he H and a,b € g.

Proof. Fix D € Der(g) and h € H. Denote f(D,h) by f. Note that H « C(KGQG)
and so by Lemma [5.4.2] h[a,b] = [ha,b] = [a, hb] for all a,b € g. Applying D to

hla, b] gives

D(h[a,b]) = D[ha,b] = [D(ha),b] + [ha, D(b)]
= [hD(a),b] + [f(a), ] + hla, D(b)]
= h([D(a), ] + [a, D(b)]) + [f(a), b]
= h(D[a,b]) + [f(a),b].
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Therefore f([a,b]) = [f(a),b]. The bracket is antisymmetric and f is K-linear and
so f(la,0]) = f(=[b,a]) = =f([b, a]) = =[f(b),a] = [a, F(b)]. 0

Corollary 5.4.8. Let a,b € g such that a is in the centraliser of b in g. Then
f(D,h)(a) is also in the centraliser of b in g, for all D € Der(g) and h € H.

Proof. Leta € C(b,g), D € Der(g) and h € H. Then by Lemmal[5.4.7, [f(D, h)(a), b]
= f(D,h)([a,b]) = f(D,h)(0) = 0. Therefore, for all D € Der(g) and h € H
a € C(b,g) implies f(D,h)(a) e C(b,g). O

Note that in Lemmas and [5.4.10, the usual convention for an empty

intersection is used, that is S'(),., Tk = S, for all subsets S and T} of a set.

Lemma 5.4.9. Let K be a finite field of characteristic p and let G be a finite
abelian group such that G = X x H, where X 1is an elementary abelian p-group
with minimum generating set {x; | i =0,1,...,n— 1} and H is a p-reqular group.

Let g = Der(KG). Then

n—1 n—1

() C(@s,.8) [ C(2mla,,r8) = CLKG)Cs,.
7=0 m=1
n—1
Proof. Let a € g and write a = Z a;0y,, for some a; € KG. Then for all j =
i=0
0,1,....n—1
n—1
[0a,,0] = > [0, i8] = Z%%%
i=0
n—1
Therefore a € ﬂ C(0x,;,9) if and only if 0, (o) = 0, for all 7,5 = 0,1,...,n — 1,

j=0
that is oy € C(KG), for i = 0, 1, ...,n — 1. Thus the lemma is proved for the case

n =1 Assumen > 1andace€ ﬂ (Oz;»9). Then for allm =1,2,...,n -1

n—1

[aaxmaa:m] = Z[O‘za@yxm T 2 az T; xm T amaa:m'

1=0
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Therefore a € ﬂ C(o xj,g ﬂ C(2m0s,,,9) if and only if «,, = 0, for all m =
7=0
1,2,...,n—1, that is a = 040(93;0, where o € C(KG). O

Lemma 5.4.10. Let K be a finite field of characteristic p and let G be a finite
abelian group such that G = X x H, where X 1is an elementary abelian p-group

with minimum generating set {x; | i =0,1,...,n— 1} and H is a p-reqular group.

Let g = Der(KG). Then

n—

ﬁ xﬂ’g

1
C(2m0s,,,8) = C(KGQ)xo0y,-
0

n—1
Proof. Let a € g and write a = Z a;0;,, where a; € KG. Then for all m =
i=0
0,1,...,n—1
n—1 —
[ayxmaxm] = Z[Qlaxﬂxm Tm Z az T; ];m Tm xmaxm(az)axl)
i=0 i=0
m Z xmaa:m (07 x;
i=0
= (o — Tm0a,, () Ou,, — Z T O, (0;)0s,.
i#Em
n—1
Therefore a € ﬂ C(xm0y,,,9) if and only if vy, = 2,0, () and 0, (o) = 0,
m=0
for all i # m, that is, oy = v;x;, where v; € C(KG), for i = 0,1,...,n —1 . Thus
n—1
the lemma is proved for the case n = 1. Assume n > 1 and a € ﬂ C(xm0z,,, 9)-
m=0

Then forall j =1,2,...,n—1

n—1 n—1

[axja&] = Z[axﬁazaxl] = Z x; az T Z '.Yz x] z xz = ’Yjéjxj'
i=0 i=0

n—1 n—1

Therefore a € ﬂ C(0s;,9) ﬂ C(xm0s,,,9) if and only if v; = 0, for all j =
j=1 m=0

1,2,...,n—1, that is, a = Yx¢0s,, where vy € C(KG). O
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Lemma 5.4.11. Let K be a finite field of characteristic p and let G be a finite
abelian group such that G = X x H, where X 1is an elementary abelian p-group
with minimum generating set {x; | i =0,1,...,n— 1} and H is a p-reqular group.

Let g = Der(KG). Then D(ha) = hD(a), for all D € Der(g),h € H and a € g.

Proof. Fix D € Der(g), h € H and denote f(D, h) by f It is shown that f=0. Let

p e C(KG). Then by Lemmal5.4.9] pdy, € C(KG)0y, = ﬂ C(0r,, 9) ﬂ C(210s,., ).

Therefore by Corollary [5.4.8, f(pd.,) is also an element of C(K G)ﬁgcO and so
f(pOzy) = 'yp&xo, where fyp € C(KG). Moreover, by Lemma [5.4.10, pxo0,, €

C(KG)x0y, = ﬂ C(0s;,9) ﬂ C(2k0s,, 8). Therefore by Corollary(5.4.8| f(pzo0a,)
7j=1

= T,T00y,, Where 7, € C(K G). However, by Lemma [5.4.7]

’Ypﬁlo = f(pazo) = f([pazmxoawo]) = [pa:voa f(xoawo)] = p[aCEo’Tleazo] = Tlpaxo

and so vy, = 7yp for all p e C(KG).

The following formula is established by induction on the nonnegative integer

D(h™0,,) = h™D(04) + mmh™ 10,,. (5.24)

Base case: Let m = 0. D(h%,,) = h°D(0,,) + 011h™10,,. Assume that Equa-
tion ([5.24)) holds for m = k — 1. Then

D(h¥6,,) = hD(R*10,,) + f(h*10,,)
= h(hk_lD(éxO) + (k’ — 1)7’1hk_2ax0) + ")/hk—laxo
= h*D(0,,) + (k — D) hF10,, + mh*10,, = K"D(0,,) + kr A" 10,,.

Therefore Equation ([5.24) holds for m = k£ and so by induction it holds for all m.
Letting m equal to the order of h, ( denoted ord(h) ) in Equation ([5.24]) implies
ord(h)Tih™'0,, = 0. Therefore 77 = 0, since ord(h)h™! is a unit in KG. Thus
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f(200) = 1100z, = 0 and f(p0Oy,) = VpOzy = T1p0x, = 0, for all p e C(KG). Also
7, = 0, for all p e C(KG), since

0= [f(axo)>px08$o] = [axm f(pxoaxo)] = [890077—P:B06960] = Tp[aﬂvov :1:08300] = 7_,0&960'

It has now been shown that f(pd.,) = f(preds,) = 0, for all p e C(KG).

Assume that n = 1 and p = 2. Then for any g € G, either g € C(KG) or
g € zoC(KG) and so in either case f(g0y,) = 0. Therefore f = 0, since it is

K-linear and is zero on a basis for g.

It is now assumed that if n = 1 then p > 2. For any j > 0 and m > 0

f(x;naw]) = f([axovxox;nax]]) = [f(aﬁvo)vxoxgnax]] = [07$0x§naﬂﬁj] = 0.

Let a € g and write a = nZl a;0y,, where a; € KG for all ¢. It is now shown that a
can be written as a sum ngoproducts of elements whose image under f is zero.
Case 1 : a; € KGj for some j. Then [0,,,2;0;0,,] = ;0.

Case 2a : o; ¢ KG; for any j and n > 1. Then for ¢ # i, [240,,0,05,] = ka,0y,,
where k € K*.

Case 2b : a; ¢ KG; for any j, n = 1 and p > 2. Then oy = 2§, where oy € KG.
Ife > 1, then (e—1) 7 2004, TEA004, | = (e—1) " exEdn0uy — L5000, ) = TEA0zy =

0y, If € =1, then [2710,,, 220004, ] = 2712x00) = a0y,

Therefore a = »,[b;, ¢;], for some b;, ¢; € g such that f(b;) = 0 and so

flay = f( Dby ¢]) = Zf([bj,cj]) = > f(bs),¢5] = D0, ¢5] = 0.

J J

J

]

Definition 5.4.12. Let I be an ideal of a Lie algebra £. Then [ is a characteristic
ideal of £ if d(I) < I for all d € Der(£). This definition can be found in [37, pp.
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5474]

Lemma 5.4.13. Let K be a finite field of characteristic p and let G be a finite
abelian group such that G = X x H, where X 1is an elementary abelian p-group
with minimum generating set {x; | i =0,1,...,n— 1} and H is a p-reqular group.

Then the set

1=0

n—1
z{ZaiOmilaieA(G,H), forizo,l,...,n—l} (5.25)

is a characteristic ideal of g = Der(KQ).

Proof. By Lemma [3.1.2 the set {h — 1 | h € H} is a set of generators of A(G, H)
n—1

as an ideal of KG. Let be I. Then b = Z Z — 1), 0, where 5, , € KG. Let

D € Der(g). Then by Lemma [5.4.11 D(ha) = hD( ) for all a € g. Therefore

ZZ _1B7’ha ZZ 61)1611)

1=0 heH 1=0 heH

]

Theorem 5.4.14. Let K be a finite field of characteristic p and let G be a finite
abelian group such that G = X x H, where X is an elementary abelian p-group and

H is a p-regular group. Then Der(KG) is a complete Lie algebra.

Proof. Let g = Der(KG). By Lemma [5.2.9 g has trivial center and so it remains

to show that all derivations of g are inner.

Let &: KG — KG be the K-linear extension of the group homomorphism
defined by © — x and h — 1, for all x € X and h € H. Therefore, ker(®) is the
augmentation ideal A(G H) Let {z; | i =0,1,...,n—1} be a minimum generating

— n—1

setforXandleta—Zazx € g. Define ¢: g—>gbya»—>245ozZ - @IS

a Lie algebra homomorphlsm since, ¢(a) = 0, if and only if, @(az) 0, for all
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i=0,1,...n—1 and so ker(¢) = I, where I is the characteristic ideal of g defined
by Equation ([5.25)).

Fix D € Der(g). Let h = g/I and define d: h — b by d(¢(a)) = ¢(D(a)),
for all a € g. Let a,b € g such that ¢(a) = ¢(b), then D(a — b) € ker(¢), since
a—b € ker(¢) = I, which is a characteristic ideal of g. Therefore d(¢(a))—d(¢(b)) =
d(p(a — b)) = ¢(D(a — b)) = 0 and so the map d is well defined. Moreover, d is a
linear map as it is the composition of the linear maps ¢ and D. Also, d satisfies

the Leibniz rule, since for any a,b e g

d([¢(a), d(b)]) = d(¢[a, b]) = ¢(D]a, b]) = ¢([D(a),b] + [a, D(b)])
= [6(D(a)), 6(b)] + [6(a), p(D(b))]
= [d(¢(a)), (b)] + [¢(a), d(4(b))].

Therefore d € Der(h). By Theorem [5.3.8, b is complete and so d is inner, induced

by some element ¢(c) € b. It has been shown that the following diagram commutes:

¢(D(a)) = d(¢(a)) = [#(c), d(a)] = é([c,a]) and so D(a) — [c,a] € ker(¢). Let
d =D —ad(c) and so 0: g — I is an element of Der(g). Consider the restriction

of § to b, denoted by 01y. Let r,s € h, ke K and H; = H\{1}. Then

Oly(r) = > (h=1)rn,  dy(kr) = > (h=1)kry,
heHq heHq (526)

0ly(s) = D (h=D)sn, dly(r+s) = > (h—=1)(r + sn),

heHq heH;

for some 71, s, € h. Define the maps d,: h — h by r — 1, for all h € H;. Then by
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Equation (5.26)), 05, is K-linear. Also by Equation (5.26])

2 (h=1)0u([r, s]) = 61y([r,s]) = [61y(r), 5] + [, 314(s)]

h€H1

= 2 (h=D)ruys] + D5 (h=1)r,s4]

= Z (h — 1)([7’;“ s| + [r, Sh])
= N (= 1)([0u(r), s] + [, 8u(s)]).-

Therefore for all h € Hy, §, satisfies liebniz’s rule and so is an element of Der(h).

Thus §j, is inner induced by some element of f, denoted by ;. Thus

0ly(r) = Y, (h=1rn =Y (h=1)8(r) = > (h=1)[t,r] = [ Z(h_l)thﬂ"}-

h€H1 hEHl hEHl hEHl

Denote ).y (h — 1)ts by t. Then, by Lemma5.4.11} for any h € H and any r € b
d(hr) = hé(r) = h[t,r] = [t, hr],

and so ¢ is inner induced by ¢t. Therefore D(a) = [c,a] + d(a) = [c,a] + [t,a] =

[c + t,a] and hence D is inner induced by ¢ + t. O

5.5 Derivations of Abelian p-Groups

Lemma 5.5.1. Der(F,Cyn) is a perfect Lie algebra for all prime numbers p > 2.

Proof. Let g = Der(F,:Cyn), let Cpn = (x) and let B = {20, | i = 0,1,...,p" —1}.
Then by Theorem [2.3.4] B is a basis for g. It is shown that each element of B is a

product in g. There are 2 cases which are treated separately.
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Case 1: 2'0,, where i # —1 (mod p). Then
[(i+1) 0,20, ] = (i + 1) 10, (210, —0 = (i + 1)1 (i + 1)20, = 2°0,.
Case 2: z'0,, where i = —1 (mod p). Then i — 1 is invertible since p > 2 and so

[(i — 1) 20y, 2"0,] = (i — 1) (20,(2") 0, — 2°0,(2)0y)

(i — 1) Yiza" 10, — 2'0,) = (i — 1) (i — 1)2'0, = 2"0,.

Therefore all elements of B are in g’ and so g’ = g. O

Definition 5.5.2. A set S of elements of a Lie algebra £, generate £ if the smallest

subalgebra of £ containing the set S is £.

Lemma 5.5.3. Let g be a Lie algebra and let a,b,c,d € g, such that [a,b] = d.
Further, let D € Der(g) such that D(a) = [c,a] and D(b) = [¢,b]. Then D(d) =
[c, d].

Proof. This is a direct consequence of the Jacobi identity. Applying D to d = |a, b]

gives

Lemma 5.5.4. Let S be a generating set for a Lie algebra g. Further, let D €
Der(g) such that D(s) = [c,s], for all s € S. Then D is the inner derivation of g,

induced by c.

Proof. Let T ={teg| D(t) = [c,t]} and let a = [ty,t1], where o, ¢, € T. Then by

Lemma [5.5.3] a € T'. Therefore T' = g, since S < T and S generates g. O]
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Lemma 5.5.5. Der(F,:Cyn) is a complete Lie algebra for all prime numbers p > 3.

Proof. Let Cyn = {x) and let g = Der(F,:Cpn). Then B = {20, | i =0,1,...,p" —
1} is a basis for g. By Theorem [5.2.9] g has trivial center and so it remains to show
that all derivations of g are inner. Multiplication of elements of B is given by the

following equation.

[20,,270,] = 2'ja? 10, — 2¥ix" 10, = (j — i)™ 10, (5.27)

Therefore ™0, is not in the support of any element of the range of 2°0, if and

pr—1
only if m = 2i — 1 (mod p). Let D € Der(g) and write D(0 Z k;x'0,, where
1=0
ki € F). Then
p"—1 p"—1
[D(0,),20,) = ) kila'0p,200] = . ki1 —i)a'd,.
i=0 i=0

Applying D to the equation 0, = [0y, ©0,], gives D(0,) = [D(0), x|+ [0z, D(20,)].
Equating the coefficients of x™0d,, where m = —1 (mod p) implies k,, = k,,(1 —
(—1)) + 0, since ™0, is not in the support of any element of the range of d, and

s0 ky, = 0. Therefore D(0,) € R(0,) and so D(0,) = [c, 0], for some c € g.
Let 3;0, = D(x'0,) — [c,2%0,], for all i € {0,1,...,p" — 1} and so By = 0

Applying D to Equation ([5.27)) implies

(i = )D@70,) + [D(a'd,), 70,] + [20, D(a'8,)]
(i = D™ 70,] + (i = )Brsyre + [[es270,], 270,]
+ B 98,] + [0, [e, 7 0,]] + [270,, B0.]
i = e e8] + (= )Biegade + [0 [0, ] + [e, [0, 270,]]
00 290,] — [0, [290,, ] + [£90s, 8;0,].

(i
+[5
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Therefore
(Z - j)ﬁz-‘r]—lax + [/61692’ x]ax] + [I’Zaz, 6]650] = 0. (528)
By Equation (5.27)), [a, (b] = [Ca, b] = ([a,b], for any ¢ € F,:(aP).

Letting 7 = 1 and ¢ = 0 in Equation (5.28), implies 00, = 500, = [0s, £10x]
and so 3y € F(aP).

Letting j = 2 and i = 0 in Equation (5.28)), implies 23,0, = [0, 520,] and
hence (3, = 213 + (2, where (5 € Fe(aP).

Letting 7 = 2 and ¢ = 1 in Equation ([5.28)), implies

0 = _ﬁ2a;r + [ﬁlﬁz’x2aw] + [xa:c762aw]
= _Qxﬁlaz - 62(72 + 51 [aza ‘TZ(?(E] + [xaacy 25(351(’/396] + [a:(?x, 5_2695]

= —2310, — 6201 + 51220, + 261|205, x0,]| + 52[1’(917 Os] = —252593-

Therefore B = 0 and so > = 2z03;.

Letting j = 3 and i = 0 in Equation (5.28)), implies 3520, = [0, 830.] and
hence (33 = 313, + B3, where (3 € F«(xP). Thus B3 = 6226; + Bs.

Letting 7 = 3 and ¢ = 1 in Equation ([5.28)), implies

0= _2535x + [ﬁlaza xgaz] + [IawﬁBax]
= _12x2ﬁlax - 25_3(72 + 51 [aza 13(92] + ﬁl ['Ta:va 65172(91] + Bf&[xaxa (71]
= —121‘251633 — 26381 + 513332(91 + 516%2(91 — 63(91 = —333'25101« — 363(91

Therefore f; = 53 = 0 and so 0 = By = 1 = B2 = fs.

220, and 230, generate the Lie algebra g, since for any m # 2 (mod p) by
Equation (5.27)), [2%0,,2™0,] = (m — 2)2™10, and for any m = 2 (mod p),
[230,, 2™ 10,] = —22™710,. Therefore by Corollary D is an inner derivation
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of g. Thus, since D is a arbitrary derivation, g is a complete Lie algebra. O]

Lemma 5.5.6. Let p be an odd prime and let G = {x¢, x| ng = b = xyla agr, =
1) ~ Cp2 x C,. Then the set {6xo,x06xl,$82_13571’_18x0} generates Der(F,G) as a

Lie algebra.

Proof. Let g = Der(F,G) and let B = {g0,, | g € G, i = 0,1}. Then by The-
orem [2.3.4] B is a basis for g. Let s be the subalgebra of g generated by the set
{@Uo,:chﬁzl,xgz_lx’f—l@xo}. Then 0,, € s since, [Oyy, T00s,| = 0x,. Let i be an in-
teger such that mf):c]f*l&xo € 5. Then méx{&xo es, forall j =0,1,...,p— 1, since

. - — i—1 . . 2_1
Op,, ToX) Oy | = jxb2? ™ 0y, Thus in particular b ~ 0., € s.
1) ~0¥1YTo 0~1 0 0 0

It is now shown that xéx{&xo es, foralli =0,1,...,p>°~1land j =0,1,...,p—
1. Let i # —1 (mod p). Then, [(i + 1) 10y, 25" 2" "0,,] = ziz?'0,,. Now let
i=—1(mod p). Then, [ 10, 2522 0,,] = 2482t 0,,. Therefore zia? 10, €

1, p—1 :
" 0y, € 5. However, it has

s, for all i = 0,1,...,p* — 1 since, p > 2 and 3382_
already been shown that for j = 0,1,...,p—1, xéx{&mo € 5, whenever xf)a:f_l&m € S.

Therefore 2270, € 5, for all i = 0,1,...,p> —1land 5 =0,1,...,p — 1.

. . ; y . - . . _1 . .
Also, for any i and j, [227 0r,, T00s, | = 2507 0,, —jht 2™ 0,, and so 2827 0,, €
. - i1
s since jos 2" 0,, € 5. Therefore B < 5 and so 5 = g. O

Lemma 5.5.7. Let p be a prime number, let G = (x, 1 | a:gQ = b = xyla wer, =

1) ~ Cp2 x C, and let g = Der(F,:G). Then D(0,,) € R(0x,), for all D € Der(g).

Proof. [0py, w5204, ] = x5 a)0,, and so R(0y,) = {826y, | i # —1}. Let D €

Der(g) and write D(dy,) = >, ;. s j ko) 0py . ADDLyIng D t0 [Ong, T00sy] = Ouy
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implies

0= D(aﬂco) + [anUCO? D(a%)] + [xoalvm D(aﬂco)]

= Z ai,j,k‘ﬁ)x{axk + Z ai,j,k[zoa’to» ‘T(Z)x{axk] + [:anxo, D(awo)]

1,7,k 1,7,k
= Z ai,j,k(l +1— 50,k)$6$]16a:k + [xoéxov D(axo)L
1,7,k

where ¢ is the Kronecker delta function. Therefore 3, ;; a;jx(1+i— S0, ) L5 O, €
R(0,,) and so for i = —1 (mod p), 0 = a; k(1 + 7 — dox) = a;;k(dor). Thus
a;jo = 0, for all j and ¢ = —1 (mod p). Therefore D(0,,) = Z s j kT T Oy, +
i#—1,5,k
Z ai7j71$61'{§$1.

i=—1,7
Let m € {0,1,...,p — 1}. Then applying D to [0y, 2]"0r,] = 0 implies

[D(0ry), 270y | + [0z, D(2]*0s,]) = 0 and so [D(0y,), 7" 0s, | € R(0y,). Therefore

Z ai,j,k[xéx{alkﬂ xTaM] + Z ai7j71[xéx{8zl,x'l7””&zl] € R(amo)

Ziflﬂvk 12717]

Note that 2 i jx[Th2) 00y, ©70,, ] € R(04,) since the exponent of zy in each
’L?_é_lmng
summand is not congruent to —1 modulo p and so

Z aivj,l[xéx{amlvxrlnaml] = Z ai,j,l(m - j)xélﬂlﬂﬁjilaﬂcl € R(aﬂco)
i=—1,j i=—1,5
Therefore a; j1(m — j) = 0, for all j,m € {0,1,...,p — 1} and so a; ;1 = 0, for all
Jj # m. Letting m = 0 and then letting m = 1 implies a,;; = 0, for all ¢ = —1

(mod p). Thus D(0,,) = Z i ko2 O, € R(0yy).- O
i£—1,5,k
Lemma 5.5.8. Let p be a prime number and let K be a finite field of characteristic

p. Let G be a finite abelian group, let X be the Sylow p-subgroup of G and letY < G
such that G = X x Y. Let S = {x; | i =0,1,...,n — 1} be a minimum generating
set for X and let H = {(xf) x {af) x - x (&P _ > x Y. Then KH is the ring of
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constants of KG.

Proof. Letd,j € {0,1,...,n—1}. Then 0,,(z%) = 0 and by Corollary 0z, (y) =
0, for all y € Y. Therefore d(h) = 0, for all d € Der(KG) and h € H and so
KH < C(KG).

n—1
Let L = { [BES
i=0

Let o € C(KG) and write a = Y}, a;l, where a; € KH. Then, by Definition [5.2.6]

rie{0,1,....,p— 1}} Then L is a transversal of H in G.

D

0= s (@) = > @y, (1) = Y aRi()x; 'l =) aRi(1)L,

leL l#1 I#1

for all i € {0,1,...,n —1}. Let 1 # [ € L. Then R;(l) # 0, for some i and so
ap = 0, for all [ # 1. Thus o = a; € KH. Therefore C(KG) < KH and so
C(KG) = KH. O
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Chapter 6

Derivations and the Modular

Isomorphism Problem

This chapter begins by examining the derivation algebras of Fot Dom+1 and FotQom+1.
A basis for the derivation algebra of FotQom+1 is found and its dimension is shown
to be 2m*1 42, In Sectionthe centers of the derivation algebras are computed.
Der(Fot Dym+1) is shown to have trivial center, whereas the dimension of the center
of Der(FarQam+1) is 2. These results are used in Section [6.1.3]to show that For Dom-1

and Fo:(QQom+1 are not isomorphic as rings.

The ring of constants of a group algebra is a subring of the group algebra
and is studied in Section A ring homomorphism preserves subrings and so the
restriction of a ring homomorphism to the ring of constants is a ring homomor-
phism. Groups of constants are also considered and are used to show once again
that Fy(Cy x Cy) and Fo(Cy x Cg) are not isomorphic as rings. The ring of con-
stants of an abelian p-group algebra over I, is shown to be the image of the group
algebra under the Frobenius endomorphism. The Modular Isomorphism Problem
is an important open problem in the area of group rings. It was solved for abelian

groups in 1956 by Deskins |14]. The chapter concludes by giving an alternative
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proof of Deskins’ Theorem using derivations.

6.1 Derivations of FytDom+1 and FytQom1

Let n be an integer greater than 2 and let denote the dihedral group with 2n
elements and presentation {(z,y | 2" = y? = (2y)? = 1).
Let m be a positive integer greater than 1 and let denote the generalised

quaternion group with 2”1 elements and presentation {(a, b | b* = a2, ababt =

1.

Remark 6.1.1. A presentation of the generalised quaternion group (Qom+1 often

includes the relator a?” which is now shown to be redundant.

b(b*)b~! = b? (b* =a®)

—1

b(@® ot =a®" (ba = a™'b)

m—1

a= @ Dyl = g2

_(2m—1) _ a2m—1

a

Therefore b* = a?" = 1.

Let m be an integer greater than 1 and let Fy: be a finite field with 2 elements.
Assuming that Fot Dom+1 and Fot(Qom+1 are isomorphic as rings, then Theorem3.1.18
states that Der(Fot Dom+1) and Der(Fat(QQam+1) are isomorphic as additive groups.
In this Section it is shown that no such isomorphism exists and so the group rings
Fot Dom+1 and Fot(QQom+1 are not isomorphic as rings. This is a known result which

can also be found in [4] and [§].

Using n = 2™ in Theorem [2.3.11]implies that the dimension of the vector space

of derivations of Fgt Dom+1 is 2n + 4 = 2m+1 4+ 4,
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6.1.1 The Derivation Algebra of Fa:(QQom+1

Theorem refers to the maps f* and the classical involution of a group algebra.

The definitions of these maps are now recalled.

Definition 6.1.2. Let G = (S | T)) be a group, where S is a generating set and
T is a set of defining relations for G. Let Fg be the free group on S. Let R be

a commutative unital ring and f a map from S to RG. Define f*: Fs — RG as

follows: )
[ (wi) = < —w; f(w; Nw;  if w; € ST, (6.1)

and letting w = [[F_, w;, where w; € S U S, define

Definition [3.2.34] is repeated here for ease of access.

Definition 3.2.34. The classical involution of KG, denoted by () is a map from
KG to KG defined by (3 . ag9)® = X e ag9 "

Let g = Der(FyQom+1), let d € g and let d(a) = r + sb, where r,s € Fola).
Then for j € {1,2,...,2m71 — 1}

2j—1 2j—1

.

d(a*) = a‘d(a)a® "1 = Z a'(r + sb)a® "1
i=0 i=0
251 251 2j—1
_ a23—17,+ Z a2z—2]+18b — 2ja2]—1r+a1—2] Z CL2ZSb (63)
i=0 i=0 i=0
251
=ql7% Z a’'sb.
i=0
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Theorem 6.1.3. The dimension of the vector space of derivations of FotQom+1 1s

AL

Proof. The relators chosen for Qgm+1 are a®" b2 and abab~!. Therefore by Theo-

rem [2.2.5 f: {a,b} — FaQam+1 can be extended to a derivation of Fat(QQom+1 if and

only if

*(a® 'b?) = 0 and (6.4)
f*(abab™") = 0. (6.5)

Assume that f can be extended to a derivation of FatQom+1 and write f(a) = r+ sb

om_1 om_1
and f(b) = u + vb, where r,s,u,v € Fo:{ay. Write r = Z ral, s = Z s;a’,
i=0 i=0
om_1 2m_1
u = Z u;a’ and v = Z v;a', where 1y, s;,u;,v; € Fy:. By Equations (6.2) and
i=0 i=0

(6.4) and since b2 = a2""" is a central unit in ForQom+1,

0= f*a®" "1 = f(a® WP +a®" ) = (@) + fH(BP).

am—1_1
Therefore by Definition [6.1.2] Equation (6.3)) and denoting Z a* by a?
i=0
0= f*(a® ")+ f(0)b +bf(b)
am—1_1
m—1 ;
=a*" ! Z a®sb + (u + vb)b + b(u + vb)
i=0

= sac;?b + ub + vb?® + u®b + v®h?

— (v +v®)a®" + (saa® + u + u®)b.
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Now by Equations (6.5)), (6.2)) and (6.1

0= f*(abab™") = f(a)bab™" + af(b)ab™" + abf(a)b™" + abaf*(b™")
= (r + sb)bab™' + a(u + vb)ab™" + ab(r + sb)b~" + abab™' f(b)b~!
= (r + sb)bab™' + a(u + vb)ab™ + ab(r + sb)b~" + abab™ (u + vb)b*
=ra~' + sab + ua®b® + v + r®a + s®ab + ub® + v

=ra '+ sab + uaa®" b + 1% + s®ab + ua®" b

=rat + 1% + ((s + 5®)a +ua®" (1 + a?))b.

Therefore the map f can be extended to a derivation of FotQom+1 if and only if

v+0v® =0, (6.6)

saa? +u + u® = 0, (6.7)

ra"' +r®a =0, and (6.8)

(s +5®) +ua® (a' +a) = 0. (6.9)

Each of these equations will be considered. First note that for any element
om_1

c= Z cia’ of Fyla),
i=0

2m—1 am-l_1 am-1_1
C+ ® = Z (CZ‘ + Cfi)al = Z (Ci + Cfi>(ai + aiz) = 2 (Ci + C*i)(ai + ail)
i=0 i=0 i=1

By Equations and ((6.10)
2m71_1 . .
0=0v+0® = Z (vi +v_)(a" +a™).

i=1

a'+a=0ifand onlyifi =0ori=2""1 Thusv; =v_;, fori=1,...,2m 1 -1
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and so
2m—1_1

e Z vi(a' +a™"). (6.11)

2m
v = Vg + Uym-10

Equation shall be considered next.

om_1 om_1 om_1
~1 i+l —1 i—1 ;
0=rat+r® = Z rigia T aT r_gona’a = Z (rig1 +7_ip1)a’
i=0 i=0 i=0
2mfl_1 2'"7‘71—1
i i i i
= > (i +ro)(d +at) = (riv1 4+ r—ic1) (@ +a™).
i=0 i=1
Therefore r;,.1 = r_;41, fori =1,2,...,2™ 1 —1 and so
am-1_1
m—1 ; i
r=ria+rom-1a> T+ Z rigi (@ +ah). (6.12)
i=1
am-1_1 2m-l_
Now consider Equation (6.7)). Let ky = Z s9; and let k; = Z $9i41-
i=0 i=0

Then saa® = kla,Az + k:oao:?. Also, 1 is not in the support of u + «® and so by
Equation (6.7), 1 is not in the support of saaAQ, hence k; = 0. Therefore by
Equation (6.10))

am-1_1
0 = saa? + u + u® = koaa® + Z (u; +u_)(a" +a™").
i=1

Furthermore, for any 4, a® is not in the support of aa? and so

Ug; + U_o; = 0, fori=1,2,...,2" 2 —1 and (6.13)

k?(] = U2i+1 + U_9;_1, for 1 = 0, 1, ey 2m—2 — 1. (614)

Thus using Equation (6.13))

am—2_1 am—1_1

' + 2 u2i(a% + a72i) + Z UQi+1CL2i+1. (615)
i=1 =0

2m
U = Uy + Ugm—10
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By Equation ([6.14))

2m71_1 2m72_1 2m72_1
2i+1 2i+1 —(2i+1
Z U2i+10 = Z U2i+10 + Z U—(2i+1)@ (20+1)
i=0 i=0 i=0
2m—2_1 2m—2_1
2i+1 —(2i+1
= Z U;+10 + Z (u2i+1 + ko)a (2i+1)
i=0 i=0
2m—2_1 2m—2_1
2i+1 —(2i+1 —(2i+1
= Z U2i+1<CL ot +a (2i+ ))+ Z k’QCL (2i+ )
i=0 i=0

Therefore by Equation (6.15])

2m—171 2m—271

g Z u(a" +a”") + Z koa 1. (6.16)
i—1 i=0

2m
U = Uy + Ugm-10Q

Equation shall now be considered. Using Equation (|6.10)

2m—1

-1 + CL) = Z (87; + S_; + Ugm—14441 + Umel+i,1)(li. (617)
1=0

0=(s+5®) +ua® '(a

a®""" is not in the support of s + s® and so 1 is not in the support of u(a™! + a).
Thus u; +u_; = 0 and so by Equation (6.14)), ko = ugi+1 + u—(2i+1) = 0, for i =

0, 1, R 72m_2— 1 AISO, Si"‘S,z‘ = UQm—1+i+1 +U2m—1+i,1, for all Z = O, 1, ey 2m— 1

Thus since k; = 0

2m—171 2m—271 2m—271
0= Z S$2i4+1 = Z (82i41 + S—(2i+1)) = Z (Ugm—149519 + Ugm—1,9;)
i=0 i=0 i=0
2m=2_2 2m—2_1
= ( 2 U2m*1+2z’+2) + Ugm—149(9m—2_1)42 + Ugm-142(0) + Z Ugm—149;
1=0 i=1
am—2_1
= Z (’U,2m—1+2i + U2m71+2i) + Uo + Ugm—1 = U + Ugm—1.
i=1
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Therefore ug = ugm—1 and since kg = 0, Equation (6.16)) can be written as

am—1_1
uw=up(l+a>" )+ Z u;(a’ +a™"). (6.18)

=1

So u; = u_; for all i and by Equation (6.17)), s;+s_; = ugm-14;1+Ugm-1,;_1, for

’i = 1, 2, e ,2m_1—1. ThUS 57;"—5,@' = Ugm—-1_;_1 +U2m—1,i+1, for'i = 1, 2, . 72m_1—
2m-1_1
1. Recall that Z s9; = kg = 0 and so
i=0
am—1_1 2m—2_1
So = Z S9; = Som—-1 + Z (821' + S_QZ')
i=1 i=1
2m72_1
= Sgm-1 + Z (Ugm—1_9i—1 + Ugm—1_9;41) = Sgm—1 + Ugm—1_1 + U1,
i=1

since the first summand of the i*" term of the sum cancels with the second summand

of the i + 1% term of the sum. Therefore

2m7171 2m7171
om—1 ; _; _;
s = s (1+a™" ) bugmatu+ Y si(a’+a )+ Y (upmer g Htigmor i)
i=1 1=1
Let j =7 — 2. Then
om—1_1 om—1_1 om—1_3
-1 __ —1 —j—2
(Ugm—l,i,1 + Uzm—l,lqu)a = Ugm—-1_; 14 =+ Ugm—1_;_1Q
=1 1=1 Jj=-1
2m-l_3
— —i—2
= Z Umel_i_l(CL "+at )
i=1
gm—1

m—1 _ _
+ua? P uga® T T+ ugmeraTt 4 ugm-1_qa 2
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However by Equation (6.18)), ugm-1 = ug and so

am-1_1
Ugm—-1_1 + U] + Z (Ugm—l_i_l + u2m71_,~+1)a_’
i=1

—up(@® T+ a ) Fur (1 +a® ) + ugmer g (14 a72)

2m_1_3 . .
+ Z u2m71_i_1(a_z + a_’_Q).
i=1
Therefore
am—1_1 am—1_3
m—1 : . . .
s=sym-1(l+a* )+ Z si(a"+a™") + Z Ugm_i_1(a"" +a""?)
i=1 i=1 (6.19)

+ug(@® T o) +u (1 +a® ) +ugm (1 4+ a72).

Therefore by Equations (6.12)), (6.18]), (6.19) and (6.11]), f can be extended to

a derivation of FotQom+1 if and only if

am-1_1
r=ria+ remo1ya® U Z Tipr (@ 4+ a7,
_— =1
w=up(l+a®"") + Z ui(a' +a™"),
iz?l"“—l gm—1_3
s=sma(l+a™) + Z si(a' +a™") + Z Ugm-1_;_q(a”™" + a7 (
i=1 i=1

6.20)

+up(a® T+ a ) +ur(1+a®" ) +ugm (1 +a7?) and

am—1_1

g Z vi(a' +a™"),
i=1

2m
V= Uy + Vgm-10

where 11,79, ..., Tom-1,1, S1,S2,...,S9m—1, Ug, UL, ..., Usm—-1_1 and v, vy, ..., Vgm-1
are elements of Fy:. Therefore by counting the coefficients the dimension of the
vector space of derivations of FotQom+1 is 2™~ 1 + 1 + 2m—1 . om=1 L om=1 4 1 —

omtl 4 9, ]

Remark 6.1.4. Equations ([6.20)) can be used to form a basis for the derivation
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algebra of FotQom+1.

6.1.2 The Centers of the Derivation Algebras of the Dihe-

dral and Quaternion Group Algebras

In this subsection the centers of Der(IFyt Dom+1) and Der(FotQom+1) are found.

Definition 6.1.5. Let I be the ideal of Fo:Qom+: generated by 1+ a? and let J be

am—1_1

the ideal of Fot(Q)om+1 generated by a2 = Z a*.
i=0

Remark 6.1.6. Let o € FotQom+1 and write a = x + yb, where z,y € Foe{a). Then
(14a®)(z+yb) = 2(1+a*)+yb+yba ? = 2(1+a*)+yba %(1+a*) = (z+ya’b)(1+a?).

Thus the two-sided ideal I is the principal left ideal generated by the element 1+ a?.

om_q 9m_1
Also JI = 0, since a? is central and a?(1 +a?) = 0. Let 3 = Z cia' + Z kia'b e
i=0 i=0
Ann(I), where ¢;, k; € Fot. Therefore
0= B(l + CL2) = Z ((Cz + ci_g)a’ + (k’Z + k:i_g)a’b),
i=0

which implies ¢; = ¢;_o and k; = k;_o for ¢+ = 0,1,...,2™ — 1. Therefore § =
coaA2 + claaAQ + k:OaAQb + klac;?b and so 8 € J. Therefore J is the annihilator of I in

IFQt Q2m+1 .

Remark 6.1.7. Let E = {e € Fy(a®) | |supp(e)| is even}. Then E < I since
1+a*+a*+ -+ a*?)(1+a*) =1+ a* €I, for any integer . Thus aF < I.
Note that for any integer 4, a’ + a™" is either in £ or aE and so a' + a* € I. Let

d € Der(FqtQom+1) and write d(a) = r + sb and d(b) = u + vb, where r,s,u,v €
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Fyi{a). Then by Equations (6.20)),

om—1_1
gm—1 i+1 —i41
T =1r1a+ rom-1,1a + rom-1,1a(1 + a ) + Z ris1(@tt + a7t
i=1
om—1_1
= (r1 + rom-141)a + rom—1,1a€0 + Z Tis1€4,
i=1

where e; € E < [ for j =0,1,...2™"1 — 1. Similar computation for u, s and v give

r = (ry 4+ rom-1,1)a + 7, where 7 € I,
uel,
(6.21)
sel, and

v = (vg + vgm-1) + U, where v € [.

Lemma 6.1.8. a2 € C(FarQom1).

Proof. Let d € Der(FotQam+1) and let d(a) = r + sb, where r, s € Fa(a). Then by
Equation (6.3))

(2m—2j)—1 2m 251
d(a?" %) = q!~2"=2) Z aZish — gt Z a2ish.
i=0 =0
Letting k = i + 25 gives
‘ 2 . 2m
d(a®" %) = ' Z a? W gh = ¢!~ Z a** sb. (6.22)
k=2j k=2j
Also
2m—1 am-1_1 oA
Z Z a* + Z a® =a?+a?=0. (6.23)
1=0 —om—1

Thus by Equation (6.23)), adding Equations (6.3) and (6.22)) gives

2m—1
d(@*) +d(@"¥) = a'™ ), a¥sb = a""H(0)sb = 0. (6.24)
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Therefore Letting k = —i + 2™m~! gives

R om—1l_1 om—2_1] . gm—1_1 '
da®) = > d@)= > da®)+ > d(a*)
i=0 i=0 j=om—2
2m—271 . 2m—2
= Z d(a*) + d(a*" =)
=0 k=1
2m—2_1

—d() +d@ )+ Y (da¥) + "))
om—1_1 ‘ N
—0+a" 2" Z a¥sb+0=a""2" " a2sh = 0,
i=0

since by Remark s € I and J is the annihilator of 1. O

Remark 6.1.9. Recall from Definition that an ideal I of a ring R is a differen-
tial ideal of R if d(I) < I for all d € Der(R). By Lemma and Corollary|3.1.16]

J is a differential ideal of FotQom+1.

Lemma 6.1.10. Let 6 € g = Der(FotQom+1) and write §(a) = w + xb and §(b) =
y+2zb, where w, x,y, z € Faelay. Then § is in the center of g if and only if x =y = 0,

w = craa® and z = cya?, where ¢1, ¢y € For.

Proof. Let d be an arbitrary element of g and write d(a) = r +sb and d(b) = u+vb,

where 7, s,u, v € Fo:(a).

Assume that § is in the center of g, denoted by Z(g). Then [§,d] = 0, that is,
d(d(a)) + d(6(a)) = 0 and 6(d(b)) + d(6(d)) = 0.

Let v=1and r =s =u =0 and so d(a) = 0 and d(b) = b. Then

0=10(d(a)) +d((a)) = 5(0) + d(w + xb) = d(w) + d(z)b + xd(b) = xb, and

0=4(d(b)) +d(6(b)) =6(b) +d(y + 2b) =y + zb+ zd(b) = y.
Therefore x = y = 0.
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Let » = aand s = u = v = 0 and so d(a) = a and d(b) = 0. Write

m_1 2am—1
w = Z w;a® and z = Z z;a'. Then
=0 =0
2m—1
0 = (d(a)) + d(6(a)) = 6(a) + d(w) = w+ Y| wid(a') =w+ Y wa’, and
;Tn()_l | odd z‘
0 = 3(d(b)) + d(8(b)) = 0 +d(zb) = d(2)b = ). zd(a')b= ) za'b.
i=0 odd i

Therefore w; = 0 for all even ¢ and z; = 0 for all odd 7.

Let v=a+a'andr =s=wu=0and so d(a) =0 and d(b) = (a +a')b.

Then

0 =4(d(b)) +d(6(b)) = 5((a+a"")b) + d(zb)
=d(a+a Mb+ (a+a )o(b) + zd(b)

=dla+a b+ (a+aNzb+z2(a+aNb=25(a+a )b

Thus by Equation (6.1]), 0 = d§(a) + 6(a™!) = w + a 'wa™" and so w(1 + a?) = 0.
Therefore w € J. However, w; = 0 for all even 7 and so w = claaA2, where ¢; € Fot.
Let s=a+a'andr =u=v=0andsod(a) = (a+a')band d(b) = 0. By

Lemma [6.1.8] e C(FytQam+1) and so

0 = 6(d(a)) + d(5(a)) = 6((a + a)b) + d(ciaa?)
= d(a+a )b+ (a+a3b) + cia2d(a)
— craa®b + a_l(clac??)a_lb +(a+at)zb+ claAQ(a +a )b

= (a+a')zb.

Therefore, z(1+a?) = 0 and so z € J. However, z; = 0 for all odd ¢ and so z = CQaAQ,

where ¢y € Far.
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Conversely, let 6 € g and assume 6(a) = cr1aa? and i(b) = coa2b, where c1, ¢, €
Fy:. Therefore §(z) € J, for all # € Fo:Qam+1. Let z € I and so by Remark[6.1.6] z =
2(1+a?), for some % € FarQom+1. Also, §(1+a?) = §(a)a+ad(a) = c1a2 + cya2 = 0.
Hence 6(z) = 0(2(1+4a?)) = §(2)(1+a*) = 0, since §(2) € J and J is the annihilator
of I. Therefore §(I) = 0. By Remark se l and r = 7a + 7, where 7 € Fy

and 7 € I. Therefore

0(d(a)) + d(6(a))

T+ sb) + d(claaQ)

+7) + ()b + sd(b) +clc/L\2(T+sb)

o
o(ra
(Claa2) + 0+ 0b+ 8(02a2b) + cla2(ra + 7 + sb)
7

claa2) + 0+ claQ(m) +0+0=0.

Also by Remark [6.1.7, w € I and v = 0 + v, where © € Fy and v € I. Thus
d(u) = §(v) = 0. Therefore

S5(d(b)) + d(5(b)) = §(u + vb) + d(c2a2b) = 0 + v5(b) + caa?d(b)

= U(@c?zb) + CQC/L\Q(U + vb) = 026:2(u) =0.

Therefore ¢ is in the center of g. O

Lemma 6.1.11. The derivation algebra Der(Fot Dom+1) has trivial center.

Proof. Let g = Der(Fot Dym+1) and let d be an element of g. Then by Theorem 3.11
of [12], d(x) = Ay + xf2y and d(y) = (2, where A € C(zy), the centraliser of zy in

Fyt Dym+1 and (2 € C(y), the centraliser of y in Fat Dom+1.

Let 6 € g and so 0(x) = py+xoy and §(y) = o, where p € C(zy) and 0 € C(y).

Assume that ¢ is in the center of g and so [4,d] = 0.
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Let 2 =0and A =1 and so d(x) = y and d(y) = 0. Therefore

0=10(d(y)) +d(6(y)) = (0) + d(c) = d(o), and

0=10d(d(z)) +d(5(x)) = 6(y) + d(py + zoy) = 0 + d(p)y + yoy = d(p)y.

Therefore d(o) = d(p) = 0.

Let 2 =y and A = zy and so d(x) = 0 and d(y) = y. Therefore

0 = 3(d(y)) + d(3(y)) = 5(y) + d(o) = o, and

0 = d(d(z)) + d(6(x)) = 6(0) + d(py) = pd(y) = py.

Therefore 0 = p = 0 and so § is the zero derivation. Hence Der(Fyt Dom+1) has

trivial center. O

6.1.3 Using Derivations to Distinguish Fat Dom+1 and FatQgm+1

Assuming that Fot Dom+1 and FatQQom+1 are isomorphic as rings, then Theorem [3.1.18

states that Der(Fgt Dym+1) and Der(Fo:Qqm+1) are isomorphic as additive groups.

The results of Sections [6.1.1] and [6.1.2] are now used to show that no such isomor-
phism exists and so the group rings Fot Dom+1 and FotQom+1 are not isomorphic as

rings.

Lemma 6.1.12. Fot Dom+1 and FotQom+1 are not isomorphic as rings.

Proof. By Theorem [2.3.11| the dimension of Der(FatDom+1) is 2n + 4 = 2™+ + 4,
By Theorem the dimension of Der(FyQqm+1) is 27! + 2. Therefore by
Theorem [3.1.18] Fot Dom+1 is not isomorphic to FotQQom+1 as rings. O

Alternatively using the results of Section [6.1.2] we can show that they are not

isomorphic as K-algebras.
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Proof. By Lemma/|6.1.11|the dimension of the center of Der(IFat Dom+1) is 0, whereas
by Lemma [6.1.10| the dimension of the center of Der(FotQom+1) is 2. Therefore by
Theorem [3.1.20], ot Dom+1 is not isomorphic to Fo:Qom+1 as K-algebras. O

6.2 The Ring of Constants and the Modular Iso-

morphism Problem

Remark 6.2.1. Let ¢: R — T be a ring homomorphism. Then the restriction of

¢ to a subring S of R is a ring homomorphism from S into 7.

Definition 6.2.2. Let R be a ring with 1. Denote the group of units (invertible
elements) of R by U(R).

Definition [3.1.15]is repeated here for ease of access.

Definition 3.1.15. Let d be a derivation of a unital ring R and let A be a subset
of Der(R). Then the subring of R defined by [Ca]= {c€ R | d(c) = 0 for all d € A}
is called the ring of constants of A. If A is a set with one element d then C, will
be denoted by [C4 and if A = Der(R) then Ca will be denoted by C(R) and is then

called the ring of constants of R.

Lemma 6.2.3. Let R be a ring with 1 and let V' be a subgroup of the unit group

of R. Then V() () Cq is a subgroup of V' for all subsets A of Der(R).
deA

Proof. Let d € Der(R) and let H = V[)C4. Then H is non empty as 1 is an
element of both V and C4. Let w,v € H. Then d(uv) = d(u)v + ud(v) =0+ 0 =0
and so wv € H. Also, 0 = d(1) = d(uu™') = d(u)u™' + ud(u™') and so u™' € H.
Thus H is a subgroup of V. Therefore V(] (1] Cq4 is a subgroup of V for all subsets

deA
A of Der(R), since it is an intersection of subgroups of V. n
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Definition 6.2.4. Let R be a ring with 1, let V' be a subgroup of U(R) and let
A be a subset of Der(R). Then denote by the subgroup of V' defined by

V() () Cs If Ais a set with one element d then VC, will be denoted by VCq4
deA

and if A = Der(R) then VC, will be denoted by VC(R). Also, define the group of
constants of R, denoted by [UC(R)|to be U(R)(C(R).

Remark 6.2.5. Let K be a finite field and let G be a finite group. Then for
a,be Z(KG) and o € KG

ala+b) =aa+ ab=aa+ ba = (a + b)a, and

aab = aab = aba.

Therefore Z(KG) is a subalgebra of KG.

Lemma 6.2.6. Let K be a finite field and let G be a finite group. Then C(KG)
the ring of constants of KG, is a subalgebra of Z(KG), the center of KG.

Proof. Let a be an element of KG such that o ¢ Z(KG). Then there exists an
element 5 of KG such that [5,a] # 0. Thus dg(a) # 0, where dg is the inner
derivation of K'G induced by . Therefore a ¢ C(KG) and so C(KG) < Z(KG).

Let a,b e C(KG) and let k € K. Then for any d € Der(KQG)

d(ab) = d(a)b + ad(b) = (0)b + a(0) = 0 + 0 = 0,
d(a+b) =d(a)+d(b)=0+0=0,
d(ka) = kd(a) = k(0) = 0.
Therefore C(KG) is a subalgebra of Z(KG). O

Lemma 6.2.7. Let G and H be a finite abelian groups, let K be a finite field and
let V' be a subgroup of U(KG). Let ¢: KG — KH be a ring homomorphism
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such that I = ker(¢) is a differential ideal of the differential ring (KG,d). Define
d: KG/I — KG/I by d(a+ 1) = d(a) + 1. Let A be a subset of Der(KQ), let
A={d|de A} and let V = ¢(V). Then the restriction of ¢ to VCa is a group

homomorphism to VCA—.

Proof. By Lemma [3.1.9, d € Der(KG/I) and by Lemma [3.1.11, ¢ od = d o ¢.
Therefore the restriction of ¢ to VC, is a group homomorphism to VCJ. Thus the

restriction of ¢ to VC, is a group homomorphism to VCz since VCa = (| VCq. O
deA

Remark 6.2.8. Let G and H be finite groups (not necessarily abelian) and let K
be a finite field. Let ¢: KG — KH be a ring isomorphism, let d € Der(KG) and
define d = ¢ od o ¢p~'. Then by Theorem [3.1.20, d € Der(KH). Let A be a subset
of Der(KG) and let A = {d | d € A}. Let V be a subgroup of U(KG) and let
V = ¢(V). Then the restriction of ¢ to VC, is a group isomorphism onto VC 5 In
particular the unit group of the ring of constants of K'G' is isomorphic to the unit

group of the ring of constants of K H.

In Section , it was shown that all nilpotent derivations of FoCy x Cy have a
nilpotency index less than or equal to 8 and also that there is a nilpotent derivation
of FoCg x C5 that has a nilpotency index of 13. This shows that the group algebras
are not isomorphic as K-algebras. It is now shown that they are not isomorphic as

rings by computing their respective unit groups of constants.

Example 6.2.9. Let G = (z,y | 2* = y* = 27y~ tay = 1) and let K be the
field with 2 elements. Then C(KG) is the K-span of {1, 2%, y? xz?y?*}. Therefore
UC(KG) = {1, 22, y*, 2%y? 1+2z, 2% +2z, y*+2, 2°y*+ 2}, where z = (1 +2%)(1+

y?). (a4 2)* =a® for all a € KG and so UC(KG) ~ C3 since it has exponent 2.

Example 6.2.10. Let H = (z,y | 2® = y* = 27 'y7lay = 1) and let K be the
field with 2 elements. Then C(K H) is the K-span of {1, 22, % 2°}. Therefore
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UC(KH) = {1, 22, z*, 25 142z, 2®+2z, z*+2, 25+ 2}, where 2z = (1+2?)(1+2%).
(a+2)% = a®for all a € KH and so UC(K H) ~ Cy x Cy since it is an abelian group

of order 8 with elements of order 4 but none of order 8.

Examples|6.2.9/and |6.2.10|show that UC(K G) and UC(K H) are not isomorphic

as groups and so by Remark [6.2.8, KG and K H are not isomorphic as rings.

Theorem 6.2.11. [40] Let 6: G — H be a group homomorphism. Then there exists
a unique ring homomorphism, @: RG — RH such that ©(g) = 0(g), for all g € G.
If R is commutative, then © is a homomorphism of R-algebras. Moreover, if 0 is

an epimorphism (monomorphism), then © is an epimorphism (monomorphism,).

6.2.1 The Ring of Constants of Dihedral Group Algebras

Let K be a finite field of characteristic 2 and let Dom+1 = (x,y | 22" = ¢? =
(ry)? = 1) be the dihedral group of order 2™*! where m € {2,3,4,...}. In this
section C(K Dym+1), the ring of constants of the dihedral group algebra K Dym+1 is

calculated.

Theorem 6.2.12. Let K be a finite field of characteristic 2 and let Dom+1 be the

dihedral group of order 2™+ where m € {2,3,4,...}. Then the set
B={1, 2*+27%|i=1,2,...,2"%2 -1}

is a basis for C(K Dom+1), the ring of constants of K Dam+1.

Proof. By Lemmal6.2.6] C(K Dom+1) © Z(K Dym+1). By Lemma [2.3.8 Z(K Dym+1)
is a 2™~ 1+3 dimensional subspace of K Dym+1 with the set {1, 22", a'+z~ !, 22+
—2

272, L, a2 T gy, a::UA2y} acting as a basis. Let V be the K-span

of B. It is now shown that V' < C(K Dagm+1).
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Let d € Der(K Dym+1) and write d(z) = a + by, where a,b € K{(x). Then by
Lemma 2.2.1]

i1 i—1 i1
d(z") =) 2/(a+by)z" 77! = Z e + 2t Z ¥ by
=0 =0 =0

i (6.25)
=iz a4+ 2t Z ¥ by.
j=0

Therefore d(z') = iz"'a + vy, for some v € K{(zx). Also 0 = d(1) = d(z'z™") and
so d(z™") = z7'd(x")z~". Therefore
dz' +27") =ix" la+yy + 2" (i2" la + yy)a

(6.26)

=iz ra +yy +ir laxTH + yy = ix' a1 + 27 ).

By Equation ([6.26)), d(z* + %) =0 fori =1,2,...,2" 2 —1. Also d(1) = 0 and
soV c C(KDQm+1).

It is now shown that C(K Dym+1) < V. Let ¢ € C(K Dgm+1) and write ¢ =
kO:UAQy + klx:cAQy + ¢, where ko, k1 € K and ¢ € K{z). Theorem gives a basis
for Der(K Dom+1). Let d; be the derivation of K Dym+1 defined by dp(z) = 0 and
di(y) = y. This implies d;(K{x)) = 0 and so

0= d1<C> = dl(k0£2y+]€11'5(/]\2y+§> = ]{/’0{;2d1<y) +k1IJ/]\2d1(y) +0= kZQZL,'\Qy'i‘]{?l[EI/'\zy

Therefore ko = k1 = 0 and so ¢ € C(K Dom+1) [ K{x).
Let dy be the derivation of K Dym+1 defined by dy(z) = = + y and day(y) = y.
Letting ¢ = 2™ a = x and b = 1 in Equation ([6.25) gives
am-1_1

do(z®" 1) = 212y g Z 22y = 0+ 222" 22y = a7y (6.27)
=0
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Letting a = x in Equation (6.26) gives
do(z" + 27" =da"(1 + 27%) = 2’ + 27, for odd i. (6.28)

It has been shown that ¢ € C(K Dym+1) () K{z) and so ¢ can be written as ¢ =
2m—2

cor?" ! + Z (¥ + 7YY 4o, where ¢; € K for j € {0,1,...,2" %} and

=1
v €V < C(K Dgm+1). Therefore by Equations (6.27)) and (/6.28)

2m—2

0= dQ(C) = COdQ(ZETnil) + Z Cidg(l’%_l + IL‘_(%_I)) + dg(’l})

=1
2m—2

= coraly + Z (¥ 4 2~y 40,
i—1

Therefore ¢; = 0, for j € {0,1,...,2™ 2} and so C(K Dym+1) < V. B is a linearly

independent set and so B is a basis for V' = C(K Dam+1). O

6.2.2 The Ring of Constants of Quaternion Group Algebras

Let K be a finite field of characteristic 2 and let m be a positive integer greater
than 1. Let denote the generalised quaternion group with 2™*! elements

and presentation {(a,b | V* = a?" ", abab™! = 1).

Lemma 6.2.13. The set

—1

(1, a®', @, aa®b} o {d’ +a" |i=1,2,... 2" — 1}

forms a basis for Z(KQqm+1).

Proof. By Lemma the set of all finite conjugacy class sums forms a basis

for Z(KQgm+1). Let g,h € Qom+1 and write g = a't/ and h = a*V', where i,k €
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{0,1,...,2™ — 1} and j,l € {0,1}. Then

g" = h7lgh = b la *ald* b = bl = oV for j =0,

g" = b'a Fa'bakt = b~'al by = oV Ryt = oV for = 1

Therefore the 2™~ ! + 3 conjugacy classes are:

(1}, {a®" "}, {a,a Y fori=1,2,...2"" 1,
{a¥b]j=0,1,...2" " =1} and {a¥*'b | j = 0,1,...2""" —1}.
om—1_1

The result follows by summing over each class and the fact that Z ¥ =q 0O
5=0

Theorem 6.2.14. Let K be a finite field of characteristic 2 and let Qgm+1 be the

generalised quaternion group of order 2™, where m € {2,3,4,...}. Then the set
B={1, 0 a*+a*|i=12,...,2" %~ 1}

is a basis for C(KQqm+1).

Proof. By Lemma|6.2.6] C(KQom+1) € Z(KQam+1). By Lemmal6.2.13] Z (K Qqm+1)

is a 2™~1 + 3 dimensional subspace of KQom+1 with the set {1, b% a2b, aaAQb} v
{a"+a™"|i=1,2,...2"" 1 — 1} acting as a basis. Let V be the K-span of B. It is

now shown that V < C(KQgm+1).

Let d € Der(KQqm+1). Write d(a) = r+ sb and d(b) = u+vb, where r, s, u,v €
K{a). By Equation (6.20)) u,v € Z(KQgm+1). Therefore

d(b*) = (u+ vb)b + b(u + vb) = ub + vb* + bu + bvb = 0. (6.29)
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Also

i—1
d(a’) = Y (r+sb)a’™ ™ = Y a4+ qb = ialr 4, (6.30)

i=0 =0
for some v € K{a). Also 0 = d(1) = d(a’a™) and so d(a™%) = a~‘d(a’)a™".

Therefore

da" +a™") =ia" 'r + b+ a '(ia" 'r + yb)a”’

(6.31)

1

— ia ' + b+ ia a4 b = ia (1 + a7 ).

By Equation (6.31), d(a® + a™?) =0fori=1,2,...,2" 2 —1. Also d(1) =0 and
d(b*) = 0 by Equation and so V < C(KQqm+1).

It is now shown that C(KQqm+1) < V. Let ¢ € C(KQam+1) and write ¢ =
koaA?b + klaaAZb + z, where ko, k; € K and z € K{a). Let d; be the derivation of
KQom+1 defined by letting r = s = v = 0 and v = 1 in Equation ([6.20). Thus
di(a) = 0 and d;(b) = b. This implies d;(K{a)) = 0 and so

0 = dy(c) = dy (koa2b + kiaa®b + z) = koa2d: (b) + kyaa2d; (b) + 0 = koa?b + kyaa2b.

Therefore kg = k1 = 0 and so ¢ € Z(KQqm+1) n K{a). Therefore ¢ can be written
as ¢ = 22 ci(a® ' 4+ a= V) 4y, where ¢; € K for i € {1,2,...,2" 2} and
veV Cizlc(Kng-H). Let dy be the derivation of KQam+1 defined by letting
s =u=v=0and r = a in Equation (6.20). Thus dy(a) = a and dy(b) = 0.
Letting r = a in Equation implies do(a’ +a™%) = a’(1 + a™%) = a’ + a™*, for

odd 7 and so

2m72
0 = da(c) = do Z ci(a® 1 a0y 4 v)
2777,72 = 2m72

= Z cida (a2 _}_&*(21'—1)) +dy(v) = ci(a® +a7(2i—1)).
i=1

i=

—_
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Therefore ¢; = 0, for i € {1,2,...,2™ 2} and so C(KQym+1) = V. B is a linearly

independent set and so B is a basis for V = C(KQgqm+1). O

Corollary 6.2.15. K Dym+1 and KQqm+1 are not isomorphic as rings.

Proof. By Theorem|6.2.12|the dimension of C(K Dam+1) is 272, By Theorem [6.2.14

the dimension of C(KQqm+1) is 2™72 + 1. A ring isomorphism preserves subrings
and so the restriction of a ring isomorphism to the ring of constants is a ring

isomorphism. Therefore K Dym+1 and K(@Qqm+1 are not isomorphic as rings. O

6.2.3 A proof of Deskins’ Theorem using derivations

The Modular Isomorphism Problem asks if the following statement is true:
KP~K@Q = P ~(Q,

where P and () are finite p-groups and K is the field with p elements. It was
solved for abelian groups in 1956 by Deskins [14]. Since then there have been some
further developments. The following list of cases where the Modular Isomorphism

Problem has been solved can be found in [3]:

e abelian p-groups (Deskins’ Theorem) [14]

p-groups of class 2 with elementary abelian commutator subgroup [45]

metacyclic p-groups, where p > 3 [5] and [46]

2-groups of maximal class [11]

p-groups of maximal class, p # 2, when |G| < pP*! and G contains an abelian

maximal subgroup [7]

elementary abelian-by-cyclic groups [6]
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e p-groups with center of index p* [15]

It has also been solved for p-groups containing a cyclic subgroup of index p? and

groups of order p® and 27 [§].

An alternative proof to the theorem of Deskins’ is now given using derivations.

Theorem 6.2.16. Let G and H be finite abelian p-groups and let K be the field
with p elements. Then KG is ring isomorphic to KH if and only if the groups G

and H are isomorphic.

Proof. By way of contradiction, assume G and H are minimal non-isomorphic p-
groups such that KG is ring isomorphic to KH. Let ¢: KG — KH be a ring
isomorphism. Then KG and K H have the same dimension as K-algebras and
so |G| = |H| = p™, for some non-negative integer m. By Theorem , the
vector space of derivations of K'G' has dimension np™, where n is the minimum
number of generators of G. By Theorem [3.1.18] Der(KG) and Der(KH) are
isomorphic as additive groups and so have the same dimension. Therefore G and H
have the same number of generators in their decomposition using the fundamental
theorem of finite abelian groups. Let AP denote the group {a” | a € A}, for
any abelian group A. Then by Lemma [5.5.8] C(KG) = K(GP). The restriction
of ¢ to the ring of constants C(KG) of KG is a ring isomorphism onto C(K H).
Therefore there is a ring isomorphism from K (GP) onto K (H?). By the minimality
assumption GP ~ HP. This implies G are H are isomorphic groups which is a

contradiction. Therefore KG ~ KH implies G ~ H. The converse follows from

Theorem [6.2.11]. O
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

The primary aim of this thesis is to improve our understanding of the structure
of group algebras. The methodology implemented was to study certain functions
defined on the group algebras, namely derivations. For the most part the group
algebras studied were finite and of positive characteristic. This focus was motivated
by a potential application to error correcting codes. Also particular attention was

given to finite modular group algebras. Recall Question from Chapter [I}

What, if anything can the set of derivations of a group algebra

revisited)

tell us about the structure of the group algebra itself?

However, in order to be in a position to answer this question, we must first estab-
lish a good understanding of the derivations defined on the group algebra. For a
particular group algebra, KG: Do derivations of KG exist? Are the derivations
K-derivations? Do outer derivation exist? When are there only trivial derivations?
How many derivations are there? What structure do they possess? Given a func-

tion on KG can you decide whether it is a derivation or not? These questions are
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answered in Chapter 2] The zero map is always a derivation of KG. Theorem
shows that when K is an algebraic extension of a prime field all derivations of a K-
algebra are K-derivations. Corollary states if K is an algebraic extension of a
prime field F', G is a torsion group whose center is of finite index and if char(K) = 0
or char(K) = p > 0, and p does not divide the order of g, for all g € G, then every
derivation of K G is inner. By Theorem [2.3.1]if R is a commutative unital ring and
H is a torsion central subgroup of a group G, where the order of h is invertible in
R, for all h € H, then d(R) = {0} if and only if d(RH) = {0}, for all d € Der(RG).
Therefore if R is an algebraic extension of a prime field, the only derivation is the
trivial derivation. In Theorem a basis for the vector space of derivations of a
finite commutative group algebra of positive characteristic is found. Theorem
classifies the derivations of group algebras in terms of the generators and defining
relations of the group. If RG is a group ring, where R is commutative and S is a
set of generators of G then necessary and sufficient conditions on a map from S
to RG are established, such that the map can be extended to an R-derivation of
RG. This theorem provides a way of deciding if a particular function on KG is a

derivation or not.

We continue to explore the connection between a group algebra K'G and its
derivations Der(K @) in Chapter [} Corollary shows that the augmentation
ideal A(G, H) is a differential ideal with respect to a derivation if and only if the
image of the subgroup H under the derivation is contained in the augmentation
ideal. A consequence of this theorem is: H is a group of constants implies the
augmentation ideal A(G, H) is a differential ideal. The Lie algebra of derivations
of a group algebra is an interesting subject to study in its own right. However, the
usefulness of studying the derivation Lie algebra to glean structural information

regarding the group algebra is derived from the following 3 theorems:
Theorem 3.1.18. Let R and S be rings and let ¢p: R — S be a ring isomorphism.
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Let ®: Der(R) — Der(S) be defined by d — ¢podod™". Then ® is an isomorphism

of additive groups.

Theorem 3.1.20. Let ¢: R — S be a K-algebra isomorphism. Then ®: Der(R) —

Der(S), defined by d— ¢podo ¢~ is a Lie algebra isomorphism.

Theorem 4.1.8. Let R and S be finite rings and let ¢: R — S be a ring isomor-
phism. Then there is a bijection @ from Der(R) onto Der(S) such that I'(®(d))

and I'(d) are isomorphic digraphs, for all d € Der(R).

The contrapostive statements of these theorems have been utilised in this thesis

to prove that group algebras are not isomorphic (as rings or sometimes K-algebras).

A simple example of this technique is counting the derivations of KG. If
|Der(KG)| # |Der(KH)|, then KG and K H are not isomorphic as rings. How-
ever, as was discussed in Chapter 4| this may not always distinguish the group
algebras. For instance, Fo(Cy x Cy) and Fy(Cy x Cg) both have 232 derivations.
As a consequence, a different approach was required. In Chapter |4| a derivation
was considered as a linear finite dynamical system (LFDS). This allowed for the
comparison of properties of the LFDSs associated with the derivations of group
algebras. It is then possible to distinguish between 2 group algebras by contrasting
these LDFSs. As an example of this technique, the maximum value of the prepe-
riod of a LDFS of a nilpotent derivation of Fy(Cy x Cj) is less than or equal to
8, whereas there is a nilpotent derivation of Fo(Cy x Cg) which has a maximum
preperiod of 13. Therefore Fo(Cy x Cy) and Fy(Cy x Cg) are not isomorphic as

rings.

Theorem [3.1.20], states that a K-algebra isomorphism between 2 finite group
algebras implies that their derivation Lie algebras are isomorphic as Lie algebras.
This theorem in the context of Question [1.1] motivates the study of the vector

space of derivations of a group algebra as a Lie algebra, where the multiplication
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is defined as the Lie commutator. It is shown that the derivation Lie algebra of
a commutative group algebra over a finite field has trivial center. Theorem
proves that if K is a finite field of characteristic p and G is a finite abelian group
such that its Sylow p-subgroup is elementary abelian, then all the derivations of

g = Der(KG) are inner and so g is a complete Lie algebra.

The Modular Isomorphism Problem was solved for abelian groups in 1956 by
Deskins [14]. However it is still an important open problem for nonabelian groups.

The Modular Isomorphism Problem asks if the following statement is true:

KP~K@Q = P ~(Q,

where P and () are finite p-groups and K is the field with p elements. Chapter [0]
uses derivations to rule out the dihedral and generalised quaternion group algebras
as possible counterexamples to the Modular Isomorphism Problem. Section [6.1
compares and contrasts the vector space of derivations of Fot Dom+1 and FotQom+1.
A basis of size 2" + 2 is exhibited for the vector space of derivations of Fa:Qom+1.
In Theorem a basis of size 2™*! + 4 was found for the vector space of deriva-
tions of Fot Dom+1. Therefore by Theorem [3.1.18] Fot Dom+1 and Fot(Qom+1 are not
isomorphic as rings. The centers of the respective derivation Lie algebras are found
in Section [6.1.2 It was shown that Der(FaDom+1) has a trivial center, whereas
the center of Der(FatQym+1) is 2 dimensional. This fact was used in Section [6.1.3]
to show that Fot Dom+1 and FotQom+1 are not isomorphic as K-algebras. Moreover,
in Section derivations of group algebras were used to give an alternative proof

of Deskins’ Theorem.
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7.2 Future Work

Theorem [2.2.5] was applied to finite commutative group algebras in Section [2.3.1
and to dihedral group algebras of characteristic 2 in Section[2.3.2] However, it may
be possible to derive an algorithm to generate a basis for Der(KG) in general. Note
that using GAP Version 4.8.6, to compute the derivation Lie algebra of FyDosg
results in a memory allocation error. The memory allocated to GAP was 2000
megabytes. Appendix[7.2]gives the details of the commands that were run. However
Theorem [2.3.11] gives a basis for the vector space of derivations of Fy Dos6. Thus it
may be possible to use Theorem to generate a basis for the derivation algebra
of a group algebra in a computer algebra system like GAP [18] or SageMath [43].
Even if this is not feasible in general it seems likely to be possible for a selection

of group algebras.

Section [2.3.3| exhibits well known extremal codes as the image of a derivation
of a group algebra. Thus at least in certain cases derivations can be considered
as generating good codes. However not much was known about derivations of
finite group algebras of positive characteristic and so as a result this idea was not
explored much within this thesis. However, the results contained within this thesis
make exploring the idea of generating codes from derivations more accessible. This
endeavour would benefit from the aforementioned algorithm for generating a basis
for Der(KG). Considering a derivation as generating a linear block code, the
dimension of the ring of constants represents the redundancy of the code. Let
do,dy,...dy—1 € Der(KG) for some group algebra KG and let f be a polynomial
in n indeterminates. Then, the image of f(do,ds,...d,) can be considered as a

code of length |G| over K.

The results of Chapter[6]demonstrate that properties of the derivation algebras

of group algebras can be very useful in gleaning information about the structure
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of the group algebra itself. It has been shown that derivations can be used to
distinguish between group algebras and also to give an alternative proof to the
Modular Isomorphism Problem, for abelian groups. This gives a partial answer
to Question (1.1l This question has not been explored fully. There have been
developed within this thesis a number of invariants of a group algebra K'G based

on derivations.

1. The number of derivations, |Der(KG)|

2. The maximum preperiod (period) of a derivation

3. The dimensions of the derivation Lie algebras in the derivation tower of KG
4. The center of the Lie algebra Der(KG)

5. The ring of constants, C(KG)

This is not an exhaustive list and others may also prove useful. It would be very
interesting to apply these and other invariants to the Modular Isomorphism Prob-

lem.
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Computing the Derivation Lie

Algebra of FoDosg

GAP version 4.8.6 was used to try to compute the derivation Lie algebra of Fy Dosg.
The .bat file was used to run the GAP program is shown in Figure [I Note the

command line argument -m 2000m. This allocates 2000 megabytes of memory to

the process.

| *gap - Notepad - O X
File Edit Format View Help

ket TERMINFO=/proc/cygdrive/C/gapars/terminfo ~
set CYGWIN=nodosfilewarning

set LANG=en_US.UTF-8

set HOME=%HOMEDRIVEX%HOMEPATH%

set PATH=C:\gap4rs8\bin\i6s86-pc-cygwin-gcc-default32;%PATH%

cd %HOME%

start "GAP" C:\gap4r8\bin\i686-pc-cygwin-gcc-default32\mintty.exe -s 120,40
/proc/cygdrive/C/gaparg8/bin/i6eg86-pc-cygwin-gcc-default32/gap.exe -1 /proc/cygdrive/C/gap4rg -m 2000m %*

if NOT ["%errorlevel¥%"]==["8"] timeout 15

exit

Ln 1, Col 1 100%  Windows (CRLF) UTF-8

Figure 1: The .bat used to run GAP

Figure |2| shows the commands that were run in the GAP console. The Small-
Group(256, 539) is the Dihedral group of order 256. The group algebra FyDosg is
then constructed using the function “GroupRing”. It is then attempted to con-
struct the derivation Lie algebra Der(FyDoss). However, an error occurs: “Error,

reached the pre-set memory limit”. Note that a basis for Der(FyDosg) is given in

Theorem 2.3.111
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