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Abstract—Deep Learning (DL) models deliver superior per-
formance and have achieved remarkable results for classification
and vision tasks. However, recent research focuses on exploring
these Deep Neural Networks (DNNs) weaknesses as these can
be vulnerable due to transfer learning and outsourced training
data. This paper investigates the feasibility of generating a
stealthy invisible backdoor attack during the training phase
of deep learning models. For developing the poison dataset,
an interpolation technique is used to corrupt the sub-feature
space of the conditional generative adversarial network. Then,
the generated poison dataset is mixed with the clean dataset to
corrupt the training images dataset. The experiment results show
that by injecting a 3% poison dataset combined with the clean
dataset, the DL models can effectively fool with a high degree of
model accuracy.

Index Terms—Backdoor Attack, Conditional Generative Ad-
versarial Network, Image Synthesis

I. INTRODUCTION

Deep Learning (DL) models have gained popularity over
Machine Learning (ML) models in recent years. These DL
models significantly outperform ML models in various do-
mains such as face recognition, natural language processing,
automatic speech recognition, self-driving, and robotics [1].

Due to the high sparsity of large DL models, the malware
”knowledge” can be silently added in the model without being
noticed by other users. The malware knowledge misleads DL
models to make wrong predictions when specific inputs are
fed to the model. This is also known as backdoor attacks on
DL models.

These backdoor attacks arise from outsourcing training
data and transfer learning [2]. These are more attractive and
vulnerable targets for attackers to manipulate DL models.
Outsource training data uses cloud platforms (e.g., Google
cloud) to train the data. Transfer learning is a concept of
using well-tuned, pre-trained models available on public repos-
itories to perform a similar task. Since it is challenging to
ensure that the collected data is from a reliable source, an
attacker can generate the poison dataset and leave it on the
web for the victim to use and download for training and
testing. Furthermore, these pre-trained models are hosted and
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maintained on popular third-party platforms, such as GitHub,
where ensuring that attackers do not modify these pre-trained
models is often lacking. Therefore, before deploying these
DL models in safety and security-critical applications, the
robustness against the variants of backdoor attacks needs to
be considered. For example, backdoor attacks are malware’s
where the attacker generates a poison dataset based on the
decided trigger. This poison dataset provides to the victims’
model during training or by changing the model parameters
[2], [3]. The tempered DL models will produce correct results
on clean samples, so the victim will not realize that the model
is compromised.

Existing backdoor attacks on DL models may use two
approaches. Visible or invisible triggers and clean or unclean
labels. Visible triggers mean adding visually unnatural patterns
to the images; the model learns a bias on these patterns to
mislead the model’s output once the patterns are presented.
The unclean label means the visual content of an image
does not match the given label e.g., an image of digit 9 is
labelled 7. The early backdoor attacks prefers both visual
trigger and unclean labels. However, visible triggers along
with unclean labels can easily be detected before training, e.g.,
via human inspection or template matching. Therefore, more
recent researchers have started investigating the possibility of
injecting less-visible triggers [1].

Earlier research study [8] first proposed backdoor attack
with clean-label by adding ramp and sinusoidal gradients as
triggers into DNNs. However, the gradient can be recovered,
detected and even mitigated using blind image separation
techniques. Another clean-label attack was developed in the
research study [9], which leveraged generative models and
adversarial perturbations to modify benign images from the
target class and then conducted the standard backdoor attack.
One major disadvantage of the generative model technique
followed in the study [9] is that since they are using GAN
feature space to generate poison images, there is no control
over the modes of the data to be generated. The resulting im-
ages are of low quality. They have reported the attack success
rate is above 50% only under strong attack assumptions (i.e.,
attacked model and test models are known). Another research
research study [10] also developed a feature collision method
to manipulate the model’s decision for both transfer learning
and end-to-end training. More recently, the research studies



[11] and [12] developed clean-label backdoor by proposed
a method to conceal the trigger through image-scaling for
images recognition models . However, these studies are often
model-centric and are suffered from low attack rate, high
injection rate, and low trigger stealthiness [1].

In this paper, we propose a novel invisible encoded back-
door attack on data during the training pipeline which is
agnostic to model. Our intuition is that by conditioning the
generative model based on the label information, it is possible
to direct the data generation process. In addition, we focus
on generating invisible triggers and clean-label strategies. The
generated poison dataset are good in quality and contains
concealed stealthy triggers aims to deceive the state-of-art
visible backdoor defence solutions [5], [6]. The existing de-
fence methods detect and cleanse ”suspicious” data that may
contain a visible backdoor. However, it is difficult to say that
these defence solutions can mitigate all variants of backdoor
attacks. Therefore, this paper aims to generate and investigate
the feasibility of the stealthy invisible variant of backdoor. In
summary, the following points highlight the main contribution:

• We generate an invisible and clean-label backdoor attack
with a higher success rate and less data injection require-
ment.

• We use a structural metric that is i.e., preceptional hash
(pHash) to measure the quality of the generated image
and ensure the stealthiness of images.

• Experimental results demonstrate the effectiveness of pro-
posed method leads to high Attack Success rate without
reducing model accuracy.

The remainder of the paper is organized as follows. Section
II presents the proposed methodology with pertinent de-
tails. Section III contains an experimental setup and discussion
on the results. Section IV concludes the paper along with
the limitations of the presented work and scope for future
improvements.

II. METHODOLOGY

A. Threat Model

1) Attacker Capabilities: Some existing studies assump-
tions [3], where the attacker has complete knowledge of the
training dataset. Unlike them, we assume that the attacker may
not need to know about the training dataset. For example, the
attacker could upload the corrupted model to public access
repository that offer pre-trained model for download and usage
under standard open source licences. Furthermore, we are
making an other realistic assumption that once the backdoor
injects into the training pipeline, the attacker has no further
control over the model’s training process.

2) Attacker Goals: A list of attacker goals are considered
as shown below, which guide the implementation of a robust
and effective backdoor attack.

1. A poisoned image should have a ”consistent” label oth-
erwise i.e. image cat → label dog, the inconsistent labels

Algorithm 1 Poison Sample Generation from Latent Space
Variables: Latent vector z, Class label c Image x, generator
CGAN , PHash, step size η
Output: Poison Images PA

Function InverseGAN(xn):
for i in range(0,N) do

x̂← CGAN(zn)
compute loss L[n] := L||xn, x̂||2
compute gradients ∆z := −(δL/δz)
update parameters δz := z + η ∗∆z

end
until convergence
return zn

End Function
zn ← InverseGAN(xn)
xnImg ← cGAN(z0×α + z1 × (1−α))
imageQuality ← pHash(x,xnImg)

▷ This alpha values varies based on given spatial Image

can be easily filtered via human-inspection or computer-
vision methods.

2. Triggers should be stealthy and template-less. For exam-
ple, adding sun-glasses and patching stickers are well-
known triggers [1] and can be blacked-listed during
training.

3. The poisoned DNN should have minimum or no impact
on classification accuracy on benign images.

4. The proportion of poison images to be injected into the
training dataset should be small.

5. The poisoned DNN should have a high chance of classi-
fying a poisoned image to a wrong class.

B. Intuition

CGAN is used instead of unconditional GAN to generate
poisoned images. The rationale behind is that CGAN not only
provides refined control over images but also refined control
over class information. Specifically, in the unconditional GAN
latent space, the images that coincidentally fall into a cluster
may belong to different classes. This causes the (latent space)
interpolation of two images unstable. It is difficult to synthesis
”an image that looks like a dog but contains a lot of informa-
tion of the cat”. The proposed backdoor conditional generative
classifier shows in Figure 1. This paper explores the capability
of CGAN to mitigate this problem by explicitly specifying the
image class when generating images. The algorithm presented
in Algorithm 1 to generate the desired poisoned dataset.

C. Algorithm Details

The core of poison image synthesis is a ”converter” that
allows mapping an given image (x) to its latent representation
(z) and recovering the image from it’s (z). The CGAN
generative neural network [13] M is trained offline.

To generate a poisoned image x̃ usingM, a pair of images
x(u), x(v) are required, x(u) from the victim class and x(v)

from the target classes. Then, the latent vectors z(u), z(v)



Fig. 1. The intuition behind find the random noise and class vector for given
image and interpolation of two different classes by auxiliary information label
y.

of the two images are obtained via inversing CGAN i.e.,
M−1 : x(u), x(v) → z(u), z(v). A more practical way to
implement the inversion is for each image x, optimise ẑ so
that the image space euclidean distance Mean Square Error
(MSE) |x − M(ẑ)|22 is minimised. In this paper, an Adam
optimizer [14] is used to search for the solution ẑ with step
size η = 0.0002. The two latent vectors ẑ(u) and ẑ(v) are
then merged into one latent vector z̃ via linear interpolation
z̃ = αẑ(u)+(1−α)ẑ(v). Using Modified National Institute of
Standards and Technology dataset (Mnist) handwriting digits
as an example, the first latent vector ẑ(u) is obtained from a
digit-7 image x(u) with label y(u) = 7 and the second latent
vector ẑ(v) can be calculated based on a digit-7 image x(v)

label and y(v) = 9. We reproduced the clean-label attack [9]
generative method with original settings. We identified that
their generated images are less likely to correlate with the
perceptional category i.e., they are not always clean-label. In
Figure 2, it shows the difference between the poisoned im-
ages generated by the previous clean label generative method
attack [9] by using visible triggers proposed by Badnet [3] and
our attack where for any given images by inverting a cgan we
can find the z and c value in the latent space of that given
image and interpolate two different images and generate a
poison dataset. In the end, we assign the labels to the generated
images that are similar in the image space.

D. Dataset Injection

Once attacker generate the poison dataset DA based on the
above-mentioned method this tiny portion of poison dataset
mixes with the clean dataset DM = DN ∪ DA during
the training pipeline. This DM will be in DNNs training in
the consideration of the attacker’s capabilities that the other
functionality should not be affected by mixed the poison
dataset. However, the existence of poisoned dataset leads to
the following loss function:

min
θ

n∑
u,v=0,xu′,yv ′∈DA

l(θ, (xu + xu′
, yv + yv

′
)) (1)

In eq. 1, l denotes the cross-entropy loss, θ is model pa-
rameters and (xu, yv) ∈ X and (xu′

, yv
′
) ∈ X

′
. The summary

TABLE I
A SUMMARY OF NOTATIONS.

Name Symbol Description
Model M CGAN.
Inverse Model M−1 CGAN−1.
Latent space Z Let Z represents a latent space.
Images X Let X represents a set of images (x1,

x2 . . . xn).
Poison set X

′
Let X represents a set of images (x1,
x2 . . . xn).

Training set XU ,V Let xU ,V represents a set of images.

poisoned set XU ′,V
′

Augmented ambiguous images mis-
classified the targeted class.

Label Y Y: Dimension of a label yi.
Classes C C represents a class {0, 1, 2, 3, . . . 9}

and {cat, dog} .
Training
dataset

DN Training dataset.

Poisoned
dataset

DA poisoned dataset after injecting the er-
rors.

Final dataset DM Union of training and poisoned dataset.

Fig. 2. The comparison of the triggers in the previous attack (e.g., clean
label [9]) and in our proposed attack. The trigger of the previous attack
contains a visible trigger, while in our attack the triggers are encoded in
the generated images.

of notations describe in Table I.

III. EXPERIMENT SETUP

In this section, we comprehensively describe our experiment
setup to produce invisible encoded attack and tested on DL
models.

A. A Deep Network Model

To demonstrate the experimental setup, we have selected
a efficient Convolutional Neural Network (CNN) basic ar-
chitecture [15] and pre-trained VGG16 [16] as a baseline
without altering the original convolutional layers for Image
classifications. Further, we have used open-source CGAN for
generating poison dataset. The experiments are performed
using Pytorch framework.



(a) (b)
Fig. 3. In the figure (a) Grad-CAM Visualization of image 9 which is
successfully mispredict to class 7 at testing time. Figure (b) Grad-CAM
Visualization of image cat successfully mispredict it to dog at testing time.

Fig. 4. Mnist poison model accuracy with trigger dataset.

B. Dataset

The Mnist digit dataset and custom dataset cat vs dogs are
used for our experiments [17]. Mnist dataset contains 60,000
training images and 10,000 test images. The image size of
this dataset is 1x28x28 and the corresponding classes from 0
to 9. Custom dataset contains 1500 training images and 1000
test images. The image size of this dataset is 3x64x64. We
used imagenet weights to train the VGG16 model on custom
dataset.

C. Evaluation of Attack

In this section, we evaluate the effectiveness of the proposed
attack on pre-assumed attackers capabilities and examine the
performance of attack for CNN and VGG16 DL network
architecture.

1) Stealthiness: We evaluate the stealthiness of our gen-
erated poison images by a perceptual human viewer quality
metric. We use a subjective PHash image quality metric to
measure the perceptual assessment of poison dataset. We get
these results for Mnist 92.1875% and custom dataset 86%.

2) Attack success rate: We use Gradient weighted-Class
Activation Mapping (GRAD-CAM) visualization as a defence
[18]. GRAD-CAM uses the gradients of any target class (say
’9’ in an CNN model) flowing into the final convolutional layer
to produce a coarse localization map and highlight the critical
regions in the image for predicting the concept. The results of
this experiment is illustrate in Figure 3. From figure (a) It is
clear that GRAD-CAM fails to identify the hidden, encoded
trigger values. Likewise, in figure (b) our poison generated

Fig. 5. Mnist poison model loss with trigger dataset.

Fig. 6. Custom dataset poison model accuracy with trigger dataset.

Fig. 7. Custom dataset poison model loss with trigger dataset.

images are perceptually similar to given label but misclassified
as the attackers target label. On the other hand, the model
successfully misclassify digit ’9’ to digit ’7’ and ’cat’ to ’dog’
in the presence of encoded triggers. However, for digit image
the bright pixel is also a part of the benign image. Therefore,
this cannot be considered a trigger.

3) High Accuracy: The results of high accuracy and low
accuracy loss of our two experiments are illustrates in Figure
4, 5, 6 and 7. We achieve almost 100% accuracy on Mnist
dataset with only 0.03% model accuracy loss as illustrates in
Figure 4 and 5. Whereas, for custom dataset we achieve 98%
accuracy with 0.002% model accuracy loss as displayed in
Figure 6 and 7.



TABLE II
ATTACK SUCCESS RATE (ASR), TEST ACCURACY, BLACKBOX AND

STEALTHINESS OF PREVIOUS STUDIES AND OUR PROPOSED ATTACK.
Attack Datasets ASR BB Stealthy IR

SIG [8] Mnist /Traffic sign 85% / 73% Yes No 40%

Clean Label [9] CIFAR10 >50% No No 25%

Refool [19] ImageNet 82.11 Yes Yes 20%

Our Mnist/Cat-vs-Dog (Trained on ImageNet weights) 100 / 98% Yes Yes 3%

4) Comparative analysis with prior research: We per-
formed a comparative analysis of invisible backdoor attack
with three existing clean-label researches based on five fac-
tors, i.e. Attack Success Rate(ASR), Black Box (BB) attack,
stealthiness, injection rate (IR) and model accuracy. The results
of the four factors are present in Table II.

The results indicates that the 3% ratio of the whole clean
dataset is sufficient enough to disrupt a DNNs model with
a high attack success rate without degrading the accuracy as
mentioned in table II. In contrast, other attacks need higher
injection rate ranges from 40% to 20%. It is worth note
here that we select the poison ratio based on our previous
experiment [18]. The model accuracy and loss results on
average are displayed in Figure 4, 5, 6 and 7. The results
shows that our attack out perform existing papers in injection
rate, attack success rate, stealthiness, accuracy and model loss.

IV. CONCLUSION

In this paper we provide a proof of concept to disrupt a
working DNNs model by proposing a new attack paradigm,
i.e., an invisible encoded backdoor attack. The experiment re-
sults demonstrate the possibility to inject backdoor attack with
high attack success rate. The proposed backdoor attack evade
GRAD-CAM visualization shows that the encoded triggers are
not visible. It is observed that a constant α value may not
work in all cases. For example, in the case of Mnist, different
written styles may require different α values. It is possible to
automate the α selection process, such as using another DNN
to assess the quality of the image. Further, this paper only
discuss the case of poison single-class i.e., mis-classifying an
image of one source class to target class. It can be easily
extended to multi-class scenarios. We can further evaluate the
effectiveness and robustness of the invisible encoded backdoor
attack on different datasets and well-known defence solutions.
However, this is beyond this paper’s scope and is considered
a part of our future works.
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