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Abstract

In digital design much of the focus and attention in the past has been towards 

developing languages and tools primarily for use in designing an ASIC device. Today, 

the single biggest problem in digital design is the time that is spent in the Verification 

process. With this in mind the key EDA companies have focused a large proportion of 

their research and development budgets towards supporting new verification languages 

and methodologies, namely, SystemVerilog and OpenVera. SystemVerilog is the 

industry's first unified hardware description and verification language (HDVL). Along 

with developing SystemVerilog, the EDA companies have developed methodologies to 

support the language. The two main methodologies are the Synopsys’s Verification 

Methodology Manual and Cadence/Mentor Open Verification Methodology. These 

methodologies are geared towards the implementation of functional coverage-points; 

use of assertion based coverage and constrained random test techniques.

This thesis outlines a VMM style test bench architecture that is structured to gain 

maximum efficiency from both constrained random and directed test case development. 

This thesis describes how directed and constrained random tests can be implemented 

inside a reusable directory structure that takes full advantage of the coverage and 

assertion techniques.

This thesis uses an IEEE-754 compliant floating-point adder model as part of a case 

study that illustrates a complete set of results extrapolated from using this test bench 

structure. An Integrated Inter Circuit (I2C) verification component has also been 

implemented and used to test the reusability of the test bench structure.

This thesis reviews the use of formal verification within the digital design community. 

Formal methods such as model checking, equivalence checking and deductive reasoning 

have become increasingly popular verification techniques. These methods are 

investigated to see if they could be used as alternative verification techniques within the

verification environment.
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Chapter 1 Introduction

1.1 Thesis Motivation

The continuous growth and complexity of digital design requires modem, systematic 

and automated approaches for creating test benches [1], Given that up to 70% of the 

design time is spent in the verification process [5] it has become even more critical that 

verification engineers design test benches that are at the cutting edge of the verification 

industry.

The EDA vendors have recognised that a standardised approach for verification is 

required and this approach needs to support the structures needed to build an advanced 

verification environment. However, they don’t actually specify how the architecture of 

the test bench environment should be built. It is still the verification engineer’s 

responsibility to do this with the added pressure of making the environment re-usable 

for future chip sets.

With this in mind the main goal is to develop a new and more effective intuitive way of 

designing test benches. This thesis describes the implementation of constrained random 

test stimuli, functional coverage, and assertions and also describes an approach for 

creating test cases that allow the use of both constrained random tests and directed tests 

within a single environment. The environment built should also have the capability to be 

easily modified where a Device Under Test (DUT) of similar structure can be verified.

The verification environment is built using SystemVerilog and VMM. SystemVerilog is 

the industry's first unified hardware description and verification language (HDVL). 

VMM provides a set of rules and recommendations for constructing test benches using 

SystemVerilog. This is done through a set of base classes which are used to describe 

important elements of the test bench
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1.2 Thesis Contributions

The contributions of this research are as follows:

• Summary of existing verification methodologies used in the Application

Specific Integrated Circuit (ASIC) verification industry.

• Development of an advanced verification environment for a floating-point adder.

The DUT in this case has been provided by Chipright Ltd [29]. The environment

has been developed using the SystemVerilog language and Synopsys’s

Verification Methodology Manual (VMM).

o Development of a Bus Functional Model (BFM) using SystemVerilog 

constructs to create an IEEE-754 compliant floating-point model for 

testing purposes.

o Use of VMM Object Oriented (OO) base classes in the environment, 

o Creation of a reference model to verify that the DUT has successfully 

implemented floating-point addition, 

o Identification of functional coverage points inside the DUT and creation 

of a functional coverage plan 

o Creation of functional coverage groups to collect data during simulations 

and analysis and comparison of the results with the functional coverage 

plan.

o Creation of assertions for the floating-point adder within the interface 

file.

o Verification of the adder using constrained random test stimuli in 

conjunction with the reference model, 

o Collection of all functional coverage reports, assertion reports, 

sequencing reports and display in Hypertext Mark-up Language (HTML) 

format.

o Execution of simulations to obtain full verification of the adder model as 

determined by the functional coverage reports, 

o Development of a test bench architecture that is structured to gain 

maximum efficiency from both constrained random and directed test 

case development.
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o Extension of the verification environment to support a more complex 

BFM, thus proving that the testbench infrastructure can support both 

“intensive data verification” and more finely tuned “control of sequence 

and scenarios” verification.

O Investigation of the use of formal verification practices in the verification 

industry.

1.3 Thesis Structure

Figure 1.1 illustrates the steps taken throughout the project and the structure of the 

thesis.

Architecture
Developm ent

& Testing

literature  Review

C h a p t e r  1

C h a p t e r  2

C h a p t e r  3

C h a p t e r  4

C h a p t e r  5

C h a p t e r 6

C h a p t e r  7

C h a p t e r  8

Figure 1.1 Thesis Structure
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The literature review carried out for this project is presented in chapter 2 and 3 o f this 

thesis. The following areas were researched as part of a literature review.

Chapter 2 analyses the different types of verification techniques within ASIC 

verification. This chapter also describes the challenges associated with ASIC 

verification.

Chapter 3 reviews the different hardware and verification languages within the micro­

electronics industry. Also reviewed are Synopsys’s VMM and Cadence/Mentor OVM 

and the different tools that support these methodologies.

Chapter 4 describes the implementation of a basic VMM based verification environment 

to test a floating-point adder. An IEEE-754 Floating-Point adder has been used as a case 

study in the implementation of a verification environment using the VMM 

methodology. The test bench has been written in the SystemVerilog language and 

includes the following elements:

• Constrainted random test stimuli to represent floating-point numbers

• A Bus Functional Model for the adder under test

• Assertions to check the design intent.

Chapter 5 outlines the architecture of the test environment. The test bench infrastructure 

is analysed and some key points are identified to yield a flexible solution that can meet 

industry level verification requirements. The chapter contains the test plan document 

that is used to help determine when the DUT has been completely verified. As part of 

the results analysis phase, the VMM Planner application from Synopsys is identified, 

described and used within the verification environment to ultimately help interpret the 

test results.

Chapter 6 describes how the verification infrastructure created and described within 

Chapter 5 can be re-used to facilitate the development of a more complex BFM. As part 

of a case study, the industry standardize protocol has been chosen. The BFM is built 

using the same template as outlined in Chapter4. This BFM is integrated into the 

verification environment and used to communicate with a DUT containing an I2C 

interface.



Chapter 7 describes the formal verification process and identifies how it is different to 

the constrained random approach undertaken in this project. As an added part of the 

research work, formal verification techniques have been reviewed with emphasis on 

determining if parts of this approach could be utilised within the advanced verification 

environment.

Chapter 8 outlines the results and conclusions of the research work. The key points of 

the research project are identified and discussed with recommendations for future 

research work.
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Chapter 2 Review of ASIC Verification Techniques

2.1 Introduction

This chapter reviews ASIC Verification Techniques. Verification is the activity that 

determines the correctness of the design that is being developed. It ensures that the 

design meets the specification required of the product and the intent of which the 

product should operate [2].

Verification has become a major element within the digital design development process. 

Various industry surveys highlight that verification is the single largest component in a 

project, taking up more than half of the total project’s staffing, schedule and cost [3]. It 

is often the limiting factor to project completion, and is becoming the single largest 

bottleneck in the ASIC industry.

Verification is complex, time-consuming, and sometimes poorly understood. As a 

result, the verification effort represents one of the bigger risks to the successful 

completion of a project.

This chapter gives an overview of what ASIC verification is and the importance of it 

within the microelectronics industry. Also described within this chapter are the 

challenges that verification has to overcome. A key point in explaining verification is 

that it is so vast and covers many areas within the electronics industry. Verification may 

be classified into three types: Applications, Software and Circuit Development. An 

example of each type is given below

Applications:

• File verification: Checks the formal correctness or integrity of a file 

Software Development:

• Formal verification: Uses mathematical proofs to check the correctness of an 

algorithm

• Intelligent verification: Updates the testbench to changes in Register Transfer 

Level (RTL)

6



• Runtime verification: Verification technique that combines formal verification 

and program execution

• Software verification: Assures that software fully satisfies all of the 

requirements

Circuit Development;

• Functional verification: Verifies the design of digital hardware

• Analogue verification: Verifies analogue or mixed-signal hardware

• Physical verification: Verifies an IC layout design

The main verification techniques used within ASIC verification are functional 

verification and formal verification. Functional verification is the main verification type 

implemented throughout this project. Formal Verification is discussed from a research 

point of view in chapter 7.
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2.2The Goal of Verification

The goal of ASIC verification can be simply stated: to prove that a design will work as 

intended. There are four components to achieving this goal [3]:

1. Determine what the intent is

2. Determine what the design does

3. Compare the two to ensure that they match

4. Estimation of the level of confidence of the verification effort.

2.2.1 Determining Intent

Determining the intent of the system is essential for verification to succeed [3]. The 

intent could be defined as what the system is supposed to do, which may be different 

from what it actually does.

In some cases, the intent may be obvious, when it is possible to clearly specify the 

functions which the device must perform. However, for most reasonably complex 

digital systems even the intent may not always be clear. How should a device operate 

when an error is introduced, or when two competing actions are received at the same 

time, or when a resource is oversubscribed? It is often the architectural specification that 

describes the intent of the system and the implementation specification that documents 

how the design is intended to implement the intent as seen in figure 2.1.

The Architectural specification is usually created by examining many use-cases that are 

specific scenarios that describe how the device will work, and determining the system 

intent. The Architectural specification is defined to satisfy all of the use-cases.



Figure 2.1 Specification Hierarchy

2.2.2 Determining What a Design Does

The next part of ASIC verification is to determine what a design does. This is the first 

step in comparing the design with the intent. Since the design has not yet been 

implemented in a prototype, a model of the design is needed. The model is described in 

a software language that allows simulations to be run. The method used to test the 

model is quite traditional: stimulate it and see what happens. The poking is frequently 

referred to as stimulus injection, while the observation involves collecting and checking 

the outputs of the simulation.

2.2.3 Comparing the Intent with the Design

Ideally, one would like to take the intent and the design, stimulate them in the same 

way, and check that the results match. This would provide a direct way to validate that 

the two are identical. The issue with this is that intent is not something that can usually 

be modelled. In some cases, it may not even be fully understood. Instead, something 

else must be used to represent the intent of the system. In some cases, people have built 

executable design specifications. That can be useful, but of course, the specification 

may also have errors. In other cases, the intent is captured as a reference model that is 

supposed to behave as the system is intended to work. These are some of the uses of the 

model block shown in figure 2.1. Still another is to provide a series of tests and
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expected results to run against a design. These approaches, and most others, rely on 

comparing two different models, and examining the discrepancies. It is hoped that two 

models will not have exactly the same errors.

2.2.4 Determining Verification Completeness

There are a number of other complexities that arise during the process of functional 

verification. One of the most frequently discussed is determining the completeness 

criteria of the verification.

Just as the system intent is often not fully defined, the design model may never be fully 

tested. There are several reasons for this. First, it is difficult to ensure that the complete 

intent of the system is known.

Anything that has not been included in the architectural specification or functional 

specification is unlikely to show up in the design or to be tested, even though the 

function may be required for the system to work. Secondly, it is difficult to know if the 

design has been tested sufficiently. Any issue that is found provides proof that the 

questions have not all been previously asked. It is rare that someone can prove that no 

other questions need asking. It is difficult to show that no more errors can be found. 

Another limitation of verification is the impracticality of running a complete test. Any 

reasonably sized design is too big to examine completely. Ideally an engineer wishes to 

see that all possible stimuli have been applied in all possible states of the design

As a result, functional verification is rarely certain and rarely complete. Given the 

importance of success to many verification projects, estimation methods are used to 

provide an approximation of the quality level of the functional verification.

10



2.3The ASIC Verification Challenge

Functional verification is a simple problem to state but a challenging one to address [4], 

The increasing size and complexity of designs and shortening time to market means that 

verification engineers must verify larger and more complex design in a shorter time than 

in previous projects. An effective solution to meeting this increased demand for 

achieving verification closure must address the flowing verification challenges:

• Reusability

• Efficiency

• Productivity

• Code Performance

• Completeness

The challenge in verification reusability is to increase portions of the verification 

environment infrastructure that can be reused in another part of the project or in a 

completely different project [4]. This is done by sharing features that are similar with 

those in the current project. By using standardised interfaces or functions, a high degree 

of reuse can be achieved. Blocks can be reused in any project that makes use of the 

same standardised interface. As well as using standardised interfaces, identifying 

common functionality in the verification environment planning stage can lead to further 

reuse of verification infrastructure.

The challenge in verification efficiency is to minimise the amount of manual effort 

required for completing a verification project. The reason for reducing manual effort in 

a verification project is that it is error prone, omission prone and time consuming. In 

contrast, automated systems can complete a significant amount of work in a short time. 

However automated systems must be built manually. To improve verification 

efficiency, careful analysis is required of the trade-off between the extra effort required 

for building an automated system and the gains it affords. An example of such a system 

is the coverage driven random verification methodology where the effort to build an 

automated system for stimulus generation and automated checking leads to significant 

improvements in verification efficiency, and hence productivity. Before building an 

automated system an important consideration to be identified is that the automated
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system requires a consistent infrastructure on which it can be developed, and also 

imposes a user model on how an engineer interacts with it. Deployment of an automated 

system requires consistency both in infrastructure and engineering approach, both of 

which take time and targeted effort to achieve.

The challenge in verification productivity is to maximise work produced manually by 

verification engineers in a given amount of time. Achieving higher productivity has 

become a major challenge in functional verification. Significant improvements in the 

design flow have afforded design engineers with much higher productivity. However 

improvements in verification productivity have lagged those on the design side, making 

functional verification the bottle neck in completing the design. The goal of functional 

verification is to reduce the gap between productivity and verification. To achieve this 

verification is moving to a higher level of abstraction and leveraging reuse concepts.

The challenge in verification code performance is to maximise the efficiency of 

verification programs. This consideration is in contrast with verification productivity, 

which deals with how efficiently verification engineers build the verification 

environment and verify the verification plan. The time spent on a verification project is 

usually dominated by the manual work performed by verification engineers. In most 

projects verification performance has usually been a secondary consideration to 

designing and building verification environments. An important area in which 

verification performance becomes a primary consideration is in running regression test 

suites where the turnaround times are dominated by how efficient verification programs 

operate. Expert knowledge of tools and languages used for implementing the 

environment is a mandatory requirement for improving verification performance.

The challenge in verification completeness is to maximise the part of the design 

behaviour that is verified. The major challenge in improving verification completeness 

is in capturing all of the scenarios that must be verified. This however is a manual, error 

prone, and omission prone process. There have been significant improvements in this 

area by moving to coverage driven methodologies. Coverage driven methodologies 

require a measure of completeness whose calculation requires strict planning, tracking 

and organisation of the verification plan. This strict requirement on verification plans 

naturally leads to exposing the relevant scenarios that may be missing. Fine-tuned
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verification planning and management methods have been developed to help with the 

planning and tracking of verification plans.

2.4 Functional Verification

The main purpose of functional verification is to ensure that a design implements the 

intended functionality [5]. As shown by Figure 2.2, functional verification tries to 

establish a relationship between a design and its specification. Without functional 

verification, one must trust that the transformation of a specification into RTL code has 

been performed correctly, without misinterpretation of the specification’s intent.

RTLCoding

RTL
Specification

Functional Verification

Figure 2.2 Functional Verification o f the RTL with respect to the specification

It is important to note that, unless a specification is written in a formal language with 

prccise semantics, it is difficult to prove that a design meets the intent of its 

specification. Specification documents are written using natural languages by 

individuals with varying degrees o f ability in communicating their intentions. Any 

document is open to interpretation. One can easily prove that the design does not 

implement the intended function by identifying a single discrepancy. The opposite 

sadly, is not true: No one can prove that there are no discrepancies. Functional 

verification as a process can show that a design meets the intent o f its specification, but 

it cannot prove it.
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2.4.1 Verification Process

The process of verification should be primarily accomplished by placing the DUT in a 

testbench [3]. The testbench applies some test vectors to the design to ensure that the 

intent meets the specification. The testbench takes over the task of applying inputs 

(testcases) to the design and setting it up in a known configuration. Various input 

vectors are applied to the design to ensure that the response is as expected. In addition 

to the DUT, various other modules which check the output of the device or observe 

some signals of the DUT may also be instantiated in the testbench. These checkers 

could perform various functions in the testbench. For instance, some checkers may 

check for the correct signal sequence protocol on the inputs and outputs of the device. 

Monitors perform an additional function of watching the I/O or some specific busses in 

the DUT.

2.4.2 What is a Testbench?

The term “testbench” usually refers to simulation code used to create a predetermined 

input sequence to a design and to observe the response [5], Test benches are 

implemented using VHDL, Verilog, System C, SpecmanE, and System Verilog and 

may include external data files or C routines.

Figure 2.3 illustrates how a testbench interacts with a DUT. The testbench provides 

inputs to the design and watches any outputs. The verification challenge is to determine 

what input patterns to supply to the design and what is the expected output of a working 

design when subjected to those input patterns.

TESTBENCH

DUT

Figure 2.3 Testbench interaction with DUT

A testbench should be robust so that it provides a high level of confidence that the 

design being tested works correctly.
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2.5 The Bottleneck in ASIC Verification

Today in the era of multi-million gate ASICs and FPGAs, reusable intellectual property 

(IP), and system-on-a-chip (SoC) designs, verification can consume up to 70% of the 

design effort [5]. Design teams, properly staffed to address the verification challenge, 

include engineers dedicated to verification. The number of verification engineers can 

be up to twice the number of RTL designers.

2.5.1 Reasons for the Verification Bottleneck

The verification bottleneck is a result of raising the design abstraction level for the 

following reasons [6]:

• Designing at a higher abstraction level allows engineers to build highly complex 

functions with ease. However, this increase in design complexity then results in 

almost doubling the verification effort. Doing so has doubled the functional 

complexity and hence its verification scope.

• Using a higher level of abstraction for design, transformation, and eventual 

mapping to the end product is not without information loss and 

misinterpretation. For instance, synthesis takes HDL-level design and transforms 

it to gate level format. Verification is needed at this level to ensure that the 

transformation is indeed correct, and that design intent has not been lost. Raising 

the level of abstraction also brings about the question of interpretation of the 

code that is used to describe the design during simulation.

Other factors that affect the verification problem are:

• Increase in functional complexity because of the complex nature of designs 

today; for example, co-existence of hardware and software, analogue and digital.

• The requirement for higher system reliability forces verification tasks to ensure 

that a chip level function will perform satisfactorily in a system environment, 

especially when a chip level defect has a multiplicative effect.
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Research done by Collett International Research into functional verification by 

collecting information from design engineers shows some of the reasons behind the 

bottleneck in verification [7], The result of their finding is shown below:

• Chip flaws because of design errors. 82% of designs with a re-spin resulting 

from logic and functional flows had design errors. This means that comer cases 

have not been adequately covered during the verification process and that bugs 

remain hidden in the design all the way through tape out.

• Chip flaws because of specification errors. 47% of designs with re-spin 

resulting from logic and functional flaws had incorrect or incomplete 

specification. 32% of designs with a re-spin resulting from logic and functional 

flaws had changes in specifications.

• Problems with reused IP and imported IP. 14% of all chips that failed had 

bugs in reused components or imported IP.

• Effects of a re-spin. Re-spins can cost a company up to $100,000. In addition, a 

respin delays product introduction and adds to expense due to failing systems 

that use these defective chips.
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2.6 Conclusion

This chapter explains what verification is and some of the challenges and difficulties 

that are associated with it. One of the major problems mentioned in this chapter is the 

bottleneck within verification. To reduce the bottleneck in verification, companies have 

researched and developed solutions and ideas. Listed below are some of the ideas and 

solutions that companies have developed [7].

1. Reduce chip complexity. Practically, this is not possible because of customer 

demand for more functionality.

2. Reduce the number of designs. This solution affects a company's long-term goal of 

being profitable.

3. Increase resources. Another alternative is to increase the number of designers or 

verification engineers. This alternative works well to some extent, but does not meet 

today's demands for verifying exponentially complex chips with a limited amount of 

time.

4. Increase productivity of designers. Productivity gains have been achieved by 

improving compute power, using personal tools such as Microsoft Excel. While they 

have been of great help in capturing test and verification plans, the majority of the 

time is spent in coding the test cases, running them, and debugging.

5. Increase verification productivity. This has obvious potential for gains in 

productivity.

To increase verification productivity, the EDA industry has come up with a solution 

similar to what was used to solve the design bottleneck - the concept of abstraction. 

Higher-level languages such as Verilog and VHDL support chip verification using test 

benches. These languages include constructs such as tasks, threading (fork, join) and 

control structures such as "while." This provides more control to fully exercise the 

design on all functional comers. However, these constructs are not synthesisable and 

hence are not used by designers as a part of actual design code.

As complexity continues to grow, new verification languages have been created and 

introduced that try to verify complex designs at various levels of abstraction. Along
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with new verification languages, methodologies and tools have been developed to 

support them. One such verification language is SystemVerilog. Along with 

SystemVerilog the EDA companies have developed methodologies to support the 

language. The next chapter will discuss SystemVerilog and the different methodologies 

that support the language.
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Chapter 3 Current Verification Languages, Methodologies 

and Trends

3.1Introduction

This chapter outlines the advantages SystemVerilog brings to the verification industry. 

SystemVerilog is a major extension of the established IEEE 1364 Verilog language [8]. 

These extensions are discussed, along with a review of the Verilog language. 

SystemVerilog also includes some features from the OpenVera verification language 

which is discussed in this chapter. Also explained are the different methodologies that 

have been developed by the major EDA companies to support SystemVerilog. Along 

with the methodologies the EDA companies are developing tools to support 

SystemVerilog.

3.2 SystemVerilog

SystemVerilog is the industry's first unified hardware description and verification 

language (HDVL). SystemVerilog combines the features of Hardware Description 

Languages such as Verilog and VHDL with features from Hardware Verification 

Languages such as OpenVera. SystemVerilog also includes features from C and C++. 

SystemVerilog became an official IEEE standard (IEEE 1800) in 2005 [9], It was 

developed originally by Accellera to improve productivity in the design of large gate 

count, IP based, bus intensive chips.

Since its development SystemVerilog is finding practical use in the areas of concise and 

productive RTL coding, assertion based verification, and building coverage driven 

verification environments using constrained random techniques

SystemVerilog provides:

• Constrained random stimulus generation

• Functional Coverage

• Assertion based Verification

• Higher-level structures, especially Object Oriented Programming

• Multi-Threading and inter-process communication
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The methods listed above help to improve the verification process. SystemVerilog also 

provides enhanced hardware modelling features that improve the RTL design 

productivity and simplify the design process [10]. Since its development SystemVerilog 

has been adopted by hundreds of semiconductor design companies and supported by 

more than 75 EDA, IP and training solutions worldwide.

3.3Verilog

SystemVerilog is a major extension of Verilog. Verilog is a hardware description 

language (HDL) used to model electronic systems. Verilog supports the design, 

verification and implementation of analogue, digital and mixed signal circuits at various 

levels of abstraction [11],

The designers of Verilog wanted a language with syntax similar to the C programming 

language. The language is case sensitive, it has a pre-processor like C, and the major 

control flow keywords such as “i f ’ and “while” are similar to those in C.

Verilog differs from C in some fundamental ways. Verilog uses begin/end instead of 

curly braces to define a block of code. Verilog 1995 and 2001 do not have structures, 

pointers or recursive subroutines. However, SystemVerilog includes these capabilities. 

Also the concept of time, which is so important to a HDL, is not found in C.

The language differs from a conventional programming language in that the execution 

of statements is not strictly linear. A Verilog design consists of a hierarchy of modules 

[12]. Modules are defined with a set of input, output, and bi-directional ports. Internally, 

a module contains a list of wires and registers. Concurrent and sequential statements 

define the behaviour of the module by defining the relationships between component, 

ports, wires, and registers. Sequential statements are placed inside a begin/end block 

and executed in sequential order within the block. Concurrent statements and all 

begin/end blocks in the design are executed in parallel. A module can also contain one 

or more instances of another module to define sub-behaviour.
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3.4 OpenVera

OpenVera is an interoperable, open hardware verification language developed by 

Synopsys [13]. The OpenVera language has been used as the basis for the 

SystemVerilog IEEE Standard. OpenVera remains a widely adopted and well supported 

hardware verification language.

OpenVera is an intuitive easy to learn language that combines the familiarity and 

strengths of HDLs, C++ and Java, with additional constructs targeted at functional 

verification making it ideal for developing test benches, assertions and properties [14] .

3.5 History of Verilog and SystemVerilog

The Verilog Hardware Description Language (HDL) was originally developed together 

with the Verilog XL simulator by Gateway design automation and was introduced in 

1984 [15]. In 1989 Cadence Design Systems acquired Gateway, and with it the rights to 

the Verilog language and the Verilog XL simulator. In 1990 Cadence placed the Verilog 

language into the public domain. Open Verilog International (OVI) is a non-profit 

organisation tasked with making Verilog an IEEE standard, achieved in 1995 (IEEE 

1364 -1995). In 2000, OVI combined with Very High Speed Integrated Circuit (VHSIC) 

Hardware Description Language better known as VHDL to form Accellera. In 2001 a 

revised version of Verilog, known as Verilog 2001 was released, with the IEEE 

standard 1364 -  2001. This version incorporates many useful improvements. In 2002 

Accellera introduced further extensions to Verilog and these were released under the 

name SystemVerilog 3.0. These extensions offer a higher level of abstraction for 

modelling and verification. An extended version of SystemVerilog 3.1 and a further 

revision of SystemVerilog 3.1a formed the basis for SystemVerilog obtaining an IEEE 

standard in 2005 (1800 -  2005). In 2009, the SystemVerilog and Verilog (IEEE 1394- 

2005) standard merged, creating the current IEEE Standard 1800-2009. Figure 3.1 

illustrates the timeline of Verilog and SystemVerilog development.
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3.6 SystemVerilog Extensions to Verilog 2001

This section lists the major extensions and improvements and new features that 

SystemVerilog has made to Verilog 2001 [9].

The list of the extensions is included below along with a detailed explanation of each. 

New Data Types

One of the first improvements in SystemVerilog from Verilog is the different C like 

data types. The new data Types include byte, shortint, int, longint, bit, logic, string, 

chandle, typedef, struct, union, tagged union, enum.

Dynamic Data Types

The next improvement in SystemVerilog is the use of dynamic data types. These 

include strings, classes, dynamic arrays, associative arrays including automatic memory 

management freeing users from de-allocation issues.

Dynamic arrays:

One dimensional arrays whose size can be set or changed at runtime. The space for a 

dynamic array does not exist until the array is explicitly created at runtime.

Associative Array:

When the size of the collection is unknown or the data space is sparse, an associative 

array is a better option than dynamic arrays. Associative arrays do not have the storage 

allocated until it is used, and the index expression is not restricted to integral expression, 

but can be of any type.

Classes:

Classes are defined to support object oriented programming within SystemVerilog,. 

Classes consist of properties and methods. Classes may be extended to form a new 

class. This is called single inheritance. So basically classes are user defined data types. 

Classes may be instantiated to create objects. To support directed random verification,
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Class Variables may be declared random. Classes may also include constraints, which 

direct the generation of random values.

Built in methods to extend the language.

The next improvement in SystemVerilog is the built in methods to extend the language, 

e.g. array manipulation methods and enum and string methods. SystemVerilog also 

includes C like jump statements such as return, break and continue.

Enhanced Task and Functions

SystemVerilog also enhances tasks and functions. In SystemVerilog, multiple 

statements can be written between the task declaration and end task, which means that 

begin / end, can be omitted. If begin / end is omitted, statements are executed 

sequentially. It is legal to have no statement at all.

Extensions to fork - join

SystemVerilog also has extensions to fork-join to model pipelines and for enhanced 

process control. The fork- join construct enables the creation of concurrent processes 

from each of its parallel statements. A Verilog fork-join block always causes the 

process executing the fork statement to block until the termination of all forked 

processes. With the addition of the join_any and join_none keywords, SystemVerilog 

provides three choices for specifying when the parent resumes execution.

Option Description

join The parent process blocks until all the processes spawned by this fork 

complete

join_any The parent process blocks until any one of the processes spawned by this 

fork complete

join_none The parent process continues to execute concurrently with all the 

processes spawned by the fork. The spawned processes do not start until 

the parent thread executes a blocking statement

Table 3.1 SystemVerilog extension to fork-join
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Extensions to the Always Block

SystemVerilog provides extensions to the always block for modelling combinational, 

latched or clocked processes. In an always block which is used to model combinational 

logic, forgetting an else statement leads to an unintended latch. To avoid this mistake, 

SystemVerilog adds specialised always comb and always_latch blocks, which indicate 

the design intent to simulation, synthesis and formal verification tools. SystemVerilog 

also adds an always ff block to indicate sequential logic.

Interface

SystemVerilog adds interfaces to improve encapsulated communication. Interfaces may 

effectively be a “bundle of wires” with a single name, but they are also capable of 

containing behaviour and so may be used by BFMs. Interfaces therefore support 

Transaction Level Modelling (TLM) and in particular the reuse of verification 

environments at different levels of abstraction.

Clocking Block

Clocking blocks allow control over the clocking behaviour of different parts of a 

testbench. Clocking blocks help the sampling of input/output data to be set up in a well- 

defined way [8],

Program Block

Also included in SystemVerilog is the program block for describing tests. The program 

block is the basic building block in Verilog. The program block can contain hierarchies 

of other modules, wires, task and function declarations, and procedural statements 

within always and initial blocks [16]. This construct works extremely well for the 

description of hardware. However, for the testbench, the emphasis is not in the hardware 

level details such as wires, structural hierarchy, and interconnects, but in modelling the 

complete environment in which a design is verified. A lot of effort is spent getting the 

environment properly initialised and synchronised, avoiding races between the design 

and the test-bench, automating the generation of input stimuli, and reusing existing 

models and other infrastructure.
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The program block serves three basic purposes:

1 It provides an entry point to the execution of test-benches.

2 It creates a scope that encapsulates program-wide data.

3 It provides a syntactic context that specifies execution in the Reactive region.

Direct Programming Interface (DPI)

The SystemVerilog Direct Programming Interface (DPI) allows C functions to be called 

directly from SystemVerilog or vice versa without using the Programming Language 

Interface (PLI) [17]. The Direct Programming Interface (DPI) allows functions in a 

foreign language to be called as SystemVerilog functions. This is very useful as 

reference models are often written in C. They can then be used as a golden reference or 

as part of a checker in an automated testbench. The DPI allows this reuse in an efficient 

way.
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SystemVerilog Assertions (SVA)

What is an assertion?

An assertion is basically a "statement o f fact"  or "claim o f truth" made about a design 

by a design or verification engineer [18]. An engineer will assert or "claim" that certain 

conditions are always true or never true about a design. If that claim can ever be proven 

false, then the assertion fails.

Assertions essentially become active design comments. Assertions can be checked 

dynamically by simulation, or statically by a separate property checker tool i.e. a formal 

verification tool that proves whether or not a design meets its specification. Such tools 

may require certain assumptions about the design’s behaviour to be specified.

What is a property?

A property is basically a rule that will be asserted to passively test a design [18]. The 

property can be a simple Boolean test regarding conditions that should always hold true 

about the design, or it can be a sampled sequence of signals that should follow a legal 

and prescribed protocol.

For formal analysis, a property describes the environment of the block under 

verification, i.e. what is the legal behaviour of the inputs.

Types of SystemVerilog Assertions: 

Immediate Assertions

Immediate assertions are procedural statements and are mainly used in simulation. An 

assertion is basically a statement that something must be true, similar to the i f  statement. 

The difference is that an i f  statement does not assert that an expression is true, it simply 

checks that it is true.

if (A==B) // Simply checks if A equals B
assert (A == B) // Asserts that A equals B; if not an error 
is generated

Figure 3.2 Example o f Immediate Assertion
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Concurrent Assertions:

The most valuable assertion style that can be used in design and verification 

environments is the concurrent assertion. Concurrent assertions are monitors that reside 

inside a block of code to periodically sample and test signals and to generate error 

messages if the assertion ever fails. Concurrent assertions are typically sampled once 

per clock period at the end of the clock cycle, just before the next active clock edge. 

Concurrent assertions require the assertion of a property, where a property is basically a 

design rule that should always be true. The simplest of concurrent assertions takes the 

form:

assert property (! (Read && Write));

// asserts that the expression Read && Write is never true at 
any point during simulation.

Figure 3.3 Example o f Concurrent Assertions

Properties may be checked using concurrent assertions. If an asserted property does not 

hold, the assertion is violated and an error is generated, Assertions may be checked 

dynamically during simulation, or statically using a property checker, which is a type of 

formal verification tool.

Coverage

Coverage serves two critical purposes throughout the verification process [19]. The first 

is to identify holes in the process by pointing to areas of the design that have not yet 

been sufficiently verified. This helps to direct the verification effort by answering the 

key question of what test to write next (directed test or constrained random test).

Coverage is also an indicator of when verification is thorough enough to tape out the 

design. Coverage provides more than a simple yes/no answer; incremental improvement 

in coverage helps to assess verification progress and thoroughness, leading to the point 

at which the development team has the confidence to tape out the design. In fact, 

coverage is so critical that most advanced, automated approaches implement coverage 

driven verification, in which coverage guides each step of the process.
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Coverage is divided into two main categories: code coverage and functional coverage. 

Code coverage, in its many forms (line coverage, toggle coverage, expression 

coverage), is typically an automated process that tells whether all of the code in a 

particular RTL design description was exercised during a particular simulation run (or 

set of runs). Code coverage is a necessary but not sufficient component of a reliable 

verification methodology.

In contrast, functional coverage provides an explicit metric of how much of the desired 

functionality of the design has actually been exercised. Verification confidence can 

often be improved further by using cross-coverage techniques to measure combinations 

of coverage metrics [19], Important functional coverage and cross-coverage points 

should be identified early in the project and preferably included in the written 

verification plan.

The process of filling the holes identified by the full range of coverage is the heart of 

the coverage driven verification process. When 100% coverage is achieved then the 

verification confidence is high enough to tape out the design. SystemVerilog provides 

coverage properties for lower level coverage points, covergroups for tracking higher 

level values and support for cross coverage.

Object Oriented

SystemVerilog provides an object-oriented programming model [20], SystemVerilog 

classes support a single inheritance model. There is no facility that permits conformance 

of a class to multiple functional interfaces, such as the interface feature of Java. 

SystemVerilog classes can be type parameterised, providing the basic function of C++ 

templates. However, function templates and template specialization are not supported.

The polymorphism features are similar to those of C++: the programmer may 

specifically write a virtual function to have a derived class gain control of the function.

Encapsulation and data hiding is accomplished using the local and protected keywords, 

which must be applied to any item that is to be hidden. By default, all class properties 

are public.
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SystemVerilog class instances are created with the new keyword. A constructor denoted 

by function new () can be defined. SystemVerilog supports garbage collection, so there 

is no facility to explicitly destroy class instances.

3.7 Methodologies and Tools

Since the release of SystemVerilog in 2002 the key EDA companies Synopsys, Mentor 

Graphics and Cadence have been developing methodologies to support the language. 

Synopsys were the first to develop a successful methodology for SystemVerilog called 

Verification Methodology Manual (VMM) in 2005. Mentor developed an open source 

methodology called Advanced Verification Methodology (AVM) in 2005. Cadence in 

2006 also developed a methodology for SystemVerilog called Universal Reuse 

Methodology (URM). Since 2005 a number of changes and developments have been 

made to the methodologies. In 2007 Mentor and Cadence came together and formed a 

new methodology called Open Verification Methodology (OVM) that was also open 

source. Since OVM’s development Synopsys have made VMM open source in 2008 

and in 2009 released a new version of VMM (VMM 1.2) that has similar features to 

OVM. In late 2008 Mentor announced the availability of an open-source SystemVerilog 

solution (interoperability library) for users of OVM. The solution enables the easy and 

flexible reuse of VMM code within an OVM environment.

What is Interoperability?

VMM based verification components can now be seamlessly reused within an OVM 

environment [21]. In addition, entire VMM environments can be reused without 

modification within an OVM environment through the use of the Interoperability library 

that provides the data and semantic conversions between the old and new environments.
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3.7.1 Verification Methodology Manual (VMM)

VMM is co-authored by verification experts from ARM and Synopsys. VMM describes 

how to use SystemVerilog to develop scalable, predictable and reusable verification 

environments [22]. VMM has become an important factor in increasing verification 

reuse, improving verification productivity and timelines. VMM consists of coding guide 

lines and base classes. VMM is focused on coverage driven verification (CDV).

VMM libraries consists of the following sub libraries

• VMM Standard Library

• VMM Register Abstraction Layer (RAL)

• VMM Hardware Abstraction Layer (HAL)

The VMM Standard Library provides base classes for key aspects o f the verification 

environment, transaction generation, notification service and a message logging service.

VMM
Component

Description

vm m env The class is a base class used to implement verification 
environments.

vm m xactor This class is to be used as the basis for all transactors, including 
bus functional models, monitors and generators. It provides a 
standard control mechanism expected to be found in all 
transactors.

vmm channel This class implements a generic transaction level interface 
mechanism. The transaction level interfaces remove the higher 
level layers from the physical interface details. Using 
vmm channel, transactors can pass transactions from one to 
another.

vm m data This class is to be used as the basis for all transaction descriptors 
and data models. It provides a standard set of methods expected 
to be found in all descriptors. The user must extend vmm data to 
create a custom transaction.

vm m log This class provide a mechanism for reporting simulation activity 
to a file or a terminal. The vmm log class ensures a consistent 
look and feel to the messages issued from different sources.

vm m atom ic vmm atomic gen is a macro. This macro defines an atomic 
generator for generating transactions which are derived from
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gen vmmdata.

vm m scenario
gen

Defines a scenario generator class to generate sequences of 
related instances o f the specified class.

v m m  data

v m m _ lo g

v m m _ c h a n n e l

Table 3.2 List o f  VMM Classes

v m m  e n v

v m m  xa cto r

v m  m _ a to  m  i c_g e  n v m m  sce n a rio  gen

Figure 3.4 VMM Standard Library
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3.7.2 Open Verification Methodology (OVM)

The OVM is the result of joint development between Cadence and Mentor Graphics. 

OVM is open source; it combines features from URM and AVM. The OVM Class 

Library [23] provides the building blocks needed to quickly develop well-constructed 

and reusable verification components and test environments in SystemVerilog.

The OVM library contains

• Component classes for building testbench components like generator, driver, 

monitor

• Reporting classes for logging,

• Factory for object substitution.

• Synchronisation classes for managing concurrent process.

• TLM Classes for transaction level interface.

• Sequencer and Sequence classes for generating realistic stimulus.

• Macros which can be used for shorthand notation of complex implementation.

Ovm Component Description

ovm driver Driver takes the transaction from the sequencer using 

seq_item_port. This transaction will be driven to DUT as per the 

interface specification.

ovm env Used to create and connect the ovm components like driver, 

monitors, sequencers etc. An environment class can also be used 

as sub-environment in another environment.

ovm test Using ovm test provides the ability to select which test to 

execute using the OVM TESTNAME command line option or 

argument to the ovm_root::run_test task.

ovm_sequencer Sequencer generates stimulus data and passes it to the driver. All 

sequencers should be derived from the ovm sequence base class 

directly or indirectly, ovm sequence base call is parameterised 

for request and response item types.

ovm m onitor ovm monitor allows you to distinguish monitors from generic 

component types inheriting from ovm component.
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ovm_scoreboard ovm scoreboard will allow you to distinguish scoreboards from 

other component types inheriting directly from ovmcomponent.

ovm_transaction The ovm transaction class is the root base class for OVM 

transactions. Inheriting all the methods o f ovm object, 

ovm transaction adds timing and recording interface.

ovm_sequence_

item

The ovm sequence item class provides the basic functionality 

for objects, both sequence items and sequences, to operate in the 

sequence mechanism.

ovm_sequence A sequence is defined by extending ovm sequence class. This 

sequence of transactions should be defined in body() method of 

ovm sequence class. OVM has macros and methods to define 

the transaction types

ovm object The ovm object class is the base class for all OVM data and 

hierarchical classes. Its primary role is to define a set of methods 

for such common operations as create, copy, compare, print, 

and record. Classes deriving from ovm object must implement 

the pure virtual methods such as create and get type name.

| ovm^transaction"]

| o v m _ s c q u c n c c _ i t e m

'i' ~ ~ ~

1 ovm  scuucncc |

I tlm_ fifo |

| ovm _cnv 1

Table 3.3 List o f  OVM Classes 

•f ovm _objcct |

| ovm _roport object |

»I ovm  com ponent i
* + + t  t  t _

| o v m a g e n t 1

| ovm test |

| ovm _d river | | o v m _ m o n r t o r  1

| ovm _scqucncer | | o vm sco rcb oa rd  |

Figure 3.5 OVM Library
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3.7.3 Synopsys VCS Comprehensive RTL Verification Solution

VCS [24] is an RTL verification product that provides advanced bug finding 

technologies with a built in debug and visualisation environment. VCS supports all 

popular design and verification languages including Verilog, VHDL, SystemVerilog 

and SystemC. VCS includes the full featured native testbench, complete assertions and 

comprehensive code and functional coverage making bug finding faster and easier. Also 

VCS Verification Library provides verification IP for today’s most popular bus 

standards.

Key Benefits

• Supports SystemVerilog and OpenVera test benches.

• VCS also includes Synopsys VMM methodology

• VCS supports SystemVerilog assertions (SVA) and OpenVera assertions 

(OVA).

• Support for all popular design and verification language standards, including 

Verilog, VHDL, SystemVerilog and SystemC .

3.7.3.1 Discovery Visualisation Environment (DVE)

VCS also includes the Discovery Visualisation Environment (DVE) [25], which is a full 

featured debug and visualisation environment. DVE has been created to work with VCS 

and shares a common look and feel with other Synopsys graphical based analysis tools. 

DVE enables easy access to design and verification data along with drag and drop menu 

an icon driven environment. Its debug capabilities include: tracing drivers, waveform 

compare, schematic views, path schematics, and support for the highly efficient 

Synopsys compact VCD+ binary dump format.

It also provides SystemVerilog, VHDL and Verilog and SystemC/C++ language 

debugging windows along with assertion tracing capabilities. TCL support is provided 

for interaction or batch control and skin / menu customization. A unified command 

language is supported to provide a common set of commands for all tools, languages 

and environments making it easy to deploy new technology across design teams. These 

commands are logged for all actions in DVE and can be modified or replayed easily.
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3.7.4 Mentor Graphics Questa

Questa offers built in support for testbench automation, coverage-driven verification, 

assertion-based verification (ABV), and transaction-level modelling (TLM) [26], Questa 

provides support for SystemVerilog, VHDL, PSL, and SystemC in a single-kernel 

verification solution. Questa is targeted at mixed language flow. Questa enables 

designers to choose the languages that best address their needs.

3.7.5 Cadence Incisive Design Team Simulator

Cadence Incisive Design Team Simulator [27] provides testbench creation, reuse and 

analysis capabilities. These capabilities are used to verify designs from the system level, 

through RTL to the gate level. The environment supports a coverage driven 

methodology from verification planning to closure. Incisive Design Team Simulator’s 

native compiler architecture speeds the simulation of behavioural, transaction level 

models, RTL, and gate level models, eliminating the performance reduction in 

traditional simulation. It also supports industry standard verification languages and is 

compatible with the Open Verification Methodology.
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3.8 SystemVerilog Growth within the Verification Industry

While researching SystemVerilog a very useful survey was found [28]. The survey is 

interesting as it shows the growth that SystemVerilog has made in the design and 

verification industry since its development. The survey was performed at the DVCON 

conference [28], and was based on 665 responses given. The results o f the survey are 

shown below.

Figure 3.7 Verification language usage
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Figure 3.8 Assertions language usage

Figure 3.9 Predicted verification language engineers usage

The results of the survey indicate that usage o f SystemVerilog has increased in both 

design and verification.



3.9 Conclusion

This chapter explained what SystemVerilog is and the extensions added to the Verilog 

language. Also described in this chapter are the methodologies that support 

SystemVerilog.

Along with significant growth in SystemVerilog, there have also been changes in the 

methodologies that support SystemVerilog.

• VMM released 2005

• AVM released 2005

• OVM released 2007

• VMM made open source

• VMM 1.2 released capturing many of OVM features

• Interoperability created for OVM/VMM

While SystemVerilog and the methodologies that support the language offer powerful 

techniques for verification, they don’t however offer a standardised way of building test 

benches. For this reason the main motivation of the thesis was to develop a standardised 

test bench. The standardised testbench would incorporate the key features of both 

SystemVerilog and the methodologies.

• Assertions

• Constrained random test generation

• Functional Coverage

• Reference Model / Scoreboard

• Reporting Mechanism (URG)

• VMM planner
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Chapter 4 VMM Based Verification Environment 

4.1 Introduction

In chapter three, SystemVerilog and the new features that it offers for verifying chip 

designs were discussed. Also VMM and the features that it provides for verification 

have also been addressed. This chapter will discuss building a verification environment 

using SystemVerilog and VMM. An IEEE-754 compliant floating-point adder model 

[28] has been used as a case study to implement the key features of both SystemVerilog 

and VMM. The reason for choosing a floating-point adder model is that it offers a 

robust design that can incorporate data intensive testing. The key features that were 

implemented are listed below and a brief description of each is given.

Interface: Provides the connections between the environment and DUT

Transaction: A transaction is an atomic data unit that is directly or indirectly applied to 

the DUT. Transactions are class derivatives of the vm m data class. They extend the 

vm m data class either directly or indirectly through various layers of class hierarchy. 

Figure 4.1 illustrates a floating-point transaction.

Transaction 1

Datai =11.5
Channel Transactor

Data 2 =8

Name_______________¡Value | |  , p20000^_____ [IfOOPOq _  , |1600001)______ |1800.00t| ,

t o t e r f a c e  j

c - c l k  S t0-> St1 j

D - r s t  S t0 - » S t 1

+ D d a t a i  [3 1 :0 ] 3 ZT«>;<

+ ■ U d a t a ? [ 3 1 :0 ] 3 2 ' h » x  ■

*  D r e s u l t [ 3 1 :0 ] 3 2 'hOO. i

Figure 4.1 Example o f a Floating-point Transaction
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Transactor (BFM): A transactor is a static component of the verification environment. 

Transactors extend the vmm_xactor class either directly or indirectly. Transactors are 

components such as generators, drivers, monitors, checkers, and scoreboards, i.e. 

models that act on the data transactions that travel through the verification environment. 

The B1;M is explained further in section 4.6.

Verification environment: This is the entire top-level verification environment 

structure that embeds all transactors and any other components relevant to the 

verification environment for the DUT.
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4.2 Device Under Test (Floating-point Adder Model)

The DUT is a single precision (32 bit) floating-point adder [29]. The DUT adds the two 

inputted numbers, returns a result and asserts the necessary status flags for that 

operation on each clock cycle

Two 32-bit, SP. 
Floating Point 

Numbers

DATAJ RESULT

DATA_2

OVERFLOW
UNDERFLOW

INEXACT
CLK

NO_OP
RESET DIV_0

1100000111100010010101

— 5 IEEE Flags

Figure 4.2 Single Precision Floating-point Adder Model

Figure 4.2 illustrates the single precision floating-point adder model or device under test

in the testbench. A brief description of inputs and outputs of the model are listed below:

DATA_1 & DATA_2 -The two single precision floating-point numbers to be added.

RESULT -  The outputted single precision floating-point number result.

CLK -  Clock signal used to synchronise inputs and outputs through the device.

RESET -  Active high reset, puts all zeros on result when active.

5 IEEE Flags -  Exception flags, to show error conditions:

-  Inexact: Set if the rounded result is not exact or if it overflows with no overflow 

trap.

-  Overflow: Set if the operation produces a result that exceeds the range of the 

exponent

-  Underflow: Set if the operation produces a result that is too small to be 

represented as a normal number.
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-  Division by zero (DIV_0): Set if the divisor is zero and the dividend is a finite

non zero number

-  Invalid operation (NO_OP): This flag is signalled if an operand is invalid for 

the operation to be performed. The result when the exception occurs is a quiet 

Nan [ref].

Invalid operations are:

• Any operation on a signalling Nan.

• Addition or subtraction of infinities.

• Multiplication of zero by infinity.

• Division of 0 /0  and oc / cc

• Remainder ... x REM y where y is zero or x is infinite.

• Square root if the operand is less than zero.

• Conversion of a binary floating-point number to an integer or decimal 

format when infinity, overflow or Nan precludes a representation in that 

format and this cannot otherwise be signalled.

• Comparison by way of predicates involving < or >, without ?, when the 

operands are unordered
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4.3 Designing a Verification Environment

SystemVerilog offers many new features and methods for verifying chip designs. This 

section describes the design of a verification environment that can incorporate these 

features. Figure 4.3 illustrates such an environment. Sections 4.4 to 4.8 describe how 

each of the features illustrated are implemented within the verification environment.

VMM Verification 
Environment

Figure 4.3: Basic Verification Environment



4.4.1 Introduction

SystemVerilog includes a powerful feature called the interface. The interface 

encapsulates the interconnection and communication between blocks. The signals 

declared within an interface can be input, output or inout in direction.

4.4.2 Building an Interface for the Floating-point Adder

4.4 Floating-point Adder Interface

Figure 4.4 Interface for Floating-point Adder Testbench

In the first part of the interface the clock and the reset signals are declared. Figure 4.5 

shows how this was done. The clock signal is used to synchronise all signals to and 

from the DUT. The reset is a master reset for the DUT and is low active.

interface fp_adder__if(input elk, input rst) ;

Figure 4.5 Declaring Clock and Reset
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The next step in the interface is the declaration of the data signals and IEEE flags that 

are used within the DUT.

logic [31:0] datal; 
logic [31:0] data2; 
logic [31:0] result; 
logic invalid__op_flag; 
logic underflow_flag; 
logic overflow_flag; 
logic divide0_flag; 
logic inexact_flag;

Figure 4.6 Declarations o f Signals

Figure 4.6 illustrates that data 1 and data 2 are declared as logic 31 down to 0 (32 bit). 

These represent the 2 floating-point number inputs. The result signal is also a 32-bit 

number and represents the result of adding data 1 and data 2. The 5 IEEE flags are also 

declared; these deal with error handling for five exceptions that can occur within the 

floating-point standard [29].

4.4.3 What are Modports?

Modports are used to specify the direction of the signals with respect to a module that 

uses an interface rather than port lists. Modports restrict interface access within a 

module based on the direction declared.

4.4.4 Modports used in the Floating-point Interface

The modport implemented in the interface is shown in figure 4.7. The modport 

mp slave is connected to the wrapper.

modport mp slave (
input datal,
input data2 ,
output result,
output overflow flag.
output underflow flag,
output inexact flag,
output divideO flag,
output invalid op flag);

Figure 4.7 Modports within Interface
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4.4.5 Wrapper

The wrapper is used to hook up the signals declared within the interface to the 

corresponding DUT pins.

4.4.6 Clocking Blocks

SystemVerilog interfaces also include clocking blocks. Clocking blocks are used to 

identify clock signals, and capture the timing and synchronisation requirements of the 

blocks being modelled. A clocking block assembles signals that are synchronous to a 

particular clock, and makes their timing explicit.

4.4.7 Implementing Clock Blocks within the Interface

Two clocking blocks, cb_master and cb_slave, are declared in the interface and are 

shown in figure 4.8.

clocking cb_master 0 (negedge elk) ;

default input #setup_time output #hold_time; 

output datal, data2;

input result, overflow_flag, underflow_flag, inexact_flag, 
divideO_flag, invalid_op_flag ,datal_align, data2_align;

endclocking : cb_master

clocking cta_slave @ (posedge elk);

default input #setup_time output #hold_time;

input datal, data2;

output result, overflow_flag, underflow__flag, inexact__flag, 
divideO_flag, invalid_op_flag,datal_align,data2_align;

endclocking : cb_slave

Figure 4.8 Clocking blocks
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Explanation of cbm aster

The first line declares a clocking block called cb master that is to be clocked on the 

negative edge of the signal elk. This clocking block is used in the BFM to drive 

information onto the DUT. The second line specifies that by default all signals in the 

clocking block use a 10ns input skew and a 2ns output skew by default. The next line 

adds two output signals to the clocking block data 1 and data 2. The last line adds input 

signals for the result and the 5 IEEE flags

4.4.8 Assertions

The last step in the interface is declaring assertions. Assertions are useful for verifying 

properties of a design that manifest themselves over time. An example of an assertion is 

shown in figure 4.9.

property p2;
0 (posedge elk) invalid op flag !* 1;

endproperty
assert property (p2) ;

Figure 4.9 Example o f a System Verilog Assertion

The assertion listed in figure 4.9 checks simply looks for a high signal on the invalid 

operation flag on the DUT and asserts if this condition is met.
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4.5Data Class

4.5.1 Introduction

As mentioned in the introduction VMM has been used to build the floating-point adder 

test bench. Using this methodology a number o f classes in the testbench are derived 

from VMM classes. The first o f these classes is the data class.

Inband Atomic 
Generator

F P B a s *  d a t a  c la s s

Figure 4.10 Data class

The data class (c lfp d a ta )  is derived from the vmm data base class (figure 4.10). As a 

base class, it provides a set of methods and properties that is common to all derived 

transaction classes in the floating-point test-bench. This is an advantage, because it 

provides a consistent way o f using common methods throughout the testbench.

4.5.2 Declaring Floating Data and Flags

The data class is responsible for declaring the floating-point numbers and flags. The 

floating-point numbers are declared using a struct. Using this struct it is possible to split 

the numbers into sign exponent and mantissa as shown in figure 4.11.

// define variables 
rand struct packed { 

logic sign; 
logic [7:0] exp; 
logic [22:0] man; 
} datal ;

Figure 4.11 Declaring Data 1 and Data 2



4.5.3 Using VMM Data Methods

VMM Log

The first method used from the vmm_data base class was vmm_log, as shown in figure 

4.12. This is used because it provides message logging, message filtering and error 

counting facility.

static vmm log log = new ("clfp^data", "class");

Figure 4.12 Declaring VMM log

Allocate Method

The allocate method (figure 4.13) is used to allocate an instance, which is of the same 

type as the object. It serves effectively as a virtual constructor, in contrast to the built in 

class constructor which is not a virtual method.

function vmm_data cl_fp_data: : allocate();

cl_fp_data i = new(); // Allocate a new object of this type 
allocate = i; // and return a handle to it

endfunction

Figure 4.13 Allocate Method

psdisplayO

The psdisplay method (figure 4.14) displays the current value of the transaction or data 

described by this instance in a human-readable format on the standard output.

function string cl_fp_data::psdisplay(string prefix);
$sformat(psdisplay, "datai = %x, data2 = %x flags =

%x) ;
endfunction

Figure 4.14ps_display() method
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Copy method ()

The copy method (figure 4.15) is intended to implement a deep copy of the transaction. 

This includes a copy o f all primitive as well as complex data members. The copy is 

returned from this function. The copy method takes a single argument o f type 

vmm data. The return type of the copy function is vmm data. This implies that the 

return of the copy method may need to be cast back to the derived class type.

function vmm data fp data::copy(vmm data to) ;

fp data cpy;

if (to == null)
cpy = new();

else if (!$cast(cpy, to)) begin
'vmm error(this.log, "Cannot
copy = null;
return;

end

copy instance");

copy data(cpy); 
copy = cpy;

endfunction

Figure 4.15 Copy Method

4.5.4 VMM Channel

The next step inside in the data class is the creation o f the vmm channel. The 

vmm channel provides the structure to store the transactions and also provide the 

support to process those transactions. One side o f the channel is the generator putting 

the transaction onto the channel and the other is the transactor taking the transaction off 

the channel. Figure 4.16 illustrates is this process.

Pro d u ce r C onsum er

/f&{\ 6 5 4 jc - ;>

vm m  ch an n e l
987 321

Figure 4.16 vmm channel
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To facilitate the implementation of the channel, VMM creates a derived class from 

cl fp data using the vmmchannel. The macro (figure 4.17) creates the class 

cl fp data channel that provides a strongly typed queue to help prevent error coding.

'vram channel(cl_fp data)

Figure 4.17 Creating Data Channel

4.5.5 Atomic Generator

The next step inside the cl ip data is creating the atomic generator. The reason for 

using the atomic generator is to randomise the transactions. The generator can 

accomplish this as follows:

• Instantiate a blueprint of the object to be generated

• Construct the object and randomise it

•  Push the object to the output channel so that it can be taken off the channel later 

by a transactor which in the case o f our testbench is the bus functional model 

(BFM).

Figure 4.18 illustrates the atomic generator.

Atomic Generator

_____________
vmm_channel

Figure 4.18 Atomic Generator

To support this feature in an automatic manner, vmm provides a macro 

vm m atom icgen  (figure 4.19) for the creation of a generator class for atomic (purely 

random) generation o f transactions. This macro creates the class fp data atomic gen. 

When the atomic generator is started, the transactions are auto generated, randomised 

and put into the channel for extraction later by the BFM.
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"vmm_atomic_gen(cl_fp_data, "Floating-point Atomic Generator")

Figure 4.19 Creating Atomic Generator

4.5.6 Declaring Constraints

Also within the data class, constraints are declared. An example of a constraint used in 

testing the floating-point adder is shown in figure 4.20.

constraint cl{
datai == 32'bllOOOOOlOO1110000000000000000000; // -11.5
data2 == 32'bOlOOOOOlOOOOOOOOOOOOOOOOOOOOOOOO;

}
// 8

Figure 4.20 Constraint

The reason constraints are used, is to constrain the data that is being generated to a 

specific range of numbers. In the constraint above, data 1 and data 2 are constrained to 

-11.5 and 8 respectively. This constraint is used simply to check if the DUT can add 2 

floating-point numbers correctly.

Figure 4.21 illustrates a constraint where the sign of data 1 and data 2 are constrained to 

be positive or negative for a certain number of transactions.

constraint conl{
datai.sign dist {1 hO := 10000, 1 'hi := 10000};
data2.sign

}
dist (1 hO := 10000, 1 1 hi := 10000} ;

Figure 4.21 Constraining Sign

53



4.6 Bus Functional Model (BFM)

4.6.1 What is a BFM?

The next class in the testbench is the BFM. The BFM is basically a transactor class and 

is derived from a VMM base class called vmmxactor. All transactors in a testbench 

should be extended from vmm_xactor. The BFM is responsible for extracting the 

transaction from the channel and passing the transaction into the vector sequence used 

by the DUT. The transactors are the workhorses of a transaction based verification 

(TBV) environment, they perform the actual job of transferring the data to other units to 

perform a task such as driving the DUT pins, or driving the verification environment. 

The transactor needs to communicate the generated vectors onto signals. To do this the 

signals that are needed for the transactor class are defined into a virtual interface.

4.6.2 What is a Virtual Interface?

Virtual interfaces provide a mechanism for separating abstract models and test programs 

from the actual signals that make up the design [31]. A Virtual interface allows the same 

subprogram to operate on different portions of a design, and to dynamically control the 

set of signals associated with the subprogram. Instead of referring to the actual set of 

signals directly, users are able to manipulate a set of virtual signals.

4.6.3 Benefits of using Virtual Interface

1. The Virtual interface can be used to make the testbench independent of the 

physical interface. It allows development of the test component independent of 

the DUT port while working with the multi-port protocol.

2. With the virtual interface, it is possible to change references to the physical 

interface dynamically. Without virtual interfaces, all the connectivity is 

determined during compilation time, and therefore cannot be randomised or 

reconfigured.
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4.6.4 Building the BFM

As with many VMM base classes there is a rich set of features available. The following 

are the methods that are most commonly used in vmm_xactor class derivatives.

New Method 0

The purpose of the constructor, or new method, is to allocate space for the various data 

structures used by the vmm xactor class and, if necessary, to initialise these data 

structures with meaningful values. Figure 4.22 illustrates the new method within the 

floating-point adder BFM.

function cl_fp_bfm::new (cl_fp_cfg cfg,
string instance, 
integer stream__id, 
virtual fp_adder_if vi, 
tp_kind kind,
cl_fp_data_channel in_chan);

Figure 4.22 vmm_xactor constructor

The constructor of the vmm_xactor class requires two string arguments and an optional 

integer stream_id. The two string arguments are used to set the name and instance of 

the vmm log property while the stream_id is used to set the stream_id property of the 

vmm_xactor. Any extension of the constructor must start with a call to the constructor 

of the parent class (a call to super.new()).

The vmm_channel which was talked about earlier in the data class section is instantiated 

in the BFM and creates an object called in chan that will be used throughout the BFM 

to refer to c lfp d a tach an n e l.

Main method 0

The main method holds the code associated with the main functionality of a specific 

vmm xactor, typically one or more processes which run more or less constantly during 

a simulation. These processes may be temporarily paused by the user. The purpose of 

the start, stop and wait if stopped methods is to enable/disable this pausing which will 

be described further in section 4.7. The main method is a method that must be defined 

not as a matter of principle but as a matter of functionality: without an extended main
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method, the extended vmm_xactor will do nothing. Any derived class extension of the 

main method must have a fork-join_none call to the base class implementation.

do niaster ()

The do_master task is responsible for putting the data onto the virtual interface. Also 

vmm_debug statements are creatcd to identify individual transactions which will be 

printed out into log files during simulation. How this task was implemented can be seen 

in figure 4.23.

task fp_bfm::do_master(fp_data tr,int unsigned id_num);
string st_2, st_3, st_4;

vi.cb_master.datal <= tr.datal;
vi.cb_master.data2 <= tr.data2;
$sformat(st_2, "DATA ID NUM :: %d ", id_num);
'vmm_debug(log, st_2);
$sformat(st_3, " TR.datal = %b ", tr.datal);

'vmmdebug(log, st_3);
$sformat(st_4, " TR.data2 = %b ", tr.data2);

@(vi.cb_master);
endtask

Figure 4.23 do master task
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4.7 The Environment

The final class in the testbench is the environment class. This class is used to implement 

the verification environment. The Verification environment is developed by extending 

the vm m env class. VMM provides a single top-level container class to encapsulate and 

build the environment and to control the simulation run flow as seen in figure 4.24. This 

class is the vmm env base class. The vmm_env base class provides a series of virtual 

methods each with a particular role in the construction and execution of the 

environment. The next section describes each of these methods and their intended 

usage.

4.7.1 Methods within VMM Env

Figure 4.24 The Simulation Flow
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virtual function void gen_cfg();

The ‘gen_cfg’ method (figure 4.25) is intended to generate a randomised environment 

configuration descriptor.

function void cl_fp_env::gen_cfg();

super.gen_cfg() ;

endfunction

Figure 4.25 gen_cfg’ method 

virtual function void build();

The ‘build’ methods (figure 4.26) are used to instantiate and interconnect all the static

components of our environment, i.e., the transactors, as per the environment 

configuration descriptor.

function void cl_fp_env::build() ; 
super.build() ;
this.in_chan = new("Data channel","in_chan",100); 
this.gen_chan = new("Atomic Gen",1,in_chan); 
this.bfm_master = new("bfm_master", 200, dutif_fp, 
cl_fp_bfm::MASTER, in_chan); 
this.gen_chan.stop_after_n_insts = 10000; 

endfunction

Figure 4.26 build method () 

virtual task reset_dut();

The ‘reset_dut’ method (figure 4.27) is used to reset the DUT so it is ready to be 

configured.

task automatic cl_fp_env::reset__dut(); 
super.reset_dut(); 
top.rst <= l'bO; 
repeat (5) 0 (posedge top.elk); 
top.rst <= l'bl;
'vmm note(log, "Reset has been toggled in the Environment 
file ");

endtask

Figure 4.27 reset_dut() method
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The ‘cfg_dut’ method (figure 4.28) is used to apply the DUT configuration descriptor 

to the DUT. This would generally be done by writing any relevant DUT registers and 

driving relevant pins required for DUT configuration.

task automatic cl_fp_env::cfg_dut();
super.cfg_dut() ;

endtask

Figure 4.28 cfg_dut method 

virtual task start();

The ‘start’ method (figure 4.29) is used to start the environment transactors. This task 

should typically call the vmm_xactor::start_xactor method of each transactor to start the 

transaction generation and execution flow throughout the environment. Sometimes it 

may be necessary to start some transactors before the start method, for example a driver 

to configure the DUT through a register interface.

task automatic cl_fp_env::start(); 

super.start();
// Start generators, now we run random ! 
gen_chan.start_xactor(); 
bfm_master.start_xactor(); 

endtask

Figure 4.29 start method 

virtual task wait_for_end();

The ‘wait_for_end’ (figure 4.30) task is used to control when this test should end. Its 

completion signifies the end of the test and hence it should be designed to wait for the 

conditions that signify the end of the test. It is up to the user to model these end 

conditions. An example implementation may wait for the scoreboard to compare a 

configurable number of packets successfully, or for a predetermined timeout, whichever 

comes first.

virtual task cfg_dut();
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task automatic cl_fp_env::wait_for_end();

fork
begin

super.wait_for_end() ;

this.gen chan.notify.wait for
(cl_fp_data_atomic_gen::DONE);

82000; // Time to run after the transactor stops
end
begin

this.gen_chan.reset xactor();
end
join

endtask

Figure 4.30 wait fo r end () method 

virtual task stop();

The ‘stop’ method (figure 4.31) is used to stop the transactors in the environment as 

required in particular transactors like the atomic generators, scenario generator and 

drivers. Other transactors like monitors or the scoreboard need not be stopped but 

should be for good practice. Methods like ‘wait_if_stopped' or

‘wait_if_stopped_or_empty’ will block and hence suspend the execution thread of its 

transactor while the transactor is stopped.

task automatic cl_fp_env::stop();
super.stop();
// Stop generators
gen_chan.stop_xactor() ; 
bfra_master.stop_xactor();
#300; // Wait for all bus traffic

to end.
endtask

Figure 4.31 stop method ()
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virtual task cleanup();

The ‘cleanup’ method (figure 4.32) is used to allow the simulation to end cleanly. This 

typically includes waiting for the DUT to finish processing transactions still in flight, 

tidying up scoreboards, etc.

task automatic cl_fp_env::cleanup();

super.cleanup() ; 
endtask

Figure 4.32 cleanup () method 

virtual task report();

Last but not least, the ‘report’ method (figure 4.33) is used to report the success or 

failure of the simulation. The base class implementation makes a call to the log::report 

method which provides a PASS/FAIL status based on the presence of errors and 

warning messages issued throughout the simulation.

task automatic cl_fp_env::report() ;

super.report() ; 
endtask

Figure 4.33 report () method
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4.8 Program and Top File

4.8.1 Program file

The Program block contains the instance of the testbench environment class. The 

program calls, the build () and run () methods of environment. Figure 4.34 illustrates the 

program file for the floating-point adder environment.

program pg tb
#(

input bit elk, // clock
output bit rst, // reset
fp_adder_if adder_if

) ;

cl_fp_env fp_env; // TB Environment

initial begin

fp_env = new(top.fp_if);
fp_env.build(}; II Build the environment

fp_env.run(); II Run all steps
end

endprogram

Figure 4.34 Program File
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4.8.2 Top File

The top-level module contains the design and testbench instance. The Top module also 

contains the clock generator. There is no need to instantiate the top module. The 

Testbench and DUT instances are connected in the lop tile. Figure 4.35 illustrates the 

top module for the floating-point adder testbench.

module top;
fp_adder_if #(.setup_time(0),

.hold_time(0)) fp_if(.* ) ;

logic rst, elk;
pg tb tffp pgm (.clk(clk), .rst(rst), .adder_if (fp_if));
initial begin 

elk = 1'bO;

forever begin 
#100;
elk = ~clk;

end
end
// Connect up the RTL here! 
WrapperFP wrapper_i (.rst(rst), .elk(elk), .fp_if(fp_if));

endmodule

Figure 4.35 Top Module
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4.9 Testing of Floating-point Adder Model

4.9.1Introduction

In testing the floating-point adder model a number of test cases have been written. 

These test cases range from simply adding two numbers, to producing thousands of 

random transactions. This section describes the test cases written. The VCS tool and the 

DVE environment described in section 3.7.3.1 have been used for testing the floating­

point adder.

4.9.1.1 Test Case 1

The first test case written is the addition of 2 known numbers (-11.5 and 8). This has 

been done by constraining the data produced to the 2 numbers. Figure 4.36 illustrates 

how this was done. Also within the test case an assertion has been used to check for the 

result of adding the 2 numbers.

constraint cl(
datal == 32’bll000001001110000000000000000000; // -11.5
data2 == 32’bOlOOOOOlOOOOOOOOOOOOOOOOOOOOOOOO; // 8 = -3.5

}

property pi;
@(posedge elk) result == 32’bllOOOOOOOHOOOOOOOOOOOOOOOOOOOOO;
endproperty
assert property (pi);

Figure 4.36 Constraint and Assertions
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The result expected is (b 11000000011000000000000000000000 or Hex C0600000). 

Figure 4.37 illustrates an output from the simulation seen in the DVE waveform 

window.
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Figure 4.37 Output Testcase 1

4.9.1.2 Test Case 2

The second test case written is the addition of 2 NANs (not a numbers) together and 

checks for the invalid flag. Figure 4.38 illustrates the constraint and assertion used in 

this test case. The output of this test case is shown in figure 4.39.

constraint c2{
datal == 32’bOllllllllOOOOOlOOOOOOOOOOOOOOOOO; 
// Checking for the invalid flag

data2 == 32'blllllllllOOlOOOlOOlOlOlOlOlOlOlO; 
/ / b y  adding 2 NANs 
}

property p2;
0 (posedge elk) invalid_op_flag != 1; 

endproperty 
assert property (p2);

Figure 4.38 Invalid Flag
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The fourth test case written produces constrained random data that is used to trigger the 

overflow flag. The appropriate assertion is written to check for the overflow flag and is 

illustrated in figure 4.42. Figure 4.43 illustrates an output from the simulation where the 

overflow flag and inexact flag are triggered high.

Figure 4.41 Output Testcase 3

4.9.1.4 Test Case 4

constraint c4{
datai == 32'h7e8a2ef7 ; 
data2 == 32'h7f3bb28c;

}

property p4;
@(posedge elk) overflow_flag != 1; 

endproperty 
assert property (p4);

Figure 4.42 Overflow Flag



4.9.1.5 Test Case 5

Figure 4.43 Output Teslcase 4

The fifth test case written produces constrained random data that would be used to 

trigger the underflow flag. An assertion has been used to check for the underflow flag as 

shown in figure 4.44 Figure 4.45 illustrates an output from the simulation, this time the 

underflow flag is high.

constraint c5{
datai == 32'h01562ef7; 
data2 == 32'h8143f059;

}

p r o p e r t y  p5;
@(posedge e lk) u n d e r f lo w  f l a g  != 1;

e n d p r o p e r t y
a s s e r t  p r o p e r t y (p5) ;

Figure 4.44 Underflow Flag
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Figure 4.45 Output Tes tease 5

The final test case ran the simulation for 10000 transactions and records the results. As 

can be seen in figure 4.46 the inexact (x 2) and invalid flag(x 1) has been triggered high.
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4.10 Conclusions

The objective of this chapter was to build a SystemVerilog test beach using VMM 

techniques. This was accomplished using SystemVerilog and VMM features such as:

• Interface

• Data class

• Xactor class (BFM)

• Environment class

• Program and Top files

• Constraints and Assertions 

Advantages of using SystemVerilog are as follows:

1) Executing large amount of random stimuli takes considerably less time than 

traditional tests.

2) The object-oriented nature of the SystemVerilog language, helps to quickly code 

up the test bench.

3) The ability to use assertions in SystemVerilog gives the user the ability to pin 

point exactly in simulation when assertions happen.

Advantages of VMM are as follows:

1) VMM provides a set of base classes which describe the important elements of a 

testbench:

• vmm data for data objects and/or transactions

• vmm xactor for the functional blocks of the testbench (transactors)

• vmm channel for transactor communication

• vmm log and vmm_notify for recording and inter-process communication.

• vmm atomic gcn for stimulus generation

• vmm env to describe the structure of a particular testbench.

2) It provides definite methods on how to used base classes.
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Useful information for learning SystemVerilog and VMM include: SystemVerilog 

books [1][5][8][9][32], online tutorials [16] [20] and example testbenches [33] [34],
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Chapter 5 Advanced Verification Environement

5.1 Introduction

The previous chapter describes how the basic floating-point test bench was built using 

SystemVerilog and VMM. The testbench did not accommodate all of the features 

associated with SystemVerilog and VMM as it only has the ability to pass two 32-bit 

floating-point numbers through the DUT. The results of adding these numbers could be 

viewed in the DVE. Also the test bench did not offer the ability to verify the DUT 

correctly. Listed below are some of the key features of SystemVerilog and VMM that 

are not included in the previous testbench.

• Functional coverage

• Scoreboard

• Reference Model

• Reporting Mechanism

• Direct and Random test case library

In this chapter a solution is provided which incorporates all of these features into one 

environment. This environment is used to verify the floating-point adder completely. 

The test bench is built in such a way that it offers a reusable directory structure and a 

test bench architecture, where a similar design can be verified. This testbench 

architecture is needed because up to 70% of chip development time is spent in the 

verification process [5], Therefore, any method or technique that can improve this is 

extremely important.

The environment also offers the user the ability to run both random and directed tests 

within one testbench. In addition, the environment will incorporate a reference model 

and scoreboard as a comparison feature. Also within the environment is a functional 

coverage class, which is used to analyse how much of the DUT has been verified.

Finally, the test bench offers a Unified Report Generator (URG) reporting mechanism 

and a new feature from Synopsys called VMM planner, a reporting mechanism at top 

level. The design and building of this environment is discussed in this chapter also.
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5.2 Directory Structure

In order to implement all the features associated with an advanced verification 

environment, it is important to create a directory structure that fits these requirements. 

Figure 5.1 below outlines such a structure.

Figure 5.1 Directory Structure
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The directory structure contains four main directories, the DUT, Test Bench (TB), Test 

Cases and the Transactor (BFM). These four main directories are sub divided into 

further directories and files. A description of each is given below.

DUT Directory

The DUT directory contains all files associated with the floating-point adder model 

discussed in section 4.2.

TB Directory

The TB directory is further subdivided into four directories:

• Coverage (functional coverage)

• Ref model (TLM reference model)

• Scripts (Scripts directory contains files that support the development of a 

regression flow that is needed to maximise the productivity of the solution.)

• Rundir (testbench execution directory)

The following files are also found within the TB Directory:

• Scoreboard (Compares Reference model with DUT)

• Environment class (Top level class which is used to encapsulate and build the 

environment and to control the simulation run flow.)

• Program File (Call methods to build the environment, also used to define types 

and parameters)

• Top file (Represents the top level of the test bench and instantiates the DUT) 

Test Case Directory

The test case directory contains two libraries of test cases, random and direct. These test 

cases are written as classes and are implemented as extensions of the verification 

environment class (tb env.sv).
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Transactor Directory

The following files are found inside the Transactor Directory:

• Configuration class (Declares configurations)

• BFM (Extracts the transaction from the data channel and puls these transactions

onto the interface connected to the DUT)

• Interface (Provides the connection between the environment and the DUT)

• Data Class (Basis for all transaction descriptors and data model)

This structure is designed in such a way that it provides the user with the ability to 

develop both random and directed test cases within the overall test bench architecture. 

This directory structure fits the requirements of the floating-point adder model but it is 

structured in a way that allows incorporation of another DUT where similar verification 

techniques are to be implemented upon it. It is a robust and reusable directory structure.
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5.3 Test Bench Architecture

The testbench architecture has been created to implement the files and features within 

the directory structure. This architecture uses the verification environment file 

(tb env.sv) to connect up these features. The test bench architecture contains each of the 

elements described in section 5.2. Figure 5.2 shows how each of these elements are 

integrated into the test bench architecture.

TB TEST NO TB MODE

Figure 5.2 Test Bench Architecture
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5.4 Reference Model

5.4.1 Introduction

A reference model is used to dynamically predict the response of the DUT. The 

reference model works directly with the same stimulus as the DUT and must thus 

produce an output in the same order as the design itself. The reference model for a 

particular DUT does not have to be pin accurate.

Figure 5.3 Traditional Reference model 

5.4.2 Building the Reference Model

The reference model has been written in SystemVerilog. The following reasons are why 

SystemVerilog was chosen.

• To examine if it was possible

• To increase knowledge and experience of using SystemVerilog

In building the reference model the key functionality of the floating-point adder had to 

be recognised. Three files have been created to represent the floating-point adder: 

ref adder.sv, add detect.sv and ref model.
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Ref Adder

This model is responsible for implementing the major blocks of the floating-point adder.

• Swap

o Determines the absolute value

o Determines largest of datal and data 2

o Checks the sign of data 1 and data 2

• Shift

o Shifts the mantissa of the numbers accordingly

o Gets 2 complement if floating-point number have different sign

• Negate

o If S is negative, replace it by its two's complement.

• Normalise

o Tries to produce the normalised result

• Rounding

o Represent the rounding mode of the adder

Add Detect

This file is responsible for implementing the detection system that is used within the 

floating-point adder. The main responsibility of the detection system, is to deal with 

difficult floating-point numbers.

Ref_model.sv

This file is responsible for taking transactions off the data channel. Once the data has 

been taken off the channel, the reference model adds the two floating-point numbers and 

also checks to see if any IEEE floating flags have being triggered. Once the result is 

calculated, the reference model sends the output back onto a data channel called 

ref channel. Figure 5.4 illustrates how the result and flags are put back onto a 

ref_channel. This ref_channel is then connected to the scoreboard, which compares the 

output of the reference model with DUT.
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t r . r e s u l t  =
t r . i n v a l i d  op f lag  
t r . d i v i d e O  f l a g  
t r . o v e r f l o w _ f l a g  
t r . u n d e r f lo w _ f l a g  
t r . i n e x a c t  f l a g

re f_ a d d _ d e t e c t _ r e s u l t [31:0]; 
re f_add_detec t  r e s u l t [36]; 
r e f _ a d d  d e t e c t  r e s u l t [ 3 5 ] ;  
r e f _ a d d  d e t e c t  r e s u l t [ 3 4 ] ;  
r e f _ a d d _ d e t e c t _ r e s u l t [33] ;  
r e f  add d e t e c t  r e s u l t [32] ;

Figure 5.4 Outputting results from  Reference Model 

5.43 Connecting the Reference Model up to the Test bench

To connect the reference model into the testbench, the environment (cl fp env.sv) file 

has to be modified. Figure 5.5 and figure 5.6 illustrate how this is done. A VMM feature 

called a broadcaster is used.

Figure 5.5 Reference Model within the Test Bench

// Reference model 
cl_fp_ref_model ref_master;

// Broadcaster to split the data from the atomic_gen and sent on to 
DUT and Ref Model

vmm_broadcast brc;

// Ref model instantiation
this.ref master = new("ref model", 300, dutif^fp, null, null);
// Construct the broadcaster

brc = new ("Broadcaster",in_chan,1);

brc.new output(ref_master.in_chan);

Figure 5.6 Connecting up Reference model within Test bench Environment
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5.4.4 Broadcaster

The broadcaster offers the ability to split the transactions being produced by the atomic 

generator [32]. In the case of testing the DUT the broadcaster is used to split the atomic 

generator channel and Direct Test Generator (DTG) channel between the BFM and the 

reference model.

5.5 Scoreboard

The Scoreboard is used to dynamically compare the output data and IEEE floating-point 

flags from the DUT to corresponding data from the reference model as seen in figure

Figure 5.7 Scoreboard

This is done by a compare mechanism within the scoreboard that checks each 

transaction that is being processed by the DUT and the reference model. Figure 5.8 

illustrates how this was implemented.

if(tr_dut.result == tr_ref.result) begin

error_count = error_count; //Error count default to Zero

end
else begin

error_count = error_count ++;

end

Figure 5.8 Compare Mechanisms within Scoreboard
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The results of the compare mechanism within the scoreboard are sent to pass/fail log 

files for each transaction passing through the system.

This mechanism makes it easier for testing the floating-point adder model. In the case of 

a fail transaction, the time when the transaction failed and the number of the transaction 

are outputted to log files. The log files can be examined and used for debugging the 

DUT. When using the scoreboard it has been determined that there is an issue in the 

timing of the output from the reference model and the DUT. The reference model 

operates two clocks faster than the DUT in outputting the results. To solve this issue an 

alignment class has been written. The alignment class takes the output from the 

reference model and delays it by 2 clocks and sends it onto the scoreboard for 

comparison. The output of a log file from the scoreboard can be seen in figure 5.9

Transaction 11 failed
ref datai 0110 ref data2 1111 ref result 1111
dut datai 0110 dut data2 1111 dut_ result 1110

Figure 5.9 Outputs from Fail log File
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5.6 Test Case Library

5.6.1 Introduction

This section highlights the ability of the testbench to use both constrained random and 

directed tests in the same verification environment. Also a description of random and 

directed tests is given.

5.6.2 Directed Tests

Traditionally, when faced with the task of verifying the correctness of a design, directed 

tests are written [1]. Using this approach, verification engineers examine the hardware 

specification and write a verification plan with a list of tests, each of which concentrates 

on a set of related features. The verification engineer writes stimulus vectors that 

exercise these features in the DUT. The DUT is simulated with these vectors and the 

engineer manually reviews the resulting log files and waveforms to make sure the 

design does what is expected. Once the test works correctly, it can be checked off the 

list of tests within the verification plan and the engineer moves onto the next test.

This incremental approach makes steady progress and is always popular with managers 

who want to see a project making headway. It also produces almost immediate results, 

since little infrastructure is needed in guiding the creation of a stimulus vector. Given 

enough time and staffing, directed testing is sufficient to verify many designs. Figure 

5.10 shows how directed tests incrementally cover the features in the verification plan. 

Each test is targeted at a very specific set of design elements. Given enough time, an 

engineer can write all the tests needed for 100% coverage of the entire verification plan.

Figure 5.10 Directed Test Progress
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5.6.2 Problem with Directed Tests

There are a number o f problems with directed tests. I f  there is not enough time to carry 

out the directed testing approach then more engineers are required. If  the design 

complexity doubles, managers should allow engineers twice as long to complete the 

process or again hire more engineers [1],

^ ^ ^ B u g s  Features Space not tested Space tested

1 n a n - '

X X •
X © •

X X
X X X

Figure 5.11 Directed Test Coverage

Figure 5.11 shows the total design space and the features covered by directed test cases. 

This space contains many features, some of which have bugs. The engineer must write 

tests that cover all the features to find the bugs. Neither o f these situations is desirable. 

A methodology is required that finds bugs faster in order to reach the goal of 100% 

coverage.
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5.6.3 Random Tests

Through the use of constrained random testing it is possible to greatly reduce the 

verification task. A random test will often cover a wider range of stimuli than a directed 

test [35]. A directed test finds the bugs an engineer expects to find in the design, while a 

random test can find bugs that he/she has never anticipated. When using random stimuli 

functional coverage is needed to measure the verification progress.

5.6.4 Combining Random and Directs Tests

When setting out to design the SystemVerilog testbench, the chief design goal is to 

facilitate the easy use of constrained random and directed tests within one environment. 

The verification environment developed allows the user to quickly write random or 

directed test cases with minimal code modifications and without any adjustment to the 

verification environment.

However, it is important to note that it is necessary to write a few directed test cases in 

order to target those cases not covered by any other constrained random tests. Figure 

5.12 shows the paths to achieve complete functional coverage. It illustrates that most of 

the verification task is spent in the outer loop, making minimal code changes to add new 

constraints and only writing directed tests for the few features that are very unlikely to 

be reached by random tests [1],

cor
*vi----------

Constrained 
random tests

Directed
testcase

Coverage

Figure 5.12 Coverage Path
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5.6.5 Test case Library

In designing the verification environment a test case mechanism has to be integrated 

into the testbench. This allows the user to choose between either a random or directed 

test case. To implement this structure a directed test generator (DTG) has to be created 

and along with the atomic generator which provides constrained random stimuli for all 

random test cases. Figure 5.13 shows how this is implemented.

TB_TEST_N O TB  M O D E

Baso  D a ta  C lass

f—
A to m ic D ire c t  Tust Dnv>r.t

tsiirnulr
iii)«Ljror»G e n e ra to r

5
G e n e ra to r

5 L _

B ro a d c a s te r
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D UT R e fe re n ce
M o d e !

Figure 5.13 Test Case Mechanisms

Along with creating the DTG, other components are needed to implement the test case 

mechanism. A list of these components and an explanation is given below.

1. Test case directory

2. Random / Direct Test case

3. Fpdatacom m on

4. Fp_test_constr

5. Fptestlist

6. Regression Flow
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1. Test case Directory

In the test case directory, individual directories have been created for both random and 

directed tests. These directories contain the different test cases and the files associated 

with them.

2. Random / Direct Testcases

With the test case directory structure in place, the next task is to create the test cases 

Test case extends environment (fp_env.sv)

class random_test_l extends cl_fp_env

function new (virtual fp_adder_if 
f P i f ) ;

super.new(fp_if); 
endfunction

Figure 5.14 Tes tease extends the environment

Figure 5.14 illustrates how the test case extends the environment and also the new 

method.

Methods used within the Test cases

build method ()

function void build(); 

super.build();

this.gen_chan.stop_after_n_insts = 20000;
// Determine the number of transactions allowed in 
the test case

endfunction

Figure 5.15 Testcase build method

Figure 5.15 illustrates the build method within the test case. In a random test case the 

number of transactions are declared.
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start Method ()

task automatic start(); 

super.start();

'vmm_debug(log , "running Random Testcase 2"); 

gen_chan.start_xactor(); 

endtask 

endfunction

super.start();

fork
begin
'vmm_note(log , "running Direct Testcase 0");

f p d t s t .start_xactor();

// Checking for rounding errors

fp_dtst.fp_data_inject(100 ,32'h3DCCCCCD,
32'h3DCCCCCD); //0.1 + 0.1

#2000; 
end begin

#1200;
end join_any 

endtask

Figure 5.16 Random and Direct Testcase

Figure 5.16 illustrates how the atomic generator (random) and DTG (direct) are called 

within the test case.
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wait_for_end ()

task automatic wait_for_end();

fork
begin
super.wait_for_end();

this.gen_chan.notify.waitfor(cl_fp_data_atomic_gen::DONE); 
#20000; // Time to run after the transactor stops 

end

begin

#4000600; // Time allowed for test to complete
end 

j oin_any

endtask

Figure 5.17 waitJor_end method.

Figure 5.17 illustrates the wait for end method within the test case.

3. Fp data common

The fp_data_common file is used to constraint random stimuli that are produced by the 

atomic generator. The file is extended from the data class using SystemVerilog OO 

techniques. Using this file means no modifications are made to the data class itself. An 

example of a constraint within this file is illustrated in figure 5.18.

Constraint con 
{

datal.exp == 8'h00; 
data2.exp == 8'h00;

}

Figure 5.18 Constraint within fp_data_common

4. Fp testconstr

This fp_test_constr file contains list of random/direct test cases. Each test case has been 

given a unique number. The reason for doing this is that when a user begins a 

simulation a parameter (TB_TEST_NO) is passed through the environment. This 

parameter matches the number of a test case written. Also within this file the 

environment and interface are extended.
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5. Fptestlist

This fp testlist file contains the list of files within the directory and is linked up to the 

main file within the rundir directory.

6. Regression Flow

Regression flow is a means by which the verification environment can support and 

highlight certain information that can be viewed at a later point in time to determine 

different test case results. The regression tests can be merged together to organise 

different coverage and assertion results to indicate the overall degree of verification 

applied to the DUT.

To fully implement the test case structure, regression scripts are necessary. These 

regression scripts are written in TCL. A brief explanation of TCL scripts is given below.

These scripts allow the user to choose between random or directed test cases and the 

number of the tests he/she wants to run. Along with writing these scripts certain 

parameters have been written that inter connect with the regression scripts and the 

verification environment. These parameters have been written within the top file. 

Parameters that are included within the top file were as follows.

• TB MODE allows the user to select between either a random test or a direct test

• T B T E S T N O  parameter allows the user to select the number associated with 

the test

A particular test and test mode (random/directed) may be selected at compile time by 

specifying parameters for both. Figure 5.19 illustrates how the test mode parameter 

(TB MODE) switches the source of test generation within the verification environment.
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Figure 5.19 Chosen constrained random/directed stimuli

Associated with each test generator is a corresponding library of individual test cases. 

Each test case can be accessed by the test number parameter (TBTESTJNO). Finally 

using regression scripts allows the user to select different seeds for constraint random

testing.

TCL (Tool Command Language)

TCL is a scripting language developed for scientific and engineering applications TCL 

scripts are made up of commands separated by newlines or semicolons. It is often used 

for GUI, string-manipulation, testing, and integration of multiple components

The main concern in random stimulus is to avoid reproducing a simulation that has 

already created the same information. With this in mind, random seeds are used. 

Random seeds will generate different random stimulus when selected during simulation. 

When using regression scripts, a record should be kept of what seeds are used, in order 

not to run a simulation with the same seed twice.
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5.7 Functional Coverage

5.7.1 Introduction to Functional Coverage

Functional Coverage is the determination of how much functionality of the design has 

been exercised by the verification environment [36],

The implementation of functional coverage consists of a number of steps. Firstly, code 

is added in the form of covergroups in order to monitor the stimuli being put on the 

DUT. The reactions and response to the stimuli are also monitored to determine what 

functionality has been exercised. Cover groups should be specified in the verification 

plan. Within a test case scenario, their usefulness is ascertained by analysing the RTL 

code and understanding the data they have recorded during the simulation.

Cover points become more powerful within a simulation when they are crossed together 

to identify greater levels of abstraction within a design [36], Cover points provide a 

powerful mechanism in identifying areas of functional coverage within a design. Like 

assertions, they can be compiled into a detailed reporting structure using Synopsys’s 

URG tool.

5.7.2URG Report

The Unified Report Generator (URG) generates combined reports for all types of 

coverage information [37]. The reports may be viewed through the design hierarchy, 

module lists, coverage groups, or through an overall summary "dashboard" for the entire 

design/testbench. The reports consist of a set of HTML or text files. The HTML 

versions of the reports take the form of multiple interlinked HTML files. For example, a 

"hierarchy.html" page shows the design’s hierarchy and contains links to individual 

pages for each module and its instances. The HTML file that the URG writes can be 

read by any web browser that supports CSS (Cascading Style Sheets).
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5.7.3 Implementing Functional Coverage for the Floating-point Adder Model

To implement functional coverage for the DUT, the key functionality of the floating­

point adder has been recognised. One of the key functionalities used in the DUT is the

registers. A List of these registers is given in table 5.1.

Reg Name Function Width

Type 1 Floating-point number type data 1 3

Type 2 Floating-point number type data 3

Abs_d Absolute value of the difference between the exponents 8

Complement If signalled 2 number have different signs 1

Sadd Results of significant [48] carry out bit 49

Shiftval The amount of bits which negate has shifted right 5

Normtemp Describes the decision to choose underflow/overflow flag 1

Addresult Contains L and G bits 56

Sticky Sticky bit value 1

Sign_result Single extended precision result from the normalisation block 56

product Significant part of Round exp 1 24

Round_ov Overflow flag relating to round result 1

Rounduvl Underflow flag relating to round expl 1

Round_ovl Overflow flag relating to round expl 1

Data 1 SP input with implicit bit included [24] 33

Data 2 SP input with implicit bit included [24] 33

Result SP output value 32
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Ov_flag Overflow flag 1

Uv_flag Underflow flag 1

X Jlag Inexact flag 1

Invflag Invalid flag 1

Div flag Divide by 0 flag 1

Table 5.1 Registers used in Floating-point Adder
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5.7.4 Building the Coverage Class

1. A module has been created where the signals needed by the coverage file are 

declared.

2. Coverage class is derived from the vmm_xactor.

3. Coverage groups and cover points have been created within the coverage class. 

Appendix 2 shows the cover group and cover points used in the coverage class. 

Figure 5.20 illustrates an example of a covergroups.

4. The final step in creating the coverage class is connecting up the signals that 

have been created in the coverage module to their corresponding signals in the 

DUT.

covergroup cg_fp_number_type_bin @ (clk_sample);

// Declare the bins to gather the info separately

cp_fp_typel_bin : coverpoint cb_cover.fp_number_typel{

bins zero = {3'b000} 
bins inf = {3'b001}
bins denorm = {3'bOlO} 
bins snan = {3'b011} 
bins gnan = {3'blOO} 
bins regular = {3'bl01}

}
cp_fp_type2_bin : coverpoint cb_cover.fpMnumber_type2{

bins zero 
bins inf 
bins denorm 
bins snan 
bins gnan 
bins regular

{3'bOOO} 
{3'bOOl} 
{3'b010} 
{3'bOll} 
{3'blOO} 
{3'blOl}

}
// Cross Correlate the coverage information as needed 

cross_fp_num_type_bins : cross cp_fp_typel_bin, cp_fp_type2_bin; 

endqroup

Figure 5.20 Example o f a cover group
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5.8 VMM Planner

VMM Planner is an extension to Verification Methodology Manual. VMM Planner is a 

verification planning tool that allows an engineer to think about the verification process 

at a high level while working with the low level verification data [38] e.g. functional 

coverage. The VMM Planner application also allows an engineer to convert this low 

level data into useful information to track the progress of the verification project.

VMM Planner uses HVP (Hierarchical Verification Plan) language to describe the 

verification plan. HVP is a comprehensive language that allows an engineer to 

hierarchically describe a verification plan [39].

The VMM Planner application takes the HVP plan and a unified coverage database as 

inputs and links them together. This helps the verification engineer to track the 

verification plan completeness [40].

A typical HVP plan consists of attributes, metrics and mainly features.

• Attributes are named values specified in the plan.

• Metrics can be coverage information extracted from the coverage database after 

a simulation run. Metrics can also include project specific information, for 

example in the case of the floating-point adder project pass/fail.

• Each hierarchical section of a verification plan is called a feature. A feature may 

consist of the following:

* Attribute value assignments 

H Metric measurement specifications 

■ Sub features
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VMM Planner enabled applications are:

• VMM Planner spread sheet annotator

• Unified Report Generator (URG)

The VMM Planner spread sheet Annotator enables XML formatted spread sheet to 

capture the verification plan and then back annotate it with coverage results to track 

progress throughout the project.

Figure 5.21 VMM Planner 

5.8.1 VMM Planner Application for the Floating-point Adder Model

In developing the VMM Planner application for the floating-point adder model a good 

deal of research has been required. This research included making contact with the 

Synopsys research and development team to discuss different issues encountered while 

using VMM planner. At the time o f development the VMM Planner was in beta stage. 

To overcome the learning curve of using the planner application a number of examples 

have been executed that are included within the VMM library.

In developing the planner application a few problems have been encountered, as 

follows:

• Difficulties saving the XML file in open office and in Microsoft Excel. The 

VMM Planner application was not able to read the XML files when trying to 

annotate it. This problem was solved by using a text editor to edit the XML file.

• Difficulties opening the annotated XML in open office.
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Once these problems had been overcome the planner application was developed. Figure 

5.22 illustrates the XML file developed.

w p p in
GrpCov

value vaiue 

feature subfesture mLTeabeneh ml.SnpsAvg measure m l.vourrr
poup jo ta l '

groupl ’ group: top. mott_co«naJ_fp_tover7CR_tp_noml>er_iype_bin
groupJ group: top.ntod_co*enU_fp_cov«:a^_fpj*ap_6in
group3 ' group: top. rjiod.cover:xlJp_cowerxg_fp_»lcG_NEG_e>p_(Jata_bm
grcupt ' poup: top.mod_co»erxl_fp_COT*r:tg_fp_N66.«»_«p_ilit»j5)n
groups ' grot̂ >: top.™xi_cover:xl_fp_cov«rrcg_lp_Kre_N£G_(np<jlj}ata_b(n
group« ' p rx ft: iop.(irK5d_tov*fn)Jp_covern_fp_M6G_!>OSJnput_(i»t3_bi(i
group7 ’ group: top-mod_coverrd_fp_tCT«r^|_fpjwrmilisc_cln
groups ' group: top.TO«Jjmef:iiJp_ajvericiJp_[>OS_i>OSJnpirt_(ta!a_Wn
groups ' poup: top.nwd_coverict_fp_rowrj|_fp_POS_N£GJnput_(lit»_titn

rplO ' poup: top.™d_cov*r:d_fp_cov*raj_fp_sWftJNn
p n ^ ll ' ffx x jfr. top.mod_cover^d_fp_cover:cg_fp_f,OS_POS_ero_daWjWn
grmq>12 ' f?oup: top-mo<)_covef:.dfp_cover;;(gJp_P05_NEG_eipjJJ13_bin
groupU ' group: top mod_cover:d_fp_coven:cgJpjx>u!)dir>gj!in
youpw ’ fpoup: top.mod_coveTrd_tp_cover:c|_fp_nefj:e_btn

Figure 5.22 XML file  before being annotated 

An explanation of the XML file shown in figure 5.22 can be seen in table 5.2

Command Descriptions
hvp plan  | metric | attribute <identifier> Required in cell A l. Use letters, 

numbers, “ ’’but no keywords or words 
beginning with a number.

Skip Turns a column into a commcnt.
Feature Required. Defines the level 1 feature... 

the top of the hierarchy for this plan.
value <source_name>.<metric_name> This is the column that gets annotated 

with values for features that are 
associated with a measure source o f the 
same name and type.

measure <source name>.source Must exist if there is a value column for 
that source name.

goal Allows for changes to the default goal 
(100%) for each feature (or subfeature).

Table 5.2 Features o f VMM Planner

Table 5.3 lists some of the commands used to run the planner application. Figure 5.23 

illustrates the annotated version o f the XML shown in figure 5.22.

usage: hvp annotate -plan planfile [-plan out annfile] [-dir covdbpath] [-userdata 

userdata|-userdatafile txtfile] [-userdata out outvedata] [-metric_prefix prefix] [other 

switches]
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-h show this help message and exit
-plan <planfile> spreadsheet, doc XML or HVP file for your 

verification plan, mandatory.
-plan_out <annfile> output annotated spreadsheet, doc XML file, 

if  -plan out is not given, <original 
file>.ann.xml file will be generated.

-userdata <userdata fUes> userdata file path, could be multiple
-userdata file <t\tfile> a text file which contains list of userdb file 

path
-dir <covdb_dirs> Synopsys coverage db(cm, vdb) path, could 

be multiple
-userdataout <out userdata file > dump annotated score in all measures into 

userdata file

Table 5.3 VMM Planner Run Commands

hvppian

GrpCov feature

value value 

subfeature ml.Testfaench mLSnpsAvg measure ml.source
gro’jpjctal 100.0054 100.0054

groupl l o o m  lOO.OOrt group; top.mod_a)ver:dJp_cover:cg_fp_num&er_tYpe_bln
greup2 100.0054 lo o m group: top modjover:d_fp_cover::tg_fpjwapj!n
group3 i c o m  m o o * group: top.mod_cover:dJp_oover:cg__fpNEG_NE6_e*p_data_bin
group4 ioo.o<« lo o m group: tcp.mcd_cover:;d_fp_cover:cg_fp_NEG_POS_exp_data_bin
group5 lOOm 100.0054 group: top.mod_cover::cJ_fp_cover:c^_fp_NE6_N£GJnput_data_b)n
groupG l o o m  lo o m group: tcp.mod_coYer.:d_fp_cover::cg_fp_NcG_POSjnputjlata_bin
group7 100.0054 lo o m group: top .modjover :c)_fp_cover.:cg_fp_norn»l ise_bin
groups 100.0054 lo o m group: top.mod_cover:d_fp_cover:cgL_fp_POS_!>OSJnput_d3ta_bin
grcup9 lo o m  100.0054 group: to p. mod_coven:d_fp_ccver: :cg_fpJ*OS_NE0_ln put_data_bm
grcuolO lo o m  100.0054 group: top.mod_cover:d_fp_cover.:(^_fp_shift_bm
graupli l o o m  l o o m group: tcp.mod_cover::dJp_cover:tg_fp_POS_POS_exp_da;a_bln
grouol2 i m m  l o c m group: top.mod_cover::d_fp_cover::og_fp_POS_NEG_exp_data_bm
groupl3 100.0054 lo o m group: tcp.mod_coven:d_fp_cover::cg_fp_rounding_bin
pnupM lo o m  lo o m group: top. mod_tover :d_fp_cover: :cg_fp_negate_b! n

Figure 5.23 Annotated XML File

5.8.2 Recommendations for VMM Planner

Hyperlink to URG Report

When a coverage group produces a low score, to determine the cause of the low score a 

hyperlink pointing to the problem in the URG report should be accessible within the 

XML file.
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Display Testeases with XML File

In verifying the floating-point adder model, multiple random test cases and directed test 

cases have been developed. A recommendation that could be useful for the planner 

application is that these test cases could be displayed within one XML document. VMM 

planner would use the information provided within the XML to automatically generate a 

verification plan for each test case within the XML file. Another option that possibly 

should be looked at is developing a GUI interface for VMM planner so that a third party 

application such as Microsoft Excel does not need to be used.
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5.9 Testing the Floating-point Adder

A library of test cases were written to test the floating-point adder using the advanced 

verification environment.

5.9.1 Testcase 1

The first test case written produced 10,000 random test transactions. This test checks to 

see if  the URG reporting mechanism, VMM planner application and the regression flow 

mechanism within the environment are working correctly.

5.9.2 Testcase 2

This test case consists o f two million transactions (random stimulus) through the 

environment. Using URG and the VMM planner 76.7 % functional coverage has been 

achieved. The reports produced by VMM planner and URG are illustrated in figure 5.24 

and figure 5.25.

Dashboard

dashboard | hierarchy | modst | group» | tost» [ asserts

Dale Tues May 26 13:16:45 2008 
User arthony.mcmahofi 
Vers or Y-200608-SP1
Corrorandine urg-dir VRetjessiors/tfrecMeO/sjrrNwfc .Regress^*** reeljeS^rnv vdb lReg(W*ioos,d lr e < iw S >
jRegressjonsMreclJe4/simv.vdb .R c^ < ^ oc^ iM jo5 «in w vcl>  .ft^ e s iw s 'd ttK tjo ft's a w  vdb rtteflrcssioos'dtic-ii /RegfessK^andem joO ^s^Jtem v.vtib
.ftagrevaiw^aiiiJiM iM ii ’ l rv n r t  vUb .Regiessiortr. rondom,se7_s?&J, 1 r s i tm «3b ^Rcgsessioosw rKk^je^sw l^ l^ iw VdD  ffiegressw sTantaflJe4_sead„ 1 r̂ snw vdb 
jî esgcH i&irtix^Ite5_£ecH3_i''!Sfrri' vct>,■ 'R i ip i r e i t s i 'O r s ? - . i t t r m v d b  I'suw.vdto /ffegtc^cavrarid«n te8.,î HMj._1/simv-wi)
1 i^ ^ o «itan acin ,te9 _!:ce4 .ira iu vw ib  rltegr^H »^im )iH njeiO _se«dj/sinw .vdb  Ji^ « ® 6 n ® |irrtrichwye'i tjseed . 1/sirm.vdb ! '« iiw viKj

feimv.vdb ix*n>txloin.,is t f_seed3>unv vdb ¿ J^ e s s o ra f ajnJorn Jo  t^ seed ^ sm /. vdb
ĵ e(yo^o^Tafldanjo1/lseeiJ_1teifiw .vdb iRoflfes«© iS^dcm "»1S_> e«djT.!nw vdb jfle y e ^ w n  r a n d o m / R e 0 i « w C i n . i n n d ( x n _ ! e ? O . 5 e e < 3 _ i . ' S i m ; y 0 b  

s«nvw3& ^e<Kess'Oft&T(ij)d«n_W22_.i«d_i‘simvA'iS> flc3f^o«iar»do»tij«23_5ei'd_irainr/\’cto .Regf0S$i0ftstawic#n,.tv2-«„siis<i_iv5i0T^vdb 
eiSlseed^l/ainv vdb 1 a>mw,vdb

Wdghta
Group 1

Total Coverage Summary

Save Croup 
76.73 74.73

dashboard | hierarchy | modiist | group« | teals | asserts

I«* ‘I ii.«» iswni

Figure 5.24 Output from URG Dash Board
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Testbench Group List

dasM »w d | N trarcfy [ itkkS s I | groupo I tM tn | eaaw ta

KJM - #
£»» 1
t£ 4  1

.4.^
1» ; tes ryr<l_t<rAi- OJpjCB&TtQJliiJiem&W.to

n il 1
«U 1 ÎÏM! rn64L.C-M*. tljp,cgwr. CttJ&J’OSJ*OS.«»P_CJij_tin
IK ' :,‘.w jUtutwLCfrrrc c • pjataj*1*
■K' . !«Ms: . 5Ô3 

'i'M
(tW! Ici <jLl».'>û5.WHi.ï*Hjî3ÎLÎh

Mfrji:’ t ¡¡too ' k-j djp-snw co_toJCOJ*05wl«t<*iCil¥4_ï*>
H '1 "ft» »»
PBi t M* «̂ .tMrOXtW njuiK *
IHHi1 «-P ’ M_iu_iW93iï_ofc»

dMfeboan) | nlerafcnr I mo<*iM | g roupa | Im Iq | a sserts

Hlw* Iron

Figure 5.25 Output ofU RG  (Group List)

5.9.3 Testcase 3

2 million random test transactions were created using a different random seed. The 

result of using a different seed makes little or no difference to the functional coverage 

score (76.9%).

5.9.4 Testcase 4

The fourth test case written was for 5 million vectors, this showed a significant 

difference in the functional coverage score (80.3 %).

5.9.5 Testcase 5 ,6 , 7

Testcases produced 10, 20, and 40 million random test transactions respectively. The 

results of these testcases arc listed in table 5.3.

5.9.6 Testcase 8 ,9

The DUT was tested for 50 and 60 million transactions. Less than half a percent change 

in coverage score was achieved. It was concluded that 40 million transactions would be 

used as a basis for any more tests. Using 40 million vectors, a functional coverage score 

of 88% was achieved. Once testing using pure random stimuli was exhausted, 

constrained random tests would have to be written.
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5.9.7 Testcase 10 Constrained random:

Example o f a Constraint

Data 1 would be positive for a certain number of transactions and would be negative for 

same amount of transactions. The same would be applied to data 2. This test case would 

add positive and negative numbers together. This will check to see if there is an issue in 

adding positive and negative floating-point numbers.

Testing the DUT with pure random stimuli and constrained random stimuli together 

achieved a functional coverage score of 89%.

5.9.8 Testcase 11,12,13

In all, 27 constrained random tests have been written. A description o f each is included 

in table 5.2. Using pure random stimuli and constrained random stimuli, 94.2 % test 

coverage was achieved. Therefore to close out the verification process and achieve 

100% coverage, some directed tests are required.

5.9.9 Testcases 13 -1 8

In all, nine directed tests have been created. The final test consists of one pure random 

test case, 27 constrained random test cases and 9 direct test cases. The output from the 

URG report and VMM planner can be seen in figure 5.26.

uasnDoara

d*»hboard ] I medisi | gro«pi J tv it i | as«nts

Dale 5st May 3Q 10:15:312008 
U*»r anthony mcmahtm 
Vere »on Y-2006 06-SP1
Command fcoe i< j -o# *¿5 i B t j u n t t a i i i f l  itò m n  v s  iîT* |r»tf r illW nrf j l'T’i m i i»Ti m

*As H * » «■ » a * J n f l J i T ' l « M f e  I # 0 4 * I ' l ' - . v*v» Æ »Md.liurKiâ UryttKoni/tin&»ti7 >3;
. f l i g n v i o  : i 9. Htijrihw.M /ft«?««̂ 1^,1 1« w. *»
S » ÿ i v ÿ j -  . H i j m t-ijiYiv’«ss- m ' k M i n . t t S . i w . i i H f i *  * i t j h-3_.ilw n n »

UH «  Ìf^jcmiai^^iiiàMri'wryAtìi » t o a i ï î _ u n » «
Weights 

Group 1

Figure 5.26 Output from URG Dash Board
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5.10 Test Cases and Test run

N a m e  o f  T e s t  
C a s e

D e s c r i p t i o n  o f  T e s t c a s e

R a n d o m t e O . s v Pure random stimulus

R a n d o m t e l . s v Constraint random stimuli (sign 1 or 0 for data 1 and data 2)

R a n d o m _ t e 2 . s v Constraint random stimuli (exp all l ’s or 0’s for data 1 and data 2)

R a n d o m _ t e 3 . s v Constraint random stimuli (mant all l ’s or 0’s for data 1 and data 2)

R a n d o m _ t c 4 .s v Constraint random stimuli (sign , exp , mant together for all l ’s or
0’s)

R a n d o m _ t e 5 . s v Constraint random stimuli (exp for certain ranges)

R a n d o m _ t e 6 . s v Constraint random stimuli (exp for certain ranges)

R a n d o m _ t e 7 . s v Constraint random stimuli (exp for certain ranges)

R a n d o m _ t e 8 . s v Constraint random stimuli (mant for certain ranges)

R a n d o m _ t e 9 . s v Constraint random stimuli (mant for certain ranges)

R a n d o m t e l O . s v Constraint random stimuli (mant for certain ranges)

R a n d o m t e l l . s v Constraint random stimuli (mant for certain ranges)

R a n d o m _ t e l 2 . s v Constraint random stimuli (mant for certain ranges)

R a n d o m _ t e l 3 .s v Constraint random stimuli (mant for certain ranges)

R a n d o m _ t e l 4 . s v
_______________________ ___________ _________________
Constraint random stimuli (mant for certain ranges)

R a n d o m _ t e l 5 . s v Constraint random stimuli (mant for certain ranges)

R a n d o m _ t e l 6 . s v Constraint random stimuli (mant for certain ranges)

R a n d o m t e  1 7 . s v Constraint random stimuli (mant for certain ranges)

R a n d o m _ t e l 8 . s v Constraint random stimuli (mant for certain ranges)

R a n d o m  t e l 9 . s v Constraint random stimuli (mant for certain ranges)
_ _ _ _ _ _ _ _ _ _ _ _______ _______________________________

R a n d o m _ t e 2 0  .s v Constraint random stimuli (mant for certain ranges)

R a n d o m _ t e 2 1 .s v Constraint random stimuli (exp and mant for certain ranges)

R a n d o m _ t e 2 2 . s v Constraint random stimuli (exp and mant for certain ranges)

R a n d o m _ t e 2 3 . s v Constraint random stimuli (exp and mant for certain ranges)

R a n d o m _ t e 2 4 . s v Constraint random stimuli (exp and mant for certain ranges)

R a n d o m _ t e 2 5 . s v Constraint random stimuli (exp and mant for certain ranges)

R a n d o m _ t e 2 6 . s v Constraint random stimuli (sign, exp and mant for certain ranges)

R a n d o m _ t e 2 7 . s v Constraint random stimuli (sign ,exp and mant for certain ranges)
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DirectteO.sv Add data 1 + data 2 ( 0  + 0)

D irec tte l.sv Add different number types

Direct_te2.sv Add different number types

Direct_tc3.sv Add different number types

Direct_te4.sv Checking for rounding errors

Direct_te5.sv Check for right hand swap

Direcl_te6.sv Check for left hand swap

Direct_te7.sv Check for shift

Direct_te8.sv Check for normalised shift

Table 5.4 List o f  Test Cases
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Type of Test Number of Transaction Coverage Score

Pure Random (default test) 10000 34.23%
Pure Random 2,000,000 76.61%
Pure random different seed 2,000,000 76.65%
Pure random 5,000,000 81.66%
Pure random 10,000,000 85.23%
Pure random 20,000,000 86.59%
Pure Random 40,000.000 88.42%
Pure Random 50,000,000 88.86%
Pure Random 60,000,000 89.08%
Pure Random and 5 constraint random 40,000,000 +50,000 90.16%
Pure Random and 10 constraint random 40,000,000+ 100000 91.24%
Pure Random and 18 constraint random 40,000,000+ 180000 92.06%
Pure Random and 27 constraint random 40,000,000 + 270000 93.31%
Pure Random and constraint random and 1 direct tests 40,000,000 + 270000 93.42%
Pure Random and constraint random and 4 direct tests 40,000,000 + 270000 94.76%
Pure Random and constraint random and 6 direct tests 40,000,000+ 270000 95.60%
Pure Random and constraint random and 7 direct tests 40,000,000+ 270000 97.60%
Pure Random and constraint random and 8 direct tests 40,000,000+ 270000 98.87%

Pure Random and constraint random and 9 direct tests 40,000,000+ 270000 100%

Table 5.5 List o f  Tests run
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5.10 Conclusion

The goal of this chapter has been to create a reusable test bench environment. This has 

been implemented by incorporating key SystemVerilog and VMM features.

While developing the advanced verification environment has taken a significant amount 

of time, this yielded a robust reusable testbench structure. The time spent in research 

and development is not required for another project as it encompasses a complete 

SystemVerilog verification flow. Figure 5.29 illustrates the time spent in the research 

and development o f the advanced verification. The graph does not represent the initial 

learning curve needed to learn SystemVerilog. Figure 5.29 also represents the research 

and development time and the time taken to verify the floating-point adder once a good 

understanding of SystemVerilog was known.

Figure 5.29 R&D o f  Verification Environment

The constrained random verification approach that implements functional coverage, 

assertions and score boarding, together with the ability to use random and directed tests 

in a single environment has proven to be highly productive for future implementations 

where this verification environment is used.

Thus, reusing this process will relieve an engineer from one verification task and allow 

them to spend more time actually figuring out how to verify the DUT.

Another goal of this chapter has been to verify the floating-point adder model fully. 

This has been done by creating a library o f testcases for both random and directed tests.
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The floating-point adder has been verified by using functional cover groups, assertions 

and also by incorporating a scoreboard and reference model into the testbench. The 

scoreboard and the reference model have been used as a compare feature within the 

testbench.

Finally the floating-point adder has been verified by using a single pure random test that 

consists of running 40 million random vectors though the adder model. Also a suite of 

27 constrained random tests has been created and to finish off the verification process 5 

direct tests were written.

The results of building the advanced verification environment discussed in this chapter 

have been published in a paper at the IS SC 2008 (appendix 1). The paper does not 

represent a complete solution of the advanced verification environment as more work 

has been conducted after the paper was published. This included integrating the VMM 

planner into the advanced verification environment. Further work has also been done on 

the cover-groups and the regression flow has been developed for the advanced 

verification environment discussed in this chapter.
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Chapter 6 Advanced BFM (I2C)

6.1 Introduction

Chapter 5 described how an advanced verification environment for a floating-point 

adder model has been built. One of the main objectives of building the standardised test 

bench has been to create a reusable environment and in turn this would help to reduce 

the time spent in verifying a DUT. This means the environment could be used to verify 

another DUT without having to build a complete environment from scratch. The 

environment has been built in such a way that minimum modifications would have to be 

made. The only part of the environment in which major changes have to be made is the 

BFM. This is because the BFM implements the protocol being tested. So, to test the 

reusability of the test bench an advanced protocol has been chosen. The protocol chosen 

is the Inter Integrated Circuit (I2C).

The structure of this chapter is as follows; a background and an overview of the I2C 

protocol are given, before describing how the test bench has been built for the I2C. Also 

described is how the I2C protocol has been tested for both Master and Slave mode.

6.2History of I2C

The I2C bus [41] was developed by Philips Semiconductors in the early 1980's. I2C’s 

original purpose was to provide an easy way to connect a Central Processing Unit 

(CPU) to peripheral chips in televisions. In embedded systems, peripheral devices are 

often connected to the microcontroller as memory mapped devices, using the 

microcontroller's parallel address and data bus. The result is lots of wiring on the PCB's 

to route the address and data lines, not to mention a number of address decoders and 

glue logic needed. In mass production items such as TVs, VCRs and audio equipment, 

this is not acceptable. In these items, every component that can be saved means 

increased profitability for the manufacturer and more affordable products for the end 

customer [42].

The research done by Philips to overcome these problems has resulted in a 2 wire 

communication bus called the I2C bus. Its name literally explains its purpose, to provide 

a communication link between Integrated Circuits.
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Today, the I2C bus is used in many other applications than just audio and video 

equipment. The I2C bus has been adopted by several leading chip manufacturers such as 

Intel, ST Microelectronics, Infineon Technologies, Texas Instruments, Maxim, Atmel, 

Analog Devices and others.

Since its release, the I2C bus has had a number of different versions. These versions 

have added new features to the bus. The operating speed of the bus has been increased. 

Listed below are the different versions and also a list of the different features added.

6.2.1 Version Summary

The first I2C specification dates back to 1982, operating at Standard mode (up to 100

kbit/s) and allowing for 7-bit addressing.

Version 1.0 -  1992 included the following modifications:

• Programming of a slave address by software has been omitted. The realisation of 

this feature was rather complicated and had not been used.

• The "low-speed mode" has been omitted. This mode was, in fact, a subset of the 

total I2C-bus specification and did not need to be specified explicitly.

• The Fast-mode was added. This allows a fourfold increase of the bit rate up to 

400 kbit/s.

• Fast-mode devices are downwards compatible i.e. they can be used in a 0 to 100 

kbit/s I2C-bus system.

• 10-bit addressing was added. This allows 1024 additional slave addresses.

• Slope control and input filtering for fast mode devices was specified to improve 

the EMC behaviour.

Version 2.0 - 1998

As the I2C bus became a world standard implemented in over 1000 different ICs and 

licensed to more than 50 companies. An update version became necessary as many of 

the newer applications required higher bus speeds and lower supply voltages. This 

version 2.0 of the I2C bus met those requirements and included the following 

modifications:

• The High-speed mode (Hs-mode) was added. This allows an increase in the bit
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rate up to 3.4 Mbit/s. Hs-mode devices can be mixed with Fast- and Standard­

mode devices on the one I2C-bus system with bit rates from 0 to 3.4 Mbit/s.

• The low output level and hysteresis of devices with a supply voltage of 2 V and 

below has been adapted to meet the required noise margins and to remain 

compatible with higher supply voltage devices.

• The 0.6 V at 6 mA requirement for the output stages of Fast-mode devices has 

been omitted.

• The fixed input levels for new devices were replaced by bus voltage-related 

levels.

• After a repeated START condition in Hs-mode, it is possible to stretch the 

clock signal SCLH.

Version 2.1 - 2000

Version 2.1 of the I2C bus specification includes the following minor modifications:

• After a repeated START condition in Hs-mode, it is possible to stretch the clock

signal SCLH.

• Some timing parameters in Hs-mode have been relaxed.

6.22 Bus Speeds

Originally, the I2C-bus was limited to 100 kbit/s operation. Over time there have been 

several additions to the specification so that there are now 4 operating speed categories. 

All devices are downward-compatible and any device may be operated at a lower bus 

speed.

• Standard-mode, with a bit rate up to 100 kbit/s

• Fast-mode, with a bit rate up to 400 kbit/s

• High-speed mode (Hs-mode), with a bit rate up to 3.4 Mbit/s.

6.3 I2C Bus Hardware

The I2C bus physically consists of 2 active wires and a ground connection [41]. The 

active wires called SDA and SCL are both bi-directional. SDA is the serial data line,
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and SCL is the serial clock line. This means that in a particular device, these lines can 

be driven by the microcontroller itself or from an external device. To do this both SDA 

and SCL are open collector or open drain outputs.

The bus interface is built around an input buffer and an open drain or open collector 

transistor. When the bus is idle, the bus lines are in the logic high state, external pull-up 

resistors are necessary for this. To put a signal on the bus, the chip drives its output 

transistor, thus pulling the bus to a low level. The pull-up resistor in the devices is 

actually a small current source or even non-existent. The advantage of this system is 

that it makes it easier to control multi masters on the bus [41], If the bus is occupied by 

a device that is sending a 0, then all other device lose their right to access the bus.

6.4 I2C Bus Protocol

In the I2C bus protocol every device connected up to the bus has its own unique 

address, whether it is a microcontroller, memory, or ASIC. Each of these chips can act 

as a receiver or transmitter, depending on the functionality.

The I2C bus is a multi-master bus. This means that more than one device is capable of 

initiating a data transfer on the bus. The I2C specification states that the device that 

initiates a data transfer on the bus is considered the bus master and all the other devices 

are regarded to be bus slaves. An example of a master communicating with a slave 

device can be seen in figure 6.1.

SCL

MCU

---
---

---
---

---
-

J i j J  EjU

SDA

SLAVES
MASTER

Figure 6.1 Master communicating with Slave

Using the example given above, if the microcontroller wants to send data to one of the 

slaves, then
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1. First the microcontroller will issue a start condition. This acts as an attention

incoming data.

2. The microcontroller sends the address of the slave device it wants to 

communicate with, along with a read/write bit determining if  the master is 

going to read from or write to slave.

3. Having received the address, all devices will compare it with their own address.

If it doesn't match, they simply wait until the bus is released by the stop 

condition.

4. If the address matches however, the slave will produce a response called the 

acknowledge signal.

5. Once the microcontroller receives an acknowledge, it can start sending or 

receiving data depending on whether a read or write operation was selected. In 

this case the microcontroller will transmit data and wait for an acknowledge 

from the slave

6. When the transmission is done, the microcontroller will issue a stop condition. 

This is a signal that the bus has been released and that the connected devices 

may expect another transmission to start any moment.

There are several key states on the bus for example: Start, Address, Acknowledge, Data 

and Stop. These states will be important in the design of the BFM for the I2C protocol.

6.4.1 Start Condition

Before any transaction can happen on the bus, a start condition needs to be generated on 

the bus. The start condition acts as a signal to all connected IC's that something is about 

to be transmitted on the bus. As a result, all connected chips will listen to the bus. Only 

in the start and stop conditions may the SDA line change while SCL is high. In 

transmitting data the SDA line must change while SCL is low as data is read @ posedge

signal to all of the connected devices on the bus that will be listening for

of SCL.

Start Condition is generated by master, first pulls the SDA 

line low while SCL is high, and next pulls the SCL line low.
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6.4.2 Transmitting an address to a slave

Once the start condition has been sent, a byte can be transmitted by the master to the 

slave. This first byte after a start condition will identify the slave on the bus (address) 

and will also determine read/write communication.

1 2 3 4 5 6 7 0 ft 1» 11 12 13 >4 1$ i f  I f  1! »  «9 'S* »  »  « H » i t » a 3 a j l 3 2 M 3 <  2 5 3 a »  36 »  40 41 42 43

SCL V _

CURR_ETATE a» i m m  f  .-ton jm  ' X « c m i*  f *

M i t t t i f i t t i t t n g a  u  » m ?r «  s  ¡t i i  (■ n  w e  *  41 <« «  is » j] n  7» ft ?i 8  it  n  it n  «  3a ft cao** n jin jun ju rn  rt njxrui nR n ju i n ru in  n.n n ru in  fLrum n/i n j i i i i in jm n n
SCL

sda __ / ; \   y : \__ i__ / ; \__ «.. r
CURR_STATE tW Ej*t\ X ttg*

Figure 6.2 Master Write with Slave Acknowledge

6.4.3 Slave Acknowledging Data

When an address or data byte has been transmitted onto the bus then this must be 

acknowledged by the slave. In the case of address state, slaves check their addresses 

with the address sent and only the slave matching this address will respond with an 

acknowledge. The Slave that has been addressed will again respond with an 

acknowledge when the data byte is sent to it. The slave that is going to give an ACK 

pulls the SDA line low immediately after reception of the 8th bit transmitted.

SDA

SCL

• The master pulls SCL low to complete the transmission of the bit (1),

• SDA will be pulled low by the slave (2).

• The master now issues a clock pulse on the SCL line 9th clock (3).

• The slave will release the SDA line upon completion of this clock pulse (4).
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The slave will keep the SDA low, until the master has generated a clock pulse (3) on the 

SCL line. The bus is free (4) again for the master to continue sending data or to generate 

a stop condition. In case of data being written to a slave, this cycle must be completed 

before a stop condition can be generated.

6.4.4 Receiving a byte from a slave

Once the slave has been addressed and the slave has acknowledged this, a byte can be 

received from the slave if the read/write bit has been set to 1. The protocol is the same 

as in transmitting a byte to a slave, except that now the master is not allowed to drive 

the SDA line. Prior to sending the 8 clock pulses needed to clock in a byte on the SCL 

line, the master releases the SDA line. The slave will now take control of this line. The 

line will then go high if it wants to transmit a '1' or, if the slave wants to send a 'O', 

remain low.

• Master generates a rising edge on the SCL line (2)

• Read the SDA line (3)

• Then generates a falling edge on the SCL line (4)

• Slave may change the state of SDA line during (1) and (5)

The slave will not change the data during the time that SCL is high. Otherwise a Start or 

Stop condition might accidently be generated. This sequence is performed 8 times to 

complete the data byte. Bytes are always transmitted with most significant bit (MSB) 

first.

6.4.5 Master acknowledging data from Slave

Once the master has received a data byte from slave it must decide to acknowledge it or 

not. The master is in full control of the SDA and the SCL line.

( D O S ) © ©
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1

ne SDA

SCL

• After transmission of the last bit to the master (1) the slave will release the SDA 

line.

• The SDA line should then go high (2).

• The Master will now pull the SDA line low (3).

• Next, the master will put a clock pulse on the SCL line (4).

• After completion of this clock pulse, the master will again release the SDA line 

(5).

• The slave will now regain control of the SDA line (6).

An Acknowledge of a byte received from a slave is always necessary, except on the last 

byte received. If the master wants to stop receiving data from the slave, it must be able 

to send a stop condition.

Since the slave regains control of the SDA line after the ACK, this can lead to problems. 

If the next bit sent to the master is a 0. The SDA line would be pulled low by the slave 

immediately after the master takes the SCL line low. The master now attempts to 

generate a stop condition on the bus. It releases the SCL line first and then tries to

release the SDA line, which is held low by the slave. Therefore, no Stop condition has

been generated on the bus. This condition is called a Not Acknowledge (NACK). Do 

not confuse this with No acknowledge:

Condition Can only occur :

Not Acknowledge (NACK) After a master has read a byte from a slave

No Acknowledge After a master has written a byte to a slave

6.4.6 No Acknowledge (from slave to master)

If after transmission of the 8th bit from the master to the slave the slave does not pull 

the SDA line low, then this is considered a No Acknowledge condition and is illustrated 

in figure 6.3.
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Figure 6.3 No Acknowledge 

Reasons why this might happen include:

• The slave is not there

• The slave missed a pulse and got out of sync with the SCL line of the master.

• The bus is stuck, one o f the lines could be held low permanently.

• In any case the master should abort by attempting to send a stop condition

6.4.7 Stop conditions

After a message has been completed, a stop condition is generated. This is the signal for 

all devices on the bus that the bus is available again.

SDA
SCL

• Stop Condition is generated by the master releasing the 

SDA line (low to high transition) while the SCL is high 

and then releasing the SCL line.

• A Stop condition always signals the end of a 

transmission of data. Even if it is issued in the middle of 

a transaction or in the middle of a byte. It is good 

practice for a chip to disregards the information sent and 

resumes the listening state, waiting for a new start

6.4.8 Repeated Start Condition

The master lets the SCL line go high and the device pulls SDA low to acknowledge. 

The slave will release the SDA line when it detects that SCL is low. Next the master 

generates a stop condition and immediately afterwards the master generates a start 

condition which generates the repeated start condition seen in figure 6.4. The main 

reason that the repeated start exists is in a multi master configuration where the current
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bus master does not want to release its master ownership of the bus. Using the repeated 

start keeps the bus busy so that no other master can grab the bus.

Figure 6.4 Repeated Start Condition

6.4.9Arbitration

The I2C bus was originally developed as a multi master bus. This means that more than 

one master can try to control the bus at the same time. When using only one master on 

the bus there is no real risk of corrupted data, except if a slave device is malfunctioning 

or if there is a fault with the SDA/SCL bus lines. This situation changes with 2 

microcontrollers:

MCU — IT—
]-----------------

0 ¡¿IB 10-,
MCU

SCL

SOA

SLAVES
MASTER 1 MASTER 2

Figure 6.5 I2C Multi Master Arbitration

When microcontroller 1 issues a start condition and sends an address, all slaves will 

listen including master 2 which at that time is considered a slave as well. If the address 

does not match the address of master 2, this device has to hold back any activity until 

the bus becomes idle again after a stop condition. As long as the two masters monitor 

what is going on the bus, when start and stop are generated and as long as they are 

aware that a transaction is going on, there is no problem. Assuming one of the masters 

misses the start condition and still thinks the bus is idle, or it comes out of reset and 

wants to start talking on the bus, this could lead to problems.
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Determining which Master will control the Bus

Since the bus structure is a wired AND if one device pulls a line low it stays low, you 

can test if the bus is idle or occupied. When a master changes the state of a line to high, 

it must always check that the line really has gone to high. If line stays low then this is an 

indication that the bus is occupied and some other device is pulling the line low. 

Therefore if a master cannot get a certain line to go high, it loses arbitration and needs 

to back off and wait until a stop condition is generated before making another attempt to 

start transmitting.

This kind of back off condition will only occur if the two levels transmitted by the two 

masters are not the same. Figure 6.6 illustrates an example where two masters start 

transmitting at the same time:

M astetfSCL

Start Condition j Send slave address 1001100 with write bit Ack

51 52 a S4 8 56 57 5S »  6f 6! 62 53 64 65 66 57 % 69 79 ?l 72 75 7< 75 U 77 71 79 »  it! 8  S3 & £ S 9 8  8 »  SI S 8 «* * *  ? «  »  W
Master) .S O A  

I te le rl S C I

Master! J D A

Ifcts M  S C I

Ms5t!i2 SOA

Master2_SDA \  > /  ~

Master2 SCL

a  » r

Master 2 loses arbitration Master 1 finishes transm ission, Master 2 
generates start condition

Figure 6.612C Multi Master Arbitration



The two masters sending address 1001100 to slave with read/write bit set to ‘O’. The 

slave acknowledges this. Both masters are under the impression that they own the bus. 

Now master 1 wants to transmit 11010100 to the slave, while master 2 wants to transmit 

11011100 to the slave. The moment the data bits do not match anymore because what 

one of the masters’ sends is different than what is present on the bus, one of them loses 

arbitration and backs off. Obviously, this is the master which did not get its data on the 

bus. For as long as there has been no stop present on the bus, it won't touch the bus and 

leave the SDA and SCL lines alone. The moment a stop condition is detected; master 2 

can attempt to transmit again.

Therefore the master that is pulling the line low wins the arbitration. The master which 

wanted the line to go high but is being pulled low by the other master loses the bus. This 

is called loss of arbitration or a back-off condition. The Master that has lost arbitration 

has to wait for a stop condition to appear on the bus before it can attempt to try and 

transmit on the bus.

6.4.10 Clock Synchronisation

All masters generate their own clock on the SCL line to transfer messages on the I2C 

bus. Data is only valid during the high period of the clock. A defined clock is therefore 

needed for the bit by bit arbitration procedure to take place.

Clock synchronisation is performed using the wired AND connection of the I2C SCL 

line. This means that a high to low transition on the SCL line will cause the devices 

concerned to start counting off their low period and, once a device clock has gone low, 

it will hold the SCL line in that state until the clock high state is reached. However, the 

low to high transition of this clock may not change the state of the SCL line if another 

clock is still within its low period. The SCL line will therefore be held low by the device 

with the longest low period. Devices with shorter low periods enter a high wait state 

during this time.

When all devices concerned have counted off their low period, the clock line will be 

released and go high. There will then be no difference between the device clocks and 

the state of the SCL line, and all the devices will start counting their high periods. The 

first device to complete its high period will again pull the SCL line low. In this way, a 

synchronized SCL clock is generated with its low period determined by the device with
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the longest clock low period, and its high period determined by the one with the shortest 

clock high period. Figure 6.7 illustrates clock synchronisation.

itai.SCL \_

totem.

Ltedi.SfiA
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Figitre 6.7 Mulit Master Clock Synchronisation

1. Master 1 and Master 2 try to generate start

2. Master 1 and Master 2 start counting off their low periods , Master 2 has the 

longest low periods , so Master 1 goes into wait state

3. Master 2 is finished counting it low periods and pulls SCL high

4. Master 1 and master 2 start counting their high periods , Masters 1 has the 

shortest low period and pulls SDA low

5. Master 1 and 2 repeat step 3 and 4 until one of them loses arbitration

6. Master 2 loses arbitration, therefore Masted takes over control of SDA and SCL 

lines
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6.5 Building the I2C Environment

The previous sections describe the history of I2C protocol and gave an overview of 

what the I2C bus is. The next few sections describe how the advanced verification 

environment was built for the I2C protocol.

6.5.1 Test Bench Structure:

As in the case of the floating-point adder model the same directory structure would be 

used for the I2C test bench. Figure 6.8 illustrates the I2C directory structure.

Figure 6.812 C testbench Structure
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DUT Directory: Floating-point adder was replaced with I2C master and slave 

core.

• Testcase Directory : Random and direct testcases were modifield for I2C 

specification

• TB Directory: The environment file ,top file and program file were modified.

The regression scripts files were also modifield.

• Transactory Directory: The main modifications of thedirectory structure were 

made in the transactor directory. The data file and the interface had minor 

modification made to them. However, in the BFM major modifications were 

made.

6.6 Building the I2C Testbench

As mentioned in section 6.5 the same testbench structure has been used as the floating­

point adder. However some modifications have to be made. This section describes these 

modifications.

6.6.1 Interface

In modifying the interface (figure 6.9) only slight changes have to be made.

1) SCL and SDA declared

2) Clocking block and mod ports block modified to include SDA and SCL as inout.

3) The current state and the next state have been declared to make it possible to 

view them as a waveform
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tri scl; // SCL I/P
tri sda_i; // SDA I/P
logic [3:0] curr_state, next_state;

modport mp_slave (
inout sda_i, 
inout scl

);

modport mp_master (
inout sda_i, 
inout scl

);
clocking cb_slave 6 (posedge elk);

default input #setup_time output #hold_time; 
inout sda_i; 
inout scl; 

endclocking : cb_slave

clocking cb_master @ (negedge elk);
default input #setup_time output #hold_time; 
inout sda_i; 
inout scl;
input curr_state, next_state; 
input slave_curr_state, slave_next_state; 

endclocking : cb_master

Figure 6.9 I2C Interface

6 . 6 . 2  D a t a  F i l e

In the data File the only modification that had to be made was declaring address and data 

as seen in figure 6.10.

rand bit [7:0] addr;
rand bit [7:0] data;

Figure 6.10 Data and Address declared within data file

6 . 6 . 3  E n v i r o n m e n t  F i l e

In the environment file only minor changes have to be made. These are the instantiation 

of the different classes used in the testbench. The build function within the environment 

is the only element where significant changes have been made and can be seen in figure

6.11
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super.buiId() ;
// Constructor args

this.in_chan = newf'Data channel","in_ehan",100); 
this.gen^chan = newC'Atomic Gen",1,in_chan);

// BFM instantiation
this.i2c_bfm = new("i2c_b£m", 300, null, null, dutif_i2c, 
svvc_ctrl,null,null);

// Direct Test Case Xactor instantiation
this.i2c_bfm = new(null, "Atomic_Gen", 500, i2e_bfro.in_chan);

// Direct Test Case Xactor instantiation 
this.i2c_dtst = new(null, "DTST_Gen", 501, i2c_bfm.in_chan);
endfunction

function void cl_i2c_env::build() ;

Figure 6.11 Build method within environment

6.6.4 Top File

Within the top file very few changes have to be made. These are connecting up the 

master and slave core to the test bench and also declaring pull-up resistors for SDA and 

SCL line. The modifications that were made can be seen in figure 6.12.

// Connect up the RTL here!
I2Cslave i2c_slave_core
(.clk_in(elk),.c l r i n {rst),.scl_in(i2c_if.scl),.sda_io(i2c_if.sda_i));

pullup (i2c_if.sda_i); II Pullup resistors
pullup (i2c_if.scl);

Figure 6.12 Top File
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6.7 Building the I2C Bus Functional Model (BFM)

In creating the BFM for the I2C protocol two separate BFMs have been built, one for 

the master mode and another for the slave mode. The reason for doing this is that makes 

it easier for testing and debugging the testbench. Also at the time of development more 

knowledge is required to incorporate both master and slave into one BFM. Figure 6.13 

illustrates a block diagram showing how the I2C environment has been connected up.

I2C TB ENV

Figure 6.13 Block Diagram o f Basic I2C Test bench

In building the two BFMs for the I2C protocol a list of features to be implemented has 

been created. The list created is given below.

Master

• Generate start condition

• Send slave address and look for acknowledge

• Send invalid address look for no acknowledge

• Send a block o f data

• Read a block of data
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• Generate Stop condition and repeated start condition

• Insert Slave Core

• Implement multi master features (arbitration and clock synchronisation)

Slave

• Detect Start Condition

• Receive address and acknowledge appropriately

• Receive data and acknowledge appropriately

• Send data and wait for acknowledge

• Detect stop

• Insert Master Core

6.8 Master BFM  

6.8.1. Start Condition

The first step in the building the master BFM was generating the start condition. The 

start condition is a high to low transition on the SDA line while the SCL line remains 

high. Figure 6.14 illustrates how the start condition was generated and the resulting 

waveform can be seen in figure 6.15.

vi.cb master.sda_i <= 1'bO; 
vi.cb_master.scl <= 1'bZ;
repeat (cfg.i2c_clks_divider / 4) 0 (vi.cb_master);

Figure 6.14 Generating Start condition
I

Master
1 ;

0 scl Stli :
j~ □ sdaj St1

+ □ curr_state[... 4'hO 

i  □ ne«1_state[... 4'h1

Figure 6.15 Start Condition
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6.8.2 Transmitting an address to a slave

In this state the master must first take the address data off the data channel 

(i2c_data_channel). Next the master pushes the address along with the read/write bit 

onto the interface, to do this the most significant bit had to be sent first. Figure 6.16 

illustrates how the transmit address state was implemented and figure 6.17 shows the 

outputted waveform.

if(curr__state == cl_i2c_bfm::WRITE_ADDR) begin
for(int j= cfg.i2c_datasize-l; j>=0; j— ) begin

this.in chan.get(tr); // Get transaction from channel
slave_address <= tr.addr; // Address data equal to

slave address
vi.sdai <= slave address[j]; Pull address onto SDA 
repeat (cfg.i2c_clks_divider) @ (vi.cb_master);

end
end

Figure 6.16 Sending Address Data

D sci S tl

i Q 3da_i St1j
Q curr_state[... 4'hO 

Q next_state[... I h l

Figure 6.17 Slave Address with Acknowledge

6.8.3 Checking for Acknowledge

Once the address and the read/write bit have been sent successfully, the master waits for 

acknowledge. If a slave device matches the address sent, then that slave will put the 

SDA line low on the 9th SCL clock of the address transmission. If  however no slave 

matches the address sent, this is considered a no acknowledge and the SDA line will 

stay high. Figure 6.18 illustrates how this was implemented.

else if ( vi.sda i == 1 'bO && vi.scl =  l'bl) begin 
ack bit = l'bl;
i2c_fsm_write(tr, curr_state, next_state, id_num); 
repeat (cfg.i2c_clks divider / 4) @ (vi.cb_master);
curr state = next_state;

end

Figure 6.18 Checking for Acknowledge
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6.8.4 Send Data

With acknowledge received from the slave, the master now moves to the send data state. 

This state is very similar to send address state, except this time the master takes data 

from the i2c_data_channel. The data is then pushed onto the interface in the same way 

as before. Once the master is finished transmitting data to the slave, it again waits for 

acknowledge from the slave.

6.8.5 Stop conditions

When the master finishes communicating on the bus it produces a stop condition. The 

stop condition is generated when the SDA line goes from a low to a high while SCL 

stays high. Once a stop condition has been generated the master goes back into idle 

state. Figure 6.19 illustrates the stop condition generated.

If (curr state == cl i2c_bfm::STOP) begin 
vi.cb_master.sda_i <=l'bO;
i2c_fsm_write(tr, curr_state, next_state, id_num); 
repeat (cfg.i2c_clks_divider) @ (vi.cb_master);

end
curr state = next state;

Figure 6.19 Stop Condition
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6.8.6 Repeated Start Condition

Another condition that can occur is a repeated start condition. In this state the master 

generates a stop condition and immediately afterwards the master generates a start 

condition which generates the repeated start condition. Figure 6.20 illustrates how the 

repeated start condition was generated.

if(curr_state == cl_i2c_bfm::REPAST ART) begin

'vmm_debug(log, " Master is in repeated start"); 

vi.cb_master.sda_i <=l'bz;

repeat (cfg.i2c elks divider / 4) @ (vi.cbjnaster); 

vi.cb_master.sda_i <= 1 'bO;
end

B
■IS BÌVI

m
Ü

Figure 6.20 Repeated Start Condition

6.8.7 Generating SCL Clock:

SCL clock is generated within a task o f its own. Depending on the states selected the 

SCL line will perform differently, figure 6.21 illustrates how this was done.

while(1 )begin
this wait if stopped();
if(curr state == i2c bfm::START || curr state == bfin::STOP )

begin
vi.cb master.scl <= 1'bZ;
end

else if (curr state == bfm: : WRITE ADR | | curr state =-=i2c bfm: :ACK) ; 
begin
vi.cb master.scl <= -vi.cb master.scl; 

end
repeat (cfg.i2c elks divider / 2 ) @ (vi.cb_master) ;

end

Figure 6.21 Generating SCL Clock
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6.9 Slave BFM

Two separate BFMs were built for the I2C test bench. This section explains how the 

slave BFM has been created

6.9.1 Detect Start

This task detects if a start condition has been generated. The slave remains in an idle 

state until a start condition is detected. The slave checks for the start condition by 

monitoring the SDA line every top clock. The top clock in this case is the main clock 

for the test bench. If the SDA line goes from a high to low transition while SCL remains 

high, this can be considered a valid start condition.

6.9.2 Received Address / Acknowledge State

During the address state the slave checks the address sent by the master at the posedge 

of the SCL clock. The slave repeats this process seven times to represent the 7-bit 

address. Once the complete address is received the slave then checks the address sent 

with its own and responds accordingly. If the address matches, the slave acknowledges 

by pulling the SDA low during the 9th clock of the transmission. On the other hand if 

the address does not match, no acknowledge occurs and the SDA line goes high. Finally 

the 8 bit sent determines if the master is going to read or write to the slave

for(int j = cfg.i2c_datasize-l; j>=0; j— ) begin 
address [j] = vi.sda_i ;
@(posedge vi.scl);

end
if(address [7:1] == 7'bOllOlOl) begin 

vi.sda_i <=l'bO; 
if (address [0] == 0) begin 

give_ack_bit = l'bl; 
slave_read_bit = l'bl; 
i2c_give_ack ();

end

Figure 6.22 Acknowledge
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6.9.3 Read Data / Acknowledge State

This state is very similar to the receive address state except this time the master is 

sending a block of 8 bit data and the slave acknowledges in the same way as before.

6.9.4 Send Data / Get Acknowledge state

In the case of write bit selected, the slave writes data to the master BFM. The slave 

writes to the master, the same way as the master writes to the slave except that this time 

the master cannot touch the SDA line until the slave has finished transmitting data. 

Once the byte of data is sent, the slave moves into the get acknowledge state. In the 

acknowledge state, the slave checks the SDA line at the 9th clock of transmission to 

determine if the master has acknowledged the data or not.

6.9.5 Detect Stop

As with the start condition, the stop condition is generated by the master, so the slave 

needs to have some facility to check for this. The same as the start condition the slave 

checks the SDA and SCL signals every top clock to see if the stop condition is 

generated. The Stop condition is generated by low to high transition of the SDA line 

while SCL remains high.

6.10 State Machine for BFMs

To control the states within the BFMs, two state machines have been implemented. To 

develop the state machine, key states have been recognised within the I2C protocol. As 

described in the I2C protocol section the key states are listed as: Start, Address, 

Acknowledge, Data and Stop. The state machine diagrams could be drawn up and can 

be seen in figures 6.23 and 6.24. In all, 2 diagrams have been developed master read / 

write and slave read/write.
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Figure 6.23 Master FSM
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nack

data data
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Figure 6.24 Slave FSM

6.10.1 Implement FSM

To implement the FSM the states used in the FSM are declared first. Figure 6.25 

illustrates the states used for both master and slave. With master and slave states 

declared, the next step is to declare the current state and the next state. Figure 6.25 

illustrates the control bits used to control the FSM.
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// FSM State process // Local variables for Master
typedef enum logic [3:0]
{ logic idle bit;
IDLE = 4'b0000, logic start bit ;
START = 4'bOOOl, logic address bit ;
WRITE ADR = 4'b0010, logic setup__bit ;
WRITE DATA = 4 'bOOll, logic sub address bit;
ACK = 4'b0100, logic ack bit;
READ DATA = 4'bOlOl, logic nack bit;
NACK = 4'bOllO, logic master ack bit;
STOP = 41bOlll, logic master nack bit;
CHECK ACK = 4'blOOO, logic check bit;
SETUP = 4'bl001, logic read bit;
MASTER ACK = 4'blOlO, logic write_bit;
MASTER_NACK = 4'bl011, logic address read bit;
REP_START = 4'blllO, logic address write bit;
SUB_ADDR = 4'bllll logic stop_bit;
} i2c fsm kind; logic rep_start bit;

//Local variables for Slave
i2c fsm kind curr state,
next state; logic slave_idle__bit ;
// Slave FSM State process logic detect^_start bit ;
typedef enum logic [3:0] logic read address bit ;
{ logic give ack bit;
SLAVE IDLE = 4'b0000, logic give nack bit;
DETECT START = 4'b0001, logic get ack_bit;
READ ADR = 4'b0010, logic slave read bit;
SLAVE READ DATA = 4'b0011, logic slave_write bit;
SENT_ACK = 4'b0100, logic detect stop bit;
SLAVE WRITE DATA = 4'b0101, logic nack stop bit;
SENT_NACK = 4 'bOHO,
DETECT STOP = 4'bOlll,
DETECT REP_START = 4'bl000,
G E T  ACK = 4 1blOOl,
N O T  R E S E T = 4'blOlO,
R E S E T =4'blOll
} i2c fsm slave;

i2c fsm slave slave curr state,
slave next state;

Figure 6.25 Master and Slave states & control bits
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The FSM has been created using a task called fsm_i2c(). Within the task fsm_i2c a list 

of different if statements has been created. Figure 6.26 illustrates how the start state is 

chosen using the FSM and Figure 6.27 shows how the start state has been created within 

the generate start task.

else if(eurr_state == cl_i2c_>fm::START) begin 
if(setup_bit == l'bl) begin 

next_state = SETUP;
end
else begin

next_state = IDLE;
end

end

Figure 6.26 State Machine (Start state)

(1) startjbit = l'bl;
(2 ) i2c_fsm_write(tr, currstate, next_state); / /  Implement i2c FSM
(3 )  @ (vi.cb_master);

(4 ) curr_state = nextstate;

Figure 6.27 Implementing State Machine and selecting states

1. Set start bit to 1, this selects the start state from within state machine

2. Gall state machine task

3. States are updated at next top clock

4. Current state is updated with next state, in this case start state
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6.11 Further Implementation of 12C Protocol

6.11.1 Integrating Master and Slave BFM

In the original design o f the testbench, the master and slave sides of the I2C protocol 

have been implemented as two separate BFMs. Once a better understanding of the I2C 

protocol and better understanding of SystemVerilog was obtained, it was decided to 

integrate the two BFMs into one BFM. Figure 6.28 illustrates the new I2C environment 

also shown in the diagram Master and Slave core connected up.

Figure 6.28 Complete Block Diagram ofI2C  Testbench

To integrate the two BFMs into one, the configuration class had to be modified. The 

reason the configuration class was modified was that it would allow the user to select 

either master or slave operations or both.

The new configuration would be called from either random or direct test case depending 

on which was selected. Figure 6.29 illustrates how the configuration class interacts with 

the chosen test case and BFM.
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Figure 6.29 Configuration selection

After the BFM integration and testing the DUT has been placed into the testbench for 

testing. The next section describes this process.

6.11.2 Master / Slave Core

OpenCores is a community that enable engineers to develop open source hardware, with 

a similar ethos to the free software movement. Currently the emphasis is on digital 

modules called 'cores' or 'IP Cores’ [43],

Through searching Opencores two suitable cores were found that could be used to test 

the BFM. Unfortunately at the time o f searching Opencores, there was no core that had 

both master and slave integrated into the one design.

6.11.3 Slave Core

The first core that was connected up onto the testbench was the slave core. The slave 

core was used to test the master functionality o f the BFM.

• Generate start condition

• Send slave address

• Send sub address ( location of register that the master want to write to)

• Wait for acknowledge
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• Send data or read data back from register master had written to

• Generate repeated start condition

• Generate stop condition

6.11.4 Master Core

Once the master functionality of the BFM was tested satisfactory the master core was 

added to the testbench and used to test the slave functionality of the BFM.

• Detect start

• Receive address

• Acknowledge address

• Receive data or send data

• Detect start

As well as testing the slave functionality of the BFM, the slave also tests the 

functionality of the master core.

6.12 Multi Master Features

MuUi master functionality, multi master arbitration and clock synchronisation of the I2C 

protocol has been included in the test bench..

6.12.1 Arbitration

The first feature implemented is the multi master arbitration; two masters can control 

the bus at the same time and can complete a transaction without problem if they are the 

same. If however they are not then there needs to be a mechanism to determine who can 

control the bus.

To do this both masters monitor the SDA line at every SCL clock. Example code can be 

seen in figure 6.31. The maser that tries to put the SDA line high while it is low loses
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the arbitration and backs off and waits for a stop condition and tries again and this 

process can be seen in figure 6.30.

Firstly to implement arbitration a state machine diagram has to be drawn up. Figure 6.30 

illustrates the state machine diagram. How this stale machine was implemented can be 

seen in figure 6.31.

Idle

g e n e ra te  sd a

c h e c k _ s d a  • -

Figure 6.30 Arbitration

if ( curr_state == check_sda) begin

if( internal_sda == vi.sda) begin 

drive_sda_bit = l'bl;

i2c_arbit_fsm (curr_state , next_state) 

curr_state = next_state;
end

else if( internal_sda == l'bz && vi.sda =  I'bO) begin 

wait_state_bit = l'bl;

i2c_arbit_fsm (curr_state , next_state) 

curr_state = nextstate; 

i2c_wait_state ();

end
end

Figure 6.31 Checking the SDA line
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6.12.2 Implementing Clock Synchronisation

The last feature included into the test bench is clock synchronisation. The feature 

counts the high periods and low periods of master clocks and checks to see if  they 

match the SCL line accordingly.

1. Both master start with their clocks high, and the SCL line high,

2. Master 1 clock goes low and pulls the SCL line low. Therefore master 2 will

have to react and pull it’s clock low.

3. Both masters start counting off their low periods. Master 1 finishes counting off 

it’s low period first and tries to pull the SCL line high. It cannot get SCL to go 

high because another device is keeping the SCL line low ,

4. Master 1 goes into a “wait state” until the SCL line goes high

5. Both masters start counting off their high periods. The master with the shortest

high period pulls the SCL line low

6. The other master reacts by pulling it’s clock low as well

7. This sequence continues until one of the master loses arbitration

To implement the multi master synchronisation, a state machine diagram has been 

drawn up (Figure 6.32). Figures 6.33 and 6.34 show how the low count off and high 

count off were implemented.

goienite_sd

check_scl

w a rts ta te

C04»lt_0f
f

Figure 6.32 Clock Synchronisation



task automatic cl_i2c_bfm::i2c_low_count _off ();

if ( curr_state == low_count_off) begin

for (i = low period ; i <=0; i — ) begin

internal scl ==l'b0;

vi.scl = internal_scl [i];

end
end

Figure 6.33 Low Count o ff

if (currstate =  high_count_off) begin

for (i = highperiod ; i <=0; i — ) begin 

internalscl ==l'bl;

vi.scl = internal scl[j];
end

end

Figure 6.34 High count o ff
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6.13 Testing of I2C Protocol

6.13.1 Testcase 1

The first test performed is to check if the master BFM could control the SDA and SCL 

line. This is done by the master pulling the SDA and SCL line high. Then the master 

generates a start condition. The master pulls the SDA line low while SCL is still high 

and then pulls SCL low. Figure 6.35 illustrates the waveform generated.

¡2c_if

- l> -c lk  

- O - r s t  

i -  ru  s d a j

I
□ next.

0 curr_

Figure 6.35 Start Condition

6.13.2 Testcase 2

The next test created is a check of the main functionality of the BFM (master and slave). 

The functionality is described below.

• Master generates start condition

• Slave detects start condition

•  Master sends slave address with write/ read bit

•  Slave receives the address and checks it against its own and acknowledges 

accordingly (in this case slave address matches). Another test is performed 

where an invalid address is send.

• Master sends a block o f 8 bit data to slave

• Slave reads data and again acknowledges accordingly.

• Once the master receives the acknowledge it generates a stop condition

Figure 6.36 and 6.37 show the waveforms generated
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Figure 6.37 Test BFMfunctionality (No Acknowledge)

6.13.3 Testcase 3

T h i s  t e s t  c a s e  t e s t s  f o r  t h e  s a m e  f u n c t i o n a l i t y  a s  t e s t  c a s e  t w o ,  b u t  t h i s  t i m e  t h e  m a s t e r  is  

r e a d i n g  d a t a  f r o m  t h e  s l a v e  a n d  m u s t  g e n e r a t e  a n  a c k n o w l e d g e  o r  n o  a c k n o w l e d g e  

a c c o r d i n g l y .  F i g u r e  6 . 3 8  i l l u s t r a t e s  t h e  w a v e f o r m  g e n e r a t e d .

Figure 6.36 Test BFM  Functionality (Acknowledge)

Figure 6.38 Slave write

6.13.4 Tcstcase 4

T h i s  t e s t  c h e c k s  f o r  a  r e p e a t e d  s t a r t  c o n d i t i o n .  F i g u r e  6 . 3 9  s h o w s  t h e  r e s u l t i n g  o u t p u t  

w a v e f o r m .

H d  Stl 

j - D i d O  Stl 

+- 0 «Tjhte[. rho 
i- 0 notjMt[ M

Figure 6.39 Repeated Start Condition
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Master and slave BFM integrated into one BFM. The previous test cases (2, 3, and 4) 

are run to check for functionality o f the new BFM and the resulting output is illustrated 

in figure 6.40.

6.13.5 Testcase 5

Did SII 

[■ D xtej SII 

i D oiMtatel 1W) 

t- D ntxl.slalel. 1W

Figure 6.40 Integrated BFM

6.13.6 Testcase 6

To test the slave core the same tests are performed as in test case (2, 3 and 4) and the 

resulting output is illustrated in figure 6.41.

Figure 6.41 Slave Core
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6.13.7 Testcase 7

To check the slave side o f the BFM, the master core generates the start condition and 

the slave BFM waits to detect this. Then the master sends the address and waits for 

acknowledge. Once acknowledge is received the master sends data to the slave, another 

test will be performed where the slave writes to the master core. The resulting 

waveform from this test is illustrated in figure 6.42.

Figure 6.42 Master Core
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6.13.8 Testcase 8

This test checks the multi master functionality o f the BFM. In this case the test is 

checking the multi master arbitration. To test for the multi master feature of the BFM, a 

second BFM was created (a copy o f the original BFM). The BFM is then tested against 

the master core. Listed below are some o f the main aspects o f the test. Figure 6.43 

illustrates the waveform generated.

• Both Masters generate a start condition

• Masters 1 and 2 try to send address 0110101 with read bit

• Masters 1 and 2 wait for an acknowledge

• Master 1 tries to send data 01101110 while Master 2 tries to send 01101110,

Master 2 fails to send data; therefore it goes into idle state and waits for the

master 1 to finish transmitting data.

H masltr «11 

D master _«I2

D sfej

p  0 rraster_3*1 

0 maslerjdtf

Figure 6.43 Multi Master Arbitration
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6.13.9 Testcase 9

This test checks multi master clock synchronisation. Listed below is the test sequence, 

while figure 6.44 shows the waveform generated.

• Master 2 generates a start condition and pulls SDA low; Master 1 tries to 

generate a start condition and sees SDA has gone low so it pulls it SDA line low.

• Master 1 and 2 start counting off their low periods. Master 2 counts off it’s low 

period first and goes into wait state as it cannot gel SDA to go high. Master 1 

finishes counting off it’s low period and pulls SDA high. Master 1 and 2 start 

counting off their high periods Master 2 is first to finish counting off it’s high 

period and pulls SDA low. This process continues until one of the masters loses 

arbitration, in this case master 2 loses arbitration. Both masters can finish a 

complete transmission if their data matches.

i-Dsd S"
:-n mater adl Stl

j- D masterjetf sil
IhQ*iaiI
-D masterjdal

h  0 masterjda2

Figure 6.44 Clock Synchronisation
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6.14 Conclusion

The main objective of the work described in this chapter is to build an advanced 

verification environment for the I2C protocol. The reason for building an advanced 

verification environment was to test the re-usability of the advanced verification 

environment described in chapter 5. The following conclusions have been drawn from 

building the advanced verification environment for the I2C protocol:

1. In converting the floating-point testbench directory structure little or no changes 

were made

2. In converting the testbench only minor changes were made.

3. Only in the BFM were major changes made, this was because the BFM 

represents the protocol being tested

4. The ability to use either random or direct tests or both was extremely useful in 

verifying the I2C protocol

5. The initial development time of the testbench has been reduced from 3 months 

in the case of the floating-point adder down to a couple of weeks for the I2C 

protocol. This has been achieved by using the advanced verification 

environment described in chapter 5. However, this reduction in time has been 

offset by the development of the more complex BFM. The development time for 

the BFM has taken a couple of months. Figure 6.45 illustrates the time taken to 

develop the advanced verification environment of the I2C protocol and also the 

time taken to verify the BFM.
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6. The development time for creating BFM could be reduced by creating a standard 

approach for creating BFMs.

• Common approach for creating task and functions within the BFM

• Consistent approach for creating state machines for the BFMs

However some difficulties have been encountered while building the advanced 

verification environment for I2C protocol. Listed below are some o f the difficulties 

encountered

• The learning curve of understanding the E C  specification

• Integrating the master and slave BFMs into a single BFM

• Implementing the functionality o f the protocol, especially the multi-master 

functionality

• Difficulties finding master and slave cores suitable for testing
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C hapter 7 F orm al V erification

7.1 Introduction

In the previous chapters functional verification has been discussed. This chapter will 

investigate and review another verification method called formal verification. The 

reason for reviewing formal verification is that as chips have grown from tens of 

thousands of gates to millions today, simulation run times have stretched from a few 

hours to days, or even weeks. The volume of stimuli required to check every logic 

function and timing path has threatened to overwhelm even the best funded projects. As 

a result, reliance on simulation as the sole source of verification has proven impractical. 

This has meant that the major EDA and ASIC companies have looked at other solutions 

and ideas for verification. One such method is formal verification.

Formal hardware verification attempts to overcome the weakness of functional 

simulation by proving the similarities between some abstract specification and the 

design in hand.

There are 3 different techniques of formal hardware verification namely:

* Deductive Methods (Theorem Proving)

* Equivalence Checking

* Model Checking

This chapter will also investigate the different formal verification tools that are available 

on the market at the moment.

7.2 What is Formal Verification?

Formal verification means proving or disproving the correctness of a design with 

respect to a certain formal specification or property using formal methods or 

mathematical proofs [44], The promise of formal verification is proving in the sense of 

mathematical proof, in contrast to traditional simulation and tests, which can only tell 

that nothing went wrong on the specific test tried. Formal verification can be viewed as 

giving the same effect as of exhaustive simulation.
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Figure 7.1 illustrates the formal verification flow.
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Figure 7. 1 Formal Verification

A difficulty within formal verification is specifying the property to prove and creating 

an accurate model o f the design. It is near impossible to prove complete system 

correctness:

• Is the design specification correct?

• Is the model accurate?

• Is the verifier correct?

• Is the computer used to run the verifier correct?

Ideally the model being verified is as close to the actual hardware as possible. The 

problem is that for complicated designs an abstracted model is usually needed to 

simplify the verification process.
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7.3 Why Formal Verification?

The research into formal verification of computer hardware and software has been going 

on for decades. The focus traditionally had been on approaching the ideal of proving a 

system correct. These verification methods require considerable time and expertise to 

verify even simple systems [45]. In hardware design projects, hiring or training formal 

verification experts will result in delaying a product.

A major factor in the current interest in formal verification is a different approach that 

clearly recognises economic demands. The main factors include new verification 

techniques that support this emphasis and the high design complexity, short design 

cycles and strain on current validation methods [45]. What this all means is that 

basically bugs cost money, especially the hard to find bugs that surface late in the 

design cycle. The results of finding these bugs are that an extra spin of silicon may be 

needed that will delay a product launch and may even result in a massive product recall. 

Any technique that finds these bugs earlier is of enormous value. So instead of trying to 

certify correctness, formal verification is used as a powerful debugging tool. Therefore 

if the time and effort invested in formal verification is less than the time and effort 

saved by uncovering difficult bugs earlier, then formal verification is a winner, 

regardless of whether or not any claims about proving the system is correct.
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7.4 History of Formal Verification

This section gives an overview of the history of formal verification. Listed below are 

some of the main events in the history of formal verification.

• Logic Theorist (1957)

• Resolution Theorem Proving (1965)

• Model Checking (Clarke and Emerson 1981)

• Practical Model Checking (McMillan 1992)

• Memories of FDVI (June 1994)

• Oin founded (1996 , formal verification too l, later purchased by Mentor)

• Verplex founded (1997 , formal verification tool, later became Cadence 

Conformal)

• Standardising Assertions (2003 to present)

7.41 Logic Theorist

In 1956 Allen Newell, J. C. Shaw and Herbert Simon introduced the first AI program, 

the Logic Theorist, to find the basic equations of logic as defined in Principia 

Mathematica [46] by Bertrand Russell and Alfred North Whitehead. It was the first 

program engineered to mimic the problem solving skills of a human being. The Logic 

Theorist would soon prove 38 of the first 52 theorems in Russell and Whitehead’s 

Principia Mathematica and was even able to find new and better proofs for some.

7.42 Resolution theorem proving

Resolution theorem proving [47] was introduced by John Alan Robinson in 1965. 

Resolution is a rule of inference that provides theorem proving methods for proofing 

propositional and first order logic. In other words repeatedly applying the resolution 

rule in a suitable way allows the user to tell whether a propositional formula is satisfied 

and for proving that a first-order formula is not satisfied.
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7.43 Model Checking

In 1981, Edmund Clarke and Allen Emerson were working in the U.S., and Joseph 

Sifakis working independently in France with J.P. Queille, authored seminal papers [48] 

that founded what has become the highly successful field of Model Checking. This 

verification technology offers two advantages. It provides an algorithmic means of 

determining whether an abstract model such as a hardware or software design satisfies a 

formal specification, such as a temporal logic formula. In addition it identifies the 

counter examples that show the source of the problem, which must be addressed should 

the stated property specification not hold.

7.44 Floating-point Divide (FDIV) Bug

The Pentium FDIV bug was a bug in Intel’s original floating-point unit [49], When a 

certain floating-point division operation was performed within the processors, it would 

produce incorrect results. According to Intel, there were a few missing entries in the 

lookup table used by the divide operation algorithm. The flaw was independently 

discovered by Professor Thomas Nicely, then at Lynchburg College, in October 1994.

Although encountering the flaw was extremely rare in practice (1 in 9 billion), Intel's 

initial handling of the matter was heavily criticized. Intel ultimately recalled the 

processors.

7.45 Standardising Assertions

Assertions are constructs, in the form of a group of statements, a task, or a function, that 

check for certain conditions on signals or variables in a design over a span of time. If 

the condition is violated, an error message is issued identifying the location of the 

occurrence. Assertions have been used in software and hardware design for quite some 

time, but only recently have there been coordinated efforts to standardise the use of 

assertions. Assertions benefit design and verification by removing ambiguity from 

specifications, finding bugs sooner and allowing fewer bugs through to production.
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7.5 Deductive Reasoning

7.5.1 Introduction

Deductive reasoning is one of the two basic forms of valid reasoning [50]. While 

inductive reasoning argues from the particular to the general, deductive reasoning 

argues from the general to a specific instance. The basic idea is that if something is true 

of a class, this truth applies to all valid members of that class. The key is to be able to 

properly identify members of the class. Misinterpreting these members will result in 

invalid conclusions.

Deductive reasoning argues that if certain premises (P) are known or assumed, a 

conclusion (C) can be drawn from them. Deductive arguments are said to be valid or 

invalid, never true or false.

One of the most common and useful forms of deductive reasoning is the syllogism. The 

syllogism is a specific form of argument that has three easy steps.

• Every X has the characteristic Y.

• This thing is X

• Therefore, this thing has the characteristic Y.

Simple example of Deductive Reasoning is as follows:

• P: All men are mortal.

• P: Socrates is a man.

• C: Socrates is mortal.

7.5.2 Axioms and Deductive Reasoning

The first Axioms were developed by Euclid who was a mathematician in Alexandra in 

300 BC. Euclid came up with 10 assumptions. Five of them were specific to geometry

and 5 are not specific. These axioms can be found in Appendix 3.
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Together, these common notions and postulates represent the axioms of Euclid's 

geometry. An axiom is a logical principle which is assumed to be true rather than 

proven, and which can be used as a premise in a deductive argument.

7.5.3 Deductive Reasoning in Verification

With deductive reasoning explained from an everyday point of view, this section 

explains how deductive reasoning is used for verification. Deductive reasoning is a 

verification methodology using axioms and proof rules to establish reasoning. The goal 

of deductive reasoning is to provide an automatic mathematical (logical) reasoning. 

When given a set of axioms and a set of interference rules, the proof implemented is 

semi auto constructed and mechanically checked by a theorem prover (PVS, ACL2, and 

HOL). To construct the proofs required it usually needs a great expertise in mathematics 

and logic. Finally with enough human involvement any theorem can eventually be 

proven.

7.5.4 Implementing Deductive Reasoning

To implement deductive reasoning the following steps should be followed:

• Implementation represented by a logical formula I (example Hoare logic [51])

• Specification represented by a logic formula S

• Correctness: Implementation —> Specification (implication) or Implementation 

<-> specification (Equivalence)

• Proof is carried out at the synaptic level

Im plication

Im plem entation Specification

Equivalence

Figure 7.2 Implementing Deductive Reasoning
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7.5.4 Theorem Proving System

A theorem proving system [52] is a program that mechanises a proof system. A calculus 

or proof system C for logic L consists of a set of axioms A and a set of inference rules 

R. The axioms are formulas of L and are generally “elementally” in the sense that they 

capture the basic properties of the logic’s operators. The general form of an inference 

rule is:

q l  ak
P

The formulas al ....., ak are called premises of the rule while P is called the conclusion.

There are three aspects which are particular to mechanised proof systems:

1. It can mechanically check a proof. This means that it verifies that a given 

sequence of formulas is indeed a deduction. This is usually not a very difficult 

task, all that is required is for formula to syntactically match the inference rules 

against the appropriate premises in the sequence and verify the formula. This is 

obtained though application of the rule.

2. It can assist in the construction of a proof. Given a set of assumptions and a goal, 

heuristic search techniques may be able to find a deduction P = on.

3. It permits the use of decision procedures. A decision procedure is an algorithm 

which decides the validity of a class of formula. BDDs provide a practical 

decision procedure for propositional logic. BDD will be explained in section 8.5.

A number of theorem proving systems have been implemented and many have been 

used for hardware verification, including HOL, ISABELLE and ACL2. These systems 

are well known by among other aspects, the proof style used, mathematical logic used, 

the way automatic decision procedures are integrated into the system and the user 

interface. Proof styles are often characterised as forward or backward.

• A  forward proof starts with the axioms and assumptions then inferences are 

applied until the desired theorem has been proven.

• A backward proof starts with the theorem as a goal and applies the inverses of 

inference rules to reduce the theorem to simpler intermediate goals.
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7.5.5 Types of Theorem Proving Systems

7.5.5.1 Higher Order Logic (HOL)

HOL is one of a family of theorem provers that share a common design called the Logic 

for Computable Function (LCF) architecture [53]. The LCF architecture is so named 

because its first use was in a theorem prover called LCF. The users of LCF architecture 

tools prove theorems in logic supported by the tool, which is the object language. The 

user does this by writing programs to construct a proof using a programming language 

(meta-language). The object language of the HOL system is a classical higher-order 

logic based on Church's simple theory of types [54].

HOL supports both forward and goal directed backward proof in a natural deduction 

style calculus. The HOL system is designed to support interactive theorem proving in 

higher order logic. The formal logic is interfaced with the programming language ML in 

which terms and theorems of the logic can be denoted, proof strategies expressed and 

applied, and logical theories developed. The version of higher order logic used in HOL 

is predicate calculus with terms from the typed lambda calculus. This was originally 

developed as a foundation for mathematics [55]. The primary application of HOL was 

initially intended to be the specification and verification of hardware designs. However, 

the logic does not restrict applications to hardware; HOL has been applied to many 

other areas.

7.5.5.2 Prototype Verification System (PVS)

The specification language of PVS [56] is built on higher-order logic. It was developed 

at the Computer Science Laboratory of SRI International, California USA.

The PVS theorem prover provides a collection of powerful primitive inference 

procedures that are applied interactively under user guidance within a sequent calculus 

framework. The primitive inferences include propositional and quantifier rules, 

induction, rewriting, simplification using decision procedures for equality and linear 

arithmetic, data and predicate abstraction, and symbolic model checking. The 

implementations of these primitive inferences are optimised for large proofs: for 

example, propositional simplification uses. The user defined procedures can combine 

these primitive inferences to yield higher level proof strategies.
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Finally PVS includes a BDD based decision procedure for the relational mu-calculus 

and thereby provides an experimental integration between theorem proving and CTL 

model checking.

7.5.5.3 Boyer-Moore (Nqthm)

The Boyer-Moore logic is a first order, quantifier free logic, recursive function with 

equality and mathematical induction [57], Nqthm has been reengineered and extended 

has been released under the name ACL2.

ACL2 contains axioms of primitive data types such as numbers and lists. ACL2 

combines backward and forward methods to prove theorems. In the backward phase, a 

pending obligation is chosen, and the prover attempts to discharge it by applying a 

sequence of more and more general proof techniques. First, a simplifying stage applies 

conditional and congruence-based rewrites, a BDD-based propositional decision 

procedure, a linear arithmetic decision procedure and other simplification techniques to 

the obligation. If this step fails to reduce the obligation to true, ACL2 tries other proof 

techniques, the most general of which attempts to discover an induction scheme for the 

obligation. The forward aspect of ACL2 is that most of the proof techniques are rule 

driven. Previously proved theorems can be turned into rules which are added to a rule 

database and can be used by later proofs.

7.5.6 Advantage of Deductive Reasoning

The advantage of deductive reasoning is that it can be used for reasoning about an 

infinite state system. This task can be automated to a limited event. Deductive reasoning 

provides a high abstraction level where possible, expressive notation, powerful logic 

and reasoning.

7.5.7 Disadvantage of Deductive Reasoning

The major disadvantage of deductive reasoning is that it is often time consuming and is 

known to be labour intensive and require considerable time to learn and use [59]. In 

addition, there is no guarantee that the proving procedure will terminate. Even if a tool 

called a theorem prover has been developed to provide a certain degree of automation,
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its inherent characteristic makes it difficult to be used widely for verifying recent 

network protocol stacks.

However, even if the property to be verified is true, no limit can be placed on the 

amount o f time or memory that may be needed in order to find a proof. An interactive 

and deep understanding o f design and high order logic is required.

7.6 Model Checking

7.6.1 Introduction

Model checking is a means of checking that the model being verified satisfies the 

specification [57]. The analysis is performed algorithmically by searching the state 

space of the model. Today the term applies more generally, models need not be finite 

state and requirements can be written in a variety of other languages.

Model checking can be expensive even if  limited attention is used to simple 

requirements. The problem is rooted in the fact that the number of states of a system 

grows exponentially with the number of variables used to describe it.

Given a model and a requirement as input, a model checker does not simply answer Yes 

or No. Rather, when the model does not satisfy the requirement, it produces a counter 

example, an evidence for the failure. This diagnostic information is extremely useful for 

debugging purposes. Model checking is an incremental process. The designer starts with 

a model o f the system, checks a variety of requirements, and uses the feedback to 

modify the model.
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Figure 7.3 Model Checking

161



7.6.2 Model Checking in the Hardware Industry

Model checking has been most successful in hardware verification [58]. In 1992, the 

model checker SMV was used to pinpoint logical errors in the cache coherence protocol 

described in the IEEE Future bus and standard. This and numerous other case studies 

attracted a lot of attention from the hardware industry, who were eager to enhance 

capabilities of design automation tools. Model checking seems suitable to debug 

complex aspects of microprocessor designs. Today semiconductor companies such as 

Lucent, IBM, Intel, Motorola, and Siemens, have internal verification groups aimed at 

integrating formal verification into the design flow. Electronic Design Automation 

(EDA) companies such as Cadence and Synopsis are exploring ways to add verification 

capability to design tools. An important reason for the success of model checking in 

hardware verification is the ease with which it fits into the existing design methodology.

7.6.3 Model Checking and Kripke Structure

A Kripke structure [57] is a model used to give semantics (definitions of when a 

specified property holds) for modelling temporal logic. In the model checking domain, a 

Kripke structure is a graph having the states of the system as nodes and state transitions 

of the system as edges. It also contains labelling of the states in the structure with 

properties that hold in each state. The following is the formal definition.

Kripke Structure Let AP be a non-empty finite set of atomic propositions that denotes 

the properties of individual states we are interested in. A Kripke structure is a four tuple

M = (s, sO, R, L), where

s is a finite set of states,

• sO G S is the initial state,

• R Ç S x S is a transition relation,

• L : S  —> 2AP is a function that labels each state with

the set of atomic proposition true in this state
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7.6.4 Types o f Model Checking

• Computational Tree Logic (CTL)

• Linear Time Logic (LTL)

• Computational Tree Logic* (CTL*)

• Symbolic Model Checking

7.6.5 Computational Tree Logic (CTL)

CTL is a prepositional, branching-time, temporal logic proposed by Clarke and 

Emerson in 1981 [48]. CTL is expressed as a tree like structure in which the future is 

not determined; there are different paths in the future, any one of which might be the 

actual path. CTL, one o f the most popular logics for practical model checking, uses 

atomic propositions as the basis, and formulas are constructed from logical operators, 

temporal operators and path quantifiers to make statements about the Kripke structure. 

It is used in formal verification of software or hardware programs, typically by software 

applications known as model checkers who determine if a software or hardware 

programs possesses safety or liveliness properties. It is in a class of temporal logic that 

also includes LTL. CTL is a restricted subset o f CTL* where each of the temporal 

operators must be immediately preceded by a path quantifier.

Figure 7.4 State transition graph o f Kripke Model
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Figure 7.5 Infinite Computation Tree

Syntax of CTL

Syntax gives the rules to write correct formulae. Each CTL operator is a pair of

symbols. The syntax of CTL is given in appendix 4.

Semantics of CTL

Semantics gives a meaning to well-formed formulas. Semantics is used to decide 

whether or not a given well-formed formula is true or false.

If  f  is a CTL state formula, and M is a Kripke structure, the formula M,s |= f  denotes 

that f  holds at states in the Kripke structure M. The semantics o f CTL can be found in 

appendix 4.

7.7.6 Linear temporal logic (LTL)

LTL is a modal temporal logic with modalities referring to time. In LTL, one can 

encode formulas about the future o f paths such as that a condition will eventually be 

true and that a condition will be true until another fact becomes true. [60]

LTL is built up from a set o f propositional variables, logic connectives and the

following temporal model operators:

• X for next (Next state.);

• G for always (globally);

• F for eventually (in the future);
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• U for until;

• R for release.

The first three operators are unary, so that X f  is a well formed formula (w.f.f) whenever 

f  is a well-formed formula. The last two operators are binary, so that p U q is a well- 

formed formula whenever p and q are well-formed formulas.

Semantics

The semantics of LTL formulas is defined with respect to computation paths of a 

transition system. The syntax of LTL is given in appendix 4.

7.7.7 Computational Tree Logic *

CTL * [61] is a logic which combines the expressive powers of LTL and CTL , by 

dropping the CTL constraint that every temporal operator (X, U , F , G) has to be 

associated with a unique path quantifier (A,E). The syntax and semantics of CTL * can 

be found in appendix 4.

7.7.8 State Explosion Problem

State explosion is a major problem in Model Checking [62]. The number of global 

states of a concurrent system with many processes can be enormous. The asynchronous 

composition of n processes, each having m states, may have m n states. A similar 

problem occurs with data. The state-transition system for an n-bit counter will have 2n 

states. All Model Checkers suffer from this problem.

Fortunately, steady progress has been made over the past 27 years for special types of 

systems that occur frequently in practice. In fact, the state explosion problem has been 

the driving force behind much of the research in Model Checking and the development 

of new Model Checkers.

7.7.9 Symbolic Model Checking

One of the big problems with model checking is state space problem. To tackle these 

problems McMillan [62][63] while working on his PHD introduced a new method of 

model checking called Symbolic Model Checking in 1992. Symbolic model checking is

a powerful formal verification technique that, contrary to theorem proving, requires no
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user assistance. It is able to verify that an implementation, modelled as a labelled finite 

state transition graph, satisfies its specification, given as a set of terms in some temporal 

logic.

In the fall of 1987, McMillan, then a graduate student at Carnegie Mellon, realised that 

by using a symbolic representation for the state transition graphs, much larger systems 

could be verified. The new symbolic representation was based on ordered binary 

decision diagrams (OBDDs). OBDDs provide a canonical form for Boolean formulas 

that is often considerably more compact form than normal formulas, and very efficient 

algorithms have been developed for manipulating them. Because the symbolic 

representation captures some of the regularity in the state space determined by circuits 

and protocols, it is possible to verify systems with an extremely large number of states , 

many orders of magnitude larger than could be handled by the explicit state algorithms. 

By using the original CTL Model Checking algorithm of Clarke and Emerson with the 

new representation for state transition graphs, it became possible to verify some 

examples that had more than 1020 states. Since then various refinements of the OBDD 

based techniques by other researchers have pushed the state count up to more than 

10120 .

7.7.11 What are BDDS

BDDs are a representation for Boolean formulas, which is canonical once an order on 

the variables has been established. A Boolean formula is a compact representation of the 

set of the states represented by the assignments which make the formula true. Similarly, 

the transition relation can be expressed as a Boolean formula in two sets of variables, 

one relative to the current state and the other relative to the next state.

This makes it possible to represent predicate transformers and fix points as BDDs. The 

basic Boolean operations are handled by means of standard algorithms for computing 

Boolean connectives with BDDs, and fixed point algorithms can be easily implemented 

in terms of basic BDD operations [45],

7.7.12 Advantage and Disadvantage of Symbolic Model Checking

Symbolic model checking has been used to verify a large variety of systems hardware 

descriptions, software and protocols. In practice, symbolic model checking is well
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suited for the verification of the control components of a system [63]. However it 

performs poorly with data parts. The reason is that BDDs are ill suited to represent 

arithmetic expressions or data intensive operations. Practically this means that symbolic 

model checking cannot be used to uncover bugs such as the one found in the Pentium 

chip floating-point division unit. An approach to verify this type of system has been to 

combine model checking using other data structures rather than BDDs to represent the 

data parts of the system under verification.
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7.7 Equivalence Checking

7.7.1 Introduction

Modem circuit design flows increasingly employ formal verification techniques in order 

to ensure quality and reduce time to market by avoiding bug related design iterations. 

Equivalence checking has become a regular step in the flow. Modem tools for 

equivalence checking are capable of verifying designs with millions of gates in very 

short times.

The great success of equivalence checking technology is due to numerous research 

advancements in this field during the past decade. An important idea on which a typical 

equivalence checker is based is to exploit structural similarity between the two circuit 

models being compared [64]. Structurally similar circuits contain a lot of internal nodes 

that implement equivalent circuit functions. These internal equivalences, sometimes 

called cut points can be used to efficiently break the verification problem down into 

smaller ones.

7.7.2 What is Equivalence Checking?

Equivalence checking provides a solution where given two system models are asked 

whether these systems are equivalent with respect to some notion of conformance, or 

functionally similar with respect to their input/output behaviour [64]. The verification of 

the systems can be based on specific properties like transient or steady state response 

properties, in the time domain or the frequency domain. To find if there is a relationship 

between two designs exhaustive testing is done to prove two expressions are equivalent. 

This can be a difficult task for any reasonably large circuit. Instead, symbolic reasoning 

methods can prove or disprove equivalence using decision procedures over the whole 

range of inputs described symbolically. Therefore, it is possible to compare circuits on 

the same level of abstraction as well as on different levels.

The goal of Equivalence Checking is to ensure the equivalence of two given circuit 

descriptions.

These circuits might be given on different levels of abstraction, i.e. register transfer 

level or gate level. The main steps of an equivalence checker are as follows:
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1. Translate both designs to an internal format.

2. Establish the correspondence between the two designs in a matching phase.

3. Prove equivalence or not equivalence.

4. In the equivalence case a counter-example is generated and the debugging phase 

starts.
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Checker
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Figure 7.6 Equivalence Checking

7.7.3 Types of Equivalence Checking

• Combinational Equivalence Checking

• Sequential Equivalence Checking

7.7.4 Combinational Equivalence Checking (CEC)

Combinational equivalence checking (CEC) [65] plays an important role in EDA. The 

goal of combinational equivalence checking is to check whether two combinational 

circuits are functionally equivalent. This mean checking for all possible inputs, both 

combinational circuits have the same outputs. In a typical scenario, there are two 

structurally different implementations of the same design, and the problem is to prove 

their functional equivalence.

CEC is a framework commonly used for validating that logic synthesis does not alter 

the functionality of a design. For such applications, CEC operates on two versions of a 

design: the first is pre-synthesis, often an RTL version of a design which is used for
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functional verification; the second is post-synthesis, often a gate- or transistor level 

version of the design. CEC operates by correlating primary inputs and latch points 

between the two designs, and proving that this pairing guarantees equivalence of all 

primary outputs and next-state functions. CEC has become by far the most commonly 

used form of formal verification throughout the industry, due to ease of use and 

scalability

7.7.5 Combinational Equivalence Checking Issues

While powerful, CEC is for the most part limited in applicability to designs with 1:1 

state element pairings [66], CEC tends to become ineffective if significant sequential 

transformations are performed on a design, e.g., by optimisations such as retiming or 

FSM re-encoding, addition of power-saving logic such as clock-gating.

Due to the growing demands of hardware design, however, such transformations tend to 

comprise an increasing portion of the modifications performed during the life-cycle of a 

product. With a purely CEC-based methodology, this means that sequential 

transformations often require a full regression of the functional verification process, 

which is often time-consuming and uses simulation and can be incomplete. This means 

that performing sequential optimisations becomes somewhat of a bottleneck in design 

cycles, and that certain design sub-optimality are instead tolerated to avoid the risk of 

late introduced bugs [66].

7.7.6 Sequential Equivalence Checking (SEC)

Sequential equivalence checking (SEC) [66] is an equivalence checking method that can 

help to offset the limitations of CEC. SEC performs a true sequential check of 

input/output equivalence, hence is not limited to operation on designs with 1:1 state 

element pairings. The benefits of SEC are multiple. For example, one may use SEC to 

efficiently prove the correctness of sequential transformations that preserve design 

functionality, without a need to re-run lengthier often pointless functional verification 

regressions. This enables resource savings during the design cycle. This eliminates the 

risk associated with sequential transformations enabling more aggressive testing than 

otherwise would be tolerated, especially late in the design phase. Therefore a 

methodology based upon SEC implies that sequential transformations can be automated
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by synthesis tools. This allows more abstract reference models to be the basis of 

verification and synthesis.

In practice, SEC enables a more flexible set of applications than direct input/output 

equivalence, including white box functional checks. SEC can check against designs that 

are not even strictly equivalent but can be made so by disabling initialization/test/debug 

logic.

7.7.7 Sequential Equivalence Checking Issues

Unfortunately with SEC this benefit does not come without a price. SEC is much more 

computationally expensive than CEC. CEC often assumes not only 1:1 latch 

correspondence, but also 1:1 design hierarchy equivalence. This enables CEC to 

perform checks up to even the largest chip-level designs. SEC in comparison often does 

not assume latch or hierarchy equivalence. This often limits SEC in applicability to only 

smaller design units, mandating in cases a fair amount of user experience to verify a 

larger design and specify corresponding boundaries to yield a higher level equivalence 

proof [66]. In many cases, the lack of scalability of SEC results in an incomplete 

application of the technology.

7.7.8 Equivalence Checking Issues

Although equivalence checking technology has matured greatly during the last few 

years and designs with millions of gates can be handled, some specific problems remain 

to be difficult. Formal verification of arithmetic circuits, especially if multiplication is 

involved, is one of these problems. The problem occurs when an RTL specification of a 

circuit must be compared against a gate level implementation, e.g., when verifying the 

correctness of the logic synthesis step [64]. Figure 7.7 illustrates this case. The 

verification engines in a typical equivalence checker all operate on gate-level circuit 

models. Hence, in order to compare an RTL specification with a gate-level 

implementation, the frontend of the verification tool first has to generate a gate-level 

representation of the specification. The process is similar to the logic synthesis step that 

produced the implementation.
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Figure 7.7 Equivalence check o f a RTL model against gate net list

The two gate net lists can then be compared by the backend engines to verify 

equivalence or produce a counterexample. When the design contains arithmetic 

functions, this approach is bound to fail. The problem is that the two gate net lists hardly 

contain any structural similarity at all. The reason for this lies in the great flexibility 

when implementing arithmetic functions.
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7.8 Formal Verification and Assertions

Assertions are a key ingredient to today's property based formal verification 

environment. Industry standard assertion languages such as SystemVerilog Assertions 

(SVA) and Property Specification Language (PSL) have very strong formal friendly 

assertion constructs that help the user to express their complex design behaviour at a 

high level of abstraction [67]. Although the language permits the user to express the 

complex temporal assertion behaviour in a concise way, it often yields complex logical 

behaviour at the lower level depending on the coding style used to write the assertions. 

Writing efficient assertions, especially formal friendly assertions, usually involves a 

longer learning curve not only to interpret the assertion constructs correctly but also to 

use them in a more effective and accurate ways.

In formal verification, assertions are used to define the property to be proven by formal 

methods as well as to define the constraint environment for the DUT [67]. The 

effectiveness and completeness of Formal Verification greatly relies on the accuracy of 

these assertions. A major part of the formal verification effort is spent on creating a 

robust set of properties and constraints. This development often slows down the easy 

and useful adoption of formal technology into the design verification process.

7.8.1 Property Specification Language (PSL)

PSL was the first hardware assertion language to receive IEEE standard (IEEE 1850 -  

2005) in 2005 [68]. PSL offers many useful macros for expressing assertions; this 

means it can be used in VHDL, Verilog, SystemVerilog and SystemC. PSL also 

incorporates many temporal operators found in formal verification and model checking, 

such as Linear Temporal Logic (LTL) and Computation Tree Logic (CTL), it therefore 

can be used for both formal verification and simulation.

PSL is designed to capture design intent in an executable, formal, unambiguous manner. 

It is developed as a more "evolutionary" language than re-inventing the wheel. It uses 

many of the underlying HDL operators and expression syntax to build the Boolean 

expressions in properties rather than defining its own syntax and semantics for the same. 

However, wherever required, it defines its own syntax to build complex temporal 

relationship among the Boolean expressions.
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7.8.2 SystemVerilog Assertions (SVA)

SVA are an integral part of the SystemVerilog language, which has IEEE standard 

(1800- 2005) [69]. Verification Methodology Manual (VMM) and Open Verification 

Methodology (OVM) contain guidelines for writing effective assertions. As with PSL, 

SVA also incorporates Temporal Operators that can be used for formal verification and 

simulation. Unlike PSL though SVA doesn’t not have flavour macros for supporting 

HDL’s and so is mostly used in SystemVerilog. Figure 7.8 illustrates an example of 

assertions used in the floating-point adder model.

//******************** look for invalid operation
property p2;

0 (posedge elk) invalid_op_flag != 1; 
endproperty

assert property (p2);
//******************** look for inexact

property p3;
@(posedge elk) inexact_flag != 1; 

endproperty

Figure 7.8 Assertions used in floating-point adder
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The list of Formal Verification tools is shown in table 7.1

7.9 Formal Verification Tools

Supplier Tool Name Class of Tool HDL Design
Level

Commercial Tools

Chrystalis Design
Verifier

Equiv Checking VHDL / Verilog RTL /Gate

Synopsys Formality Equiv Checking VHDL / Verilog RTL /Gate

Cadence Affirma Equiv Checking VHDL / Verilog RTL /Gate
Compass V Formal Equiv Checking VHDL/Verilog RTL /Gate

Verysys Tornado Equiv Checking VHDL/Verilog RTL /Gate

Abstract Hardware 
LTD

Checkoff - E Equiv Checking VHDL / Verilog RTL /Gate

IBM BoolsEye Equiv Checking VHDL / Verilog RTL /Gate

Cadence FormalCheck Model Checking VHDL/Verilog RTL
Abstract Hardware 
LTD

Checkoff - M Model Checking VHDL/Verilog RTL /Gate

IBM RuleBase Model Checking VHDL RTL

Abstract Hardware 
LTD

Lambda Theorem Proving VHDL / Verilog RT1 /Gate

Public Domain 
Tools
CMU SMV Model Checking Own language RTL
Cadence Cadence SMV Model Checking Verilog RTL
UC Berkeley VIS Model /Equiv 

Check
Verilog RTL /Gate

Standford U Murphy Model Checking Own language RTL

Cambridge U HOL Theorem Proving SML Universal

SRI PVS Theorem Proving LISP Universal
UT Austin / CTI ACL2 Theorem Proving Lisp Universal

Table 7.1 Formal Verification Tools
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7.10 Future Trends of Formal Verification

In the future, progress will take place on the key topics of limiting state explosion, 

improved abstractions, better symbolic representations, broader parameterised reasoning 

techniques, and the development of temporal formalisms specialised to particular 

application domains [70].

Other areas where work needs to be done are:

• Composition. Understand how to compose methods, specifications, models, 

theories, and proofs.

• Decomposition. Develop more efficient methods for decomposing a 

computationally demanding global property into local properties whose 

verification is computationally simple.

• Abstraction. Real systems are difficult to specify and verify without abstractions. 

Identify different kinds of abstractions, perhaps tailored for certain kinds of 

systems or problem domains, and we need to develop ways to justify them 

formally, perhaps using mechanical help.

• Reusable models and theories. Rather than defining models and theories from 

scratch each time a new application is tackled, it would be better to have 

reusable and parameterized models and theories.

• Combinations o f mathematical theories. Many safety critical systems have both 

digital and analog components. These hybrid systems require reasoning about 

both discrete and continuous mathematics. System developers would like to be 

able to predict how well their system will operate in the field.

• Data structures and algorithms. To handle larger search spaces and larger 

systems, new data structures and algorithms are used.
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7.11 Conclusion

The main focus of this chapter is to review and summarises formal verification and the 

three main techniques within it; deductive reasoning, equivalence checking, model 

checking and to list the advantages and disadvantages of each. The main advantages and 

disadvantages of each are summarised in table 7.2.

F o r m a l
M e t h o d s

A d v a n t a g e s D i s a d v a n t a g e s

M o d e l
C h e c k i n g

• No proofs needed

• Fast

• Produces Counterexamples

• Temporal Logic

• State space explosion
• Writing specification 

is difficult

E q u i v a l e n c e
C h e c k i n g

• Exhaustive testing • Doesn't catch design 
errors at HDL level

D e d u c t i v e
R e a s o n i n g

• High abstraction and 
powerful logic 
expressiveness

• Powerful reasoning

• Unrestricted applications

• User intervention and 
guidance is necessary

• Requires expertise for 
efficient use

• Automated for narrow 
classes of designs

Table 7.2 Advantage & disadvantage o f formal methods

Another reason for investigating formal verification is to see if it could be used within 

the advanced verification environment. Formal verification methods such as 

equivalence checking could be used to verify the floating-point adder model. This could 

be done by using equivalence checking tools like Synopsys Formality or Cadences 

Affirma. However, without more research into formal verification tools, it is not 

possible to determine if formal verification tools could be integrated into the advanced 

verification environment described in chapter 5.
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Chapter 8 Conclusion and future work

8.1 Thesis Summary

8.2 Conclusions

8.3 Further Development 

8.1 Thesis Summary

The aim of this thesis has been to research SystemVerilog and the different 

methodologies that support the language and to develop and test an advanced 

verification environment that supports the major features of both SystemVerilog and 

VMM.

Chapter 2 investigates verification and the various verification techniques. The 

challenges associated with verification and the bottleneck in verification (up to 70 % of 

the time spent developing a chip can be spent in verification) is also discussed. Chapter 

3 introduces and describes SystemVerilog a new verification language that has been 

created to help with the difficulties within verification. Also examined were the other 

verification languages that are available. The methodologies that support SystemVerilog 

and the tools that support SystemVerilog have been explained.

Chapter 4 describes the development of a basic test bench using SystemVerilog and 

VMM. This helped to gain knowledge of SystemVerilog. The main features 

incorporated in the testbench are the VMM classes vmm data, vmm xactor, vmm env 

and some of the key SystemVerilog features including the interface, Assertions, 

program block, top module and constrained random verification.

Chapter 5 describes the development of the advanced verification environment, to create 

a reusable structure allowing similar DUT to be tested. This environment includes 

features not included in a basic verification environment such as functional coverage, 

reference model, scoreboard and a reporting mechanism. The environment also includes 

a unique way of incorporating both contained random tests and directed test within one 

environment. Using the advanced verification environment it was possible to verify the 

floating-point adder model fully.
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Chapter 5 describes the VMM planner reporting mechanism. The VMM planner is a 

useful reporting tool as it gives a verification manager a top level view of the 

verification progress on a spread sheet. This verification progress can include the 

following: functional coverage scores, assertions and pass/fail information.

Chapter 6 discusses the development and testing of an advanced verification 

environment for the I2C bus. The environment built uses the same testbench structure 

and testbench architecture as described in chapter 5. To test the reusability of the 

advanced verification environment and also develop a BFM for an advanced protocol.

Chapter 7 reviews and summarises formal verification, the different techniques within 

formal verification and also the different tools that are available.
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8.2 Conclusions

The following conclusions can be drawn from researching and developing test benches 

using SystemVerilog and VMM

• SystemVerilog is a very powerful verification language. This conclusion can be 

backed up by the survey in chapter 3 showing the steady growth that 

SystemVerilog has made within the verification industry.

• Some of the main SystemVerilog features such as assertions, functional

coverage, interfaces, program block and clocking blocks help the verification 

engineer to quickly write test benches.

• Since the project started in early 2008 a large number of advances in

SystemVerilog have been made.

o OVM released

o OVM / VMM interoperability library released 

o VMM 1.2 released

o SystemVerilog and Verilog merged to created PI 800-2009 

o RVM is been developed by Accellera to create a unified methodology

• The major EDA companies have been developing methodologies to support 

SystemVerilog. These methodologies are very useful in the creation of test 

benches. They help to make SystemVerilog a very powerful verification 

language.

• While these methodologies provide very powerful techniques for developing test 

benches, they do not offer a standardised way of creating verification

environments. This research has created a standardised test bench environment.

• The advanced verification environment that was described in the thesis has been 

developed in such a way that it can be used to verify other DUTs with similar 

verification techniques. This has been achieved by creating a directory structure
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that fits the requirements of a reusable environment. The environment has been 

built so that (apart from the BFM) only minimum modifications have to be made 

to the test bench to verify another DUT.

• The environments incorporate a unique way of having both random and direct 

testcases within the same testbench. Using regression scripts it is possible to run 

both random and direct tests together. This makes it possible to quickly verify 

the floating-point adder model.

• As well as offering a reusable environment the advanced verification 

environment includes key SystemVerilog features such as assertions and 

functional coverage. The verification environment also includes a reference 

model and scoreboard to complete the verification process of the floating-point 

adder.

• The verification environment includes VMM planner. At the time of 

development the VMM Planner application was in beta release stage. The VMM 

Planner application gives the Verification engineer a quick view of the 

functional coverage, code coverage, assertions and pass/fail report progress in a 

simple XML file that can be viewed in any office application.

• In creating the advanced verification environment of the I2C protocol the 

development time for the directory structure and the testbench has been 

significantly reduced.

• Formal verification will play a major part in verification of ASIC devices in the 

future.

8.3 Further Development

The advanced verification environment could be further enhanced with the following 

developments

• Use the interoperability library with the advanced verification environment so 

that both VMM and OVM can be used within it.
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• The advanced verification environment described in this thesis uses VMM 1.0. 

A newer version of VMM 1.2 was released late 2009. Research should be done 

to check if they are any differences between VMM 1.0 and VMM 1.2. If 

differences are found they should be implemented within the verification 

environment.

• At the time of writing this thesis a unified methodology (Unified Verification 

Methodology (UVM)) is being developed by Accellera. This methodology will 

combine features from OVM and VMM. The advanced verification environment 

could be converted to the new methodology once available.

• The floating-point adder could be tested with code coverage.

• The advanced verification environment could be built for another protocol. The 

reason for building another verification environment would be to try and 

develop a standard approach for creating BFMs. Thus in turn would reduce the 

time spent in creating BFMs.

• More work could be done with VMM Planner. At the time of implementation 

VMM Planner was in beta stage.

• Formal verification could be integrated into the advanced verification 

environment.
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Abstract— This paper describes a System Verilog Verification Methodology Manual (VMM) test bench 
architecture that is structured to gain maximum efficiency from both constrained random and directed 
test case development. We specify how a novel form of directed traffic can be implemented in parallel to a 
complete random traffic generator inside a reusable directory structure which takes full advantage of 
coverage and assertion techniques. The paper uses an IEEE-754 compliant Floating-Point adder model as 
part of a case study that illustrates a complete set of results from using this test bench solution 
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I INTRODUCTION
System Verilog is the industry’s first unified 

Hardware Description and Verification Language 
(HDVL). It became an official IEEE standard (IEEE 
1800™) in 2005 under the development of Accellera 
fl]. The language can be viewed as an extension of 
the Verilog language with the added benefit of 
supporting Object Orientated (00) constructs that 
have been used within the software development 
industry for many years. This is the first time that 
OO constructs have been made available to both 
digital design and verification engineers. As a result, 
engineers need to consider which OO constructs are 
applicable to their requirements.

Historically, the digital design community has 
focused much of its attention towards developing 
languages and tools primarily for use in designing an 
ASIC device. Today, an ASIC design flow can be 
viewed as being almost compliant amongst design 
houses. However the same cannot be said about 
verification flows. More recently, the key EDA tool 
vendors have researched new verification 
methodologies and languages, namely Specman E, 
System Verilog, VMM, AVM and the emerging 
OVM. These methodologies implement functional 
code coverage, assertion based coverage and 
constrained random techniques inside a complete 
verification environment.

The EDA vendors have recognised that a 
standard verification approach is required and they 
support the structures needed to build an advanced 
verification environment. However, they do not

specify how the test bench environment solution 
should be built. This remains the responsibility of the 
verification manager, who must also create a test 
bench which is re-usable for future chip sets.

Whilst current synthesis tools do not yet 
support all the System Verilog features, verification 
engineers can take advantage of the OO constructs to 
develop high-level test scenarios that are both 
scalable and reusable.

One goal of verification tool designers is in 
reducing the complexity of the test bench 
environment. This paper describes a standardised test 
bench structure that engineers can quickly and easily 
use to increase verification productivity. This paper 
describes a System Verilog Verification 
Methodology Manual (VMM) test bench using a 
Single Precision floating-point adder model as a case 
study. The VMM defines a set of rules and 
recommendations to be used in the design of System 
Verilog test benches [2], It utilises OO techniques to 
build pattern generators, transactors, scoreboards and 
an environment which can be extended to yield a 
library of test cases.

Developing test benches that utilise a 
complete random approach often require additional 
directed test cases in order to verify all elements 
defined within the verification plan.

A survey of current VMM based test bench 
architectures highlights the need for a directed test 
mechanism to be considered at the start of the 
verification process in order to yield an efficient 
verification environment [3].



This paper outlines a directory structure and 
test bench architecture that provides a 
straightforward way to constrain and manipulate data 
direct test case scenario that is extrapolated using a 
Verilog. We implement functional coverage, score 
boarding and assertions to verify the Design under 
Test (DUT).

The structure of this paper is as follows: 
Section II describes the rationale for developing a 
standardised test bench structure. Section III outlines 
the essential components of an advanced verification 
environment. Section IV describes the directed test 
case method and its implementation. The direct test 
case scenario is extrapolated using a combined data 
member class. Its use in maximising the efficiency of 
the test bench is outlined. Section V outlines the 
floating-point test bench case study. Integration of 
random and direct tests, code coverage, assertions 
and a scoreboard together in one standard 
verification environment is described. Section VI 
concludes the paper. Results are highlighted and 
indicate the point in the verification effort where 
maximum efficiency is achieved together with a 
productivity improvement over previous efforts to 
verify the same device.

n  THE NEED FOR A STANDARDISED 
TEST BENCH

At present there is no standardised test 
bench architecture that is described within System 
Verilog or within the verification industry. The 
different verification methodologies developed by 
the major EDA companies have very powerful 
verification techniques but they do not describe how 
a targeted verification environment should be built.

In developing a chip, it is plausible that 
engineers within a single organisation working in 
different teams will develop varying strategies for 
verifying their IP blocks. This scenario leads to an 
organisation having to support and integrate multiple 
test benches within a single chip development. 
Ultimately, this will lead to problems at the system 
level at the point where much energy is spent in 
getting the device through tape-out. There is a clear 
need for organisations (regardless of size) to develop 
and maintain a strategy that supports block level, 
sub-system level and system level scenario’s.

It is the responsibility of the verification 
manager and verification engineers to develop 
solutions that will support the development of a chip 
from start to finish. To achieve this, they need to: -

1. Produce a test bench architecture that will 
support the different functional verification 
levels right through to gate level simulation
2. Develop a structure that can be easily 
built upon, supported, documented and 
extended to yield a library of test cases
3. Provide their managers with detailed 
reporting mechanisms that can be 
extrapolated from the environment speedily

and make a decision as to when the device
is fully verified
These tasks are typical requirements placed 

upon verification engineers today. The EDA 
developers have identified these tasks and 
empowered their tools to help the engineer develop 
solutions to their problems. Yet, different strategies 
are still required depending on the type of chip being 
developed, e.g. a network chip requiring a lot of 
block intensive traffic to pass through it or a SoC 
level chip that requires a degree of connectivity 
testing as part of its verification process.

It is possible to build these differing types 
of verification solutions using System Verilog and 
VMM. In our case study, we use a block intensive 
approach that can be extended to support the 
development of directed test case mechanisms — 
often used in providing a solution to a connectivity 
focused test bench. We leverage our test bench 
solution with the Synopsys VCS simulation tool to 
provide a platform that an engineer can use to 
generate the verification result speedily.

Ill THE ESSENTIAL TEST BENCH 
COMPONENTS

The key elements within a System Verilog 
and VMM style verification environment are:

• Classes
• Assertions
• Functional Coverage
• Scoreboards
• Random Pattern Generators
• Transaction Level Model
• Regression capability

The key features of these elements are briefly 
described here:

Classes are used to develop transactor 
components, score boards, cover points and data 
structures that are used to manipulate the stimulus 
provided to them by pattern generators. Classes are 
written in System Verilog code and utilise the same 
software techniques as would be present in a C++ 
style environment.

Assertions are used to verify properties of a 
design that manifest themselves over time. An 
example of an assertion is shown in Figure 1.

//look for invalid operation
property p2;

0 (posedge elk) invalid_op_flag != 1;
Endproperty

assert property (p2);

Figure 1: Example Assertion Code

An assertion is a property that should hold 
true at all times. Assertions are used to specify
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assumptions and help identify design faults on the 
DUT entity [2]. Within the verification environment, 
all assertions are declared in the interface file 
description — the point where the pins on the DUT 
are specified. Assertions provide a powerful 
pinpointing mechanism in highlighting unexpected 
behaviour on an interface and can be compiled into a 
detailed reporting structure in the Synopsys Unified 
Report Generation (URG) tool.

Functional Coverage is a means of 
measuring what has been verified in a design in order 
to check off items in the verification plan [2],

The implementation of functional coverage 
consists of a number of steps. Firstly, code is added 
in the form of cover groups in order to monitor the 
stimuli being put on the DUT. The reactions and 
response to the stimuli are also monitored to 
determine what functionality has been exercised. 
Cover groups should be specified in the verification 
plan. Within a test case scenario, their usefulness is 
ascertained by analysing the RTL code and 
understanding the data they have recorded during the 
simulation.

Cover points become more powerful within 
a simulation when they are crossed together to 
identify greater levels of abstraction within a design. 
Cover points provide a powerful mechanism in 
identifying areas of functional code coverage within 
a design. As with assertions, they can be compiled 
into a detailed reporting structure in the URG tool.

Scoreboards are built from classes and are 
used to perform checks between the DUT data and 
the expected data. For the solution in this paper, the 
expected data comes from a reference model. Within 
a VMM style verification environment, data is 
usually communicated to the scoreboard via channels 
or mailboxes as an efficient means of transmission 
inside a test bench. Scoreboards can operate 
dynamically during a simulation and they provide the 
final piece of information when determining whether 
a lest case has passed or not. Pass / fail log files are 
used to identify this information when running 
regression suites of test cases.

Random Pattern Generators are used to 
create stimuli that fit the data members described 
within a transactor’s base class. The random pattern 
generator creates complete random data to be applied 
to a Bus Functional Model (BFM) that 
communicates with the DUT. In some cases the data 
is constrained so as to limit the amount of non-useful 
data generated.

Transaction Level Model (TLM) is a term 
used to identify a reference model that implements 
the required functionality at a very high level of 
abstraction. Given the RTL code is written at a low

level of abstraction, TLM’s are usually written more 
quickly and efficiently capture the expected function 
of the device at an approved degree of abstraction.

Regression capability is a means in which 
the verification environment can support and 
highlight certain information that can be extrapolated 
at a later point in time to determine different test case 
results. Regression runs are merged together to 
collate different code coverage results to indicate the 
overall degree of verification applied to the DUT.

IV DIRECTED TEST CASE 
MECHANISM

The verification engineer must design the 
architecture of the verification environment at the 
outset to achieve the ability to support both directed 
and constrained random test cases in an efficient 
manner [3].

In designing the Floating-Point test bench 
solution, our goal is to develop a robust and easy to 
use mechanism that facilitates the development of 
test cases with minimal impact to the test bench 
code. Figure 2 illustrates the key elements on which 
the architecture is based:

TB_TEST_NO TB_MODEI I

Figure 2: TB Architecture

Figure 2 illustrates that the base data class 
(containing the Floating-Point data member 
constructs) provides a basis for which the two pattern 
generators create stimulus. The question is how to 
select the required pattern generator within a test 
case and how to focus traffic through the Directed 
Test Generator (DTG). The solution is as follows: 

Firstly, parameters are used on the top level of 
the test bench to determine which generator is 
initiated (TB MODE) and a second parameter to 
identify the test case (TBTESTNO) to be 
implemented. To achieve this, the following coding 
hierarchy is implemented:

190



TB_Top.sv

TB pg.sv

J

— *i |
All O ther TB 
Com ponents J
. l ! S

Figure 3: Test Bench Coding Hierarchy

The parameters are inserted into the 
tb top.sv file and replicated down through the 
hierarchy of the design to the environment level 
(tbcnv.sv). The test bench transactors, scoreboards 
and other key elements are instantiated inside the 
environment file.

Secondly, tasks and functions are 
constructed inside the DTG to put known stimuli out 
onto a channel for transmission to a broadcaster 
component. The broadcaster facilitates the 
transmission of the data received to multiple blocks 
efficiently. These tasks and functions are the 
commands and instructions that a user of the test 
bench can utilise to program test case scenarios 
quickly and efficiently. Using this structure, the 
implementation of class extensions within the 
environment facilitates the development of directed 
test cases.

By implementing this solution, it is possible 
to develop different test case scenario’s to support 
both low and high levels of abstraction quite easily. 
The architecture enables each pattern generator to be 
uniquely associated with a corresponding library of 
individual test cases. Each test case is accessed by 
the test number parameter ("I B TESTNO). This 
format is aligned to the test bench with scenario layer 
diagram [4] that illustrates varying test case 
abstraction levels.

Figure 4 below illustrates an approach that 
verification engineers can use when implementing a 
constrained random approach to fulfil their task of 
verifying a device. It supports the use of developing 
a set of test cases that use multiple seeds to 
implement several verification runs. The constrained 
random approach differs from the traditional 
verification flow whereby the engineer maximises 
the use of functional coverage to close off the task 
rather than build specific test cases to gradually close 
off on the verification task. Traditionally the 
verification engineer will use the verification plan to 
write directed test cases that exercise the various 
features of the DUT, thereby making steady 
incremental progress.

Figure 4: The Paths to close off the verification task 

using Functional Coverage

There is a downside to implementing the 
traditional approach. Specifically, it is necessary to 
write 100% of all stimuli being transmitted to the 
DUT. The technique is extremely time-consuming 
and each test is targeted at a very specific part of the 
design. Given that up to 70% of an ASIC lifecycle is 
spent in the verification task [5] [6], any
improvement in reducing that figure is warmly 
received within the industry. This quantifies the 
effort undertaken by the EDA tool development 
community in creating and supporting such 
methodologies.

Through the use of constrained random 
testing it is possible to reduce the time required to 
fulfil the verification task. A random test will often 
cover a wider range of stimuli than a directed test. It 
can be manipulated by changing the seed on which 
the stimuli is created to yield a greater result from a 
single test scenario. However, there is still a need to 
write some directed test cases in order to target areas 
of a chip that a random test case may have difficulty 
in verifying [7]. Figure 4 shows the paths to achieve 
complete code coverage. It illustrates the greatest 
amount of time is spent in the outer loop, making 
minimal code changes to add new constraints and 
only writing directed tests for the few features that 
are very unlikely to be reached by random tests.

V IEEE-754 FLOATING-POINT TEST 
BENCH CASE STUDY

The IEEE-754 standard [8] describes both 
single precision and double precision formats in 
detail with a description of invalid behaviour. We 
use a single precision adder model as a DUT for the 
case study. The model supports the 5 IEEE exception 
flags associated with the standard.

Firstly, in order to implement all the 
features associated with an advanced System Verilog 
test bench, it is important to first align on a directory 
structure that fit’s the requirement. Figure 5 below 
outlines the structure used.
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Figure 5: Test Bench Directory Structure

The directory structure contains four main 
directories, namely the DUT, Test Bench (TB), test 
cases and the transactor (BFM) component. The TB 
directory is further subdivided to contain the TLM 
reference model, coverage points, associated TB 
scripts and the run directory where the test bench is 
executed. The test cases directory contains two 
libraries of test cases, namely random and direct. 
These test cases are written as classes and are 
implemented as extensions of the verification 
environment class. The scripts directory contains 
files that support the development of a regression 
flow that is needed to maximise the productivity of 
the solution.

Collectively, this structure facilitates the 
development of test cases within the overall test 
bench architecture, providing the user with a 
programmable method of developing both random 
and directed test cases.

This directory structure fits the 
requirements of the floating-point adder component 
but it is structured in a way that would incorporate 
another DUT where similar verification techniques 
are to be implemented upon it. It is a robust and re­
usable directory structure.

Secondly, in implementing the features, 
using the pattern generation technique described 
previously, the verification environment file 
(tb env.sv) is used to connect up oilier components. 
Figure 6 below illustrates the floating-point adder 
test bench architecture.

The test bench architecture contains each of 
the elements described in section III and it can be

seen how each element is tied with the directory 
structure as shown in Figure 5.

TB TEST NO TB_M ODE

1 [______
Test Case Library

i V e r ifica t io n  Env ironm en t i

Figure 6: Test Bench Architecture

The test case library consists of both 
random and directed test cases. A limited number of 
Constrained Random Vectors (CRV) needed to be 
developed - given the ability to run the same random 
test case with multiple seeds. For the directed tests, 
the use of additional constraints enabled the 
development of scenarios that led to reaching the 
target of 100% functional code coverage.

Regression scripts written in Tel are linked 
to the test case library and are used to fully 
implement the test-case scenarios. The scripts allow 
the user to choose between random or directed test 
cases and contain parameters that link into the 
verification environment.

VI RESULTS AND CONCLUSIONS
The initial time spent in developing the flow 

yielded an eflicien! solution that overcame anil aided 
the development of directed lest cases, as identified 
as an important step in [3]. This R&D lime would 
not be required for another project as it encompasses 
a complete SystemVerilog verification flow. Thus, 
reusing it will alleviate an engineer from one 
verification task and allow them to spend more time 
actually figuring out how to verify the DUT.

Figure 7 illustrates the number of test case 
vector scenarios applied by the verification 
environment. It illustrates that the complete random
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approach yielded a 90% coverage result by applying 
40 million random test vectors. Increasing the 
number of random vectors above this figure had no 
impact on the coverage levels and so CRV and 
directed tests were required to reach the goal of 
100% functional coverage. This aligned t the flow 
illustrated in Figure 4._____________________

TB N u m b e r of N o. o f D irect CRV Functional

Ref. Vectors Seeds Tests Tests C overage

10 40 M illón 1 8 27 100.0096
9 40 M illion 1 7 25 97.60%

8 4 0  M illion 1 6 24 95.90%

7 4 0  M illion 1 0 10 90.34%

6 40 M illion 1 • • * 88.42%

5 20 M illón 1 * ** 86.59%

4 10 M illón 1 ♦ 85.23%

3 5 M ilton 1 * « i* 84.80%

2 2 M illón 5 • 81.66%

1 2 M illó n 1 ♦ ** 76.61%
'N o  D ire ct T e s ts  A p p lie d  as C o n stra in ts  leverag ing  add itrona l co vera g e

" N o  C o n stra in ts  a p p lied  o n  te st v e cto rs  as co verage  leve ls still in creasing

Figure 7: Test Case Development

We found that using a single seed for the 
constraint solver in VCS with a large number of test 
vectors proved to be more productive than applying 
several seeds with an equivalent number of test 
vectors in yielding a coverage result.

Test scenario 7 in Figure 7 above (40 
million vectors with a single seed) yielded the 
greatest degree of productivity from the CRV 
approach without running 100 i million vectors. This 
point was chosen as the starting point from which to 
develop directed test cases. Had there been no time 
invested into developing the test bench structure at 
the start of the process, it would have resulted in a 
longer time frame to close off the verification task at 
this stage.

We developed a suite of 36 test cases to 
achieve 100% coverage. This consisted of one 
completely random test, 27 constrained random tests 
and 8 directed tests. It took 1 months’ time to verify 
the DUT using this method. Given the same device 
was verified previously using a standard Verilog 
flow that took 2 months of verification effort, this 
results in a productivity gain of 1 month.

Figure 8: Coverage Process

Figure 8 illustrates a graph depicting the level of 
functional coverage achieved as per the test 
scenario’s outlined in Figure 7. It highlights the 
usefulness of the CRV approach up to a certain point

after which the directed tests were required to close 
off the verification task.

Multiple cover points were identified inside 
the DUT and they were grouped together to yield 
cross coverage points that encapsulated the 
functionality of the DUT. Leveraging the solution 
with the Synopsys URG tool provided ample report 
mechanisms to indicate when the task was complete.

Figure 9 depicts a typical report derived 
from the Synopsys URG tool. It illustrates a sample 
functional and code coverage report from running a 
test scenario.

Figure 9: Functional Coverage Report Summary 

Vn ACKNOWLEDGEMENTS
We would like to recognise the support of Damien 
Melville in Chipright for valuable feedback in the 
early phases of the project.

VIII REFERENCES
[1] IEEE Standard for System Verilog, IEEE Std

1800""-2500
[2] Verification Methodology Manual for System

Verilog by, Janick Bergeron. Eduard Cemy, 
Andrew Nightingale and Alan Hunter, Springer 
US, ISBN: 978-0-387- 25538-5

[3] Richard McGee, Paul Furlong, Silicon and
Software Systems, “VHDL to System Verilog, 
constrained Random verification of USB 2.0 
host controller sub-system”, SNUG 2006, 
Europe

[4] System Verilog for Verification by Chris Spears, 
Springer US, ISBN 978-0-387-27038-3

[5] Motorola Russia, “Using System Verilog for IC 
verification”, SNUG 2005, Europe

[61 Effective Functional Verification, Springer US, 
ISBN: 978-0-387-28601-3

[7] Torstein Hemes Dybdahl, “How much System
Verilog coverage do I need?”, SNUG 2007, 
Europe

[8] ANSI / IEEE Std 754 - 1985, IEEE Standard for 
Floating-Point Arithmetic, IEEE Computer 
Society Press, Los Alamos, California, 19

S c o re  U w  Coral Assert
65.95 63.61 0*28

S c o ro  Line C om i Assen U l_ a d d _ d e le c l
67.65 60.00 75.30

S c o re  lliw  Cond Assert il_add_gen_exception
60.13 64,71 555«

S c o re  t in e  IjH fllASSC rt I '2-*dd_gen_exceplion
60.13 64.71 55.58 |

S c o re  Line Cond Assert
74.11 ¡62.50 M .7 J

jlCond Assert

sco re  
100 00

1 Cond Assert |

Score
70,33

Cond I-Assert ] i3_add_negate
75.00 L  I

ÍAsscíI I i4_add_norm allse

S c o re  u w  Cond
54 83 65.22 44 44

U3_add_round

193



Appendix 2 Functional Coverage Cover Groups

The following cover groups have been created for the testing of the floating-point adder 

model.

Type Group/Cross Name Coverpoint Name Reg
Used

Bins
Created

Description

Cover 
Group 1

cg_fp_number_type_bi
n

cp fp typel _bin ( 1 ) type I

6

Data 1 floating­
point number 
type.

cp_fp_typc2_bin (2) type2 6 Data 2 floating­
point number 
type.

Cross
Bins

fpnu m bertypebi nss Cross 1 and 2 36 Cross covers all 
36 possible 
number types 
which can be 
added in the DUT

Group 2 cS_fp_swaP_b*n cp_tp_swap_bin (1) 5 List of data 1 and 
data 2 exponent 
greater and equal 
to each other

cp fp dalal exp bin 
(2)

10 Covers different 
exponent ranges 
for data 2

cp Ip data2 exp bin
(3)

10 Covers different 
exponent ranges 
for data 1

Cross cross fp_swap_bins Cross 1 , 2 ,3 136 Not all cross bins 
are possible, any 
illegal bins are 
ignored

Group 3 cg_fp_shift_bin cp_tp_abs_D_bin ( 1 ) ABS^D 26 List of absolute 
values

cp_fp_comp_bin (2) comp 2 complement =  0 
complement =  1

Cross cfqss_lp_shift_bins Cross I and 2 5. Crosses values of 
abs_D and values 
of complement

Group 4 cg_fp_negate_bin cpfpcompbin ( I ) comp 2 complement =  0 
complement —  1

cp fp MSB bin (2) S_add[47] 2 S add[47] =  0 
S add[47] == 1

cp fp carry out bin
‘ (3)

S add [48] 2 S add[48] =  0 
S_add[48] =  1

Cross cross_fp_negate_bins Cross 1 ,2 ,3 negate
nonegat
e

The ‘negate’ cross 
bin crosses 
comp_bin(comp) 
MSB bin (one) 
and carryoutbin 
(nocarry).

Group 5 eg fp normalise bin
“  ____ ____

cp fp norm temp bin 
(1)

temp 3 temp_case_ll 
cannot exist
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(3) [30:23] ranges

cp fp data2 cxp bin 
(4)

data2
[30:23]

10 Data 2 exponent 
ranges

cp fp datai niant bin
(5)

datai
[22:0]

10 Data 1 mantissa 
ranges

cp fp data2 niant bin 
(6)

data2
[22:0]

10 Data 2 mantissa 
ranges _______!

Cross ero$S_fp_num bertypeb 
ins

Cross 1 ,2,3,4,5,6 10000 Cross Data 1 and 
Data 2 for 
different ranges

Group
10

cg_fp_POS_POS_exp_
datajbin

cp_fp_abs_D_bin (1) abs_D 256 All bins will show 
each value of the 
variable abs D

cp 1p datai sign bin 
(2)

datai
[31]

1 Data 1 positive

cp fp data2 sign bin 
(3)

data2
[31]

1 Data 2 positive

cp fp datai mant bin 
(4)

datai
[22:0]

10 Data 1 mantissa 
ranges

cp fp data2 mant bin 
(5)

Data2
]22:0]

10 Data 2 mantissa 
ranges

Cross eross_fp_absd_ma ntbin 
s

Cross 1,2,3,4,5 25600 Cross covers 
ranges of abs_D 
with ranges of 
mantissas data 1 
and dat 2

Group
11

cg_fp_N EG_N EG jx p 
data_bin

cp_fp_abs_D_bin ( 1 ) abs D' ~
256 All bins will show 

each value of the 
variable abs_D

cp fp datai sign bin 
(2)

datai 
[31J

1 Data 1 negative

cp fp data2 sign bin
(3)

data2
[31]

1 Data 2 negative

cp fp datai mant bin
(4)

datai
[22:0]

10 Data 1 mantissa 
ranges

cp fp data2 mant bin 
(5)

Data2
[22:0]

10 Data 2 mantissa 
ranges______

Cross cross_ fp_absd_m ant_bi n 
s

Cross 1,2,3,4,5 25600 Cross covers 
ranges of abs_D 
with ranges of 
mantissas of 
data I and data2

Group
12

cg_fp_POS_NEG_exp_ 
data bin

cp_fp_abs_D_bin (l) abs_D 256 All bins will show 
each value of the 
variable abs_D

cp fp data! sign bin 
(2)

datai
[31]

1 Data 1 positive

cp fp data2 sign bin 
(?)

data2
[31]

1 Data 2 negative

cp fp datai mant bin
(4)

datai
[22:0]

10 Data 1 mantissa 
ranges

cp fp data2 mant bin
(5)

Data 2 
[22:0]

10 Data 2 mantissa 
ranges

Cross cross_fp_absd_mantJ)in
s

Cross 1,2,3,4,5 25600 Cross covers 
ranges of abs_D 
with ranges of 
mantissas of 
data land da ta 2

Group i cg_fp_NEG_POS_exp_ cp_fp_abs_D_bi n ( 1 ) abs_D j 256 All bins will show
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13 data_bin each value of the 
variable abs D

cp fp datai sign bin 
(2)

datai
[31]

1 Data 1 negative

cp fp data2 sign bin
(3)

data2
[31]

1 Data 2 positive

cp fp datai mant bin
(4)

datai
[22:0]

10 Data 1 mantissa 
ranges

cp fp data2 mant bin 
(5)

Data2
[22:0]

10 Data 2 mantissa 
ranges

Cross cross fp_absd_mant_bin 
s

Cross 1,2,3,4,5 25600 Cross covers 
ranges of abs_D 
with ranges of 
mantissas of 
data land data2

Group
14

cg_f p_ro u n d i ii g_b i n cp_fp_G_bin ( 1 ) Add result[2
3]

2 Add resuh[23] 
=  0
Add rcsult[23]
== f

cp fp S bin (2) sticky 2 sticky —  0 
sticky =  1

cp fp round Ovl bin
(3)

Round_Ov 1 2 Round_Ovl == 0 
Round Ovl =  I

cp fp round Uvl bin
(4)

Round_Uvl 2 RoundUvl =  0 
Round_Uvl =  1

cp_fp_L2_bin (5) new product 
[23]

2 new_product[23] 
=  0
new product[23] 
=  1

cp fp check exp bin 
(6)

check_and_c
xpl

2 check_and_expl 
=  0
checkandexpl

cp fp round Ov bin 
(7)

Ov 2

o 
—

lì 
II

O 
O

cp_fp_LGS_bin (9) Add rosult[2
4]

Add result[2
3]

sticky

5 5 bins created 
represent the five 
cases in the truth 
table below

cp fp Shift Val bin 
(10)

shft_val 25 Each bin accounts 
for each state of 
the variable 
shft val.

cross_GS_bins 4,5,1,2,3,6,7,8 11 Cross bins 
represent 
rounding logic in 
the DUT.

cross LGS_bins 9,10* 125 Cross bins 
represent all LGS 
rounding 
parameters with 
the normalise 
block shift value.
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5 Assumption relating to geometry called common postulates are:

1. It is possible to draw a straight line from any point to any point.

2. It is possible to produce a finite straight line continuously in a straight line.

3. It is possible to describe a circle with any centre and distance.

4. All right angles are equal to one another.

5. If a straight line falling on two straight lines makes the interior angles on the same 

side less than two right angles, the two straight lines, if produced indefinitely, meet on 

that side on which are the angles less than the two right angles.

5 Assumptions not relating to geometry are: and are called common notions:

1. Things which are equal to the same thing are also equal to one another.

2. If equals be added to equals, the wholes are equal.

3. If equals be subtracted from equals, the remainders are equal.

4. Things which coincide with one another are equal to one another.

5. The whole is greater than the part.

Appendix 3 Axioms in Deductive Reasoning
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Appendix 4 Model Checking Types

The following are the syntax and semantics of CTL, LTL and CTL *. They are different types 

of model checking.

Syntax of CTL

• f l  :: = T 11 1 P | (_,/L)

• V j2 ) W - > /2 )

• AX f l  | EX/1

• A [/1U/2] | EI/IU./2]

• AG/1 | EG/1

• AF/1 EF/1

m P : : = p l | p 2 | p 3 |

CTL Operators

They are eight basic CTL operators, which are listed below.

• A X /: on All paths,/ is true in the neXt state

• E X / : on somE p a th ,/ is true in the neXt state

• A F / : on All paths, in some Future s ta te / is true

• EF/  : on somE path, in some Future state/  is true

• A G / : on All paths, in all future states (G lobally)/ is true

» E G / on somE path, in all future states (G lobally)/ is true

• AU(/T, / 2 ) : on All paths,/I is true U ntil/2  is true

• EU (/T ,/2) : on somE p a th ,/1 is true U ntil/2  is true
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Semantics of CTL

1. M, s = T a n d  M, s  1/1 for all s ta te s  s.

2. M, s = p  <=> p  G L(s).

3. M, s = __7/ l  <=> M, s  V f l .

4. M, s = s | = f l  a n d  M, s | = f l .

5. M, s = / l  V f l  <=> M, s  \ = f l  or M, s  \ = f l .

6. M, s = / I !  / 2  » M ,  s 1// l o r  M, s | = f l .

7. M, s = AX f l  <=> M, s ’ | = f l  for all s ta te s  sO w ith  s ! sO.

Equivalences of CTL

• A X fl  = - 'E X (- 'fY )

.  A G fl  = - ^ E F (^ f l )

• A F f l ^ ^ E G ( ^ f l )

• AffUg] = ~ ’E[ —g- U~>fA —g /A ~E G  —ig

LTL Semantics

• 7r | = p <-> p G L(s), where s is the first state of n.

• n  |=  —'f l  f l .

• n  | =  /1  A f2  n  | =  /1  and n  | =  / l .

• n  \= X f l  <r>n2 \= f l .

• n  |=  G f l «-», for all i >  1, n  i | =  / l .

• 7T |=  F f l  <-», for some i > 1 ,7T i | = /1 .

• 7T | = / I  U f2  f there is some i > 1, such that n  i |=  f2  and for all j

with 1 <  j <  i, n  j \= fl .

• ji \ = f l  W  f2  <r* either there is some i >  1, such that 7r i |=  _/2 and

for all j with 1 < j < i, n  j |= fl-, or else n  k \ = f l ,  for all k > 1.

• it | =  /1R  _/2 *-* either there is some i >  1, such that n  i | =  /1  and for

all j with 1 <  j < i, n  ] \ = f2  ; or else n  k \ = f2  , for all k >  1.
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LTL Equivalences

One can easily establish various equivalences for LTL, including the 

following:

• G / I  m —>F—>/l

• X /l = ~ 'X - ;/l

• F(/l V /2 ) = F/I V F /2

• G(/l A /2 ) = G / l  A G f l

• F./1 = TU./1

• G fl = 1R./1

.  ~>(/lU/2 ) = —;/lR~;/2

•  —1(/lR./2 ) =

•  / I  W./2 = / l  U /2 V G /l

.  / I  W /2 = ,/2R(/l V/2 )

• ./1R./2 s  /2W(/lA./2 )

Another important equivalence is: /1U f l  =  '( >/2 U ( ’/ l  A “ |/2)) A F f l ,

which holds for all LTL formulas / I  and f l  .
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CTL * Syntax

If f is a CTL* state formula, it must be constructed by one of the following rules:
0 f is an atomic proposition.
0 f = —'g, where g is a state formula.

• f = g V h, where g, h are state formulas.
• f = Ap, where p is a path formula.
• f = Ep, where p is a path formula.

If p is a CTL* path formula, it must be constructed by one of the following rules:
• p is a state formula.

• p = —'q, where q is a path formula.

• p = q V r, where q, r are path formulas.
• p = Xq, where q is a path formula.
• p = Gq, where q is a path formula.
« p = Fq, where q is a path formula.
0 p = qUr, where q, r are path formulas.
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CTL * Semantics

1. m e  AP, then M.s |=./1 <=>jl E L(s).

2. M.s — ~ f l  d M .s  V f \ .

3. M.s —j l  V fl <=> M,s |=/1 or M,s 1=J2.

4. M,s = A(p 1) <=> for all paths n starting with s, such that M,n \—

p i.

5. M.s = E(j)\) <=> there exists a path k starting with s, such that

M,n \=p\.

6. M,k |= Jl <=> s is the first state o f n and M,s |= / I . i.e., each

state formula is also a path formula.

7. M,n |= ~ p \ <=>M,n V p i.

8. M,n \— p \ Vp2 <!=>M,k |=/?1 or M,n |= p2.

9. M,n \= Xp\ <=>M,n\ \=p\.

10 M,n = Gp 1 <=>for all k > 0, M.nk\= p i.

11. M,k |= Fp\ <=> there exists a k > 0, M,nk |= p \ .

12 M.n |= p \ Up2 <=> there exists a k>  0 such that M.itk |= p i  and

fo r  all 0 < j < k, M.n |=/?1.
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