
Designing Limited Autonomous Robotic

Systems

In One Volume

Niall McCurry B.Eng.

(September) 2010

Submitted for the award of

Masters in Engineering

Submitted to : Galway-Mayo Institute of Technology.

Research Supervisor: Dr. John Owen-Jones.

Research funded under “The Irish Research Council for Science, Engineering

and Technology” (IRCSET) Embark programme.

Submitted to the Higher Education and Training Awards Council,

Autonomous Robotic System Niall Me Curry GMIT

Copyright and DAI Statement

'I hereby grant the Galway Mayo Institute of Technology or its agents the right

to archive and to make available my thesis or dissertation in whole or part in the

Institute libraries in all forms of media, now or here after known, subject to the

provisions of the Copyright & Related Rights Act, 2000.1 retain all proprietary rights,

books) all or part of this thesis or dissertation.

I also authorise Institute Microfilms to use the 350 word abstract of my thesis

in Dissertation Abstracts International.

I have either used no substantial portions of copyright material in my thesis or

I have obtained permission to use copyright material; where permission has not been

granted I have applied/will apply for a partial restriction of the digital copy of my

thesis or dissertation.'

'I certify that the Library deposit digital copy is a direct equivalent of the final

officially approved version of my thesis. No emendation of content has occurred and

if there are any minor variations in formatting, they are the result of the conversion to

digital format.'

such as patent rights. I also retain the right to use in future works (such as articles or

Signed:lu.M . 3-Q- <2-CHÇa

Authenticity Statement

ii

Autonomous Robotic System Niall Me Curry GMIT

Originality Statement

'I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another person,

or substantial proportions of material which have been accepted for the award of any

other degree or diploma at GMIT or any other educational institution, except where

due acknowledgement is made in the thesis. Any contribution made to the research by

others, with whom I have worked at GMIT or elsewhere, is explicitly acknowledged

in the thesis. I also declare that the intellectual content of this thesis is the product of

my own work, except to the extent that assistance from others in the project's design

and conception or in style, presentation and linguistic expression is acknowledged.'

Signed:___ Niall McCurry

Autonomous Robotic System Niall Me Curry GMIT

Abstract

The aim of this research is to identify and select a cost effective platform and

approach to the design and development of low cost autonomous mobile robotic

systems. A requirement for such a platform is that it should be of reasonable cost,

extendible and that its functionality allows for modification, with reasonable effort.

Such an approach may enable organisations with limited resources in funding, limited

specialist AI knowledge and scarce hardware expertise, to begin the design of robotic

controllers and the application of AI to mobile robots. This solution should prove to

be attractive to departments, not historically involved in developing robotic systems,

to investigate this area of the application of AI allowing them to apply their own

expertise to generate unique solutions to the problem sets.

By providing such a platform this research will enable developers to provide

more flexible solutions for various application areas for the entertainment, industrial

and domestic product markets.

The approach was to carry out an in-depth analysis of currently available

solutions, modify them as appropriate and evaluate them wherever possible. Testing

was carried out by designing robotic controllers for each of these platforms. The

platforms investigated include both low cost hardware with embedded software

solutions and software simulation environments.

The research identified several hardware candidates which featured frequently

in publications, these being LEGO’s MINDSTORMS RCX and iRobots Roomba

platforms. The use of custom built hardware platforms was not considered for

investigation.

Eight different simulators were investigated and two main candidates were

selected for comparison, “Webots” from Cyberbotics Ltd and “Pyro” an open source

simulation project. These two simulators used different approaches and development

work and evaluations were carried out on each of them. The thesis arrives at the

conclusion that “Pyro” is the most flexible approach of the two environments, but

“Webots” is the more established one.

Autonomous Robotic System Niall Me Curry GMIT

Acknowledgements

I would like to thank IRCSET through their Embark Initiative for providing

me with the funding for this research which allowed me to further my knowledge in

the area o f AI in robotics.

I would especially like to thank my supervisor Dr John Owen-Jones for his

help and guidance throughout this project, and for his perseverance, which even

extending into his retirement from the GMIT, in aiding me to complete this work. I

would also like to thank my friends, family and girlfriend Chiara for their

encouragement, help and support and furthermore for their belief that I could

complete this work, with a special note to my father Frank whose advice and support

were invaluable in completing this work.

1 would finally like to thank Paul Dunne for his valuable assistance in the early

stages o f this research.

Table of Contents

Copyright and DAI Statement..ii

Originality Statement.. hi

Abstract...iv

Acknowledgements...v

Table of Contents... i

List of Figures... x

List of Tables.. xiii

Chapter 1 - Introduction..1

1.1. Background...1

Robotic Operation.. 2

1.2. Project Goals.. 3

1.3. Overview...3

1.4. Thesis Structure.. 4

Chapter 2 - Literature Review 7

2.1. Introduction.. 7

2.2. Hardware Solutions with Embedded Software.............................7

2.2.1. Hardware Platforms... 7

2.2.1.1. R C X ... 8

Physical Hardware of RCX M odule...8

2.2.1.2. iRobot’s Roomba and Create Robots.............................. 10

2.2.2. Embedded Software for Hardware Platforms...................... 11

2.2.2.1. RCX Hardware Platform...12

LEGO® Robotics Invention System Environment............................. 12

2.2.2.1.1. LeJOS Java for LEGO® Mindstorms.......................... 13

2.2.2.1.2. Not Quite C (NQC).. 14

2.2.2.2. iRobot’s Roomba and Create Hardware Platform 15

2.2.2.2.1. The Erdos Project... 15

2.2.3. The Khepera Robot...17

2.3. Software Simulation Approach...19

2.3.1. Khepera Simulator... 20

2.3.2. Wright State University (WSU) Java Khepera Simulator.... 21

2.3.3. Evorobot.. 23

Autonomous Robotic System Niall Me Curry GMIT

Autonomous Robotic System Niall Me Curry GMIT

2.3.4. Yet Another Khepera S imulator - YAKS.............................. 24

2.3.5. EasyBot...25

2.3.6. W ebots..26

2.3.6.1. Competitions..28

2.3.7. Erdos..29

2.3.8. Pyro: Python Robotics...30

2.4. Summary.. 33

2.4.1. Hardware Direction..33

2.4.2. Software Simulation Direction 33

Chapter 3 - Investigation and Comparison of Approaches.........................35

3.1. Introduction.. 35

3.2. Hardware Solution.................................. 35

3.2.1. RCX Physical Robot..36

3.2.1.1. RCX Robot Sensory Layout.. 38

3.2.2. Real time Embedded Software For RCX Robot Solution.... 40

3.2.2.1. Internal Memory Structure of R C X 40

3.2.2.2. Development Work on LeJOS...41

3.2.2.2.1. Outcome of development with LeJOS on RCX..........42

3.2.2.3. Development Work on NQC..43

3.2.2.3.1. Outcome of NQC development for RCX Robot........43

3.3. Software Simulation Approach..45

3.3.1. Olivier Michel’s Khepera Simulator - KSim 45

3.3.2. Wright State University (WSU) Java Khepera Simulator.... 46

3.3.3. Evorobot.. 46

3.3.4. Yet Another Khepera Simulator - YAKS..............................47

3.3.5. EasyBot... 47

3.3.6. W ebots.. 48

3.3.7. Erdos... 49

Conclusions in Use of the Erdos.. 49

3.3.8. Pyro... 49

Conclusions in Use of Pyro.................................... 50

3.4. Overall Conclusions.. 50

3.4.1. Hardware Embedded Software Direction.............................. 50

3.4.2. Software Simulation Direction.. 51

Autonomous Robotic System Niall Me Curry GMIT

Chapter 4 - Software Design and Implementation.......................................53

4.1. Introduction to the Software Design.. 53

4.2. Webots’ Environment..53

4.2.1. Software Designing in Webots..53

4.2.2. Software Design for the Project... 54

4.2.3. Development Work of Piglet Controller................................. 56

4.2.3.1. Outcome from Modification of the Piglet Controller... 58

4.2.4. Outcome of W ebots.. 59

4.3. Proj ect Work with Pyro..60

4.3.1. Pyro Outcome..68

4.4. Results of Implementation......................... ,68

Chapter 5 - Analysis and Results of Implementation................................. 69

5.1. W ebots..69

5.1.1. Analysis of Webots... 69

5.1.2. Results and Observations with Webots..................................69

5.2. Pyro... 70

5.2.1. Analysis of Pyro.................... ,....................................... ,..... ...70

5.2.2. Results with Pyro... 71

5.3. Assessment Criteria..72

Chapter 6 - Conclusions and Recommendations...74

6.1. Conclusions... 74

6.2. Recommendations..76

Appendix A - Hardware Code..77

A.I. LeJOS Code... 77

A. 1.1. Communication Testing with LeJOS.....................................77

A. 1.2. Mapping ability Testing of RCX using LeJOS.....................83

A.2. NQC Code.. 92

A.2.1. Navigation Testing with NQC.. 92

A.2.2. Map Storage Testing using N Q C... 96

Appendix B - Simulation Code........................ 99

B. 1. Olivier Michel’s Khepera Simulator - KSim.............................. 99

B.2. W ebots..100

B.2.1. Webots World F ile 103

B.3. Erdos ... 105

Autonomous Robotic System Nial I Me Curry GMIT

B.4. Pyro... 105

Appendix C - Java...107

Java Background...107

Appendix D - Pyro Setup... 108

Glossary...110

Poster Publications..112

Bibliography...113

Autonomous Robotic System Niall Me Curry GMIT

List of Figures

Figure 1 RCX module [26]....................... 9

Figure 2 Rubik’s Cube Solver [25]..9

Figure 3 ¿Robot’s Roomba Red Vacuum image www.smarthome.com.............. 10

Figure 4 iRobot Create Robot...11

Figure 5 RIS Programming Environment [26]...12

Figure 6 Erdos State Slate Roomba interface... 16

Figure 7 Khepera Robot [51]..17

Figure 8 Khepera Robot Desk Set-up .. 18

Figure 9 Olivier Michel's Khepera Simulator...21

Figure 10 WSU Khepera Robot Simulator V 7.2...22

Figure 11 Evorobot GUI interface................................ 23

Figure 12 YAKS Simulator [68]... 25

Figure 13 EasyBot Simulator... 26

Figure 14 Webots: World Environment... 27

Figure 15 Webots Khepera Simulated Data... 27

Figure 16 Alife charge station fully charged [72]... 28

Figure 17 Alife charge station empty [72]... 29

Figure 18 The Erdos project’s pyRoomba output..30

Figure 19 Pyrobot... 31

Figure 20 The Pyrobot Simulation Environment...32

Figure 21 Differential Gear Drive Figure 22 Differential Gear Drive 37

Figure 23 Differential Gear Drive Figure 24 Differential Gear Drive 37

Figure 25 Robot with Differential Drive used in this project................................ 39

Figure 26 RCX Internal Memory M ap.. 41

Figure 27 Webots arena...55

Figure 28 Webots piglet world data.................................. 55

Figure 29 Webots environment... 57

Figure 30 Output of simulated camera... 57

Figure 31 Camera false colour and internal data......................... 57

Figure 32 Maze data... 58

Figure 33 Camera information only..58

Figure 34 IR sensor collision data...58

Autonomous Robotic System Niall Me Curry GMIT

Figure 35 Ground information.. 58

Figure 36 Pyrobot environment.. 61

Figure 37 UML Diagram of the simulator environment... 62

Figure 38 Simulation environment with maze file loaded......................................63

Figure 39 Internal data of robot including the particle locations.................... 65

Figure 40 Robot's internal data particles increasing weighting............................. 66

Figure 41 UML of Robot Brain................................ 67

Figure 42 TestRCXComm flowchart..77

Figure 43 SerialListenerTest Flowchart... 78

Figure 44 Sender Flowchart...79

Figure 45 SendDistanceValues Flowchart... 80

Figure 46 RunSendDisVal Flowchart...81

Figure 47 Receiver Flowchart... 81

Figure 48 TestRCXComm4 Flowchart................................. 82

Figure 49 Nothing Flowchart...83

Figure 50 BehaviorSendData Flowchart.. 84

Figure 51 LowLevelDrive Flowchart..85

Figure 52 LeftRightBumper Flowchart...86

Figure 53 FrontBumper Flowchart..87

Figure 54 Arbitrator Flowchart... 88

Figure 55 MazeArea Flowchart A.......................... 89

Figure 56 MazeArea Flowchart B ...90

Figure 57 AbstractSearchEngine Flowchart..91

Figure 58 motorsjiavagation Flowchart A.. 92

Figure 59 motors navagation Flowchart B .. 93

Figure 60 motors_no_navagation Partial Flowchart... 95

Figure 61 motors navagation_single_array Partial Flowchart..............................97

Figure 62 Khepera Simulator Maze environment... 99

Figure 63 User's info box... 100

Figure 64 Flow Chart DrawSurrond...100

Figure 65 Piglet Controller UML part A ... 102

Figure 66 Piglet Controller UML part B 103

Figure 67 Mapped Environment... 103

Figure 68 Output of Simulated Camera..103

XI

Autonomous Robotic System Niall Me Curry GMIT

Figure 69 False Colour Camera ... 103

Figure 70 Avoid Flowchart..106

Autonomous Robotic System Niall Me Curry GMIT

List of Tables

Table 1 NQC limitations constrained by RCX.. 15

Table 2 Khepera Robot Specifications [57]..18

Table 3 Simulators under Investigation... 20

Table 4 Simulators Overview.. 34

Table 5 External Environmental Sensors of Roomba... 36

Table 6 Event Record Bit Index.. 44

Table 7 Installation process of Simulators... 52

Table 8 Assessment criteria of simulator’s environment..73

Table 9 NQC Variable Storage... 98

Chapter 1 - Introduction

1.1. Background

The word “robot” first came into the popular domain with the first

performance of Karel Capek’s play R.U.R. (Rossum's Universal Robots) (1920)

where he coined the word robota meaning "forced labour". This word was

translated to “robot” when the play was translated into English for the 1923

production, and thus this new concept spawned our imagination. Stories from

Isaac Asimov’s collection “I, Robot” (1950) presented the world with the three

“laws of robots”:

1. A robot may not injure a human being, or through inaction, allow a

human being to come to harm.

2. A robot must obey the orders given it by human beings except

where such orders would conflict with the First Law.

3. A robot must protect its own existence as long as such protection

does not conflict with the First or Second Laws.

As robots have moved from being largely of science fiction to that of

science fact, our perception has also changed to a willingness to accept robots

among us, at a certain level. Researchers are now developing robots to mimic

human reactions for applications as receptionists in buildings. There is something

unnerving about staring a “being” in the face and wondering whether or not it is

real.

We are accustomed to the use of robots in the industrial automation,

underwater missions and space applications, and we are beginning to become

more accepting of robots is in the area of household help for example: vacuum

cleaners, lawn mowers and pool cleaners from companies such as iRobot. The

designs of such robots bear no resemblance to their former occupant of jobs such

as, the pool cleaner, the grounds keeper or the home help. Educational and

children’s toys are also an emerging market where robots are readily accepted and

are, in some cases, highly sought after.

A second area where huge development is currently under way is in the

search and rescue and the defence contractors, as is visible by the competitions

Chapter 1 - Introduction

I

Chapter 1 - Introduction

run be DARPA, 1st and 2nd Grand Challenge [1] [2], which took place over a

desert track navigated by autonomous robots and 3rd Grand Challenge for

autonomous robots in the Urban Challenge Moves to the City [3],

Robotic Operation

If robots are to operate in real environments they require an ability to

interrogate their surrounding world and make reasonable judgments based on the

information they receive. The reasoning judgments are as a result of processing by

Artificial Intelligence (AI). For the robot to employ this AI it needs to remember

or record information of current and past information received, thus construct a

map of the area it has already traversed in its environment. As the robot moves

around its imperfect interpretation of the environment, the robot will experience

errors due to, for example wheel slippage, leading to flawed kinematics data and

possible collision with other stationary or moving obstacles. The AI control has to

allow for these errors to occur and to update its internal data with its current

position and orientation.

There are a large number of mobile robot platforms currently available on

the market; these platforms range in price from the very expensive € 100,000s to

much more reasonably priced platforms of approx. €200. There are also custom

designs developed to fit the needs of particular projects which also vary hugely in

cost and complexity, such as those developed for the DARPA grand challenge

desert races or less expensive designs developed for specific tasks in education.

The complex nature involved in developing in-house systems along with

the pitfalls in the integration of different hardware, requires a large investment in

time and effort, which can mitigate against their use in student projects [4]. The

development time can be at the expense of the overall goal, which is the

investigation of developing AI controllers for robotic systems.

If the decision is made to purchase a robotic platform, budgetary

constraints can play a large part in minimising choice. There is also a cost where a

department changes hardware platforms and these new platforms present different

architecture from the previous system, presents a new set of requirements in the

development of controllers.

2

Chapter 1 - Introduction

1.2. Project Goals

The main goal of this research is to identify a cost effective platform and

an approach to the design and development of low cost autonomous robotic

systems. A cost effective platform in the context of this research refers to one that

reduces both development time and costs and provides better value for money in

terms of features.

The use of custom built hardware platforms will not be considered for

investigation as these require organisations to have in-house expertise in design,

development and debugging and as such may preclude the organisations from

developing control algorithms on these platforms.

The identification of such a platform would facilitate the research and

design of AI based mobile robotic systems. This should facilitate the development

of autonomous systems by small research teams with limited funding, skills in AI

and in hardware development. This can assist research teams previously not

investigating AI in mobile robotics, to expand into the area of developing AI

systems. The inclusion of these smaller and more diverse organisations, together

with the current community effort into AI for robotics research, could help to

extend current boundaries in the development of minimal autonomous robotic

systems.

The approach taken in this research began with a literature review to

identify appropriate solutions in terms of hardware and software systems. This

was followed with an evaluation of each system, using such criteria as suitability

for the development of mobile autonomous robotic systems, ease of development,

availability and cost. This was followed by bench testing of hardware and

software systems where possible. A comparison between systems was undertaken

and a selection of the optimum systems was made.

1.3. Overview

This research involved a desk study of both hardware and software

solutions for the provision of a test bed environment. It contrasted the two

different approaches to the development of minimal autonomous robotic systems

and selected the more appropriate one.

3

Chapter 1 - Introduction

o Outlines the different software simulators available for

investigation.

o Descriptions are given of each of the specific simulators

included in this chapter, Table 4 identifying the specific

hardware platforms covered by each of the simulators.

Chapter 3 - Investigation and Comparison o f Approaches: This chapter

reviews and compares in more detail the hardware and software systems identified

in the literature review:

• Hardware with Embedded solution:

o The competing hardware platforms are assessed and a

choice is made to select the most appropriate one.

o The different embedded solutions presented in chapter 2 for

the chosen hardware platform are evaluated and critiqued

with reference to the project goals. Work carried out in the

evaluation process is outlined, and UML diagrams are

presented in Appendix A - Hardware Code.

• Software platforms solution:

o The software platforms presented in chapter 2 are also

evaluated, and a comparison is made between each to select

the more relevant one. Code used in this evaluation process

is presented in Appendix B - Simulation Code.

• Project Direction:

o The competing hardware and the software solutions are

presented at the end of the chapter and a selection is made

of the most appropriate solution to achieve the goals of the

project.

Chapter 4 - Software Design and Implementation: At the end of chapter 3

two different simulators were identified as appropriate candidates to be further

investigated. This chapter carries out this investigation, using much more detailed

designs and implementations. The simulators are presented here, with their

5

Chapter 1 - Introduction

controller’s outputs from the sim ulated robots. U M L diagram s for the

im plem ented controllers are included in the chapter under the sim ulator headings.

Chapter 5 - Analysis and Results: C hapter 5 presents the results for the

investigation into bo th the W ebots and Pyro sim ulators. It d iscusses the results

obtained from each sim ulato r’s differing architecture approaches, W ebots being a

specific solution and Pyro being a generic solution to the developm ent o f robotic

controllers. The chapter also highlights the assessm ent criteria applied to these

two sim ulators in Table 8.

Chapter 6 - Conclusions and Recommendations: This chapter highlights

the shortcom ings o f the hardw are approach to the goals o f the project. It lists the

headings that w ere used in the critique section o f the softw are sim ulators in

establishing the best candidates as a solution to the goals o f this research.

In particu lar it highlights the d ifference betw een the Pyro and W ebots

approaches in developing robotic controllers, and the advantage o f generic

approach over the specific approach in developm ent o f controller for different

platform s.

The thesis then presents recom m endations w hich include further w ork to

extend Pyro to im prove the visual sensor sim ulation com patib ility w ith other

operating system s.

Appendix A - Hardware Code: This appendix includes flow charts for the

code for LeJO S and N Q C , used in the evaluation o f the R C X hardw are platform .

Appendix B - Simulator’s Simulation Code: This appendix includes

flow charts and som e UM L diagram s o f the code developed in the com parison

stage o f chapter 3 in this research. 1

1 The use o f general descriptive names, trade names, trademarks, etc., in this thesis, even

if the former are not especially identified, is not to be taken as a sign that such names, as

understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by

anyone.

6

Chapter 2 - Literature Review

2.1. Introduction

The literature review focuses on the tw o different approaches taken in the

evaluation o f a m inim al autonom ous robotic system . It investigates previous w ork

done w ith respect to a hardw are im plem entation and also to a softw are sim ulation

approach. This w ork is presented in tw o sections:

a. H ardw are Solutions:

The H ardw are investigation identified d ifferen t low cost hardw are

p latform s that are readily available. This investigation includes an

exam ination o f the various em bedded softw are and the

im plem entation o f approaches used on each platform .

b. Softw are Solutions:

The Softw are investigation identifies the various robotic sim ulation

environm ents w hich are available for research. These are com pared

and the sim ulators are sum m arised in tabular form.

2.2. H ardw are Solutions with Em bedded Software

This section is divided into parts. The hardw are p latform s are presented

firstly, and then the em bedded softw are for each p latform is then presented.

2.2.1. Hardware Platforms

There are m any different platform s utilised in research departm ents, but

m any o f these require a large capital investm ent for the p latfo rm and its associated

software. The p ioneer robot w hich has featured as part o f m any research

laboratories [5] robotic platform s costs €5,995 (2009) [6], for the robot base.

O ther platform s include the m ore pow erful Pow erB ot base at a cost o f €19,995

(2009) [6], the A m igoB ot base at €2,245 (2009) [7] and the K hepera base robot at

~€ 1,600 (2009) [8]. These high costs can present an obstacle to the developm ent

o f A I in budgetary constrained departm ents, especially w here m ultip le system s

are required.

The m ain focus o f the hardw are research w as to identify affordable

solutions for an in-depth investigation. O nce one has elim inated custom built

hardw are p latform s from the goals o f the project, there are only tw o platform s

Chapter 2 - Literature Review

7

Chapter 2 - Literature Review

rem aining w hich fit the selection criteria and cited frequently in the literature, and

these are described in the follow ing sections:

• R C X - LEG O M indstorm s R C X m odule

• R oom ba - iR obot’s hom e vacuum R obot

2.2.1.1. RCX

The L E G O ® M indstorm s R C X m odule from the L E G O ’s Robotics

Invention System show n in Figure 1 is both low cost and read ily available. It has

already been used in courses run in the E lectronics departm ent in the GM IT. This

m odule has been presented by num erous different researchers [9-13] for diverse

areas o f investigation, from undergraduate research groups, program m es to

encourage in terest in robotics, and G M IT ’s program m e in teach ing robotics to

prim ary and second level students.

A lthough it has featured extensively in the hobby, school and

undergraduate levels, it also has potential at postgraduate level as a suitable

p latform for further studies as docum ented in research papers from : the U niversity

o f Kent [14], U niversity o f W ollongong [15], Institute o f A dvanced C om puter and

Research [16], C om puter Science D epartm ent [17], Institu te o f O perating System s

and N etw orks [18] and U niversity o f Tw ente [19].

The M indsto rm s’ R C X is based on a design developed at the

M assachusetts Institu te o f Technology (M IT), adapted from designs such as, the

“LEG O R obot D esign Com petition 1992” [20], “The A rt o f LEG O D esign” [21]

and “Introduction to E ngineering D esign ELEC 201 C ourse N o tes” [22], As the

R C X m odule has proved itse lf useful in o ther postgraduate research p ro ject areas,

it form ed part o f the investigation.

Physical Hardware of RCX Module

The R C X m odule consists o f a H itachi m icro-contro ller w ith 3 inputs, 3

m otor outputs and an Infra R ed (IR) serial com m unication port [23]. The RCX is

packaged in w hat looks like an oversized LEG O B lock that can be included in any

Lego design, bu t w hat m akes this d ifferent is that it can be program m ed to

perform any task “only lim ited by the crea to r’s im agination” (and code m em ory

size). There are designs using R C X ranging from rudim entary im age scanners

Chapter 2 - Literature Review

[24] to designs using m ultip le R C X s to solve the very frustrating R ub ik ’s Cube

problem [25] show n in Figure 2.

L IG H T

IN F R A R E D C O M M U N IC A TIO N S P O R T

T O U C H
S E N S O R

LC D
D ISP LAY
P A N E L

H IG H -E F F IC IE N C Y
M O TO R S

Figure 1 RCX module [26]

The R C X m odule is show n in F igure 1 w ith its accom panying sensors and

m otors.

Figure 2 Rubik’s Cube Solver [25]

9

Chapter 2 - Literature Review

2.2.I.2. ¡Robot’s Roomba and Create Robots

The iR obot R oom ba® Figure 3 V acuum ing R obo t launched in 2002 [27]

w as designed to be an affordable hom e cleaning robot. Initially, iR obot only

produced versions o f th is robot that w ere com plete vacuum cleaner units.

H ow ever, after external user com m unity groups g rew up and began reverse

engineering o f the design [28], the com pany provided the open source interface

called “R oom ba O pen Interface” (RO I) released in 2006 [29] to allow users to

interface to Room ba. W ith the release o f th is RO I [30] and its predecessor the

“ Serial C om m and Interface” [31] in 2005, the user groups now had access to the

protocols tha t control a robot over a serial interface, enabling experim entation on

unaltered versions o f the R oom ba [32, 28, 33-36].

Figure 3 ¡Robot’s Roomba Red Vacuum image www.smarthome.com

Figure 3 illustrates the iR obo t’s R oom ba R ed w ith charger and rem ote

control. T his robot can be com bined w ith a charging hom e base tha t allow s the

robot to recharge itse lf w hen it detects that its batteries require charge. It will

return to the charging hom e base i f it can still locate the base. The Com pany

iR obot also released a version o f R oom ba called “C reate” [29, 37, 38]. The Create

robot Figure 4 is m arketed at the research and hobby m arket. I t’s design differs

from the R oom ba in that it has rem oved the vacuum and dust collection parts o f

the design and replaced them w ith a cargo bay. T his cargo bay allow s for

additional hardw are to be attached to the robot, extending its possib le uses.

10

http://www.smarthome.com

Chapter 2 - Literature Review

Anatomy
Omnidirectional

Handle

Tailgate

Cargo Bay

DB-25

6-32 Mounting
Cavities

Mini-Din

Charging Socket

Figure 4 ¡Robot Create Robot

The iR obot and the C reate w ith their existing hardw are configurations (for

external sensors see section 3.2 Table 5) do not prov ide the user w ith onboard

processing, but provide the user w ith a serial interface to in teract w ith the robo t’s

inputs and outputs. The serial interface is defined in the iR obot’s R oom ba [30]

and for the iR obot’s Create [39], These designs require a base station w ith a w ired

/ w ireless link (the robot requires a w ireless dongle for this m ode) to control the

robo t’s operation, or the use o f additional hardw are added on top o f the robot to

provide onboard processing pow er. Researchers such as D ickenson [32],

T ribelhom [35] and C onbere [40] have placed a laptop on the R oom ba to provide

the robot w ith processing, K urt [33] used a w ireless rou ter running em bedded

Linux and M ataric [34] an em bedded L inux m odule, to allow them to construct

their m obile robots w ith it ow n controlling algorithm . O thers such as D odds [41]

have operated their R oom ba w ith w ireless dongles, p rovid ing the processing and

robot control from a base com puter.

2.2.2. Embedded Software for Hardware Platforms

This section details the investigation o f the d ifferen t approaches used in

the developm ent o f controllers for the different hardw are available under

investigation. The literature presented a selcetion o f d ifferent languages used to

11

Chapter 2 - Literature Review

control the R C X m odule. It also investigates the developm ent o f a controller for

the iR obo t’s Room ba and C reate m odules.

2.2.2.1. RCX Hardware Platform

T he investigation into the developm ent o f a contro ller for the R C X

platform presented three different program m ing environm ents. These

environm ents are:

LEG O R obotics Invention System E nvironm ent

LeJO S - Java fo r LEG O M indstorm s

N Q C - N o t Q uite C

LEGO® Robotics Invention System Environment

The LEG O ® R obotics Invention System (R IS) is so ld as part o f the

developm ent environm ent provided by LEG O w ith their R C X m odules. It

provides the user w ith a b lock diagram environm ent for the developm ent o f

controllers for their robots, see F igure 5.

Figure 5 RIS Programming Environment [26]

T he user selects w hich block they require and then connects them together

to form a flow chart for the program m e. The R C X m odule is program m able from

12

Chapter 2 - Literature Review

the com puter via the connected Robotics Invention S ystem ’s IR tower. Testing

w ith this configuration w as carried out during this p ro jec t to establish how the real

w orld interactions w ith R C X operating in this p rogram m ing environm ent. It was

also very useful in identify ing appropriate m otor speeds for the particular gearing

ratio used.

The RIS environm ent also proved useful in assessing the properties o f the

com m unication link betw een the RC X m odule and the IR tow er in investigate the

requirem ents for valid connection. It show ed that un less the R C X w as positioned

in direct line o f sight, reliable com m unication could n o t be achieved. This w ould

negate the possib ility o f continuous com m unication betw een the com puter acting

as a base station and the R C X Robot.

As a program m ing environm ent the R obotics Inven tion System provides

its users w ith a very in tu itive approach to create contro llers ow ing to the block

diagram developm ent nature. It has how ever large lim itations w hen it com es to

the developm ent o f m ore com plex tasks because o f the lim ited variety o f the

blocks available. A s a resu lt the use o f this language w as no t continued in this

project.

2.2.2.1.1. LeJOS Java for LEGO® Mindstorms

LeJO S [42] is a program m ing language for the R C X m odule. It is a

replacem ent firm w are fo r the LEG O M indstorm s R C X brick. LeJO S is an Open

Source Java based operating system o f the L E G O ’S M indstorm s R C X m odule. It

runs on the R C X internal processor the H itachi H 8300 [43]. The software

environm ent consists o f three different parts:

1. A V irtual m achine (VM) for the execution o f Java bytecode.

2. A n A PI for R C X program m ing on top o f th is VM .

3. A dditional softw are tools.

LeJO S has been identified and used by researchers [9, 12] and authors

have w ritten books on the subject [44-46], It has also featured in a project in

G M IT to solve a R ubik cube using a R C X m odules [47]. LeJO S is a tiny Java

V irtual M achine (JV M) for the RCX . It enables the R C X to be program m ed using

the Java language. This allow s for m uch m ore com plex program m es to be written

13

Chapter 2 - Literature Review

for the R C X m odule that can be produced w ith the R C X ’s original Robotics

Invention System softw are.

T he program m er w rites code in the Java language and then com piles this

into Java bite code, w hich is dow nloaded using the IR tow er to the R C X m odule.

The R C X m odule requ ired to be preloaded w ith LeJO S, w hich is a m iniature

operating system . LeJO S interprets the byte code control program m es stored on

the R C X and carries out their instructions. The L eJO S provides a reduced

instruction set to account for the lim ited nature o f the R C X environm ent as Java is

an extensive language, w ith the facility to be u tilised in diverse program m ing

areas.

2.2.2.1.2. Not Quite C (NQC)

N Q C is another program m ing language for the RC X . It w as presented by

D ave Baum [48] as an alternative program m ing language to the RIS language

provided by the LEG O kit. The N Q C program m ing language is specifically

designed for the LEG O robots. It w as w ritten by D ave Baum to allow the

program m er m uch g reater freedom from the RIS environm ent. E ach o f the robots

in the LEG O M indstorm s series has its ow n bytecode interpreter. The N Q C

com piler translates the source code program m e w ritten by the user into L E G O ’s

bytecodes, w hich are then executed on the robot. R esearch team s [49, 50, 12]

have utilised this program m ing language in course w ork. M ario Ferrari’s book

[45] “B uild ing R obots w ith LEG O M IN D STO R M S The U L T IM A T E Tool for

M IN D STO R M S M aniacs“ referring to the use o f N Q C w ith the R C X m odule is

another exam ple.

N Q C program m ing language was designed for the R C X m odule. It is quite

sim ilar to the C program m ing language, bu t it is m ore restrictive due to the

restrictions p laced on it by the R C X m odule. P rogram m ing in this language like

LeJOS also enables m uch m ore flexibility over the b lock style in Robotics

Invention System . It also does not require a V irtual M achine to run on the RCX

m odule as the u se r’s program m e is translated into bytecode, w hich runs on the

firm w are inside the R C X m odule. The program m ing on the R C X hardw are

presents certain lim itations o f the code as show n in the Table 1, this is due to the

resources available on the R C X m odule.

14

Chapter 2 - Literature Review

Table 1 NQC limitations constrained by RCX

Tasks Subroutine

U p to 10 tasks a llow ed in program m e Up to 8 Subroutines p e r program m e

One Task has to have nam e “m ain”

w hich runs all other m ust be started by

running task w ith “start”

Cannot use argum ents w ith subroutines

Cannot call another subroutine from

w ithin subroutine

All tasks run sim ultaneously M ust use sem aphore i f call subroutine

from differen t tasksTasks restart from beginning

Tasks are equivalent to threads in C and C++; they run at the sam e tim e,

once a start com m and is issued w ith their nam e and are term inated w ith a stop

com m and. Subroutines are equivalent to C and C ++ functions; they are small

pieces o f code that can be repeatedly called from different p laces in the

program m e.

2 .2 .I.2 . ¡Robot’s Roomba and Create Hardware Platform

As previously m entioned different researchers have approached the task o f

controlling the iR obo t’s hardw are in different w ays show n in F igure 3 and Figure

4. Som e have p rovided the robot w ith an on-board brain by m ounting additional

hardw are on top o f the existing robot structure, w hile o thers have left the robot

unchanged only including a dongle to rem otely control the robot from a base

com puter. Zachary D odds and B en T ribclhom developed the Erdos project for

controlling the iR obo t’s hardw are using such a dongle.

2.2.2.2.I. The Erdos Project

The E rdos [41] pro ject was designed around an unm odified R oom ba

utilising the A PI realised by iR obot in their SCI [31] and their further release o f

the Open Interfaces for R oom ba [30] and C reate [39]. This A PI enables the

Room ba to act as serial device, w hich can respond to requests w ith actions or data

from another serially equipped device. The physical R oom ba has been equipped

w ith w ireless capabilities using an additional hardw are o f an external B luetooth

dongle. The “state slate” softw are interface show n in F igure 6 enables the user to

interact w ith all the features available on the R oom ba robot. It presents the

15

Chapter 2 - Literature Review

sensory data available o f the robot, and also enables the user to use the virtual

onboard buttons. The pro ject further includes a sim ulation interface allow ing for

the developm ent and testing o f control p rogram m es for robot prior to real

operation. The E rdos sim ulator is explained in m ore detail in section 2.3.7 below .

FRDOS: Slate S ta te Slate H H H I H 1 □ £

Updatng Update Al Frame 1 Frame 2 Frame 3 STOP

Left Bumper Right Bumper Left CBf LFntCiff RFntCtff Right Cliff

Right Wal Virtual Wal Left Wheel Drop Caster Wheel Drop Right Wheel Drop OC/DDok

Vacuum Side Bmsh Main Brush Drive mm/s mm 0 0

Spot LED Clean LED Power LED Status LED DirtDetect LED Max LED

Spot Button Clean Button Power Button Remote Command 0 Max Button

Play Song Song Set Set&Plqy 1 (31 1 G Cl 1G G7 1 C T> V)
F I

Reset Qdometry xinmm
Unknown

yin mm
Unknown

thetaindeg
Unknown

raw distance
Unknown

raw angle
Unknown

Charging State Voltage niV Current mA Charge mAh Capacity mAh Temperature C
Unknown Unknown Unknown Unknown Unknown Unknown

Off Mode Passive Mode Saie Mode Full Mode RooT ooth Power RTS Power

Quit COM Port Server Port User

Figure 6 Erdos State Slate Roomba interface

In Figure 6 the current location o f the robot is represented by the circular

dot, show n in the w hite panel w hich is a representation o f its physical

environm ent.

16

Chapter 2 - Literature Review

2.2.3. The Khepera Robot

This K hepera robo t [51] m anufactured by the K -T eam w w w .K -T eam .com ,

although excluded for the selected hardw are solutions ow ing to its cost,

nevertheless it is included here because it has form ed the core subject o f m any

software robot sim ulation environm ents.

This robot has featured in num erous publications [52-55] and com petitions

like K heperasot [56]. Prof. Jean-D aniel N icoud team based at the M icrocom puting

L aboratory (LA M I) o f the Swiss Federal Institu te o f Technology o f Lausanne

(EPFL), designed the K hepera robot. The in itial design, developed in 1991, w as to

have been a sm all inexpensive robot. O ne o f the design requirem ents w as for a

robot o f 1 cubic inch, w hich could facilitate investigation into m obile robots.

Robots available at the tim e tended to be large and expensive. A nother advantage

o f having a sm all robot is the dynam ics change w ith respect to the physical nature,

a large robot o f d iam eter lm m oving at lm /s collid ing w ith a w all can have

catastrophic resu lts as opposed to a sm all robo t o f d iam eter o f 1cm m oving at

lcm /s, w hich generally results in negligible dam age show n in F igure 7.

Figure 7 Khepera Robot [51]

The K hepera hardw are includes 8 infra-red (IR) proxim ity sensors that

provide bo th m easurem ent o f the absolute am bient IR light, and by reflection o f

the em itted IR light, an estim ation o f the relative position o f an object from the

robot. The p latfo rm also included both w heels w ith w heel encoder inform ation.

17

http://www.K-Team.com

Chapter 2 - Literature Review

Table 2 lists the hardw are specifications o f the initial released K hepera robot.

Later m odels im proved on these specifications.

The in itial im plem entation o f the K hepera robot can be seen in F igure 7.

The design provided the research com m unity w ith a com pact robot device that

w ould allow investigation into how real robots in teract w ith the real environm ent.

A possible experim ental setup is show n in F igure 8. The K hepera allow ed for

expansion m odules to be installed on top o f the K hepera base robo t to further

extend the possib le task usage o f the robot.

Table 2 Khepera Robot Specifications [57]

Elem ents Technical Inform ation
Processor M otorola 68331, 16M Hz
RA M 256 Kbytes
EPROM 128 or 256 Kbytes

R eprogram m able
M otion 2 D C brushed servo m otors w ith increm ental encoders

(12 pulses per mm)
Speed M ax: 60 cm /s, M in: 2 cm/s
Sensors 8 Infra-red proxim ity and am bient light sensors w ith up to

50m m range
Pow er Pow er A dapter R echargeable

O R N iC d B atteries O R P ow er Adapter.
A utonom y 30 m inutes m oving continuously
C om m unication Standard Serial Port, up to 38kbps
Size D iam eter: 55 mm

H eight: 30 m m
W eight A pprox 70 g

18

Chapter 2 - Literature Review

Figure 8 [51] illustrates an experim ental set-up o f the K hepera robot using

it on a bench connected to a com puter. The d iagram show s a K hepera robot

tethered to a com puter using a hanging cable. The robo t is surrounded w ith 4

obstacles. This layout w here the robot can be operated on a bench has greater

advantages, as a large space does not have to be p rov ided for experim entation

purposes w here the user is m odelling a m aze environm ent. This contrasts with

larger robots that m ay require outdoor space or a large indoor arena. The design

was further com m ercialised by the K -T eam [58] w hich provides a num ber o f

different variations based on this initial design. The K hepera robo t and its variants

are used w idely in research centres. There w ere 58 centres listed in over 15

countries using the K hepera robot [59]. The R obot has been u tilised in m any

different research areas from robotic soccer [56] to sw arm m apping [60]. K -Team

provides extension m odules for the K hepera robot to enhance the functionality o f

the robot. These include: a gripper arm, radio com m unication turret, linear vision

turret, video turret, a m atrix view turret and additional processor. These enable the

K hepera to perform m uch m ore com pleted tasks, but add to the expense o f the

robo t’s kit.

The ease o f use o f this robot coupled w ith the availab ility o f its m any add

on m odules have been im portant factors in its use for m any research program m es.

Thanks to this w idespread use it has spaw ned a large body o f sim ulation software

developed bo th in-house by the team w ho designed it and independently by other

researchers to m eet their specific sim ulation needs.

2.3. Software Simulation Approach

Eight d ifferent sim ulators currently u tilised by the research com m unity

were identified during the literature review , as possib le candidates. The Table 3

lists the sim ulators under investigation. A detailed description is given o f each in

the sections below . Table 4 at the end o f the chapter includes a com plete overview

o f the d ifferent sim ulators. These sim ulation environm ents w ere critiqued under

12 different headings ranging from real w orld representation to operating

sim ulation support by the sim ulator. These are detailed in chapter 6.

19

Chapter 2 - Literature Review

Simulators

K hepera Sim ulator

W right State U niversity (W SU) Java K hepera Sim ulator

Evorobot

Y et A nother K hepera S im ulator - Y A K S

EasyB ot

W ebots

Erdos

Pyro: Python R obotics

Table 3 Simulators under Investigation

2.3.1. Khepera Simulator

The K hepera S im ulator [61] is also referred to as the O liv ier M iche l’s 2D

K hepera S im ulator [62], O livier M ichel developed the sim ulator at the U niversity

o f N ice Sophia-A ntipolis. Since then he is based at the L A M I in Sw itzerland,

w hich is w here the K hepera was initially developed. This w as presented to the

research com m unity as the first sim ulator designed en tirely around the new ly

released K hepera robot (at the tim e o f s im ulator release). O liv ier M ichel has since

launched a com pany called C yberbotics. This sim ulator is designed to run on a

U N IX operating system . It allow s the user to w rite control algorithm s in C or C++

language. These algorithm s are run by the sim ulator, in sim ulation o f a K hepera

robot operating in a 2D world. There is also a feature to transfer this controller

algorithm to a real robot, to assess the con tro ller’s responses in the real

environm ent.

The user selects a m ap in w hich the robot is required to operate, w hich is

displayed by the sim ulator GUI. The user can use one o f the predefined maps

provided by the sim ulator or they m ay choose to create a new m ap or edit an

existing one. The sim ulator allow s the user to add bricks to form w alls that will be

detectable by the robot after the “scan” button is pressed. T hey can also choose

the start location and orientation o f the robot.

2 0

Chapter 2 - Literature Review

The GU I also presents to the user the sim ulated internal in form ation o f the

robot, Figure 9 that is used to aid in the diagnostics o f the controller throughout

sim ulation. The GUI presents inform ation on the distance sensors, light sensors

and the speed and direction o f both m otors.

«4M*
to o - : i

mi I t . robot

Th is p ro g rM I« a a l w l a l r f a r Khaparo robot f M i t r in g :
- A e lw la te d n ^ m - a robot- A hot Id odi to r
• A fra p h lo a l u o r in ta r fo a o
- C p rogram ing f a e l l l t t o e

Thla software la i r w I M f o r lha O ff lo i *1 ttw pe rs Contest
a« e v o l t i t i« A r t i f i c ia l la o r fa r w a o (H I* » , 1M7>.
I t lo M » l lo d a u ln i f o r research and lo aa h ln t purpoeoo.
Cnn—m ia i uao la fo rb ì ddOn. Tou oan dawilaad I t f ro n :
h U p i / 'e l to . ie ila e .f r /~ o o 4 tfw o o n te o l.h U il

(k ith o ri 01 I v i o r HICMLt MCE teas, l»a I r fw a lo ru ,
OWE* Uhi ver» I ty o f Nloe - Sophia Antipode« FWMCE
enVal to . ie ì io o . f r» h t t p I / / a I ‘ ------ *— — r~B~

o«d| «aval e ta f | n e t l re e o tj

1/3

7} In fo i ♦ ! - ! s u it I

Figure 9 Olivier Michel's Khepera Simulator

' /
/ V

2.3.2. Wright State University (WSU) Java Khepera Simulator

W SU Java K hepera S im ulator [63] show n in Figure 10, w as developed at

the W right State U niversity C ollege o f Engineering A nd C om puter Science’s

Evolvable H ardw are Research Lab. The “K S im ” w as developed to provide a

p latform for the “coarse-grained” developm ent o f controllers for the K hepera

Robot prior to testing on an actual K hepera robot. The sim ulator is w ritten in Java

(A ppendix C - Java), w hich enables it to run on both W indow s as w ell as Linux

platform s. The K Sim sim ulates the 8 IR sensors, w hich convey both proxim ity

and light intensity, w heel encoder inform ation and a gripper object sensor. This

gripper sensor indicates the presence o f an object betw een the grippers.

This sim ulator is based largely around the original K hepera Sim ulator.

This provides the sam e functionality but provide m ore p o s s ij j i lU ig ^ ^ im u late the

addition m odule o f the K hepera robot gripper. It als$

is w ritten in Java w hich allow s it to be run on diffe/

t

Chapter 2 - Literature Review

The W SU sim ulator defines w alls to be static objects thus the robot cannot

have any effect on these and co llision w ith them can resu lt in the robot getting

stuck. It also allow s fo r sim ulation o f dynam ic objects such as “caps” (sim ulated

representation o f a ligh t w eight object) and “balls” (representation o f a ball object)

w hich w ill be effected by the robot i f it collides w ith them . The sim ulator allow s

the robo t to use its gripper to co llect the caps or the balls i f the controller equips

the robot w ith sufficient behaviour to in teract w ith them . A s can be seen in Figure

10 the sim ulator allow s the user to v iew the values that are m easured by the

robo t’s sensors during sim ulation, th is can enable the user to debug their

controller should an unintended action be carried out by their controller. U sers

w rite their code in Java. A controller tem plate is p rovided by the sim ulator

installation, w hich indicates the im portan t m ethods tha t are requ ired to be

im plem ented to allow the sim ulator to run the controller.

WSU Khepera Robot Simulator v7Jl
F«e Actions Tools Help

Q lR a i I 0 Ha* I 0 set ^ Ratal«

Gfr Load H S w I + Add X atM

■T.l P.J -XJ

l̂ tnyfteccwd Status: Disabled

► l U ü l i î W J L J
(§> Distance Q Light Q Disable

0 0
0
0

WSU Khepera Robot Slmulatorv7.2

Ctaar Output Whitlow

i m i O U t f * Q B H O Cap

^ Rotate

"fdüTC lient'Snrvtti Status; Otsalited

In Figure 10 the robots sensory inputs are d isplayed in the top righ t o f the

image. The position o f the gripper in d isplayed directly below this im age, w here

Figure 10 WSU Khepera Robot Simulator V7.2

22

Chapter 2 - Literature Review

the presentee o f a “cap” or “ba ll” is indicated. O n the left the robo t’s m aze is

displayed and the robot position is indicated by the circule.

2.3.3. Evorobot

The Evorobot sim ulator [64] also referenced in [62] is a softw are

program m e for investigating evolutionary robotics. It runs on a W indow s

operating system. Stefano N olfi [64] developed E vorobot. The author has

“copyleft”ed th is softw are under the G N U G eneral Public L icense to m ake it

available for use. “Copyleft is a general m ethod for m aking a program or other

w ork free o f charge, and requiring all m odified and ex tended versions o f the

program to be free as w ell” [65]. The sim ulator show n in F igure 11, allow s the

user to run evolutionary experim ents in sim ulation o r on a real robot. Stefano

N olfi w orked on the “kepsim ” robotic sim ulator [66] as m entioned in Y A K S in

section 2.3.4 and incorporated the functionality , into th is sim ulator, o f using the

real w orld data to construct “ look-up” tables to enable faster sim ulation o f robots.

£fe Q#jn Qjîplay fcMP
T

ol

10

II

12

-J
14

16

16

17

Ifl

19

Figure 11 Evorobot GUI interface

23

Chapter 2 - Literature Review

In Figure 11 the robot’s simulated environment is displayed the top left of

the window; the robot is shown here with the path it has traversed in the current

run. The environment consists of a enclosed space which also contains seven

cylindrical objects. On the right is a graph of the information produced by the

robot from its sensors. The top and bottom two wide bands are information from

the current and past state of the motors (the simulated robot records it past motor

state onboard). The eight bands in between indicate the information acquired from

the eight distance measurement sensors. The other information is to display

information about the current run’s fitness function. A run ends when the robot

collides with a wall or after a predefined time.

2.3.4. Yet Another Khepera Simulator - YAKS

The “Yet Another Khepera Simulator” [67] (YAKS) simulator was

designed as a robot simulator to allow research into Genetic Algorithms (GA) in

combination with Neural Networks. The simulator designers take the approach

that if a robot’s sensors are mathematically modelled during simulation then,

although this is an accurate representation of a real robot, it produces a very slow

simulation. The solution that they implemented was borrowed from the designer

of “kepsim”, using pre-recorded sensor values for real world objects measured by

the physical robot and applying these to a “lookup” table. During simulation of

the robot the “simulated” sensor values are calculated by accessing appropriate

values from this lookup table. This approach greatly reduces processing time in

simulation, which in GA research is very important where a “run” can be in the

order of 1000 generations, with each typically having 100 individuals, each of

which is required to be simulated a given number of times, and from a number of

different locations. The simulator is shown in Figure 12.

24

Chapter 2 - Literature Review

yaks - Yet Another Khepera Simulator | U1

(0%)
P a lis .. ____________ ___________________

Figure 12 YAKS Simulator [68]

In Figure 12 different inform ation for each run is displayed, this is a m ulti

robot sim ulation environm ent so each robot is d isp layed in the bottom righ t along

w ith the state o f their sensors. Their d ifferen t paths are displayed in the

environm ent on the left.

2 .3.5. E asyB o t

EasyB ot [69] is a robo t sim ulator show n in Figure 13, w hich allow s for the

design and testing o f control algorithm s for m obile robots.

E asyB ot is an extension for L ightV ision3D [70] to allow for the

m anipulation o f m obile robots. L ightV ision3D by O liver M ichel [70] (not

“O livier M ichel” o f the K hepera Sim ulator) is a 3D view er and m odelling

software. E asyB ot is designed to integrate w ith L ightV ision3D to allow the

environm ent to m odel robot objects. R obots are defined in the environm ent as

objects containing sensor objects. A ll group-objects in the environm ent containing

sensor objects are controlled by user selected D ynam ic L inked Libraries (D LLs),

w hich specify the actions that w ill be carried out by each particular robot.

E asyB ot is referred to as the “U niversal R obot Sim ulator” [71]. The

E asyB ot extension for L ightV ision3D allow s the designer to create any type o f

robot and/or environm ent that they require. The designer is then required to

produce a descrip tion file to m ap E asyB ot’s sensor data onto their robo t’s data

25

Chapter 2 - Literature Review

and the robo t’s controller onto E asyB ot’s position and orientation requirem ents.

The interface file for the K hepera robot is included for E asyB ot’s m apping.

E asyB ot requires the u se r’s controller to carry out co llision detection, as th is is

currently not included in the sim ulation engine.

L LtghtVislnn 3D - [kheperol _sctne37

Date! Bearbeften Cfcjekte F ir tB o r a n D a rs te lu ig ?

» !□ ! x|

^ s * \ i i s i Vi
, Uchtqueten

n | Karoeras
B rfp Objekte

plane
IS (31 Khepera_l

; Cube
Cube I
CubeZ

• Cube3
Hi 1 Khepera_2

Cub©4
CubeS
Cubeo

: Cube7
; CubeS

Cube9
Path

: Extiu»on2
; Khepflfâ l Jfeck

% Khepefa_2_track

Obl I iW T « | i ^ l I

Figure 13 EasyBot Simulator

2.3.6. W ebo ts

W ebots [72], [73-75] is a proprietary softw are sim ulation environm ent by

Cyberbotics, h ttp ://w w w .cyberbotics.com /, w hich allow s for the design and

sim ulation o f different robotic layouts w ith a range o f d ifferent sensors. It is the

com m ercialisation o f O liv ier M ichel’s free “2D K hepera Sim ulator” for the

research design m arket. It a llow s the user to create a physical robot in sim ulation

defining its size and shape. A lso accom m odated are the robots w heel size and

rotation angle form ing the robo t’s propulsion system . The user then defines the

robo t’s com plem ent o f sensors their location and type. The sim ulator environm ent

allow s for ultrasonic and IR sensors and cam era im age sim ulation. The user then

constructs an environm ent in w hich they require their robot to operate. They

specify the shape, size and contents o f the required ro b o t’s environm ent.

26

http://www.cyberbotics.com/

Chapter 2 - Literature Review

Figure 14 illustrates an exam ple o f a m aze w orld environm ent in w hich a

sim ulated K hepera robo t is required to operate.

Figure 14 Webots: World Environment

^Welcome to the Khepera interface ^

57800 baud _^J
Upload

Figure 15 Webots Khepera Simulated Data

Figure 15 is the sim ulated internal in form ation o f the K hepera robot that

can prove useful in debugging erroneous controller responses to sensory data.

27

Chapter 2 - Literature Review

2 .3 .6 .I. C o m p e titio n s

The com pany C yberbotics tha t p roduce W ebots has run a num ber o f

different com petitions w ith different goals to encourage the com m unity to further

develop program m ing techniques using W ebots.

O ne com petition run by Cyberbotics w as called A life [72], th is is w here

the com m unity w as required to en ter a contro ller fo r a robot, w hich w ould

com pete against ano ther entry for survival in a m aze environm ent [76]. The

objective o f the com petition is for tw o robots to be in itialised in a m aze

environm ent so that they seek out energy feeder stations w ith green front side, the

colour indicating tha t they have energy available for charging a robot see F igure

16.

| |
I r1ft m

Figure 16 Alife charge station fully charged [72]

T hese charge stations are positioned through out the m aze and they m ay be

difficult to see. W hen a robot visits a charge station th is charge station w ill be

unavailable for som e tim e, their front colour w ill change to red see F igure 17. The

robot is then required to locate a new charge station elsew here in the m aze. I f a

robot battery pow er runs out before it finds another energ ised charge sta tion it w ill

die. The rem aining robo t w ill be declared the w inner. O n visiting a feeder the

robots batteries w ill be recharged by a certain am ount, depending on the length o f

tim e the charge station indicates availab le pow er (green colour). The m aze

included a num ber o f d ifferent charging stations bu t the robot could only charge i f

it reached the charge station first after the station turned green and stayed until it

was no longer green.

The ob ject o f the en tran t’s controller was to locate an energised charge

station, p lan a pa th to th is charge station w hile beating com petitors to that charge

28

Chapter 2 - Literature Review

station. It then continued to locate the next station and continue th is process until

a w inner outlasts the o ther com petitor.

Figure 17 Alife charge station empty [72]

A nother com petition run by W ebots involved sim ulated hum anoid robots

involved in a “judo like” com petition. The objective th is tim e w as to push or

knock an opponent ou t o f a defined ring area.

2.3.7. E rd o s

The Erdos p ro ject [41] as p rev iously referred to in section 2.2.2.2.1 w as

developed by Zachary D odds and B en T ribelhom is based around the

com m ercially launched robot designed to clean floors by the nam e o f R oom ba

produced by the com pany “ iR obot” described in section 2.2.1.2.

The E rdos sim ulator show n in F igure 18 is a 2D simulation for the

R oom ba robot. E rdos can operate on a real R oom ba provided one is connected

over the serial port or on a sim ulated version o f one. E rdos incorporates a particle

filtering algorithm to provide m ore accurate m odelling o f the odom etry

inform ation from the robot. The sim ulator is w ritten in the Python language.

29

Chapter 2 - Literature Review

Figure 18 The Erdos project’s pyRoomba output

Figure 18 show s the sim ulated iR obot in a m aze environm ent. The robot is

indicated by the circle and the clum p o f sm aller circles indicated a possib le

location identified by the control algorithm . The algorithm uses the inform ation

from the w heel d istance covered and the inform ation from forw ard sensor.

2.3.8. P y ro : P y th o n R obo tics

Pyro stands for PY thon for R obotics [77]. Pyro is a different approach to

the design and developm ent o f in telligent robots [78]. It is created using the

Python program m ing language. The Pyro approach is in the use o f abstraction

w hen designing a controller for a robo t design. This abstraction w ill rem ove the

requirem ents for the designer to understand the specifics o f the robo t tha t the

controller w ill be required to run on. This abstraction applies to bo th the

propulsion and to the sensory array w ith w hich the robot is equipped. It allow s the

designer to ignore the hardw are specifics and concentrate on the operating

algorithm . This logic m eans that the user should not have to w orry about how

large the robot is or how it m oves. This has enabled authors such as [79, 40, 4, 12,

80] to take advantage in the courses to enable students to investigate m uch m ore

detailed behaviours in a shorter tim e period than experienced previously. Users

can norm alise and w ork w ith “robot un its” that define the w orld in relation to the

30

Chapter 2 - Literature Review

robots size. The logic also applies to the sensors o f the robo t w here the u ser m ay

not know the layout o f the sensors but can query the robo t’s “front” , “ left” , “righ t”

or “back” sensors. The “driver in terface” w hich the controlling program m e

interfaces to, returns the appropriate values again w hich can be in relation to robot

units. The user constructs a controller to drive a robot, w hich can be seam lessly

applied to a real or sim ulation version o f that robot. F igure 19 the user can select

the required w orld m ap, the robot type, the sensing devices tha t are requ ired and

the control algorithm the “brain” .

pyrobotiSGMIT-USER-lAB .- jn] x j|
file isJhdow Load Robot grain Help

Server: E:V3ython24\Lib\site-packages\pyrobot\plugins\worlds\Pyrobot/A_mapFileLoad.py
Robed: E :\Python24\Lib\site-packages\pyrobot\plugins\robots/'PyrobotR obotSOOOO. py View

Devices: posltion[1] —< View

Drain: E :\Python24'J.ib\site-packages\pyrobot\pbgins\brains/A1 _R obot_di $play_t. py View

Step | Run | Stop | Reload Brain

Pose: X: 0.00 Y: 0.00 Th: 0
Loading device sonar[1]...
Loading device light[1]...
Loading device bulb[1]...
Loading device simulation̂ !]...
Loading device position[1]...
Attempting to Import ‘A1_Robot_display_t\..
hello from brain__Inlt__.py
Loaded'E:\Python24\LlbVsite-packages\piirobot\pluglns\brains\A1_Robot_display_t.pyc'l
['sonar', 'light', 'bulb1, 'simulation', 'position']

▼
Command:

Figure 19 Pyrobot

In F igure 19 the “Server” button select the server w hich com m unicates

w ith the environm ent. This server allow s fo r a real w orld robot to be controlled or

a sim ulated robot to be controlled. The robo t type is then selected w ith “robot”

button. The devices o f in terest available for that robot can be selected by

“D evices” . The control algorithm is then selected by “B rain” . F igure 20 displays

the environm ent in w hich the robot w ill operate. It has been defined in the w orld

file. A ll locations o f obstacles location o f the robot are defined there.

31

Chapter 2 - Literature Review

i'yi'oliol- Simulator ■ ■ ■ ■ ■ M l - la l'X l
£le ¥i#w Qpbom 1

Figure 20 The Pyrobot Simulation Environment

In Figure 20 the robot is show n in its m aze environm ent the “ rays”

represent all o f the distance sensors available on the robot. Their line length

represents the relative value returned to the robot indication proxim ity to an

object.

32

Chapter 2 - Literature Review

2.4. Sum m ary

2.4.1. Hardware Direction

The hardw are d irection identified from approx fifty candidates, tw o possible

low cost p latform s used by researchers in A I m obile robo tic developm ent. The

iR obot’s hardw are provides a suitable base to use as a p latfo rm for m ounting further

hardw are to enable developm ent o f a m obile robot but the base itse lf does not provide

adequate sensory data as it only provides tw o bum p sensors [30]. The inclusion in the

design o f the “c lif f top” sensors does allow for m ore design ideas w here a real w orld

is m uch m ore 3D than 2D. A s a resu lt o f the lack o f sensors available on the base, this

platform w as no t investigated further.

The developm ent o f the R C X hardw are p latform w ill be p resen ted in the next

chapter section 3.2.1. O f the three em bedded softw are approaches described above,

only the LeJO S and N Q C w ill be com pared and contrasted in-depth , the LEG O RIS

environm ent being dism issed due to its inadequacies, as p resen ted p reviously in

chapter.

2.4.2. Software Simulation Direction

The eight different sim ulators under investigation in th is p ro ject described in

section 2.3 above are listed in Table 4. This table lists each sim ulato r’s attributes as

related to p rogram m ing language, O perating System (OS) and the physical robot

sim ulated.

C om parisons are also m ade in the next chapter o f these eight sim ulators to

assess appropriateness to the direction o f the project. This he lped the selection o f

sim ulators for further investigation in this project.

33

Chapter 2 - Literature Review

Table 4 Simulators Overview

S im u la to r

Program

language

Unix
com

patible

W
indow

s
com

patible

Open
Source

Sim
ulated

R
obot/s

C
om

m
ercial

Source
code

available

R
equires

other
softw

are

K hepera
Sim ulator

C &
C++

Y es N o Yes K hepera N o Y es
C/C++

com piler

W SU Java
K hepera
sim ulator

Java Y es Y es Y es K hepera N o Y es JDK

Evorobot Specific No Yes Yes K hepera N o Y es No

Y A KS
C &
C++

Yes Yes Y es K hepera N o Yes C/C++
com piler

E asyB ot
c&
c++ No Yes N o

M any
D ifferent

types
Y es N o

C/C++
Com piler

Light-
V ision3D

W ebots
c&
c++
Java

Yes Yes N o
M any

D ifferent
types

Y es N o
C/C++

Com piler
JD K

Erdos Python Y es Y es Y es
R oom ba
Create

N o Y es Python

Pyro Python Y es Y es Y es
M any

D ifferent
types

N o Y es Python

In Table 4 each o f the sim ulators under investigation in listed along with

their attributes. The restrictive nature o f their sim ulation is identified. Their

com puter p latfo rm on w hich they can run is also included, as are the availability

o f their underly ing source code. It also lists w hether they arc proprie tary or open

source.

34

Chapter 3 - Investigation and Comparison of Approaches

C hap ter 3 - In vestiga tion and C om p arison o f A pp roaches

3.1. Introduction

The hardw are and softw are system s identified fo r fu rther investigation in

the literature review w ill now be review ed and com pared in m ore detail. This

chapter is organised as follows:

• H ardw are Solution

o D escrip tion o f the physical hardw are p latform s under

investigation.

o Investigation into different E m bedded H ardw are Solutions

for the R C X platform .

• Softw are Sim ulation Solution

o C om parison o f the different sim ulation environm ents

identified in the L iterature review .

• C om paring the “H ardw are w ith E m bedded Softw are” solutions

w ith the “ Softw are Sim ulation” solutions.

o P resentation o f the criteria used in the selection o f one

solution over the other.

3.2. H ardw are Solution

O f the two candidates identified for possible investigation in this research

it was identified that the R C X show ed the m ost prom ise for further investigation.

The R C X allow ed the developer to upload the controller softw are to the m em ory

and then run it. The R oom ba by iR obot did present as a very sturdy base bu t it

w ould require additional hardw are and onboard p rocessing at a m inim um to equip

it w ith the requirem ents for this research. The R oom ba base un it (see Table 5

below) only provides tw o collision sensors and an offset w all sensor and as such

was considered inadequate in its current state.

35

Chapter 3 - Investigation and Comparison o f Approaches

Table 5 External Environmental Sensors of Roomba

Sensors N um ber Type Location

B um per 2 Press buttons in bum per F ron t

W heel D rop 3 D etect the w heel have

dropped down

O ne each o f the drive

w heels and on caster

w heel

C liff sensor 4 D etect the sensor has

gone over a c liff

F ron t o f robot 2 to the

righ t and 2 on the left

W all Sensor 1 IR transm itter and

detector

P ositioned on the front

righ t

IR Sensor 1 IR sensor F ron t top o f robot

O n choosing the R C X m odule, the investigation into th is platform focused

on the tw o parts to the developm ent on this platform :

• Physical H ardw are

o P ropulsion design o f robot

o Sensory layout in the detection o f obstacles

• E m bedded Softw are investigated

o LeJOS

o N Q C

The physical hardw are is described below ; the em bedded softw are

investigation is described in the section 3.2.2:

3.2.1. R C X P h y sica l R o b o t

As the R C X m odule features in the project, a descrip tion o f its physical

robot is now given. The R obot is required to traverse a m aze avoiding obstacles

and recording m aze locations. To produce a w orking robo t it is necessary to

incorporate the R C X in a physical em bodim ent to prov ide locom otion, sensing

etc. There are a p lethora o f im plem entations o f the R C X physical robot presented

by different authors [81], m ainly due to its su itab ility fo r undergraduate and

postgraduate projects. B ecause o f this it w ould be alm ost im possible to conduct an

exhaustive search and report on all o f them . Instead, a representative sam ple has

been chosen.

36

Chapter 3 - Investigation and Comparison of Approaches

In a robot w here localisation is d irectly rela ted to robot orientation and

w heel m ovem ent it is v itally im portant that m ovem ent and direction control are

rig id ly controlled. Thus, in th is p ro ject the design used fo r the drive system w ent

th rough a num ber o f design iterations, each tim e im proving the system

perform ance o f the m obile robot. Initially the design involved connecting the

w heels o f the robot directly to both drive m otor shafts to a llow the robot to m ove.

The m otors w ere driven at a very slow rate o f ro ta tion to facilitate controlled

forw ard, reverse and turn ing m otion. This design w as fu rther im proved by adding

in som e gearing betw een the m otor shafts and the w heels. These first p ropulsion

designs produced very poor accuracy in m otion, w hich w as characterised by a lot

o f w heel slippage resulting in skew ed m otion.

Figure 21 Differential Gear Drive Figure 22 Differential Gear Drive

Figure 23 Differential Gear Drive Figure 24 Differential Gear Drive

The propulsion system w as im proved by using a design for differential

gearing presented by [82], w hich allow ed for a m ore accurate w ay o f driving the

robot using the 2 m otors to control forw ard, backw ards o r rotation. This enabled

the robot to rotate by spinning on its ow n axis.

37

Chapter 3 - Investigation and Comparison of Approaches

Figure 21-F igure 23 illustrate the D ifferential gearing system adapted by

M ark O verm ars [82] from other designers. This gearing system operates as

follows: i f only one m otor is rotating it drives bo th w heels forw ard, or both

w heels backw ard, w hile the o ther m otor is responsib le for steering the robot;

turning it left or right. I f on the o ther hand both m otors operate at the sam e tim e

one o f the w heels w ill rem ain m otionless w hile the o ther w heel rotates at tw ice-

norm al speed enabling fast turning.

This gearing arrangem ent w as slightly changed for the design used in this

project to allow the robot to occupy only the space betw een the tw o w heels (see

Figure 25). This allow s the robot to spin on its ow n axis w ith no unnecessary

protrusions beyond the w heel arc.

The ability o f the robo t to drive in a straight line w as im proved in this

arrangem ent over that, w here each wheel w as driven by a separate m otor. The

single m otor had the d isadvantage that to drive a robo t forw ard each m otor was

required to be energised fo r a specific time. O n com pletion o f th is tim e the pow er

w ould be rem oved from the m otors. The m otors w ould settle by rotating

clockw ise or anticlockw ise to the nearest perm anent m agnet contained w ithin

each m otor assem bly, resulting in the trajectory o f the robo t being upset slightly.

This m ay be exacerbated i f the m otors are ro tating at h igher speeds (w hen over­

run occurs) or w ith a low er gear ratio to the w heels. W ith the new gearing

arrangem ent this settling w ould result in both w heels travelling the sam e am ount

in a forw ard direction as only one m otor is driving both w heels. A s a consequence

o f these slight inaccuracies, the robot travels sligh tly greater or less than the

distance required by the program m e, but produces no varia tion in ro tation o f the

robot from forw ard m otion.

U nfortunately, none o f the hardw are designs include any feedback from

w heel encoder inform ation, as the R C X interface only provides 3 inputs and all

three are used in ascertain ing inform ation about its environm ent.

3.2.1.1. R C X R o b o t S en so ry L a y o u t

The R C X m odule presents the designer w ith the ability to read 3 input

param eters and control 3 output param eters. E ach o f the outputs can drive a single

m otor. The inputs can be connected to analogue inputs o r sw itches. The RCX

38

Chapter 3 - Investigation and Comparison of Approaches

program m e is in form ed by the user as to the nature o f the input, be it an analogue

or switch. The R C X robo t base proceeded th rough a num ber o f different sensory

layouts. A s a robot is requ ired to detect its environm ent and a m obile has a greater

requirem ent to detect its environm ent to provide fo r co llision free locom otion.

The layout proceeded through a num ber o f design refinem ents. The in itial design

use 3 bum pers positioned to the left, fron t and righ t o f the robot. This allow ed the

robot to detect obstacles on the left, front and righ t hand sides. The design proved

to be unw orkable due to the fact that the robot w ould n o t be able to track along

beside an obstacle due to the fact that w hen it detected an object to the side it

w ould have to change course or the contact be tw een the side bum per and the

object w ould upset the tra jectory o f the robot.

This design w as further refined to a system w here the three sensors

consisted o f one bum per sensor to the front and the left and righ t sensor resem bled

“w hiskers” that p ro truded out each side, see F igure 25 below . This layout m eant

that an object to the side could be detected bu t w ou ld no t h inder the forw ard

m otion o f the robot un til it collided w ith the front bum per. This design w ould

enable the robo t to fo llow w alls by detecting them w ith its “w hiskers” .

Figure 25 Robot with Differential Drive used in this project

Figure 25 show s the robot configuration used in th is research. The front

bum per extends beyond the robot on either side to detect i f an obstacle gets too

close to the robot to unduly interfere w ith the current trajectory. B oth righ t and

left “w hiskers” ex tend out m uch further than the bum per so that objects can be

detected, allow ing the robot to trace the periphery o f the object i f required w ithout

39

Chapter 3 - Investigation and Comparison o f Approaches

causing a “bum p” to the system . Such a bum p w ill change d irection o f the robot,

and w ill generate a discrepancy betw een expected and actual path.

As stated earlier, the R C X set-up did not provide fo r a w heel encoder to be

incorporated into the design as only 3 inputs param eters w ere available but

already used for the detection o f surrounding obstacles. D istance calculations are

carried out by recording the tim e and direction that the w heels are turning for a

given m otor speed. This m ethod is referred to as “dead reckoning” bu t w ithout the

benefit o f w heel encoder inform ation. The w heel encoder inform ation w ould

offset the effect that changes in battery voltage have on the d istance calculations.

3.2.2. Real time Embedded Software For RCX Robot Solution

D evelopm ent w ork on the LeJO S and N Q C based em bedded solutions for

the R C X platform identified in the literature rev iew (section 2.2 .2 .1) is presented

here as part o f the investigation into controller designs for the p latform . This

section contains:

• Internal M em ory structure o f RC X

• D evelopm ent w ork in LeJO S language

o O utcom es o f LeJO S

• D evelopm ent w ork in N Q C language

o O utcom es from N Q C language

• Presents C onclusions from com parison o f these tw o approaches at

the end o f the chapter in section 3.4.1.

3.2.2.1. Internal Memory Structure of RCX

Figure 26 outlines the m em ory structure available in the R C X m odule. The

16 K b o f R O M contains a driver for the R C X m odule that rem ains after pow er

loss. It handles low level com m ands to the internal hardw are o f the R C X and

allows for the dow nloading o f the firm w are. The firm w are resides in the first

16Kb o f the RA M . This is a bytecode interpreter, w hich acts like the operating

system for the RCX. It interprets the u se r’s program m es w hich are w ritten in

bytecode and runs them by calling the appropriate opcode in the RO M . The u se r’s

program m es reside in the next 6Kb o f space in the R A M . The final 10Kb o f

40

Chapter 3 - Investigation and Comparison o f Approaches

m em ory space is used by the firm w are as interpretive and execution space. This is

where local and global variables w ill reside during operation.

10 Kb

Interpreting byte code

& Execution space

6 K b RA M

U ser program m es

16 K b RA M

Firm w are

16 K b RO M

Figure 26 RCX Internal Memory Map

3.2.2.2. D ev e lo p m en t W o rk on L e JO S

The original R C X RIS program m ing environm ent w as lim ited by the

restricted nature o f the available program m ing blocks. A s a resu lt a new

program m ing language w as chosen to drive the R C X m odule. This LeJOS

requires a d ifferent firm w are to be installed on the R C X m odule. This firm w are is

a JVM for the R C X environm ent. The new m em ory layout is show n in Figure 26.

The developed code is then dow nloaded into the user program m e space onboard

the RCX.

D uring the developm ent phase on the R C X m odule using LeJOS

program m ing environm ent testing w as earned out on the m odule running the

LeJOS V irtual M achine. Physical m easurem ents w ere carried out to determ ine the

tim e it took for the robot to drive forw ard 1 m etre and ro tate through 360°. These

w ere calculated for a R C X m odule reporting a voltage o f 8. IV ;

• T im e to drive 1 m etre is 5 seconds

• T im e for a full rotation is 3.21 seconds

T hese values w ere then used in the code to perform the calculations for the

“dead reckoning” to determ ine the ro b o t’s current angle and location, relative to

its start location. Code developed for the testing process is p resented in A ppendix

A - A . I .

The L eJO S ’s inbuilt process m anagem ent system operates on the basis o f

a w eighted process list. The process o f h igher w eighting alw ays takes precedence

over a process o f low er w eighting. I f the h igher process requests operation it

41

Chapter 3 - Investigation and Comparison o f Approaches

returns a true from a call to its “takeC ontrol()” function. The designer using this

structure to construct their code, can form a list o f d ifferen t tasks that require

operation and assign a different w eighting to them by adding them to the list w ith

the first being o f low est w eighting.

W ork com m enced w ith this environm ent, w riting code to test out the

operation o f the RC X running LeJOS. The program m es w ere designed to utilise

the different inputs and outputs configurations on the R C X to investigate the

advantages o f LeJO S over the R obotics Invention System program m ing language

approach.

The softw are design then continued into the application o f the RCX

running LeJO S for this project. This involved im plem enting a routine w hich

detected surrounding objects o f the robot, see A ppendix A - Figure 52 and Figure

53. W ork w as conducted on the developm ent o f a m apping system to record

detected objects around the robot, see A ppendix A - F igure 55 and Figure 56,

w hich is described later.

3 .2 .2 .2 .I. O u tc o m e o f dev e lo p m en t w ith L e JO S on R C X

The developm ent on the R C X robot using the L eJO S environm ental

language proved that the robot could detect objects using its “w hiskers” on the left

and right and react to a front bum per collision w ith the appropriate stop m otors

running to m inim ise navigational errors from the collisions. It could calculate

distance travelled and direction using dead reckoning technique o f recording the

length o f tim e the m otors w ere operational at a particu lar speed and direction.

The LeJO S environm ent could not how ever prov ide adequate storage

space to m ap the environm ent travelled by the robot. The robot system w ould be

required to store a large am ount o f data on the R C X to provide the system w ith a

viable m ap. This is because the m ap w ould store the location data o f all objects

encountered around the m aze as w ell as the path taken by the system . This map

w ould be required to provide the robot w ith know ledge o f its surroundings to

enable it to perform educated decisions as to the d irection to turn next, to best

reduce the uncertain ty about the current robo t’s w orld view . The approach used

by the Java softw are to store its inform ation also adds to the overhead in the

storage o f the vital m apping inform ation. As a resu lt o f L eJO S ’ approach

42

Chapter 3 - Investigation and Comparison o f Approaches

requiring m ore m em ory than that available in the lim ited environm ent o f R C X , it

p recluded continuation w ith LeJO S as a viable solution fo r the project.

3.2.2.3. Development Work on NQC

The N Q C environm ent operates using the orig inal R IS firm w are on the

R C X m odule. This firm w are is required to be re-dow nloaded each tim e the

battery pow er is d isconnected from the R C X as it resides in the onboard volatile

RAM .

H ere again experim ental calculations w ere requ ired to establish the tim e

taken for the robo t to travel the distance o f 1 m etre and ro tate 360°;

• T im e to travel 1 body length = 1 0 0 counts o f 10ms duration = Is

• T im e to ro tate 360° = 70 counts o f 10ms duration = 0.7s

Program m es w ere w ritten in N Q C to assess the ab ility o f the R C X robot to

m ap out a m aze environm ent. Testing o f the detection by the ro b o t’s “w hiskers”

o f objects on both the left and righ t w as carried out. This involved assigning

events to each o f the sensors on the robot and detecting w hen an event occurred.

W hen one o f the “w hiskers” m ade contact w ith, or lost contact w ith , an object on

the left or right this generated an event. This event w as then captured and the tim e

o f the event was recorded, see A ppendix A - F igure 60 and F igure 61. Code

presented for this testing process is in A ppendix A - A .2. T he N Q C in the R C X

environm ent supports 32 global variable locations and 16 local variable locations.

The results o f investigating the storage restrictions are p resen ted in A ppendix

A.2.2- F igure 60 and F igure 61. The results from this test indicate that you can

effectively increase the num ber o f storage locations using arrays but it ultim ately

cannot provide sufficient storage locations to store a m ap.

3.2.2.3.I. Outcome of NQC development for RCX Robot

In this developm ent using N Q C the R C X robot w as equipped w ith the

ability to detect the presence o f objects on the left and/or righ t and also to detect

w hen that object w as no longer present. This ability w ould enable the robot to

record obstacles and their continued presence, over the num ber o f unit robot body

lengths. This ability could be used to construct a m ap using the robo t’s w orld

view in robot sized units. A s was identified w hile program m ing the R C X using

43

Chapter 3 - Investigation and Comparison o f Approaches

the LeJO S environm ent, the internal m em ory is o f lim ited size. In the N Q C

approach an attem pt to com pensate for the lack o f in ternal m em ory, low er level

variables w ere chosen to m inim ise the required storage o f data, this involved bit

m asking o f a m em ory location. This w ould enable a variab le to u tilise only the

required num ber o f b its to record the variab le’s possib le d ifferen t states. An

exam ple using the 16 b it in teger “event occured” to store 8 d ifferen t variables

referring to the state o f object detection by the sensory inputs is show n in Table 6:

T ableó Event Record Bit Index

B it in dex B it n am e

1 FR O N T B U M PER OBJ

2 FR O N T B U M B E R O B J G O N E

4 LEFT_EA R _O B J

8 LEFT_EA R _O B J G O N E

16 R IG H T E A R OBJ

32 RIGHT_ EA R O B J G O N E

256 R IG H T E A R P R E S S E D

512 L E F T E A R PR ESSED

The storage location “event occured” enables the contro ller to record the

occurrence o f each o f the d ifferent events independently . This approach allow s the

controller on servicing the h ighest event to clear its occurrence from the variable

and then service the next h ighest event. Low er priority events are alw ays recorded

in the variable and are not affected by updating other events.

U sing the approach o f m inim ising the bits needed by each variable proved

to be an appropriate w ay o f m inim ising m em ory usage, by individual variables. It

did not how ever achieve sufficient m em ory savings to prov ide enough m em ory to

store the location o f objects detected by the robot and p roduce a m ap o f any

usable size.

It w as decided that, due to the lim ited nature o f the R C X m em ory storage,

as well as it only having 3 inputs for the detection o f the environm ent, that the

investigation into its use as the basis for the pro ject could no t yield adequate

results.

44

Chapter 3 - Investigation and Comparison o f Approaches

3.3. Software Simulation Approach

This softw are sim ulation approach required the selection o f a suitable

sim ulation environm ent. The eight different sim ulators identified in C hapter 2 -

L iterature review were:

• O liv ier M iche l’s K hepera Sim ulator

• W right State U niversity (W SU) Java K hepera S im ulator

• E vorobot

• Y et A nother K hepera Sim ulator - Y A K S

• E asyB ot

• W ebots

• Erdos

• Pyro

E ach sim ulator is evaluated to identify its appropriateness and suitability

for the project. A report w as given in the literature rev iew on the operation o f each

sim ulation environm ent. Sim ulators presenting as good candidates for the project

direction will be h ighlighted here and further developed in chapter 4. A

conclusion is given at the end o f the chapter in rela tion to the sim ulator choice

made.

3.3.1. O liv ie r M ic h e l’s K h e p e ra S im u la to r - K S im

The K hepera S im ulator w hich was the first sim ulato r produced for the

K hepera Robot w as investigated. As described in 2.3.1 this sim ulator becam e the

foundation for subsequent authors in the design o f later sim ulators for the K hepera

Robot. C ode developed during the investigation o f this sim ulator is described in

A ppendix B - B .l .

It was concluded that the K hepera S im ulator environm ent provided a good

introduction to evaluating the sim ulation principles u sed w hen dealing w ith the

K hepera robot. Tasks available include: accessing data representing the sim ulated

IR values for the robot, perform ing decisions m aking based on these values and

varying the speed and direction o f the m otors. These gave a good im pression o f

the versatility o f the robot but it identified lim itations in the sim ulation

45

Chapter 3 - Investigation and Comparison o f Approaches

environm ent w hen it cam e to adjusting the m aze. The environm ent required a

com plete recom pile o f all files w hen the controller w as changed. U pdating o f the

m aze layout also p roved sim ilarly cum bersom e. T his w ould preclude the

investigation into a dynam ic environm ent w here structures in the m aze w ere

m oved around w hile the robo t is in operation.

3.3.2. Wright State University (WSU) Java Khepera Simulator

This sim ulator w as investigated to identify i f it su ited further

developm ental w ork fo r this project. The sim ulator p resen ted a nice interface and

allow ed the developm ent o f robot controllers in m ultip le different O perating

System s (OS) due to the sim ulator environm ent being in the Java language w hich

operates sim ilarly across different platform s. The sim ulator w as designed around

the original K hepera S im ulator by O livier M ichel bu t did provide the user w ith

som e advantages over the original. The user no longer needed to recom pile all o f

source code each tim e a change w as m ade and w ith the added benefit that Java

software d id not require a specific OS. The d isadvantages o f this environm ent are

that it only allow s for objects resem bling short w alls to be added to the ro b o t’s

environm ent, the user cannot interact w ith the robot during operation it does not

allow for the robot to be k idnapped2 during a “ru n ” . A s referred to in the

sim ulators docum entation it only allows for coarse grained sim ulation . O w ing to

these lim itations it w as deem ed not appropriate to continue developm ental w ork

on this sim ulator.

3.3.3. Evorobot

The E vorobot sim ulator is designed to run evolutionary robotics

experim ents. This is w here a control strategy is developed from m ultiple “runs” o f

com peting controllers and w here the controller that best approaching the target is

selected to seed the nex t generation o f controllers. A s this sim ulation softw are is

only suited to a G enetic A lgorithm s (G A) approach it w as rejected as an

appropriate sim ulator to th is project, as o ther sim ulators investigated also allow

for GA investigation as w ell as other approaches.

2 S e e K i d n a p p e d i n G l o s s a r y

3 S e e C o a r s e G r a i n e d S i m u l a t i o n i n G l o s s a r y

46

Chapter 3 - Investigation and Comparison of Approaches

3.3.4. Yet Another Khepera Simulator - YAKS

The docum entation [67] for this sim ulator p resen ted a program m e that

w arranted investigation. This investigation was to identify w hether the p latform

was appropriate to continue research. The K -T eam referenced this as a viable

sim ulator [62], D uring the investigation into this sim ulator, the installation

process required the sim ulator source code to be com piled. This is com m on on

freew are code but in this instance the com pilation process p resen ted errors which

could not be overcom e. These errors m ay have been due to the use, by the

sim ulator o f outdated library files. B ecause o f the d ifficu lty in resolving these

issues it w as decided that further w ork on this program m e w ould not resolve these

problem s in the short term , and as a result this sim ulation environm ent w as not

continued with.

3.3.5. EasyBot

The E asyB ot sim ulator presented the user w ith a n ice interface enabling

the design o f a se lf contained environm ent in a 3D m odelling language. The

disadvantage w ith this environm ent is that the user in terface o f L ightV ision3D

(LV3D) w hich E asyB ot is an extension of, is p rov ided only in the Germ an

language, as are the help files for LV3D. The E asyB o t’s extension to LV 3D does

not perform any collision detection w hich w ould prevent the robot going through

walls or other objects, w hich the developer have expressed is required in future

w ork [69]. As a resu lt o f the lack o f collision detection provided by the sim ulation

engine (w hich appears standard in m ost other sim ulators) this operation requires

the u ser’s controller to carry out collision detection. This results in the controller

being burdened w ith the added com plication w hich w ould not exist i f the

controller is run on a real robot. This provides the user the d ilem m a o f not being

able to design a contro ller as w ould be envisaged for a real robot. These

disadvantages resulted in the sim ulator no t being continued w ith as both presented

real obstacles to the developm ental w ork in this project.

47

Chapter 3 - Investigation and Comparison o f Approaches

3.3.6. W eb o ts

In the A life “W ebots” com petition run by C yberbotics Ltd. the m akers o f

W ebots, Petr S tepan achieved the w inning entry w ith h is P ig let controller. This

com petition as prev iously outlined in C hapter 2 .3 .6 .1 , requ ired the en tran t’s

controller to locate “ feeding stations” around a m aze environm ent. These feed

stations charge the sim ulated internal batteries o f the robo t, w hile the feed station

was green, see F igure 16. A fter a feed station had exhausted its pow er it changed

colour to red, see F igure 17. The purpose o f the com petition was to develop a

strategy to locate green charge stations and reach one o f these charge stations

before the o ther robot, depriving the com peting robo t o f pow er from that charge

station thereby outlasting them. A depleted charge station requires tim e to

“recharge” itself, requiring the robot to locate the nex t station.

Petr S tepan’s code constructed a m ap o f the surrounding obstacles and

“feeder stations” . It then p lanned a path to these feed stations. It also carried out

exploration o f the incom plete areas o f its internal m ap. T he exploration w ould

cease w hen it identified that its m ap represented an enclosed environm ent, one

that is surrounding by boundary walls on all sides w ith no possib le escape. The

code w ould identify the status o f each v isib le feed station by its colour,

identifying w hether charging w as possible from that station.

P etr S tepan’s code provided a very in teresting approach to navigation

using a sim ulated cam era-equipped K hepera robot. This code provided a

prom ising basis for this research project. P etr S tepan’s original code is released

under the G PL licence [83],

C ode investigated during the investigation is p resen ted in A ppendix B -

B.2.

It w as concluded that the W ebots sim ulation environm ent w as identified as

one that show ed great prom ise for further investigation in this research. The

com petition entry by Petr Stepan identified very novel ideas in its w inning entry

in the A life com petition. D ue to these tw o prom ising facets o f W ebots and P iglet

controller this sim ulator w as identified as one that w arranted m ore in-depth

investigation in this research.

48

Chapter 3 - Investigation and Comparison o f Approaches

3.3.7. Erdos

The authors o f Erdos present their code to the w orld in som ew hat o f a

partially fin ished state. The code presents to the user a num ber o f d ifferent files

one o f w hich refers to a sim ulation m ode. This sim u la tion ’s functionality had not

been fully im plem ented as the authors provide a m ore com plete im plem entation in

their code designed fo r connection to a real R oom ba robot. O w ing to the

incom plete nature o f the sim ulation environm ent, w ork w as carried out to

incorporate into the sim ulator the updated functionality available for controlling

the full function ing robot driver. The E rdos p latfo rm is w ritten in the Python

program m ing language.

C ode developed for the investigation is p resen ted in A ppendix B - B.3

Conclusions in Use of the Erdos

E rdos sim ulato r im plem ented som e search algorithm s for the Room ba

robot. R oom ba preform ed object detection w ith co llision sensors and c liff edge

detectors. These sensors are only p laced on the front h a lf o f the robot, resulting in

no rear sensors. D ue to the lim ited nature o f R oom ba, th is p resen ted lim itations on

Erdos environm ent, and as a result it w as not continued w ith.

3.3.8. Pyro

Investigation into this Pyro environm ent com m enced w ith the

developm ent o f a sim ple controller. This controller w as designed to generate a

reactive robot and enables the exam ination o f the abstraction behaviour o f the

Pyro environm ent. This system abstraction enables designers to focus on the

algorithm nature o f the controller and allow the system to provide the relevant

inform ation o f the specific hardw are currently being controlled. If, for exam ple

the Pyro contro ller w as asked to supply the inform ation about the nearest object.

I f the hardw are has ju s t a few or even m any forw ard sensors the u se r’s controller

algorithm m ay no t need to know how m any w ere available, it m ay ju s t require the

distance betw een the front o f the robot and an object. The system processes the

request for “fron t” sensors and provides the requested distance inform ation.

This indicates that the standard approach to the design o f controllers for

robots is not requ ired for Pyro because the designer does not require the

49

Chapter 3 - Investigation and Comparison o f Approaches

know ledge o f the physical robot. This abstraction allow s for the use o f relative

term s like “front” , “side” etc to refer to the sensor positions. This abstraction

m akes Pyro a very pow erful tool. The Pyro sim ulator is p rogram m ed in the

Python program m ing language.

C ode developed for this investigation is p resen ted in A ppendix B - B.4.

Conclusions in Use of Pyro

The Pyro sim ulation interface was identified as one that show ed great

prom ise, as the in terface presented the user w ith a selection o f d ifferent real or

sim ulated robots. It provided for the developm ent o f controllers that could be

u tilised to control d ifferent robots, by the use o f abstraction. The interface enabled

the controller to request the “Front” sensors and the specific robot selected front

sensors w ere returned, w hether this was one sensor or m any sensors.

3.4. Overall Conclusions

3.4.1. Hardware Embedded Software Direction

The investigation into the em bedded softw are side o f the pro ject in section

(3.2.2), identified that both the LeJO S approach in section (3.2.2.2) and the N Q C

approach in section (3.2.2.3), perform ed the tasks o f utilising the RC X robot

presented in chapter 2 shown in F igure 25, o f detecting surrounding objects

adequately w ell. It w as also identified that these tw o approaches failed to provide

enough m em ory for the provision o f a m ap storing locations o f sufficiently large

m aze. M em ory w as still an issue even though the N Q C direction provided for

m uch sm aller variab les to be used, by specifying individual bits in a single

m em ory location.

The overall conclusion was to reject the H ardw are E m bedded Softw are

approach as a viable platform for lo cost autonom ous robotic system s due to its

shortcom ing dem onstrated above.

50

Chapter 3 - Investigation and Comparison o f Approaches

3.4.2. Software Simulation Direction

Table 7 below gives an overview o f the d ifferen t sim ulators and the setup

required for each. It identifies w hether m odifications are requ ired to enable the

individual sim ulator environm ent to function as described in its docum entation.

It w as identified during the com parison stage o f th is p ro ject that o f the 8

investigated sim ulators, 6 sim ulators did not p resent as good candidates to form

the basis o f the research due to the follow ing reasons:

1. The K hepera Sim ulator K Sim had the d isadvantage o f requiring a

recom pile each tim e som ething changed.

2. The W SU sim ulator provided an easy to use in terface but had

lim itations in its environm ent.

3. The E vorobot sim ulator was only suited to a G A approach.

4. The Y A K S sim ulator did not function as described.

5. The E asyB ot sim ulator also presented a sophisticated but usable

in terface but its disadvantages outw eighed it usefulness to the

project.

6. The Erdos pro ject had lim itations in its sim ulated ro b o t’s sensory

com plem ent.

The tw o rem aining sim ulators, the W ebots sim ulator and the Pyro

sim ulator prov ided a w orthy p latform to further the investigation. These two

sim ulators are presented in chapter 4 along w ith the w ork developed during the

research w ith in each sim ulator.

51

Chapter 3 - I n v e s t i g a t i o n a n d C o m p a r i s o n o f A p p r o a c h e s

Table 7 Installation process of Simulators

Simulator

Source code

com pilation

required

Source

code

required

editing

EX E file

supplied

F unctioned

after editing

source code

O perating

System

K hepera

Sim ulator
Y es N o N o Yes L inux

W SU Java

K hepera

Sim ulator

N o N o N o Y es W indow s

Evorobot N o N o Y es Y es W indow s

Y A KS Y es Yes No N o W indow s

EasyB ot N o N o Y es Y es W indow s

W ebots N o N o Yes Y es
W indow s

Linux

Erdos Y es Yes N o Y es W indow s

Pyro Y es Yes N o Y es
W indow s

Linux

52

Chapter 4 - Software Design and Implementation

Chapter 4 - Software Design and Implementation

4.1. Introduction to the Software Design

In the previous chapter two sim ulators w ere identified as valid candidates

for inclusion in the softw are design stage o f this research. Each sim ulator w ould

require m ore softw are to be developed during the research for it. This developed

softw are is p resen ted below each o f the sim ulators sections. O utcom es resulting

from the developm ental w ork are also presented below each sim ulator code.

4.2. W ebots’ Environm ent

This environm ent provides the user w ith a very adaptive environm ent. The

user can construct a 3D w orld that they w ish their robo t to operate in and this is

called the “w orld file” . The user w ould construct the robo t they require for their

own w orld w hich is also added to the w orld file. The designs for d ifferent robots

are p rovided in the exam ple designs o f the W ebots environm ent, bu t the user has

to recreate these designs in their new w orld file, specify ing size, shape and

orientation o f each o f the different faces required to construct the robot. The user

develops a contro ller in softw are for their robot and assigns this con tro ller’s nam e

to the “contro ller” field under the ro b o t’s definition in the w orld file.

4.2.1. S o ftw a re D esign ing in W ebo ts

The design in this environm ent involves the selection o f a pre-existing

w orld or the construction o f a new w orld and, as m entioned already, the w orld file

also defines the robot. The robot can be designed w ith d ifferen t m eans o f

locom otion; w heels, legs or flight. Its sensory com plem ent is also defined w ith the

location, the num ber o f sensors and type o f the individual sensors.

The contro ller for the robot can be w ritten in C, C + + or Java program m ing

languages. The nam e o f the resulting executable (.exe) \ Java class (.class) file is

assigned in the w orld file under the “contro ller” field. Each sensor added to the

robot in the w orld file can be accessed by the contro ller using its individual name

from the “nam e” field in the w orld file A ppendix - B .2 .1.

R obots can be designed w ith the fo llow ing types o f sensors and actuators;

distance sensors (infra-red, sonar, Laser), m otor w heels (d ifferential wheels),

53

I Chapter 4 - Software Design and Implementation

cam eras (colour cam era, m onochrom e cam era, range finder device), servos, touch

sensors, grippers, em itters (infra-red, radio), receivers (infra-red , radio) etc.

4.2.2. S o ftw a re D esign fo r th e P ro je c t

T he w orld chosen for this investigation was a m odified version o f one

used during the A life com petition (see section 2.3.6.1). T he robot featured in this

com petition w as a sim ulated K hepera robot fitted w ith a co lour cam era. The

controller used for this environm ent w as a m odified version o f the Petr S tepan’s

original P ig let controller. The design in this strand o f the p ro jec t looks at the

m odification and further developm ent o f the P ig le t contro ller for an

im plem entation o f a system to investigate sensory redundancy . This controller

was selected because it presented an integrated solution to the operation o f

com bining different sensory data and m apping o f the arena (show n in F igure 27).

The original controller d isplayed its search strategy as w ell as its explored areas to

the user w hile it was operating show n in Figure 28.

54

Chapter 4 - Software Design and Implementation

k a life P .w b t - W e b o ts 4 .0 .27

0.994x ^0:01:35:800

Eile Edit Simulation Wizard Help

C h a r g e S t a t i o n

W a l l s

R o b o t

I n t e r n a l W a l l s

Figure 28 Webots piglet world data

Figure 27 Webots arena

D etected Location o f charge station Path to next station

j n j J U

occupancy

W orld internal m ap

Explore |

55

Chapter 4 - Software Design and Implementation

4.2.3. Development Work of Piglet Controller

The follow ing files w ere m odified from th e ir original, during the

investigation into sensory redundancy:

• G rid.java: This is a m odified version o f the orig inal code. A dditional

inform ation has been added to this thread to enable the isolation and

independent representation o f the different in form ation sources being

detected by the robot. This inform ation w as p resen t to the user in new

m aps representing only the inform ation from a specific stim ulus.

D ebug inform ation was also generated to identify specifically how

inform ation relating to the environm ent is detected and stored.

• O utputs .java: The original purpose o f this file w as to display to the

user the in ternal data collected by the sim ulated robot as it traverses

the m aze. The data displayed to the user w as the false colour cam era

im age show n in A ppendix B .2-F igure 69 and the com bined

inform ation from all the sensory data show n in A ppendix B .2-Figure

67. This file w as m odified to separate out the inform ation stream s from

each o f the d ifferent sensors. It also displays o ther internal inform ation

in F igure 31. The original com bined sensory inform ation is still

d isplayed as show n in F igure 32. M aze inform ation identified by the

cam era only p lus the ground inform ation is show n in Figure 33.

Sensory detection o f obstacles by the IR prox im ity sensors is displayed

in F igure 34. The robot registered that an ob ject w as detected by the

proxim ity IR sensors w hen the senso r’s value ind icated that an object

was w ith in 40cm or closer. The m ore p ronounced the red colour is at

locations in the im age show n in F igure 34, indicates the m ore an

obstacle is detected at that area. This results from the robo t being close

enough to detect and spending long enough to produce m ultiple

readings o f that object. Figure 35 represents the com bination o f the

cam era decoded data and the IR sensors detec ting free space around

the robot. The inform ation displayed in these im ages w as utilised to

establish the results from alterations in sensory responses.

56

Chapter 4 - Software Design and Implementation

Piglet_edited_v3.java: Supervisory functionality w as envisaged to be

advantageous to the exploits o f the robo t bu t ow ing to the m issing

functionality betw een Java and CPP im plem entation in the W ebots this

w as not available.

-ini «1pul edit .v 3 _controlle*'„m aze J o w .consu niptian .w bt - W e b o ts

9* E<* Stafetlon wt;«d tj*k>

a Q 13 id O !► ► ►►

Figure 29 Webots environment

Figure 30 Output of simulated camera

P ig le t ro b o t 0 P ig le t_ e d it_ v 3

n Piglet camera data 8 4 . 7 4 8 1 bat posx 0 .3 2 6 2 5 V 0 . 4 2 1 9 0

Figure 31 Camera false colour and internal data

57

Chapter 4 -

P ig le t m a p ro b o t ^ j n j x j

Software Design and Implementation

O c c u p a n c y E x p l o r e

Figure 32 Maze data

C a m e ra in fo ro b o t

C a m e r a in fo lb

Figure 33 Camera information only

Figure 34 IR sensor collision data

1 T e s t info r o b o t 0 W * Prnv V ml il i nitrii fi ß l l 1 ■ 1 ß i i

T e s t info lb

f ij i i i*r. jf il il (i i uuui »# ¿-m 4 1 1 f a! ■

P r o x y Ih

Figure 35 Ground information

4.2.3.I. Outcome from Modification of the Piglet Controller

The controller im plem ented an algorithm that produces a false colour

im age from the sim ulated cam era im age. It rem oves m uch o f the m aze detail in

58

Chapter 4 - Software Design and Implementation

the cam era im age, except w here the w alls m eet the floor and co lour associated

w ith the charging stations.

As the code author rem arked, the code is n o t w ell com m ented. This

resulted in a challenging undertaking to identify how the d ifferent areas in the

code operated. This code w as investigated by adapting it to produce different

m aps from the tw o different stim uli available to the robot. D uring the

investigation it w as identified that, w hile the code perfo rm ed very w ell in the

specific w orld constructed for the com petition, it w ould no t hand le subtle changes

in colour, e.g. even w here shadows w ere cast on w alls. As a resu lt o f these

shadows the robots ability to detect the presence o f a w all by the ro b o t’s cam era is

d isabled by the controller. The ground o f the m aze w as also required to be o f a

specific colour. The result is that the code w ould requ ire adaptation to enable it to

operate in a w orld o f d ifferent coloured w alls and floors. It w ould also require

further changes to enable it to fully decode the cam era im age; the operation o f the

code scanned the m iddle line o f the false colour im age from the cam era for the

height above the bottom o f the im age w here floor and w all/ob ject m eet. This

height m easurem ent is used to calculate the d istance this floor-w all junction is

aw ay from the ro b o t’s current position by producing a d istance m easurem ent. The

current structure o f the code w ould require extensive rew rites to enable it identify

m ore o f the im portant inform ation from its surroundings from bo th the sim ulated

cam era and the IR prox im ity data. The current code does not take into account o f

the possibility that objects m ay have a gap betw een them selves and the ground.

This code w ould in terpret them as being further aw ay from the robot than their

actual location is and this w ould greatly depend on the d istance the robot is from

the actual location and their height relative to the robo t’s cam era.

4.2.4. O u tco m e o f W eb o ts

T he code developed in this research h ighlighted W ebots as very pow erful

sim ulation engine. The ability to sim ulate different robots w ith different sensory

arrays presents a very good developm ent p latfo rm o f a research environm ent. The

investigation into the m odification o f P iglet h ighlighted the pow er o f W ebots and

also the interaction betw een controllers and sensory array and m otors.

59

Chapter 4 - Software Design and Implementation

4.3. Project W ork with Pyro.

T he Pyro p ro jec t provides a num ber o f d ifferen t server environm ents to

allow for the developm ent o f different approaches to the developm ent o f

controllers, these are:

• P layer Server

• Pyrobot Sim ulator

This p ro ject focused on the Pyrobot sim ulator as the server environm ent to

investigate controller developm ent. U nder this server the Pyrobot sim ulator is

selected and assigned a w orld file. P layer Server is a robo t device interface server

w hich provides a netw ork interface to robotic hardw are. It, like Pyro, provides a

level o f abstraction but has not been ported to the W indow s OS. It does not afford

the sam e level o f abstraction w hen designing controllers as Pyro. It can be utilised

by the Pyrobot in terface w hen run on a L inux OS.

The code w ritten for this project in the Pyrobot Python sim ulator falls into

two distinct areas. Part o f it is to define the sim ulated arena in w hich the robot

will operate, and the o ther part is the brain controller used by the robot.

To run the Pyrobot environm ent the fo llow ing setup is required see Figure

36, the user selects the different options under the fo llow ing headings:

• U nder the Server selection: The user selects the

“PyrobotS im ulator” and loads the w orld file “A _m apFileLoad.py”

• U nder the Robot selection: The user select the robot referred to as

“PyrobotR obot60000.py”

• U nder the Device selection: The user select the hardw are they

require to be supported in the particu lar sim ulation run, int this

case “A llSupported .py” hardw are is selected

• U nder the Brain selection: The user select the contro ller they

require to operate w ith the selected robot and hardw are choice, in

this case the “A l_R obot_d isp lay_ t2 .py” contro ller is selected.

60

Chapter 4 - Software Design and Implementation

py robotiojGMIT-USER-L AB - i n i xi

£8o Load ßobot firain

Server EAPython24\Ub\sie-packaoes\pyrobol\plugim\wcxids\Py»obol/A_mapFieload py

Robot EAPython24Mjb'4*e-packages\pyrobot\pluginsVoboU/Py»obotRobot60 ̂py [View

Device*: posdranp] — * View

Brain: E : \Python24UÌ)\tàe-packages\pyrobo(\pkio<m\bfaint/A1 _R obot_dep»ay- l2. py View

Step Run Stop | Reload Bran

Pose: X: OlOOY: 0.00 Th: 0
Loadrg device sortai{1]...
Loading device light [1 J
Loading device bulbtH«
Loading device stmuJation|l |
Loadmg device position[1 j...
Attempting to import 'A 1 _R obot_cfcsplay_t2'
hello from bfain_init_py
Loaded E : \FVthon24\L4Me'package j\pyrobot\plugm\bf «ru\A1 _Robot_duplayj2 pycl
['sonar', light'. 'buto'. 'tfmiation', 'position'!

^1

w

Command

Figure 36 Pyrobot environment

The code developed to define the arena is as follows:

• g lobalEnvironm ental V ariables.py: This program m e is used to store

com m on data that w ill be requ ired by a num ber o f d ifferent sources in

the code. Inform ation such as environm ental size, centre position and

m ap file nam e.

• m azeExitM ap.txt: This is the file contain ing the inform ation on w all

positions in the m aze. It defines the start x and y, and the end x and y

position o f each w all section. T his m aze is constructed in the sim ulated

w orld. See in Figure 38 for resu ltan t m aze in sim ulator.

• __ init .py: This is a b lank file tha t needs to be in a fo lder to indicate

to python tha t it is a package directory. It is run first and thus any

m ethods p laced in th is file w ill overw rite existing m ethods in this

folder.

• pysim _extension.py: This file defines the object

“T kSim ulator_extend” that extends “TkSim ulator” . It provides the

functionality o f loading m aze file. The object reads in the file and

creates the w alls from the p rovided x and y coordinates. The m aze file,

is passed to the fu n c tio n init () as “m apnam e” param eter.

61

Chapter 4 - Software Design and Implementation

A _m apFileLoad.py: This file defines the sim ulation w orld. It

constructs the sim ulation environm ent by defin ing an instance o f

“T kSim ulator_extend” , adds a robot to th is environm ent, specifies the

devices the robo t w ill possess and adds ligh t objects to the w orld .

TVifft«r.Msc
g«tdoub<«
noary
d*t«t*command(s«l(. ram*)
tkjftrfotMxIfCMH, bool«an-Noo«)
tk.Nsqu«(s«lf)
tk_MtPaf*tt«<*«H. ’ary*. "kw)
tkjrunu Baraseli. *args)
wan_vadab>«(J«lf. nam««'PY_VAR')
wah validi. narrŵ PŶ VAR*)

wndow«Non«)
©aJt_v}ji&a*y(*«Jf, window« None)
s«tvsr(f«if. nam«»'PY_VAR\ vaio«»'I")
0«tv*r<f«lf. nam««PY_VAR)
g«tbool«ar<i*lf. $)
ÎOCtJS_S«t(i«lt)

TVinurVttn
minMumcnsNont, minD«nom=Non«. maxNum«p*Non«. ma*0«r>om*flon*)

aif>«ci(*tlf, minNom«f»Non«. mlnDenom̂ Non«, maxNum«f*Non«. max 0« nom "Non«)
wmjmnbut«s<i«lf. *a/çf)
artribut«s(s«lf. 'args)
wm_cK«nt(s«ll, nam«»Non«)
cli«nt(*elf, ram«*Non*)
wm_colom>apwindoo>x(j*li1 ’wist)
colorm»piwndows(s«<f. "«Hist)
wm_command(**lf. valu«* Non«)
command «̂!!, valu«« No«*)
•m_d*ioonlfy(««lf)
d«iconify(s«lf)
»mjocusmod«)(*«li. mod«l*Non«)

vftMranCMif)

pyrobot .simulators .py sim je rting. ¿emulator "

add$hap«(j«li, nam«, ’arg*. "nargs)
addUght(j«H. x. y, brighin«ss. oolor̂ 'ytDW)
addRobot(*«lf. port, r)
»cal«_x(s«lf. x)
scal«_y(*«lf. y)
castRay(*«l<. robot. x\. y I. s. max Rang«« 1000 .Û. lgnor*Robot«‘*«lf\ rayTyp«-7ang«’)
pn>c«s*<s«)f. r«qo«st. socknam«. pickt«*«!)

t oggi« Opt ton(s«lf. key)
simTogg!«(s«tf. k«y)
toggl*ft*Jt. k«y)
r*j«t(i«li)
mak«Mwu(s*M. bar. ram«, commands)
d«stroy(i«Jf)
d«spwch.«v*niCs*lf. «v«nt. typ«)
»dd\toui« Binding j(«tlf)
ofiek_b2_do«in(s*lf. «»«nt)
cMck_b3.do«r>(*«lf. «v«nt)
cbck_b2_up(s«lf. *v«nt)
oRck_b3_up(*«l(. «u«nt)
cBck- b2_mov«(i«lf. «v«nt)

updat«(s«lf) _________

Tk Simulator «xt«nd

_init__(««lf. mapnam«. dimension». offs«ts. soal«»40 0. root*Non«. rw»l)
prtm_som« Data(s«lf)
loadMip(seli)

Figure 37 UML Diagram o f the simulator environment

62

Chapter 4 - Software Design and Implementation

Figure 37 is the U M L diagram o f the code constructed to operate w ith the

Pyrobot S im ulato r’s sim ulation o f the environm ent. It extends the original object

“TkSim ulator” to add the aforem entioned ability to load a m aze m ap into the

sim ulated w orld.

' Pyrobot Simulator j n j x j

View Qptiom

Figure 38 Simulation environment with maze file loaded

The code developed to define the ro b o t’s brain con tro ller is as follows:

• m azeExitM ap.txt: This is the sam e file used in the construction o f the

sim ulation arena. It is loaded by the contro ller to provide the prior

know ledge o f the m aze environm ent.

• globalEnvironm entalV ariables.py: This file is also used by the

controlling and the sim ulator parts alike. It is u sed to define global

param eters for the system . It defines the size and m apping scale o f the

environm ent, it also includes the nam e and d irectory path o f the m aze

file “m azeE xitM ap.tx t” in use

63

Chapter 4 - Software Design and Implementation

• robot_data_v4.py: This file perform s the backbone o f the controller for

the b rain o f the robot. It holds the m ethods by w hich the robot updates

its particles. Particles are possib le locations for the robo t pseudo

random ly p laced through the environm ental space in w hich the robot is

in tending to operate. Each particle has a location (x, y), d irection and

size representing the probability that this particle is the current location

o f the robot. F igure 39 below show s a typical spread o f initially p laced

random particles. This file includes the m ethods to perform the

calculations to identify the proxim ity o f individual particle location to

the relative m aze w alls. It know s the structure o f the m aze as this is

p rio r know ledge to the robot, and this is loaded into the environm ents

display, bu t does no t know its current location in the environm ent. It

identifies ghost particles, those w hich pass through w alls as a resu lt o f

the update process, translating each particle by the am ount the robot

has m oved. These ghost particles cannot represen t the current location

o f the robo t as the robot cannot pass through w alls and as a resu lt the

particle is rein itialised and assigned a new random location. Particles

that have sim ilarities in the distance they are from objects, to the

ro b o t’s calculated distance sensory data, have their w eighting

increased, as they represent h igher p robability that their location

represents the ro b o t’s current location. C onversely particles distance

m easurem ents not com paring favourably to the sensory distance data,

have their w eighting decreased. I f a w eighting becom es too low the

particle is also rein itialised and assigned a new random location. The

code displays the internal in form ation to the u ser b y d isplaying all the

particles w ith representative sized dots ind icating their respective

particle w eighting, see F igure 40 for result o f updated particles after a

num ber o f initial steps. The code also checks w hether the new ly

created particles reside on a w all, i f this resu lt is true they are

reassigned different random location values.

• A l_R obot_d isp lay_ t2 .py : This file is used to define the brain o f the

robot. It extends the T kR obotD isplay object defined in

64

Chapter 4 - Software Design and Implementation

“robot_data_v4.py” as w ell as the B rain object. It perform s the sim ple

action o f driving the robot forw ard or turning it depending on the

values received from the sensor groups: front, left-front and right-

front. It updates the particles representing possib le locations o f the

robo t in the sim ulation arena. The particle are m oved by the value that

robo t has altered its ’ original position and orientation as it perform s

each step. The controller also updates the w eighting o f all particles

depending on the values received by the robots sensors, see F igure 40

below . I f the particle values tends to agree w ith m easured robots

values there is a higher possib ility that their locations are the sam e so

the particle gets a h igher w eighting. The inverse is also the sam e so

particle values that tend not to agree w ith the robot get a decreased

w eighting.

0»

Figure 39 Internal data of robot including the particle locations

Figure 39 above displays the internal data at the offset. The Particles

representing possib le locations o f the robot are pseudo random ly arranged around

the sim ulation arena. These particle w eigh ting’s w ill be increased or decreased, if

they tend to agree or disagree respectively, w ith the values m easured by the

ro b o t’s sensors. This is show n in F igure 40.

65

Chapter 4 - Software Design and Implementation

Figure 40 Robot's internal data particles increasing weighting

66

Chapter 4 - Software Design and Implementation

M u r a r * H k w « , m »n O i n o m « H w « . m a x ^ j m s r ^ N i r r * . m a x t f c r w m * H o n «)
m ïï> iii(n fc r» t4 o r* i, m m O èno m «N tó ifr)

w r o i ¡aqj*)'1
a f l n W « & t ì t i p n j L i)

c U ir t t C t Ä H . r ï * m * » M « r i *)
« m j ^ O f T n ï p w ! n d & « ï (î e J I ,
û ô lô im s p t t'ih â o 'iifC s c lf. 't u & f l)
^ ^ o o m m a n d C s i i i , v * l W ’ K « n û
c ç m m a n ^ i l f ; v a l ü « * ? ^ «) errijtÊ̂hîfyiCsirt)
w rn J O ô u * n » d è l (s « i i . m o d « l > M o n »)

ÌVirtaf-EaicV îfo1!

wïMix̂Ki*U)

"ro tâ t Jfaita. _y 4 O lap lajy y I ' i - t a in ¡ g r a in :

mŵwïï| *aros)
’ a r ç ï) rom«0r«W. ‘a rçs)

ttO p(f«tQ
n*rtD *w ic«{i«lf. ‘a /ç s , ' 'k * y j j« r f i j
rernovt04Wic<Hi l̂.'»rçi* ’"ktyiniKdi)
u p d M « Q * lf)

motorçOf«1*. ***9*)0« Dovici*!f. '¡jrçf)
H»ACs«Jt, *»rüs)
N q u iP t s C i i l l , 'a r y f)gmBvoln«Ci»ft)

>•< :drtustroy<jc«IO

iKimdirwj
„ r » p r_ X i* l ï)«artisti ()
Îw n (*« S f ■ l i f r w o y i » N o n *)

Iil3awrri>r<i«l()
î *< üaamorM’«̂ . dawpniç)

movij'tfd
m o v i ju m

xjwaf
y _val
a n $.v a i____________________________

d«f4rrriin*M we(3«tf, fnxrt. I*fi, rigto) *•&*<)____________

p^irrt'SuLf«i-*r • D £ ita ï.c fli!> .tl,0
F ^ iC ^ iF a i t J o â i t i C ^ iH f 'd 't C i ^ Î)
m a k i K W i f c d f / t o r , t à p p i r a w i a m i i j i
a - 3 ilV V a ï< i4 fi. » 1 , y î , « l i t i a ' t ì a c k ^
d r a » l i o * (r * l f , ï l . y l , * 2 , i l , fr il, ta © ,
t o a d M a j K M l i)

• 3 n N . « l P « W « » « « f f)
m o y * P a r tic i * C o o r t i (f « i f , I)
i c a i « ^ i P a r t l d « î { i * U)
r e t c a t« Pa rt ! e ^ { s « l f , W w)
r r > :> v « / ô P a r t I c t o i(M I ! , d * . d y , a o ij*#)
r v < o v * P a r t k i « (s « f f . d * . d y , x - t g l * , rid fc jO
O f » « P * r t k . | * (s « f i , x . n t » . Y j * * . K j & W , Y _ o W)
c f « « i t l w P a r t k : f i i f * * I i , r& x)
r c o i - * * * P a < t J c l ' i ì (* « H , ;

TVlnUr.Mgc*

$ttd*uWi
.w »̂

r c - b a t,d a i a , v 4 ; R fr lx a j u r a r v «

ï̂fS rt-aboi _yi«l 0

R o fc c « iS ta i(È _ y C < « lî. Y)pMìfflpK\ldbS(3tlVj
ç r t a t i À 3 P a r t i e k j f i e îi)
c h ^ V A T W l S i F o r P © * * (i « l f . » , y)
f j w Î i i m X O M J f)
r a r w t o m Y (s « l f)

a ta n m c « T o » M n « tO l> 3(c * li , X . y , an g, d a t io n)
C k a r æ i « T < î N * a m i C « i j _ S « r « o f 0 1 ^ i * l f .) f . y . a f v g , « i ^ J a d « *)
z d ^ iü P a n k ^ ï^ i i f , ar>[>l*, d lît)

t i n d o m t t t V f l ^ g h l C s '« ! ! . c * l , m ® 3 S v d « v [*t k > r O
a d j / f l P a r t K U t t S ^ l f , » » n t o r g) ___________________________

i:fû] tila & e iT tm *A d { i* ïf , n a m *)
(J f . f l r i c i m i f f i t l f , b w ï l « a n - i i o o t)

:is < _ fi« 'P a ifn t{ i« i!. " « d » ; “ k »)

' l l k j w n u f i a i r ^ t l f » :*a i T f i)
tça fl_ vs ria W *(s tlf , ru tm **" P Y J y W i

w a i i v » f (t » i f . m u n » , ‘ P Y _ \ / A R ‘)
iwà_»lw j«iiC i«ir. d ftdàir* Noue)
wïî{_y)i*6iiSÿ(«I(. wnrrtîû»» Horn)
» ^ v a r f ^ f f , r v a m « * 'P Y _ v / A f t \ v * t u « » T)
g r i v a l i « If, f ia rn * * ’ P Y J ^ R >
ÿ4ibooi(uri(î(ilf, j)

Figure 41 UML of Robot Brain

Figure 41 represents the UML diagram for the Brain controller of the

robot. The controller inherits methods from the Brain and “Tkinter” base objects.

67

Chapter 4 - Software Design and Implementation

This enables the controller to request data from, and cause actions in the Pyrobot

simulator

4.3.1. Pyro Outcome

The work with the Pyrobot Python simulator was in the development o f a

Monte Carlo Localisation (MCL) algorithm to assist the robot controller to

localise itself within the maze environment. The controller used the information

detected by its sensors to adjust the weighting o f the particles eacli time it altered

its course to identify a possible current location for the robot.

4.4. Results of Implementation

The results for this chapter’s software design and implementation stage

will be analysed and presented in the next chapter. An assessment criteria is also

presented, which lists the attributes o f each simulator under different headings.

68

Chapter 5 - Analysis and Results of Implementation

Chapter 5 - Analysis and Results of Implementation

5.1. Webots

5.1.1. Analysis of Webots

The Webots simulation environment provides the user with a very

adaptable approach to mobile robot design. The user can perform a design layout

for the arena choosing the different coloured structures required for simulation.

Each structure that is required to be placed in the arena must include a boundary

object. This boundary object is the 3D region that will be detected by the robot

sensors as the object’s boundary. Inaccurate boundary objects will produce ghost

walls and ghost objects resulting in the controller producing erroneous results,

confusing the users until they spot their errors.

The physical robot’s design also depends on user’s choice; the user can

design their own robot with any number of sensors and physical shapes and define

the wheel placement and rotational direction and orientation. They must also

provide the robot with its own boundary object as it also becomes an object

needing detection by other robots in the environment. The simulation environment

prevents a robot’s boundary object from passing through another boundary object.

5.1.2. Results and Observations with Webots

The Webots software is proprietary software which requires a license fee

to be paid. The company also provides a package which includes both the

software and a Khepera robot for development purposes. These high costs can

dissuade individuals or less resourced centres from developing controllers using

this environment.

The Piglet controller using the Webots environment was designed for the

Alife competition described in chapter 2.3.6.1. Its use of the simulated camera and

proximity sensors by the controller algorithms resulted in it being a winning entry

in the competition, initially identified this as a very promising direction of this

research. However, following further investigation into this controller, this did not

result in a valid approach for the project because the algorithm was coded to work

only with specific colours in the maze arena. In addition, the algorithm only

partially decoded the information from the simulated camera. This algorithm was

69

Chapter 5 - Analysis and Results of Implementation

sufficient for the competition entry, beating off the other entries but lacking the

extendibility to other tasks without significant changes to the algorithm. These

changes would require extensive rewrites due to the complex nature of the code

and the author’s lack of using descriptive comments in it, identifying how specific

functions are used, and the reasons for the choice of variables. Code revisions

were attempted during the project, but it became somewhat of a trial and error

situation to alter the code to achieve desirable results. This resulted in painfully

slow progress and ultimately identified the limitations of the approach without a

significant work effort to rewrite the controller code.

5.2. Pyro

5.2.1. Analysis of Pyro

This approach to controller design for mobile robots, addresses the

problem from the point that the designer (user) may not want to, or need to, know

the specifics of the robot. The user requires the robot to move forward, but they

may not know that for a specific robot A to move forward one of its specific

motors needs to turn in a specific direction, or, that for the specific robot B, 2

motors need to turn. For example, the user may just want the robot that is

currently selected to drive forward. Pyro takes the view that each robot with

different motor configurations for driving forward, will be handled by a single

“robot” object function. This function will enable a user’s controller to seamlessly

control different robots with no modifications, whether the robot is wheeled or

legged, requiring one or many different motors to facilitate forward motion. This

allows for the abstractionisation of the user’s controller for the underlying

physical hardware of the robot.

The Pyro environment takes this abstraction approach also to the

measurement of distance. The units used in measurement can be defined in terms

of robot units, one unit being equal to the size of that robot. This also allows the

controller to operate varying sizes of robots. For example, if a robot was of size

55mm, as in the case of the Khepera robot, or 44cm as in the case of the Pioneer

Robot, it makes little sense to define physical metric measurements in order to

specify that the robot should travel a fixed distance in centimetres or metres,

because the Khepera speed is rated in cm/s compared to the Pioneer which is rated

70

Chapter 5 - Analysis and Results o f Implementation

in m/s or much larger robots which maybe rated in km/s. This enables the

controller to operate on the environmental scale of the physical robot. This

enables the user to design one controller that can investigate in the scale of a room

with a Khepera robot, a building with the Pioneer or a much larger area outdoors

such as an urban area with a robot of much greater size than the Khepera robot.

The robot units can also be utilized in the measurements acquired from the

robots sensors. The sensor measurements can be returned in robot units. The

sensors themselves can be treated with abstraction. The user is not required to

know what and how many sensors the robot has. They can request sensor

measurements that represent regions in the robots sensory complement, e.g.

sensors that form the forward object detection, left side, right side or rear

detection. This also extends to groups within these e.g. right-front and left-front.

The user can request, from the sensor information returned, the particular type of

sensor the information is coming from, if desired, but it may not be necessary for

the operation.

5.2.2. Results with Pyro

This abstraction approach does come with certain caveats, a controller that

requires a large number of ultrasonic distance sensors to perform it operation will

not perform as expected where a robots physical “distance” detection is performed

by tactile collision sensors. The large variation between a graduated knowledge to

the proximity of an object and a “can’t see” vs. bang, the robot has stopped,

approach, requires an altered controller design [84].

Pyro also enables the user to design with the specifics of the robot in mind.

The user has access to the raw data of the sensory outputs displaying the

measurements in metric units. They can also request that the robot move forward

a required metric distance if so required. The controller can also access the

specific number of sensors or, more powerfully, they can query the number of

sensors available and utilise this information during operation. This ability to

request the available sensors during operation enables the user to adapt their

design during operation depending of availability of sensory information.

71

Chapter 5 - Analysis and Results o f Implementation

Pyro is presented to the world as an open source programme, unlike

Webots which does require a licence. This enables more limited research

departments and hobbyist alike to experiment and develop controllers and worlds,

allowing them to test their designs and provide them with the ability to realise

their aspirations in the design of mobile controllers. They can then interact with a

real robot, if one is available, with the controller they have developed in

simulation.

5.3. Assessment Criteria

The assessment of the simulation environments is carried out under the

headings in Table 8.

72

Chapter 5 - Analysis and Results o f Implementation

Table 8 Assessment criteria of simulator’s environment

Assessment Criteria Webots Pyro

Adaptability of robotic

Arena

Ability to design complex

shapes. Each shape

requires an additional

boundary object

Ability to create complex

shapes.

Portability to real Robotic

Hardware

Controller can be used

without alterations on the

physical robot it has been

designed for.

Controller can be used

without alterations on a

VARIETY of physical

robotic platforms.

Development of the

Environment

VRML97 3D description

language

Python Programming

language

Controller Development

C/C++ and or Java can be

used to develop a

controller for a specific

robot

Python is used to develop

a controller for a

VARIETY of physical

robotic platforms

Extendibility

Does not allow for

alterations as this is

proprietary software.

Owing to open source

nature the Environment is

fully adaptable

Allows for simulated

flight
Yes

Currently not

implemented

Simulated Robotic

platforms
Variety Variety

73

Chapter 6 - Conclusions and Recommendations

Chapter 6 - Conclusions and Recommendations

6.1. Conclusions

This thesis has presented and reviewed a number of different approaches

generally available for the design and development of autonomous robotic

systems. It compared the development of various hardware systems with differing

embedded software environments to the development of robotic systems using a

computer simulation approach. The robotic simulation approach involved the

investigation of available software simulation packages, and the selection of the

most appropriate one for the development of autonomous robotic systems.

This investigation identified that the RCX platform provides the user with

a good prototyping platform but it does not contain sufficient resources on board

to store adequate information required to store a map of its environment. This is a

major requirement for an autonomous mobile robotic system. This shortcoming

can be overcome by the inclusion of a base station computer to store information,

but this means that the design is no longer completely autonomous.

The simulation investigation in the project assessed different simulation

environments in the application of the development of autonomous robots. These

simulation environments were critiqued using the following headings:

• Simulation of complex shapes in the environment to better

representing Real Worlds.

• Adaptability of the environment

• Controllers portability to real Robotic Hardware

• Ease of development of the Environment

• Ease of the development of the Controller and controller languages

• Extendibility of the Simulation Environment to allow for further

development

• Simulation of different robot Platforms. These represent real robot

platforms and / or purely simulation created ones.

• Modifiability of the Robot under simulation.

• Interaction with the Robot during simulation, this will allow for the

robot to be kidnapped.

74

Chapter 6 - Conclusions and Recommendations

• Simulation of different Stimuli

• Licence Cost of Simulator.

• Operating System supported by the simulator

From the results of the assessment stage the most promising two were

selected for further investigation. Of these two simulators, Webots is proprietary

software requiring a licence fee and the other Pyro is presented as an open source

programme.

Webots presents to the user a simulation environment where the user can

design their world and robot and develop a controller for that robot and simulate it

in this environment and assess the validity of their controller.

Pyro presents the user with a similar ability to design a world, which has

been further extended by the work in this project to allow the Pyro simulator to

load a file containing wall locations information. The interface then allows the

user to select a robot to run their controller on. The difference between Pyro and

Webots comes in the design of the controller. In Webots the controller must be

designed for the specific robot, in which it is intended to run. The individual

sensors must explicitly be identified to allow the controller to operate. Pyro on the

other hand uses an abstract approach to a robot. This means that it allows the user

to interact with the sensors but without explicitly identifying a particular robot’s

configuration. The user just needs to refer to the distance sensors and the Pyro

environment identifies the particular robot currently being controlled and returns

its equivalent sensors. This removes the need for the user to constantly keep in

mind that a particular robot has X number of sensors and that number Y sensor is

pointing in a given direction. The huge advantage of this abstraction is it allows a

controller designed for one robot to be installed in a different robot and it will still

operate as intended.

Pyro, because of the use of abstraction, is highlighted as the most

appropriate to the design of autonomous systems. Where any further development

is envisaged, changes in the hardware of the robot or the robot itself will not result

in the controller becoming void.

75

Chapter 6 - Conclusions and Recommendations

The code developed in this project amounted to 8000+ lines consisting of

original code and modification of other author’s code. This does not include the

significant code refinement iterations required during testing and evaluation of the

controllers. This is contained on the included CD and is available to other

researchers.

The original files provided at www.Dvrorobotics.org required adaptation to

allow them to properly operate under the windows environment. The updates files

are available on the CD and the changes are referenced in the appendix to this

thesis.

6.2. Recommendations

Pyro simulation environment is not fully implemented to run under the

windows environment because the simulated camera driver has not been compiled

for this operating system. It is only available under the Linux operating system

environment which can be accessed through installation of Pyro on a Linux box or

using the Live CD option which provides the user with a non invasive way to run

Linux on a Microsoft Windows computer. The computer boots off the CD loading

the appropriate files into ram leaving the hard drive unchanged, unless the user

chooses to store certain files on the computer’s hard drive.

Owing to the availability of Pyro under the open source licence the

environment allows users and developers to adapt Pyro in any way that they

require.

On the hardware side a newer version of the LEGO MINDSTORMS

Bricks has since been released viz. LEGO MINDSTORMS NXT which provides

extra memory and faster processing speed [85]. This may provide an interesting

platform for the further investigation to the development in autonomous robotic

environments.

76

http://www.Dvrorobotics.org

Appendix A - Hardware Code

Appendix A - H ardw are Code

A.I. LeJOS Code

The following software code was constructed to implement the desired

behaviours. Testing was carried to verify that the desired functionality was

achieved.

A.1.1. Communication Testing with LeJOS

Testing of the communication between the RCX and the base station was

carried out with the following procedure.

• TestRCXComm.java: This programme tested the communication between the

RCX and the base station by sending characters ‘1’,’ 2’, ’3’ across the IR

communication port. The flow chart is illustrated in Figure 42 below.

Figure 42 TestRCXComm flowchart

• SerialListenerTest.java: This programme tests to see if a packet of data is

available on the IR port. It reads in this data and tests to see if the first byte is

an Op-code command if so it combines the next 2 bytes lower byte first then

higher byte to form integer. It checks to establish if this integer is valid and

77

Appendix A - Hardware Code

displays this number on the RCX’s screen for visual conformation that the

communication link is operation. Figure 43 below is a flowchart of the code.

• Sender.java: This programme tests the ability to send a packet of data to the

base station. A flowchart is given for the code in Figure 44 below.

78

Appendix A - Hardware Code

S ender ^

W a it for
press &

release of
"Run"
button

1r
sendByte

1f
1++

^ sendByte

packet[0]
= 0x45

packet[1]
= byte

1f

send Packet of
2 bytes

0 Ì r

Return

End

Figure 44 Sender Flowchart

• SendDistanceValues.java: This programme drives the robot around and

detects collisions with obstacles on the left, front and right, transmitting on

collision the location of the RCX robot to the base station. The code generates

the transmission packet from 14 bytes of information. The information sent is

the: X and Y position and the angle values. Each value is a float, which

consists of 4 bytes of data. These 3 float values, plus 2 additional bytes as

packet start and end byte make up the 14 bytes sent. The flowchart is

illustrated in Figure 45 below.

79

Appendix A - Hardware Code

M akeC ontrol (jïoâtToBytes)

f

result =
S1 value

OR S2 value
OR S3 value

1

J
convert

float to 4
bytes

high byte
first

T
{^Return result j (Return

(^sendValuesT j

sendData
[0] = start /

byte
1

floatToBytes(X)

sendData
[1-4] =

floatBytes
W

floatToBytes(Y)

sendData
[5-9] =

floatBytes

floatToBytes(ang)

' sendData
[9-12] =

floatBytes
sendData
[13] =stop

byte

sendPacket
(sendData)

♦
(Return J

Figure 45 SendDistanceValues Flowchart

80

Appendix A - Hardware Code

• RunSendDistVal.java: This programme is the driving programme to assign the

behaviour of SendDistanceValues as the top-level task in the RCX. It is used

to test the correctness of operation of the SendDistanceValues code. Figure 46

is the flowchart for this code.

F i g u r e 4 6 R u n S e n d D i s V a l F l o w c h a r t

• Receiver.java: This is another programme to test the IR comm. port. It

generates a beep if the port receives data. It also displays the number value of

the received byte on the RCX LCD display. The flowchart is given in Figure

47.

f Receiver

Figure 47 Receiver Flowchart

81

Appendix A - Hardware Code

• TestRCXComm4.java: This code is designed to run on the PC side o f the

communication link. It tests whether or not the IR tower is connected, and if

there is a connection to the RCX unit. It then receives the information via the

IR tower from this RCX unit and displays this on screen to the user. The

flowchart is in Figure 48 below.

Figure 48 TestRCXComm4 Flowchart

82

Appendix A - Hardware Code

A.1.2. Mapping ability Testing of RCX using LeJOS

Testing on a mapping approach was carried out with the procedures below.

The robot storing detected objects to the left, front and right in an internal map. It

was then programmed to transmit this saved map to the computer for verification.

The user would then view the received map to check it for completeness

• Nothing.java: This programme is designed as the lowest level task, which

does, as the name says nothing. This task is operational when no other task

requires control of the process. The behaviour takes control by returning

“true” from the method “takeControlQ” Figure 49.

(^takeControl

_____ I t_____
(Return true }

F i g u r e 4 9 N o t h i n g F l o w c h a r t

• BehaviourSendData.java: This programme is a modified version of the inbuilt

Behaviour .java file. It adds the functionality to each behavioural process. The

functions that are added in the update are “floatToBytes(float)”,

“sendCoordinatesQ” and “sendMaze(MazeArea)” see Figure 50 below for

flowchart of these functions. This equips each defined behavioural process in

the driver file, allowing the process to update the base station if it requires

such functionality.

83

Appendix A - Hardware Code

(̂ sendCoordinates^)

sendData[
0] = start

byte
*

floatToBytes(X)

sendData
[1-4] =

floatBytes

floatToBytes(Y)

sendData
[5-8] =

floatBytes

floatToBytes(ang)

-'sendData
[9-12] =

floatBytes
sendData
[13] =stop

byte

sendPacket
(sendData)

Return)

C

N o

Return

F i g u r e 5 0 B e h a v i o r S e n d D a t a F l o w c h a r t

LowLevelDrive.java: This programme performs the task of driving the RCX

robot forward. The flowchart is shown in Figure 51 below. It inherits from

BehaviourSendData super class.

sendRow =
Byts[42]

sendRow
[0] = T X byte

+
¡ = 0

i t
i = ¡+1

sendPacket
(sendData)

Ç sendMaze

sendRow
[1-4 +

j offest] =
float value
of maze[ij]

sendRow[41] =
E N D R O W

(̂ floatsToBytes(float)~^)

 T

Z convert
float to 4

bytes high
byte first

 i _____
Return true ^

84

Appendix A - Hardware Code

takeControl actiorQ suppressQ

Return -
isMoveQ

1 r 1 r
nav.forwardO nav.stopO

1 r
(Return) sendCoordinatesQ

1*

C Return
J

Figure 51 LowLevelDrive Flowchart

• LeftRightBumper.java: This code requests process time, by returning true on a

call to its “action” function when it detects an object on the right and/or on the

left. The current location o f that object is then added to the maze using the set

setObstacleLeft and / or setObstacIeRight. The code also indicates the presents

o f such obstacles by highlighting the appropriate input indicators on the LCD

screen o f the RCX, Flowchart for this code’s functions is in Figure 52 below.

85

Appendix A - Hardware Code

F i g u r e 5 2 L e f t R i g h t B u m p e r F l o w c h a r t

• FrontBumper.java: This is the highest priority process task. It requires highest

priority owing to the fact that a front collision stops physical forward progress

of the robot and it requires immediate stopping of the wheels turning to limit

error to dead reckoning navigation. Once a front bumper collision is detected

the procedure in Figure 53 is activated. During the “takeControl()” function,

the process updates the path count in the in the internal representation of the

maze, from the last detected front collision.

86

Appendix A - Hardware Code

^FrontBum per j

Setup member
variables

LCD.setSegment(
SENS0R_1_VIEW)

Return

^ suppressQ

t

nav. stopO

LCD.clearSegment
(sensori)

r Return)

F i g u r e 5 3 F r o n t B u m p e r F l o w c h a r t

• Arbitrator.java: This original code has been edited, to add the functionality,

which empowers the “run” button on the RCX module as a reset button. A

push resets the programme flow back to the start awaiting the next push of the

run button. The flowchart in Figure 54 includes the new functionality added.

The “RUN” button is checked throughout programme operation, enabling the

user to interrupt execution by stopping the code executing.

87

Appendix A - Hardware Code

Figure 54 Arbitrator Flowchart

MazeArea.java: This code allows for the creation of an object of type

MazeArea. This object will hold the internal map produced by the robot of its

surroundings. !t represents the robot’s view of the world as discrete areas

blocks. Each block can be assigned a value indicating that location to be an

obstacle or if traversed by the robot, the “path count” on traversing it. Figure

55 and Figure 56 illustrate the methods provided by the object to update the

knowledge of the maze.

88

Appendix A - Hardware Code

calculate block
location of

robot from x,y

calculate block
location of

robot from x,y

F i g u r e 5 5 M a z e A r e a F l o w c h a r t A

89

Appendix A - Hardware Code

Figure 56 MazeArea Flowchart B

90

Appendix A - Hardware Code

• AbstractSearchEngine.java: This code is used to interact with a MazeArea

object. It is adapted from Mark Watson’s book [86] the code from which is

released under the Open Source Artistic License. The Code was used to assess

the possibility of allowing the RCX to search its internally self constructed

maze. It holds the current “path count”. It interacts with the maze to allow

searching of that maze to determine possible next moves. This is shown in

Figure 57.

¿stractSearchEngine
(w.h)

1r
create

MazeArea(w,h)

1r

InitSearchQ

r

Return }

C initSearchO J
*

Create searchPath
array of

DimensionSmallQ

set counter = 0
*

Ç Return

ZgetPossibleMovesN
(current loc) J

Look for clear or
goal location next
to current location

(equals(d1 ,d2)^)
*

Return true
size d1

true i f \

= 3 *

assign r
locations to

array of moves
[

CReturn array of
moves J

[getPathp)

Return all
searchPathsD

F i g u r e 5 7 A b s t r a c t S e a r c h E n g i n e F l o w c h a r t

91

Appendix A - Hardware Code

A.2. NQC Code

A.2.1. Navigation Testing with NQC

The following procedures contain the code produced to investigate this

hypothesis:

• motors navagation.nqc: The development with NQC started with

investigating the ability of the RCX robot to respond appropriately to

events. The code assigns two events to each of the 3 different inputs on

the RCX as shown in Figure 58 function “setupEvents()’\ These inputs

are assigned as input buttons “setupO”. One event is assigned to a

press on an input, second for releasing that input. Detecting and

recording these would enable the robot to identify when objects come

into contact with one of its inputs or when it lost contact with the

object. Implementing the event management in Figure 59 enables the

robot to detect obstacles on the left and right and collisions between

obstacles and the front bumper. This code assigned the variable

“event occurred” the value of the event and proceeded to implement

the response to the event in the event management function.

Figure 58 motorsnavagation Flowchart A

92

Appendix A - Hardware Code

F i g u r e 5 9 m o t o r s n a v a g a t i o n F l o w c h a r t B

• motors_no_navagation.nqc: This programme improved the previous

version in its event management as shown in Figure 60. The events in

this programme are again recorded in an “event occurred” variable,

which enables the events to be managed by the main programme while

93

Appendix A - Hardware Code

still allowing the robot to detect new events. The difference this time is

that the event management only sets or clears the appropriate bit in the

variable event_occurred, the advantage this presents to the operation is

that the setting or clearing on one event has no effect o f the status o f

the other event. The operation then returns to the main programme,

which dealing with the specific event. The main programme detects

that an event occurred by checking the variable “event_occurred” bits,

if the appropriate variable bit is set the main task can carry out the

required operation.

94

Appendix A Hardware Code

F i g u r e 6 0 m o t o r s _ n o _ n a v a g a t i o n P a r t i a l F l o w c h a r t

Using this method of passing back control quickly to the main process as

opposed to one where the event handler manages the complete response to the

event has the following advantages. The system is able to respond to multiple

events and if an event of higher priority occurs before service that, the current

95

Appendix A - Hardware Code

event can be recorded and servicing after the higher priority event has been dealt

with.

A.2.2. Map Storage Testing using NQC

Storing the map of surrounding objects was assessed using the following

code:

• motors_navagation_single_array.nqc: This code was used to

investigate the possibility of storing a map on the RCX internal

memory. This map would allow the RCX robot to store locations of

obstacles around the RCX’s environment. It was deemed that while

attempting to create an array of sufficient memory locations that the

RCX internal accessible memory using the NQC approach was

insufficient and this code could not be used on the robot. Figure 61

below illustrates the updated approach with location of object storage

in the array “map”. Arrays for objectLeft objectRight and objectFront

would allow for object tracking.

96

Appendix A - Hardware Code

decode
store

event o

event
:d in
ccured

place holder
for event

manaaement
clear
with b
oper

event o

even
it OR
ation
ccured

store time
OR event bit in
event occured

ClearTimer(0)

itwdTmove
unit & record
time taken

IncCounter
(x_ va l)

store time
OR event bit in
event_occured

recorde x,y
location of
detection in

ears_pressed_loc

store time
OR event bit in
event occured

store time
IOR event bit in
event occured

store time
IOR event bit in
event occured

store time
!OR event bit in
event occured

Y e s

F i g u r e 6 1 m o t o r s n a v a g a t i o n s i n g l e a r r a y P a r t i a l F l o w c h a r t

• memorytest.nqc: This programme was used in the testing of memory

assignment in the RCX hardware platform using the NQC

programming environment. The outputs of which are included in the

file “out.txt”. In Table 9 the assigned storage locations for each

variable is listed, as it is generated by NQC output. The programme

tests a number of approaches to memory assignment form using the

“#pragma” to reserve 11 storage locations. From storage location 0 to

10. The programme then assigns names to 17 unique Integers Var 34 -

Var 47 and Var 11. It also creates an array of Integers of size 19. This

is stored in locations 12-31. An integer pointer is also created and

stored at location Var 32. It identified that the stated limitation of 32

97

Appendix A - Hardware Code

variables [48] could be somewhat overcome, using arrays and #pragma

directive and the use of pointers to access this reserved data.

T a b l e 9 N Q C V a r i a b l e S t o r a g e

NQC code syntax Code generates by NQC
#pragma reserve 0 10
int display *** Var 11 = display
int il *** Var 47 = il
int i2 *** Var 46 = i2
int i3 *** Var 45 = i3
int i4 *** Var 44 = i4
int i5 *** Var 43 = i5
int i6 *** Var 42 = i6
int il *** Var 41 = i7
int i8 *** Var 40 = i8
int i9 *** Var 39 = i9
intilO *** Var 38 = ilO
int i l l *** Var 37 = i l l
int i l 2 *** Var 36 = il2
int il3 *** Var 35 = il3
int il4 *** Var 34 = il4
int map[19] *** Var 12 = map
int i *** Var 33 = i
int* ptr *** Var 32 = ptr

98

Appendix B - Simulation Code

Appendix B - Simulation Code

B .l. Olivier Michel’s Khepera Simulator - KSim

The following code was produce as part of the investigation in the project.

user.c: This code is a modified version of the example code supplied with

the simulator. The simulation environment provides the programmer with a “user

info box” [61], shown in Figure 63. This area allows the programmer, to

graphically represent information to the user, utilising specific functions provided

by the simulation environment. This code was used in the evaluation process of

this simulation environment. The edited code’s resultant display is shown in

Figure 62, where outputs are drawn in the user’s info box displaying results. A

partial flowchart of the code in Figure 64 illustrates that sensors input information

is read in the controller. This value is compared against a predefined level

assigned the name “COLLISION_TH”. If the sensor value is above this level the

programme draws a coloured arc indicating that an object is in close proximity to

the particular sensor. If the value is less than the predefined limit a grey arc is

drawn. The arcs are drawn relative to the physical sensor’s location on the robot.

This generates a graphical display for the user of the sensory information, as

individual sensory inputs become greater that a threshold level. The controller

assesses this sensory information and changes the trajectory of the robot

accordingly.

Figure 62 Khepera Simulator Maze environment

99

Appendix B - Simulation Code

mw| tondi sovwl st«p| nini re sot. I coww«nri| ?J Infoi « l - l qultl

Figure 63 User's info box

Figure 64 Flow Chart DrawSurrond

B.2. Webots

The UML diagram for the complete controller is provided in Figure 65 and

continued in Figure 66. The individual files for the controller are as follows:

Piglet.java: This is the main code of the controller it starts the threads and

sensors, it also detects the feeders.

100

Planner .java: This is the thread that plans the path in the grid using

harmonic potential fields

Position.java: computes the position from the encoders data

Output.java: This is the thread that outputs the plans, maps and feeders

Landmark.java: The data base of feeders used

IntPoint.java: Used in the planning of a path in 2d

Image.java: Is used for thread synchronization

Grid.java: This is the thread that constructs occupancy grids

Driver.java: This deals with the robot state and defines what action will be

done.

Appendix B - Simulation Code

101

Appendix B - Simulation Code

_ Output

piclureUBuiïeredlmage

Dlc[ure2:BuiTeredlmaae
grid piciBufferedlmaae
arid colorBufferedlmaoe

explorBufferedlmage

qr:Grld
robot:Poslllon

feeder pos:Poslllon
p|:Planner

camera:lnl

g}Ylmaqg;|ntn
ImageLabgllMal
lmaaeLabel3.JLabgl

lmageLabel4:JLabel

ImaagLmiSJUW
KDuIpuKgiQrld.rPosilion.fiPoslUon,
►lnllOulfi:vold

►runO:void

> 4
Thread

Plarmof
ar:Grid
robot:Posillon

feeder pos:PoslHon

Im iLanjmarK

pgw Mfl.Lmaflft
camóra:<nl

O ft B l f f iH f r w .Q R 8 « 6

OR SCALE:double=gr.OR SCALE

PRQ8.dOut>le=ar.PRQB
IPROB:lnt=(lnflPROB

ENLARGE STEP:lnt=2

♦plan_enable:boolean

♦tt:lnt
m in llme:lnl

max tlme.lnl
min n:inl

max n:inl

ava lime:doubie
n plan:lnt
n oet:lnt
slarl lime:lnt

Si timg:|nl
slop 1lme:lnt

obstacles:lnll]0=new Int |OR__SlZEjij

o:lntDD=new Int |GR_SlZ£j!OR_S£{
plan:doubleOO=new dÆufol#[GRjSti

g o a ljc ln l
goal_y:inl

shlft:doublefl=new double [2|
followjp ja t ib o eïeaji

enable_plan:boolean
new_goal:boolean
unlle:boolean
on ly^faeder boolean

no_palh:boolean

palh_plr:inl
lasl_plan:lnt
slageilnt

goal_ptr:int
plan_cesty_x;lnlQ=new inl[200]

plan_cestj'_y:inlQ=new lnl[200]

plan„slze:lnt=0
lasi_slze:int=1000
explora jlm eiln t
sel Bxplore:bool8an

explore x:double
explore v:double
st:lnlPolnt=new InlPoInlfl

sum:doubleil=new doub le t!

L andm ark_________

«LftN PM f f l K W MQ f ty in lM O.
old_p:PolntO=n0w Poinl iLANDÎÆftR

old_polnt:lnt
+old_f:FeederO=new Feeder JLAND

old_feeder:lnt

fe e d B r_ p lr ;in l
reeder_num:inl=-1
♦verMed_feeder:lnt

+set_dlslances:boolean
Um? 10 M|i;lntn=fi9Qo. i< 9 q . i94ç
BBBB&LMiÊBÊÊMÎÊBW 1
seLPI_PI(a:double):doubl0

♦LandmarkO
♦flndjaederôcdoubleydouble.azlr

+flnd_feeder_prlntOcdouble,y:doubl

♦update JeederflndMnlpcdouble.yd
+u p da le J e e d e r(l nd:ln t,x; do ub l e,y:d
+up date_valu e(l nd: Ini,l:lnt,V. double;

+new_feeder(x:double,y:double,x2:i

' +1emp_f00dBr(x:doublely:doubl8,x2

, +clear„feBder(f_num:inlpI:int):vold

+sel_azim(ind:inl,azim:double):voic
♦verifyJeederCx:doublB,y:double1t:ir wi3iLümo£fGeiü/:doub!o):doub£8
Q6i__enftriivfln'djnt,mnl>,d0<jbrg
Polnl

FeedE

L:lnt=1

»EXPLORE WORLO:lnt=Q

+ 0 0 TO FEEDER:lnt=1

♦PLAN TO FEEDER:lnt=2

±WAIT FOR FEEDER:lnt=3

♦TEST FEEDER:int=4

mjiommMzi
♦stale:lnl=EXPLORE_WORLD
sla ge: ini

lnll_x:double
- lnll_y:double

goal_x:lnt
goal_y:lnl

turnjndex:int

update J im e :ln l
lefl:boolean=Irue

enable_palh:boolean

save_feeder:Posilion=new PosIMoî
lm:Landmark
pl.Planner

gr:Orld

plan_feeder:lnt
" seejeedariboolean

turnj8fl:boolean
set_lurn:boolean
lasl_angle:double=0,0
sum_angle:double=0 0

i feed_azlm_save:doublB=0 0

Position

♦x:double

♦y:double
+angle:double

DIST 5CALE:double=D.D0B/572.9f

HOT SCflLEdPUble-PIST SCALE
♦PositlonQ

♦update(lefl:long.rlghl:long):vold
prlntO:vold
updale(sin:doubla,cos:doubl0,d_x:i

«BLANK InteO
♦QBQLM Ü P fe l
♦FEEDERBOX:lnt=4
♦FEEDER OFF:lnt=3
♦FEEDER ON:inl=2

♦BROWN STIC K;int= 6
♦YELLOW CORNER:ìnt=7
♦BROWN CORNER:inl=8
♦WHITEBOX:lnt=a
♦VELLOWBOX:int=1 D

♦CYANBOX:int=11
♦MAOENTABQX:int=12

iQTtdEBJDfeia.
♦P igK;lnt=14.

♦ORANGEBOX:lnl=1 S
♦GRAYBOXint=1 S

±SlDEWALLInfeU-
♦RQBQT:lnl=10000

♦COLOR TOLERANCE:int=15

.QgC.aoufelaEjLl
ÈrXiP f irS in fc r i*

grid:JnlOD=new Ini [GR_SIZE1[GR_S

explore:lntOD=new ini [EXPJ3IÌEJ|)E
color:lnlDD=newlnt[GR„SlZEl|GR_£

o_lmage:lnlD=new lnlfGR_SIZE*OF

o_lmage_exp:inlD=new lntlEXP_SIÌ

hsv space:lninnn=n8winl 1100)12lfg

h sv use d :in irin n= ne w in t r i oo ire iis i

¿fllgr ptrinl,
+new_plcture:boolean

+(rack_image:boolean

♦new_goal:boolean

exlern_goal:boolean=false

+clzl_robot: boolean
♦cl2l_robol_x:double

♦cizi_robol_y:double
shìfl_x:double

shift_y:double
ex„sh iftjcdouble
ex_shin_y:double
l_plclure:lmage

n9W-grld:lmaqg

explore_goal_x:lnt
explore_goal_y:lnt
e_go aljd n l

e_goaLy:inl

explore jim e:ln t
_stage:lnt

flrst:boolean

hsv co lorirli
n bllnd:int=0

free lma:booleann=newbooleanie

false_color.lntO={OxlTOOOQQO.CO/ B

FEEDER NEED ENERGY:double^
DEBUG:boolean=true
camera:int

wldlh:lnl

helqhl:lnl

ds:inm=new inliei

mvlmaaejniii
food detected:boolean
left speed:int

ffeeField:boolean
tmnqgr;|nt=Q

arQ M -now Q fld ft mchite. now gr
robot: Pos Ilio n=nsw Posillonfì

landmark:Landmark=new Landma

drPriver

BUĴ nngr
lei! lastilona

linka:lnlfl=new Intf20)
limÆjnbfl.
feeder oos:Positlon=newPoslliont

feeder oo*t:Posliioo=now Posino»
feeder pos2:Poslllon=newPosilloi
hsv used:inllinn=new ini 1100HBUB1

tirsi timeiboolean

jflst.flet.lnEO
firsLboolean

nyv CQlflfJnligflfltt/ ftfil£ae»lsgiFf»cwPog»llQn’
last <tftcrQv qomne=ioi o
flaifrn boolttan
feeder a?tm.dom»g
new h della:doublelì=l-0.9.-0.B.Q.

new v della:doublen=f 0.2. 0.9.1.
sens or: lntn=(0.0 ,0 .0 .0 .01

prox dBCrease:lnl=0

prox limit feed:rntn=f780.760. 750
prox free:booleann=(lrue. true, true

fr:booleanll=itme. Irue. true. Irue. Irt
free:boolean=lrue
slow down:double

1911 lb l:lnin=i-2.-1. 0. 5 .10 .13.15

righi tb l: ln tn = f1 5 . l6 . i7 . l9 . l9 .2 i
must move:lnl=0
la si lndex:inl=Q
Staqe:inl=0

back move:int=0

last leB speed:lnl

M I tHiht t p tm lM
I last Ini

iiUUEL_____
>resein:vold

>rabs(l:lnl):lnl

Figure 65 Piglet Controller UML part A

102

Appendix B - Simulation Code

n wd imPo inferi aw htP olnifl

+0etj£(rjedoi>bJ&):lnt
+gü1j/(f_y;diKrblB):lnl
+d raw^eroftaCrnageiinlB .Klnt.y.lnl, c

+dfawjïli>f»(lmasiiii:lnti]).-voicl
♦Plajinfl't(g:0 »iäi1r,PoBltionIl:Landm

enlarfls_oD staclesO >old
enlarga_and_untte_obstacles0 ^oi

♦ s e l ^ e x p lo r e jo a lO ^ o l d

+se1_robot0 ’vold
set_exlem_feeder(f_num:lnt);vüld
seLexierrujoal&cdouble.y.double)

+replan_tìlstance s0 ^o(d

+select_fB0derO:vold

♦planjjathO w ld
-InlLplanQ.YOid

>plan_atepO:vold
-nexLpo I nt(p jolnt,p_y:lnt):vo[d
-tiri d_path(9LlnlPo lnt,0o_)clnl,g o_y;
8et_goal(r:Po6ldon):double

♦externJ] o a l j 00der(num:înf):vold

+Um0(tlnl):vo[d
*a1atlBtlkaO:vold
♦mnOvold

f0 Bd_dlst_9 BV8 :doubl e=0.0

1 Bms:lnt
iUll_faa dardou b l 9=0 0

O j c l n t l H I . 1 . 0 , - 1 , - 1 . - 1 . 0 , 1 , 1 , 1 ,

J J d n f e t t J J . I .Q . - l . - l . -1,0.1.
♦DrtverO:Landmart<1p:Plannai’10:Grl

♦geUndex(a:double):lnt

abs(l:lnt):lnl

abs(a:double):doubl0

se LP LP I< a:do u b la):do u b le

aq(a:doubla):doublB

+set_go_toJeed0r(rQ botPosltlQ n,f

*d(sable_feecier01_num:lnt)?/old

*set_p Ian_1o_f0 e d0r(f_n um:int,ieBi

+saLeaUnßO'-void

♦claar_goaio:vold

+plan_path(robot:Posltlon1tH:lni3:Int

+Klnt

.■arM
■HntPolntO

+lniPolnlOclntJy:lnO

Imarlntn

+G rld(l'lm age,n_g:lm ag0)

+update_0*ploreO>old

+wrile(f:Fll0Wr1teß>old

+updale_pictureO >oid

+hsv_2_rgb(c:|nQ:lnt

+update_picture_colorü^old

+m ova(p:Posltlon)>old

+flet_x(r_jcdouüle):mt

+geLy(r_y-double):inl:

+ e m p ty (flr jc ln t,f lr_ y : ln t,k ü 0f;d ou b le

+o ccu p le d ü rjc ln t,g rjf ln t,e :int,ko B -
+ o c c u p le d (g r jc ln ! lg r .j ': ln 1);Yüld

♦del0l0O:vold

+clear_exi0m _goalO vold

■*-flnd_f0e d ar_p o s(rjcdo ub le,r_y,(it

minfa:fnlb;lntc:lnf>:lnt

oet coloffrin1.g :lntb.ln li:ln l

color_near{a:int1b:in1):boolean

tracK_im ag0_fc0Or«iid

+!nrt(obfitacl89 :intl]0.shiftdouble[D:*

+n ew Jm a fl8 (r:P o sillo n 1lm:inifl,my:l

+run0^olcj

♦inllGulfi:void

m lnte ln lto lnU iln& Jn l
m fo ia jm E .inu .in ti.in i

LraüiIiwfétflYM.
trash jjpK fQ ypitf
se t PI Plfa.doubie) doubio

drivsrfrvold

comBuleO.Yold
♦m alnO vald

a b l6 :boolean=fal69

+gBt0 :vold

♦putQrvold

Figure 67 Mapped Environment

Figure 68 Output of Simulated Camera

f T B R S B H " ' - I d I x I

Piglet camera data

Figure 69 False Colour Camera

B.2.1. Webots World File

Partial world file stub, complete world file included on CD.

“pig edit v3 controller maze low consumption.wbt”

Figure 66 Piglet Controller UML part B

j Piglet m ap

Occupancy Explore

103

Appendix B - Simulation Code

D E F S U R R O U N D 1 N G W A L L S o l i d {
c h i l d r e n [

S h a p e {

}
]
n a m e " w a l l "
b o u n d i n g O b j e c t G r o u p {

}""
}

D E F R O B O T _ 0 D i f f e r e n t i a l W h e e l s {

#VRML_S1M V4.0 utf8
#000000

children [

S o l i d {

c h i l d r e n [
D E F W H E E L T r a n s f o r m {

}
)
n a m e " l e f t w h e e l "

}
S o l i d {

c h i l d r e n [
D E F W H E E L T r a n s f o r m {

}
]
n a m e " r i g h t w h e e l "

}

D i s t a n c c S c n s o r {

c h i l d r e n [
D E F S F H 9 0 0 G r o u p {

}"
]
n a m e " d s O "
l o o k u p T a b l e [

0 1 0 2 3 0
0 .0 5 0 0 .0 1

]
}

C a m e r a {

c h i l d r e n [
S h a p e {

}
]
n a m e " c a m e r a "

104

Appendix B Simulation Code

]
n a m e " r o b o t 0 "
b o u n d i n g O b j e c t T r a n s f o r m {

}
c o n t r o l l e r " P i g l e t _ e d i t _ v 3 "
s y n c h r o n i z a t i o n F A L S E
b a t t e r y [

9 2 . 7 7 9 6 , 1 0 0 , 1 0

]
c p u C o n s u n i p t i o n 0 , 1
m o t o r C o n s u m p t i o n 0 .0 1
a x l e L e n g t h 0 .0 5 3
w h e e l R a d i u s 0 .0 0 8
m a x S p e c d 2 0
m a x A c c c l e r a t i o n 2 0 0
s p e e d U n i t 1
e n c o d e r N o i s e 0 .0 1
e n c o d e r R e s o l u t i o n 5 7 2 .9 5 8

}

B.3. Erdos

The author’s original code occurs first and then the adapted code:

(simulator) main.py: The code in this file provides the user with a

simulated Roomba robot in a maze environment.

Edited code

(simulator) main2.py: This code is adapted for the original code with the

addition of the search provided in the Erdos’ interface with a real Roomba robot.

B.4. Pyro

Software implementation for this simulator started with the behavioural

procedure called “Avoid.py”, from the included sample examples for the Pyro

controller.

105

Appendix B - Simulation Code

determineMove
(front, left, right)

Return 0, .3

Return 0 .1 , .3^)

Return 0.5, O.cT)

F i g u r e 7 0 A v o i d F l o w c h a r t

Avoid.py: Preformed the task of requesting all the information for the

robots variables front, left and right sensors assigning the smallest value to the

appropriate variable Figure 70. The controller then altered its trajectory by the

translation and rotation values calculated by its “determineMove()” function.

106

Appendix C - Java

Java Background

Java code is an interpretative language which means it compiles to

produce byte code. This byte code requires an interpreter to run on a given

system. This enables java code to be written once and run on all different types of

system, given that they have an appropriate interpreter written for them. This

approach to programming has huge advantage over the standard system, of having

the compile a different version of each piece of code written in other languages

for each platform are required to run on. The Java byte code requires that the

system has one piece of code (the interpreter) running on it to allow the java byte

code to run. This piece of code is called the Java Virtual Machine and it interprets

the byte code and runs the corresponding local instruction on the host system to

perform the required task. E.g. it prints a message to an LCD panel or a Computer

Screen which ever is the current system’s display.

Appendix C - Java

107

Appendix D -

The Numeric package has been superseded by the numpy package

so this is required to be installed in python directory. Former

references to “import Numeric” should then be converted to

“import numpy.oldnumeric as Numeric”. This removes the output

error “ImportError : No module named Numeric”

Both \pyrobot\bin\pyrobot and \pyrobot\bin\pyrobot.py should be

identical and should be edited in the user intends running Pyro

under a windows environment. Here are at required modifications

to remove error message about Pythonpath:

o Line 47 change from “/plugins” to “Wplugins”,

o Line 76 if Python directory is on E:\ drive change the

following from “:%s/plugins/simulators” to

“;%s\plugins\simulators;e\Python24”

\pyrobot\gui\ init .py: must similarly be changed is the user is

running python on a windows box with the following

modifications:

o Line 131 137 143 149 159 164 169 174 change “/plugins”

to “WpluginsW”

o Line 377 378 change “/” to “\\”

o Line 471 change “%s/plugins/config/%s/” to

“%s\\plugins\\config\\%s\\”

o Line 482 487 492 change “/%s/plugins/worlds/%s/” to

“\\%s\\plugins\\worlds\\%s\\”

Epydoc: Was utilised to construct the UML diagrams for the

Python code. It required for error free operation that “getint = int”

Pyro Setup

Appendix D - Pyro Setup

108

Appendix D -

be commented out in Line 378 of Lib\Lib-tk\Tkinter.py in python’s

directory.

Pyro Setup

109

Glossary

Artificial Intelligence

API:

Application Programming Interface, a software interface that defines how

a software programme requests services from a device.

Coarse Grained Simulation:

This is a platform which allows the development of a controller prior the

testing on a real robot. The simulated sensory values are a rough approximate of

the expected real world values. Further tweaking of the controller will be required

when run in the real robot.

DLLs:

Dynamic Linked Libraries

IR:

Infra-red

Kidnapped:

This is where a robot which has localised itself, is picked up and placed in

an unknown location, and it is required to localise its self again.

LAMI:

Microcomputer Laboratory (LAMI) of Swiss Federal Institute of

Technology of Lausanne

LeJOS:

Java for LEGO® Mindstorms, Java Language to programme the RCX

module

JDK:

Java Development Kit

Glossary

110

JVM:

Java Virtual Machine

NQC:

Not Quite C. Programming language designed for programming the RCX

module.

RCX:

LEGO Programmable brick module, part o f the LEGO Robotic Invention

System

ROI:

Roomba Open Interface

NQC:

Not Quite C

OS:

Operating System

SCI:

Serial Command Interface

UML:

Unified M odelling language, an object modelling and specification

language used in software engineering

Glossary

111

Poster Publications

Poster Publications

"Autonomous Robotic Systems: Using entropy theory to minimise redundancy

in Autonomous Robotic Systems" Niall McCurry, Dr John Owen-Jones, Paul Dunne.

Published in National Symposium of The Irish Research Council for Science,

Engineering and Technology, Dublin 3rd November, 2005

"Autonomous Robotic System" Niall McCurry, Dr John Owen-Jones, Paul

Dunne. Published in National Symposium of The Irish Research Council for Science,

Engineering and Technology, Dublin 2nd November, 2004, pp. 197

112

Bibliography

Bibliography

1. DARPA. The DARPA Grand Challenge Commemorative Program. 2004.
Barstow, California - Primm, Nevada: DARPA. p.

2. DARPA, 2005 DARPA Grand Challenge!
(http://www.darpa.mil/grandchallenge) 2005

3. DARPA, DARPA Announces Third Grand Challenge Urban Challenge Moves
to the City.2006

4. Shannon, C., Robots can Wear Multiple Hats in the Computer Science
Curriculum at Liberal Arts Colleges. AAAI, 2007

5. Gutmann, J.-S., et al. Reliable Self-Localization, Multirobot Sensor
Integration, Accurate Path-Planning and Basic Soccer Skills: Playing an
Effective Game o f Robotic Soccer, in Ninth International Conference on
Advanced Robotics ICAR 99. 1999: Japan Robot Association, p. 289-296

6. MobileRobots, Pioneer PatrolBot PowerBot Price List: 18 Dec 2009
(http://www8.cs.umu.se/research/ifor/dl/Product%20info/ActiveMedia/Active
Media%20Jan 14EduPriceList.pdf) 2009 MobileRobots Inc

7. MobileRobots, AmigoBot Price List: 18 Dec 2009
(http://www8.cs.umu.se/research/ifor/dl/Product%20info/ActiveMedia/Active
Media%20pricelist%20iune%202002.pdf) 2009 MobileRobots

8. RoadNarrows, Road Narrows Robotics:28 Dec 2009
(http://www.roadnarrows.com/robotics/store/khepera-ii.html) 2009

9. Burhans, D.T., A Robotics Introduction to Computer Science. AAAI, 2007
10. Imberman, S., A. Barkan, and E. Sklar, Extra-curricular Robotics: Entry-level

Soccer for Undergraduates. AAAI, 2007.
(http://www.aaai.org/Papers/Svmposia/Spring/2007/SS-07-09/SS07-Q9-
013.pdf)

11. Juliano, B.A. and R.S. Renner, An Undergraduate Course in Robotics and
Machine Intelligence. American Association for Artificial Intelligence, 2006.
(http://www.aaai.org/Papers/Svmposia/Spring/2007/SS-07-09/SS07-Q9-
016.pdf)

12. Sklar, E., S. Parsons, and M.Q, Azhar, Robotics Across the Curriculum.
American Association for Artificial Intelligence, 2006.
(http://www.cs.hmc.edu/roboteducation/papers2007/c46 sklar rac.pdf)

13. Sullins, J.P., Using Robotic Competitions in Undergraduate Philosophy
Courses: Studying the Mind Through Simple Robotics. American Association
for Artificial Intelligence, 2002

14. Jacobsen, C.L. and M.C. Jadud. Towards Concrete Concurrency: occampi on
the LEGO Mindstorms. in SIGCSE '05: Proceedings o f the 36th SIGCSE
technical symposium on Computer science education. 2005. New York: ACM
Press, p. 431-435

15. McKerrow, P.J. Robotics research and education with LabVIEW. in A UC
Conference. 2000. University of Wollongong, New South Wales, Australia, p.
(http://auc.uow.edu.au/conf/conf00/papers/AUC2000 McKeiTOw.pdf)

16. Tripathy, H.K., B.K.Tripathy, and P.K. Das, A Prospective Fuzzy Logic
approach to Knowledge-based Navigation o f Mobile LEGO-Robot. Journal of

113

http://www.darpa.mil/grandchallenge
http://www8.cs.umu.se/research/ifor/dl/Product%20info/ActiveMedia/Active
http://www8.cs.umu.se/research/ifor/dl/Product%20info/ActiveMedia/Active
http://www.roadnarrows.com/robotics/store/khepera-ii.html
http://www.aaai.org/Papers/Svmposia/Spring/2007/SS-07-09/SS07-Q9-
http://www.aaai.org/Papers/Svmposia/Spring/2007/SS-07-09/SS07-Q9-
http://www.cs.hmc.edu/roboteducation/papers2007/c46
http://auc.uow.edu.au/conf/conf00/papers/AUC2000

Convergence Information Technology, 2008. Vol. 3(No 1): p. 64-70.
(http://www.aicit.org/icit/papers/icit3-l/8-icit3-l.pdf)

17. Vento, A., C. Beltran, and E. Taniuchi, A quantitative analysis o f robotic
languages. Journal of Computing Sciences in CollegesVolume, 2002. 17(5): p.
72-80

18. BUSCHMANN, C., F. MULLER, and S. FISCHER. Grid-Based Navigation
fo r Autonomous, Mobile Robots, in Proceedings o f 1st Workshop on
Positioning, Navigation and Communication 2004 (WPNC'04). 2004: Shaker
Publishing, p. (http://www.ibr.cs.tu-
bs.de/papers/Buschmann etal GridBasedNavigation.pdf)

19. Bosch, S., M. Hendriks, and R. Leemkuil, F.R.O.P.S Fragile Reconnaissance
Object Processing System. 2004, Universiteit Twente de ondememende
universiteit

20. Martin, F., The 6.270 Robot Builder’s Guide. 1992.
(http://cherupakha.media.mit.edu)

21. Martin, F.G., The Art o f LEGO Design. The Journal for Robot Builders, 1995.
1(2)

22. Bennett, J.K., Lntroduction to Engineering Design ELEC 201 Course Notes.
1998

23. Proudfoot, K., RCXInternals:Feb 2004
(http://graphics.stanford.edu/~kekoa/rcx/) 1999

24. Anders, RCXScanner:05 August 2009
(http://www.norgesgade 14. dk/scanner.php) 2009

25. Brown, J., Cube Solver:06 August 2009
(http://ipbrown.i8.com/cubesolver.html) 2001

26. Juliano, B.A. and R.S. Renner, LEGO Mindstorms RTS 2.0 Programming:
Lego RCX Code. 2004.
(http://www.ecst.csuchico.edu/~iuliano/csci224/Slides/04%20-
%20Intro%20Lego%20RCX%20Code.pdf)

27. iRobot, Company Milestones:\9 August 2009
(http://www.irobot.com/sp.cfm?pageid=203) 2009 www.iRobot.com

28. Kurt, T.E., Hacking Roomba. 2006: Wiley. 456.
29. iRobot. Developers Choose iRobot Platforms To Create Robot Applications.

in RoboBusiness Conference and Exposition. 2006. PITTSBURGH, p.
(http://www.irobot.com/sp.cfm?pageid=86&id=238)

30. iRobot, iRobot Roomba Open Interface (ROI) Specification:
(www.irobot.com) 2005

31. iRobot, iRobot Roomba Serial Command Interface (SCI) Specification'.
(www.irobot.com) 2005 iRobot

32. Dickenson, B., et al., Roomba Pac-Man: Teaching Autonomous Robotics
through Embodied Gaming. American Association for Artificial Intelligence,
2006

33. Kurt, T.E., Low-cost On-board Linux, Vision, Wi-Fi and more fo r the Roomba
Robotics Base. American Association for Artificial Intelligence, 2006.
(http://hackingroomba.com/wp-content/uploads/2007/01/fsQ9kurtt.pdf)

34. Mataric, M. J., N. Koenig, and D. Feil-Seifer, Materials fo r Enabling Hands-
On Robotics and STEM Education. American Association for Artificial
Intelligence, 2006. (http://cres.usc.edu/pubdb html/files upload/536.pdf)

Bibliography

114

http://www.aicit.org/icit/papers/icit3-l/8-icit3-l.pdf
http://www.ibr.cs.tu-
http://cherupakha.media.mit.edu
http://graphics.stanford.edu/~kekoa/rcx/
http://www.norgesgade
http://ipbrown.i8.com/cubesolver.html
http://www.ecst.csuchico.edu/~iuliano/csci224/Slides/04%20-
http://www.irobot.com/sp.cfm?pageid=203
http://www.iRobot.com
http://www.irobot.com/sp.cfm?pageid=86&id=238
http://www.irobot.com
http://www.irobot.com
http://hackingroomba.com/wp-content/uploads/2007/01/fsQ9kurtt.pdf
http://cres.usc.edu/pubdb

Bibliography

35. Tribelhom, B. and Z. Dodds, Envisioning the Roomba as AIResource: A
Classroom and Laboratory Evaluation. American Association for Artificial
Intelligence, 2006

36. Tribelhom, B. and Z. Dodds. Evaluating the Roomba: A low-cost, ubiquitous
platform for robotics research and education, in 2007 IEEE International
Conference on Robotics and Automation. 2007. Roma, Italy, p. 1393-1399.
('http://dx.doi.org/10.1109/RQBQT.2007.363179')

37. iRobot, iRobot® Create Owner'sguide\\9 August 2009
(www.irobot.com/supporf) 2006 iRobot Corporation

38. iRobot, iRobot Unveils Programmable Robot'. 19 August 2009
(http://www.irobot.com/sp.cfm?pageid=86&id=282&referrei-28) 2007

39. iRobot, iRobot® Create OpenInterface'.\9 August 2009
(http://www.irobot.com/filelibi'arv/ci'eate/Create%20Qpen%20Interface v2.nd
f) 2007 iRobot

40. Conbere, M. and Z. Dodds, Toys and Tools: Accessible Robotics via Laptop
Computers. American Association for Artificial Intelligence, 2007

41. Dodds, Z. and B. Tribelhom, Erdos: Cost-effective Peripheral Robotics fo r AI
Education', (http://www.cs.hmc.edu/~dodds/erdos/erdos.pdf) 2006 American
Association for Artificial Intelligence www.aaai.org

42. Solorzano, J., LeJOS 1.0.0 alphal. 2000.
(http: //sourcefor ge. net/proi ects/lei os/files/')

43. Andrews, P., et al., LEJOS Java for LEGO Mindstorms:2S October 2009
(http://lejos.sourceforge.net/) 2009

44. Bagnall, B., Core LEGO MINDSTORMS Programming: Unleash the Power o f
the Java Platform. 2002: Prentice Hall PTR.

45. Ferrari, M., G. Ferrari, and R.H.T. Editor, Building Robots with LEGO
MINDSTORMS The ULTIMATE Tool for MINDSTORMS Maniacs. 2002:
Syngress Publishing.

46. Laverde, D., G. Ferrari, and J. Stuber, Programming Lego Mindstorms with
Java. 1 ed. 2002: Syngress.

47. Irish_Emigrant_Publications, GMITstudent designs problem-solver:05
October 2009
(http://www.emigrant.ie/index.php?option=com content&task=view&id=178
64) 2004

48. Baum, D., NQC Programmer’s Guide, "Ed:2.5a4:05 May 2004
(http://www.baumfamily.org/nqc) 2003

49. Harris, W. and D. Amow, Remote Shared Access To A Classroom Robotics
Lab. AAAI, 2007.
(http://www.cs.hmc.edu/roboteducation/pai3ers2007/c28 HarrisAmow.pdf)

50. Juliano, B.A. and R.S. Renner, LEGO Mindstorms RIS 2.0 Programming:
NQC Code. 2004.
(http://www.ecst.csuchico.edu/~iuliano/csci224/Slides/05%20-
%20Intro%20NQC%20Code.pdf)

51. Mondada, F., E. Franzi, and A. Guignard, The Development ofKhepera, in
First International Khepera Workshop. 1999, HNI-Verlagsschriftenreihe,
Heinz Nixdorf Institut: Paderbom. p. 7—14.
(httn://infoscience.epfl.ch/getfile.pv?recid=89709&mode=best)

52. Hellstrom, T., Khepera. 2006.
(http://www8.cs.umu.se/kurser/TDBD17/VT07/utdelat/kinematics.pdf)

53. K-Team, Khepera User Manual, "Ed:Version 5.02:1999

115

http://dx.doi.org/10.1109/RQBQT.2007.363179'
http://www.irobot.com/supporf
http://www.irobot.com/sp.cfm?pageid=86&id=282&referrei-28
http://www.irobot.com/filelibi'arv/ci'eate/Create%20Qpen%20Interface
http://www.cs.hmc.edu/~dodds/erdos/erdos.pdf
http://www.aaai.org
http://lejos.sourceforge.net/
http://www.emigrant.ie/index.php?option=com
http://www.baumfamily.org/nqc
http://www.cs.hmc.edu/roboteducation/pai3ers2007/c28
http://www.ecst.csuchico.edu/~iuliano/csci224/Slides/05%20-
http://www8.cs.umu.se/kurser/TDBD17/VT07/utdelat/kinematics.pdf

Bibliography

54. Lindqvist, F., Selfsupervised learning for a miniature robot
(http ://www. cs. umu.se/education/examina/Rapporter/470.pdf) 2003

55. Rice, K.A.K.a.J.L. The Khepera Robot as a Teaching Tool, in American
Society for Engineering Education (ASEE). 1999. Charlotte, North Carolina, p.

56. Keeratipranon, N., J. Sitte, and F. Maire, Beginners Guide to Khepera Robot
Soccer. 2003, Brisbane.

57. Mondada, F., The Khepera Miniature Mobile Robot: 15 August 2009
('http://diwww.epfl.ch/lami/robots/K-familv/Khepera.html') 1996

58. K-Team, The K-Team. 2005, http://www.k-team.com/. (http://www.k-
team.com/')

59. K-Team, K-Team USERS & APPLICATIONSAA August 2009
(http://www.innowebtive.com/kteam/resources/users.html') 2002

60. Trianni, V., Evolutionary Swarm Robotics: Evolving Self-Organising
Behaviours in Groups o f Autonomous Robots. 1 ed. Studies in Computational
Intelligence. 2008, Verlag Berlin and Heidelberg GmbH & Co. KG: Springer.
190.

61. Michel, O., Khepera Simulator version 2.0 User M anual'll November 2004
(http://diwww.epfl.ch/lami/team/michel/khep-sim/') 1996

62. K-team, ROBOTFREEWARES:no\embQV 2004 (http://www.k-
team.com/kteam/index.php?page= 158&rub=&site= 1) 2004

63. Perretta, S., et al., WSUKhepera Robot Simulator, "Ed:Version 7.1 :
(http://ehrg.cs.wright.edu/ksim/downloads/downloads.html') 2003

64. Nolfi, S., Evorobot 1.1 User Manual. 2001.
(http : //laral. iste. enr. it/evorobot/simulator, html)

65. GNU, What is Copyleft? 17 August 2009 (http://www.gnu.org/copyleft/') 2009
66. Medsker, L. and L.C. Jain, Recurrent Neural Networks: Design and

Applications (International Series on Computational Intelligence). 1 ed. 1999:
CRC Press. 416.

67. Carlsson, J., YAKS. 2000. (http://r2d2.ida.his.se/')
68. Skänhaug, S.-R., Architectural aspects o f software fo r mobile robot systems,

in FAKULTETFORINFORMASJONSTEKNOLOGI, MATEMATIKK OG
ELEKTROTEKNIKK. 2003, NORGES TEKNISK-
NATURVITENSKAPELIGE UNIVERSITET.
(http://www.idi.ntnu.no/grupper/su/su-diplom a-2003/thesis-skaanhaug.pdf)

69. Iwe, H., et al., Khepera Project DresdenAO December 2004
(http://easvbot.htw-dresden.de/') 2000

70. Michel, O., LightVision3D. 1999. (http://easvbot.htw-
dresden.de/Download/software/genalg.pdf)

71. Iwe, H., EasybotAS August 2009 (http://easvbot.htw-dresden.de/~) 2007
72. Cyberbotics, Webots User Guide, "Ed:4.0.27: (www.cyberbotics.com') 2004

Cyberbotics Ltd.
73. Cyberbotics, Webots Reference Manual, (www.eyberbotics.com~) 2004
74. Szabó, R. Navigation o f simulated mobile robots in the Webots environment.

in The Third Conference o f PhD Students in Computer Science. 2002. Szeged,
Hungary, p. 149-163. (http://www.iataka.hu/rics/cses2002/cscs20Q2.pdf)

75. Szabó, R. Combining metric and topological navigation o f simulated robots.
in The Fourth Conference o f PhD Students in Computer Science. 2004.
Szeged, Hungary, p. (http://www.iataka.hu/rics/cscs2004/cscs2004.pdf)

76. Cyberbotics, ALife contest May 1st, 2003 A 1 February 2005
(http://eyberboticspcl.epfl.ch/contest/previous.html) 2003

116

http://diwww.epfl.ch/lami/robots/K-familv/Khepera.html'
http://www.k-team.com/
http://www.k-
http://www.innowebtive.com/kteam/resources/users.html'
http://diwww.epfl.ch/lami/team/michel/khep-sim/'
http://www.k-
http://ehrg.cs.wright.edu/ksim/downloads/downloads.html'
http://www.gnu.org/copyleft/'
http://r2d2.ida.his.se/'
http://www.idi.ntnu.no/grupper/su/su-diploma-2003/thesis-skaanhaug.pdf
http://easvbot.htw-dresden.de/'
http://easvbot.htw-
http://easvbot.htw-dresden.de/~
http://www.iataka.hu/rics/cses2002/cscs20Q2.pdf
http://www.iataka.hu/rics/cscs2004/cscs2004.pdf
http://eyberboticspcl.epfl.ch/contest/previous.html

Bibliography

77. Blank, D., et al., The Pyro toolkit for A I and robotics, in A I Magzine. 2005. p.
pp 39-50

78. Blank, D., et al., Advanced Robotics Projects fo r Undergraduate Students.
American Association for Artificial Intelligence, 2006

79. Blank, D., et al., Advanced Robotics Projects fo r Undergraduate Students.
American Association for Artificial Intelligence, 2007

80. Tang, F., Enhance Students' Hands-On Experience With Robotics. American
Association for Artificial Intelligence, 2006

81. Conroy, K., Constructopedia. 2004.
(http://www.educatec.ch/ressources/Literature/LEGO MINDSTORMS/MIND
STQRMSBAUANLEITUNGEN/constructonedia-rcx/file en/)

82. Overmars, M., Drive-Steer mechanism:05 May 2004
(http://people.cs.uu.nl/markov/leeo/tips/Differentiall/index.htmn 2004

83. GNU, GNU GENERAL PUBLIC LICENSE, "Ed: Version 3:17 August 2009
('http://www.gnu.org/copyleft/gpl.html) 2007

84. Fossum, T. and J. Snow, How Platform-Independent is Pyro? American
Association for Artificial Intelligence www.aaai.org. 2006

85. Klassner, F. and M. McNally, Demonstrating the Capabilities ofMindStorms
NXTfor the AI Curriculum. American Association for Artificial Intelligence,
2007

86. Watson, M., Practical Artificial Intelligence Programming in Java. 2004.
('www.markwatson.com)

117

http://www.educatec.ch/ressources/Literature/LEGO
http://people.cs.uu.nl/markov/leeo/tips/Differentiall/index.htmn
http://www.gnu.org/copyleft/gpl.html
http://www.aaai.org
http://www.markwatson.com

