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Abstract

The aim of this research is to identify and select a cost effective platform and
approach to the design and development of low cost autonomous mobile robotic
systems. A requirement for such a platform is that it should be of reasonable cost,
extendible and that its functionality allows for modification, with reasonable effort.
Such an approach may enable organisations with limited resources in funding, limited
specialist Al knowledge and scarce hardware expertise, to begin the design of robotic
controllers and the application of Al to mobile robots. This solution should prove to
be attractive to departments, not historically involved in developing robotic systems,
to investigate this area of the application of Al allowing them to apply their own
expertise to generate unique solutions to the problem sets.

By providing such a platform this research will enable developers to provide
more flexible solutions for various application areas for the entertainment, industrial
and domestic product markets.

The approach was to carry out an in-depth analysis of currently available
solutions, modify them as appropriate and evaluate them wherever possible. Testing
was carried out by designing robotic controllers for each of these platforms. The
platforms investigated include both low cost hardware with embedded software
solutions and software simulation environments.

The research identified several hardware candidates which featured frequently
in publications, these being LEGO’s MINDSTORMS RCX and iRobots Roomba
platforms. The use of custom built hardware platforms was not considered for
investigation.

Eight different simulators were investigated and two main candidates were
selected for comparison, “Webots” from Cyberbotics Ltd and “Pyro” an open source
simulation project. These two simulators used different approaches and development
work and evaluations were carried out on each of them. The thesis arrives at the
conclusion that “Pyro” is the most flexible approach of the two environments, but

“Webots” is the more established one.
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Chapter 1 - Introduction

1.1. Background
The word “robot” first came into the popular domain with the first
performance of Karel Capek’s play R.U.R. (Rossum's Universal Robots) (1920)
where he coined the word robota meaning "forced labour”. This word was
translated to “robot” when the play was translated into English for the 1923
production, and thus this new concept spawned our imagination. Stories from
Isaac Asimov’s collection “I, Robot” (1950) presented the world with the three
“laws of robots”:
1 A robot may not injure a human being, or through inaction, allow a
human being to come to harm.
2. A robot must obey the orders given it by human beings except
where such orders would conflict with the First Law.
3. A robot must protect its own existence as long as such protection

does not conflict with the First or Second Laws.

As robots have moved from being largely of science fiction to that of
science fact, our perception has also changed to a willingness to accept robots
among us, at a certain level. Researchers are now developing robots to mimic
human reactions for applications as receptionists in buildings. There is something
unnerving about staring a “being” in the face and wondering whether or not it is
real.

We are accustomed to the use of robots in the industrial automation,
underwater missions and space applications, and we are beginning to become
more accepting of robots is in the area of household help for example: vacuum
cleaners, lawn mowers and pool cleaners from companies such as iRobot. The
designs of such robots bear no resemblance to their former occupant of jobs such
as, the pool cleaner, the grounds keeper or the home help. Educational and
children’s toys are also an emerging market where robots are readily accepted and
are, in some cases, highly sought after.

A second area where huge development is currently under way is in the

search and rescue and the defence contractors, as is visible by the competitions
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run be DARPA, 14 and 2rd Grand Challenge [1] [2], which took place over a
desert track navigated by autonomous robots and 3rd Grand Challenge for

autonomous robots in the Urban Challenge Moves to the City [3],

Robotic Operation

If robots are to operate in real environments they require an ability to
interrogate their surrounding world and make reasonable judgments based on the
information they receive. The reasoning judgments are as a result of processing by
Acrtificial Intelligence (Al). For the robot to employ this Al it needs to remember
or record information of current and past information received, thus construct a
map of the area it has already traversed in its environment. As the robot moves
around its imperfect interpretation of the environment, the robot will experience
errors due to, for example wheel slippage, leading to flawed kinematics data and
possible collision with other stationary or moving obstacles. The Al control has to
allow for these errors to occur and to update its internal data with its current

position and orientation.

There are a large number of mobile robot platforms currently available on
the market; these platforms range in price from the very expensive € 100,000s to
much more reasonably priced platforms of approx. €200. There are also custom
designs developed to fit the needs of particular projects which also vary hugely in
cost and complexity, such as those developed for the DARPA grand challenge
desert races or less expensive designs developed for specific tasks in education.

The complex nature involved in developing in-house systems along with
the pitfalls in the integration of different hardware, requires a large investment in
time and effort, which can mitigate against their use in student projects [4]. The
development time can be at the expense of the overall goal, which is the
investigation of developing Al controllers for robotic systems.

If the decision is made to purchase a robotic platform, budgetary
constraints can play a large part in minimising choice. There is also a cost where a
department changes hardware platforms and these new platforms present different
architecture from the previous system, presents a new set of requirements in the

development of controllers.
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1.2. Project Goals

The main goal of this research is to identify a cost effective platform and
an approach to the design and development of low cost autonomous robotic
systems. A cost effective platform in the context of this research refers to one that
reduces both development time and costs and provides better value for money in
terms of features.

The use of custom built hardware platforms will not be considered for
investigation as these require organisations to have in-house expertise in design,
development and debugging and as such may preclude the organisations from
developing control algorithms on these platforms.

The identification of such a platform would facilitate the research and
design of Al based mobile robotic systems. This should facilitate the development
of autonomous systems by small research teams with limited funding, skills in Al
and in hardware development. This can assist research teams previously not
investigating Al in mobile robotics, to expand into the area of developing Al
systems. The inclusion of these smaller and more diverse organisations, together
with the current community effort into Al for robotics research, could help to
extend current boundaries in the development of minimal autonomous robotic
systems.

The approach taken in this research began with a literature review to
identify appropriate solutions in terms of hardware and software systems. This
was followed with an evaluation of each system, using such criteria as suitability
for the development of mobile autonomous robotic systems, ease of development,
availability and cost. This was followed by bench testing of hardware and
software systems where possible. A comparison between systems was undertaken

and a selection of the optimum systems was made.

1.3.  Overview

This research involved a desk study of both hardware and software
solutions for the provision of a test bed environment. It contrasted the two
different approaches to the development of minimal autonomous robotic systems

and selected the more appropriate one.
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0 Outlines the different software simulators available for
investigation.

o Descriptions are given of each of the specific simulators
included in this chapter, Table 4 identifying the specific

hardware platforms covered by each of the simulators.

Chapter 3 - Investigation and Comparison ofApproaches: This chapter
reviews and compares in more detail the hardware and software systems identified
in the literature review:

» Hardware with Embedded solution:

0 The competing hardware platforms are assessed and a
choice is made to select the most appropriate one.

0 The different embedded solutions presented in chapter 2 for
the chosen hardware platform are evaluated and critiqued
with reference to the project goals. Work carried out in the
evaluation process is outlined, and UML diagrams are
presented in Appendix A - Hardware Code.

o Software platforms solution:

0 The software platforms presented in chapter 2 are also
evaluated, and a comparison is made between each to select
the more relevant one. Code used in this evaluation process
is presented in Appendix B - Simulation Code.

* Project Direction:

0 The competing hardware and the software solutions are
presented at the end of the chapter and a selection is made
of the most appropriate solution to achieve the goals of the

project.

Chapter 4 - Software Design and Implementation: At the end of chapter 3
two different simulators were identified as appropriate candidates to be further
investigated. This chapter carries out this investigation, using much more detailed

designs and implementations. The simulators are presented here, with their
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controller’s outputs from the simulated robots. UML diagrams for the

implemented controllers are included in the chapter under the simulator headings.

Chapter 5 - Analysis and Results: Chapter 5 presents the results for the
investigation into both the Webots and Pyro simulators. It discusses the results
obtained from each simulator’s differing architecture approaches, Webots being a
specific solution and Pyro being a generic solution to the development of robotic
controllers. The chapter also highlights the assessment criteria applied to these

two simulators in Table 8.

Chapter 6 - Conclusions and Recommendations: This chapter highlights
the shortcomings of the hardware approach to the goals of the project. It lists the
headings that were used in the critique section of the software simulators in
establishing the best candidates as a solution to the goals of this research.

In particular it highlights the difference between the Pyro and Webots
approaches in developing robotic controllers, and the advantage of generic
approach over the specific approach in development of controller for different
platforms.

The thesis then presents recommendations which include further work to
extend Pyro to improve the visual sensor simulation compatibility with other

operating systems.

Appendix A - Hardware Code: This appendix includes flowcharts for the

code for LeJOS and NQC, used in the evaluation of the RCX hardware platform.

Appendix B - Simulators Simulation Code: This appendix includes
flowcharts and some UML diagrams of the code developed in the comparison

stage of chapter 3 in this research. 1

1The use of general descriptive names, trade names, trademarks, etc., in this thesis, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by

anyone.
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Chapter 2 - Literature Review

2.1. Introduction

The literature review focuses on the two different approaches taken in the
evaluation of a minimal autonomous robotic system. It investigates previous work
done with respect to a hardware implementation and also to a software simulation
approach. This work is presented in two sections:

a. Hardware Solutions:

The Hardware investigation identified different low cost hardware
platforms that are readily available. This investigation includes an
examination of the various embedded software and the
implementation of approaches used on each platform.

b. Software Solutions:

The Software investigation identifies the various robotic simulation
environments which are available for research. These are compared

and the simulators are summarised in tabular form.

2.2. Hardware Solutions with Embedded Software

This section is divided into parts. The hardware platforms are presented
firstly, and then the embedded software for each platform is then presented.
2.2.1. Hardware Platforms

There are many different platforms utilised in research departments, but
many of these require a large capital investment for the platform and its associated
software. The pioneer robot which has featured as part of many research
laboratories [5] robotic platforms costs €5,995 (2009) [6], for the robot base.
Other platforms include the more powerful PowerBot base at a cost of €19,995
(2009) [6], the AmigoBot base at €2,245 (2009) [7] and the Khepera base robot at
~€1,600 (2009) [8]. These high costs can present an obstacle to the development
of Al in budgetary constrained departments, especially where multiple systems
are required.

The main focus of the hardware research was to identify affordable
solutions for an in-depth investigation. Once one has eliminated custom built

hardware platforms from the goals of the project, there are only two platforms
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remaining which fit the selection criteria and cited frequently in the literature, and
these are described in the following sections:
* RCX - LEGO Mindstorms RCX module

* Roomba- iRobot’s home vacuum Robot

2.2.1.1. RCX

The LEGO® Mindstorms RCX module from the LEGO’s Robotics
Invention System shown in Figure 1 is both low cost and readily available. It has
already been used in courses run in the Electronics department in the GMIT. This
module has been presented by numerous different researchers [9-13] for diverse
areas of investigation, from undergraduate research groups, programmes to
encourage interest in robotics, and GMIT’s programme in teaching robotics to
primary and second level students.

Although it has featured extensively in the hobby, school and
undergraduate levels, it also has potential at postgraduate level as a suitable
platform for further studies as documented in research papers from: the University
of Kent [14], University of Wollongong [15], Institute of Advanced Computer and
Research [16], Computer Science Department [17], Institute of Operating Systems
and Networks [18] and University of Twente [19].

The Mindstorms” RCX is based on a design developed at the
Massachusetts Institute of Technology (MIT), adapted from designs such as, the
“LEGO Robot Design Competition 1992” [20], “The Art of LEGO Design” [21]
and “Introduction to Engineering Design ELEC 201 Course Notes” [22], As the
RCX module has proved itself useful in other postgraduate research project areas,

it formed part of the investigation.

Physical Hardware of RCX Module

The RCX module consists of a Hitachi micro-controller with 3 inputs, 3
motor outputs and an Infra Red (IR) serial communication port [23]. The RCX is
packaged in what looks like an oversized LEGO Block that can be included in any
Lego design, but what makes this different is that it can be programmed to
perform any task “only limited by the creator’s imagination” (and code memory

size). There are designs using RCX ranging from rudimentary image scanners
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[24] to designs using multiple RCXs to solve the very frustrating Rubik’s Cube

problem [25] shown in Figure 2.

INFRARED COMMUNICATIONS PORT

LIGHT
TOUCH
SENSOR
LCD
DISPLAY
PANEL

HIGH-EFFICIENCY
MOTORS

Figure 1 RCX module [26]

The RCX module is shown in Figure 1 with its accompanying sensors and

motors.

Figure 2 Rubik’s Cube Solver [25]
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2.2.1.2.  jRobot’s Roomba and Create Robots

The iRobot Roomba® Figure 3 Vacuuming Robot launched in 2002 [27]
was designed to be an affordable home cleaning robot. Initially, iRobot only
produced versions of this robot that were complete vacuum cleaner units.
However, after external user community groups grew up and began reverse
engineering of the design [28], the company provided the open source interface
called “Roomba Open Interface” (ROI) released in 2006 [29] to allow users to
interface to Roomba. With the release of this ROl [30] and its predecessor the
“Serial Command Interface” [31] in 2005, the user groups now had access to the
protocols that control a robot over a serial interface, enabling experimentation on

unaltered versions ofthe Roomba [32, 28, 33-36].

Figure 3 jRobot’s Roomba Red Vacuum image www.smarthome.com

Figure 3 illustrates the iRobot’s Roomba Red with charger and remote
control. This robot can be combined with a charging home base that allows the
robot to recharge itself when it detects that its batteries require charge. It will
return to the charging home base if it can still locate the base. The Company
iRobot also released a version of Roomba called “Create” [29, 37, 38]. The Create
robot Figure 4 is marketed at the research and hobby market. It’s design differs
from the Roomba in that it has removed the vacuum and dust collection parts of
the design and replaced them with a cargo bay. This cargo bay allows for

additional hardware to be attached to the robot, extending its possible uses.
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Anatomy
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Figure 4 jRobot Create Robot

The iRobot and the Create with their existing hardware configurations (for
external sensors see section 3.2 Table 5) do not provide the user with onboard
processing, but provide the user with a serial interface to interact with the robot’s
inputs and outputs. The serial interface is defined in the iRobot’s Roomba [30]
and for the iRobot’s Create [39], These designs require a base station with a wired
/ wireless link (the robot requires a wireless dongle for this mode) to control the
robot’s operation, or the use of additional hardware added on top of the robot to
provide onboard processing power. Researchers such as Dickenson [32],
Tribelhom [35] and Conbere [40] have placed a laptop on the Roomba to provide
the robot with processing, Kurt [33] used a wireless router running embedded
Linux and Mataric [34] an embedded Linux module, to allow them to construct
their mobile robots with it own controlling algorithm. Others such as Dodds [41]
have operated their Roomba with wireless dongles, providing the processing and

robot control from a base computer.

2.2.2. Embedded Software for Hardware Platforms
This section details the investigation of the different approaches used in
the development of controllers for the different hardware available under

investigation. The literature presented a selcetion of different languages used to

11
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control the RCX module. It also investigates the development of a controller for

the iRobot’s Roomba and Create modules.

2.2.2.1. RCXHardware Platform

The investigation into the development of a controller for the RCX
platform  presented three different programming environments. These
environments are:

LEGO Robotics Invention System Environment

LeJOS - Java for LEGO Mindstorms

NQC - Not Quite C

LEGO® Robotics Invention System Environment

The LEGO® Robotics Invention System (RIS) is sold as part of the
development environment provided by LEGO with their RCX modules. It
provides the user with a block diagram environment for the development of

controllers for their robots, see Figure 5.

Figure 5 RIS Programming Environment [26]

The user selects which block they require and then connects them together

to form a flowchart for the programme. The RCX module is programmable from

12
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the computer via the connected Robotics Invention System’s IR tower. Testing
with this configuration was carried out during this project to establish how the real
world interactions with RCX operating in this programming environment. It was
also very useful in identifying appropriate motor speeds for the particular gearing
ratio used.

The RIS environment also proved useful in assessing the properties of the
communication link between the RCX module and the IR tower in investigate the
requirements for valid connection. It showed that unless the RCX was positioned
in direct line of sight, reliable communication could not be achieved. This would
negate the possibility of continuous communication between the computer acting
as a base station and the RCX Robot.

As a programming environment the Robotics Invention System provides
its users with a very intuitive approach to create controllers owing to the block
diagram development nature. It has however large limitations when it comes to
the development of more complex tasks because of the limited variety of the
blocks available. As a result the use of this language was not continued in this

project.

2.2.2.1.1. LeJOS Java for LEGO® Mindstorms
LeJOS [42] is a programming language for the RCX module. It is a

replacement firmware for the LEGO Mindstorms RCX brick. LeJOS is an Open
Source Java based operating system ofthe LEGO’S Mindstorms RCX module. It
runs on the RCX internal processor the Hitachi H8300 [43]. The software
environment consists of three different parts:

1. A Virtual machine (VM) for the execution of Java bytecode.

2. An API for RCX programming on top of this VM.

3. Additional software tools.

LeJOS has been identified and used by researchers [9, 12] and authors
have written books on the subject [44-46], It has also featured in a project in
GMIT to solve a Rubik cube using a RCX modules [47]. LeJOS is a tiny Java
Virtual Machine (JVM) for the RCX. It enables the RCX to be programmed using

the Java language. This allows for much more complex programmes to be written

13
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for the RCX module that can be produced with the RCX’s original Robotics
Invention System software.

The programmer writes code in the Java language and then compiles this
into Java bite code, which is downloaded using the IR tower to the RCX module.
The RCX module required to be preloaded with LeJOS, which is a miniature
operating system. LeJOS interprets the byte code control programmes stored on
the RCX and carries out their instructions. The LeJOS provides a reduced
instruction set to account for the limited nature ofthe RCX environment as Java is
an extensive language, with the facility to be utilised in diverse programming

areas.

2.2.2.1.2. Not Quite C (NQC)

NQC is another programming language for the RCX. It was presented by
Dave Baum [48] as an alternative programming language to the RIS language
provided by the LEGO kit. The NQC programming language is specifically
designed for the LEGO robots. It was written by Dave Baum to allow the
programmer much greater freedom from the RIS environment. Each of the robots
in the LEGO Mindstorms series has its own bytecode interpreter. The NQC
compiler translates the source code programme written by the user into LEGQO’s
bytecodes, which are then executed on the robot. Research teams [49, 50, 12]
have utilised this programming language in course work. Mario Ferrari’s book
[45] “Building Robots with LEGO MINDSTORMS The ULTIMATE Tool for
MINDSTORMS Maniacs* referring to the use of NQC with the RCX module is
another example.

NQC programming language was designed for the RCX module. It is quite
similar to the C programming language, but it is more restrictive due to the
restrictions placed on it by the RCX module. Programming in this language like
LeJOS also enables much more flexibility over the block style in Robotics
Invention System. It also does not require a Virtual Machine to run on the RCX
module as the user’s programme is translated into bytecode, which runs on the
firmware inside the RCX module. The programming on the RCX hardware
presents certain limitations of the code as shown in the Table 1, this is due to the

resources available on the RCX module.

14



Chapter 2 - Literature Review

Table 1 NQC limitations constrained by RCX

Tasks Subroutine
Up to 10 tasks allowed in programme Up to 8 Subroutines per programme
One Task has to have name “main” Cannotuse arguments with subroutines

which runs all other must be started by Cannot call another subroutine from

running task with “start” within subroutine
All tasks run simultaneously Must use semaphore if call subroutine
Tasks restart from beginning from different tasks

Tasks are equivalent to threads in C and C++; they run at the same time,
once a start command is issued with their name and are terminated with a stop
command. Subroutines are equivalent to C and C++ functions; they are small
pieces of code that can be repeatedly called from different places in the

programme.

2.2.1.2. iRobot’s Roomba and Create Hardware Platform

As previously mentioned different researchers have approached the task of
controlling the iRobot’s hardware in different ways shown in Figure 3 and Figure
4. Some have provided the robot with an on-board brain by mounting additional
hardware on top of the existing robot structure, while others have left the robot
unchanged only including a dongle to remotely control the robot from a base
computer. Zachary Dodds and Ben Tribclhom developed the Erdos project for

controlling the iRobot’s hardware using such a dongle.

2.2.2.2.1. The Erdos Project

The Erdos [41] project was designed around an unmodified Roomba
utilising the API realised by iRobot in their SCI [31] and their further release of
the Open Interfaces for Roomba [30] and Create [39]. This API enables the
Roomba to act as serial device, which can respond to requests with actions or data
from another serially equipped device. The physical Roomba has been equipped
with wireless capabilities using an additional hardware of an external Bluetooth
dongle. The “state slate” software interface shown in Figure 6 enables the user to

interact with all the features available on the Roomba robot. It presents the
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sensory data available of the robot, and also enables the user to use the virtual
onboard buttons. The project further includes a simulation interface allowing for
the development and testing of control programmes for robot prior to

real
operation. The Erdos simulator is explained in more detail in section 2.3.7 below.

FRDOS: Slate State Slate
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Figure 6 Erdos State Slate Roomba interface

In Figure 6 the current location of the robot is represented by the circular

dot, shown in the white panel which is a representation of its physical

environment.

16



Chapter 2 - Literature Review

2.2.3. The Khepera Robot

This Khepera robot [51] manufactured by the K-Team www.K-Team.com,
although excluded for the selected hardware solutions owing to its cost,
nevertheless it is included here because it has formed the core subject of many
software robot simulation environments.

This robot has featured in numerous publications [52-55] and competitions
like Kheperasot [56]. Prof. Jean-Daniel Nicoud team based at the Microcomputing
Laboratory (LAMI) of the Swiss Federal Institute of Technology of Lausanne
(EPFL), designed the Khepera robot. The initial design, developed in 1991, was to
have been a small inexpensive robot. One of the design requirements was for a
robot of 1 cubic inch, which could facilitate investigation into mobile robots.
Robots available at the time tended to be large and expensive. Another advantage
of having a small robot is the dynamics change with respect to the physical nature,
a large robot of diameter Im moving at Im/s colliding with a wall can have
catastrophic results as opposed to a small robot of diameter of 1cm moving at

Icm/s, which generally results in negligible damage shown in Figure 7.

Figure 7 Khepera Robot [51]

The Khepera hardware includes 8 infra-red (IR) proximity sensors that
provide both measurement of the absolute ambient IR light, and by reflection of
the emitted IR light, an estimation of the relative position of an object from the

robot. The platform also included both wheels with wheel encoder information.
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Table 2 lists the hardware specifications of the initial released Khepera robot.
Later models improved on these specifications.

The initial implementation of the Khepera robot can be seen in Figure 7.
The design provided the research community with a compact robot device that
would allow investigation into how real robots interact with the real environment.
A possible experimental setup is shown in Figure 8. The Khepera allowed for
expansion modules to be installed on top of the Khepera base robot to further

extend the possible task usage ofthe robot.

Table 2 Khepera Robot Specifications [57]

Elements Technical Information

Processor Motorola 68331, 16MHz

RAM 256 Kbytes

EPROM 128 or 256 Kbytes
Reprogrammable

Motion 2 DC brushed servo motors with incremental encoders
(12 pulses per mm)

Speed Max: 60 cm/s, Min: 2 cm/s

Sensors 8 Infra-red proximity and ambient light sensors with up to
50mm range

Power Power Adapter Rechargeable
OR NiCd Batteries OR Power Adapter.

Autonomy 30 minutes moving continuously

Communication Standard Serial Port, up to 38kbps

Size Diameter: 55 mm
Height: 30 mm

Weight Approx 70 g

18
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Figure 8 [51] illustrates an experimental set-up of the Khepera robot using
it on a bench connected to a computer. The diagram shows a Khepera robot
tethered to a computer using a hanging cable. The robot is surrounded with 4
obstacles. This layout where the robot can be operated on a bench has greater
advantages, as a large space does not have to be provided for experimentation
purposes where the user is modelling a maze environment. This contrasts with
larger robots that may require outdoor space or a large indoor arena. The design
was further commercialised by the K-Team [58] which provides a number of
different variations based on this initial design. The Khepera robot and its variants
are used widely in research centres. There were 58 centres listed in over 15
countries using the Khepera robot [59]. The Robot has been utilised in many
different research areas from robotic soccer [56] to swarm mapping [60]. K-Team
provides extension modules for the Khepera robot to enhance the functionality of
the robot. These include: a gripper arm, radio communication turret, linear vision
turret, video turret, a matrix view turret and additional processor. These enable the
Khepera to perform much more completed tasks, but add to the expense of the
robot’s kit.

The ease ofuse of this robot coupled with the availability of its many add
on modules have been important factors in its use for many research programmes.
Thanks to this widespread use it has spawned a large body of simulation software
developed both in-house by the team who designed it and independently by other

researchers to meet their specific simulation needs.

2.3. Software Simulation Approach

Eight different simulators currently utilised by the research community
were identified during the literature review, as possible candidates. The Table 3
lists the simulators under investigation. A detailed description is given of each in
the sections below. Table 4 at the end of the chapter includes a complete overview
of the different simulators. These simulation environments were critiqued under
12 different headings ranging from real world representation to operating

simulation support by the simulator. These are detailed in chapter 6.

19



Chapter 2 - Literature Review

Table 3 Simulators under Investigation

Simulators
Khepera Simulator
Wright State University (WSU) Java Khepera Simulator
Evorobot
Yet Another Khepera Simulator - YAKS
EasyBot
Webots
Erdos

Pyro: Python Robotics

2.3.1. Khepera Simulator

The Khepera Simulator [61] is also referred to as the Olivier Michel’s 2D
Khepera Simulator [62], Olivier Michel developed the simulator at the University
of Nice Sophia-Antipolis. Since then he is based at the LAMI in Switzerland,
which is where the Khepera was initially developed. This was presented to the
research community as the first simulator designed entirely around the newly
released Khepera robot (at the time of simulator release). Olivier Michel has since
launched a company called Cyberbotics. This simulator is designed to run on a
UNIX operating system. It allows the user to write control algorithms in C or C++
language. These algorithms are run by the simulator, in simulation of a Khepera
robot operating in a 2D world. There is also a feature to transfer this controller
algorithm to a real robot, to assess the controller’s responses in the real
environment.

The user selects a map in which the robot is required to operate, which is
displayed by the simulator GUI. The user can use one of the predefined maps
provided by the simulator or they may choose to create a new map or edit an
existing one. The simulator allows the user to add bricks to form walls that will be
detectable by the robot after the “scan” button is pressed. They can also choose

the start location and orientation of the robot.
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The GUI also presents to the user the simulated internal information of the
robot, Figure 9 that is used to aid in the diagnostics of the controller throughout
simulation. The GUI presents information on the distance sensors, light sensors

and the speed and direction of both motors.
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Figure 9 Olivier Michel's Khepera Simulator

2.3.2. Wright State University (WSU) Java Khepera Simulator

W SU Java Khepera Simulator [63] shown in Figure 10, was developed at
the Wright State University College of Engineering And Computer Science’s
Evolvable Hardware Research Lab. The “KSim” was developed to provide a
platform for the *“coarse-grained” development of controllers for the Khepera
Robot prior to testing on an actual Khepera robot. The simulator is written in Java
(Appendix C - Java), which enables it to run on both Windows as well as Linux
platforms. The KSim simulates the 8 IR sensors, which convey both proximity
and light intensity, wheel encoder information and a gripper object sensor. This
gripper sensor indicates the presence of an object between the grippers.

This simulator is based largely around the original Khepera Simulator.
This provides the same functionality but provide more possijjilUuig””im utlate the
addition module of the Khepera robot gripper. It als$

is written in Java which allows it to be run on diffe/
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The WSU simulator defines walls to be static objects thus the robot cannot
have any effect on these and collision with them can result in the robot getting
stuck. It also allows for simulation of dynamic objects such as “caps” (simulated
representation of a light weight object) and “balls” (representation of a ball object)
which will be effected by the robot if it collides with them. The simulator allows
the robot to use its gripper to collect the caps or the balls if the controller equips
the robot with sufficient behaviour to interact with them. As can be seen in Figure
10 the simulator allows the user to view the values that are measured by the
robot’s sensors during simulation, this can enable the user to debug their
controller should an unintended action be carried out by their controller. Users
write their code in Java. A controller template is provided by the simulator
installation, which indicates the important methods that are required to be

implemented to allow the simulator to run the controller.
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Figure 10 WSU Khepera Robot Simulator V7.2

In Figure 10 the robots sensory inputs are displayed in the top right of the

image. The position of the gripper in displayed directly below this image, where
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the presentee of a “cap” or “ball” is indicated. On the left the robot’s maze is

displayed and the robot position is indicated by the circule.

2.3.3. Evorobot

The Evorobot simulator [64] also referenced in [62] is a software
programme for investigating evolutionary robotics. It runs on a Windows
operating system. Stefano Nolfi [64] developed Evorobot. The author has
“copyleft”’ed this software under the GNU General Public License to make it
available for use. “Copyleft is a general method for making a program or other
work free of charge, and requiring all modified and extended versions of the
program to be free as well” [65]. The simulator shown in Figure 11, allows the
user to run evolutionary experiments in simulation or on a real robot. Stefano
Nolfi worked on the “kepsim” robotic simulator [66] as mentioned in YAKS in
section 2.3.4 and incorporated the functionality, into this simulator, of using the

real world data to construct “look-up” tables to enable faster simulation of robots.
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Figure 11 Evorobot GUI interface
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In Figure 11 the robot’s simulated environment is displayed the top left of
the window; the robot is shown here with the path it has traversed in the current
run. The environment consists of a enclosed space which also contains seven
cylindrical objects. On the right is a graph of the information produced by the
robot from its sensors. The top and bottom two wide bands are information from
the current and past state of the motors (the simulated robot records it past motor
state onboard). The eight bands in between indicate the information acquired from
the eight distance measurement sensors. The other information is to display
information about the current run’s fitness function. A run ends when the robot

collides with a wall or after a predefined time.

2.3.4. Yet Another Khepera Simulator - YAKS

The *“Yet Another Khepera Simulator” [67] (YAKS) simulator was
designed as a robot simulator to allow research into Genetic Algorithms (GA) in
combination with Neural Networks. The simulator designers take the approach
that if a robot’s sensors are mathematically modelled during simulation then,
although this is an accurate representation of a real robot, it produces a very slow
simulation. The solution that they implemented was borrowed from the designer
of “kepsim”, using pre-recorded sensor values for real world objects measured by
the physical robot and applying these to a “lookup” table. During simulation of
the robot the “simulated” sensor values are calculated by accessing appropriate
values from this lookup table. This approach greatly reduces processing time in
simulation, which in GA research is very important where a “run” can be in the
order of 1000 generations, with each typically having 100 individuals, each of
which is required to be simulated a given number of times, and from a number of

different locations. The simulator is shown in Figure 12.
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Figure 12 YAKS Simulator [68]

In Figure 12 different information for each run is displayed, this is a multi
robot simulation environment so each robot is displayed in the bottom right along
with the state of their sensors. Their different paths are displayed in the

environment on the left.

2.3.5. EasyBot

EasyBot [69] is a robot simulator shown in Figure 13, which allows for the
design and testing of control algorithms for mobile robots.

EasyBot is an extension for LightVision3D [70] to allow for the
manipulation of mobile robots. LightVision3D by Oliver Michel [70] (not
“Olivier Michel” of the Khepera Simulator) is a 3D viewer and modelling
software. EasyBot is designed to integrate with LightVision3D to allow the
environment to model robot objects. Robots are defined in the environment as
objects containing sensor objects. All group-objects in the environment containing
sensor objects are controlled by user selected Dynamic Linked Libraries (DLLS),
which specify the actions that will be carried out by each particular robot.

EasyBot is referred to as the “Universal Robot Simulator” [71]. The
EasyBot extension for LightVision3D allows the designer to create any type of
robot and/or environment that they require. The designer is then required to

produce a description file to map EasyBot’s sensor data onto their robot’s data
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and the robot’s controller onto EasyBot’s position and orientation requirements.
The interface file for the Khepera robot is included for EasyBot’s mapping.
EasyBot requires the user’s controller to carry out collision detection, as this is

currently not included in the simulation engine.
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Figure 13 EasyBot Simulator

2.3.6. Webots

Webots [72], [73-75] is a proprietary software simulation environment by
Cyberbotics, http://www.cyberbotics.com/, which allows for the design and
simulation of different robotic layouts with a range of different sensors. It is the
commercialisation of Olivier Michel’s free “2D Khepera Simulator” for the
research design market. It allows the user to create a physical robot in simulation
defining its size and shape. Also accommodated are the robots wheel size and
rotation angle forming the robot’s propulsion system. The user then defines the
robot’s complement of sensors their location and type. The simulator environment
allows for ultrasonic and IR sensors and camera image simulation. The user then
constructs an environment in which they require their robot to operate. They

specify the shape, size and contents of the required robot’s environment.
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Figure 14 illustrates an example of a maze world environment in which a

simulated Khepera robot is required to operate.

Figure 14 Webots: World Environment
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Figure 15 Webots Khepera Simulated Data

Figure 15 is the simulated internal information of the Khepera robot that

can prove useful in debugging erroneous controller responses to sensory data.
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2.3.6.1. Competitions

The company Cyberbotics that produce Webots has run a number of
different competitions with different goals to encourage the community to further
develop programming techniques using Webots.

One competition run by Cyberbotics was called Alife [72], this is where
the community was required to enter a controller for a robot, which would
compete against another entry for survival in a maze environment [76]. The
objective of the competition is for two robots to be initialised in a maze
environment so that they seek out energy feeder stations with green front side, the
colour indicating that they have energy available for charging a robot see Figure

16.

r
1
ft

Figure 16 Alife charge station fully charged [72]

These charge stations are positioned through out the maze and they may be
difficult to see. When a robot visits a charge station this charge station will be
unavailable for some time, their front colour will change to red see Figure 17. The
robot is then required to locate a new charge station elsewhere in the maze. If a
robot battery power runs out before it finds another energised charge station it will
die. The remaining robot will be declared the winner. On visiting a feeder the
robots batteries will be recharged by a certain amount, depending on the length of
time the charge station indicates available power (green colour). The maze
included a number of different charging stations but the robot could only charge if
it reached the charge station first after the station turned green and stayed until it
was no longer green.

The object of the entrant’s controller was to locate an energised charge

station, plan a path to this charge station while beating competitors to that charge
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station. It then continued to locate the next station and continue this process until

awinner outlasts the other competitor.

Figure 17 Alife charge station empty [72]

Another competition run by Webots involved simulated humanoid robots
involved in a “judo like” competition. The objective this time was to push or

knock an opponent out of a defined ring area.

2.3.7. Erdos

The Erdos project [41] as previously referred to in section 2.2.2.2.1 was
developed by Zachary Dodds and Ben Tribelhom is based around the
commercially launched robot designed to clean floors by the name of Roomba
produced by the company “iRobot” described in section 2.2.1.2.

The Erdos simulator shown in Figure 18 is a 2D simulation for the
Roomba robot. Erdos can operate on a real Roomba provided one is connected
over the serial port or on a simulated version of one. Erdos incorporates a particle
filtering algorithm to provide more accurate modelling of the odometry

information from the robot. The simulator is written in the Python language.
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Figure 18 The Erdos project’s pyRoomba output

Figure 18 shows the simulated iRobot in a maze environment. The robot is
indicated by the circle and the clump of smaller circles indicated a possible
location identified by the control algorithm. The algorithm uses the information

from the wheel distance covered and the information from forward sensor.

2.3.8. Pyro: Python Robotics

Pyro stands for PYthon for Robotics [77]. Pyro is a different approach to
the design and development of intelligent robots [78]. It is created using the
Python programming language. The Pyro approach is in the use of abstraction
when designing a controller for a robot design. This abstraction will remove the
requirements for the designer to understand the specifics of the robot that the
controller will be required to run on. This abstraction applies to both the
propulsion and to the sensory array with which the robot is equipped. It allows the
designer to ignore the hardware specifics and concentrate on the operating
algorithm. This logic means that the user should not have to worry about how
large the robot is or how it moves. This has enabled authors such as [79, 40, 4, 12,
80] to take advantage in the courses to enable students to investigate much more
detailed behaviours in a shorter time period than experienced previously. Users

can normalise and work with “robot units” that define the world in relation to the
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robots size. The logic also applies to the sensors of the robot where the user may
not know the layout of the sensors but can query the robot’s “front”, “left”, “right”
or “back” sensors. The “driver interface” which the controlling programme
interfaces to, returns the appropriate values again which can be in relation to robot
units. The user constructs a controller to drive a robot, which can be seamlessly
applied to a real or simulation version of that robot. Figure 19 the user can select
the required world map, the robot type, the sensing devices that are required and

the control algorithm the “brain”.

pyrobotiSGMIT-USER-IAB ~jn]1 xijl
file islhdow Load Robot grain Help
Server: E:V 3/thon24\Lib\site-packages\pyrobot\plugins\worlds\Pyrobot/A_mapFileLoad.py

Robed: E \Python24\Lib\site-packages\pyrobot\plugins\robots/PyrobotR cbatSOO00. py View

Devices: posttion[1] < View

Drain: E :\Python24.ib\site-packages\pyrobot\pbgins\brains/A1_R obot di$play tpy View
Step | Run | Stop | Reload Brain

Pose: X:000Y:000Th: O

Loading device sonarl]...

Loading device ligntf1]...

Loading device bulb[1]...

Loading device simulatior?™ ]...

Loading device position[1]...

Atternpting to Import A1_Robot display_t\..

hello from brain\__Init__.py

Loaded E:\Python24\LIbVsite—packages\piirobot\plugins\brains\A1_Robot display_tpycl
[sonar', ‘light, bulbl ‘simulation’, ‘position’]

Command:

Figure 19 Pyrobot

In Figure 19 the “Server” button select the server which communicates
with the environment. This server allows for a real world robot to be controlled or
a simulated robot to be controlled. The robot type is then selected with “robot”
button. The devices of interest available for that robot can be selected by
“Devices”. The control algorithm is then selected by “Brain”. Figure 20 displays
the environment in which the robot will operate. It has been defined in the world

file. All locations of obstacles location ofthe robot are defined there.
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Figure 20 The Pyrobot Simulation Environment

In Figure 20 the robot is shown in its maze environment the “rays”
represent all of the distance sensors available on the robot. Their line length
represents the relative value returned to the robot indication proximity to an

object.
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24. Summary
2.4.1. Hardware Direction

The hardware direction identified from approx fifty candidates, two possible
low cost platforms used by researchers in Al mobile robotic development. The
iRobot’s hardware provides a suitable base to use as a platform for mounting further
hardware to enable development of a mobile robot but the base itself does not provide
adequate sensory data as it only provides two bump sensors [30]. The inclusion in the
design of the “cliff top” sensors does allow for more design ideas where a real world
is much more 3D than 2D. As aresult ofthe lack of sensors available on the base, this
platform was not investigated further.

The development of the RCX hardware platform will be presented in the next
chapter section 3.2.1. Of the three embedded software approaches described above,
only the LeJOS and NQC will be compared and contrasted in-depth, the LEGO RIS
environment being dismissed due to its inadequacies, as presented previously in

chapter.

2.4.2. Software Simulation Direction

The eight different simulators under investigation in this project described in
section 2.3 above are listed in Table 4. This table lists each simulator’s attributes as
related to programming language, Operating System (OS) and the physical robot
simulated.

Comparisons are also made in the next chapter of these eight simulators to
assess appropriateness to the direction of the project. This helped the selection of

simulators for further investigation in this project.
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In Table 4 each of the simulators under investigation in listed along with

their attributes.

The restrictive nature of their simulation

is

identified. Their

computer platform on which they can run is also included, as are the availability

of their underlying source code. It also lists whether they arc proprietary or open

source.
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Chapter 3 - Investigation and Comparison of Approaches

3.1. Introduction
The hardware and software systems identified for further investigation in
the literature review will now be reviewed and compared in more detail. This
chapter is organised as follows:
* Hardware Solution
0 Description of the physical hardware platforms under
investigation.
0o Investigation into different Embedded Hardware Solutions

for the RCX platform.

» Software Simulation Solution
o Comparison of the different simulation environments

identified in the Literature review.

e Comparing the “Hardware with Embedded Software” solutions
with the “Software Simulation” solutions.
0o Presentation of the criteria used in the selection of one

solution over the other.

3.2. Hardware Solution

Of the two candidates identified for possible investigation in this research
it was identified that the RCX showed the most promise for further investigation.
The RCX allowed the developer to upload the controller software to the memory
and then run it. The Roomba by iRobot did present as a very sturdy base but it
would require additional hardware and onboard processing at a minimum to equip
it with the requirements for this research. The Roomba base unit (see Table 5
below) only provides two collision sensors and an offset wall sensor and as such

was considered inadequate in its current state.
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Table 5 External Environmental Sensors of Roomba

Sensors Number Type

Bumper 2 Press buttons in bumper

Wheel Drop 3 Detect the wheel have
dropped down

Cliff sensor 4 Detect the sensor has
gone over a cliff

Wall Sensor 1 IR transmitter and
detector

IR Sensor 1 IR sensor

and Comparison of Approaches

Location

Front

One each of the drive
wheels and on caster
wheel

Front of robot 2 to the
right and 2 on the left
Positioned on the front
right

Front top ofrobot

On choosing the RCX module, the investigation into this platform focused

on the two parts to the development on this platform:

Physical Hardware
0 Propulsion design ofrobot
0 Sensory layout in the detection of obstacles

Embedded Software investigated

o LeJOS
0o NQC
The physical hardware is described below; the embedded software

investigation is described in the section 3.2.2:
3.2.1. RCX Physical Robot

As the RCX module features in the project, a description of its physical
robot is now given. The Robot is required to traverse a maze avoiding obstacles
and recording maze locations. To produce a working robot it is necessary to
incorporate the RCX in a physical embodiment to provide locomotion, sensing
etc. There are a plethora of implementations of the RCX physical robot presented
by different authors [81], mainly due to its suitability for undergraduate and
postgraduate projects. Because of this it would be almost impossible to conduct an
exhaustive search and report on all of them. Instead, a representative sample has

been chosen.
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In a robot where localisation is directly related to robot orientation and
wheel movement it is vitally important that movement and direction control are
rigidly controlled. Thus, in this project the design used for the drive system went
through a number of design iterations, each time improving the system
performance of the mobile robot. Initially the design involved connecting the
wheels of the robot directly to both drive motor shafts to allow the robot to move.
The motors were driven at a very slow rate of rotation to facilitate controlled
forward, reverse and turning motion. This design was further improved by adding
in some gearing between the motor shafts and the wheels. These first propulsion
designs produced very poor accuracy in motion, which was characterised by a lot

of wheel slippage resulting in skewed motion.

Figure 21 Differential Gear Drive Figure 22 Differential Gear Drive

Figure 23 Differential Gear Drive Figure 24 Differential Gear Drive

The propulsion system was improved by using a design for differential
gearing presented by [82], which allowed for a more accurate way of driving the
robot using the 2 motors to control forward, backwards or rotation. This enabled

the robot to rotate by spinning on its own axis.
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Figure 21-Figure 23 illustrate the Differential gearing system adapted by
Mark Overmars [82] from other designers. This gearing system operates as
follows: if only one motor is rotating it drives both wheels forward, or both
wheels backward, while the other motor is responsible for steering the robot;
turning it left or right. If on the other hand both motors operate at the same time
one of the wheels will remain motionless while the other wheel rotates at twice-
normal speed enabling fast turning.

This gearing arrangement was slightly changed for the design used in this
project to allow the robot to occupy only the space between the two wheels (see
Figure 25). This allows the robot to spin on its own axis with no unnecessary
protrusions beyond the wheel arc.

The ability of the robot to drive in a straight line was improved in this
arrangement over that, where each wheel was driven by a separate motor. The
single motor had the disadvantage that to drive a robot forward each motor was
required to be energised for a specific time. On completion of this time the power
would be removed from the motors. The motors would settle by rotating
clockwise or anticlockwise to the nearest permanent magnet contained within
each motor assembly, resulting in the trajectory of the robot being upset slightly.
This may be exacerbated if the motors are rotating at higher speeds (when over-
run occurs) or with a lower gear ratio to the wheels. With the new gearing
arrangement this settling would result in both wheels travelling the same amount
in a forward direction as only one motor is driving both wheels. As a consequence
of these slight inaccuracies, the robot travels slightly greater or less than the
distance required by the programme, but produces no variation in rotation of the

robot from forward motion.

Unfortunately, none of the hardware designs include any feedback from
wheel encoder information, as the RCX interface only provides 3 inputs and all

three are used in ascertaining information about its environment.

3.2.1.1. RCX Robot Sensory Layout
The RCX module presents the designer with the ability to read 3 input
parameters and control 3 output parameters. Each ofthe outputs can drive a single

motor. The inputs can be connected to analogue inputs or switches. The RCX
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programme is informed by the user as to the nature of the input, be it an analogue
or switch. The RCX robot base proceeded through a number of different sensory
layouts. As arobot is required to detect its environment and a mobile has a greater
requirement to detect its environment to provide for collision free locomotion.
The layout proceeded through a number of design refinements. The initial design
use 3 bumpers positioned to the left, front and right of the robot. This allowed the
robot to detect obstacles on the left, front and right hand sides. The design proved
to be unworkable due to the fact that the robot would not be able to track along
beside an obstacle due to the fact that when it detected an object to the side it
would have to change course or the contact between the side bumper and the
object would upset the trajectory ofthe robot.

This design was further refined to a system where the three sensors
consisted of one bumper sensor to the front and the left and right sensor resembled
“whiskers” that protruded out each side, see Figure 25 below. This layout meant
that an object to the side could be detected but would not hinder the forward
motion of the robot until it collided with the front bumper. This design would

enable the robotto follow walls by detecting them with its “whiskers”.

Figure 25 Robot with Differential Drive used in this project

Figure 25 shows the robot configuration used in this research. The front
bumper extends beyond the robot on either side to detect if an obstacle gets too
close to the robot to unduly interfere with the current trajectory. Both right and
left “whiskers” extend out much further than the bumper so that objects can be

detected, allowing the robot to trace the periphery of the object if required without
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causing a “bump” to the system. Such a bump will change direction of the robot,
and will generate a discrepancy between expected and actual path.

As stated earlier, the RCX set-up did not provide for a wheel encoder to be
incorporated into the design as only 3 inputs parameters were available but
already used for the detection of surrounding obstacles. Distance calculations are
carried out by recording the time and direction that the wheels are turning for a
given motor speed. This method is referred to as “dead reckoning” but without the
benefit of wheel encoder information. The wheel encoder information would

offset the effect that changes in battery voltage have on the distance calculations.

3.2.2. Real time Embedded Software For RCX Robot Solution
Development work on the LeJOS and NQC based embedded solutions for
the RCX platform identified in the literature review (section 2.2.2.1) is presented
here as part of the investigation into controller designs for the platform. This
section contains:
e Internal Memory structure of RCX
* Developmentwork in LeJOS language
0 Outcomes ofLeJOS
e Development work in NQC language
0 OQutcomes from NQC language
* Presents Conclusions from comparison of these two approaches at

the end of the chapter in section 3.4.1.

3.2.2.1.  Internal Memory Structure of RCX

Figure 26 outlines the memory structure available in the RCX module. The
16 Kb of ROM contains a driver for the RCX module that remains after power
loss. It handles low level commands to the internal hardware of the RCX and
allows for the downloading of the firmware. The firmware resides in the first
16Kb of the RAM. This is a bytecode interpreter, which acts like the operating
system for the RCX. It interprets the user’s programmes which are written in
bytecode and runs them by calling the appropriate opcode in the ROM. The user’s

programmes reside in the next 6Kb of space in the RAM. The final 10Kb of
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memory space is used by the firmware as interpretive and execution space. This is

where local and global variables will reside during operation.

10 Kb
6 Kb RAM
Interpreting byte code
User programmes
& Execution space
16 Kb RAM

Firmware

16 Kb ROM

Figure 26 RCX Internal Memory Map

3.2.2.2. Development Work on LeJOS

The original RCX RIS programming environment was limited by the
restricted nature of the available programming blocks. As a result a new
programming language was chosen to drive the RCX module. This LeJOS
requires a different firmware to be installed on the RCX module. This firmware is
a JVM for the RCX environment. The new memory layout is shown in Figure 26.
The developed code is then downloaded into the user programme space onboard
the RCX.

During the development phase on the RCX module using LeJOS
programming environment testing was earned out on the module running the
LeJOS Virtual Machine. Physical measurements were carried out to determine the
time it took for the robot to drive forward 1 metre and rotate through 360°. These
were calculated for a RCX module reporting a voltage of 8. 1V;

e Time to drive 1 metre is 5 seconds
e« Time for a full rotation is 3.21 seconds

These values were then used in the code to perform the calculations for the
“dead reckoning” to determine the robot’s current angle and location, relative to
its start location. Code developed for the testing process is presented in Appendix
A-A.l.

The LeJOS’s inbuilt process management system operates on the basis of
a weighted process list. The process of higher weighting always takes precedence

over a process of lower weighting. If the higher process requests operation it
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returns a true from a call to its “takeControl()” function. The designer using this
structure to construct their code, can form a list of different tasks that require
operation and assign a different weighting to them by adding them to the list with
the first being of lowest weighting.

Work commenced with this environment, writing code to test out the
operation of the RCX running LeJOS. The programmes were designed to utilise
the different inputs and outputs configurations on the RCX to investigate the
advantages of LeJOS over the Robotics Invention System programming language
approach.

The software design then continued into the application of the RCX
running LeJOS for this project. This involved implementing a routine which
detected surrounding objects of the robot, see Appendix A - Figure 52 and Figure
53. Work was conducted on the development of a mapping system to record
detected objects around the robot, see Appendix A - Figure 55 and Figure 56,

which is described later.

3.2.2.2.1. Outcome of development with LeJOS on RCX

The development on the RCX robot using the LeJOS environmental
language proved that the robot could detect objects using its “whiskers” on the left
and right and react to a front bumper collision with the appropriate stop motors
running to minimise navigational errors from the collisions. It could calculate
distance travelled and direction using dead reckoning technique of recording the
length of time the motors were operational at a particular speed and direction.

The LeJOS environment could not however provide adequate storage
space to map the environment travelled by the robot. The robot system would be
required to store a large amount of data on the RCX to provide the system with a
viable map. This is because the map would store the location data of all objects
encountered around the maze as well as the path taken by the system. This map
would be required to provide the robot with knowledge of its surroundings to
enable it to perform educated decisions as to the direction to turn next, to best
reduce the uncertainty about the current robot’s world view. The approach used
by the Java software to store its information also adds to the overhead in the

storage of the vital mapping information. As a result of LeJOS’ approach
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requiring more memory than that available in the limited environment of RCX, it

precluded continuation with LeJOS as a viable solution for the project.

3.2.2.3. Development Work on NQC

The NQC environment operates using the original RIS firmware on the
RCX module. This firmware is required to be re-downloaded each time the
battery power is disconnected from the RCX as it resides in the onboard volatile
RAM.

Here again experimental calculations were required to establish the time
taken for the robot to travel the distance of 1 metre and rotate 360°;

e Time to travel 1body length =100 counts of 10ms duration = Is
e Time to rotate 360° = 70 counts of 10ms duration = 0.7s

Programmes were written in NQC to assess the ability of the RCX robot to
map out a maze environment. Testing of the detection by the robot’s “whiskers”
of objects on both the left and right was carried out. This involved assigning
events to each of the sensors on the robot and detecting when an event occurred.
When one of the “whiskers” made contact with, or lost contact with, an object on
the left or right this generated an event. This event was then captured and the time
of the event was recorded, see Appendix A - Figure 60 and Figure 61. Code
presented for this testing process is in Appendix A - A.2. The NQC in the RCX
environment supports 32 global variable locations and 16 local variable locations.
The results of investigating the storage restrictions are presented in Appendix
A.2.2- Figure 60 and Figure 61. The results from this test indicate that you can
effectively increase the number of storage locations using arrays but it ultimately

cannot provide sufficient storage locations to store a map.

3.2.2.3.1. Outcome of NQC development for RCX Robot

In this development using NQC the RCX robot was equipped with the
ability to detect the presence of objects on the left and/or right and also to detect
when that object was no longer present. This ability would enable the robot to
record obstacles and their continued presence, over the number of unit robot body
lengths. This ability could be used to construct a map using the robot’s world

view in robot sized units. As was identified while programming the RCX using
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the LeJOS environment, the internal memory is of limited size. In the NQC
approach an attempt to compensate for the lack of internal memory, lower level
variables were chosen to minimise the required storage of data, this involved bit
masking of a memory location. This would enable a variable to utilise only the
required number of bits to record the variable’s possible different states. An
example using the 16 bit integer “event occured” to store 8 different variables

referring to the state of object detection by the sensory inputs is shown in Table 6:

Tableé Event Record Bit Index

Bit index Bit name
1 FRONT BUMPER OBJ
2 FRONT BUMBER OBJ GONE
4 LEFT_EAR_OBIJ
8 LEFT_EAR_OBJ GONE
16 RIGHT EAR OBJ
32 RIGHT_EAR OBJ GONE
256 RIGHTEARPRESSED
512 LEFTEAR PRESSED

The storage location “event occured” enables the controller to record the
occurrence of each of the different events independently. This approach allows the
controller on servicing the highest event to clear its occurrence from the variable
and then service the next highest event. Lower priority events are always recorded
in the variable and are not affected by updating other events.

Using the approach of minimising the bits needed by each variable proved
to be an appropriate way of minimising memory usage, by individual variables. It
did not however achieve sufficient memory savings to provide enough memory to
store the location of objects detected by the robot and produce a map of any
usable size.

It was decided that, due to the limited nature of the RCX memory storage,
as well as it only having 3 inputs for the detection of the environment, that the
investigation into its use as the basis for the project could not yield adequate

results.
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3.3. Software Simulation Approach
This software simulation approach required the selection of a suitable
simulation environment. The eight different simulators identified in Chapter 2 -
Literature review were:
e Olivier Michel’s Khepera Simulator
« Wright State University (WSU) Java Khepera Simulator
e Evorobot

* Yet Another Khepera Simulator - YAKS

e EasyBot
«  Webots
* Erdos

e Pyro

Each simulator is evaluated to identify its appropriateness and suitability
for the project. A report was given in the literature review on the operation of each
simulation environment. Simulators presenting as good candidates for the project
direction will be highlighted here and further developed in chapter 4. A
conclusion is given at the end of the chapter in relation to the simulator choice

made.

3.3.1. Olivier Michel’s Khepera Simulator - KSim

The Khepera Simulator which was the first simulator produced for the
Khepera Robot was investigated. As described in 2.3.1 this simulator became the
foundation for subsequent authors in the design of later simulators for the Khepera
Robot. Code developed during the investigation of this simulator is described in

Appendix B - B.I.

It was concluded that the Khepera Simulator environment provided a good
introduction to evaluating the simulation principles used when dealing with the
Khepera robot. Tasks available include: accessing data representing the simulated
IR values for the robot, performing decisions making based on these values and
varying the speed and direction of the motors. These gave a good impression of

the versatility of the robot but it identified limitations in the simulation
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environment when it came to adjusting the maze. The environment required a
complete recompile of all files when the controller was changed. Updating of the
maze layout also proved similarly cumbersome. This would preclude the
investigation into a dynamic environment where structures in the maze were

moved around while the robot is in operation.

3.3.2. Wright State University (WSU) Java Khepera Simulator

This simulator was investigated to identify if it suited further
developmental work for this project. The simulator presented a nice interface and
allowed the development of robot controllers in multiple different Operating
Systems (OS) due to the simulator environment being in the Java language which
operates similarly across different platforms. The simulator was designed around
the original Khepera Simulator by Olivier Michel but did provide the user with
some advantages over the original. The user no longer needed to recompile all of
source code each time a change was made and with the added benefit that Java
software did not require a specific OS. The disadvantages of this environment are
that it only allows for objects resembling short walls to be added to the robot’s
environment, the user cannot interact with the robot during operation it does not
allow for the robot to be kidnapped2 during a “run”. As referred to in the
simulators documentation it only allows for coarse grained simulation . Owing to
these limitations it was deemed not appropriate to continue developmental work

on this simulator.

3.3.3. Evorobot

The Evorobot simulator is designed to run evolutionary robotics
experiments. This is where a control strategy is developed from multiple “runs” of
competing controllers and where the controller that best approaching the target is
selected to seed the next generation of controllers. As this simulation software is
only suited to a Genetic Algorithms (GA) approach it was rejected as an
appropriate simulator to this project, as other simulators investigated also allow

for GA investigation as well as other approaches.

2See Kidnapped in Glossary

3See Coarse Grained Simulation in Glossary
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3.3.4. Yet Another Khepera Simulator - YAKS

The documentation [67] for this simulator presented a programme that
warranted investigation. This investigation was to identify whether the platform
was appropriate to continue research. The K-Team referenced this as a viable
simulator [62], During the investigation into this simulator, the installation
process required the simulator source code to be compiled. This is common on
freeware code but in this instance the compilation process presented errors which
could not be overcome. These errors may have been due to the use, by the
simulator of outdated library files. Because of the difficulty in resolving these
issues it was decided that further work on this programme would not resolve these
problems in the short term, and as a result this simulation environment was not

continued with.

3.3.5. EasyBot

The EasyBot simulator presented the user with a nice interface enabling
the design of a self contained environment in a 3D modelling language. The
disadvantage with this environment is that the user interface of LightVision3D
(LV3D) which EasyBot is an extension of, is provided only in the German
language, as are the help files for LV3D. The EasyBot’s extension to LV3D does
not perform any collision detection which would prevent the robot going through
walls or other objects, which the developer have expressed is required in future
work [69]. As aresult of the lack of collision detection provided by the simulation
engine (which appears standard in most other simulators) this operation requires
the user’s controller to carry out collision detection. This results in the controller
being burdened with the added complication which would not exist if the
controller is run on a real robot. This provides the user the dilemma of not being
able to design a controller as would be envisaged for a real robot. These
disadvantages resulted in the simulator not being continued with as both presented

real obstacles to the developmental work in this project.
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3.3.6. Webots

In the Alife “Webots” competition run by Cyberbotics Ltd. the makers of
Webots, Petr Stepan achieved the winning entry with his Piglet controller. This
competition as previously outlined in Chapter 2.3.6.1, required the entrant’s
controller to locate “feeding stations” around a maze environment. These feed
stations charge the simulated internal batteries of the robot, while the feed station
was green, see Figure 16. After a feed station had exhausted its power it changed
colour to red, see Figure 17. The purpose of the competition was to develop a
strategy to locate green charge stations and reach one of these charge stations
before the other robot, depriving the competing robot of power from that charge
station thereby outlasting them. A depleted charge station requires time to
“recharge” itself, requiring the robot to locate the next station.

Petr Stepan’s code constructed a map of the surrounding obstacles and
“feeder stations”. It then planned a path to these feed stations. It also carried out
exploration of the incomplete areas of its internal map. The exploration would
cease when it identified that its map represented an enclosed environment, one
that is surrounding by boundary walls on all sides with no possible escape. The
code would identify the status of each visible feed station by its colour,
identifying whether charging was possible from that station.

Petr Stepan’s code provided a very interesting approach to navigation
using a simulated camera-equipped Khepera robot. This code provided a
promising basis for this research project. Petr Stepan’s original code is released
under the GPL licence [83],

Code investigated during the investigation is presented in Appendix B -

B.2.

It was concluded that the Webots simulation environment was identified as
one that showed great promise for further investigation in this research. The
competition entry by Petr Stepan identified very novel ideas in its winning entry
in the Alife competition. Due to these two promising facets of Webots and Piglet
controller this simulator was identified as one that warranted more in-depth

investigation in this research.
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3.3.7. Erdos

The authors of Erdos present their code to the world in somewhat of a
partially finished state. The code presents to the user a number of different files
one of which refers to a simulation mode. This simulation’s functionality had not
been fully implemented as the authors provide a more complete implementation in
their code designed for connection to a real Roomba robot. Owing to the
incomplete nature of the simulation environment, work was carried out to
incorporate into the simulator the updated functionality available for controlling
the full functioning robot driver. The Erdos platform is written in the Python
programming language.

Code developed for the investigation is presented in Appendix B - B.3

Conclusions in Use of the Erdos

Erdos simulator implemented some search algorithms for the Roomba
robot. Roomba preformed object detection with collision sensors and cliff edge
detectors. These sensors are only placed on the front half of the robot, resulting in
no rear sensors. Due to the limited nature of Roomba, this presented limitations on

Erdos environment, and as a result it was not continued with.

3.3.8. Pyro

Investigation into this Pyro environment commenced with the
development of a simple controller. This controller was designed to generate a
reactive robot and enables the examination of the abstraction behaviour of the
Pyro environment. This system abstraction enables designers to focus on the
algorithm nature of the controller and allow the system to provide the relevant
information of the specific hardware currently being controlled. If, for example
the Pyro controller was asked to supply the information about the nearest object.
If the hardware has just a few or even many forward sensors the user’s controller
algorithm may not need to know how many were available, it may just require the
distance between the front of the robot and an object. The system processes the
request for “front” sensors and provides the requested distance information.

This indicates that the standard approach to the design of controllers for

robots is not required for Pyro because the designer does not require the

49



Chapter 3 - Investigation and Comparison of Approaches

knowledge of the physical robot. This abstraction allows for the use of relative
terms like “front”, “side” etc to refer to the sensor positions. This abstraction
makes Pyro a very powerful tool. The Pyro simulator is programmed in the
Python programming language.

Code developed for this investigation is presented in Appendix B - B.4.

Conclusions in Use of Pyro

The Pyro simulation interface was identified as one that showed great
promise, as the interface presented the user with a selection of different real or
simulated robots. It provided for the development of controllers that could be
utilised to control different robots, by the use of abstraction. The interface enabled
the controller to request the “Front” sensors and the specific robot selected front

sensors were returned, whether this was one sensor or many sensors.

3.4. Overall Conclusions
3.4.1. Hardware Embedded Software Direction

The investigation into the embedded software side of the project in section
(3.2.2), identified that both the LeJOS approach in section (3.2.2.2) and the NQC
approach in section (3.2.2.3), performed the tasks of utilising the RCX robot
presented in chapter 2 shown in Figure 25, of detecting surrounding objects
adequately well. It was also identified that these two approaches failed to provide
enough memory for the provision of a map storing locations of sufficiently large
maze. Memory was still an issue even though the NQC direction provided for
much smaller variables to be used, by specifying individual bits in a single
memory location.

The overall conclusion was to reject the Hardware Embedded Software
approach as a viable platform for lo cost autonomous robotic systems due to its

shortcoming demonstrated above.
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3.4.2. Software Simulation Direction

Table 7 below gives an overview of the different simulators and the setup
required for each. It identifies whether modifications are required to enable the
individual simulator environment to function as described in its documentation.

It was identified during the comparison stage of this project that of the 8
investigated simulators, 6 simulators did not present as good candidates to form

the basis of the research due to the following reasons:

1. The Khepera Simulator KSim had the disadvantage of requiring a
recompile each time something changed.

2. The WSU simulator provided an easy to use interface but had
limitations in its environment.

3. The Evorobot simulator was only suited to a GA approach.

4. The YAKS simulator did not function as described.

5. The EasyBot simulator also presented a sophisticated but usable
interface but its disadvantages outweighed it usefulness to the
project.

6. The Erdos project had limitations in its simulated robot’s sensory

complement.

The two remaining simulators, the Webots simulator and the Pyro
simulator provided a worthy platform to further the investigation. These two
simulators are presented in chapter 4 along with the work developed during the

research within each simulator.
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Simulator
Khepera
Simulator
WSU Java
Khepera
Simulator
Evorobot
YAKS

EasyBot

Webots

Erdos

Pyro

Source code
compilation

required

Yes

No

No
Yes

No

No

Yes

Yes

Investigation and Comparison ofApproaches

Table 7 Installation process of Simulators

Source
code
required

editing

No

No

No
Yes

No

No

Yes

Yes

EXE file

supplied

No

No

Yes
No

Yes

Yes

No

No

Functioned
after editing

source code

Yes

Yes

Yes
No

Yes

Yes

Yes

Yes

Operating

System

Linux

Windows

Windows
Windows
Windows
Windows
Linux

Windows
Windows

Linux
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Chapter 4 - Software Design and Implementation

4.1. Introduction to the Software Design

In the previous chapter two simulators were identified as valid candidates
for inclusion in the software design stage of this research. Each simulator would
require more software to be developed during the research for it. This developed
software is presented below each of the simulators sections. Outcomes resulting

from the developmental work are also presented below each simulator code.

4.2. Webots’ Environment

This environment provides the user with a very adaptive environment. The
user can construct a 3D world that they wish their robot to operate in and this is
called the “world file”. The user would construct the robot they require for their
own world which is also added to the world file. The designs for different robots
are provided in the example designs of the Webots environment, but the user has
to recreate these designs in their new world file, specifying size, shape and
orientation of each of the different faces required to construct the robot. The user
develops a controller in software for their robot and assigns this controller’s name

to the “controller” field under the robot’s definition in the world file.

4.2.1. Software Designing in Webots

The design in this environment involves the selection of a pre-existing
world or the construction of a new world and, as mentioned already, the world file
also defines the robot. The robot can be designed with different means of
locomotion; wheels, legs or flight. Its sensory complement is also defined with the
location, the number of sensors and type of the individual sensors.

The controller for the robot can be written in C, C++ or Java programming
languages. The name of the resulting executable (.exe) \ Java class (.class) file is
assigned in the world file under the “controller” field. Each sensor added to the
robot in the world file can be accessed by the controller using its individual name
from the “name” field in the world file Appendix - B.2.1.

Robots can be designed with the following types of sensors and actuators;

distance sensors (infra-red, sonar, Laser), motor wheels (differential wheels),
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cameras (colour camera, monochrome camera, range finder device), servos, touch

sensors, grippers, emitters (infra-red, radio), receivers (infra-red, radio) etc.

4.2.2. Software Design for the Project

The world chosen for this investigation was a modified version of one
used during the Alife competition (see section 2.3.6.1). The robot featured in this
competition was a simulated Khepera robot fitted with a colour camera. The
controller used for this environment was a modified version of the Petr Stepan’s
original Piglet controller. The design in this strand of the project looks at the
modification and further development of the Piglet controller for an
implementation of a system to investigate sensory redundancy. This controller
was selected because it presented an integrated solution to the operation of
combining different sensory data and mapping of the arena (shown in Figure 27).
The original controller displayed its search strategy as well as its explored areas to

the user while it was operating shown in Figure 28.
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Figure 28 Webots piglet world data
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4.2.3. Development Work of Piglet Controller

The following files were modified from their original, during the

investigation into sensory redundancy:

* Grid.java: This is a modified version of the original code. Additional
information has been added to this thread to enable the isolation and
independent representation of the different information sources being
detected by the robot. This information was present to the user in new
maps representing only the information from a specific stimulus.
Debug information was also generated to identify specifically how

information relating to the environment is detected and stored.

» OQutputs.java: The original purpose of this file was to display to the
user the internal data collected by the simulated robot as it traverses
the maze. The data displayed to the user was the false colour camera
image shown in Appendix B.2-Figure 69 and the combined
information from all the sensory data shown in Appendix B.2-Figure
67. This file was modified to separate out the information streams from
each of the different sensors. It also displays other internal information
in Figure 31. The original combined sensory information is still
displayed as shown in Figure 32. Maze information identified by the
camera only plus the ground information is shown in Figure 33.
Sensory detection of obstacles by the IR proximity sensors is displayed
in Figure 34. The robot registered that an object was detected by the
proximity IR sensors when the sensor’s value indicated that an object
was within 40cm or closer. The more pronounced the red colour is at
locations in the image shown in Figure 34, indicates the more an
obstacle is detected at that area. This results from the robot being close
enough to detect and spending long enough to produce multiple
readings of that object. Figure 35 represents the combination of the
camera decoded data and the IR sensors detecting free space around
the robot. The information displayed in these images was utilised to

establish the results from alterations in sensory responses.
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Piglet_edited_v3.java: Supervisory functionality was envisaged to be
advantageous to the exploits of the robot but owing to the missing
functionality between Java and CPP implementation in the Webots this

was not available.

pul edit .v3_controlle*',mazeJow .consuniptian.wbt - Webots -1ni ((1
9* E<* Stafeton wt«d fie

a Q 1B3idO b » »

Figure 29 Webots environment

Figure 30 Output of simulated camera

Piglet robot O Piglet_edit_v3

n Piglet camera data 84.7481 bat posx 0.32625 V 0.42190

Figure 31 Camera false colour and internal data
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Figure 32 Maze data
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Figure 33 Camera information only
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Wi Prew Y mi{l ioudi B B IR 41 i
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Figure 34 IR sensor collision data

Figure 35 Ground information

4.2.3.1.  Outcome from Modification of the Piglet Controller
The controller implemented an algorithm that produces a false colour

image from the simulated camera image. It removes much of the maze detail in
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the camera image, except where the walls meet the floor and colour associated
with the charging stations.

As the code author remarked, the code is not well commented. This
resulted in a challenging undertaking to identify how the different areas in the
code operated. This code was investigated by adapting it to produce different
maps from the two different stimuli available to the robot. During the
investigation it was identified that, while the code performed very well in the
specific world constructed for the competition, it would not handle subtle changes
in colour, e.g. even where shadows were cast on walls. As a result of these
shadows the robots ability to detect the presence of a wall by the robot’s camera is
disabled by the controller. The ground of the maze was also required to be of a
specific colour. The result is that the code would require adaptation to enable it to
operate in a world of different coloured walls and floors. It would also require
further changes to enable it to fully decode the camera image; the operation of the
code scanned the middle line of the false colour image from the camera for the
height above the bottom of the image where floor and wall/object meet. This
height measurement is used to calculate the distance this floor-wall junction is
away from the robot’s current position by producing a distance measurement. The
current structure of the code would require extensive rewrites to enable it identify
more of the important information from its surroundings from both the simulated
camera and the IR proximity data. The current code does not take into account of
the possibility that objects may have a gap between themselves and the ground.
This code would interpret them as being further away from the robot than their
actual location is and this would greatly depend on the distance the robot is from

the actual location and their height relative to the robot’s camera.

4.2.4. Outcome of Webots

The code developed in this research highlighted Webots as very powerful
simulation engine. The ability to simulate different robots with different sensory
arrays presents a very good development platform of a research environment. The
investigation into the modification of Piglet highlighted the power of Webots and

also the interaction between controllers and sensory array and motors.
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4.3. Project Work with Pyro.

The Pyro project provides a number of different server environments to
allow for the development of different approaches to the development of
controllers, these are:

* Player Server

* Pyrobot Simulator

This project focused on the Pyrobot simulator as the server environment to
investigate controller development. Under this server the Pyrobot simulator is
selected and assigned a world file. Player Server is a robot device interface server
which provides a network interface to robotic hardware. It, like Pyro, provides a
level of abstraction but has not been ported to the Windows OS. It does not afford
the same level of abstraction when designing controllers as Pyro. It can be utilised
by the Pyrobot interface when run on a Linux OS.

The code written for this project in the Pyrobot Python simulator falls into
two distinct areas. Part of it is to define the simulated arena in which the robot
will operate, and the other part is the brain controller used by the robot.

To run the Pyrobot environment the following setup is required see Figure
36, the user selects the different options under the following headings:

e Under the Server selection: The user  selects the
“PyrobotSimulator” and loads the world file “A_mapFileLoad.py”

« Under the Robot selection: The user select the robot referred to as
“PyrobotRobot60000.py”

» Under the Device selection: The user select the hardware they
require to be supported in the particular simulation run, int this
case “AllSupported.py” hardware is selected

* Under the Brain selection: The user select the controller they
require to operate with the selected robot and hardware choice, in

this case the “Al_Robot_display_t2.py” controller is selected.
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Figure 36 Pyrobot environment

The code developed to define the arena is as follows:

globalEnvironmentalVariables.py: This programme is used to store
common data that will be required by a number of different sources in
the code. Information such as environmental size, centre position and

map file name.

mazeExitMap.txt: This is the file containing the information on wall
positions in the maze. It defines the start x and y, and the end x and y
position of each wall section. This maze is constructed in the simulated

world. See in Figure 38 for resultant maze in simulator.

__init .py: This is a blank file that needs to be in a folder to indicate
to python that it is a package directory. It is run first and thus any
methods placed in this file will overwrite existing methods in this

folder.

pysim_extension.py: This file defines the object
“TkSimulator_extend” that extends “TkSimulator”. It provides the
functionality of loading maze file. The object reads in the file and
creates the walls from the provided x and y coordinates. The maze file,

is passed to the function init () as “mapname” parameter.
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A_mapFileLoad.py: This file defines the simulation

It

constructs the simulation environment by defining an instance of

“TkSimulator_extend”, adds a robot to this environment, specifies the

devices the robot will possess and adds light objects to the world.
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Figure 37 UML Diagram of the simulator environment
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Figure 37 is the UML diagram of the code constructed to operate with the
Pyrobot Simulator’s simulation of the environment. It extends the original object
“TkSimulator” to add the aforementioned ability to load a maze map into the

simulated world.

Pyrobot Simulator jnijixj

View Qptiom

Figure 38 Simulation environment with maze file loaded

The code developed to define the robot’s brain controller is as follows:

* mazeExitMap.txt: This is the same file used in the construction of the
simulation arena. It is loaded by the controller to provide the prior

knowledge ofthe maze environment.

* globalEnvironmentalVariables.py: This file is also used by the
controlling and the simulator parts alike. It is used to define global
parameters for the system. It defines the size and mapping scale of the
environment, it also includes the name and directory path of the maze

file “mazeExitMap.txt” in use
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robot_data_v4.py: This file performs the backbone ofthe controller for
the brain of the robot. It holds the methods by which the robot updates
its particles. Particles are possible locations for the robot pseudo
randomly placed through the environmental space in which the robot is
intending to operate. Each particle has a location (x, y), direction and
size representing the probability that this particle is the current location
of the robot. Figure 39 below shows a typical spread of initially placed
random particles. This file includes the methods to perform the
calculations to identify the proximity of individual particle location to
the relative maze walls. It knows the structure of the maze as this is
prior knowledge to the robot, and this is loaded into the environments
display, but does not know its current location in the environment. It
identifies ghost particles, those which pass through walls as a result of
the update process, translating each particle by the amount the robot
has moved. These ghost particles cannot represent the current location
of the robot as the robot cannot pass through walls and as a result the
particle is reinitialised and assigned a new random location. Particles
that have similarities in the distance they are from objects, to the
robot’s calculated distance sensory data, have their weighting
increased, as they represent higher probability that their location
represents the robot’s current location. Conversely particles distance
measurements not comparing favourably to the sensory distance data,
have their weighting decreased. If a weighting becomes too low the
particle is also reinitialised and assigned a new random location. The
code displays the internal information to the user by displaying all the
particles with representative sized dots indicating their respective
particle weighting, see Figure 40 for result of updated particles after a
number of initial steps. The code also checks whether the newly
created particles reside on a wall, if this result is true they are

reassigned different random location values.

Al_Robot_display_t2.py: This file is used to define the brain of the

robot. It extends the TkRobotDisplay object defined in
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“robot_data_v4.py” as well as the Brain object. It performs the simple
action of driving the robot forward or turning it depending on the
values received from the sensor groups: front, left-front and right-
front. It updates the particles representing possible locations of the
robot in the simulation arena. The particle are moved by the value that
robot has altered its’ original position and orientation as it performs
each step. The controller also updates the weighting of all particles
depending on the values received by the robots sensors, see Figure 40
below. If the particle values tends to agree with measured robots
values there is a higher possibility that their locations are the same so
the particle gets a higher weighting. The inverse is also the same so
particle values that tend not to agree with the robot get a decreased

weighting.

(0

Figure 39 Internal data of robot including the particle locations

Figure 39 above displays the internal data at the offset. The Particles

representing possible locations of the robot are pseudo randomly arranged around

the simulation arena. These particle weighting’s will be increased or decreased, if

they tend to agree or disagree respectively, with the values measured by the

robot’s sensors. This is shown in Figure 40.
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Figure 40 Robot's internal data particles increasing weighting
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Figure 41 represents the UML diagram for the Brain controller of the

robot. The controller inherits methods from the Brain and “Tkinter” base objects.
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This enables the controller to request data from, and cause actions in the Pyrobot

simulator

4.3.1. Pyro Outcome

The work with the Pyrobot Python simulator was in the development of a
Monte Carlo Localisation (MCL) algorithm to assist the robot controller to
localise itself within the maze environment. The controller used the information
detected by its sensors to adjust the weighting of the particles eacli time it altered

its course to identify a possible current location for the robot.

4.4, Results of Implementation

The results for this chapter’s software design and implementation stage
will be analysed and presented in the next chapter. An assessment criteria is also

presented, which lists the attributes of each simulator under different headings.
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5.1. Webots
5.1.1. Analysis of Webots

The Webots simulation environment provides the user with a very
adaptable approach to mobile robot design. The user can perform a design layout
for the arena choosing the different coloured structures required for simulation.
Each structure that is required to be placed in the arena must include a boundary
object. This boundary object is the 3D region that will be detected by the robot
sensors as the object’s boundary. Inaccurate boundary objects will produce ghost
walls and ghost objects resulting in the controller producing erroneous results,
confusing the users until they spot their errors.

The physical robot’s design also depends on user’s choice; the user can
design their own robot with any number of sensors and physical shapes and define
the wheel placement and rotational direction and orientation. They must also
provide the robot with its own boundary object as it also becomes an object
needing detection by other robots in the environment. The simulation environment

prevents a robot’s boundary object from passing through another boundary object.

5.1.2. Results and Observations with Webots

The Webots software is proprietary software which requires a license fee
to be paid. The company also provides a package which includes both the
software and a Khepera robot for development purposes. These high costs can
dissuade individuals or less resourced centres from developing controllers using
this environment.

The Piglet controller using the Webots environment was designed for the
Alife competition described in chapter 2.3.6.1. Its use of the simulated camera and
proximity sensors by the controller algorithms resulted in it being a winning entry
in the competition, initially identified this as a very promising direction of this
research. However, following further investigation into this controller, this did not
result in a valid approach for the project because the algorithm was coded to work
only with specific colours in the maze arena. In addition, the algorithm only

partially decoded the information from the simulated camera. This algorithm was
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sufficient for the competition entry, beating off the other entries but lacking the
extendibility to other tasks without significant changes to the algorithm. These
changes would require extensive rewrites due to the complex nature of the code
and the author’s lack of using descriptive comments in it, identifying how specific
functions are used, and the reasons for the choice of variables. Code revisions
were attempted during the project, but it became somewhat of a trial and error
situation to alter the code to achieve desirable results. This resulted in painfully
slow progress and ultimately identified the limitations of the approach without a

significant work effort to rewrite the controller code.

5.2. Pyro
5.2.1. Analysis of Pyro

This approach to controller design for mobile robots, addresses the
problem from the point that the designer (user) may not want to, or need to, know
the specifics of the robot. The user requires the robot to move forward, but they
may not know that for a specific robot A to move forward one of its specific
motors needs to turn in a specific direction, or, that for the specific robot B, 2
motors need to turn. For example, the user may just want the robot that is
currently selected to drive forward. Pyro takes the view that each robot with
different motor configurations for driving forward, will be handled by a single
“robot” object function. This function will enable a user’s controller to seamlessly
control different robots with no modifications, whether the robot is wheeled or
legged, requiring one or many different motors to facilitate forward motion. This
allows for the abstractionisation of the user’s controller for the underlying
physical hardware of the robot.

The Pyro environment takes this abstraction approach also to the
measurement of distance. The units used in measurement can be defined in terms
of robot units, one unit being equal to the size of that robot. This also allows the
controller to operate varying sizes of robots. For example, if a robot was of size
55mm, as in the case of the Khepera robot, or 44cm as in the case of the Pioneer
Robot, it makes little sense to define physical metric measurements in order to
specify that the robot should travel a fixed distance in centimetres or metres,

because the Khepera speed is rated in cm/s compared to the Pioneer which is rated
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in m/s or much larger robots which maybe rated in km/s. This enables the
controller to operate on the environmental scale of the physical robot. This
enables the user to design one controller that can investigate in the scale of a room
with a Khepera robot, a building with the Pioneer or a much larger area outdoors
such as an urban area with a robot of much greater size than the Khepera robot.
The robot units can also be utilized in the measurements acquired from the
robots sensors. The sensor measurements can be returned in robot units. The
sensors themselves can be treated with abstraction. The user is not required to
know what and how many sensors the robot has. They can request sensor
measurements that represent regions in the robots sensory complement, e.g.
sensors that form the forward object detection, left side, right side or rear
detection. This also extends to groups within these e.g. right-front and left-front.
The user can request, from the sensor information returned, the particular type of
sensor the information is coming from, if desired, but it may not be necessary for

the operation.

5.2.2. Results with Pyro

This abstraction approach does come with certain caveats, a controller that
requires a large number of ultrasonic distance sensors to perform it operation will
not perform as expected where a robots physical “distance” detection is performed
by tactile collision sensors. The large variation between a graduated knowledge to
the proximity of an object and a “can’t see” vs. bang, the robot has stopped,

approach, requires an altered controller design [84].

Pyro also enables the user to design with the specifics of the robot in mind.
The user has access to the raw data of the sensory outputs displaying the
measurements in metric units. They can also request that the robot move forward
a required metric distance if so required. The controller can also access the
specific number of sensors or, more powerfully, they can query the number of
sensors available and utilise this information during operation. This ability to
request the available sensors during operation enables the user to adapt their

design during operation depending of availability of sensory information.
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Pyro is presented to the world as an open source programme, unlike
Webots which does require a licence. This enables more limited research
departments and hobbyist alike to experiment and develop controllers and worlds,
allowing them to test their designs and provide them with the ability to realise
their aspirations in the design of mobile controllers. They can then interact with a
real robot, if one is available, with the controller they have developed in

simulation.

5.3. Assessment Criteria

The assessment of the simulation environments is carried out under the

headings in Table 8.

72



Chapter 5 -

Analysis and Results of Implementation

Table 8 Assessment criteria of simulator’s environment

Assessment Criteria

Adaptability of robotic

Arena

Portability to real Robotic

Hardware

Development of the

Environment

Controller Development

Extendibility

Allows for simulated
flight
Simulated Robotic

platforms

Webots
Ability to design complex
shapes. Each shape
requires an additional
boundary object
Controller can be used
without alterations on the
physical robot it has been
designed for.
VRML97 3D description
language
C/C++ and or Java can be
used to develop a
controller for a specific
robot
Does not allow for
alterations as this is

proprietary software.

Yes

Variety

Pyro

Ability to create complex

shapes.

Controller can be used
without alterations on a
VARIETY of physical
robotic platforms.
Python Programming
language
Python is used to develop
a controller for a
VARIETY of physical
robotic platforms
Owing to open source
nature the Environment is
fully adaptable
Currently not

implemented

Variety

73



Chapter 6 - Conclusions and Recommendations

Chapter 6 - Conclusions and Recommendations

6.1. Conclusions

This thesis has presented and reviewed a number of different approaches
generally available for the design and development of autonomous robotic
systems. It compared the development of various hardware systems with differing
embedded software environments to the development of robotic systems using a
computer simulation approach. The robotic simulation approach involved the
investigation of available software simulation packages, and the selection of the
most appropriate one for the development of autonomous robotic systems.

This investigation identified that the RCX platform provides the user with
a good prototyping platform but it does not contain sufficient resources on board
to store adequate information required to store a map of its environment. This is a
major requirement for an autonomous mobile robotic system. This shortcoming
can be overcome by the inclusion of a base station computer to store information,

but this means that the design is no longer completely autonomous.

The simulation investigation in the project assessed different simulation
environments in the application of the development of autonomous robots. These
simulation environments were critiqued using the following headings:

e Simulation of complex shapes in the environment to Dbetter
representing Real Worlds.

» Adaptability of the environment

» Controllers portability to real Robotic Hardware

» Ease of development of the Environment

» Ease of the development of the Controller and controller languages

» Extendibility of the Simulation Environment to allow for further
development

» Simulation of different robot Platforms. These represent real robot
platforms and / or purely simulation created ones.

* Modifiability of the Robot under simulation.

* Interaction with the Robot during simulation, this will allow for the

robot to be kidnapped.
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e Simulation of different Stimuli
e Licence Cost of Simulator.

» Operating System supported by the simulator

From the results of the assessment stage the most promising two were
selected for further investigation. Of these two simulators, Webots is proprietary
software requiring a licence fee and the other Pyro is presented as an open source
programme.

Webots presents to the user a simulation environment where the user can
design their world and robot and develop a controller for that robot and simulate it
in this environment and assess the validity of their controller.

Pyro presents the user with a similar ability to design a world, which has
been further extended by the work in this project to allow the Pyro simulator to
load a file containing wall locations information. The interface then allows the
user to select a robot to run their controller on. The difference between Pyro and
Webots comes in the design of the controller. In Webots the controller must be
designed for the specific robot, in which it is intended to run. The individual
sensors must explicitly be identified to allow the controller to operate. Pyro on the
other hand uses an abstract approach to a robot. This means that it allows the user
to interact with the sensors but without explicitly identifying a particular robot’s
configuration. The user just needs to refer to the distance sensors and the Pyro
environment identifies the particular robot currently being controlled and returns
its equivalent sensors. This removes the need for the user to constantly keep in
mind that a particular robot has X number of sensors and that number Y sensor is
pointing in a given direction. The huge advantage of this abstraction is it allows a
controller designed for one robot to be installed in a different robot and it will still
operate as intended.

Pyro, because of the use of abstraction, is highlighted as the most
appropriate to the design of autonomous systems. Where any further development
is envisaged, changes in the hardware of the robot or the robot itself will not result

in the controller becoming void.
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The code developed in this project amounted to 8000+ lines consisting of
original code and modification of other author’s code. This does not include the
significant code refinement iterations required during testing and evaluation of the
controllers. This is contained on the included CD and is available to other
researchers.

The original files provided at www.Dvrorobotics.org required adaptation to
allow them to properly operate under the windows environment. The updates files
are available on the CD and the changes are referenced in the appendix to this

thesis.

6.2. Recommendations

Pyro simulation environment is not fully implemented to run under the
windows environment because the simulated camera driver has not been compiled
for this operating system. It is only available under the Linux operating system
environment which can be accessed through installation of Pyro on a Linux box or
using the Live CD option which provides the user with a non invasive way to run
Linux on a Microsoft Windows computer. The computer boots off the CD loading
the appropriate files into ram leaving the hard drive unchanged, unless the user
chooses to store certain files on the computer’s hard drive.

Owing to the availability of Pyro under the open source licence the
environment allows users and developers to adapt Pyro in any way that they
require.

On the hardware side a newer version of the LEGO MINDSTORMS
Bricks has since been released viz. LEGO MINDSTORMS NXT which provides
extra memory and faster processing speed [85]. This may provide an interesting
platform for the further investigation to the development in autonomous robotic

environments.

76


http://www.Dvrorobotics.org

Appendix A - Hardware Code

Appendix A - Hardware Code

A.l. LeJOS Code
The following software code was constructed to implement the desired

behaviours. Testing was carried to verify that the desired functionality was

achieved.

A.1.1. Communication Testing with LeJOS
Testing of the communication between the RCX and the base station was
carried out with the following procedure.
¢ TestRCXComm.java: This programme tested the communication between the
RCX and the base station by sending characters ‘1’,” 2°, ’3” across the IR

communication port. The flow chart is illustrated in Figure 42 below.

Figure 42 TestRCXComm flowchart

o SerialListenerTest.java: This programme tests to see if a packet of data is
available on the IR port. It reads in this data and tests to see if the first byte is
an Op-code command if so it combines the next 2 bytes lower byte first then

higher byte to form integer. It checks to establish if this integer is valid and
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displays this number on the RCX’s screen for visual conformation that the

communication link is operation. Figure 43 below is a flowchart of the code.

e Sender.java: This programme tests the ability to send a packet of data to the

base station. A flowchart is given for the code in Figure 44 below.
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Sender ~ ~  sendByte
packet[0]
= 0x45
packet[1]
= byte
i
send Packet of
2 bytes
Wait for 0 ir
press &
release of Return
IIRunII
button
r
sendByte
1f
1+ End

Figure 44 Sender Flowchart

» SendDistanceValues.java: This programme drives the robot around and
detects collisions with obstacles on the left, front and right, transmitting on
collision the location of the RCX robot to the base station. The code generates
the transmission packet from 14 bytes of information. The information sent is
the: X and Y position and the angle values. Each value is a float, which
consists of 4 bytes of data. These 3 float values, plus 2 additional bytes as
packet start and end byte make up the 14 bytes sent. The flowchart is

illustrated in Figure 45 below.
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Figure 45 SendDistanceValues Flowchart
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* RunSendDistVal.java: This programme is the driving programme to assign the
behaviour of SendDistanceValues as the top-level task in the RCX. It is used

to test the correctness of operation of the SendDistanceValues code. Figure 46

is the flowchart for this code.

Figure 46 RunSendDisVal Flowchart

* Receiver.java: This is another programme to test the IR comm. port. It
generates a beep if the port receives data. It also displays the number value of

the received byte on the RCX LCD display. The flowchart is given in Figure
47.

f Receiver

Figure 47 Receiver Flowchart
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« TestRCXComm4.java: This code is designed to run on the PC side of the
communication link. It tests whether or not the IR tower is connected, and if
there is a connection to the RCX unit. It then receives the information via the
IR tower from this RCX unit and displays this on screen to the user. The

flowchart is in Figure 48 below.

Figure 48 TestRCXComm4 Flowchart

82



Appendix A - Hardware Code

A.1.2. Mapping ability Testing of RCX using LeJOS

Testing on a mapping approach was carried out with the procedures below.
The robot storing detected objects to the left, front and right in an internal map. It
was then programmed to transmit this saved map to the computer for verification.

The user would then view the received map to check it for completeness

* Nothing.java: This programme is designed as the lowest level task, which
does, as the name says nothing. This task is operational when no other task
requires control of the process. The behaviour takes control by returning
“true” from the method *“takeControlQ” Figure 49.

(“takeControl
it

( Return true }

Figure 49 Nothing Flowchart

» BehaviourSendData.java: This programme is a modified version of the inbuilt
Behaviour .java file. It adds the functionality to each behavioural process. The
functions that are added in the wupdate are “floatToBytes(float)”,
“sendCoordinatesQ” and “sendMaze(MazeArea)” see Figure 50 below for
flowchart of these functions. This equips each defined behavioural process in
the driver file, allowing the process to update the base station if it requires

such functionality.
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LowLevelDrive.java: This programme performs the task of driving the RCX

robot forward. The flowchart is shown in Figure 51 below. It inherits from
BehaviourSendData super class.
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C Return
J

Figure 51 LowLevelDrive Flowchart

« LeftRightBumper.java: This code requests process time, by returning true on a
call to its “action” function when it detects an object on the right and/or on the
left. The current location of that object is then added to the maze using the set
setObstacleLeft and / or setObstacleRight. The code also indicates the presents
of such obstacles by highlighting the appropriate input indicators on the LCD

screen of the RCX, Flowchart for this code’s functions is in Figure 52 below.
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Figure 52 LeftRightBumper Flowchart

* FrontBumper.java: This is the highest priority process task. It requires highest
priority owing to the fact that a front collision stops physical forward progress
of the robot and it requires immediate stopping of the wheels turning to limit
error to dead reckoning navigation. Once a front bumper collision is detected
the procedure in Figure 53 is activated. During the “takeControl()”” function,
the process updates the path count in the in the internal representation of the

maze, from the last detected front collision.
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AFrontBumper j

Setup member
variables
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t
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LCD.clearSegment
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r Return )

Figure 53 FrontBumper Flowchart

» Arbitrator.java: This original code has been edited, to add the functionality,
which empowers the “run” button on the RCX module as a reset button. A
push resets the programme flow back to the start awaiting the next push of the
run button. The flowchart in Figure 54 includes the new functionality added.
The “RUN” button is checked throughout programme operation, enabling the

user to interrupt execution by stopping the code executing.
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Figure 54 Arbitrator Flowchart

MazeArea.java: This code allows for the creation of an object of type
MazeArea. This object will hold the internal map produced by the robot of its
surroundings. 't represents the robot’s view of the world as discrete areas
blocks. Each block can be assigned a value indicating that location to be an
obstacle or if traversed by the robot, the “path count” on traversing it. Figure
55 and Figure 56 illustrate the methods provided by the object to update the

knowledge of the maze.
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Figure 56 MazeArea Flowchart B
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» AbstractSearchEngine.java: This code is used to interact with a MazeArea
object. It is adapted from Mark Watson’s book [86] the code from which is
released under the Open Source Artistic License. The Code was used to assess
the possibility of allowing the RCX to search its internally self constructed
maze. It holds the current “path count”. It interacts with the maze to allow
searching of that maze to determine possible next moves. This is shown in

Figure 57.

¢StractSearchEngine C initSearch0O J

(w.h) *
Create searchPath
I array of
create

DimensionSmallQ
MazeArea(w,h)

" set counter = 0
*
InitSearchQ C  Return
r
Return }

ZgetPossibleMovesN
(current loc) J

Look for clear or
goal location next
to current location

assign
locations to
array of moves

eturn array of
moves J

(equals(dl ,d2)")

*
Return true if\
size dl _ 3 *

I getPathp )

Return all
[ searchPathsD

Figure 57 AbstractSearchEngine Flowchart
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A.2. NQC Code
A.2.1. Navigation Testing with NQC

The following procedures contain the code produced to investigate this

hypothesis:

e motors navagation.nqc: The development with NQC started with
investigating the ability of the RCX robot to respond appropriately to
events. The code assigns two events to each of the 3 different inputs on
the RCX as shown in Figure 58 function “setupEvents()’\ These inputs
are assigned as input buttons “setupO”. One event is assigned to a
press on an input, second for releasing that input. Detecting and
recording these would enable the robot to identify when objects come
into contact with one of its inputs or when it lost contact with the
object. Implementing the event management in Figure 59 enables the
robot to detect obstacles on the left and right and collisions between
obstacles and the front bumper. This code assigned the variable
“event occurred” the value of the event and proceeded to implement

the response to the event in the event management function.

Figure 58 motorsnavagation Flowchart A
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Figure 59 motorsnavagation FlowchartB

motors_no_navagation.ngc: This programme improved the previous
version in its event management as shown in Figure 60. The events in
this programme are again recorded in an “event occurred” variable,

which enables the events to be managed by the main programme while
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still allowing the robot to detect new events. The difference this time is
that the event management only sets or clears the appropriate bit in the
variable event_occurred, the advantage this presents to the operation is
that the setting or clearing on one event has no effect of the status of
the other event. The operation then returns to the main programme,
which dealing with the specific event. The main programme detects
that an event occurred by checking the variable “event_occurred” bits,
if the appropriate variable bit is set the main task can carry out the

required operation.
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Figure 60 motors_no_navagation Partial Flowchart

Using this method of passing back control quickly to the main process as
opposed to one where the event handler manages the complete response to the
event has the following advantages. The system is able to respond to multiple

events and if an event of higher priority occurs before service that, the current
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event can be recorded and servicing after the higher priority event has been dealt
with.

A.2.2. Map Storage Testing using NQC

Storing the map of surrounding objects was assessed using the following

code:

* motors_navagation_single_array.nqc: This code was used to
investigate the possibility of storing a map on the RCX internal
memory. This map would allow the RCX robot to store locations of
obstacles around the RCX’s environment. It was deemed that while
attempting to create an array of sufficient memory locations that the
RCX internal accessible memory using the NQC approach was
insufficient and this code could not be used on the robot. Figure 61
below illustrates the updated approach with location of object storage
in the array “map”. Arrays for objectLeft objectRight and objectFront

would allow for object tracking.
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store time

OR event bit in
event occured store time
OR event hit in
ClearTimer(0) event_occured
movell\l\dr recorde X,y
unit & record location of
time taken detection in
IncCounter ears_pressed_loc store time
(x_val) IOR event hit in
event occured
decode event
store:d in . store time
event occured ORstore i'rgf. IOR event bit in ves
event bit in
event occured
place holder event occured
for event
manaaement store time
clear even I0R event hit in
with bit OR event occured
oper ation

event occured

Figure 61 motorsnavagationsinglearray Partial Flowchart

* memorytest.nqc: This programme was used in the testing of memory
assignment in the RCX hardware platform using the NQC
programming environment. The outputs of which are included in the
file “out.txt”. In Table 9 the assigned storage locations for each
variable is listed, as it is generated by NQC output. The programme
tests a number of approaches to memory assignment form using the
“#pragma” to reserve 11 storage locations. From storage location O to
10. The programme then assigns names to 17 unique Integers Var 34 -
Var 47 and Var 11. It also creates an array of Integers of size 19. This
is stored in locations 12-31. An integer pointer is also created and

stored at location Var 32. It identified that the stated limitation of 32
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variables [48] could be somewhat overcome, using arrays and #pragma

directive and the use of pointers to access this reserved data.

Table 9 NQC Variable Storage

NQC code syntax
#pragma reserve 0 10
int display

intil

int i2

int i3

int i4

int i5

int i6

intil

int i8

int i9

intilO

intill

intil2

intil3

intild

int map[19]

inti

int* ptr

Code generates by NQC

*** Var 11 = display

*** Var 47 =il
*** Var 46 = i2
*** Var 45 = i3
*** Var 44 = i4
*** Var 43 = i5
*** Var 42 = i6
*** Var 41 = i7
*** \Jar 40 = i8
*** \Var 39 = i9
*** VVar 38 = ilO
*** Var 37 = ill

*** Var 36 = il2
*** Var 35 = il3
*** Var 34 = il4
*** Var 12 = map
*** Var 33 = i
*** Var 32 = ptr
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B.l. Olivier Michel’s Khepera Simulator - KSim

The following code was produce as part of the investigation in the project.

user.c: This code is a modified version of the example code supplied with
the simulator. The simulation environment provides the programmer with a “user
info box” [61], shown in Figure 63. This area allows the programmer, to
graphically represent information to the user, utilising specific functions provided
by the simulation environment. This code was used in the evaluation process of
this simulation environment. The edited code’s resultant display is shown in
Figure 62, where outputs are drawn in the user’s info box displaying results. A
partial flowchart of the code in Figure 64 illustrates that sensors input information
is read in the controller. This value is compared against a predefined level
assigned the name “COLLISION_TH”. If the sensor value is above this level the
programme draws a coloured arc indicating that an object is in close proximity to
the particular sensor. If the value is less than the predefined limit a grey arc is
drawn. The arcs are drawn relative to the physical sensor’s location on the robot.
This generates a graphical display for the user of the sensory information, as
individual sensory inputs become greater that a threshold level. The controller
assesses this sensory information and changes the trajectory of the robot

accordingly.

Figure 62 Khepera Simulator Maze environment
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Figure 63 User's info box

Figure 64 Flow Chart DrawSurrond

B.2. Webots

The UML diagram for the complete controller is provided in Figure 65 and

continued in Figure 66. The individual files for the controller are as follows:

Piglet.java: This is the main code of the controller it starts the threads and

sensors, it also detects the feeders.
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Planner.java: This is the thread that plans the path in the grid using

harmonic potential fields

done.

Position.java: computes the position from the encoders data

Output.java: This is the thread that outputs the plans, maps and feeders

Landmark.java: The data base of feeders used

IntPoint.java: Used in the planning of a path in 2d

Image.java: Is used for thread synchronization

Grid.java: This is the thread that constructs occupancy grids

Driver.java: This deals with the robot state and defines what action will be
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Figure 66 Piglet Controller UML partB

Figure 67 Mapped Environment

Figure 68 Output of Simulated Camera

B.2.1. Webots World File
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Piglet camera data

Figure 69 False Colour Camera

Partial world file stub, complete world file included on CD.

“pig edit v3 controller maze low consumption.wbt”
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Appendix B - Simulation Code

#VRML_S1M V4.0 utf8
#000000

DEF SURROUNDINGW ALL Solid {
children [
Shape {

}
]

name "wall"

boundingObject Group {

=
}

DEF ROBOT_O DifferentialWheels {
children [
Solid {

children [
DEF W HEEL Transform {

}
)

name "left wheel"

}

Solid {

children [
DEF W HEEL Transform {

}
]

name "right wheel"

}

DistanccScnsor {

children [
DEF SFH900 Group {

e

name "dsO"
lookupTable [
0 1023 0
0.05 0 0.01

]
}

Camera {

children [
Shape {

}
]

name "camera"
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Appendix B Simulation Code

]

name "robot0"
boundingObject Transform {

}

controller "Piglet_edit_v3"
synchronization FALSE
battery [

92.7796, 100, 10

]

cpuConsuniption 0,1
motorConsumption 0.01
axleLength 0.053
wheelRadius 0.008
maxSpecd 20
maxAcccleration 200
speedUnit 1

encoderNoise 0.01
encoderResolution 572.958

}

B.3. Erdos

The author’s original code occurs first and then the adapted code:
(simulator) main.py: The code in this file provides the user with a

simulated Roomba robot in a maze environment.

Edited code
(simulator) main2.py: This code is adapted for the original code with the

addition of the search provided in the Erdos’ interface with a real Roomba robot.

B.4. Pyro

Software implementation for this simulator started with the behavioural
procedure called “Avoid.py”, from the included sample examples for the Pyro

controller.
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Appendix B - Simulation Code

determineMove
(front, left, right)

Return 0, .3

Return 0.1, .3")

Return 0.5, 0.cT)

Figure 70 Avoid Flowchart

Avoid.py: Preformed the task of requesting all the information for the
robots variables front, left and right sensors assigning the smallest value to the
appropriate variable Figure 70. The controller then altered its trajectory by the

translation and rotation values calculated by its “determineMove()” function.
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Appendix C - Java

Java Background

Java code is an interpretative language which means it compiles to
produce byte code. This byte code requires an interpreter to run on a given
system. This enables java code to be written once and run on all different types of
system, given that they have an appropriate interpreter written for them. This
approach to programming has huge advantage over the standard system, of having
the compile a different version of each piece of code written in other languages
for each platform are required to run on. The Java byte code requires that the
system has one piece of code (the interpreter) running on it to allow the java byte
code to run. This piece of code is called the Java Virtual Machine and it interprets
the byte code and runs the corresponding local instruction on the host system to
perform the required task. E.g. it prints a message to an LCD panel or a Computer

Screen which ever is the current system’s display.

107



Appendix D - Pyro Setup

Appendix D - Pyro Setup

The Numeric package has been superseded by the numpy package
so this is required to be installed in python directory. Former
references to “import Numeric” should then be converted to
“import numpy.oldnumeric as Numeric”. This removes the output

error “ImportError :No module named Numeric”

Both \pyrobot\bin\pyrobot and \pyrobot\bin\pyrobot.py should be
identical and should be edited in the user intends running Pyro
under a windows environment. Here are at required modifications

to remove error message about Pythonpath:

0 Line 47 change from “/plugins” to “Wplugins”,
o Line 76 if Python directory is on E:\ drive change the
following from “:%s/plugins/simulators” to

“:%s\plugins\simulators;e\Python24”

\pyrobot\gui\ init .py: must similarly be changed is the user is
running python on a windows box with the following
modifications:
0 Line 131 137 143 149 159 164 169 174 change “/plugins”
to “Wpluginsw”
0 Line 377 378 change “/” to “\\”
0 Line 471 change “%s/plugins/config/%s/” to
“%s\\plugins\\config\\%s\\”’
0 Line 482 487 492 change “/%s/plugins/worlds/%s/” to
“Wo%s\\plugins\\worlds\\%s\\”

Epydoc: Was utilised to construct the UML diagrams for the

Python code. It required for error free operation that “getint = int”
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Appendix D - Pyro Setup

be commented out in Line 378 of Lib\Lib-tk\Tkinter.py in python’s
directory.
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Glossary

Glossary

Artificial Intelligence
API:

Application Programming Interface, a software interface that defines how

a software programme requests services from a device.

Coarse Grained Simulation:

This is a platform which allows the development of a controller prior the
testing on a real robot. The simulated sensory values are a rough approximate of
the expected real world values. Further tweaking of the controller will be required

when run in the real robot.

DLLs:

Dynamic Linked Libraries
Infra-red

Kidnapped:
This is where a robot which has localised itself, is picked up and placed in

an unknown location, and it is required to localise its self again.

LAMI:
Microcomputer Laboratory (LAMI) of Swiss Federal Institute of

Technology of Lausanne

LeJOS:
Java for LEGO® Mindstorms, Java Language to programme the RCX

module

JDK:

Java Development Kit
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JVM:
Java Virtual Machine
NQC:
Not Quite C. Programming language designed for programming the RCX

module.

RCX:

LEGO Programmable brick module, part of the LEGO Robotic Invention
System

ROI:

Roomba Open Interface

NQC:
Not Quite C

OS:
Operating System

SCI:

Serial Command Interface

UML.:

Unified Modelling language, an object modelling and specification

language used in software engineering
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""Autonomous Robotic Systems: Using entropy theory to minimise redundancy
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Published in National Symposium of The Irish Research Council for Science,

Engineering and Technology, Dublin 3rd November, 2005
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