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A B S T R A C T   

Microplastics (MPs) (size < 5 mm) marine pollution have been investigated and monitored by many researchers 
and found in many coasts around the world. These toxic chemicals make their way into human diet through food 
chain when aquatic organisms ingest MPs. Attenuated Total Reflection Fourier transform infrared spectroscopy 
(ATR-FTIR) is a very effective method to detect MPs. To provide the automatic detecting method for MPs, 
Numerous studies have proposed Machine Learning (ML) based methods, such as Support Vector Machines, K- 
Nearest Neighbours, and Random Forests, for identification and classification of MPs through using the ATR- 
FTIR data. The evaluations of these ML based methods primarily focus on the average scores across all types 
of MPs. However, the existing FTIR datasets are normally imbalanced. Furthermore, some MPs contain the 
identical functional group, and some MPs may be fouled or contaminated, which will reduce the quality of FTIR 
data samples (e.g. lacking of peaks or creating noises). These factors will interfere the ML classification algo
rithms and cause the algorithms to perform differently while identifying different MPs. Hence, this work pro
poses an ensemble learning algorithm to exploit the advantage of different ML algorithms based on a systematic 
evaluation of the existing ML based MP identification approaches. A neural network is employed to fuse the 
outputs of chosen ML algorithms to improve the overall metrics. The evaluation results show that the proposed 
algorithm outperforms existing single ML based approaches.   

1. Introduction 

Plastic products consumption has been increasing exponentially [1]. 
There are various sources of plastic pollution in the marine environment, 
including marine and coastal ships and sailboats, commercial fishing 
operations, and land-based sources including trash and manufacturing 
waste [2]. Microplastics (MPs) arising from these specific activities and 
products has been the most prevalent forms of manmade pollution in the 
marine environment [3]. Due to the increased plastics consumption and 
poor waste management, this form of contamination is now not only 
widely spread, but also is eaten by a wide range of animals from various 
environments and feeding approaches, including pelagic and benthic 
fish, filter-feeding fish, and benthos [4,5]. MPs are ingested by fish and 

other aquatic creatures, rendering them a potential vector of hazardous 
substances into the human food [6,7]. As there are normally substantial 
concentrations of MPs (both natural and manufactured fibres) around 
urbanized coastlines, More research is conducted in these locations to 
measure and estimate the quantity of MPs absorbed by marine organ
isms and the ecological importance of this phenomena. Identifying MPs 
has become increasingly crucial [8,9]. 

Chemical examination of environmental materials is often confined 
to general properties, such as polymer abundance. To evaluate the 
particle size distribution of MPs, Attenuated Total Reflection Fourier 
Transform Infrared Spectroscopy (ATR-FTIR) technology [10], which 
can also be coupled with microscopes named Micro Fourier Transform 
Infrared Spectroscopy (μ-FTIR) [5], is becoming noticeably popular 
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because the sample preparation process is simple, and the detection 
precision is high. A single spectral measurement can conveniently detect 
minute microscopic particles. Hence, many methods have been pro
posed for automatic and semi-automatic identification of microplastics 
with ATR-FTIR spectral data, e.g., Derivative approaches, Euclidean 
distance, and Peak searching algorithms [11]. These techniques are 
commonly used in commercial equipment. In these approaches, the 
spectrums are compared with standard spectrums of samples that are 
pure or unadulterated. However, the similar characteristic bands 
resulting from plastic aging can cause aged polymers to be matched to an 
erroneous reference spectrum [9,12]. For example, Figure A.1 (A.x de
notes Additional figures or tables presented in Appendix A) depicts the 
spectrums of poly(ethylene) + fouling (blue line), PEVA (purple line), 
and standard polyethene (red line). Suppose poly(ethylene) + fouling 
(blue line) is the sample to be classified. It appears that it is more similar 
to PEVA instead of the standard polyethene. Therefore, the traditional 
library search is error prone in identifying the MPs. 

With the development of Machine Learning (ML) technologies, ML 
based MP identification methods become increasingly popular for 
extracting the characteristics from the MP ATR-FTIR data to minimize 
the aged or polluted bias without expert knowledge, e.g. the methods 
based on Support Vector Machines (SVM) [13], K-Nearest Neighbours 
(KNN) [12], Random Forests (RF) [14], Partial Least Squares Discrimi
nant Analysis (PLSDA) and Soft Independent Modelling of Class Analo
gies (SIMCA) [5]. Existing ML based approaches are typically based on a 
single ML model. Majority of existing literature is focused on proposing 
new ML based identification methods and compare their proposed 
methods with a limited number of other algorithms using a limited 
number of evaluation metrics. [12–15]. The performances of these 
methods are commonly evaluated using the average scores of all types of 
MPs [16]. 

In currently available MP FTIR datasets, the sample sizes of the MPs 
are imbalanced and usually have significant differences, e.g., the MP 
sample sizes in the Kedzierski dataset [12] vary from 25 % to 2 %. In 
addition, some MP samples are tampered or contaminated. These FTIR 
spectrums will have lack of peaks or contain unexpected noise [17]. 
Hence, the characteristics of these MP FTIR datasets will affect the 
performance of different ML methods, i.e. different ML algorithms may 
perform better in identifying different types of MPs. For example, the 
test results in the later sections show that, comparing KNN with SVM, 
tampering affects more on the SVM, whereas dataset imbalance affects 
are more on KNN (SVM outperforms KNN when the sample size is small). 

This has motivated us to identify the limitations of different ML 
based MP identification methods by performing a comprehensive eval
uation of the existing algorithms through a standardized identification 
procedure, and then propose an ensemble learning algorithm to exploit 
the advantages of different ML algorithms. The contribution of the paper 
can be summarized into 2 parts:  

• This paper provides a systematic evaluation on a broad range of ML 
based MP identification methods from both macroscopic (using radar 
charts) and microscopic (using confusion matrices and class reports) 
perspectives. The evaluation results reveal that, for different types of 
MPs, different ML based methods display different performances. A 
summarisation of the performance is presented.  

• Based on the evaluation results, the ML algorithms that performed 
the best in different MPs identification scenarios are chosen as the 
components in creating the proposed ensemble learning algorithm. 
The main concept is to aggregate the outputs of the chosen ML 
methods through a neural network model. The evaluation results 
show that the proposed ensemble learning method outperforms the 
single ML model based approaches for identifying every type of MPs 
in the dataset. 

The rest of the paper is structured as follows. Section 2 introduces the 
background knowledge on machine learning and discusses the state of 

art of related work. As the proposed ensemble learning algorithm is 
based on the results of the systematic evaluation on the existing ML 
based algorithms, a separate set of “Materials and methods” and “Results 
and discussion” are provided the systematic evaluation and the 
ensemble learning algorithm, i.e. Section 3 and Section 4 present “Ma
terials and methods” and “Results and discussion” for the systematic 
evaluation of ML based methods, and Section 5 and Section 6 introduce 
the “Materials and methods” and “Results and discussion” for the pro
posed ensemble learning algorithm. Finally, Section 7 provides conclu
sion & future work of the paper. 

2. Related work 

This section provides a brief overview of the theoretical foundations 
of spectral data processing, background on ML algorithms and ML based 
MP identification methods used in previous works. 

2.1. Spectral data processing & evaluation workflow 

For ML based MP identification methods, data processing is very 
important [18]. The outline of the standard workflow of data processing 
for identifying MP as follows: 

2.1.1. Capturing the microplastic spectrum data 
To minimize the measurement variations, the sample is purified 

physically, chemically, or biologically to remove the matrix. The oper
ation steps of the FTIR instrument should be standardized [18]. 

2.1.2. Reducing the noise intensity (if necessary) and correcting the 
baseline 

If the process of capturing MP spectra generates excessive noise in 
the original data, it will hinder the identification of MPs. Hence, the 
spectral data needs to be denoised by curve smoothing algorithms. The 
Savitzky-Golay (SG) [19] smoothing method to process spectra data 
with noise as shown in Figure A.2. As denoising method will result in 
loss of spectral characteristics, if not necessary, this method should be 
avoided in data pre-processing. 

The baseline effects [20] are derived from non-uniform optical 
properties and non-planar geometry of the samples, which will cause 
data curves to slope and drift [21], as depicted in Figure A.3. 

2.1.3. Normalizing the data 
Due to the geometrical properties of samples and measurement 

process, the FTIR signal intensity will vary greatly. These variations will 
adversely influence the ML model training and the correspondent MP 
identification [22]. Therefore, the intensities should be normalized to an 
identical scale before training the ML models. The normalized FTIR data 
has been shown in Figure A.4. 

2.1.4. Extracting features from the data 
This step is to extract the features from the dataset (before training 

the ML models). Traditional spectra identification is based on FTIR ex
perts to analyse most prominent peaks of specific wavelength. Some 
methodologies with manually extracting relevant spectral data have 
been proposed [15,23,24], which can be used by human operators to 
compare with a standard spectral curve. For ML based MP identification 
methods, the original data dimensions can be too high and cause the 
dimensional curse problem. Principal Component Analysis (PCA) is a 
common tool for the data dimensional reduction [25,26]. Hence, this 
work will evaluate whether data dimension will affect the MP identifi
cation, by using the ML models with and without PCA. 

2.1.5. MP identification 
The traditional method is to search a spectrum library to match the 

extracted features [18]. For ML based approaches, the pre-processed 
dataset will be used as the training and validation dataset to train and 
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validate the ML models. This is the focus of this paper. 

2.2. Machine learning background 

This section will introduce the ML algorithms used in this paper. 
Principal Component Analysis (PCA) [25–28] is to project 

high-dimensional data into low-dimensional space and capture the 
data’s greatest information (variance) on the projected dimension. It can 
utilize fewer data dimensions while keeping the majority characteristics 
of the original data points. 

Multilayer Perceptron (MLP) is also called Artificial Neural Network 
(ANN). It’s based on biological neural networks, which are used to 
mimic animal brains. It’s composed of artificial neurons, which are a 
network of linked units or nodes that imitate neurons in a biological 
brain. [29]. 

Random Forests (RF) classifier contains a set of tree structured 
classifiers (decision trees) [30,31]. For categorization, the sample is fed 
into each branch. A classification result will be generated for each tree. 
The random forest combines all of the voting results, and the eventual 
output is the category with the most voting times [32]. 

The K-Nearest Neighbors (KNN) classification method [33] trains a 
model for calculating the distance between an unknown sample and all 
previously measured samples. The top K known samples with the 
highest similarity to the unknown sample are chosen. Assuming K equals 
3, if there are 2 samples in these 3 known samples belonging to the same 
category, it means that the unknown sample is classified to this category. 
If the 3 known samples are different, the unknown sample will belong to 
the nearest one [34]. 

The concept of Linear Discriminant Analysis (LDA) [13] is quite 
simple: the labelled data (points) are projected into a lower dimensional 
space by a transformation function similar to PCA. However, LDA is a 
supervised learning method [35]. Compared with PCA, this method aims 
to obtain max variance between each class instead of the max variance 
between each data. In this low dimensional space, similar samples 
(samples with the same labels) are as close as possible, and heteroge
neous samples are as far away as possible. In another word, after the 
projection, the variance of an identical class is the smallest, and the 
variance between different classes is the largest. For PCA, the variance of 
each data is the largest [27]. 

Support Vector Machines (SVM) [30] are a set of methods that map 
all the points to a "high-dimensional space", and then locates a "hyper
plane" in the high-dimensional space that can split these points (for the 
two-dimensional plane, the hyperplane is a straight line, and so on). 

Partial Least Squares Discriminant Analysis (PLSDA) [5] is based on 
Partial Least Squares (PLS) regression to a linear model for classification 
or prediction [36]. PLS looks for a linear regression model by projecting 
the prediction variable and the observed variable into a new space, 
respectively. 

Soft Independent Modelling of Class Analogies (SIMCA) [37] focuses 
on the analogy between specific class samples. SIMCA is a type of PCA 
based model. Basically, for each specified class, SIMCA will develop one 
model using PCA to extract features for each class [38]. 

2.3. ML based MP identification approaches 

Kedzierski et al. [12] present an automated method using KNN to 
classify the spectrum data. In their work, results reveal that KNN per
forms well in identifying spectra of conventional polymers such as 
polyethylene. They set up a standard database for training the KNN 
model. Michel et al. [13] compare the MP identification spectroscopic 
techniques e.g., ATR-FTIR, near-infrared (NIR) reflectance spectroscopy 
combined with different ML methods. The results show that FTIR per
forms better than other spectral technologies. Their work adopts SVM, 
LDA KNN, PCA_SVM (Using PCA to reduce data dimension and then 
classify the data with SVM), PCA_LDA, PCA_KNN for classifying the MP 
FTIR data. The LDA and KNN based approach achieves the highest level 

of precision in their work based on a proprietary database. Hufnagl et al. 
[14] presented an automated method based on reduced dimensional 
spectral data and the RF methods for the classification, according to 
their dataset. Their work achieves an average precision score of 96.6 %. 
Da Silva et al. [5] adopt the PCA to reduce FTIR data dimension and use 
the PLS-DA and SIMCA models for MP characterization. The PLS-DA 
model performs better than SIMCA with higher recall scores. Back 
et al. [16] design an automatic method for comparing different ML 
pipelines (including SVM, MLP, KNN etc) to search the best score and 
best procedure for each ML pipeline. Their results discover that the SVM 
pipeline without using a baseline correction algorithm performs the best 
while compared with the others (including the ones with baseline cor
rections). However, different instruments may induce different baseline 
effects. The baseline effects must be eliminated if the model is to be 
reused for analysing data from different instruments. 

The above discussion shows that many ML based MP identification 
methods have been proposed. However, they are not benchmarked with 
the same set of standards and consequently it is difficult for users to 
choose the ML methods for their usage scenarios. The different results 
imply that diverse datasets will have a significant impact on ML 
methods. Because their datasets may lack of peaks or contain unex
pected noise or imbalanced sample quantities. 

3. Materials and methods for systematic evaluation of ML based 
methods 

3.1. ATR-FTIR 

FTIR is a popular technology to analyse the structure of compounds. 
Attenuated Total Refraction (ATR) technology applied on FTIR sim
plifies the measurement of samples [39,40]. Some of the advantages 
offered by this technology offers are following: 1) There are no addi
tional criteria for sample size, water content, shape and sample prepa
ration is straightforward and non-destructive. 2) The robust detector is 
sensitive, the measurement zone is modest, and the precision of detec
tion can reach several microns. 3) It is convenient to search the infrared 
spectrum database and analyse the chemical functional groups to 
determine the types and properties of substances. 4) ATR instrument can 
be installed on conventional FTIR to provide a cost effective and simple 
measurement solution. 

3.2. The microplastics sample dataset 

This work adopts 2 datasets from previous works. One dataset is from 
the Kedzierski et al.[12] containing 970 spectra. The MP of this spectral 
dataset mainly originate from the Mediterranean coast. All MP wave
lengths data was recorded in absorbance mode ranging 4000–600 cm− 1 

with a 4 cm− 1 resolution and 16 scans. The other dataset is from Jung 
et al. [41] containing 798 spectra for 5 types of MP ingested by sea 
turtles. The spectra are collected from 4000 cm− 1 to 450 cm− 1 with a 
data interval of 1 cm− 1 with a 4 cm− 1 resolution. The ‘Unknown’ type is 
defined by the datasets, which represents a small amount of MP samples 
that are not labelled. The Kedzierski dataset was collected from 120 sites 
along the Mediterranean coast and the organic materials were removed 
through dissecting microscope. The Jung dataset was collected from the 
digestive tract of turtles. MP samples were cleaned with a cleanroom 
wiper after being washed with nano porous deionized water. 

This work has modified Kedzierski dataset (by deleting the 6 types of 
MP that only contain 1 sample) and Jung dataset (by deleting 3 types of 
MPs that only contain l sample and moving Polystyrene that only has 5 
samples to the Unknown type) for training ML models. The modified 
Kedzierski dataset comprises 12 categories of MPs (polypropylene (PP), 
polyethylene, polyamide, PEVA, etc). The modified Jung dataset com
prises 5 categories of MPs (HDPE, LDPE, PP, etc.). The details of dataset 
are depicted in Figure A.4. 

The Jung dataset only contains 5 types of MPs that have sufficient 
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samples for training. Consequently, it is not suitable for comprehensive 
evaluation of the ML approach performance. Hence, it is only used for 
evaluating the proposed ensemble learning algorithm. The Kedzierski 
dataset is used for both the comparisons of the ML algorithm and the 
evaluation of the proposed ensemble learning algorithm. 

3.3. Tools for programming 

In this work, all the data analytical programs are written in the Py
thon language. The ML methods of SVM, KNN, MLP, LDA, RF are 
implemented by scikit-learn (Sklearn) library [42]. PCA, PLSDA, SIMCA 
are implemented by Numpy and other libraries of Python. The functions 
for metrics are also from the Sklearn library. For each simulation, all 
source codes are available in a supplementary file (Appendix B) for 
reproducing and improved by peers. 

3.4. Procedure for Comparison of MP Identification Algorithms 

Fig. 1 illustrates the overall process of the comparison workflow for 
comparing the ML algorithms that have been used in the existing works. 
This workflow consists of three major steps, i.e. data pre-processing (i.e., 
smoothing, baseline correction, normalization, and PCA processing), 
hyperparameter adjustment and ML model training (training and testing 
the ML models), and systematic comparison of the ML models (gener
ating the evaluation metrics, e.g. radar charts, confusion matrix, and 
class reports). 

3.4.1. Dataset pre-processing 
The smoothing method may cause information loss in spectral data 

[43]. Since the dataset adopted in this paper is not noisy, the smoothing 
method is not employed in the pre-processing procedure. For baseline 
correction methods, the airPLS method can retain the original infor
mation and the peaks of spectral data [20]. Consequently, this work 
adopts the airPLS method to correct the baseline effect of the dataset. 
For normalizing the data samples for ML approaches, MinMaxScaler, 
StandardScaler, and Normalize are commonly used. This work utilizes 
the Normalize method with parameter max as performing better than 
MinMaxScaler, StandardScaler. In this paper, PCA is adopted to reduce 
the dimension of the spectral data and to retain relevant information. To 
explore the impacts of data dimension reduction on the classification 
results, this work simultaneously analyses the dataset processed with 
PCA and without PCA while evaluating the ML models. 

3.4.2. Hyperparameter adjustment and ML model training 
In this work the hyperparameters of each ML based approaches are 

adjusted using the GridSearchCV function of Sklearn, e.g., finding the 
optimal K value of the KNN model. In previous work, Back et al. [16] 
adopt the Monte Carlo Cross-Validation (MCCV) to randomly split the 
FTIR dataset, train the model with the dataset, and then average the 
resulting metrics of multiple runs [44]. Similar to their method, this 
work randomly divides the dataset into a training set and a validation set 
by a train_test_split function from Sklearn, and then train and validate 
the ML model. This process is repeated 200 times. The collected metrics 
are averaged. 

3.4.3. Systematic evaluation of the ML models 
This paper employs metrics that can depict the performance of the 

ML models from both macroscopic and microscopic perspectives in 
terms of 5 metrics, i.e. recall, precision, F1 score, accuracy, and Kappa 
score. For the microscopic analysis, the result for each metric, each MP 
and each ML method is calculated. In addition, the confusion matrix 
(CM) for each ML method is presented, which displays whether multiple 
categories are confused, i.e., one MP type is predicted as another MP 
type. For the macroscopic analysis, the average metric of each ML 
method for classifying all the MPs are calculated and displayed in a radar 
chart. For simplicity purposes, only a part of microscopic results are 
presented in the paper, i.e. recall, precision and F1 score. 

3.5. Metrices for benchmarking ML based approaches 

This work adopts the following metrics to benchmark the perfor
mance of the ML based MP identification algorithms, as shown in Eqs. 
(1)–(5), where TP is True Positives, FP is False Positives, TN is True 
Negatives, and FN is False Negatives [45]. 

Recall (also called Sensitivity) can be considered as the proportion 
correctly identified by the model for the same type of MP [46]. Its 
definition is as follows: 

Recall =
TP

TP + FN
(1) 

Similar to Recall, Precision is the percentage of the positive results 
that are correctly identified as positive by the model. For MP identifi
cation, Precision is the ratio of the correctly classified MP to the number 
of MP that are identified as this MP kind. Its definition is as follows: 

Precision =
TP

TP + FP
(2) 

The F1 score is the harmonic mean of the Recall and Precision [47]. 
When the Recall and Precision metrics are contradictory, the F1 score 
should be adopted to compare the two metrics above comprehensively. 
Its definition is as follows: 

F1 = 2 ∗
Precision ∗ Recall
Precision + Recall

(3) 

Accuracy is another measurement of the robustness of the model, 
which is the percentage of all the tested data that is correctly identified 
(i.e., TP and TN). Accuracy is the simplest and most intuitive metric for 
benchmarking ML methods [30]. Its definition is as follows: 

Accuracy =
TP + TN

TP + TN + FP + FN
(4) 

Confusion matrix (CM). In addition to the metrices above, CM is used 
to depict the relationship between all the identified classes [48]. In a 
CM, each row represents that predicted class for each actual class. The 
diagonal element contained in a row represents the correct prediction 
result for the actual class (i.e. the recall score), whereas the other ele
ments show the misclassification results. The greater diagonal value in 
the matrix represents the better classification performance for the 
correspondent MP (class). The CM can also show which MP is prone to Fig. 1. The workflow of comparison for MP identification methods.  
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be misclassified to which MP. 
Kappa score is utilized for consistency testing and used to assess 

classification accuracy considering the effects of sample imbalance in 
the dataset [30]. Its definition is as follows: 

K =
p0 − pe

1 − pe
(5) 

Kappa score can be calculated based on CM. Where p0 is accuracy 
score of predicted results, i.e. the sum of the diagonal elements of the CM 
divided by the sum of all the elements in the CM. Assuming that the sums 
of the elements for each row in the CM are A1, A2., Ai respectively, and 
the sums of elements for each column in the CM are B1, B2., Bi respec
tively, the total number of samples are N, then pe = (A1 * B1 + A2 * B2 +. 
Ai * Bi) / (N*N). 

4. Results and discussion for systematic evaluation of ML based 
methods 

4.1. Macroscopic performance of ML based approaches 

To calculate the appropriate reduced dimensional data (PCs) by PCA, 
this work calculates the accuracy of each method for various PCs. When 
the number of PCs is set as 200, each approach achieves the best results. 
The average values of the Kappa score, F1 score, accuracy score and 
recall score and precision score of different ML based algorithms are 
calculated and depicted in Figure A.5. 

SVM and PCA_SVM based identification method performs the best 
amongst all the ML methods (Kappa score, F1 score, accuracy, recall, 
precision are 92.24 %, 90.77 %, 93.53 %, 92.77 %, and 90.08 % 

Fig. 2. the confusion matrices of each identification approach. (a) the CM of SVM (b) the CM of KNN (c) the CM of RF (d) the CM of LDA (e) the CM of PCA_PLSDA (f) 
the CM of MLP (g) the CM of PCA_SVM (h) the CM of PCA_KNN (i) the CM of PCA_MLP. 
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respectively). However, KNN, PCA_KNN and MLP also perform well and 
their five metrics in the radar chart are near to those of SVM. More 
importantly, each metric calculated in the radar chart is an average 
score for all types of MP. If one type of MP occupies a large portion of the 
dataset, it will have a significant impact on the average metrics. To avoid 
this bias, the next section will provide a zoomed in analysis to these ML 
algorithms, focusing on their performance for each individual MP. 

4.2. CMs of ML based approaches for each MP 

Fig. 2 shows the 9 CMs of the ML based approaches that perform well 
in the tests. The results for other approaches are omitted (PCA_RF, LDA, 
SIMCA, PCA_SIMCA). For each sub-figure (a–i) in Fig. 2, the horizontal 
coordinate represents the predicated label of each MP and the vertical 
coordinate represents the True label of MP. For each ML based identi
fication method, the percentage results of each MP classification are 
provided. It also exhibits which types of MPs are commonly confused 
and misidentified as others for each ML approach. It also shows the 
impacts of PCA on the performance of each ML method while identifying 
each MP. 

The results show that Poly(propylene), Poly(amide) Poly(styrene) 
are identified correctly by SVM (99–100 %). Ethylene propylene rubber 
(EPR), Poly(ethylene) fouling and PEVA are not well identified (83–84 
%) and confused with other MP (which have been depicted in the CM). 
KNN obtains high scores in identifying Poly(amide), Morphotype2, Poly 
(styrene) and Poly(ethylene) (98–99 %), but it does not recognize the 
MP well when the amount of training samples is not sufficient (such as 
Poly(ethylene) like, PEVA). PCA_LDA has high identification rates in 
Poly(amide), Poly(styrene), Poly(ethylene) (96–100 %). PCA_SVM, 
PCA_KNN and PCA_MLP all perform well and are similar to the respec
tive ML methods without using PCA. All the ML based methods can 
identify the pure Poly(propylene), Poly(amide), Poly(styrene), and Poly 
(ethylene) very well. However, certain mixtures are often misclassified, 
e.g., EPR, Poly(ethylene) fouling, Poly(ethylene), and Morphotype2. 

4.3. Class report of ML based approaches for each MP 

To obtain additional in-depth analysis to the ML algorithms while 
identifying each MP, and display the specific performance of different 
methods in different types of MP identification, this work adopts Pre
cision, Recall, F1 score to compare different ML approaches for each MP 
(CM just demonstrates the Recall score). 

SVM and PCA_SVM both perform the best in identifying the EPR, 
Poly(propylene), PEVA, Morphotype 1, which demonstrates SVM is 
quite effective in identifying the mixed MPs. However, for identifying 
Poly(ethylene) fouling, Poly(ethylene), and Cellulose acetate, KNN and 
PCA_KNN present the best result. This probably means that KNN could 
identify the MPs with noise (e.g. Poly(ethylene) fouling) with sufficient 
samples. The other ML methods for identifying each MP based on the 
highest value of the sum of the Precision, Recall and F1 score are sum
marized in Table A.1. (All the class reports are shown in Table A.2-A.11 
and Figure A.6). The reasons of the different performance are various ML 
techniques extract features in different ways e.g., SVM classifies the MPs 
by calculating the hyperplane among MPs.(as mentioned in Section 2.2). 
In high-dimensional FTIR data, these methods will be affected by 
additional characteristics (-OH, -CO) produced by contaminated or 
oxidized MPs. 

Although SVM is superior to the other ML methods in the average 
metrices, the CMs and the 3 metrices show that the ML method should be 
selected based on the sample types of MPs. In next section, this work 
intends to build an ensemble learning to exploit advantages of different 
ML based methods according to the characteristics of dataset. 

5. Methods and materials for the ensemble learning algorithm 

The CM and class report show that, for different MPs, each ML 

method exhibits different performances. The results (Fig. 2 and 
Table A.1) show that SVM, PCA_SVM, KNN, PCA_KNN and PCA_LDA can 
cover different scenarios for identifying MPs. To explore a general 
method to utilise the strength of each of the above ML algorithms, this 
work designs an ensemble learning algorithm to aggregate the output of 
the 5 ML algorithms with a neural network. 

The algorithm architecture is shown in Fig. 3. It includes 3 key steps: 
1) inputs the dataset (either training dataset or test dataset) into the 5 
chosen ML methods. Each of the ML methods will generate the classi
fication probabilities, i.e. probability that the input MP should be clas
sified as each MP; 2) sends the output probabilities of each ML method to 
the input layer of the neural network. 3) the neural network outputs 12 
classification probabilities which correspond to the 12 MP types. In 
Fig. 3, A[0] represents the input layer of the neural network, which 
contains 60 neurons (5 ML methods generate 5*12 probabilities). A [1], 
A [2], and A [3] represent the hidden layers that contain 64 neurons in 
each layer. These 3 layers all adopt ReLU (Rectified Linear Unit) func
tion as the activation function. A [4] represents the output layers con
taining 12 neurons. This output layer utilizes softmax as the activation 
function. Cross entropy (categorical_crossentropy) is used as the loss 
function during the training. 

6. Results and discussion for the ensemble learning algorithm 

6.1. Kedzierski dataset 

The 5 average metrics (Kappa score, F1 score, accuracy, recall, pre
cision) of this ensemble learning algorithm are 93.04 %, 90,13 %, 94.19 
%, 91.74 %, 89.78 % separately based on the Kedzierski dataset. 
Although the recall score is 0.1 % less than that of SVM, the average 
accuracy is 0.7 % higher than that of SVM, which means this method 
improves the successful identification rate. 

Fig. 4 shows the CM of the proposed ensemble learning algorithm. 10 
% of ERP (containing ethylene and propylene) samples are misidentified 
as Poly(propylene) and Poly(ethylene) fouling, PEVA, Morphotype 1 (4 
%, 2 %, 2 % and 2 % respectively). The 7 % of Poly(ethylene) fouling and 
PEVA are confused with Poly(ethylene). The most important reason of 
these misclassification is that the MP samples contain the identical 
chemical compound (e.g., ethylene and/or propylene) that generates the 
same peaks in the FTIR spectra. It is very difficult for sub-model (SVM, 
KNN, LDA, etc) to extract sufficient features with limited samples to 
identify the MPs. However, compared with the SVM CM (which per
forms the best amongst the ML models) in the Fig. 2, the recall scores for 
EPR and poly(ethylene) fouling are both improved from 84 % to 89 %, 
and the recall scores for the other MPs are similar to those of SVM. 

In class report, the average value across all the scores (precision, F1 
score and recall) is 91.5 % (shown in Table A.12 and specific scores 
shown in Figure A.7). The average score of SVM is 91.1 % (shown in 
Table A.2). Although the ensemble learning algorithm does not 
outperform SVM in all MP types, the sum of precision, recall, F1 score of 
Poly(ethylene) fouling, Poly(ethylene) like, Cellulose acetate and Poly 
(ethylene) are improved. Other MPs are similar to SVM results. 

6.2. Jung dataset 

Back et al. test the SVM algorithm with linear kernel on Jung dataset 
[16]. The accuracy reaches 94.0 %. This proposed ensemble learning 
algorithm has been evaluated with the same dataset. The average values 
of the five metrics (Kappa score, F1 score, accuracy, recall, precision) are 
90.4 %, 78.9 %, 94.5 %, 84.7 %, 76.0 %. The accuracy (94.5 %) is better 
than Back’s method. The CM of the proposed algorithm while using Jung 
dataset shows that 50 % of LDPE and 19 % of Mixture are misclassified 
(depicted in Figure A.8). The class report results demonstrate that this 
method performs excellent in HDPE and PP (shown in Table A.13). 50 % 
of LDPE and 19 % of Mixture are misclassified because they contain 
identical chemical characteristics, and the samples are insufficient (both 
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occupy 5 %). In Back’s work, the two MP are also not classified well due 
to the identical reasons (their recall scores are 65 % and 82 % because 
they transfer some spectrums into Unknown type). 

7. Conclusion & future work 

This work adopts a systematic workflow to evaluate the performance 
of 7 existing machine learning based approaches in identifying and 
characterising MPs using one standard FTIR spectral dataset. The results 
show that the imbalanced sample size in the dataset and the MP fouling 
effects have significant impacts on the performance of the ML algorithms 
while identifying each MP type. A ML algorithm may perform differently 
while identifying different types of MPs. 

In practice, a user would not know the MP type before identification. 
Therefore, it is difficult to choose an appropriate ML model for the 
specific MP identification task. Hence, this work proposes an ensemble 
learning based method to aggregate the best performing ML models 
identified in the systematic evaluation to avoid the poor performance 

scenarios of each individual ML model. The proposed ensemble learning 
method has been evaluated with 2 datasets, i.e. the Kedzierski and Jung 
Dataset. The results show that this method obtains higher performance 
than the state-of-the-art works in terms of 5 metrics (Kappa score, F1 
score, accuracy, recall, precision). It obtains a clearer confusion matrix 
(i.e. less confused classifications), and a higher class report for each MP. 

The future work includes expanding the application domain from 
aquatic systems to other areas, e.g. applying this method on MP in soils 
and plants. Another planned extension of this work is to integrate other 
MP characterisation technologies, e.g. DSC and TGA, into the ensemble 
learning algorithm. 
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[31] Ö. Akar, O. Güngör, Classification of multispectral images using Random Forest 
algorithm, J. Geod. Geoinf. 1 (2012) 105–112, https://doi.org/10.9733/ 
jgg.241212.1. 

[32] Y.T. Wang, B. Li, X.J. Xu, H. Bin Ren, J.Y. Yin, H. Zhu, Y.H. Zhang, FTIR 
spectroscopy coupled with machine learning approaches as a rapid tool for 
identification and quantification of artificial sweeteners, Food Chem. 303 (2020), 
https://doi.org/10.1016/j.foodchem.2019.125404. 

[33] P. Thanh Noi, M. Kappas, Comparison of random forest, k-nearest neighbor, and 
support vector machine classifiers for land cover classification using Sentinel-2 
Imagery, Sensors 18 (2017), https://doi.org/10.3390/s18010018. 

[34] M. Murugappan, Electromyogram signal based human emotion classification using 
KNN and LDA, Proc. - 2011 IEEE Int, Conf. Syst. Eng. Technol. ICSET 2011 (2011) 
106–110, https://doi.org/10.1109/ICSEngT.2011.5993430. 

[35] M. Imani, H. Ghassemian, Band clustering-based feature extraction for 
classification of hyperspectral images using limited training samples, IEEE Geosci. 
Remote Sens. Lett. 11 (2014) 1325–1329, https://doi.org/10.1109/ 
LGRS.2013.2292892. 

[36] R. Calvini, G. Orlandi, G. Foca, A. Ulrici, Developmentof a classification algorithm 
for efficient handling of multiple classes in sorting systems based on hyperspectral 
imaging, J. Spectr. Imaging 7 (2018) 1–15, https://doi.org/10.1255/jsi.2018.a13. 
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