
GMIT
I GALWAY-MATO INSTITUTE OF TECHNOLOGY
I INSTITI ÜI0 TEICHEOLAfOCHTA NA GAILLIHHE-HAIGH EO

Development of a Secure, Low-Cost, Web-Based Remote
Technology Demonstrator® (WebRTD®)

Damian Barnes

Master of Science Thesis in
Computer Science

July, 2004

Galwav-Mavo Institute o f Technology July. 2004

Developm ent of a Secure, Low-Cost, W eb-Based Rem ote
Technology Demonstrator® (WebRTD®)

Damian Bames

Abstract

The Internet has acted as an effective catalyst for remote demonstration and
experimentation in recent years through the medium of virtual laboratories. These
laboratories can be especially useful in science and technology education, allowing
topics to be presented to a geographically dispersed audience. There has also been a
rapid proliferation in recent times of transactional systems for e-commerce
applications. Similar to virtual laboratories, these online applications extend their
content to a wide audience but normally achieve this using a different set of
technologies. Commercial application servers are often used in the development of e-
commerce solutions and provide features such as transaction management,
extensibility and security. This thesis presents a new virtual laboratory which
combines conventional virtual laboratory technologies with these useful application
server features, producing a system which is known as Web-based Remote
Technology Demonstrator®1 (WebRTD®). The new system is potentially capable of
managing a number of technology demonstrations using the one user interface.

A Stirling Engine demonstration was selected as the first application for the
new system. This demonstration will provide the user with a basic understanding of
the operation of the engine as well as communicating the thermodynamic principals
associated with type of engine. The new system allows the user to start, stop and
control the engine as well as download operational performance characteristics for
learning.

1 WebRTD® is copyright of the author

Acknowledgements

I wish to sincerely thank the following for this help and assistance throughout this

project:

• My supervisor, Paul Dunne, for his encouragement and guidance.

• Enterprise Ireland, without whose financial support, this project would not

have been possible.

• Steve Hollice of Omega Instruments, for his technical advice and insight into

appropriate hardware solutions.

• Igor Pashuta, for his invaluable input on all matters involving C++.

• Oleksandr Oliynyk, for his suggestions on network design.

• Anssi Raittila, for sharing his broad ranging knowledge on CORBA in the

C++ and Java domains.

• Brian Webster, for his expert advice on documentation issues.

Also, I am greatly indebted to Dr. John Lohan, without whose assistance, this body of

research would never have been realised.

Table of Contents

Abstract................................... i

Acknowledgements..ii

List of Figures... vi

1.0 Introduction... 1

1.1 Motivation for Developing a J2EE-Based Virtual Laboratory...................... 1
1.2 Objectives o f the Research Work.. 5
1.3 Thesis Outline.. 7

2.0 Analysis of Relevant Web-Based Interactive Systems................................. 8

2.1 Introduction..8
2.2 Existing Virtual Laboratories...8
2.3 Transactional Systems...11
2.4 Summary o f Web-Based Interactive Systems...17

3.0 Java 2 Enterprise Edition... 19

3.1 Introduction to J2EE...19
3.2 Enterprise JavaBeans (EJB)... 19
3.3 Java Naming and Directory Interface (JNDI).. 20
3.4 EJB Architecture...21
3.5 Enterprise beans...22
3.5.1 Session Beans... 22
3.5.2 Entity Beans... 24
3.5.3 Message-Driven Beans...24
3.6 Enterprise Bean Environment...25
3.6.1 Environment Entries...26
3.6.2 Deployment Descriptors...26
3.7 CORBA as a J2EE Service... 26
3.8 Servlets... 28
3.9 Java Server Pages...28
3.10 HTTP and HTTPS...29

Table of Contents

3.11 Java Transaction API... 29
3.12 JavaMail..30
3.13 Web Services... 30
3.14 Security... 32
3.15 Summary o f J2EE...33

4.0 System Analysis and Design.. 34

4.1 Introduction ...34
4.2 Unified Modelling Language...34
4.3 Defining System Requirements................................ 34
4.4 Real-Time System Design.................... ... 36
4.5 J2EE-Based System Overview.. 37
4.6 Pattern-Based Development, 40
4.7 Integrating the Real-Time and J2EE-Based Systems....................................44
4.8 Summary o f the System Analysis and Design........... 46

5.0 Remote Technology Demonstrator Implementation.................................. 48

5.1 Introduction •>•....... 48
5.2 Software Selection... 48
5.3 Hardware Architecture................................. 48
5.4 Real-Time System..50
5.4.1 Real-Time Control.. 50
5.4.2 Soft Real-Time System Safety....................................... 51
5.4.3 Client Monitoring Protocol Evaluation...,52
5.4.4 Client Monitoring Protocol Evaluation Conclusion................................ 55

5.4.5 Using the Real-Time Client Applet..56
5.5 Core J2EE-Based System..60
5.5.1 Database Management System...61
5.5.2 User Management Implementation 61
5.5.4 Web-based Presentation Layer 66
5.5.5 Web User Interface Design... 70
5.5.6 User Type Based Content Generation...72
5.5.7 Data Callback Service.. 72
5.5.8 EJBs for Post Experiment Analysis...74
5.6 Security.. 76
5.6.1 Real-Time Applet Client Security.. 76

iv

Table of Contents

5.6.2 Web and Enterprise-Tier Security.. 78
5.7 System Deployment..79
5.8 Summary o f the System Implementation..81

6.0 Conclusions and Future Work.. 83

6.1 Conclusions 83
6.2 Future Work.. 85

7.0 References... 87

A. Glossary... 93

B. Overview of Stirling Engines... I l l

C. Calculating the Efficiency of the Stirling Engine.. 113

D. Using the Stirling Engine Test Server Application..115

Engine Pre-Start.. 116
Thermal Efficiency.. 116
Server Facility... 117
Available Configuration Items.. 118
Programmable Power Supply Settings.. 118
Server Settings.. 119
Data Acquisition Unit Settings...119
Web-Cam Settings.. 120
Test Data Results Callback....................................... 121

XML Deployment Descriptor - ejb-jar.xml..122

List of Figures

Figure 2.1 : Remote Laboratory Hardware Elements... 8

Figure 2.2: Double client-server architecture...9

Figure 2.3: 3-Tier Client/Server Application Architecture.. 11

Figure 2.4: J2EE Multi-Tier architecture... 12

Figure 2.5: Multi-Tier Architecture Used by the Scots Library Management System 14

Figure 2.6: Related Sequence Diagram for Supply Chain Management System 16

Figure 3.1: J2EE Architecture.. 19

Figure 3.2: Creation and removal of stateless session beans.......................................22

Figure 3.3: Activation process of stateful session beans...23

Figure 4.1: Stirling Engine Being Used in the Demonstration................................... 35

Figure 4.2: Use Case Diagram for Remote Technology Demonstrator.......................38

Figure 4.3: Sequence Diagram for Creating a New User..39

Figure 4.4: Sequence Diagram for Removing an Existing User................................. 39

Figure 4.5: Session Façade Class Diagram..40

Figure 4.6: Service Locator Pattern Class Diagram.................................... 41

Figure 4.7: Front Controller Sequence Diagram... 42

Figure 4.8: Intercepting Filter pattern class diagram...44

Figure 4.9: Real-Time Test System Integrated with J2EE-Based System..................45

Figure 4.10: Sequence of Observer Involvement in Test Procedure...........................46

Figure 5.1: Hardware Architecture of the Stirling Engine Demonstration..................49

Figure 5.2: Test Equipment Used for Stirling Engine Demonstrator.......................... 50

Figure 5.3: Composite Test Client Applet after TCP Test Cycle................................ 53

Figure 5.4: Data Packets Being Lost in Unicast UDP Test Mode.............................. 54

Figure 5.5: Transfer Rates for the Four Network Protocols Tested............................ 55

Figure 5.6: Stirling Engine Applet Access Control Panel...57

Figure 5.7: Stirling Engine Applet Pre-Start Panel... 58

Figure 5.8: Stirling Engine Applet Thermal Efficiency Panel.................................... 59

Figure 5.9: Stirling Engine Applet PPS Control Panel.. 60

Figure 5.10: Updated Model for Real-Time Test System...60

Figure 5.11: Class Diagram for RTD User Related Classes..63

Figure 5.12: VirtualLabBean User Management Session Bean Class........................ 64

Figure 5.13: Service Locator Pattern Implementation...64

List of Figures

Figure 5.14: RTD User Creation Sequence ... 65

Figure 5.15: RTD User Removal Sequence............................ 66

Figure 5.16: Implementation of the Front Controller in RTD Project......................... 67

Figure 5.17: Class Diagram for PageRenderer Class and Dispatcher Interface..........67

Figure 5.18: Viewing History Records..................................... 68

Figure 5.19: Re-use of Password JSP Page..69

Figure 5.20: Sequence Diagram for Displaying User Settings....................................69

Figure 5.21: Sequence Diagram for Updating User Settings.......................................70

Figure 5.22: Online Help Web Page for Stirling Engine Demonstration....................71

Figure 5.23: Main Web Page for Administrator User... 72

Figure 5.24: Test Results Bean Used for Test Data Callbacks................................... 73

Figure 5.25: Communication Diagram for Callback System.......................................74

Figure 5.26: EngineDataBean Entity Bean..74

Figure 5.27: Sequence Involved in Plotting Test Data.. 75

Figure 5.28: Plot of Efficiency vs. Time for Stirling Engine Test Cycle....................75

Figure 5.29: Operation of Applet Token-Based System..76

Figure 5.30: Real-Time Applet Security Certificate Dialog..77

Figure 5.31: Login Page for WebRTD®..78

Figure 5.32: Deployment Diagram for Main Components of Remote Technology

Demonstrator... 81

Figure B-l: Stirling Engine Operation................................ I l l

Figure C -l: Circuit Diagram for Stirling Engine Heater & Fan................................113

Figure C-2: Variation in Temperature Difference, Rotational Speed....................... 114

and Thermal Efficiency w.r.t. Time...114

Figure D-l: Stirling Engine Test Server Initialising... 115

Figure D-2: Thermal Efficiency Tabbed Panel on Test Server Application 116

Figure D-3: Message Log Display............................. ... 117

Figure D-4: PPS Settings Dialog Box.. 118

Figure D-5: Server Settings Dialog Box...119

Figure D-6: DAQ Unit Settings...120

Figure D-7: Web-Cam Settings Dialog Box..120

Figure D-8: Result Data Settings Dialog Box.................................. 121

vii

Dedication:

To my parents, 'Brendan and ‘Bernadette (Barnes

Chapter 1

1.1 Motivation for Developing a J2EE-Based Virtual Laboratory

The use of the Internet has been rising exponentially since the arrival of the World

Wide Web (WWW) in the early nineties and is now a ubiquitous medium for

commercial, personal and educational purposes. The educational and training sectors

have benefited by introducing new methodologies for extending educational

opportunities to a wider audience through various forms of distance learning

initiatives.

Distance learning improves access to education and can advance the quality of

education delivery. Martin and Haque [1] suggested that the traditional classroom

could be replaced with a more intimate virtual environment. Indeed distance learning

allows education to take place where traditional institutions do not currently exist, or

in areas that have few educational opportunities. In the context of distance education

for the engineering discipline, the learner-centred distance learning archetype could

include dynamic demonstrations of theoretical engineering models. This will allow

learners to affirm, translate and improve their understanding of theoretical knowledge

using real-world applications. The distance education curriculum in engineering could

evolve to include the creative use of virtual technologies.

Knight and DeWeerth [2] confirm that web technologies promote efficient

learning and cater for diverse learning styles. While web-mediated access to static

content offers a well structured document format as defined by the World Wide Web

Consortium (W3C) [3], the maturing of technologies, such as Java, introduces a new

level of interactivity which hitherto was not feasible. Crisp [4] states that Java applets

embedded in training course web site material, can enhance educational material with

applications that are responsive to learner choices and provide interactivity to engage

learners in active learning. Those involved in designing online environments,

therefore, must afford special attention to interactivity.

A considerable amount of work has already been carried out leveraging new

web-based technologies to create new methods of enhancing communication between

teacher and learner. Specifically, remote learning methods such as those offered by

virtual laboratories, have the capability to reach more learners using specialised

Introduction

1

Chapter 1 Introduction

instruction and self-paced learning. Virtual Laboratories provide an active learning

environment where a number of teaching methods may be used. These can include

interactive exercises, real-time feedback from the system and graphical modelling of

data generated by the system. Reisman and Carr [5] indicated that students learn and

retain more when they engage with instructional materials. In their research, they

concluded that students learn 20% of the material taught by hearing, 40% by seeing

and hearing, and 75% by seeing, hearing, and doing. These findings should form the

basis of any design work being undertaken to develop new virtual laboratory systems.

The term “virtual laboratory” has been described in the previous paragraph as

an effective medium for training and instruction. However, this term is ambiguous in

this area of research so it is important at this point to stipulate what constitutes a

virtual laboratory. Tutas and Wagner [6] define virtual laboratories as ‘software

simulations of physical devices (e.g. measurement instruments) or other real life

systems (e.g. economic systems)’. Guggisberg et al. [7] realise that the term is used in

literature for two distinct purposes. The first is that used to describe a simulation of

laboratory infrastructure and the online virtual physics laboratory at [8] is an example

of a collection of these simulations in the public domain. The second possible purpose

of a virtual laboratory is that it be used for remote control and observation of real-

world equipment, often referred to as remote laboratories, and are outlined by Hsu et

al. [9]. The latter authors describe them as web-based education environments where

instructors and learners participate in learning activities while geographically

separated from each other. For the purposes of this report, a virtual laboratory is

defined as an online laboratory offering remote access to laboratory equipment,

workbenches and all types of experiments over the Internet. Interactions with such

laboratories effect real laboratory equipment and not just software simulations of

physical devices.

Ko et al. [10] outline how a virtual laboratory may be used for conducting

experiments relating to frequency modulation over the Internet. This type of

application is typical of a virtual laboratory and allows expensive equipment, such as

oscilloscopes and signal generators, set up by trained instructors, to be used and

experienced by a greater number of learners in a controlled environment. There may

be other reasons, apart from cost and available expertise, why this type of technology

is useful. Amaratunga and Sudarshan [11] reveal that there may be other situations

where a traditional laboratory setting is not feasible and virtual laboratories may be

2

Chapter 1 introduction

the only solution. They cite analysis of civil engineering and aerospace structures as

examples of such situations. In these instances, operating environments would be

hazardous for carrying out traditional experiments.

Virtual laboratories should provide control of a real test system. Rohrig and

Jochheim [12] state that interactive experimentation on real-world plants improve the

motivation of the students and also develop an engineering approach to solve realistic

problems. Simulation is a good way to complement control education but in general,

it cannot replace experimentation on real plants. Also students can observe dynamic

phenomena that are often difficult to explain in writing. Macias et al. [13] indicate

that their virtual laboratory reinforced the lecture material used in the teaching of

electronic engineering topics. Baher [14] found that virtual laboratories used in

thermodynamics actually promoted faster and easier understanding of concepts.

It is important to clarify what is meant by a “real-time system” in relation to

this project. Due to the non-deterministic nature of the Internet and Intranets, it is

actually impossible to offer a true real-time control and monitoring. The use of real­

time operating systems and indeed real-time enabling hardware are beyond the scope

of this project. The interface to the test equipment is a soft real-time system which

offers timely and accurate feedback of data. Aktan et al. [15] highlight the importance

of safety for these types of applications. To this end a local application, known as the

test server, is charged with providing the first line of defence in realising a safe

operating environment.

Virtual laboratories are in widespread use today and have been constantly

evolving since the World Wide Web appeared in the early 1990s. Technologies such

as Common Gateway Interface (CGI) provided the underlying functionality in early

implementations and indeed Ko et al. [10] use this approach relatively recently in a

remote electronics laboratory.

The emergence of Java 2 Enterprise Edition (J2EE) introduced a new standard

for developing multi-tier distributed applications. This new standard has gained

widespread acceptance in transaction dependant applications such as online banking

and mobile phone subscriber portals. Recent trends in virtual laboratories have seen

certain elements of the J2EE feature set used and are typified by Amaratunga and

Sudarshan’s [11] civil engineering based monitoring system. This project aims to

illustrate how more of these features may be used to produce a more effective virtual

laboratory.

3

Chapter 1 introduction

A major reason that virtual laboratories are not implemented using J2EE, is

the transactional nature of its architecture. Many researchers such as Rohrig and

Jochheim [12] use Java applets for real-time control and monitoring. Allowing

application servers1 to be used requires a number of issues to be addressed including

integration and the fact that commercial application servers have remained

prohibitively expensive. However, open source versions have now become

sufficiently stable and offer a cost effective, scalable and secure platform.

Free and open source software could also be utilised in other areas of the

project, thereby lowering the overall cost base. Open source software gives the user

the freedom to use, copy, distribute, examine, change and improve the software.

These rights are stipulated in licenses such as the GNU2 Public Licence (GPL) [16]

copyrighted by the Free Software Foundation [17]. This license is intended to

guarantee freedom-to-share and freedom-to-modify, thus ensuring that it is free for all

its users. Open source software is usually made available free for download from

either a specialised product site such as that used by the Apache web server [18] or

from a group project site such as Sourceforge [19]. This is particularly useful in

educational institutes where software costs can prohibit the introduction of new

concepts.

Proprietary software is sold without any access to source code and it is

therefore not possible to change, improve or further distribute the software. A license

for proprietary software entitles a user to only use the software under certain

conditions. Becoming dependent on a proprietary software vendor can result in

adverse effects because new versions or releases of the product are not always

initiated by the actual needs of the user, but rather by the product cycle of the vendor

or supplier. A software upgrade can also require new hardware, resulting in even

higher costs.

Mockus et al. [20] state that proponents of open source software declare that it

has the capacity to compete successfully, and perhaps in many cases displace,

traditional commercial software. They conclude that hybrid forms of development that

borrow the most effective techniques from the Open Source Software (OSS) world

may lead to high performance software process. They indicate that the quality of OSS

1 An application server is a server program in a distributed network that provides the business logic for
an application program.
2 Recursive acronym for “GNU’s Not Unix”

4

Chapter 1 Introduction

can be greater than commercial software as many more developers can be available to

work on a specific problem and that they are motivated enough to work on it

voluntarily.

1.2 Objectives of the Research Work
The principal objective of this research is to show how e-commerce principles can be

applied to, and enhance virtual laboratories. Enterprise applications have benefited

greatly from structured development techniques, using J2EE as the vehicle to deliver

required features. This project aims to illustrate how the J2EE feature set may be used

to produce a more effective virtual laboratory. These features include transaction

management, extensibility and security.

Transaction management is a feature which ensures that transactional

operations are carried out fully. For instance, if an online banking application was

required to perform a credit transfer, it is important that the first account be

successfully debited and the second account subsequently credited. Failure to carry

out either of these transactions could lead to either the purchaser or vendor loosing out

financially. While virtual laboratories may never deal with monetary data, it is

important nonetheless, that information such as user settings and test result data are

read, as well as written correctly to secondary storage.

Extensibility is a much coveted feature in transactional e-commerce

applications and virtual laboratories alike. The modular component architecture of

J2EE lends itself well to the scaling of applications and promotes code re-use.

Functionality may be augmented without necessarily changing and re-compiling the

project source code.

A comprehensive security solution is essential for every publicly available e-

commerce application. There are a number of customised and standard solutions used

to address common security issues. J2EE offers a standardised role-based component

security framework, known as Java Authentication and Authorization Service

(JAAS), which is enforced by the application server. This feature enables restrictions

to be placed on individual operations of deployed components.

Single sign-on is a popular and useful security feature used by many e-

commerce applications. In a client/server relationship, single sign-on is a session

authentication process that permits a user to enter one name and password in order to

access multiple applications. The single sign-on, which is requested at the

5

Chapter 1 Introduction

initialisation of the session, authenticates the user to access all applications to which

they have been granted rights, and eliminates future authentication prompts when the

user switches applications during that particular session. J2EE compliant application

servers typically achieve this using XML deployment descriptors to configure the

authentication type (basic or form-based), leaving the developer to use component

code for handling business logic exclusively. Single sign-on could be used to give the

user access to a number of technology demonstrations.

The result of employing the J2EE feature set in a virtual laboratory will
(£)produce a system known as the Web-based Remote Technology Demonstrator

(WebRTD®). This new system will offer the potential of managing a number of
©virtual laboratory demonstrations. In this instance, the WebRTD has been developed

to demonstrate one thermodynamics-based system, a Stirling Engine coupled with a

control and monitoring system. It is anticipated that this application will be of

considerable benefit to engineering students learning thermodynamics, as it facilitates

the demonstration of theoretical knowledge in a practical and informative manner.

The first trial is this application is scheduled for the first semester of the 2004/2005

academic year.

Cost control is a secondary objective of this work. This project will show how

extensively open source software solutions can be used in order to keep the system

cost to a minimum.

User interface design is also an important aspect of this work. The interface

should be intuitive, user friendly and promote e-leaming by effectively

communicating to the learner the principles and any background information on the

remote demonstration.

The adaptation of J2EE into the area of virtual laboratories has not previously

been undertaken. As mentioned earlier, the cost of commercial application server

software remains prohibitively high. Open source versions, such as JBoss, now offer

the possibility of leveraging the J2EE feature set in a similar manner to expensive

transaction-based e-commerce systems. Another reason why J2EE has not been

applied to virtual laboratories is that integrating a soft real-time system into a

transactional system presents difficulties with regard to how the two systems can

interoperate successfully. It is useful, therefore, to examine relevant virtual

laboratories and transactional systems to produce a hybrid solution for the remote

technology demonstrator.

6

Chapter 1 Introduction

1.3 Thesis Outline

The number of services provided by the standard defined by J2EE continues to grow.

This research endeavours to utilise the most effective services available in J2EE, from

Enterprise Javabeans to the more recently added Web Services.

In Chapter 2, existing systems, in both the virtual laboratory and transaction-

based realms, are analysed to determine the most suitable elements for inclusion in the

new system.

Chapter 3 describes the most relevant features of J2EE used in this project.

Other chapters contain references to these features, so this chapter may serve as a

primer for the technologies involved.

Chapter 4 outlines the comprehensive system analysis and design undertaken

in order to ascertain the correct approach to realise the system requirements. This

work uses Sun Microsystems’ blueprint design patterns [21] which provide a template

for creating J2EE solutions using proven methodologies improving such facets as

performance and scalability.

All content related to the implementation of the new system is presented in

Chapter 5. The appropriate network protocols for control and monitoring of active test

cycles are determined and applied to the soft real-time element of the application.

Also the architecture of the user management system is defined using J2EE services.

The operation of the new system, comprising of the J2EE-based and real-time

elements, is presented.

The outcome of the new system is presented in Chapter 6 and the success of

applying J2EE technology to a virtual laboratory is determined. Future directions for

the system are also briefly explored in this chapter.

The appendices aim to provide a supplement regarding the technologies used

in this thesis. Appendix A provides a glossary of terms. Appendix B and C present an

overview of the fundamentals of Stirling Engines and the calculations involved when

calculating the overall thermal efficiency respectively. Appendix D details the

operation of the test server used to control and monitor the Stirling Engine used in the

demonstration. Appendix E contains the contents of the principal XML deployment

descriptor file required to deploy the Enterprise Javabeans.

7

C hapter 2

Analysis of Relevant Web-Based Interactive Systems
2.1 Introduction
In order to design an effective virtual laboratory, it is important to examine existing

web-based systems with a view to assessing the advantages and disadvantages of their

respective technologies. This chapter focuses on two groups of interactive systems

which deserve particular attention, these are;

Existing Virtual Laboratories
Current virtual laboratories will give a good indication of the most appropriate

technologies for developing a remote technology demonstrator.

Transactional Systems

A significant element of the system will be based on a transaction-based

model so therefore it is useful to examine previous online transactional

systems.

2.2 Existing Virtual Laboratories
Chen et al. [22] present a remote Frequency Modulation laboratory built using the

hardware elements shown in Figure 2.1.

Figure 2.1: Remote Laboratory Hardware Elements (Source: Chen et al. [22])

8

Chapter 2 Analysis of Relevant Web-Based Interactive Systems

This laboratory was designed using a ‘double client-server architecture’ (see

Figure 2.2). This consists of a pair of interconnected client-server systems, the web

server acting as both client and server. Ko et al. [10] also describe the design of a

similar virtual laboratory.

Figure 2.2: Double client-server architecture (Source: Ko et al. [10])

In their work Chen et al. [22] describe how the web browser communicates

with the web server initially via Common Gateway Interface (CGI) and thereafter via

Transmission Control Protocol (TCP) using a Java applet. The applet displays

graphical representations of oscilloscopes and other scientific equipment and uses

TCP to issue commands and read feedback data from the server. The web server uses

yet another TCP connection to relay data to the test server. The latter connection is

not seen by the client.

The initial user authentication is implemented using a Hypertext Transfer

Protocol (HTTP) POST request. This is achieved using another TCP connection to

write to the web server itself.

Control of the test equipment at any one time is restricted to one client. This is

managed using a token system. This system is operated on a first-come first-served

basis where the client must first obtain a valid session ID in order to issue commands

to the test server. After having gained control of the test server, other users must wait

until it becomes available again.

If this configuration were to be used in the proposed virtual laboratory, it

would be preferable that others could at least observe the current process. Also, there

is perhaps a potential security risk to the TCP servers in that there may be a threat

from denial-of-service attacks, which may have unpredictable consequences for

expensive test equipment.

Significant emphasis is placed on the facility having a real-time feedback

display, realised by using a video camera relaying data through a video server. This is

9

Chapter 2 Analysis of Relevant Web-Based Interactive Systems

an important feature of this particular application as the user’s experience of

controlling the equipment will be enhanced and indeed the user may be in a better

position to react to the state of the equipment based on the visual feedback. While the

proposed virtual laboratory may not implement the double client-server design as seen

here, the concept of a de-coupled configuration does render the system more flexible

and extensible. Specifically, it allows new demonstrations to be added just by

changing the test server application and hardware.

One essential requirement of this type of test server, is that it be capable of

using native libraries to control the test equipment using interfaces such as RS-232

and General Purpose Interface Bus (GPIB).

Aktan et al. [15] describe a virtual laboratory that enables a user to remotely

control a robot arm. A client-server structure is used, but the client is required to

properly install X-teiminal software1 first. Subsequent communication between the

client and server is realised using User Datagram Protocol (UDP). According to

Comer [23] UDP offers an unreliable delivery service. He adds that applications using

UDP must take full responsibility for handling the problem of reliability, including

message loss, duplication, delay, out-of-order delivery, and loss of connectivity.

Comer also points out that developers often test network software using reliable, low-

delay local area networks so testing may not expose potential failures. Thus, many

application programs that rely on UDP work well on a local environment but fail in

dramatic ways when used in a larger TCP Internet.

However, one potential benefit of using UDP is that, if the test equipment is

already being controlled, then the possibility exists for others to observe the

experiment. Safety concerns regarding the remote operation of a robot arm are

highlighted and the authors clearly indicate that safety should be given the highest

priority at the design stage.

UDP operates at a very low-level and is not suitable for issuing test server

commands. TCP also provides a very primitive means of transferring data and

particular care must be taken when passing parameters. Wang and Robinson [24]

describe a high performance engineering computing portal based on Common Object

Request Broker Architecture (CORBA). Their implementation uses a three-tier

architecture, which includes Java applets, servlets and CORBA. The use of CORBA

1 X-terminal software is used to emulate user interfaces from other operating systems.

10

Chapter 2 Analysis of Relevant Web-Based Interactive Systems

enables language independent interoperability between multiple platforms. Orfali and

Harkey [25] determine that the performance of CORBA implementations (or ORBs),

combined with their greater usability make them a better alternative over socket

programming. CORBA hides the low-level detail of making network connections and

provides clearly defined error handling in the form of exceptions.

Ko et al. [26] recognise the limitations of the TCP protocol used and

subsequently re-developed their electronics-based virtual laboratory. They improved

on their Frequency Modulation remote experiment by using IP multicast. This

protocol is a bandwidth-conserving technology where one copy of data is sent to a

group or class D IP address. Each user may read from this address thereby eliminating

the need for multiple connections to the server to be maintained. It is designed to be

very scalable, as an increase in the number of remote users does not result in a

corresponding increase in bandwidth. It is, however, built on top of UDP, which is an

unreliable protocol. Data packets may arrive out of order or not arrive at all. These

limitations should be considered at the design stage.

After analysing a number of virtual laboratory implementations, it is evident

that there are a number of technologies that have already proved very effective in

fulfilling such requirements as scalability and performance. However, with regard to

the design of virtual laboratories, a structured approach to their design has not been

formulated. This is due to a large degree to the wide range of criteria of these systems.

2.3 Transactional Systems

The next web-based systems that were studied, were broad-based transactional

systems, in particular those built on the J2EE platform. Typical examples of these

include online banking portals and e-commerce auction sites such as eBay [27],

T ie r 1

T ie r 2

T ie r 3

P resen ta tion ml C lien tÌ
N etwork

App lica tion Log ic Ì M idd le -T ie r Servers

Netw ork

Data

]
D BMS & Back-E nd Servers
Legacy App lica tions

Figure 2.3: 3-Tier Client/Server Application Architecture (Source: Pour et al. [29])

11

Chapter 2 Analysis of Relevant Web-Based Interactive Systems

Soldar et al. [28] argue that, if the number of e-commerce services are to

continue to expand at their current rate, then the underlying technologies will need to

change to provide greater flexibility, scalability and integration with enterprise

systems. This would suggest that this approach should also be applied to the

technology and educational sectors, in particular to web-based virtual laboratories. In

the case of the proposed virtual laboratory, a generic framework should be devised to

allow new test applications to integrated into the system while providing access to

existing ones, thereby creating a technology portal. A shift from the traditional 3-tier

architecture to one created using J2EE services is advocated. Pour et al. [29] outline

the component groups in a 3-tier architecture, as shown in Figure 2.3. Presentation

components operate in tier 1 , application logic components in tier 2 (i.e. middle tier),

and data components operate in tier 3.

The J2EE model presents a multi-tier architecture comprising of such services

as servlets, JDBC and Enterprise Java Beans (see Figure 2.4).

Client

Web Service Tier

Business Logic

EIS

Figure 2.4: J2EE Multi-Tier architecture (Source: Soldar et al. [28])

12

Chanter 2 Analysis of Relevant Web-Based Interactive Systems

Soldar et al. [28] take the position that the success of e-commerce is tightly

related with the development of the Internet technologies, especially those based on

platform independence. One of the key components for achieving this is the use of

ubiquitous, low cost communication networks using Internet technologies and

standards such as J2EE.

There are two traditional paradigms for software development. At one

extreme, the project is developed entirely from scratch, with the help of only

programming tools and libraries. At the other extreme, a commercial-off-the-shelf

solution is purchased and configured to provide an approximate or “best-fit” solution.

Pour [30] presents Component-Based Enterprise Software Engineering (CBESE) as a

rapidly emerging trend in the software engineering area. This concept of component

software represents the middle path, where an entire application is assembled from

individual atomic components, developed by third parties.

The architecture of component-based systems is often significantly more

demanding than that of traditional monolithic integrated solutions. To make

development of efficient component-based applications a feasible task, a component

model incorporates "best practice" designs by providing developers with design

patterns, suggesting a standardised structure upon which distributed component-based

systems should be based.

An important reference application is ‘Java Pet Store’ [31], a best-practices

sample application from the “Java Enterprise Blueprints” program maintained by Sun

Microsystems. It represents a typical e-commerce application. Customers can browse

through a catalogue of products, select items of interest and place them in a shopping

cart. Upon indicating readiness to buy what is in the shopping cart, the application

displays a bill detailing prices and quantities. The customer can also create a

permanent account with the on-line shop, which includes billing and shipping

information.

Rice University Bidding System (RUBiS) [32] is an auction site prototype

modelled after the popular e-commerce web-portal, eBay [27]. RUBiS implements the

core functionality of an auction web site: selling, browsing and bidding on items.

Visitors can search through a catalogue of items divided into several categories and

belonging to different geographical regions. They can bid on items of interest, as well

as put comments for other users. Users may also choose to sell an item, registering it

and specifying several parameters, such as action duration, and initial, reserve and

13

Chapter 2 Analysis of Relevant Web-Based Interactive Systems

buy-now prices. All non-browsing activities require creation of a permanent account

on the web site before logging in. Candea et al. [33] use the popular open source

application server, JBoss [34], for their RUBiS implementation.

Chambers et al. [35] design and develop a fully featured library management

system using J2EE. The benefits of this approach are significant. Again using JBoss,

it is possible to deliver a secure, cost-effective but yet easy to use application, which

does not require specialised knowledge to maintain. The versatility of the system was

proved by providing a web-based library catalogue search facility as well as an

application for administration purposes. Figure 2.5 illustrates how the server program

serves both of these clients.

M aster C lien t A pp lica tion
D ata D isp la y & M a n ip u la tio n

E nquiry T e rm ina l A pp lica tion
S earch R e quest & D isp la y

R equest
In fo rm a tio n

(T ransport Layer)

S erver Program

R equest
T n fo r m a t io rT

U p d a te
R ecords

Database

\ S earch
■ In fo rm a tio n

7 u

Session Layer

▼

B u s in e ss L o g ic

| R equest 4 *
T O b je c ts |

E n tity Layer
D a ta Access

* i

C o m p o n e n t In te rfa ce

■4-------------- ►

F low o f C o n tro l

Figure 2.5: Multi-Tier Architecture Used by the Scots Library Management System
(Source: Chambers et al. [35])

The enquiry terminal application is a Java servlet-based search facility, which

obtains persistent entity bean data through the session layer. The session and entity

layers are implemented using EJB2. The master client application is a Java Swing-

based GUI application and communicates directly with the session layer using the

application-based authentication.

2 A description of these and other J2EE technologies is given in Chapter 3.

14

Chapter 2 Analysis of Relevant Web-Based Interactive Systems

EJB is a good example of component-based enterprise software. Pour [29]

gives ActiveX/Microsoft Transaction Server (MTS) as another example of a

component-based solution. Indeed, Borges et al. [36] use ActiveX technology for

their client user interface in a virtual laboratory and Pasquarette [37] describes a

technique for creating virtual instruments using ActiveX technology. While this

approach may be relatively straightforward, it relies on using proprietary software

which is platform dependent. Java, on the other hand, while not open source, is

available for download “royalty-free” under Sun Microsystems’ licensing terms. This

not only makes it more cost-effective, but also makes it possible for third party

development teams in the open source community to provide useful additional

products.

Another major difference between Java-based and ActiveX technologies lies

in the approach that these two technologies have taken to address security of

components. ActiveX relies only on the digital signature verification method while

Java solutions provide higher level of security through a combination of security

managers built into the language, digital signature verification, and the concept of

trusted servers. In addition, ActiveX technology has been declining in popularity in

reccnt times.

Allamaraju et al. [38] describe servlets as the basic building blocks of web

applications. They provide a common programming model that is also the foundation

for Java Server Pages (JSPs). Servlets, like CGI and sockets, provide a primitive form

of middleware in client/server architecture. Like CGI scripts, they are executed on the

server. However, instead of creating a new process for each request, all servlet

requests are handled in the same process by separate threads. Therefore, servlet-based

applications avoid overhead processing by eliminating the cost of starting a new

process for each client connection. Additionally, servlets provide a Java-based

solution that addresses the problems associated with server-side programming (i.e.

non-extensible scripting solutions, platform-specific APIs, and incomplete interfaces).

Servlets deliver the same functionality as CGI scripts but they are faster, cleaner, and

easier to use. In addition, servlets provide lower deployment and maintenance costs.

Web Services are a relatively new addition to the J2EE standard and offer

great potential in integrating dissimilar applications. Schattkowsky and Muller [39]

describe how a novel system that uses Simple Object Access Protocol (SOAP), can

greatly enhance Computer Supported Collaborative Work (CSCW). They provide an

15

Chapter 2 Analysis of Relevant Web-Based Interactive Systems

example in the area of electronic design automation where existing legacy tools may

be integrated into distributed workflows. They highlight not only the tool

management and integration, but also the secure transport of design data as being of

the utmost importance.

Supply Chain Management (SCM) plays a key role in the success of

companies in the today’s highly competitive global business environment. SCM is

about managing the flow of goods, services, and information among suppliers,

manufacturers, wholesalers, distributors, stores, consumers, and end users. Pour and

Guo [40] present a new Web Service orientated architecture which supports the

process integration and flexibility in SCM. The system encapsulates the details of

application logic while providing consistent, secure and auditable access to a wide

variety of software services needed in a supply chain. The system is independent of

language, platform, and location and caters for the wide variety of software services

needed. Figure 2.6 shows a related sequence diagram showing the interaction between

customers and suppliers on the SCM system.

:Custom er
S C M S ys te m

Browser/Search Catalogue D4 -
Register/Update Catalogue

Register/Login

P lace Order

Notify C ustom er

Deliver Invoice

T rack O rder

Negotiate w ith Supplier

Confirm Order

Ship Product

Process Invoice

0 +
Track O rder

¡¡fiel!I

h

Supplier *M anufacturer

M onitor Inventory

O rder from M anufacturer

■*0

Figure 2.6: Related Sequence Diagram for Supply Chain Management System

(Source: Pour and Guo [40])

16

Chapter 2 Analysis o f Relevant Web-Based Interactive Systems

The architecture of the SCM system consists of three main tiers; presentation

tier, middle tier, and data management tier. In the presentation tier, JSP and servlets

are used for requests from client browsers to Web Services. The middle tier is

implemented using JNDI, Java Message Service (JMS), JDBC, JavaMail, and Java

API for XML Parsing (JAXP). A UDDI server was set up using a SOAP container to

allow electronic publishing and querying information about business, services and

technical information. The data management tier is occupied by a Microsoft SQL

Server which is queried using JDBC.

Even after reviewing a relatively small number of transactional systems, it is

obvious that structured approaches to their design have been well formulated. These

approaches include the use of UML and best practices, such as design patterns.

2.4 Summary of Web-Based Interactive Systems
The analysis of existing virtual laboratories has shown that a whole range of

technologies is being employed that could be applied to a remote technology

demonstrator. Network protocols used include TCP, UDP and CORBA. It is

necessary to first determine the reliability and performance requirements before

selecting a protocol. While CGI is still in use for dynamic web content generation,

other more performance-orientated methods, such as servlets, are being employed. It

is evident that web pages with containing embedded Java applets are popular for

providing client-side functionality for virtual laboratories. Safety issues should always

receive particular consideration during development and operation. Security is also

important. The token-based system used by Ko et al. [10] offers an effective means of

securely operating a system where only one user may control the remote

demonstration at any one time. Feedback mechanisms for the purposes of monitoring

of the remote demonstrations can include test data and visual feedback.

There are numerous examples of successful transactional e-commerce web

sites in existence such as eBay [27] and Amazon [41], Requirements for such systems

demand that they utilise technologies which provide substantial flexibility, scalability

and the possibility to integrate with other enterprise systems. The multi-tier

architecture of J2EE offers developers the potential to deliver such functionality

taking full advantage of its platform independent operational model. Enterprise

solutions using J2EE may be achieved using a component-oriented approach such as

CBESE also employing proven best practices such as design patterns from Sun

17

Chapter 2 Analysis o f Relevant Web-Based Interactive Systems

Microsystems’ “Java Enterprise Blueprints”. Enterprise Javabeans and Java servlets

are already used in enterprise research applications and should be used also for the

proposed new remote technology demonstrator. Web Services also present a useful

solution for a language and platform independent exchange of data between remote

applications.

Virtual laboratories lack a structured approach to their design and

development. In contrast, a number of mechanisms have been employed for

developing transactional systems, including UML and design patterns.

J2EE does offer a low-cost, secure and scalable solution as an alternative to

many existing virtual laboratory designs. However, there appears to be an apparent

absence of remote laboratories based on the transactional systems. The reason for this

may lie within the statement itself. Remote laboratories often comprise of real-time

elements and transactional applications are not suited for this purpose due to the non-

deterministic nature of many network protocols. Real-time control over the Web

poses significant challenges. It is important to understand what services J2EE can

provide for building the remote technology demonstrator. The next chapter describes

J2EE technologies relevant to the development of a virtual laboratory.

18

Chapter 3

Java 2 Enterprise Edition

3.1 Introduction to J2EE
Sun Microsystems has, through the Java community, defined a collection of Java

based technologies for server side application development and execution named the

Java 2 Enterprise Edition (J2EE) [42], The J2EE specification requires application

servers to support a specific set of protocols and Java enterprise extensions such as

Java Management Extensions (JMX) [43]. This ensures a consistent platform for

deploying J2EE applications. This chapter describes the most relevant services of

J2EE used in this project. A moderate level of detail is given to each service in order

to provide sufficient detail that the reader may comprehend J2EE related arguments

put forward in other chapters. Each service has itself, a standard specification. The

full range of services is shown in Figure 3.1 below.

Figure 3.1; J2EE Architecture (Source: Sun Microsystems [42])

3.2 Enterprise JavaBeans (EJB)
The term, “Enterprise JavaBeans”, describes both the name of the standard as well as

the components it defines. It defines software architecture for server side components.

The specification [44] defines architecture for building distributed object-oriented

19

Chapter 3 Java 2 Enterprise Edition

applications in the Java programming language. EJB is a component technology that

supports a distributed paradigm and may interact with other important technologies

such as Web Services. It provides and hides many troublesome mechanisms for an

application developer such as transaction control, persistency of data, thread control,

and directory services. It supports a “Write Once, Run Anywhere” philosophy.

An EJB container is an abstract entity that represents the EJB server where an

EJB lives. The EJB specification defines the rules governing the relationship of an

EJB component and its container. An EJB container implements the management and

control services for a class of EJBs that live in that container. More specifically, the

EJB container provides implicit transaction control, transparent distribution services,

security services, persistence management, and other services for life cycle

management and instance pooling (including creation, activation, passivation, and

destruction) on behalf of the EJBs that lives in that container.

3.3 Java Naming and Directory Interface (JNDI)
Prior to discussing the architecture of enterprise Java beans, it is useful to first outline

the mechanism by which the components are accessed by clients. The Java Naming

and Directory Interface (JNDI) provides an interface for accessing name and directory

services such as Lightweight Directory Access Protocol (LDAP) directory services

and Domain Name Service (DNS). JNDI enables Java programs to use name servers

and directory servers to look up Java objects by name. This feature enables an

application to locate distributed objects, which is essential in distributed

programming. JNDI is a generic API that works with any name or directory server

and as such it provides a common interface against existing directory and naming

servers.

A directory service typically provides access to data structured in hierarchies,

such as directories in a file system. It is also used to categorise data into hierarchies

such as yellow pages. A naming service allows access to objects by name for instance,

looking up an IP-address to a computer based on a name as in DNS.

JNDI is a core service in J2EE. It is used to locate enterprise beans and to

access environment variables. Other resources such as databases and email facilities

may also be accessed through JNDI.

20

Chapter 3 Java 2 Enterprise Edition

3.4 EJB Architecture
An enterprise bean typically contains business logic that operates on the enterprise’s

data. Enterprise beans exist inside an EJB container, which is hosted by a J2EE

Application Server. A J2EE application may also contain other containers such as a

web container than handle requests from web clients. The EJB container manages the

lifetime of various instances of enterprise bean classes. The container provides the set

of interfaces defined in the J2EE specification which include transaction services,

persistency of data, network transparency through use of RMI/IIOP or SOAP, thread

handling, and JDBC connections to databases.

An enterprise bean is specified through a set of interfaces and bean class. The

exception to the rule is the message-driven bean, which does not have any interfaces.

Every EJB has a home object which acts as a factory (i.e. based the factory design

pattern as outlined by Gamma et al. [45]). The home interface specifies the methods

for creating or finding beans. The EJB object itself is a proxy object which results in

corresponding business methods being made on the bean instance on behalf of the

client.

A client does not interact directly with the enterprise bean; it must do so

through the interfaces of the bean, which may be local or remote. A local interface

may be used, if the bean to be accessed resides in the same Java Virtual Machine

(JVM). Remote interfaces are used when accessing beans outside the client JVM. The

local and remote interfaces contain business methods that are specific for the

enterprise bean. The enterprise bean instance class implements the business methods

defined in local or remote interface.

It is preferable to use local interfaces when looking up enterprise objects as a

direct reference is returned. Clients are required to use RMI/IIOP to look up the

requested object using remote interfaces.

The container is responsible for making the home interfaces of its deployed

enterprise beans available for clients. Thus, the client can look up the home interface

for a specific enterprise bean using JNDI.

When a client accesses a specific home object, it will create an EJB object

instance and result in the creation of an enterprise bean. The creation mechanism itself

is vendor specific. A unique reference to the EJB object is returned to the client. The

client can then access the business methods through the EJB object, which is

responsible for forwarding the method call to the allocated enterprise bean.

21

Chanter 3 Java 2 Enterprise Edition

The enterprise bean instance class contains the implementation of the methods

that are specified in interfaces. These instances are created and managed at runtime by

the EJB Container as well as mediating overall client access. An enterprise bean can

be customised at deployment time by editing its environment entries.

3.5 Enterprise Beans
The enterprise bean class contains the implementation of the methods that are

specified in interfaces. There is a specific name convention that has to be followed.

There are three types of Enterprise Javabeans: session, entity and message driven

beans.

3.5.1 Session Beans
A session bean represents a single client inside the J2EE Application server. It is

created by the client by invoking a create method in the home interface and it exists

only for the duration of a single session. The session bean normally represents some

business logic. Although session beans can be transactional, the container does not

guarantee recovery after a system crash. Session beans must therefore manage their

own persistency of data.

Container System

Figure 3.2: Creation and removal of stateless session beans (Source: Monson-Haefel [46])

22

Chapter 3 Java 2 Enterprise Edition

There are two types of session beans. The first type of session bean is known as a

stateless bean. This EJB does not maintain the conversational state between

invocation of the bean’s business methods. Figure 3.2 shows the creation and removal

of a stateless session bean as described by Monson-Haefel [46], Notice that the

container creates the bean instance prior to any calls being made by the client.

Stateless session beans are normally pooled so that they may be used by multiple

clients. A stateless session bean can also provide a Web Service endpoint, which can

be used by Web Service clients.

Stateful session beans are the other types of session beans available but, in

contrast, maintain conversational state between method invocations. Once a stateful

session bean is instantiated and assigned to an EJB object, it is dedicated to that EJB

object for its entire life cycle. Figure 3.3 shows how the client causes the bean

instance to be created after calling the home interface create method.

Clionl EJB Home

Container System
- ,

* ! ni : 55 T .con ta iner

createQ

EJB Object

G lass.newinstencei)

remove()

business method

removeO

Bean Instance

Class newlnstanceQ

setSessionContexlQ

ejbCreateQ

business method

ejbRemoveQ

Database

Figure 3.3: Activation process of stateful session beans (Source: Monson-Haefel [46])

Stateless session beans offer a more efficient means of representing business

logic and should be used if possible. However, it may be required to maintain

information relating to a previous invocation in a member variable (e.g. user details)

so a stateful session bean may be required.

23

Chapter 3 Java 2 Enterprise Edition

3.5.2 Entity Beans

Entity beans represent persistent data of an application. The entity bean interface

includes methods for accessing the data. An entity bean is identified with a unique

primary key and the home interface must have a method that is used to find an entity

bean based on the primary key. The JDBC API is used to store data in the underlying

database. Entity beans are often associated with database transactions and may handle

concurrent access from multiple clients.

There are two different types of entity beans. The first type is Container-

Managed Persistence (CMP) based entity beans where the container manages the

storing of application data. The second type is Bean-Managed Persistence (BMP)

based entity beans where the bean itself is responsible for storing and restoring the

data. Data may be read and saved to the database using an entity bean’s get and set

methods respectively. The container automatically generates methods for finding

entity beans based on the method signature in the home interface.

Until recently BMP was used to bridge the gap between the application

requirements are the limitations found in the CMP approach. Much has been done to

resolve this issue with the introduction of Container-Managed Relationships (CMR)

and EJB Query Language (EJB-QL). CMR allows entity relationships to be defined

using the application descriptors at deploy time. This is in effect configurable

normalisation of the application data objects. EJB-QL is a recent addition to CMP

which data related objects to be located in a platform independent way using a limited

subset of SQL.

3.5.3 Message-Driven Beans

The final category of enterprise beans are message-driven beans (MDBs). MDBs are

not used in this project but a description on their use is included here for

completeness. Monson-Haefel [46] describes MDBs are stateless, server-side,

transaction-aware components for processing asynchronous Java Message Service

(JMS) messages. JMS itself is a standard vendor-neutral API that is part of the J2EE

platform and can be used to access enterprise messaging systems. Enterprise

messaging systems (a.k.a. message-oriented middleware) facilitate the exchange of

messages among software applications over a network. Many commercial enterprise

messaging products currently support JMS, including IBM's MQSeries and BEA's

WebLogic JMS service.

24

Chapter 3 Java 2 Enterprise Edition

Message-driven beans process messages delivered via JMS. Message-driven

beans can receive JMS messages and process them. While a message-driven bean is

responsible for processing messages, its container takes care of automatically

managing the component's entire environment, including transactions, security,

resources, concurrency, and message acknowledgement.

One of the most important aspects of message-driven beans is that they can

consume and process messages concurrently. This capability provides a significant

advantage over traditional JMS clients, which must be custom-built to manage

resources, transactions, and security in a multithreaded environment. The message-

driven bean containers provided by EJB manage concurrency automatically, so the

bean developer can focus on the business logic of processing the messages. The MDB

can receive hundreds of JMS messages from various applications and process them all

at the same time, because numerous instances of the MDB can execute concurrently

in the container.

A message-driven bean is a complete enterprise bean, just like a session or

entity bean, but there are some important differences. While a message-driven bean

has a bean class and Extensible Mark-up Language (XML) [47] deployment

descriptor, it does not have component interfaces (e.g. remote & home interfaces).

The component interfaces are absent because the message-driven bean is not

accessible via the Java RMI API; it responds only to asynchronous messages.

3.6 Enterprise Bean Environment

In order to facilitate component reuse, an EJB component needs to be customised to

fit into different environments that exist for the application. The EJB specification

specifies an environment mechanism to allow customisation of the enterprise bean’s

business logic, use of external resources or references to other components without

accessing the enterprise bean’s source code. All environment variables are defined in

XML deployment descriptors. The container is responsible at deployment to read the

deployment descriptors and put the environment variables into JNDI. The

environment variables are available to the bean at runtime through the JNDI

interfaces.

Several types of environment variables may be defined and targeted for

different purposes. The most interesting ones in this study are described in the

following sections.

25

Chapter 3 Java 2 Enterprise Edition

3.6.1 Environment Entries

The enterprise bean’s environment entries allow the enterprise bean to be customised

without the need to access or change the enterprise bean’s source code. Each

enterprise bean defines its own set of environment entries. All instances of an

enterprise bean share the same environment entries. The environment entries are not

accessible to other enterprise beans. Enterprise beans are not allowed to modify the

bean’s environment at runtime.

At deployment time all environment entries that are accessed in the beans

source code have to be declared. An environment entry is declared using env-entry
elements in the deployment descriptor for the bean. An env-entry element consists

of an optional description of the environment entry, the environment entry name, the

expected Java type of the environment entry value, and an optional environment entry

value. The environment entry value must be of type String, Character, Integer,

Boolean, Double, Byte, Short, Long and Float.

3.6.2 Deployment Descriptors

A1 environment variables are declared in XML deployment descriptor files which are

read at deployment time by the container, enabling the information to be accessed

using JNDI. The container uses part of the environment information in the

deployment descriptors to configure different properties of the enterprise beans.

3.7 CORBA as a J2EE Service

JavalDL is Sun Microsystems’ CORBA implementation which allows J2EE

application components to invoke external CORBA objects using the Internet Inter-

ORB Protocol (IIOP) protocol. CORBA itself is a specification for a distributed

application framework developed by the Object Management Group (OMG) [48],

CORBA objects may be written in any language and normally use OMG’s Interface

Definition Language (IDL) to define operations being offered to clients. Clients and

objects are not directly aware of each other’s locations within the network, allowing

relocation of one (or both) with no impact on the other. Clients and objects running

within different vendors’ ORBs can communicate just as if they were located within

the same ORB.

Due to the platform-independence of the CORBA architecture [49] and

support from many different vendors, CORBA-compliant products and frameworks

26

Chapter 3 Java 2 Enterprise Edition

exist for most operating systems and hardware platforms, allowing CORBA

applications to span many different types of systems, from small, handheld devices to

mainframes.

The J2EE and CORBA architectures provide similar benefits to the

programmer developing a distributed application. Each provides a framework that

supports location transparency of distributed objects. Each offers multi-platform

support and as a result permits applications to run in heterogeneous environments.

The underlying implementation language, however, is where these two architectures

diverge.

J2EE makes development of distributed applications easier by allowing

programmers to work entirely in Java. As J2EE is based completely on the Java

language, this allows the application components to benefit from Java’s ‘Write Once,

Run Anywhere’ model. However, integration with existing or third party non-Java

applications can be particularly difficult as a platform and language specific solution

may be required. Making distributed components available to non-Java clients can

also present difficulties as many application servers as yet have incomplete support

for callbacks using IIOP.

In contrast to J2EE, CORBA permits development in numerous supported

programming languages, addressing the use of APIs and legacy code written in

different languages. In addition, performance-critical components can be isolated and

developed in lower level, more performance orientated languages such as C++. On the

downside, there is the learning curve of using IDL and understanding the IDL-to-

language mappings. In addition, no programming languages ports as easily from

platform to platform as Java, so moving non-Java CORBA components from one

platform to another can present significant expense in time and effort, as well as

increasing the risk of new bugs occurring. In summary, CORBA allows more

flexibility, and potentially performance, at the expense of portability.

By integrating the CORBA and J2EE architectures, distributed applications

can leverage the aforementioned benefits while many of the associated limitations can

be reduced or even eliminated.

3.8 Servlets

Servlets are used to dynamically generate Hypertext Markup Language (HTML),

Extended HTML (XHTML), and XML output using Java technology. They are

27

Chapter 3 Java 2 Enterprise Edition

programs that run on a web server, acting as a middle layer between a request coming

from a web browser or other Hypertext Transfer Protocol (HTTP) client and databases

or applications on the HTTP server. Their purpose is to:

1. Read any data sent by the user. This data is usually entered in a form on a web

page, but could also come from a Java applet or a custom HTTP client program.

2. Look up any other information about the request that is embedded in the HTTP

request. This may include information about browser capabilities, cookies, and

client host address for example.

3. Generate the results. This process may require talking to a database, executing an

RMI or CORBA call, invoking a legacy application, or computing the response

directly.

4. Format the results inside a document. In most cases, this involves embedding the

information inside an HTML page.

5. Set the appropriate HTTP response parameters. This means telling the browser

what type of document is being returned (e.g. HTML), setting cookies and

caching parameters, and other such tasks.

6 . Send the document back to the client. This document may be sent in text format

(HTML), binary format (e.g. JPEG images), or even in a compressed format like

gzip that is layered on top of some other underlying format.

Many client requests can be satisfied by returning pre-built documents, and these

requests would be handled by the server without invoking servlets. In many cases,

however, a static result is not sufficient, and a page needs to be generated for each

request.

3.9 Java Server Pages
JSPs are also used to dynamically generate web content such as HTML, XHTML, and

XML in web applications. JSP technology enables easy authoring of web pages,

which allows web designers rather than programmers focus on the presentation.

Embedded code known as “scriptlets” may be added to the page to be dynamically

translated into HTML content on activation of the page.

28

Chapter 3 Java 2 Enterprise Edition

3.10 HTTP and HTTPS
Web components in an application server service HTTP and HTTP Secure (HTTPS)

requests. The servlet specification itself only requires support for HTTP but the

application server must be capable of operating HTTP and HTTPS (HTTP 1.0 over

Secure Socket Layer (SSL) 3.0). HTTPS is often used to ensure data confidentiality

particularly when transmitting sensitive information such as passwords or credit card

information.

3.11 Java Transaction API
J2EE requires the provision for Atomicity, Consistency, Isolation, Durability (ACID)

transactions which is implemented by the Java Transaction API (JTA). The

application developer should never have to deal directly with the JTA, especially

when using CMP for data persistence where the EJB container handles the transaction

management. The JTA provides mechanism for handling commit and the rollback of

transactions as well as ensuring ACID properties of a transaction.

It is important to outline the properties of an ACID transaction at this stage.

To be atomic, a transaction must execute completely or not at all. This means that

every task within a unit-of-work must execute without error. If any of the tasks fails,

the entire unit-of-work or transaction is aborted, meaning that any changes to the data

are undone. If all the tasks execute successfully, the transaction is committed, which

means that the changes to the data are made permanent or durable. Consistency is a

transactional characteristic that must be enforced by both the transactional system and

the application developer. Consistency refers to the integrity of the underlying data

store. The transactional system fulfils its obligation for consistency by ensuring that a

transaction is atomic, isolated, and durable. The application developer must ensure

that the database has appropriate constraints (primary keys, referential integrity, and

so forth) and that the unit-of-work, the business logic, does not result in inconsistent

data (i.e., data that is not in harmony with the real world it represents). In an account

transfer, for example, a debit to one account must equal the credit to another account.

For isolation, a transaction must be allowed to execute without interference from other

processes or transactions. In other words, the data that a transaction accesses cannot

be affected by any other part of the system until the transaction or unit-of-work is

completed. Durability means that all the data changes made during the course of a

transaction must be written to some type of physical storage before the transaction is

29

Chapter 3 Java 2 Enterprise Edition

successfully completed. This ensures that the changes are not lost if the system

crashes.

3.12 JavaMail
Many Internet applications require the ability to send email notifications, so the J2EE

platform includes the JavaMail to process Internet mail. The JavaMail specification

provides a collection of abstract classes that define the common objects and their

interfaces for any general mail system. By virtue of having interfaces to mail sessions,

messages, transports, and stores, programmers have an easy means of sending and

receiving emails in custom designed applications. Sun Microsystems define a

transport as a service that has the capability to send messages to their destination. The

most commonly used transport type is the ubiquitous Simple Mail Transfer Protocol

(SMTP) transport. A store is defined as a retrieval service for messages.

Sun Microsystems’ reference JavaMail implementation includes providers for

some of the most essential Internet protocols and specifications. These include SMTP,

Post Office Protocol 3 (POP3), Internet Message Access Protocol (IMAP), and

Multipurpose Internet Mail Extensions (MIME).

3.13 Web Services
Web Services are a very recent addition to the J2EE API framework and complement

the existing features in the standard. Web Services are applications that are defined,

published and accessed across the Web. It consists of a set of technologies enabling

loosely coupled applications to expose the service interface using Web Service

Description Language (WSDL), a protocol that enables communication between

applications, Simple Object Access Protocol (SOAP) and a registry, Universal

Description Discovery and Integration (UDDI) for publishing the services. Together

these technologies provide a Service Oriented Architecture (SOA). Web Services are

an answer to the need to integrate business applications, enabling exchange of

business information in real time. To that purpose, an open and implementation

independent standard is needed, which emphasises services rather than

interconnection of computers. Although Java RMI and CORBA are middleware for

connecting distributed applications together, they are limited in integrating a wide

variety of systems that exist over a rather unstable and firewall protected Internet. The

SOAP protocol can run on different communication protocols such as HTTP, and it

30

Chapter 3 Java 2 Enterprise Edition

supports asynchronous communication of messages. Current Web Service standards

support only synchronised communication between service endpoints but it is

intended to provide asynchronous communication between service endpoints in

future. This will enable networks to route service requests as SOAP messages to the

correct service endpoint like computers are addressed on the Internet today.

Web Services are based on the three main technologies SOAP, WSDL and

UDDI. In addition there is XML [47], which is a text-based language used to describe

data, a core technology for describing service interfaces and the content of SOAP

messages. SOAP supports the encoding of arbitrary data, usually described in XML,

and the transfer of data over a channel between communication endpoints. SOAP is

wire protocol neutral and therefore can be used over different protocols like for

instance HTTP, FTP and SMTP. However due to the ubiquity of the HTTP protocol,

most implementations typically use HTTP. SOAP is a lightweight mechanism for

exchange of data between heterogeneous applications that is independent of operating

systems, programming languages and network protocols.

SOAP supports a language independent Remote Procedure Call (RPC)

protocol mechanism. Specification of different encoding rules enables exchange of

application specific data types. SOAP supports also definition of schemas for data

types. This makes SOAP a good protocol for integrating of heterogeneous

applications. WSDL is an XML based language that describes the functionality of

Web Services. It has similarities with the Interface Description Language (IDL) used

to define CORBA interfaces. WSDL describes the operations a Web Service offers

including the parameters of each operation and the return value. But WDSL does not

describe the semantics of the operations. WSDL enables method calls to a Web

Service regardless of the selected RPC mechanism.

UDDI provides global directory services for Web Services. It supports also a

protocol for publishing and discovering of services. The Web Services are described

with WSDL and are stored in the UDDI as WSDL files. The WSDL files are retrieved

from the UDDI by an application developer making it possible to make calls to Web

Services.

Web Services have been integrated into recent application servers, offering

EJB access to applications independent of language, platform and location. The

foundation for this integration was the inclusion of the XML based technologies in

J2EE. An EJB application typically exposes a Web Service interface through a

31

Chapter 3 Java 2 Enterprise Edition

stateless session bean. The Web Service client view may be initially defined by a

WSDL document and then mapped to a Web Service endpoint.

J2EE supports the Java API for XML Messaging (JAXM) protocol, which

enables Java applications to send and receive document oriented XML messages. A

message bean may receive SOAP messages instead of JMS messages. The message

bean must then implement a specific interface for receiving a SOAP message with

attachment.

An enterprise bean may also access a Web Service as an ordinary Web Service

client, but invoking Web Services will introduce an unpredictable delay since the calls

are synchronous. A Web Service endpoint is accessible for a bean through the JNDI

API.

3.14 Security
The intended security goals are clearly defined in the J2EE specification.

Transparency is important and J2EE component developers should not be required to

know about security. Isolating the provision of security services ensures greater

portability and offers possible responsibility of this function to a System

Administrator. Security mechanisms and declarations used by applications should not

impose a particular security policy, but facilitate the implementation of security

policies specific to the particular J2EE installation or application. XML deployment

descriptors provide a level of abstraction by describing environment-specific security

roles, users, and policies. J2EE requires security behaviours and deployment contracts

to be implementable using a variety of popular security technologies, but does not

dictate which technologies should be used. Application components executing in a

J2EE product must be able to invoke services provided in a J2EE product from a

different vendor, whether with the same or a different security policy. These services

may be provided by web components or enterprise beans.

Java security technology originally focused on creating a safe environment in

which to run potentially untrusted code downloaded from a public network. The

approach in relation to security was somewhat unusual in that it first concentrated

where the code came from, rather than who was running it. A new security standard,

Java Authentication and Authorisation Service (JAAS), was provided to address this

situation. Lai et al. [50] describe JAAS as a means of enforcing access controls based

on the identity of the user who runs the code as well as supplementing the security

32

Chapter 3 Java 2 Enterprise Edition

based on the code’s origin. JAAS is based on a standard known as the Pluggable

Authentication Module (PAM) framework, which allows different modules to be

added for authentication purposes. A client using JAAS can be configured to use

different login techniques, such as a simple user-name/password dialog or a smart

card reader connected to the computer’s USB port. A server using JAAS can be

configured to authenticate the user’s identity and credentials using different back-end

security services. Policies may be used to impose fine grained access control a

particular user or on a group of users depending on their defined security role.

3.15 Summary of J2EE
Enterprise Javabeans constitutes a significant proportion of the J2EE standard. It

defines software architecture for server side components and currently has three types

of components namely; session, entity and message-driven beans. Session beans,

which manage business method calls, may be either stateful or stateless depending on

whether or not conversational state is required to be maintained between method

invocations. Entity beans represent persistent data of an application and may support

either container or bean managed persistence. Message-driven beans are stateless

transaction-aware components for processing asynchronous JMS messages. XML

deployment descriptor files play an important role in providing modularity in the

J2EE architecture and allowing applications to be extensible without necessarily

requiring a component code change. Environmental entries such as host addresses of

third party servers may be specified in these deployment descriptors.

There are a number of other services in J2EE apart from EJB. JavalDL is a

CORBA implementation which allows J2EE application components to invoke

external CORBA objects using the HOP protocol. Servlets and JSPs provide dynamic

web content and are also used process user requests. The Java Transaction API

enables the EJB container to perform ACID transactions. JavaMail is another useful

service that may be used for programmatically sending and receiving email messages.

Web Services consist of a number of services such as WSDL, SOAP and UDDI

which allow applications to asynchronously send messages independent of platform,

language and location. The security goals of J2EE include transparency for the

application developer. JAAS is an important J2EE security mechanism which may be

used to enforce access controls based on the identity of the user.

33

Chapter 4

System Analysis and Design

4.1 Introduction

System analysis and design is an essential stage of the software development process.

It helps with the project’s architecture definition and implementation methodology.

During this stage, the system under consideration will be defined and the conditions in

which it will operate outlined so that broad guidelines of design may be determined.

This chapter will describe the requirements of the remote technology demonstrator as

well as outlining the approach that is to be taken to provide a solution for these

requirements.

4.2 Unified Modelling Language

This thesis has already used the Unified Modelling Language (UML) [51] to describe

existing software implementations. According to Fowler and Scott [52], the

fundamental reason for using UMI, is communication. Natural language is too

imprecise and intended meanings are lost when it comes to more complex concepts.

Code is precise but too detailed. Louis et al. [53] found use case and sequence

diagrams to be two of the most important UML diagrams, allowing them to

communicate clearly with end users and domain experts and confirm the

understanding of the system’s requirements. UML will allow better design and reveal

the best possible direction for the project to take. Relationships between the

components of a system are grasped more easily when the design is represented

graphically using a modelling language. UML provides a rich set of modelling tools

to describe dynamic and static aspects of the system being designed. Based on this

argument, extensive use of UML will be made to convey design concepts and issues.

4.3 Defining System Requirements

Gathering and agreeing on requirements is fundamental to a successful project. This

does not necessarily imply that all requirements need to be fixed before any

architecture, design, and coding is done, but it is important for the developer to

understand what needs to be built.

An initial requirement description may be described as follows:

34

Chapter 4 System Analysis and Design

The operation and control of a Stirling Engine, similar to that depicted in Figure 4.1,

will be the main focus of this demonstration. An overview of Stirling Engines is given

in Appendix B. Other test equipment required includes a Programmable Power

Supply (PPS) for supplying the electrical/thermal power input and the Data

Acquisition (DAQ) unit for sensor measurement. The primary objectives are to

provide the user with a basic understanding of the operation of the engine and to

observe the thermodynamic cycle involved that facilitates the transfer of thermal

power to mechanical power. More specific secondary objectives will include

determining the overall thermal efficiency of the engine over time. This may be done

by measuring the electrical heat energy input versus the mechanical work output. This

efficiency may be varied by adjusting the user-configured operating parameters of the

test cycle such as thermal power input. Also of interest may be the corresponding

changes of the hot and cold plate temperature difference and rotational speed of the

flywheel as a function of the input power. The user may see how a Stirling Engine

operates and may observe the thermodynamic cycle involved.

Hot Plate Foam D isp la ce r

C ranksha ft

Cold P late Graphite
Pow er
Piston

P erspex
Flywheel

Figure 4.1: Stirling Engine Being Used in the Demonstration

A web-based interface should enable users to log onto the system and access

features relating to management of their account and experimental procedure. The

system caters for two types of users: administrators and observers. Administrators are

relatively few in number and have unrestricted access to the available experimental

test resources. Observers may be numerous and view results from available

35

Chapter 4 System Analysis and Design

demonstrations in real-time, but may not control the demonstration. A typical

operational scenario involving administrators and observers might consist of a tutor

conducting a demonstration for students who may be geographically dispersed.

Users may wish to change their account password and modify their account

details such as the name of the person who has access to the account. In addition users

will be able to save a setting to indicate whether or not they wish to receive an email

summary of test cycle results on completion of the experiment. Users may view their

history records showing previous actions carried out. These can also be used as an

audit trail for administrator users when looking for details about particular account

management activities or test equipment access. All users can view a currently active

demonstration, that is, one which is being controlled by an administrator. There

should be introductory help section available here which could be enhanced by also

adding a related simulation of the test apparatus.

Administrators are permitted to carry out additional operations not allowed to

observers. These include the creation and removal of users through the web interface.

Also only administrators may request control of a test server controlling the test

equipment. This will operate on a first-come first-served basis. If another

administrator is already controlling the test server, then only observation functionality

for the experiment will be available. This functionality will consist of a timely updates

over an Intranet of active test data as well as visual feedback.

The Stirling Engine used in the experiment will be controlled and managed by

a test server written in a compiled C++. All the programming interfaces to the

experiment hardware (PPS and DAQ unit) are readily available in native language

interfaces such as C++ and Pascal. A special Java Native Interface (JNI) bridge would

have to be developed to communicate with the test hardware if a Java solution was

used. Greater performance is an added benefit of using C++ as compiled code is faster

than interpreted code. By developing in C++ it is also possible to explore the language

independent options for network communication in the J2EE standard such as

JavalDL and Web Services.

4.4 Real-Time System Design

An interactive web-based interface is required for controlling the Remote Technology

Demonstrator (RTD). It is important to replicate the experience of actually being

present at the site of the experiment itself. This may be realised with visual feedback

36

Chapter 4 System Analysis and Design

of the apparatus working, complimented with the live feedback of data displayed in a

meaningful graphical format such as a strip chart.

While the live feedback of test data is useful to indicate the current state of the

experimental procedure, it would not be feasible for clients to save this data remotely

while it is being generated. The most reliable method of recording the large volumes

of data generated by the experiment is to save it locally first, on the test server

machine, and then process it after when the test cycle has completed. The saved data

can be sent to the J2EE-based system for long-term storage, permitting users to plots

results independently of the test server.

From the analysis of existing virtual laboratories in Chapter 2, it was decided

to use a Swing-based Java applet to implement the real-time functionality. This

technology is robust and can be delivered to the clients through a web browser.

However, in this instance, it must be properly integrated with the J2EE-based system

taking operational and security considerations into account.

4.5 J2EE-Based System Overview

Enterprise Javabeans technology addresses a number of issues of generic distributed

systems by simplifying the development of enterprise applications. Mos and Murphy

[54] state that this inherent benefit alone, does not guarantee that they will perform as

expected under heavy loads. There is still a need for good design and coding practices

in developing these applications and this should be applied equally to all non-EJB

components in the system.

Figure 4.2 shows a use case diagram for the interaction between the remote

Java applet and the J2EE-based system. Note that while an administrator may perform

any of the tasks of an observer, only critical functions are highlighted here.

Administration of accounts includes tasks such as the creation and removal of users

from the system. It is clearly intended that only administrator users be allowed control

test equipment and this should result in the storing of test data to a database. A means

of real-time feedback is necessary, as this will influence decisions made when

controlling test equipment.

37

Chanter 4 System Analysis and Design

Figure 4.2: Use Case Diagram for Remote Technology Demonstrator

Observers should also be allowed to obtain real-time feedback of the test

equipment but this is intended as a means of illustrating the behaviour of various

elements in the experiment. All users will be capable of managing such settings as

password and personal account name (e.g. John Smith).

Post-experiment processing, in the case of the thermal efficiency test

procedure, should involve the calculation of the average efficiency, operating

temperature and total sampling duration. These result details should be emailed to all

users who wish to be informed of the test results immediately on conclusion of the

experiment. This will allow the user to store the test data at their convenience. The

application server should handle this email forwarding. This approach focuses the

entire computational overhead on the test server. The test result plot mechanism will

allow observers to independently view graphical test results of completed

experiments.

Expanding the administrator use case in Figure 4.3 shows the proposed

sequence of operations of how new user account provisioning might be achieved.

Ideally an authentication mechanism should be integrated with a single sign-on

facility, preserving the user’s security credentials for every operation. Events details

of the creation of the new user should be written to secondary storage using a logging

mechanism.

38

Chapter 4 System Analysis and Design

Administrator

Authentication User Logging DBMS
M anager

1

Manager

1

Manager

i ---------- 1----------

Figure 4.3: Sequence Diagram for Creating a New User

The sequence for removing a user should be similar but should allow for the

administrator to view the user’s details before removing the user from the system

(Figure 4.4).

Figure 4.4: Sequence Diagram for Removing an Existing User

39

Chapter 4 Svsiem Analysis and Pesian

It is correct to say that most operations will take this format. Subsequent to

authentication, the user management component will handle the business logic and

event logging will be performed for critical operations.

4.6 Pattern-Based Development

Gamma et al. [45] define the quintessential set of core design patterns, proven design

techniques, which provide an effective means of solving common programming

problems. A new range of design patterns has emerged in the form of Sun

Microsystems’ blueprint patterns [21] specifically for J2EE-based platforms. These

patterns not only ease the development process of J2EE applications, but also improve

the quality of the produced software. Hammouda and Koskimies [55] utilise some of

the most useful business-tier and presentation-tier design patterns in their application.

The communication between the presentation layer and business layer in

distributed business applications often leads to tight coupling between clients and the

business tier. The interaction could get so complex that maintaining the system

becomes difficult and network performance can be adversely affected. The solution to

this problem is to provide a simpler interface that reduces the number of business

objects exposed to the client over the network and encapsulates the complexity of this

interaction. At run-time, the client calls a method on a session façade, which in turn

calls several methods on individual business objects. The Session Façade pattern [56]

is based on the Façade design pattern outlined by Gamma et al. [45], Figure 4.5 shows

an example of a UML class diagram representing the pattern. Components behind the

session façade interface may vary greatly from those shown here.

Figure 4.5: Session Façade Class Diagram (Source: Sun Microsystems [56])

40

Chapter 4 System Analysis and Design

The primary benefit of Session Façade pattern is to provide a centralised

control over the business tier and ease of understanding and the maintainability of the

system. In addition, the façade represents an access control layer to manage the

relationships between user requests and business methods, and a transactional control

layer where a transaction starts by calling a number of methods on the individual

entities and commits by returning to the client.

rhe issue of enterprise service lookup is an important one. Enterprise

applications require a way to look up the service objects that provide access to

distributed components. This is normally done using JNDI to look up enterprise bean

home interfaces, JMS components, data sources, connections, and connection

factories. Repetitious lookup code makes code difficult to read and maintain.

Furthermore, unnecessary JNDI initial context creation and service object lookups can

cause performance problems. Hammouda and Koskimies [55] utilise Sun

Microsystems’ Service Locator blueprint pattern [57] in their general architectural

tool. The Service Locator pattern centralises distributed service object lookups using

JNDI, provides a centralised point of control, and may act as a cache that eliminates

redundant lookups. It also encapsulates any vendor-specific features of the lookup

process. Figure 4.6 represents the strategy of using the service locator pattern.

Figure 4.6: Service Locator Pattern Class Diagram (Source: Sun Microsystems [57])

There are a number of benefits of using this pattern. Firstly, the complexity of

lookup and creation are completely encapsulated by the service location process. It

provides a uniform service access point for clients and also facilitates easier

development. It improves network performance as lookup calls are aggregated on the

41

Chapter 4 System Analysis and Design

server. Finally it reduces redundant lookups and object creation through caching and

thereby improves client performance.

In J2EE applications, the client needs to exchange data with the business tier.

For instance, the business components, implemented by session beans and entity

beans, often need to return data to the client by invoking multiple get methods. Every

method invocation is a remote call and is associated with network overhead. So the

increase of these methods can significantly degrade application performance. The

solution to this problem is to use a “Value Object” to encapsulate the business data

transferred between the client and the business components. Instead of invoking

multiple getters and setters for every field, a single method call is used to send and

retrieve the needed data.

Presentation-tier patterns are equally as important as business-tier patterns, the

Front Controller being one of the most useful. View navigation is a key issue in web-

based enterprise applications. Due to the fact that views usually share common logic,

a centralised access point for view navigation can be introduced in order to remove

code duplication and improve view manageability. The Front Controller pattern

controls and co-ordinates the processing code across multiple requests. It centralises

the decision with respect how to retrieve and process the requests. A common strategy

to implement this pattern is to use command pattern as described by Gamma et al.

[45], Figure 4.7 shows the sequence diagram representing the Front Controller

pattern. It depicts how a controller handles a request.

Figure 4.7: Front Controller Sequence Diagram (Source: Sun Microsystems [58])

42

Chanter 4 Svsicm Analysis and Design

The controller is the initial contact point for handling all requests in the

system. The controller may delegate to a helper to complete authentication and

authorisation of a user or to initiate contact retrieval. A dispatcher is responsible for

view management and navigation, managing the choice of the next view to present to

the user, and providing the mechanism for directing control to this resource. A helper

is responsible for helping a view or controller complete its processing. Thus, helpers

have numerous responsibilities, including gathering data required by the view and

storing this intermediate model, in which case the helper is sometimes referred to as a

value-bean.

The system needs to control the flow of execution and the navigation between

views. In particular, the system needs to know to which view to dispatch next based

on the request. It is vital to separate the logic on deciding which view comes next

from the view components themselves. The dispatch mechanism is known as the

Dispatcher View pattern. This pattern is an ideal mechanism for encapsulating much

of the logic behind managing the navigation sequence through the web interface. The

pattern does not perform heavy processing on the request but can be seen as a simple

forwarding facility.

The Front Controller and the Dispatcher View patterns combine to produce an

easily managed framework for web-based portals. One of the major problems they

overcome relates to the way in which servlets present web content. In the early days

of the servlet specification, content was embedded into the source code of the servlet

in order to produce dynamic content. This resulted in code that was very difficult to

manage and maintain. A number of third party web template solutions such as

Webmacro [60] were produced in the interim, but it was not until Java Server Pages

(JSPs) were introduced, that this issue could be satisfactorily addressed. By using the

Front Controller and the Dispatcher View patterns from Sun Microsystems’ design

blueprints [2 1], developers could finally produce truly management solutions using

what is known as the servlet Front Strategy. In this configuration, the Front Controller

uses a servlet as a focal point for all requests made to a web application and the

Dispatcher View component, in turn, directs the output towards a specific JSP.

While the Front Controller and the Dispatcher View patterns will manage

client requests and redirect output there is still a requirement to adapt the web content

further, based on the client user type. Soldar et al. [28] highlight servlet filters as an

effective mechanism for dynamically transforming of header and payload information

43

Chapter 4 System Analysis and Design

in both servlet requests and responses. Typical uses of filter components include

logging, image conversion, data compression, encryption, access events, data caching

and authentication. The final item listed is of particular interest for this application.

Users will be offered different functionality via the web interface depending on their

user type, i.e. administrator or observer. Administrators can expect to have greater

access to resources than observers.

Sun Microsystems cite the Intercepting Filter pattern [61] as a presentation-tier

request handling mechanism receiving many different types of requests, which require

varied types of processing. Some requests are simply forwarded to the appropriate

handler component, while other requests must be modified, audited, or uncompressed

before being further processed. While the Front Controller pattern solves some similar

problems, it is better suited to handling core processing. Also, using the Intercepting

Filter pattern abstracts the behaviour of handling authentication by using the web

application’s XML deployment descriptor. This allows for the filter component to be

substituted by another if necessary without any code change. Another benefit of using

servlet filters is that they may be chained together again without any code change.

Figure 4.8 shows the class diagram for this type of configuration.

Figure 4.8: Intercepting Filter pattern class diagram (Source: Sun Microsystems [61])

4.7 Integrating the Real-Time and J2EE-Based Systems

The real-time and J2EE-Based Systems should be seamlessly integrated and maintain

a good level of security in the combined overall system. A proxy test manager should

act as a gateway to process access requests on behalf of the client. This event should

44

Chanter 4 System Analysis and Desimi

be logged and an access identifier should be passed back to the client. The

administrator client should subsequently be able to issue control commands to the test

server controlling the equipment. A broadcast system such as the one used by Ko et

al, [26] is preferred but other possible solutions should also be analysed prior to

proceeding with this option. As indicated previously, the test server should be

responsible for ensuring that the processed test data is stored in the database. Figure

4.9 depicts a sequence diagram for the operation of the integrated system.

A dm in is tra tor

i
A ,

Log In

Request Experim ent Access

Log Evenl

Request Access

A ccess ID

Start Test

Broadcast Real-T im e Test Data

Log off

S top Test

A uthentication Proxy Test Test Logging DBMS
M anager M anage r

i -------

S e rver

i

M anager

1 i

S tore Data

Save Te si Data

Figure 4.9: Real-Time Test System Integrated with J2EE-Based System

Observer clients will only require the use of the broadcast feedback

mechanism in the test framework shown. As shown in Figure 4.10, everything else

will remain in place.

Although the Stirling Engine demonstration equipment poses a low potential

risk of injury, all possible safety precautions should nonetheless be taken to protect

both the users as well as the equipment involved.

45

Chapter 4 System Analysis and Design

Observer

Authentication
Manager

Data
Manager

Test
Server

Log In

DBMS

Broadcast Real-Time Test Data

Plot Test Data
Read Test Results

■*0

Request Test Data

Test Data

Log off

Read Test Results

Figure 4.10: Sequence of Observer Involvement in Test Procedure

Administrators will typically only be concerned with controlling and

monitoring the experiment while observers will be interested in dynamically plotting

and saving the test results.

4.8 Summary of the System Analysis and Design

UML is used to communicate the system requirements and model the proposed

sequence of operations for the proposed remote technology demonstrator. The first

demonstration will be based on a Stirling Engine and will aim to show how this type

of engine operates as well as being able to determine its overall thermal efficiency.

The system will support administrator and observer user types. It is intended

that administrator users will act as the tutors or instructors of the system, while

observer user accounts will be used by those learning the underlying concepts.

Administrators will be capable of using all features accessible to observers including

with additional privileged features. These will include user creation and removal as

well as control of available demonstration resources.

The system is responsible for transferring resultant test data in a language

independent manner between the C++ test server and the Java-based remote

46

Chapter 4 System Analysis and Design

technology demonstrator. Learners will be able to graphically plot test results for

analysis after the test cycle has completed. A single sign-on feature will preserve the

user’s security credentials to allow access to multiple available applications.

A number of J2EE Blueprint design patterns will be used for developing the

J2EE-based system. The Session Façade pattern will enhance performance by re­

routing entity bean requests through session beans. The Service Locator pattern will

be used for distributed service object lookups. The Front Controller and Dispatcher

View patterns will be used for view management and navigation in the web or

presentation tier. The Intercepting Filter pattern will also be used on the presentation-

tier, as a request handling mechanism, carrying out various processing on the requests

themselves.

The real-time and J2EE-based systems should be seamlessly integrated and

maintain a good level of safety and security in the combined overall system.

47

Chapter 5

Remote Technology Demonstrator Implementation

5.1 Introduction
This chapter will reveal the full complement of open source software chosen to

implement the system. The hardware architecture is also described before attempting

to determine the most appropriate soft real-time system for controlling and monitoring

the Stirling Engine demonstration. The previous chapter outlined the intended

approach for the development of the remote technology demonstrator using blueprint

design patterns. The core J2EE-based system utilises the proposed design patterns,

implementing the required user account functionality. Security issues are also

addressed using Java technology.

5.2 Software Selection
One of the underlying objectives of this project was to address the overall cost factor

by using open source software where possible. To this end several open source

products were assessed and subsequently used in this work.

The open source application server, JBoss [34], was used along with the

Apache’s open source web server Tomcat [62]. SOAP services were realised using

Axis [63], another open source product from the Apache software group. An open

source Database Management System (DBMS), MySQL [64], was used at the back­

end for data persistence. JFreeChart [65], an open source, graphing and charting

library was used to plot test result data. Sun’s reference JavaMail implementation was

used for the application’s email requirements.

While the test server was implemented using proprietary technologies, some

open source elements were employed. OmniORB [66] was the CORBA

implementation used for test server control and EasySOAP++ [67] was used as a

SOAP client. Both of these products utilise other open source products, namely, the

Python language tools [68] and the Expat XML parser [69], respectively.

5.3 Hardware Architecture
Figure 5.1 shows a simplified line diagram of the hardware layout of the Stirling

Engine demonstration. The starter motor, omitted from this diagram, is used to

overcome the initial inertia in the engine flywheel at start-up.

48

Chapter 5 Remote Technology Demonstrator Implementation

Figure 5.1: Hardware Architecture of the Stirling Engine Demonstration

Two thermocouples were used to read the hot and cold plate temperatures of

the Stirling Engine. A Commercial Off-The-Shelf (COTS) DAQ system was used to

record performance data from all sensors. This consisted of a multi-function DAQ

unit which contained a number of power outputs and analogue input and output

channels. This unit was used to read the thermocouple temperatures. An analogue

output from this unit was used to drive the starter motor. A transistor proximity sensor

was used for determining the rotary speed of the flywheel. This was powered by a 5

volt DC power output from the DAQ unit and the output was read back through the

DAQ unit through an analogue input channel. This circuit was activated by a piece of

aluminium mounted on the edge of the Perspex Stirling Engine flywheel. The

proximity sensor detected the presence of the metal which caused an output signal to

be generated and subsequently detected by the test server.

The heater pad and cooling fan were used to heat the hot plate and cool the

cold plate of the Stirling Engine respectively. The heater pad and cooling fan required

additional power and were powered by a Programmable Power Supply (PPS)

controlled though an RS-232 interface. This allowed the user to experiment with

different operational temperatures in the test procedure. A web-cam is used to provide

visual feedback. The full complement of test equipment used in the Stirling Engine

demonstrator is shown in Figure 5.2.

49

Chapter 5 Remote Technology Demonstrator Implementation

1. Data Acquisition Unit
2. Web-Cam
3. Test Server PC
4 Stirling Engine
5. Fan
6 Clamps
7. Rotary Sensor
8. Programmable Power Supply
9 Starter Motor
10. Thermocouples

Figure 5.2: Test Equipment Used for Stirling Engine Demonstrator

5.4 Real-Time System

The real-time system of the Remote Technology Demonstrator (RTD) is based

heavily on existing systems such that developed by Ko et al. [10]. This combines the

best features of those virtual laboratories. Additionally, the real-time element has been

designed to interoperate with the J2EE system, allowing all the additional

requirements of their work to be realised. This includes transaction management,

extensibility and security.

5.4.1 Real-Time Control

In Chapter 2, it was noted that Ko et al. [26] re-evaluate the protocol used by their

earlier virtual laboratory [10], opting to use IP multicast instead of TCP for test data

monitoring purposes. Obviously, protocol selection is critical when developing a soft

real-time distributed system. This is particularly true if it is intended that a large

number of users are to receive data from the application over the network. Despite

changing the protocol for data monitoring, Ko et al. [26] retain TCP as the protocol

for controlling the remote experiment. The requirements are similar to those inherent

in the remote technology demonstrator application and their approach may be

50

Chapter 5 Remote Technology Demonstrator Implementation

leveraged to derive the control functionality of the real-time element of the virtual

laboratory.

With regard to the control element of the new system, network traffic is low as

only one person may control the test equipment at any one time. Reliability is the

most important factor as the administrator may wish to react to a system event to

modify the operational parameters or abort the procedure. For instance, the

administrator may wish to increase the power output from the PPS powering the

heater pad if the Stirling Engine is not being heated quickly enough.

Ko et al. [26] use a reliable TCP based system for their control requirements.

However, the downside of this approach is that the developer must address issues

such as connection management, error code translation and socket data-to-control

parameter mapping. For this work, CORBA was selected over TCP as it avoided the

aforementioned problems and offered an equally reliable protocol as confirmed by

Orfali and Harkey [25].

An administrator user may request access to the test equipment from the test

server. The test server1 itself only accepts requests from a configurable list of host

addresses. If this condition is met and if the test server is not already being controlled

by another user, then the administrator may proceed to use the server. If authorised,

the administrator may invoke operations on the Stirling Engine control interface,

which includes operations for starting and stopping the engine. The interface itself is

implemented using CORBA through its Interface Definition Language (IDL). The

IDL defines all available control operations for the test server and is made remotely

available though the HOP protocol.

5.4.2 Soft Real-Time System Safety
As mentioned earlier, the real-time system used in this research is a soft real-time

system delivering timely and accurate feedback of data. Srinivasan et al. [70] declare

that in soft real-time applications, tasks are allowed to miss their deadlines. When

using video conferencing software, for instance, it would not be critical if a video

frame update was not delivered to the client provided that the bulk of the video frames

were received successfully. Puschner et al. [71] acknowledge that standard Java is

1 Appendix D describes the operation of the test server application.

51

Chapter 5 Remote Technology Demonstrator Implementation

however not suited for programming hard real-time systems. The situation for soft

real-time use of Java is not quite straightforward either.

On the web interface, no software-related to the primary safety features of the

system are provided as network latency increases the potential delay in responding to

a critical situation. As a result, all such functionality resides within the test server.

Soft real-time feedback of test data is required to give the user an indication of

the progress of the active demonstration. As all critical safety requirements are

removed, it is acceptable if data monitoring feedback tasks miss their deadlines.

5.4.3 Client Monitoring Protocol Evaluation

A performance evaluation was undertaken to ascertain the most suitable protocol for

real-time test data monitoring. A key requirement was that a potentially large number

of network users, both administrators and observers, could simultaneously observe

data from experiments that were being conducted remotely. Consequently, a large

volume of data was required to be delivered to these users.

A standard test was devised to compare four possible protocols, TCP, HOP,

UDP and IP multicast. A server was developed for each protocol which generated sine

wave data and relayed this information to a test client. The test client applet could

then graphically plot the data and the expected sine wave could be observed. The test

was run on a 500 MHz PC and an average of 480 data points per second were

generated. Each test was run for thirty seconds for each protocol. The network used

was 10/100 Ethernet Local Area Network (LAN) with tree topology. There were

approximately 75 users actively using the system at the time of testing and the

network traffic was mainly TCP based.

This test applet would be a prototype of a more advanced client applet, which

could receive real-time data from the Stirling Engine test server. It is important to note

that there will be a delay when using Java applets, as a security manager layer is

involved when processing data from remote hosts. Figure 5.3 shows the composite

test client where the TCP protocol is selected. Sun’s appletviewer tool was used and

its security policy was adjusted to allow the transfer rate and time to be logged to file.

52

Chapter 5 Remote Technology Demonstrator Implementation

^ A p p le t V iew er: SineW aveC lient.class

Applet

Current Value: 88 Transfer Rate (samples/s): 3.2

Protocol: TCP Connect

Applet started

Figure 5.3: Composite Test Client Applet after TCP Test Cycle

As expected TCP provided a very reliable sine wave display. However, after a few

seconds into the test, the transfer rate began to drop off dramatically and the plot rate

slowed noticeably. This was due in principal to the client being overwhelmed with

data from the network. TCP’s reliability comes at the price of increased network

traffic in the form of acknowledgement packets for data received. This problem is

further exasperated in this system when more users request to observe the test.

JavalDL was used in the client’s HOP mode for sine wave data testing. The

findings showed that this CORBA implementation is not suitable for real-time

monitoring of test data. Although the sine wave showed no signs of distortion as

expected, having similar reliability to the TCP test. However, the transfer rate was

quite slow and was in fact the slowest of the four protocols tested.

UDP provided a faster transfer rate but, as mentioned earlier in Chapter 2, it is

unreliable. Initially the sine wave is well formed, but it becomes apparent that data

packets are being lost. Figure 5.4 shows an active client where this effect is shown.

53

Chapter 5 Remote Technology Demonstrator Implementation

{Applet V iew er SineW aveC lient.class

Applet

Current Value: 48 Transfer Rate (samples^):

Protocol: UDP

Applet started.

5.01

Figure 5.4: Data Packets Being Lost in Unicast UDP Test Mode

The IP multicast protocol showed consistently good performance throughout

the short test. In addition, despite the fact that the protocol is based on UDP, the

reliability was significantly better then the UDP unicast test. Figure 5.5 shows how

the sine waveform may still be determined albeit with the loss of some data. The

transfer rate was almost three times the average rate measured for UDP. This can be

attributed to the fact that no connection management was necessary and also no

delivery acknowledgement data packets were used.

^ A p p le t V iew er SineW aveClient.class

Protocol: IP Multicast ▼

Applet started.

Applet

Current Value: 3 Transfer Rate (samples/s): 14.6

Figure 5.5: IP Multicast Sine Wave Test

54

Chapter 5 Remote Technology Demonstrator Implementation

Figure 5.5 shows transfer rate versus time for the four protocols under

consideration. It is important to note that the transfer rate refers to the rate at which

the server can dispatch the sample data and does not guarantee the delivery on the

client side.

T - CM eg CM

Time (s)

Figure 5.5: Transfer Rates for the Four Network Protocols Tested

5.4.4 Client Monitoring Protocol Evaluation Conclusion

The IP multicast protocol is clearly the best protocol o f the four for continuous

transfer of data under these conditions. There is no apparent degradation in delivery

performance on the server. This is due to the fact that there is no data packet

acknowledgement system in place such as those used by TCP and IIOP. Also there is

no connection for the server to manage. This permits the number of clients to increase

without adversely affecting performance on the server. This characteristic is useful for

the intended test server application as there is a good deal o f other processing work

performed and eliminating connection management reduces the overhead on the

application’s resources.

From the evaluation carried out, it was evident that both TCP and HOP were

not appropriate for real-time monitoring. UDP has good characteristics for long

duration remote monitoring by offering a fast transfer rate. Ko et al. [26] improved on

their Frequency Modulation experiment by using IP multicast which itself uses UDP.

The client protocol evaluation tests confirmed that this was indeed the best protocol

for ‘streaming’ experimental test data. It was decided to adopt this approach as it

solved the issue of having a potentially large number of experiment observers without

55

Chapter 5 Remote Technology Demonstrator Implementation

requiring the data to be carried over the network multiple times. In contrast to the

control protocol, HOP, discussed earlier, reliability, in this case, was not a major issue

as the monitoring facility was only intended as an approximate indicator of the current

status of experimental readings. Unlike the sine wave test, continuous displays such as

strip charts are not feasible so display readouts are used instead.

5.4.5 Using the Real-Time Client Applet
The real-time applet is divided into four tabbed panels designed to be used

sequentially in the Stirling Engine test procedure. Upon loading the applet, all control

components, such as test server connect button, are enabled if a token has been passed

to the applet in the form of an applet HTML tag. Observer users will not have this

token and consequently will not be able to issue test server control commands. Even if

they did discover a token value, tokens must match a user identity and client host

address in order for the test server to permit commands to be carried out.

The first panel displayed to the client user is the access control panel. This

panel contains the Connect and Disconnect buttons which allow administrators to

establish a session with the test server using a previously assigned token. Once this

session is established, all other users may only observe the test procedure until the

controlling user disconnects from the test server.

A web cam is used to provide visual feedback for the real-time applet. Third

party software is used on the test server machine, which offers image data over HTTP.

A stream of constantly updating images was initially used to produce a live view of

the test apparatus. However, this was found to be extremely resource intensive as the

images server software did not support proper video streaming. Also when the

rotational speed of the Stirling Engine flywheel was over 5 rpm, the client view was

quite blurred. As a result, a simple button was provided to allow the user to refresh the

image feedback display. Figure 5.6 shows the access control tabbed panel as it

appears to the administrator.

56

Chapter 5 Remote Technology Demonstrator Implementation

I Ü WebRTD Remote Technology Demonstrator - M icrosoft In te rne t Explorer Q @ f * 1
File Edt View Favorites Too*s Hdp t r

Addi «5 £) http : //webrtd-host ; 6000/ webrtd/daq/strSng_control v Q Go Lin k; ”

WebRTD Stillili; E njiiir - Control Interface

Home

User Sellings

H is to ry

iVistwnrd
User M anagem ent ►

Stirling Engine

Logout

<
tZ i Applet ne t. v**ebrtd. applet, StirfingApplet s tarted Local Intranet

(Access Control | EnoKie Pra S is i Themtal Emcloncy l>PS Conlrol |

Serw r Connection

Rofresh

Figure 5.6: Stirling Engine Applet Access Control Panel

Up to this point we have indicated that the Stirling Engine used in the test

experiment could be merely ‘started’ and ‘stopped’, but anyone who is familiar with

these types of engines will know that this is not possible. The engine operates on the

principle that when a confined quantity of gas is heated, the volume will increase,

driving a piston upwards. As the engine reaches mid cycle, the gas cools and contracts

causing the piston to drop back down. Earlier, Figure 5.1 included a fan and heater

plate controlled by a Data Acquisition (DAQ) Unit connected to the test server PC.

The purpose of these was to cool the cold plate and heat the hot plate of the Stirling

Engine respectively. The engine will not operate unless the temperature difference

between these two places is above a critical threshold temperature. As a result, the

administrator must remotely heat the sealed air chamber of the engine for a period of

time prior to undertaking the main experiment. The test server will ensure that the pre­

heat stage is carried out before allowing the user to proceed.

Figure 5.7 shows the Engine Pre-Start panel of the applet where the user may

set the trigger temperature and the starter motor duration.

The following terms are used:

Trigger Temperature:

Term used for critical threshold temperature difference.

57

Chapter 5 Remote Technology Demonstrator Implementation

Motor Duration:

Time allowed for the starter motor to rotate in order to impart energy

to the flywheel of the Stirling Engine and overcome the initial inertia

of the flywheel.

The Start button will begin a feedback loop on the test server where the PPS will

supply heat to the Stirling Engine while the hot and cold plate temperature difference

is monitored.

The right hand side of the Pre-Start display contains readouts of the

temperatures of the engine’s hot and cold plates as well as their temperature

difference. This gives some feedback on the status of the system for this stage of the

experiment.

On reaching the specified trigger temperature, the starter motor uses the

friction of a rubber contact to impart energy to the Stirling Engine flywheel for the

length of the motor duration. The motor then stops and the Stirling Engine should be

then running by itself using the thermodynamic principles of gas expansion and

contraction. The client will now also stop receiving broadcast values relating to the

Engine Pre-Start stage.

Access Control | Engine Pre-Start j Thermal Efficiency : PPS Control

PPS Control

Trigger Temp (°C):

55.0

Motor Duration (s):

12

Hot Plate Temp. (°C):

Cold Plate Temp. (°C):

Temp. Difference (°C):
Slart

Stop

Figure 5.7: Stirling Engine Applet Pre-Start Panel

Once the threshold temperature has been reached and starter motor has been

activated, the flywheel should be set in motion. The user may check that this is the

case by getting an update from the web cam display. The main objective of this

58

Chapter 5 Remote Tedino logy Demonstrator Implementation

experiment was to determine the thermal efficiency of the Stirling Engine. Figure 5.8

shows the Thermal Efficiency panel of the applet. The user may set the test cycle

duration prior to starting the test. Clicking the Start button will cause a feedback loop

to start on the test server where the relevant sensor data is stored locally to file while

the test duration is monitored. A safety mechanism in the test server prevents the

experiment from being initialised when the temperature difference is below the trigger

temperature as set in the Engine Pre-Start stage. Also if the rotational speed indicates

that the Stirling Engine flywheel is static for approximately ten seconds, then the test

is aborted and the user will be required to return to the Pre-Start stage.

When the test is in progress, readings related to the efficiency such as

rotational speed of the flywheel and mechanical power output are displayed on the

right hand side of the panel. When the test duration has elapsed the test server

processes the test data and relays the results back to the core J2EE system so that they

may be saved to the database.

Access Control Enyine Pre-Start Thermal Efficiency PPS Control

DAQ Control

Test Duration (s):

600 AT:

Rotational Speed (rad/s):

Mechanical Power Out (W):

Start

Stop

Thermal Efficiency.

Figure 5.8: Stirling Engine Applet Thermal Efficiency Panel

The level of heat must be maintained in the Stirling Engine air chamber

between the pre-start and efficiency testing stages. Indeed the PPS continues to supply

power to the heater pad after the test cycle so that multiple tests to be carried out in

succession. A safety mechanism on the test server ensures that power from the PPS is

cut after an idle timeout. The user should, however, use the PPS control panel in order

59

Chapter 5 Remote Technology Demonstrator Implementation

to stop the power output from the PPS manually. Figure 5.9 shows how the voltage

and current may also be set on this panel.

Access Control I Engine Pre-Start I f Thermal Efficiency^ PPS Control |

Voltage (V):

19.32

Current (A):

7.4

Figure 5.9: Stirling Engine Applet PPS Control Panel

Figure 5.10 shows an updated sequence diagram for the real-time test system.

Figure 5.10: Updated Model for Real-Time Test System

5.5 Core J2EE-Based System

The core J2EE-based system introduces a new transaction management element into

the area of virtual laboratories. This feature is more commonly associated with such e-

60

Chapter 5 Remote Technology Demonstrator Implementation

commerce enterprise applications as mobile phone subscriber portals such as

Vodafone [72] and online shopping web sites such as Amazon [41],

For the RTD implementation, the web-tier is the first point of access for the

user. This is built on a number of enterprise layers and is integrated seamlessly with

the real-time control and monitoring system. The following sections will outline the

core J2EE-based system from the database management system to the web-tier.

5.5.1 Database Management System

The application server, JBoss, allows for the integration of numerous commercial and

open source databases. The open source DBMS, MySQL, was chosen over the default

Hypersonic database, as it offered good administration tools as well as a JDBC 2.0

compliant interface library. Another advantage was that an automatically

incrementing integer data field facility was supported between JBoss and MySQL

using a special JBoss database interface deployment descriptor XML tag. A database

was created for the RTD application and secured with a username and password.

5.5.2 User Management Implementation

The EJBs used in this implementation are session beans and entities beans and

represent business logic and persistent application entities respectively. A more

detailed description of these types of enterprise beans is presented in Chapter 3.

This section will focus on the EJBs used for user management. The

application’s entity beans were developed first, as they required to be referenced at a

higher level by session beans.

Container Managed Persistence (CMP) was chosen to implement the entity

beans as the new standard of CMP offers a realistic alternative for development of

transaction based objects. Bean Managed Persistence (BMP) allows the developer

more freedom when reading and writing to the database but the developer must also

take responsibility for issues such as concurrent data access. CMP enables the

developer to spend more time concentrating on other design issues as the EJB

container handles the CMP entity beans.

The first entity bean to model is that of the generic RTD user. This entity,

RTDUserBean, must include the required attributes: login name, password, full name

and user type. For this implementation, there is only one available test, the Stirling

Engine efficiency experiment, so it is permissible to have a flag here to indicate

61

Chapter 5 Remote Technology Demonstrator Implementation

whether or not the user wishes to receive an email update of the experiment summary.

This will be known as the user’s ‘auto notify’ attribute. Each attribute will constitute a

‘getter’ and ‘setter’ abstract method pair, which is used by the EJB container for

database actions. For example, the login field will be implemented using getLogin
and setLogin methods.

Before proceeding it is important to decide how entity beans in the application

are going to be made available. Prior to EJB 2.0, all entity beans were required to be

implemented using an RMI-based remote interface, regardless of whether or not they

would be invoked directly by an external client, i.e. one outside the EJB container’s

JVM. This adds significant overhead for every entity bean used. Hammouda and

Koskimies [55] advocate the use of the Session Façade pattern [56] as a means of

loosely coupling the communication between J2EE layers. When applied to EJBs,

session beans become the first point of contact for all client applications. All calls to

entity beans are made though the session beans. This eliminates the need for the

application’s entity beans to be available remotely and makes the application itself

more secure. Local interfaces were introduced in EJB 2.0 to allow EJBs in the same

JVM access each other. Cecchet et al. [73] confirm that using local interfaces

improves performance by avoiding the communication layers for local

communications. It was decided, therefore, to employ local interfaces in all entity

beans in this project.

Logging is provided for auditing purposes. Each user of the system has a

number of associated history records. These translate into entity beans also and must

include date and event description attributes. Every container-manager entity bean is

required to have a primary key attribute which is used to locate the object in the

database. The login name field is used in the RTDUserBean entity bean for example.

In the case of the HistoryRecordBean entity bean, an automatically generated integer

is used. This attribute is configured in the entity bean’s XML deployment descriptor

and is interpreted by the database management system.

Another entity bean, UserRoleBean, is associated with RTDUserBean and is

used in identifying the user’s security role in the system. The automatic primary field

identifier is again used the attributes include role name and role group name. This

bean, is used to enforce the permission policy system of the application server. This

security feature will be studied in greater detail later in the chapter.

62

Chapter 5 Remote Technology Demonstrator Implementation

CMP is of little value unless the components used can operate fully inside the

EJB container and not resort to embedded SQL code segments operating via JDBC.

Gitzel et al. [74] use Container Managed Relationships (CMRs), which were recently

introduced in EJB 2.0. This relationship mechanism allows the EJB container to

assume full responsibility of normalisation of application data, offering one-to-one,

one-to-many and many-to-many relationships. As with CMP, CMR applies only to

entity beans. Figure 5.11 shows a class diagram for the HistoryRecordBean,

RTDUserBean, and UserRoleBean entity beans.

Figure 5.11: Class Diagram for RTD User Related Classes

As described in Chapter 2, session beans can be either stateful or stateless. A

stateful session bean is used to access user management functions, as it is necessary to

maintain current RTDUserBean entity bean data between method invocations. For

example, when getHistory is called to retrieve the users history records, it is more

effective to cache the entity data rather than attempting to locate it at though the

RTDUserHome interface each time the call is made. Figure 5.12 shows a class

diagram of the principal user management bean class, VirtualLabBean.

63

Chapter 5 Remote Technology Demonstrator Implementation

«interface»
Session Bean

+ejbActivate(): void
+ejbPasslvate(): void
+ejbRemove(): void
+setSessionContext(clx:SessionContext):

------------ZX------------

Virtual Lab Bean
-currentRTDUser; RTDUser
-sesslonContext: SessionConlext

+createRTDUser(): void
+setPassword(): void
+gelRTDUserData(): RTDUserData
+setRTDUserDataO: void
+getAIIUserData(): RTDUserDataQ
+removeRTDUser(): boolean
+geiHistory(>: StringQQ
+getEngineKey(): String
+log{): void

Figure 5.12: VirtualLabBean User Management Session Bean Class

This class is used for personal user management of the user’s own account as

well as the creation and removal of others. The Session Façade pattern is used,

transforming the VirtualLabBean session bean into an access layer for the

RTDUserBean entity bean interfaces.

An additional step is necessary when invoking business methods from

enterprise beans from the web-tier. As discussed in the previous chapter, the Service

Locator pattern is used to provide improved network and client performance through

caching. Figure 5.13 shows the configuration of the Service Locator class with respect

to the EJBs used.

Figure 5.13: Service Locator Pattern Implementation

64

Chapter 5 Remote Technology Demonstrator Implementation

Refences to objects such as initial context handles used for looking up home

references using JNDI may be cached for re-use at a later stage. All JBoss specific

JNDI lookups may be contained within the one service locator class, thereby reducing

the complexity of the client which is a Java servlet. Figure 5.13 represents the

procedure involved the first time such a servlet is used to invoke an operation on an

enterprise bean.

From the diagram, it may be seen that the service locator is used to get EJB

home objects. Clients may use these subsequently to create enterprise beans and

perform call the relevant business methods. It should be pointed out that all operations

carried out on enterprise beans described in this implementation utilise the service

locator mechanism even though it may not be explicitly shown.

Operations required for creating and removing system users are examples

some of the more important operations that are implemented by the J2EE-based

system. Figure 5.14 shows a sequence diagram depicting the creation of a new user by

an administrator illustrating the interaction between the VirtualLabBean session bean

and RTDUserBean entity beans.

Figure 5.14: RTD User Creation Sequence

Figure 5.15 shows how a user is removed from the system. Observer users are not

offered administrative features, such as create and remove user, at the presentation

65

Chapter 5 Remote Technology Demonstrator Implementation

layer. If any of the administrative methods were to be called by an observer user, then

they would fail based on the role of the user. This restriction is enforced at the EJB

layer.

Figure 5,15: RTD User Removal Sequence

5.5.4 Web-based Presentation Layer
A simplified version of Sun’s Front Controller pattern [58] is used for handling

presentation-tier Java servlet requests. The application’s web-based element is

configured to that all requests pass through one controller servlet,

WebControilerServlet. Figure 5.16 shows how this lightweight version of the pattern

effectively handles user interaction while separating the business logic from the

presentation logic.

66

Chapter 5 Remote Technology Demonstrator Implementation

Figure 5.16: Implementation of the Front Controller in RTD Project

The Dispatcher View pattern was designed to control the flow of execution

and manage access to presentation processing, responsible for generating dynamic

content. In this application this is represented by the interface, Dispatcher. In practice

the PageRenderer class actually implements the Dispatcher interface. This is shown

in Figure 5.17. The principal methods in the interface are used for getting and setting

the target HTML or JSP pages used in the web navigation. These dispatcher page

details are stored in a property file which is read when the controller servlet is

initialised. Using a property file allows the path of navigation to be modified without

the need for changes in the source code.

«interface»
Dispatcher

+setTargetPage(): void
+getTargetPage(): String
+setErrorPage(): void
+getErrorPage(): String
+setDescription(): void
+getDescription(): String

2i

PageRenderer

+PageRenderer()
+render(): void
#showMainPage(): void

Figure 5.17: Class Diagram for PageRenderer class and Dispatcher Interface

67

Chapter 5 Remote Technology Demonstrator Implementation

The property file also contains logical links which are used to map web

Uniform Resource Identifier (URI)2 paths [75] to sub classes of the PageRenderer

control class. These sub classes are retrieved from a hash map of page references as

the user navigates through the web interface. The HistoryRenderer class is an example

of one of these sub classes. Figure 5.18 shows a typical operation where a request is

made to view the history records associated with the current system user.

Figure 5.18: Viewing History Records

The presentation view is dynamic and may depend on the result of invoking a

business method on an enterprise bean. Some page renderer objects, therefore, have

an error page property, which specifies that a different JSP page be displayed if the

requested operation does not complete successfully. Other page renderer objects may

re-use the JSP page specified for a successful operation by setting a property on the

page itself indicating that an error be displayed. This is illustrated in Figure 5.19

where the page used to change the user’s password is re-used allowing for the user to

make a mistake when attempting to change the account password. This design

facilitates a clean separation of JSP, servlet and EJB layers allowing pages or classes

to added or removed easily.

2 A URI is a compact string of characters for identifying an abstract or physical resource.

68

Chapter 5 Remote Technology Demonstrator Implementation

3 WebRTD Remote Technology Demonstrator - Microsoft Internet Explorer

0 e Edit ft&w Favorites loote

Done Local Intranet

Figure 5.19: Re-use o f Password JSP Page

The value object pattern is used when reading and updating the user settings to

overcome the one-to-one nature of the accessor idiom used by the relevant CMP

methods in the RTDUserBean entity bean. This combines a number of calls into one

by using the RTDUserData object to pass data between the client and EJB layer,

thereby reducing network traffic significantly. Monson-Haefel [46] describes the

methods that use these objects as bulk accessors. Figure 5.20 shows how the

RTDUserData value object is passed through the session façade to display the user

settings. The Settings Renderer class forwards the required user attributes to the JSP

page. From the diagram, it is evident that the value object itself is only created when

the bulk accessor method is invoked.

Figure 5.20: Sequence Diagram for Displaying U ser Settings

69

Chapter 5 Remote Technology Demonstrator Implementation

In the case of updating the user settings, the RTDUserData value object is

created and populated with user attribute information before passing it through the

bulk accessors of both the VirtualLabBean and RTDUserBean of the current user

(Figure 5.21).

Figure 5.21: Sequence Diagram for Updating User Settings

5.5.5 Web User Interface Design
In Chapter 1, the design of the user interface was highlighted as an important aspect

of the system. According to Nielsen [76], the two most important keys to a successful

web site are content and usability. Hiibscher et al. [77] highlight the importance of

content organisation to support navigation through the web site. They state that there

is no one solution as there are a number of factors involved in web design including

the proficiency of the end user. Bevan [78] provides a useful template for addressing

usability issues in web design. He asks a number of questions regarding the potential

users of a web site, such as their purpose for accessing the site and experience and

expertise. In this instance, administrator and observer users will access the web site,

but may have varying degrees of expertise in web navigation.

A relatively simple and consistent web design was employed on the user

interface. No patterned backgrounds were used, as these make text difficult to read.

Low-resolution graphics employed in the design as many web browsers have slow

connections. Animations and flashing text were also avoided as users find this very

distracting. Tables, most of them borderless, were used instead of frames, as frames

can interfere with printing and bookmarking. A JavaScript menu was positioned on

70

Chapter 5 Remote Technology Demonstrator Implementation

the left-hand-side of every page ensuring that the user always has access to the key

features provided by the web user interface. All functionality relating to the Stirling

Engine demonstration was grouped under a ‘Stirling Engine’ menu item on the menu.

This allows for the future demonstrations to be added in a similar manner. HTML

ALT tags used to describe links associated with graphics. These tags define web page

text that is displayed when the image is loading or missing. The Web interface was

tested in Netscape Navigator and Internet Explorer to ensure consistent behaviour and

appearance of the user interface. A minimum operating resolution of 800 x 600 pixels

was used during the user interface design. All web content is resizable and care was

taken to ensure that all controls in the embedded real-time applet would be clearly

seen at this resolution.

Another key aspect of the system, indicated in Chapter 1, was the effective

communication of the principles and background information on the remote

demonstration. To this end, a brief online help is provided to familiarise the user with

the operation and underlying thermodynamic principles o f the Stirling Engine. Figure

5.22 shows the initial section of the help page as it appears in the web user interface.

I 3 WebRTD Remote Techno logy D em onstra tor M ic roso ft In te rn e t Exp lorer 0 0 ®
Ete E d* tf© w Favorites lo o k Help 9m*r

Add' esc- h ttp : //w e b rtd -h o s t :6080/w ebrtd /daq /s tirlir>g jn tro ^ 0 G o L inks ”

WebRTD

Home

User Settings

History

Password

User M anagem ent ►

Stirling Engine

Logout

<
tì Dono

S tirlin g E n g in e - I n tr o d u c tio n

Stirling Engines - How They Work
W e will deal with a fairly simple Stirling Engine to demonstrate its operation This is shown in
figure 1 below

Figure I Demonstration S tirlin g Kngm c

Local Intranet

Figure 5.22: Online Help Web Page for Stirling Engine Demonstration

71

Chapter 5 Remote Technology Demonstrator Implementation

5.5.6 User Type Based Content Generation

The Servlet Intercepting Filter Pattern [61] is used to mange the content based on the

user type. A filter is attached to the WebControllerServlet for modifying the forward

requests received by JSP pages. JSP pages then allow access to additional system

functionality by including HTML elements with links to administrator specific

features such as user management. Figure 5.23 shows the difference between the main

web page after both an administrator and an observer user type has been

authenticated.

2 WebRTD Remote Technology Demonstrator M icrosoft In ternet Explorer

0 e Edit iûow Favorites Ioo is üefc

A d i ess http://w«tortd-ho»t :80e0/webrt<l/daQ/horno Q go

tr
Links **

WebRTD 3 WebRTD Remote Technology Demonstrator M icrosoft In te rne t Explorer

S e E * Bow Favorites loo ts tW)

Address h ttp ://w e b rtd 'to $ t:6080/w e tv td /d 6Q/hom<) Q Go unks ”

[User 10: smith)]

WebRTD

U se r M a n o ijc n ic n t ►

S tir l in g E ng ine

<
Done

<
Done Local Intranet

Figure 5.23: Main Web Page for Administrator User (Inset: Main Web Page for Observer User)

All resource management facilities should purposely omitted using this

approach. However, in the case of the Stirling Engine demonstration, the same applet

code serves both administrator and observer users alike. Token requests are not made

to the test server on behalf of observer users. This results in the client applet being

used minus the token required for control. In this case, control features on the applet

will be disabled for observers.

5.5.7 Data Callback Service

The data callback service is required to facilitate the reliable sending of processed test

information and results to the application server so that the data may be written to the

database. If this is achieved, then clients will not require test servers to be active in

72

http://w%c2%abtortd-ho%c2%bbt
http://webrtd'to$t:6080/wetvtd/d6Q/hom%3c

Chapter 5 Remote Technology Demonstrator Implementation

order to retrieve and analyse results from previous test cycles. A Java-only option

such as RMI was not feasible as the test server itself was written in C++.

CORBA presented the possibility of sending the data between the test and

application servers due to the fact that, in recent releases, JBoss has enabled the

configuration of HOP interfaces in the application server. However, in order for

clients to take advantage of this new feature they must support some of the newer

features of the CORBA standard such as wstringvaiue objects and the CORBA

valuetype keyword.

As discussed in Chapter 3, Web Services was one of the most recent additions

to the J2EE specification. One of these services, namely SOAP, provided the solution

for the callback requirement. SOAP is platform and language independent and

typically operates over HTTP using XML data content. Apache Axis is an open

source Java SOAP implementation and is fully functional as a plug-in to JBoss. J2EE

maps SOAP operations to stateless session beans methods. Figure 5.24 shows the

session bean, TestResultsBean, used for test data callbacks. No UDDI registry is

necessary as the callback service is relatively straightforward and is already known to

the test server application.

Figure 5.24 Test Results Bean Used for Test Data Callbacks

When an experiment has completed, this class is called repeatedly by the test

server to save all the processed test data. Again container-manager entity beans with

local interfaces are used to store the information. The TestResultsBean is responsible

for sending summary email updates once all the data has been saved successfully.

Figure 5.25 shows how the test server interacts with the SOAP provider and in turn

the EJBs used to store the information.

73

Chapter 5 Remote Technology Demonstrator Implementation

Figure 5.25: Communication Diagram for Callback System

All operations to the SOAP provider require a base 64 encrypted username

and password, which is integrated into the application’s authentication system.

5.5.8 EJBs for Post Experiment Analysis
The TestResultsBean is re-used by a servlet client in order to plot and save test results

for completed experiments. Llambiri et al. [79] indicate that EJB Query Language

(EJB-QL) may be used for complex finder methods in entity bean home interfaces.

The EngineDataBean shown in Figure 5.26 is an entity bean that employs EJB-QL to

locate a list of unique test identifiers and dates to be shown on the presentation tier.

Figure 5.26: EngineDataBean Entity Bean

74

Chapter 5 Remote Technology Demonstrator Implementation

This entity bean enables the user to select an experiment based on the date on which it

was carried out and proceed to plot the result data. Another EJB-QL finder method is

used to find all the test data associated with the test date. No two test cycles will have

the same test date and ID attributes.

Figure 5.27 shows the sequence of operations for a user plotting a graph from

the test data.

Figure 5.27: Sequence Involved in Plotting Test Data

Figure 5.28 show a dynamic web plot of Stirling Engine efficiency versus time.

3 WebRTD Remote Technology Dem onstrator M icroso ft In te rn e t Exp lorer f * If f l l f X I

File E * ï ie w Favorites lo o ls Help

Figure 5.28: Plot of Efficiency vs. Time for Stirling Engine Test Cycle

75

Chapter 5 Remote Technology Demonstrator Implementation

5.6 Security
Security is a fundamental part of any enterprise application. Every layer of the new

system that offers a remote interface has some level of security protection in place.

Security issues for the real-time applet and web and enterprise-tiers were addressed.

5.6.1 Real-Time Applet Client Security
A token-based system similar to that used by Ko et al. [10] was devised to provide a

secure exchange link between the core J2EE-based system and the real-time applet.

The test server was configured only to accept token requests from the application

server host address. Once verified, the test server would reply by returning a token to

the J2EE system via HOP. Figure 5.29 shows a sequence diagram representing the

concept of token passing to the applet.

“JI nis lt<Admlnlslralor

Authentication iSesslonBean ‘StirtlnçjEnaineAocilét Tesi
Manager Server

Log In

Get Engine Control Pago

D-
Log off

gelNawTokenQ

setToken

Token

3
-w

Start Test

Stop Test

Start Test

IP Multicast
Test Data

Stop Test

Figure 5.29: Operation of Applet Token-Based System

The test server not only restricts limits access from certain hosts, but logs all

remote access to a local log file. It also displays the name of the user who has made

the request. Logging is also done from the J2EE side, storing information access

request information made from the J2EE system to the test server.

Due to the fact that applets operate from a security “sandbox”, the real-time

applet must be digitally signed to allow it to connect to a server other than the web

server from which it was downloaded. Lindquist [80] highlights the security issues,

76

Chapter 5 Remote Technology Demonstrator Implementation

such as authenticity and integrity, for interacting with remote entities using Java.

Garfinkel and Spafford [81] discuss Public Key Infrastructure (PKI) as an effective

means of securely transferring data over the Internet where encryption and decryption

keys are generated in pairs. The private key is used to generate the signature and is

kept confidential to whoever is doing the signing. The public key is used by the

receiver to verify authenticity of the message. The signer should distribute the public

key to anyone who will receive signed information.

The issue as to whether the public key corresponds to the sender is resolved

with certificates. A certificate represents a chain o f trust leading from the sender to the

receiver, indicating that the public key belongs to whom you want to believe it

belongs. Certificate Authorities (CAs), such as Verisign and Entrust, offer

commercial certificates which are used in web browsers.

In the case of the real-time applet, a custom made certificate is used to sign the

Java Archive (JAR) file used. As the web browser plug-in will not recognise this as a

standard certificate, the user will be requested whether to accept or reject the

certificate before proceeding. Figure 5.30 shows the security certificate dialog for the

applet.

Using this dialog, the user may view the digital certificate details and choose

whether to accept or reject the certificate depending on its credentials. Rejecting this

will deny the client accessing the test server. Both administrators and observers will

see this dialog, as both will be connecting to a different address for reading data from

the IP multicast class D host address.

1
v. Do you want to trust the signed applet distributed by "Damian Barnes"?
m

Publisher authenticity verified by: "WebRTD Inc."

I The security certificate was issued by a company that is nottrusted.o'W

! i The security certificate has not expired and Is still valid.

Caution: “Damian Barnes" asserts that this content Is safe. You should only
accept this content If you trust "Damian Barnes" to make that assertion.

W arning - Security

¡Yes No Always

More Details

Figure 5.30: Real-Time Applet Security Certificate Dialog

77

Chapter 5 Remote Technology Demonstrator Implementation

5.6.2 Web and Enterprise-Tier Security

Grubb and Carter [82] acknowledge the fact that a single sign-on facility is a

ubiquitous requirement in distributed systems. It is intended that the new system be

extensible in order to allow access to multiple demonstrations without the need for

authentication before accessing each demonstration in the same session. Ellison et al.

[83] highlight the need for a simple and secure identity mechanism for web-based

applications. In the instance of the remote technology demonstrator, form-based

authentication is used to authenticate the user before allowing access to any services.

The login page, shown in Figure 5.31, uses a HTTP POST request to submit the

username and password for authentication. The web.xml XML deployment descriptor

is configured to manage the POST request and permit authenticated users to access

the application’s web pages. The functionality for handling the actual authentication

resides within the Tomcat web server.

3 WebRTD Login - Microsoft Internet Explorer

Fie Edit Stfew Favorites lools (jelp sr
Iv:lp;//w®bftd4ìoit/wobrtd/isi>/logri. jsp V 0 G O Link; ”

*

WebRTD
Login Point

Username:

Password:

| Login 11 Reset |

£ l1 Don© ^ Local intranet

Figure 5.31: Login Page for WebRTD®

Tomcat’s form-based authentication mechanism is integrated into the JBoss to

allow it to be seamlessly integrated into the application server’s Java Authentication

and Authorisation Service (JAAS). This makes it possible to restrict access to the

application and enforce fine-grained access to the enterprise bean operations. Every

RTDUserBean will be assigned at least one security role, which is used by JAAS to

78

Chapter 5 Remote Technology Demonstrator Implementation

assign a role identifier, before the user may attempt to invoke enterprise bean

operations. Fine-grained access is achieved by assigning method permissions to the

security roles themselves in the bean’s ejb-jar.xml XML deployment descriptor. This

ensures that no security functionality is necessary in the bean code and allows the

developer to concentrate on the business logic.

A helper entity bean is added to provide security role information for the

application’s users. JBoss includes a Service Provider Interface (SPI) security class

used to read a user’s role list from a table using JDBC. In order to continue using a

container-managed approach, an entity bean, UserRoleBean, was associated with

every user using CMR.

5.7 System Deployment
The enterprise code components implement a significant portion of the application

logic but these alone do not represent available services or operational behaviour.

XML deployment descriptors are required to indicate to the application server how

the various enterprise beans, web-components and other distributed components

interact with clients as well as with each other. There are numerous publications such

as Roman [84], which describe the syntax of these deployment descriptors. A brief

overview is given of each of the descriptor files used in the remote technology

demonstrator application.

ejb-jar.xml
The ejb-jar.xml deployment descriptor file was introduced in EJB 1.1 when indeed all

XML deployment descriptors were introduced. The functionality for this file is

defined in the Enterprise Javabeans specification and includes key enterprise

definitions such as bean declaration types (i.e. session, entity or message-driven),

entity bean persistence types (CMP or BMP), entity bean relationships and security

roles. The ejb-jar.xml descriptor file for this application is included in Appendix E.

jboss.xml
Due to the fact that J2EE is a standard rather than an implementation, there are a

number of areas where application server implementers must provide their own

mappings. The jboss.xml deployment descriptor is used mainly for mapping

79

Chapter 5 Remote Technology Demonstrator Implementation

enterprise beans and other resources to JNDI names. These will allow clients to locate

these objects after the application has been deployed.

jbosscmp-jdbc.xml

This deployment descriptor allows the developer to define data types for CMP entity

bean fields to be used in the database. There are default data type mappings already

on the application server, but these may be overridden for performance reasons. The

jbosscmp-jdbc.xml file also contains the relationship field details for CMR

functionality.

web-service.xml

The web-service.xml deployment descriptor defined the available Web Service

interfaces as well as their permitted operations. The Web Service in the remote

technology demonstrator allows post experiment data to be sent from the test server to

the application server so that it may be stored in the database for later analysis.

jboss-web.xml

The jboss-web.xml may be used to define components for the integrated JBoss-

Catalina applications. For this application, this descriptor file was used to defined the

JAAS security domain with a view of having seamless integration between the

application’s form-based authentication and the enterprise bean layer.

web.xml
The web.xml file is used to define available Java servlets as well as their permitted

operations such as HTTP GET and HTTP POST. This file was also used for defining

the application’s form-based authentication. This descriptor covers web applications

which may include HTML pages, servlets and/or JSPs.

application.xml
The application.xml descriptor file is used to define the complete set of available

enterprise services consisting of EJBs, web applications and Web Services.

JBoss operates what is known as a ‘hot deploy’ feature where enterprise applications

may by updated ‘on the fly’. This allows code or configuration updates and existing

database information can be preserved also if necessary. On deployment, the

80

Chapter 5 Remote Technology Demonstrator Implementation

application’s XML deployment descriptors are read and the enterprise interfaces

(home, remote and local) are interrogated using Java reflection API. This enables the

EJB container to create bean instances as well as invoke methods calls on behalf of

the client. The real-time and J2EE elements of the remote technology demonstrator

are deployed as shown in Figure 5.32.

Figure 5.32: Deployment Diagram for Main Components of Remote Technology Demonstrator

5.8 Summary of the System Implementation

Prior to the implementation, it was necessary to select the software which would be

employed in the new system. A high proportion of this software was open source and

the application server used, JBoss, was no different. A concise description of the

hardware architecture is presented for the Stirling Engine demonstration. A test server

application is responsible for allowing users to control and monitor the demonstration.

Safety and security issues are addressed for the test server itself. On the client side, a

soft real-time Java applet is used to administer and observe demonstrations. The

applet includes tabbed panels for access control, Stirling Engine pre-heat

functionality, thermal efficiency experimentation and PPS control. A web-cam facility

is embedded in the applet to provide visual feedback over HTTP.

The real-time applet is intended to be used sequentially from left to right

during the Stirling Engine demonstration. Access control is first established over HOP

using the first tabbed panel. The Engine Pre-Heat panel is used to achieve the required

81

Chanter 5 Remote Technology Demonstrator Implementation

temperature difference in the Stirling Engine before the Thermal Efficiency panel may

be used to run a test cycle to determine the thermal efficiency. Test data is relayed

back to all clients via IP multicast. On completion of the test cycle, the collected test

data is sent via SOAP to the application server so that it may be written to the

database for later analysis. Email summaries are dispatched to users who wish to be

informed of the test cycle results.

The core J2EE-based system employs entity beans which used the CMP model

for data persistence. CMR is used to normalise persistent data enabling one-to-many

relationships between system user entity beans and their associated history records

and security roles. The Session Façade pattern is used to provide indirect access to

entity bean data, enabling local rather than remote interfaces to be utilised for all

entity beans, thereby enhancing overall performance. Another performance improving

measure is the use of value objects in bulk accessor methods of EJBs, e.g. creating a

bulk accessor method getting and setting user details.

The service locator pattern is used by the web-tier to locate components in the

EJB layer using INDI. The Front Controller and Dispatcher View patterns are

combined to manage navigation through the web user interface. This allows business

logic to be separated from the presentation logic. The Servlet Intercepting Filter

Pattern is used to mange the content based on the user type.

A simple web user interface design with low-resolution graphics is used to

provide easy navigation and fast loading over the web. A JavaScript menu was

positioned on every page ensuring that the user always has access to the key features

provided.

Security issues for the real-time applet and web and enterprise-tiers were

addressed. A token-based system is used to request control of the Stirling Engine test

server demonstration. The initial request is made through a session bean and is

authenticated by the test server application. The returned token is passed directly from

the real-time applet to the test server when requesting control. The applet itself is

digitally signed allowing the user to view the security credentials of the applet.

A single sign-on security mechanism is achieved using form-based

authentication to provide access to one or more remote demonstrations. This is

seamlessly integrated into the application server’s JAAS mechanism, enabling fine­

grained access to be enforced for enterprise bean operations.

82

Chapter 6

Conclusions and Future Work

6.1 Conclusions

The principal objective of this research aimed to show how e-commerce principles

could be applied to virtual laboratories and to explore possible benefits. At least, three

areas were identified as being of critical interest in the new system, namely

transaction management, extensibility and security.

The J2EE-based system of the remote technology demonstrator utilises the

Java Transaction API (JTA), which is not used directly by the application developer,

but is employed by entity beans in the EJB container. In this instance, Container

Managed Persistence (CMP) was used, greatly simplifying data persistence tasks by

allowing the application server to manage all database transactions using the Java

Transaction API (JTA). This approach was extended to the data normalisation of

entity beans by using Container Managed Relationships (CMRs), removing the need

for using raw Structured Query Language (SQL) in the entity bean code. Even when

SQL was required in a complex finder method in the TestResultsBean, it was possible

to use Enterprise Javabeans Query Language (EJB-QL). EJB-QL is defined in the ejb-

jar.xml deployment descriptor (see Appendix E) and may be modified without

requiring any source code to be changed.

The J2EE-based system is extensible in so far as new components may be

added to the application. The soft real-time element of the system enables varying

numbers of observers who may participate in the active demonstration. This was

realised by adopting the IP multicast approach used by Ko et al. [26],

Security for this application was achieved using J2EE and non-J2EE solutions,

all of which were Java-based and commonly found in e-commerce applications.

Digitally signing the real-time applet provided a good means of associating security

credentials with the bytecode and also allowed an HOP network connection outside

the applet sandbox. A single sign-on facility was achieved using form-based

authentication. The authentication facility and the application’s JAAS functionality,

were integrated using only XML deployment descriptors, allowing security

credentials to be passed directly from the web-tier to the EJB-tier, without the need to

write any code.

83

Chapter 6 Conclusions and Future Work

The secondary objective of this project was to minimise the overall project

cost by employing open source software. The open source application server, JBoss,

was used to deliver the required J2EE functionality, along with a number of other

open source software products such as Apache Tomcat and MySQL. The result was a

system that allowed the remote technology demonstrator to perform without any

obvious bottlenecks while enforcing the required security restrictions. Initial test trials

showed that the overall system was stable and performed well during active

demonstrations.

Another objective of this research was to develop an intuitive user interface

which would promote e-leaming by effectively communicating to the learner the

principles and any background information related to the remote demonstration. To

this end, a simple web user interface was used and brief, but informative, online help

was added to outline the thermodynamic concepts behind the operation of a Stirling

Engine.

Other findings from this research are presented here in brief:

• From the literary review conducted in Chapter 2, it is evident that there is

currently no template for the design of virtual laboratories. UML provides an

excellent means of communicating system requirements and modelling the

proposed sequence of operations for new software systems.

• The pattern-based design and development approach helped solve many of the

problems associated with e-commerce applications. One of the most useful of

these was the combined use of the Front Controller and Dispatcher View patterns

to manage web navigation and to separate business logic from presentation logic.

Using the Session Façade pattern allowed loose coupling between session and

entity bean layers and allowed local interfaces to be used for all entity beans,

thereby enhancing performance by avoiding the communication layers for local

communications.

• The token-based system, adopted from Ko et al. [10], provided an effective means

of providing authentication between the J2EE-based system, test server and real­

time applet.

• The CORBA implementation used in the test server, OmniORB, did not support

some of the newer features of the CORBA standard required for J2EE callbacks.

84

Chapter 6 Conclusions and Future Work

SOAP was used to solve the problem of transferring data between the C++ test

server and J2EE-based system was solved using SOAP.

6.2 Future Work

This project successfully integrated a real-time system with a J2EE-based one to

create a new type of virtual laboratory. Specialists in these two areas will recognise

that there is possible scope for improvement.

In order to improve security throughout the application SSL could be used

where sensitive data is transmitted across the network. This could be implemented on

the web page where the user logs in and when transmitting control commands to the

test server.

It was deemed adequate to provide the user with a button to request update for

visual feedback from the web-cam. For future experiments, a streaming feedback may

be required. This would involve a new streaming video server being used as well as

significant modifications being made to the real-time applet.

Patterns such as the session façade and value object were used to good effect

in this project. Another pattern which could be used in future, is the Data Access

Object (DAO) pattern. This pattern transparently maps bean operations to the

underlying data store, thereby allowing the data store to be changed without any

change to the application itself. DAO instances can not only map to relational

databases, but also to object databases, file systems and XML documents. This pattern

will be supported in JBoss in future releases.

An even more substantial upcoming feature in JBoss is support for Aspect-

Oriented Programming (AOP). AOP [85] offers extended mechanisms to Object-

Oriented Programming (OOP) for decomposing problem domains into cleanly

encapsulated entities. The result is code that is more reusable than that produced by

OOP.

Possibilities still exist for expanding the capabilities of the Stirling Engine

demonstration. From an educational perspective, it might be possible to integrate both

a pressure and volume sensor onto the engine which would enable PV diagrams to be

plotted directly. This would show how the pressure and volume changes in relation to

each other for the thermodynamic cycle employed.

85

Chapter 6 Conclusions and Future Work

In terms o f future applications for the WebRTD® virtual laboratory system, the

possibilities are limitless. Other areas such as electronic engineering and process

control, which have already been influenced by this approach, could be enhanced

further with new and innovative applications.

86

Chapter 7

[1] Martin, W., and Haque, Mohammed E., “Distance Learning In Engineering

And Construction”, International Conference IT in Construction in Africa,

Mpumalanga, South Africa, 30 May-June 1, 2001.

[2] Knight, C.D., DeWeerth, S.P., “A Distance Learning Laboratory for

Engineering Education”, Proceedings of the 1997 ASEE Annual Conference,

Milwaukee, WI., June 15-18, 1997.

[3] World Wide Web Consortium (W3C) web site, http://www.w3.org/

[4] Crisp, G., “ Using Java Applets To Help Make Online Assessment Interactive",

Proceedings of Ascilite 2002, Auckland, New Zealand, December 8-11, 2002.

[5] Reisman, S., Carr, W.A., “Perspectives on Multimedia Systems in Education”,

IBM Systems Journal, 30, 3, 280-295, (1991).

[6] Tuttas, J. and Wagner, B., “Distributed Online Laboratories”, International

Conference on Engineering Education August 6-10, 2001 Oslo, Norway.

[7] Guggisberg, M., Fomaro, P., Gyalog, T., and Burkhart, H., “An

Interdisciplinary Virtual Laboratory on Nanoscience”, 29th Speedup Workshop, Bern,

Switzerland, March 22-23, 2001.

[8] Virtual Physics Laboratory, http://www.phy.ntnu.edu.tw/java/index.html.

[9] Hsu, S., Alhalabi, B., and Ilyas, M., “A Java-based Remote Laboratory for

Distance Learning”, International Conference on Engineering Education, Taipei,

Taiwan, August 14-16, 2001.

[10] Ko, C. C., Chen, B. M., Hu, S., Ramakrishnan, V., Cheng, C. D., Zhuang, Y.,

and Chen, J., “A Web-Based Virtual Laboratory on a Frequency Modulation

Experiment”,

IEEE Transactions On Systems, Man, And Cybernetics, Part C: Applications And

Reviews, Vol. 31, No. 3, August 2001.

[11] Amaratunga, K. and Sudarshan, R., “A Virtual Laboratory for Real-Time

Monitoring o f Civil Engineering Infrastructure”, Proceedings of the International

Conference on Engineering Education, UMIST, Manchester, UK, August 2002.

[12] Rohrig, C. and Jochheim, A., “The Virtual Lab forcontrolling real experiments

via Internet”, Proceedings of 1999 IEEE International Symposium on computer-aided

control system design, Hawaii, USA, August 8-12, 1999.

References

87

http://www.w3.org/
http://www.phy.ntnu.edu.tw/java/index.html

Chapter 7 References

[13] Macias, M. E., Cazares, V. M. and Ramos, E. E., “A Virtual Laboratory For

Introductory Electrical Engineering Courses To Increase The Student Performance",

Proceedings from Frontiers in Education Conference, Reno, Nevada, October 2001.

[14] Baher, J., “How Articulate Virtual Labs can Help in Thermodynamics

Education: A Multiple Case Study”, Proceedings from Frontiers in Education

Conference, Tempe, Arizona, November 4-7, 1998.

[15] Aktan, B., Bohus, C., Crowl, L., and Shor, M. H., “Distance learning applied

to control engineering laboratories”, IEEE Trans. Educ., vol. 39, pp. 320-326, August

1996.
[16] GNU General Public License, http://www.gnu.org/copyleft/gpl.html.

[17] Free Software Foundation, http://www.fsf.org.

[18] Apache open source web server, http://www.apache.org.

[19] SourceForge open source software development website, http://

sourceforge.net.

[20] Mockus, A., Fielding, R. T. and Herbsleb, J., “A case study o f open source

software development: the Apache server”, Proceedings of the 22nd International

Conference on Software Engineering, Limerick, Ireland, June 5-7, 2000.

[21] Sun Microsystems' blueprint design patterns,

http ://j ava. sun. com/blueprints/pattems/.

[22] Chen, S. H., Chen, R., Ramakrishnan, V., Hu, S. Y., Zhuang, Y., Ko, C. C. and

Chen, B. M., “Development o f remote laboratory experimentation through Internet”,

Proceedings of the IEEE Hong Kong Symposium on Robotics and Control, Hong

Kong, July 12-16, 1999.

[23] Comer, D. E., Internetworking with TCP/IP Volume 1 - Principles, Protocols,

and Acrhitecture, 3rd Ed., pp. 291-295, Prentice Hall, 1995.

[24] Wang, G., Robinson, R., “An Architecture for Web-Enabled Engineering

Applications based on Lightweight High Performance CORBA”, 6th International

Enterprise Distributed Object Computing Conference (EDOC'02), Lausanne,

Switzerland, September 17-20, 2002

[25] Orfali, B. and Harkey, D., Client/Server Programming with Java and CORBA,

pp. 185-230, Wiley, 1998.

[26] Ko, C.C., Chen, Ben M., Chan, K.P., Cheng, C.D., Zeng, G.W. and Zhang, J.,

“A Webcast Virtual Laboratory on a Frequency Modulation Experiment”, IEEE

Conference on Decision and Control, Orlando, FL, December 4-7, 2001.

88

http://www.gnu.org/copyleft/gpl.html
http://www.fsf.org
http://www.apache.org

Chapter 7 References

[27] EBay online auction web site, http://www.ebay.com.

[28] Soldar, G., Spencer, Brian, and Smith, Dan, “Impact o f New Technologies on

the Expansion o f Electronic Commerce”, Workshop Proceedings of the 1st Panhellenic

Conference with International Participation in Human Computer Interaction (PC-HCI

2001), Patras, Greece, December 7-9, 2001.

[29] Pour, G., “Enterprise JavaBeans, JavaBeans & XML Expanding the

Possibilities for Web-Based Enterprise Application Development”, 31 st International

Conference on Technology of Object-Oriented Language and Systems, Nanjing,

China, September 22-25, 1999.

[30] Pour, G., “Integrating Component-Based & Reuse-Driven Software

Engineering Business Into Software & Information Engineering Curriculum”,

Proceedings from Frontiers in Education Conference, Kansas City, Missouri, October

18-21,2000.

[31] Java Pet Store Demo application,

http://java.sun.com/developer/releases/petstore/.

[32] Rice University Bidding System (RUBiS), http://demos.objectweb.org/rubis/.

[33] Candea, G., Delgado, M., Chen, M., Fox, A., “Automatic Failure-Path

Inference: A Generic Introspection Technique for Internet Applications”, Proceedings

of the 3rd IEEE Workshop on Internet Applications (WIAPP), San Jose, CA, June 23-

24,2003.

[34] JBoss Application Server, http://www.jboss.org.

[35] Chambers, M., Sindel, M., Thompson, J. and Tien, D., “UsingEnterprise

JavaBeans to Provide Distributed, Concurrent Access to a Centralized Database”,

Proceedings of the 2nd International Conference on Information Technology for

Application (IOTA 2004), Harbin, China, January 9-11, 2004.

[36] Borges, A.P., Lisboa, M.O.P., Fernandez, F.J.R., “A Graphical Interface to

Link Virtual Instruments through a Web Browser”, 13th Brazilian Symposium on

Computer Graphics and Image Processing (SIBGRAPI'OO), Gramado, Brazil, October

17-20, 2000.

[37] Pasquarette, J., “Activating the Internet for Virtual Instrumentation”, Available

online: http://www.evaluationengineering.com/pctest/articles/e702pcni.htm.

[38] Allamaraju et al., Professional Java Server Programming J2EE Edition, p.

341, Wrox Press, 2000.

89

http://www.ebay.com
http://java.sun.com/developer/releases/petstore/
http://demos.objectweb.org/rubis/
http://www.jboss.org
http://www.evaluationengineering.com/pctest/articles/e702pcni.htm

Chapter 7 Rcferenccs

[39] Schattkowsky, T. and Müller, W., “Distributed Engineering Environment for

the Design o f Electronic Systems”, Proceedings of the IEEE Workshop on Design and

Diagnostics of Electronic Circuits (DDEC), Poznan, Poland, April 15-16, 2003.

[40] Pour, G., Guo, Y., “Web Service-Oriented Architecture for Supply Chain

Management”, Proceedings of the International Conference on Internet Computing,

Las Vegas, Nevada, USA, June 23-26, 2003.

[41] Amazon online bookstore, http://www.amazon.com.

[42] Java 2 Platform, Enterprise Edition (J2EE), http://java.sun.com/j2ee/.

[43] Java Management Extensions (JMX),

http://java.sun.com/products/JavaManagement/.

[44] Enterprise Javabeans Specification, http://java.sun.com/products/ejb/.

[45] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns:

Elements o f Reusable Object-Oriented Software, pp. 107-116, 185-193, Addison-

Wesley Publishing Company, 1995.

[46] Monson-Haefel, R., Enterprise JavaBeans, pp. 153-171, 3rd Ed., O'Reilly,

2001 .

[47] Extensible Markup Language (XML) Specification,

http://www.w3.org/TR/2000/REC-xml-20001006.

[48] Object Management Group (OMG), http://www.omg.org.

[49] CORBA Specification,

http: //www. omg. org/technol ogy/documents/formal/corba_iiop. htm.

[50] Lai, C., Gong, C. L., Koved, L., Nadalin, A., Schemers, R., “User

Authentication and Authorization in the Java Platform”, Proceedings of the 15th

Annual Computer Security Applications Conference, Phoenix, AZ, December 6-9,

1999.

[51] Booch, G., Jacobson, I., Rumbaugh, J., The Unified Modeling Language User

Guide, Addison-Wesley Professional, September 30, 1998.

[52] Fowler, M., UML Distilled: A Brief Guide to the Standard Object Modeling

Language, 2nd Ed., p. 1, Addison-Wesley, September 19, 2003.

[53] Louis, S. J., McDonnell, J., Hohmeyer, D., Heinselman, L., Walker, A., “A

Case Study in Object Oriented Modeling, Architecting, and Designing an Enterprise

Monitoring Application”, Proceedings of the International Conference on Software

Engineering Research and Practice (SERP'03), Las Vegas, Nevada, June 23-26, 2003.

90

http://www.amazon.com
http://java.sun.com/j2ee/
http://java.sun.com/products/JavaManagement/
http://java.sun.com/products/ejb/
http://www.w3.org/TR/2000/REC-xml-20001006
http://www.omg.org

Chapter 7 References

[54] Mos, A. and Murphy, J., “New Methods for Performance Monitoring o f J2EE

Application Servers”, Proceedings of IEEE 8th International Conference on

Telecommunications (ICT-2001), Vol I, p. 423-427, Bucharest, Romania, June 2001.

[55] Hammouda, I. and Koskimies, K., “Generating a Pattern-Based Application

Development Environment for Enterprise JavaBeans", Proceedings of the 26th Annual

International Computer Software and Applications Conference, Oxford, England,

August 26-29, 2002.

[56] Session Façade pattern,

http://java.sun.com/blueprints/corej2eepattems/Pattems/SessionFacade.html.

[57] Service Locator Blueprint Pattem,

http://java.sun.com/blueprints/corej2eepattems/Pattems/ServiceLocator.html.

[58] Front Controller Pattem,

http ://j ava. sun. com/blueprints/corej 2eepattems/Pattems/FrontController.html.

[59] Dispatcher View Pattem,

http://java.sun.com/blueprints/corej2eepattems/Pattems/DispatcherView.html.

[60] Webmacro Java Template Language, http://www.webmacro.org.

[61] Intercepting Filter Pattem,

http://java.sun.com/blueprints/corej2eepattems/Pattems/InterceptingFilter.html.

[62] Apache Tomcat Web Server, http://jakarta.apache.org/tomcat/.

[63] Apache Axis SOAP Implementation, http://ws.apache.org/axis/.

[64] MySQL Database Management System, http://www.mysql.org.

[65] JFreeChart Java Charting/Graphing Library, http://www.jfree.org/jireechart.

[66] Omniorb open source C++ CORBA Implementation,

http ://omniorb. sourceforge. net/.

[67] EasySoap++ C++ SOAP library , http://easysoap.sourceforge.net.

[68] Python Language, http://www.python.org.

[69] Expat XML parser, http://www.jclark.com/xml/expat.html.

[70] Srinivasan, A. and Anderson, J. H., “Efficient Scheduling o f Soft Real-time

Applications on Multiprocessors", Journal Of Embedded Computing, Vol. 1, No. 3,

June 2004.

[71] Puschner, P., Bemat, G. and Wellings, A., “Making Java Hard Real-Time",

Annals of the Marie-Curie Fellowship Association, Vol. 2, 2002.

[72] Vodafone Mobile Phone Subscriber Portal site, http://www.vodafone.ie.

91

http://java.sun.com/blueprints/corej2eepattems/Pattems/SessionFacade.html
http://java.sun.com/blueprints/corej2eepattems/Pattems/ServiceLocator.html
http://java.sun.com/blueprints/corej2eepattems/Pattems/DispatcherView.html
http://www.webmacro.org
http://java.sun.com/blueprints/corej2eepattems/Pattems/InterceptingFilter.html
http://jakarta.apache.org/tomcat/
http://ws.apache.org/axis/
http://www.mysql.org
http://www.jfree.org/jireechart
http://easysoap.sourceforge.net
http://www.python.org
http://www.jclark.com/xml/expat.html
http://www.vodafone.ie

Chapter 7 References

[73] Cecchet, E., Marguerite, J., Zwaenepoel, W., “Performance and ScalabUity o f

EJB Applications", 17th ACM Conference on Object-Oriented Programming, Systems,

Languages and Applications (Oopsla 2002), Seattle, WA, USA, November 4-8, 2002.

[74] Gitzel, R., Korthaus, A., Mazloumi, N., “Handling Huge Data Sets in

J2EE/EJB 2.1 with a Page-By-Page Iterator Variant for CMP", Proceedings of the

International Conference on Software Engineering Research and Practice (SERP'03),

Las Vegas, Nevada, USA, June 23-26, 2003.

[75] Uniform Resource Identifier Definition, http://www.ietf.org/rfc/rfc2396.txt.

[76] Nielsen, J., Designing Web Usability, New Riders Publishing, 1999.

[77] Hübscher, R., Pittarese, T., Lanford, P., ’’''Navigation in e-Business Sites'”,

Architectural Issues of Web-Enabled Electronic Business, Idea Group Publishing,

2002 ,

[78] Bevan, N., “Usability Issues in Web Site Design", Proceedings of Usability

Professionals’ Association (UPA) ’98, Washington, DC, April 18-23, 1998.

[79] Llambiri, D., Totok, A., and Karamcheti, V., '’Efficiently Distributing

Component-based Applications Across Wide-Area Environments", 23rd International

Conference on Distributed Computing Systems, Providence, Rhode Island, USA, May

19-22, 2003.

[80] Lindquist, T., “Security Considerations for Distributed Web-Based E-

Commerce Applications in Java”, Proceedings of the 35th Hawaii International

Conference on System Sciences, Hawaii, USA, January 7-10, 2002.

[81] Garfinkel, S. and Spafford, G., Web Security & Commerce, pp. 207-208,

O'Reilly, 1997.

[82] Grubb, M. and Carter, R., “Single Sign-On and the System Administrator",

Proceedings of the Twelfth Systems Administration Conference (LISA ’98), Boston,

MA, December 6-11, 1998.

[83] Ellison, G., Hodges, J., Landau, S., “Security and Privacy Concerns of Internet

Single Sign-On", Available online:

http://research.sun.com/Liberty/SaPCISSO/sapcil.pdf.

[84] Roman, E., Mastering Enterprise JavaBeans, 2nd Ed., pp. 546-568, Wiley

Computer Publishing, 2002.

[85] Aspect-Oriented Programming Homepage,

http: // www2 .pare .com/c sl/proj ec ts/aop/.

[86] American Stirling Company, http://www.stirlingengine.com

92

http://www.ietf.org/rfc/rfc2396.txt
http://research.sun.com/Liberty/SaPCISSO/sapcil.pdf
http://www.stirlingengine.com

Appendix A

Glossary

3-Tier Architecture
This is a common term used for distributed object systems. In a three-tier architecture

the presentation logic resides on the client (first tier), the business logic resides on the

middle tier (second tier), and other resources, such as the database, reside on the

backend (third tier).

ActiveX
A loosely defined set of technologies developed by Microsoft. ActiveX is an

outgrowth of two other Microsoft technologies called OLE (Object Linking and

Embedding) and COM (Component Object Model). OLE enables you to create

objects with one application and then link or embed them in a second application.

COM is a software architecture developed by Microsoft to build component-based

applications.

Application Server
An application server is a server program in a distributed network that provides the

business logic for an application program. The application server is frequently viewed

as part of a three-tier application, consisting of a graphical user interface (GUI) server,

an application (business logic) server, and a database and transaction server.

Aspect-Oriented Programming (AOP)
Aspect-Oriented Programming (AOP) complements OO programming by allowing

the developer to dynamically modify the static OO model to create a system that can

grow to meet new requirements. AOP allows new functionality to be added to existing

code to be without having to modify the original code.

Atomicity, Consistency, Isolation, Durability (ACID)

A term used to describe transactions with ACID properties.

Atomic - Transactions are atomic (all or none)

Consistency - A consistent state of the database may be expected at all times.

93

Appendix A Glossary

Isolation - Transactions are isolated from another; race conditions ensure that

multiple transaction instances attempts do not collide.

Durable - Once a transaction commits, it’s updates survive even, if the system goes

down.

Axis
Apache Axis is an Open Source SOAP implementation and it available for Java and

C++.

Bean-Managed Persistence (BMP)
Bean-managed persistence (BMP) occurs when the entity object manages its own

persistence. The enterprise bean developer must implement persistence operations

(e.g. JDBC) directly in the enterprise bean class methods.

Certificate Authority (CA)
An individual wishing to send an encrypted message applies for a digital certificate

from a Certificate Authority (CA). The CA issues an encrypted digital certificate

containing the applicant's public key and a variety of other identification information.

The CA makes its own public key readily available through print publicity or perhaps

on the Internet.

Commercial Off-The-Shelf (COTS)
Adjective that describes software or hardware products that are ready-made and

available for sale to the general public. For example, Microsoft Office is a COTS

product that is a packaged software solution for businesses. COTS products are

designed to be implemented easily into existing systems without the need for

customization.

Common Gateway Interface (CGI)
A specification for transferring information between a World Wide Web server and a

CGI program . A CGI program is any program designed to accept and return data that

94

Appendix A Glossary

conforms to the CGI specification. The program could be written in any programming

language, including C, Perl, Java, or Visual Basic.

Common Object Request Broker Architecture (CORBA)

An architecture that enables pieces of programs, called objects, to communicate with

one another regardless of what programming language they were written in or what

operating system they're running on. CORBA was developed by an industry

consortium known as the Object Management Group (OMG).

Component-Based Enterprise Software Engineering (CBESE)

Component-Based Enterprise Software Engineering (CBESE) is concerned with the

development of software intensive systems from reusable parts (components), the

development of such reusable parts, and with the maintenance and improvement of

systems by means of component replacement and customisation.

Container-Managed Persistence (CMP)
Container-managed persistence (CMP) occurs when the entity object delegates

persistence services. With CMP, the EJB container transparently and implicitly

manages the persistent state. The enterprise bean developer does not need to code any

database access functions within the enterprise bean class methods.

Container-Managed Relationships (CMR)
Relationship model introduced in EJB 2.0 supporting one-to-one, one-to-many and

many-to-many relationships between entity beans.

Computer Supported Collaborative Work (CSCW)
Computer-assisted coordinated activity carried out by a group of collaborating

individuals.

Data Access Object (DAO)
Pattern designed to abstract and encapsulate all access to the data source. The DAO

manages the connection with the data source to obtain and store data.

95

Appendix A Glossary

Data Acquisition (DAQ)
Term used to define the process of collecting information, usually in an automated

fashion, on a broad variety on variables. Data acquisition is heavily used in

manufacturing processes that have a multitude of variables to be measured. Data

acquisition uses a combination of hardware, software and specialized instruments with

a variety of specialized term like PCI, PCMCIA, USB, RS-232, FPGA, ADC, SCSI,

GPIB, etc.

Database Management System (DBMS)
A collection of programs that enables you to store, modify, and extract information

from a database.

Deployment Descriptor
An XML file provided with each module and application that describes how they

should be deployed.

Design Pattern

A description of an object-oriented design technique which names, abstracts and

identifies aspects of a design structure that are useful for creating an object-oriented

design. The design pattern identifies classes and instances, their roles, collaborations

and responsibilities. Each design pattern focuses on a particular object-oriented design

problem or issue. It describes when it applies, whether it can be applied in the

presence of other design constraints, and the consequences and trade-offs of its use.

Digital Certificate
An attachment to an electronic message used for security purposes. The most common

use of a digital certificate is to verify that a user sending a message is who he or she

claims to be, and to provide the receiver with the means to encode a reply.

The recipient of an encrypted message uses a Certificate Authority’s (CA)

public key to decode the digital certificate attached to the message, verifies it as

issued by the CA and then obtains the sender's public key and identification

information held within the certificate. With this information, the recipient can send

an encrypted reply. The most widely used standard for digital certificates is X.509.

96

Appendix A Glossary

Dispatcher View
Pattern used to manage direction of enterprise components. This applies particularly

to abstracting user navigation functionality for Java servlets and JSPs.

Domain Name Service (DNS)
An Internet service that translates domain names into IP addresses. Because domain

names are alphabetic, they're easier to remember. The Internet however, is really

based on IP addresses . Every time you use a domain name, therefore, a DNS service

must translate the name into the corresponding IP address. For example, the domain

name www.example.com might translate to 198.105.232.4.

E-Commerce
Business that is conducted over the Internet using any of the applications that rely on

the Internet, such as e-mail, instant messaging, shopping carts, Web services, UDDI,

FTP, and EDI , among others. Electronic commerce can be between two businesses

transmitting funds, goods, services and/or data or between a business and a customer.

EasySoap++
Open Source C++ SOAP implementation.

Enterprise JavaBeans
The Enterprise JavaBeans architecture is a component architecture for the

development and deployment of component-based distributed business applications.

Applications written using the Enterprise JavaBeans architecture are scalable,

transactional, and multi-user secure. These applications may be written once, and then

deployed on any server platform that supports the Enterprise JavaBeans specification.

Enterprise JavaBeans server-side components come in three fundamentally different

types: entity, session, and message-driven beans

Enterprise JavaBeans (EJB) Container

A container that implements the EJB component contract of the J2EE architecture.

This contract specifies a runtime environment for enterprise beans that includes

security, concurrency, life-cycle management, transactions, deployment, naming, and

other services. An EJB container is provided by an EJB or J2EE server.

97

http://www.example.com

Appendix A Glossary

Enterprise JavaBeans Query Language (EJB-QL)
Defines the queries for the finder and select methods of an entity bean having

container-managed persistence. A subset of SQL92, EJB QL has extensions that allow

navigation over the relationships defined in an entity bean's abstract schema.

Entity Bean
An enterprise bean that represents persistent data maintained in a database. An entity

bean can manage its own persistence or can delegate this function to its container. An

entity bean is identified by a primary key. If the container in which an entity bean is

hosted crashes, the entity bean, its primary key, and any remote references survive the

crash.

Expat
Open Source XML parser written in C.

Extended Hypertext Markup Language (XHTML)

A hybrid between HTML and XML specifically designed for numerous networked

devices from anything from Personal Digital Assistants (PDAs) to toasters. XHTML

is a stricter, tidier version of HTML. It is a markup language written in XML and

therefore, is an XML application.

Extensible Mark-Up Language (XML)
Specification developed by the W3C. XML is a subset of SGML, designed especially

for Web documents.

File Transfer Protocol (FTP)
Protocol for exchanging files over the Internet.

Frequency Modulation
A form of modulation in which the frequency of the modulated carrier wave is varied

in proportion to the amplitude of the modulating wave. In this case the phase of the

carrier varies with the integral of the modulating wave.

98

Appendix A Glossary

Front Controller
Pattern used to enforce separation of business logic from presentation logic in the

same components.

General Purpose Interface Bus (GPIB)
Interface system designed to create a reliable bus system especially designed for

connecting computers and instruments.

GNU
Self-referentially, short for “GNU's not UNIX”, a UNIX -compatible software system

developed by the Free Software Foundation (FSF). The philosophy behind GNU is to

produce software that is non-proprietary. Anyone can download, modify and

redistribute GNU software. The only restriction is that they cannot limit further

redistribution. The GNU project was started in 1983 by Richard Stallman at the

Massachusetts Institute of Technology.

General Public License (GPL)

The license that accompanies some open source software that details how the software

and its accompany source code can be freely copied, distributed and modified. The

most widespread use of GPL is in reference to the GNU GPL, which is commonly

abbreviated simply as GPL when it is understood that the term refers to the GNU

GPL. One of the basic tenets of the GPL is that anyone who acquires the material

must make it available to anyone else under the same licensing agreement.

Hypertext Markup Language (HTML)
The authoring language used to create documents on the World Wide Web. HTML is

similar to SGML, although it is not a strict subset.

Hypertext Transfer Protocol (HTTP)
The underlying protocol used by the World Wide Web. HTTP defines how messages

are formatted and transmitted, and what actions Web servers and browsers should take

in response to various commands. For example, when you enter a URL in your

browser, this actually sends an HTTP command to the Web server directing it to fetch

and transmit the requested Web page.

99

Appendix A Glossary

Intercepting Filter
Pattern used to pre-process and post-process client web requests and responses.

Interface Definition Language (IDL)

Language used to define a protocol between client and server processes so that they

can communicate with each other at a level higher than simple byte strings in a

heterogeneous networking environment.

Internet Inter-ORB Protocol (IIOP)
A protocol developed by the Object Management Group (OMG) to implement

CORBA solutions over the World Wide Web. IIOP enables browsers and servers to

exchange integers, arrays, and more complex objects, unlike HTTP, which only

supports transmission of text.

Internet Message Access Protocol (IMAP)

A protocol for retrieving e-mail messages.

Java
A high-level programming language developed by Sun Microsystems. Java was

originally called OAK, and was designed for handheld devices and set-top boxes. Oak

was unsuccessful so in 1995 Sun changed the name to Java and modified the language

to take advantage of the burgeoning World Wide Web. Java is an object-oriented

language similar to C++, but simplified to eliminate language features such as

memory management that cause common programming errors.

Java 2 Enterprise Edition (J2EE)

An environment for developing and deploying enterprise applications. The J2EE

platform consists of a set of services, application programming interfaces (APIs), and

protocols that provide the functionality for developing multitiered, Web-based

applications.

Java 2 Standard Edition (J2SE)

A complete environment for applications development on desktops and servers which

includes a bytecode compiler and interpreter.

100

Appendix A Glossary

Java API For XML Messaging (JAXM)
JAXM enables applications to send and receive document-oriented XML messages

using SOAP.

Java API For XML Parsing (JAXP)
JAXP is a Java API that enables applications to parse and transform XML documents

independent of a particular XML processing implementation.

Java Applets
A program designed to be executed from within another application. Unlike an

application, applets cannot be executed directly from the operating system. A well-

designed applet can be invoked from many different applications.

Web browsers, which are often equipped with Java virtual machines, can interpret

applets from Web servers. Because applets are small in files size, cross-platform

compatible, and highly secure (can't be used to access users' hard drives), they are

ideal for small Internet applications accessible from a browser.

Java Authentication And Authorisation Service (JAAS)

The Java Authentication and Authorization Service (JAAS) is a set of APIs that

enable services to authenticate and enforce access controls upon users. It implements

a Java technology version of the standard Pluggable Authentication Module (PAM)

framework, and supports user-based authorization.

Java Message Service (JMS)
JMS is a standard vendor-neutral API that is part of the J2EE platform and can be

used to access enterprise messaging systems. Enterprise messaging systems (a.k.a.

message-oriented middleware) facilitate the exchange of messages among software

applications over a network. Many commercial enterprise-messaging products

currently support JMS, including IBM's MQSeries and BEA’s WebLogic JMS

service.

101

Appendix A Glossary

Java Naming And Directory Interface (JNDI)

The Java Naming and Directory Interface (JNDI) provides an interface for accessing

name and directory services such as Lightweight Directory Access Protocol (LDAP)

directory services and Domain Name Service (DNS).

Java Server Page (JSP)
JSPs are also used to dynamically generate web content such as HTML, XHTML, and

XML in web applications. JSP technology enables easy authoring of web pages,

which allows web designers rather than programmers focus on the presentation. Java

code may also be embedded in JSPs.

Java Transaction API (JTA)
API used for handling commit and the rollback of transactions as well as ensuring

ACID properties of a transaction.

Java Virtual Machine (JVM)
An abstract computing machine, or virtual machine, JVM is a platform-independent

execution environment that converts Java bytecode into machine language and

executes it. Most programming languages compile source code directly into machine

code that is designed to run on a specific microprocessor architecture or operating

system, such as Windows or UNIX.

JavalDL
A technology that provides CORBA interoperability and connectivity capabilities for

the J2EE platform. These capabilities enable J2EE applications to invoke operations

on remote network services using HOP.

JavaMail
An API for sending and receiving email.

JBoss
An open source J2EE compatible application server.

102

Appendix A Glossary

JDHC

An API for database-independent connectivity between the J2EE platform and a wide

range of data sources.

JFreeChart
An open-source, graphing and charting library.

Lightweight Directory Access Protocol (LDAP)
A set of protocols for accessing information directories.

Message Driven Bean (MDB)
Message-driven beans (MDBs) are stateless, server-side, transaction-aware

components for processing asynchronous Java Message Service (JMS) messages.

Microsoft Transaction Server (MTS)

MTS is a software application that mainly consists of a Transaction Processing (TP)

monitor and an object request broker. MTS, based on the Component Object Model

(COM) which is the middleware component model for Windows, is used for creating

scalable, transactional, multi-user and secure enterprise-level server side components.

Middleware
Software that connects two otherwise separate applications. For example, there are a

number of middleware products that link a database system to a Web server. This

allows users to request data from the database using forms displayed on a Web

browser, and it enables the Web server to return dynamic Web pages based on the

user's requests and profile. The term middleware is used to describe separate products

that serve as the glue between two applications. It is, therefore, distinct from import

and export features that may be built into one of the applications.

Multipurpose Internet Mail Extensions (MIME)
A specification for formatting non-ASCII messages so that they can be sent over the

Internet. Many e-mail clients support MIME, which enables them to send and receive

graphics, audio, and video files via the Internet mail system.

103

Appendix A Glossary

MySQL
MySQL is an open source RDBMS that relies on SQL for processing the data in the

database. MySQL provides APIs for the languages C, C++, Eiffel, Java, Perl, PHP

and Python.

Object Management Group (OMG)
A consortium with a membership of more than 700 companies. The organization's

goal is to provide a common framework for developing applications using object-

oriented programming techniques. OMG is responsible for the CORBA specification.

Object-Oriented Programming (OOP)
A type of programming in which programmers define not only the data type of a data

structure, but also the types of operations (functions) that can be applied to the data

structure. In this way, the data structure becomes an object that includes both data and

functions.

OmniOrb
Open source C++ CORBA implementation.

Open Source Software (OSS)

Open Source Software is software in which the source code is available to the general

public for use and/or modification from its original design free of charge.

Passivation
The process of transferring an enterprise bean from memory to secondary storage.

Post Office Protocol 3 (POP3)
A protocol used to retrieve e-mail from a mail server.

Programmable Power Supply (PPS)
Power supply unit that may be controlled externally. This is normally achieved using

a GPIB or RS-232 hardware interface.

104

Appendix A Glossary

Public Key Infrastructure (PKI)
A system of digital certificates, Certificate Authorities, and other registration

authorities that verify and authenticate the validity of each party involved in an

Internet transaction.

Python
An interpreted, object-oriented programming language developed by Guido van

Rossum. Python is very portable since Python interpreters are available for most

operating system platforms. Although Python is copyrighted, the source code is open

source, and unlike GNU software, it can be commercially re-sold.

Real-Time
Pertains to a data collecting system that controls an on-going process and delivers its

outputs (or controls its inputs) not later than the time when these are needed for

effective control. This is also known as hard real-time. In contract soft real-time may

be non-deterministic and may be allowed to miss its deadlines.

Remote Procedural Call (RPC)

A type of protocol that allows a program on one computer to execute a program on a

server computer.

Rice University Bidding System (RUBiS)

RUBiS is an auction site prototype modelled after the popular e-commerce web-

portal, eBay.

Remote Method Invocation (RMI)
A set of protocols being developed by Sun that enables Java objects to communicate

remotely with other Java objects.

RMI/IIOP
Java Remote Method Invocation (RMI) technology run over Internet Inter-Orb

Protocol (RMI-IIOP) delivers Common Object Request Broker Architecture

(CORBA) distributed computing capabilities to the Java 2 platform. Java RMI over

HOP was developed by Sun and IBM.

105

Appendix A Glossary

RS-232
A standard interface approved by the Electronic Industries Alliance (EIA) for

connecting serial devices.

Secure Socket Layer (SSL)
A protocol developed to transmit private documents via the Internet. SSL works by

using a private key to encrypt data that's transferred over the SSL connection.

Service Locator
Design pattern used to locate enterprise services while hiding complexity involved.

Service Oriented Architecture (SOA)
An application architecture in which all functions, or services, are defined using a

description language and have invokable interfaces that are called to perform business

processes. Each interaction is independent of each and every other interaction and the

interconnect protocols of the communicating devices (i.e., the infrastructure

components that determine the communication system do not affect the interfaces).

Because interfaces are platform-independent, a client from any device using any

operating system in any language can use the service.

Servlets
Servlets are used to dynamically generate Hypertext Markup Language (HTML),

Extended HTML (XHTML), and XML output using Java technology.

Session Bean

Session beans are enterprise beans used to implement business objects that hold

client-specific business logic. A session bean typically executes on behalf of a single

client and cannot be shared among multiple clients. There are two types of session

beans; stateful and stateless. Stateful session beans maintain state information

between method invocations whereas stateless session beans do not.

Session Façade
Design pattern gateway mechanism which manages business objects, and provides a

uniform coarse-grained service access layer to clients, The Session Façade reduces

106

Appendix A Glossary

network overhead between the client and the server because its use eliminates the

direct interaction between the client and the business data and business service

objects.

Simple Mail Transfer Protocol (SMTP)

A protocol for sending e-mail messages between servers. Most e-mail systems that

send mail over the Internet use SMTP to send messages from one server to another;

the messages can then be retrieved with an e-mail client using either POP or IMAP.

Simple Object Access Protocol (SOAP)

A lightweight XML-based messaging protocol used to encode the information in Web

service request and response messages before sending them over a network. SOAP

messages are independent of any operating system or protocol and may be transported

using a variety of Internet protocols, including SMTP, MIME, and HTTP

Stirling Engine

Extremely efficient engine which converts heat energy into mechanical work using

only thermodynamic principles of expanding and contracting volume of gas.

Supply Chain Management (SCM)

The control of the supply chain as a process from supplier to manufacturer to

wholesaler to retailer to consumer. Supply chain management does not involve only

the movement of a physical product through the chain but also any data that goes

along with the product (such as order status information, payment schedules, and

ownership titles) and the actual entities that handle the product from stage to stage of

the supply chain.

There are essentially three goals of SCM: to reduce inventory, to increase the

speed of transactions with real-time data exchange, and to increase revenue by

satisfying customer demands more efficiently.

Swing
Graphical User Interface (GUI) API for creating Java-based applications.

107

Appendix A Glossary

Thermocouple
A temperature sensor formed by the junction of two dissimilar metals which has a

voltage output proportional to the difference in temperature between the hot junction

and the lead wire (cold) junction.

Transistor

A basic solid-state control device, which allows or disallows current flow between

two terminals, based on the voltage or current delivered to a third terminal.

Transmission Control Protocol (TCP)

TCP is one of the main protocols in TCP/IP networks. Whereas the IP protocol deals

only with packets, TCP enables two hosts to establish a connection and exchange

streams of data. TCP guarantees delivery of data and also guarantees that packets will

be delivered in the same order in which they were sent.

Unified Modelling Language (UML)

A general-purpose notational language for specifying and visualizing complex

software, especially large, object-oriented projects.

Uniform Resource Identifier (URI)

The generic term for all types of names and addresses that refer to objects on the

World Wide Web. A Uniform Resource Locator (URL) is one kind of URI.

Uniform Resource Locator (URL)

The global address of documents and other resources on the World Wide Web.

Universal Description Discovery And Integration (UDDI)

A Web-based distributed directory that enables businesses to list themselves on the

Internet and discover each other, similar to a traditional phone book's yellow and

white pages.

108

Appendix A Glossary

User Datagram Protocol (UDP)
A connectionless protocol that, like TCP, runs on top of IP networks. Unlike TCP/IP,

UDP/IP provides very few error recovery services, offering instead a direct way to

send and receive datagrams over an IP network.

Value Object
Java object with multiple public attributes, used for setting and retrieving a number of

values in one method invocation, thereby reducing network overhead.

Virtual Laboratory

A virtual laboratory is described as either a simulation of laboratory infrastructure or a

system that provides remote access real-world laboratory equipment.

Web Service Description Language (WSDL)
An XML-formatted language used to describe a Web service's capabilities as

collections of communication endpoints capable of exchanging messages. WSDL is

an integral part of UDDI, an XML-based worldwide business registry

Web Services
The term Web services describes a standardized way of integrating Web-based

applications using the XML, SOAP, WSDL and UDDI open standards over an

Internet protocol backbone. XML is used to tag the data, SOAP is used to transfer the

data, WSDL is used for describing the services available and UDDI is used for listing

what services are available.

Webmacro
WebMacro is a 100% Java open-source template language which may be used to

separate presentation content from Java servlets.

World Wide Web Consortium (W3C)
An international consortium of companies involved with the Internet and the Web .

The W3C was founded in 1994 by Tim Bemers-Lee, the original architect of the

World Wide Web. The organization's purpose is to develop open standards so that the

109

Web evolves in a single direction rather than being splintered among competing

factions.

Appendix A__ Glossary

110

Appendix B

Overview of Stirling Engines
A Stirling Engine is a mechanical device which converts heat energy into mechanical

work. It can be used for pumping water, generating electricity or turning industrial

machinery. It does not need to use high quality refined fuels such as petrol or diesel to

make it run, but can work on any source of heat.

The Stirling engine is a heat engine that is vastly different from the intemal-

combustion engine. Invented by Robert Stirling in 1816, the Stirling engine has the

potential to be much more efficient than a petrol or diesel engine. But today, Stirling

engines are used only in some very specialized applications, in propulsion systems for

submarines for instance or auxiliary power generators for yachts, where quiet

operation is important. Although there hasn't been a successful mass-market

application for the Stirling engine, research into this area is ongoing.

The Stirling Engine relies on the principle that when a quantity of gas is

heated (usually air, but sometimes helium or hydrogen), it will expand, and its volume

will increase. If the gas is sealed in a container, then the pressure inside the container

will rise. When cooled, the gas contracts, the volume decreases and thus the pressure

will fall. Figure B-l shows the operation involved in a simple displacer type Stirling

Engine.

90 DEGREE PHASE
ANGLE IS NEEDED

CRANKSHAFT HERE /N

X REVOLUTION
POWER PISTON

HOT AIR

âJULâ JULJlJ-âJyyLâ
Figure B-l: Stirling Engine Operation (Source: American Stirling Company [86])

111

Appendix B Overview o f Stirling Engines

A displacer-type engine has a piston and a displacer. The displacer serves to

control when the gas chamber is heated and when it is cooled. In order to run, the

engine above requires a temperature difference between the top and the bottom of the

large cylinder.

In Figure B-l, two pistons are shown:

The power piston

This is the smaller piston at the top of the engine. It is a tightly sealed piston that

moves up as the gas inside the engine expands.

The displacer

This is the large piston in the drawing. This piston is very loose in its cylinder, so air

can move easily between the heated and cooled sections of the engine as the piston

moves up and down.

The displacer moves up and down to control whether the gas in the engine is being

heated or cooled. There are two positions. When the displacer is near the top of the

large cylinder, most of the gas inside the engine is heated by the heat source and it

expands. Pressure builds inside the engine, forcing the power piston up. When the

displacer is near the bottom of the large cylinder, most of the gas inside the engine

cools and contracts. This causes the pressure to drop, making it easier for the power

piston to move down and compress the gas. The engine repeatedly heats and cools the

gas, extracting energy from the gas's expansion and contraction.

There are a couple of key characteristics that make Stirling engines impractical

for use in many applications. Due to the fact that the heat source is external, it takes a

significant time delay for the engine to respond to changes in the amount of heat being

applied to the cylinder. This means that the engine requires some time to warm up

before it can produce useful power and also cannot change its power output quickly.

These shortcomings all but guarantee that it won't replace the intemal-combustion

engine any time soon. However, a Stirling-engine-powered hybrid engine might be

feasible in the future.

112

Appendix C

Calculating the Efficiency of the Stirling Engine

Figure C-l shows the configuration of the equipment used to characterise the

performance of the Sterling Engine. Note that the Stirling Engine heater and cooling

fan are both powered by the same power supply. Electric power delivered (P,n) by the

programmable power supply is converted to Thermal power (Qi„) by the silicon

rubber matt heater. Depending on the mechanical efficiency of the engine, some of

this energy is converted into Mechanical Power (Pout) in a form that turns the output

shaft and a certain speed (co). An electrical circuit diagram for the Engine is presented

in Figure 1.

A

Figure C -l: Circuit diagram for Stirling Engine Heater & Fan

As the resistance of the heater varies with temperature a precision resistor is

added in series to the heater circuit. This allows the current through the heater to be

continually monitored and the thermal power dissipation of the heater can be

established by multiply In by Vh.

First, the Current through the Heater: = IH = Vp / Rp

The voltage drop across the heater, Vh , may be determined by:

V = V - V' h r PPS y P

The mechanical power out or kinetic energy of rotation may be determined by:

pou,Pu, =Toj = ̂ mco2k 2

113

Appendix C Calculating the Efficiency of the Stirling Engine

And

o , = i A r * . - y ,)

p

Where:

T = Torque required to turn the flywheel at a measured rotational speed (co - rad/s)

m = mass of flywheel (kg)

k = radius of gyration of flywheel disk (m) (k = 0.71 r for a solid disk)

The resultant efficiency may now be calculated.

p
_ Ouipm

a T

Figure C-2 represents the expected variation in temperature difference, rotational

speed and thermal efficiency with respect to time.

Figure C-2: Variation in Temperature Difference, Rotational Speed
and Thermal Efficiency w.r.t, Time

114

Appendix D

Using the Stirling Engine Test Server Application

A Microsoft Windows-based application was developed to allow the application

server and the real-time applet to control and monitor the test equipment used. The

result, the Stirling Engine test server, is a native C++ Windows application which acts

both as a local test application and as an demonstration management server. Figure D-

1 shows the application on start-up where the previous settings are read and driver

information is loaded into memory.

t i l WebRTD Test Server

EHe Settings Help.,.

l ih i j ~>Ji±]
r £ iT y j ! f f e W] | Ihermal Efficiency |

Engine Pre-Start Control

Motor Duration (s):

|12.00

PPS Settings... |

Trigger Temp. (*C)

g(5ioo

Initializing instriJJet, please wait..._______________________________j System Busy________________S i Server Stopped___________

Figure D-l: Stirling Engine Test Server Initialising

The application has three pairs of buttons in the top left hand comer of the

main panel area which are used for;

• Programmable Power Supply (PPS) control
• Server Control
• Web-Cam Control

There are three main tabbed panels, which include Engine Pre-Start and Thermal

Efficiency sections similar to the real-time applet. A message log panel is also

provided for displaying log messages.

Message Log |

Hot Plate Temp (*C):

Cold Plate T emp. (*C):

Temperature Difference (*Ct

115

Appendix D Using the Stirling Engine Test Server Application

Engine Pre-Start

The controls on the Engine Pre-Start are similar to those that appear on the remote

applet. In addition, a progress bar is added on the right hand of the panel to indicate

the progress made in reaching the pre-set trigger temperature difference between the

hot and cold plates. Text fields are provided for specifying the starter motor duration

and trigger temperature difference. The “PPS Settings...” button may be used to

display the PPS settings dialog and will be described later.

The start button, as shown in Figure D -l, is used to start and stop the PPS,

which should result in the attached heater pad and Stirling Engine hot plate being

heated. Readouts on the right hand side will be updated in real-time, as there is no

network connection with which to contend. All readings are read using the DAQ unit.

When the trigger temperature difference has been reached, the application will signal

the starter motor to start.

Thermal Efficiency

When the Stirling Engine is operating at the trigger temperature and its flywheel is

rotating, the user may begin the thermal efficiency test procedure. This is done using

the second main application tabbed panel as shown in Figure D-2.

Cu WebRTD Test Server

0 le Settings Help...

jjdiil
Enginefre-Start Iherm al Efficiency | Message Log |

Temp. Difference (*C)

4 3 .6

T est Duration ($):

I3IÏ2 "

 M . .¡I

Rotational Speed [rad/s]

r'4

Thermal Power In (W):

Mechanical Power Out (W):

Thermal Efficiency:

Test cycle started 9 System Active (3 | S erver S topped

Figure D-2: Thermal Efficiency Tabbed Panel on Test Server Application

116

Appendix D Using the Stirling Engine Test Server Application

The test duration should be set prior to starting the thermal efficiency test.

Again the start button is used to start and stop the test procedure. The temperature

difference and rotational speed are plotted on the strip chart controls on this panel.

The values of both appear just below the controls themselves, in text fields. The

electrical thermal power input, mechanical power output and resultant efficiency are

also displayed on this panel. If the rotational speed is detected at 0 rpm for

approximately 10 seconds, then the application will display an error indicating that

the flywheel is not in motion. This message is also broadcast if necessary, if the server

facility is active. Power will continue to be supplied to the PPS to allow for an

expedient re-start.

Elapsed Time, temperature difference and rotational speed are written locally

to a file for subsequent storage in the application server database.

Server Facility

The test server application offers a server facility which may be activated if by the

user if required. Figure D-3 shows how remote access may also be monitored using

the Message Log display.

J L WebRTD Test Server

I Eie Settfrigs hfelp.,,

Engine Ero-Start) Ih e rm a l Efficiency Message Log |

19:14 50 [INFO
19:15:07 [INFO
19:15:19 [INFO
19:16:25 [INFO
19.16:25 [INFO
19:17:05 [INFO

IrotiuNet inittataed
T est cycle stated
Test cycle finished
Initialising command server, please wait..
Command server started
User barnesd authorised from host 136.201.1.3

Remote control request received from barnesd_________________ % System Ready_______________ Server Started

Figure D-3: Message Log Display

117

Appendix D Using the Stirling Engine Test Server Application

The middle pair of buttons in the top left-hand comer of the main application

window allows the user to activate and de-activate the server facility. If this facility is

enabled, then administrator users are allowed to control the application remotely

depending on their remote address. Controls on the application are updated to reflect

the current state of operation of the test procedure. For example, if the remote user

signals the thermal efficiency test procedure to begin, the start button text will read

“Stop” and the status bar will indicate that the system is active similar to that shown

in Figure D-2.

If the server facility is enabled, then values of temperature difference and

rotational speed are broadcast to a class D IP network address. This allows multicast

clients to read and display current values. No data is transmitted and no remote access

is possible when the server facility is disabled.

Available Configuration Items

The Settings menu in the main application window contains a number of menu items

which enable the user to configure a number of hardware and software settings.

Programmable Power Supply Settings

The PPS requires voltage and current values to be prior to operation. These values

may be specified using the PPS Settings dialog box as shown in Figure D-4.

1
Safety Idle Time (s)

[24.00

Voltage(V): Current(A):

124.00 10.80

: OK j| Cancel

Figure D-4: PPS Settings Dialog Box

Power Supply Settings

118

Appendix D Using the Stirling Engine Test Server Application

This dialog box is also used to supply what is known as the “Safety Idle

Time”, the idle time allowed where no local of remote access has been made, before

power to the PPS is discontinued.

Server Settings

Permitted remote host addresses may be entered using the server setting dialog shown

in Figure D-5. Only clients from these addresses will be given a token from the

application, otherwise a request denial exception will be thrown. If necessary, this

restriction may be removed by clicking on the “Allow All Hosts” radio button.

1

P Synchronize with W e b Cam Server

¿How All Hosts

(• S pecify Authorised Control Hosts -------------------------------------

1127.0.0.1

m ainfram el. stanford edu
o bero n l 2. stanford, edu
webrtd-host.stirling.com

RTD Server Settings

R em o ve Clear All

O K 1 C ancel

Figure D-5: Server Settings Dialog Box

A check box is also provided on this dialog box to allow the launching and

terminating of the third-party web-cam image server to be synchronised with the

actions of the server facility.

Data Acquisition Unit Settings

Figure D-6 shows the dialog box used to configure the input sensors used in the

experiment. Not all channels were utilised but this feature allow different types of

thermocouples to be used if necessary.

119

Appendix D Using the Stirling Engine Test Server Application

InstruNet Settings n

Scan Interval Delay (ms):

120

Channel Sensor Type Wiring Integration (s) Description

1 K Thermocouple Differential 0.016666 Channel 1

4 K Thermocouple Differential : 0.016666 Channel 4

7 Voltage Differential 0.016666 Channel 7

10 Voltage Differential 0.016666 Channel 10

13 Voltage Differential 0.016666 Channel 13

16 Voltage Differential 0,016666 Channel 16

19 Voltage Differential 0,016666 Channel 19

22 Voltage Differential 0.016666 Channel 22

OK Cancel

Figure D-6: DAQ Unit Settings

The scan interval delay shown here represents the delay used between

sampling and processing loops in the thermal efficiency test cycle.

Web-Cam Settings

A third-party freeware application is used to transmit data to the remote web clients.

The web-cam settings dialog box shown in Figure D-7 is used to supply the

information necessary to launch and terminate the image server application. A check

box is provided to disable the web-cam feature if, for instance, a web-cam is not

available.

Web Cam Settings m

17 Enable W e b Cam

(v Run Minimized

W e b Cam Server Location:

CAT est ServerVCarnServ.exe

Server W indow Caption:

[Microsoft W D M Image Capture (Win32)

Browse..

0(C Cancel

Figure D-7: Web-Cam Settings Dialog Box

120

Appendix D risitiy the Stirling Engine Test Server Application

Test Data Results Callback

On completion of the thermal efficiency test cycle the test data may be sent to a

database for long-term storage. This setting may be made in the Result Data Settings

dialog box shown in Figure D-8

r
Result Data Settings m

v* tn a ra e Lentralisea D ata Logging

SO AP Endpoint:

|http:iVlocalhost:8080/ibo$s-net/semceSi'T estResults

Username: Password:

|root

ÖK j Cancel

Figure D-8: Result Data Settings Dialog Box

The SOAP protocol is used to send the test data to the application server and

the dialog box allows the SOAP endpoint to be specified. The application server

requires a username and password to be sent as part of the SOAP message. These

values can be supplied here also.

121

Appendix E

XML Deployment Descriptor - ejb-jar.xml

<?xml version = "1.0" encoding = "UTF 8" ?>
<!DOCTYPE e jb -ja r PUBLIC "-//Sun M icrosystem s, Inc.//DTD Enterprise
JavaBeans 2.0//EN" "h ttp ://java .sun .com /d td /e jb -ja r_2_0 .d td">

<ejb jar>
< d escrip tio n > V irtu a l Lab A p p lic a tio n < /d e s c rip tio n >
<display n a m e > V ir tu a l L a b o ra to ry </disp lay name>
<enterprise beans>

<session>
<description>

V ir tu a l Lab M a in A ccess P o in t EJB
</description>
<e jb n a m e > V ir tu a lL a b < /e jb nam e>
< h o m e > n e t .w e b r td .e jb .V ir tu a lL a b H o m e < /h o m e >
< re m o te > n e t .w e b r td .e jb .V ir tu a lL a b < /re m o te >
<e jb c la s s > n e t .w e b r td .e jb .V ir tu a lL a b B e a n < /e jb class>
<session ty p e > S ta te fu l< /s e s s io n type>
<transaction ty p e > C o n ta in e r< /tra n s a c tio n typ e>
<env entry>

<env entry name>
E n g in e R e fe re n c e

</env entry name>
<env entry ty p e > ja v a .la n g .S tr in g < /e n v entry type>

<env entry value>
c o rb a lo c : :1 .2 @ e n g in e h o s t .r td h o s t .n e t :3 0 3 0 /A u th F a c to ry

</env entry value>
</env entry>

<security identity>
<run as>

<role n a m e > In te rn a lU s e r< /ro le name>
</run as>

</security identity>
</session>

<session>
<descrip tion>Test R esu lts C a llb a c k B ean < /d escrip tion >
<e jb n a m e > T e s tR e s u lts < /e jb nam e>
< h o m e > n e t.w e b r td .e jb .T e s tR e s u lts H o m e < /h o m e >
< re m o te > n e t.w e b r td .e jb .T e s tR e s u lts < /re m o te >
<ejb c la s s > n e t.w e b rtd .e jb .T e s tR e s u lts B e a n < /e jb class>
<session ty p e > S ta te le s s < /s e s s io n type>
<transaction ty p e > C o n ta in e r< /tra n s a c tio n type>

<security identity>
<run as>

<role n a m e > In te rn a lU s e r< /ro le name>
</run as>

</security identity>

122

http://java.sun.com/dtd/ejb-jar_2_0.dtd

Appendix E XML Deployment Descriptor - eib-iar.xml

< resource ref>
<res ref n a m e > m a il /M a il< /re s ref nam e>
<res ty p e > ja v a x .m a il.S e s s io n < /re s type>
<res a u th > C o n ta in e r< /re s au th>

</resource ref>
</session>

< en tity>
<descrip tion>M odels a data acquisition u ser< /d es crip tio n >
<e jb n a m e > R T D U s e r< /e jb nam e>
<local hom e>

net.w ebrtd.ejb .RTDUserHom e
</local hom e>
< local > net. w ebrtd .ejb.RTDUser</local>
<e jb class>net.webrtd.ejb.RTDUserBean</ejb class>
<persistence ty p e > C o n ta in e r< /p e rs is te n c e type>
<prim key c la s s > ja v a .la n g .S tr in g < /p r im key class>

< reentran t> F a is e < /re e n tra n t>
<cm p v e rs io n > 2 .x < /c m p version>

<abstract schema nam e>
RTDUser

< /ab strac t schema nam e>

<cm p fie ld>
<field n a m e > io g in < /fie ld nam e>

< /cm p field>
<cm p fie ld>

<field n a m e > p a s s w o rd < /fie ld nam e>
< /cm p fie ld>
<cm p field>

<field n a m e > n a m e < /fie ld nam e>
< /cm p field>
<cm p fie ld>

<field n a m e > u s e rT y p e < /fie ld nam e>
< /cm p fie ld>
<cm p fie ld>

<field n a m e > a u to N o tify < /f ie ld nam e>
< /cm p field>
<cm p fie ld>

<field n a m e > e m a il< /fie ld nam e>
< /cm p fie ld>
<prim key fie ld > lo g in < /p rim k e y fie ld>

< /e n tity >

< en tity>
<descrip tion>History Log Record</descrip tion>
<e jb n a m e > H is to ry R e c o rd < /e jb nam e>
clocal hom e>

net.w ebrtd .ejb .H istoryR ecordH om e
</local h o m o
< local > net. w ebrtd .ejb.H istoryRecord</local>

123

Appendix E XML Deployment Descriptor - eib-iar.xml

< e jb c la s s > n e t.w e b rtd .e jb .H is to ry R e c o rd B e a n < /e jb
class>

<persistence ty p e > C o n ta in e r< /p e rs is te n c e type>
<prim key c la s s > ja v a .la n g .O b je c t< /p r im key class>
< re e n tra n t> F a ls e < /re e n tra n t>
<cm p v e rs io n > 2 .x < /c m p version>

<abstract schema nam e>
historyrecord

< /ab s trac t schema nam e>
<cm p fie ld>

<field n a m e > h is to ry T e x t< /fie ld nam e>
< /cm p field>
<cm p fie ld>

<field n a m e > e v e n tD a te < /f ie ld nam e>
< /cm p field>

< /e n tity >

< en tity>
<descrip tion>U ser R o le D e fin itio n < /d e s c rip tio n >
<e jb n a m e > U s e rR o le < /e jb nam e>
< local h o m e > n e t.w e b rtd .e jb .U s e rR o le H o m e < /lo c a l

hom e>
< local > n e t .w e b r td .e jb .U s e rR o le < /lo c a l>
< e jb c la s s > n e t.w e b rtd .e jb .U s e rR o le B e a n < /e jb class>
<persistence ty p e > C o n ta in e r< /p e rs is te n c e type>
<prim key c la s s > ja v a .la n g .O b je c t< /p r im key class>
< re e n tra n t> F a ls e < /re e n tra n t>
<cm p v e rs io n > 2 .x < /c m p version>
<abstract schema n a m e > ro le _ s c h e m a < /a b s tra c t schema

nam e>
<cm p fie ld>

<field n a m e > ro le N a m e < /fie ld nam e>
< /cm p field>
<cm p fie ld>

<field n a m e > ro le G ro u p < /fle ld nam e>
< /cm p fie ld>

< /e n tity >

< en tity>
<description>

S tir lin g E n g in e T e s t D a ta D e fin it io n
< /descrip tion>
<e jb n a m e > E n g in e D a ta < /e jb nam e>
< local h o m e > n e t.w e b rtd .e jb .E n g in e D a ta H o m e < /lo c a l hom e>
< local > n e t. w e b r td .e jb .E n g in e D a ta < /lo c a l>
<e jb c la s s > n e t.w e b rtd .e jb .E n g in e D a ta B e a n < /e jb class>
< persistence ty p e > C o n ta in e r< /p e rs is te n c e t y p o
<prim key c la s s > ja v a .la n g .O b je c t< /p r im key class>
< re e n tra n t> F a ls e < /re e n tra n t>
<cm p version> 2 .x < /c m p version>
<abstract schema nam e>

enginedata_schem a
< /ab strac t schema nam e>

124

Appendix E XML Deployment Descriptor - eib-iar.xml

<cm p fie ld>
<field n a m e > te s tID < /fie ld nam e>

< /cm p fie ld>
<cm p fie ld>

<field n a m e > d e lta T < /fie ld nam e>
< /cm p field >
<cm p field>

<field n a m e > ro ta tio n a lS p e e d < /f ie ld nam e>
< /cm p field >
<cm p fie ld>

<field n a m e > tim e E la p s e d < /fie ld nam e>
< /cm p field >

< q u ery>
<query m ethod>

cm ethod n a m e > fin d D a ta B y T e s tID < /m e th o d nam e>
<m ethod param s>

cm ethod p a ra m > in t< /m e th o d param >
< /m eth o d param s>

< /q u e ry m ethod>
< e jb q l>

<! [CDATA[

SELECT OBJECT(data)
FROM enginedata_schema data
WHERE data.testID = ?1

]]>
< /e jb q l>

< /q u e ry >

<q u ery>
<query m ethod>

< method n a m e > e jb S e le c tT e s tID L is t< /m e th o d
nam e>

<m ethod p a ra m s />
< /q u e ry m ethod>
< e jb ql>

<! [CDATA[

SELECT DISTINCT data.testID
FROM enginedata_schema data

]]>
< /e jb q l>

< /q u e ry >
< /e n tity >

< /en terprise beans>

<relationships>
< e jb relation>

< e jb relation nam e>
R T D U ser H is to ry R eco rd

< /e jb relation nam e>
< e jb relationship role>

125

Appendix E XML Deployment Descriptor - eib-iar.xml

<e jb relationship role nam e>
RTDUser has records

< /e jb relationship role nam e>
< multiplicity > O n e < /m u ltip lic ity >
<relationship role source>

<e jb n a m e > R T D U s e r< /e jb nam e>
</relationship role source>
c cm r field>

<cm r field n a m e > h is to ry R e c o rd s < /c m r field nam e>
<cm r field ty p e > ja v a .u til .C o lle c t io n < /c m r field typ e>

< /c m r fie ld>
< /e jb relationship role>

<e jb relationship role>
<e jb relationship role nam e>

record belongs to RTDUser
< /e jb relationship role nam e>
< multiplicity > M a n y < /m u ltip lic ity >
ccascade delete / >
<relationship role source>

<e jb n a m e > H is to ry R e c o rd < /e jb nam e>
</relationship role source>
<cm r fie ld>

c cm r field n a m e > R T D U s e rc /c m r field nam e>
c /c m r fie ld>

c /e jb relationship role>
c /e jb relation>

ce jb relation>
ce jb relation n a m e > R T D U ser U s e rR o le c /e jb relation nam e>
ce jb relationship role>

ce jb relationship role n a m e > R T D U ser h as ro le s c /e jb
relationship role nam e>

c m u ltip lic ity> O n ec /m u ltip lic ity >
c relationship role source>

c e jb n a m e > R T D U s e rc /e jb nam e>
c/re lationship role source>
ccm r fie ld>

ccm r field n a m e > u s e rR o le s c /c m r field nam e>
ccm r field ty p e > ja v a .u til .C o lle c t io n c /c m r field

type>
c /c m r fie ld>

c /e jb relationship role>

ce jb relationship role>
c e jb relationship role name>roles belong to RTDUser
c /e jb relationship role nam e>
c multiplicity > M a n y c /m u ltip lic ity >
ccascade delete / >
crelationship role source>

ce jb n a m e > U s e rR o le c /e jb nam e>
c/re lationship role source>
ccm r field>

ccm r field n a m e > R T D U s e rc /c m r field nam e>

126

Appendix E XML Deployment Descriptor - eib-iar.xml

< /c m r field>
< /e jb relationship role>

< /e jb relation>
</re lationships>

<assem bly descriptor>
<security role>

cro le n a m e > In te rn a lU s e r< /ro le nam e>
</security role>
<security role>

<ro le n a m e > A d m in R o le < /ro le nam e>
</security role>
<m ethod permission>

<role n a m e > A d m in R o le < /ro le nam e>
<m ethod>

<e jb n a m e > V ir tu a lL a b < /e jb nam e>
<m ethod n a m e > *< /m e th o d nam e>

< /m eth o d >
< /m ethod permission>

<m ethod permission>
<role n a m e > A d m in R o le < /ro le nam e>
< method >

< e jb n a m e > T e s tR e s u lts < /e jb nam e>
<m ethod n a m e > *< /m e th o d nam e>

< /m e th o d >
< /m eth o d permission>
<m ethod permission>

<ro le n a m e > In te rn a lU s e r< /ro le nam e>
< method >

<e jb n a m e > R T D U s e r< /e jb nam e>
<m ethod n a m e > *< /m e th o d nam e>

< /m e th o d >
< /m eth o d permission>

< method permission>
<role n a m e > In te rn a lU s e r< /ro le nam e>
< method >

<e jb n a m e > H is to ry R e c o rd < /e jb nam e>
<m ethod n a m e > *< /m e th o d nam e>

< /m eth o d >
</m eth o d permission>

< method permission>
<role n a m e > In te rn a lU s e r< /ro le nam e>
< method >

<e jb n a m e > U s e rR o le < /e jb nam e>
<m ethod n a m e > *< /m e th o d nam e>

< /m eth o d >
< /m eth o d permission>

<m ethod permission>
<role n a m e > In te rn a lU s e r< /ro le nam e>
< method >

127

Appendix E XML Deployment Descriptor - eib-iar.xml

< e jb n a m e > E n g in e D a ta < /e jb nam e>
cm ethod n a m e > *< /m e th o d nam e>

< /m eth o d >
< /m ethod permission>

<container transaction>
< method >

<e jb n a m e > R T D U s e r< /e jb nam e>
<m ethod n a m e > *< /m e th o d nam e>

< /m eth o d >
< method >

<e jb na me > History Record < /e jb nam e>
cm ethod n a m e > *< /m e th o d nam e>

< /m eth o d >
< method >

<e jb n a m e > U s e rR o le < /e jb nam e>
<m ethod n a m e > *< /m e th o d nam e>

< /m eth o d >
< method >

<ejb n a m e > E n g in e D a ta < /e jb nam e>
<m ethod n a m e > *< /m e th o d nam e>

< /m eth o d >
<trans a ttr ib u te > Required< /tra n s a ttribu te>

< /conta iner transaction>

<container transaction>
< method >

<e jb n a m e > R T D U s e r< /e jb nam e>
< method n a m e > g e tU s e rD a ta < /m e th o d nam e>
<m ethod in tf> L o ca l< /m eth o d intf>
cm ethod params />

< /m eth o d >

< method >
<e jb n a m e > R T D U s e r< /e jb nam e>
<m ethod n a m e > s e tU s e rD a ta < /m e th o d nam e>
<m ethod in tf> L o c a l< /m e th o d intf>
<m ethod p a ra m s > R T D U s e rD a ta < /m e th o d param s>

< /m eth o d >
<trans a ttr ib u te > R e q u ire d < /tra n s attribu te>

< /con ta iner transaction>
</assem bly descriptor>

< /e jb ja r>

128

