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Abstract

Feelings, or affect, are a fundamental part of human experience. Arousal and valence
make up core affect and have received intense study in affective computing. Speech
and facial features have been extensively studied as predictors of core affect. Other
indicators of affect include head- and eye-based gestures, yet these are underexplored
for affect prediction. In this dissertation, handcrafted feature sets from head and eye
modalities are proposed and evaluated in two audiovisual continuous (core) affect
prediction experiments on the RECOLA and SEMAINE affective corpora.

In the first experiment, head- and eye-based features were input to deep feed-
forward neural network (DNN), along with speech and face features, for unimodal
continuous affect prediction. Two proposed head feature sets and one eye feature
set outperformed minimum performance benchmarks, estimated human prediction
performances, for arousal prediction on both corpora. The more complex head
feature set proposed performed second-best overall, after speech, and best from the
visual modalities, for arousal prediction. This feature set obtained validation set
concordance correlation coefficient (CCC) scores of 0.572 on RECOLA and 0.671
on SEMAINE. For valence, head feature sets performed best from those proposed,
and best overall for valence prediction on SEMAINE (CCC = 0.289), however,
these sets were unable to match or exceed human performance estimates. From this
experiment, it was concluded that head-based features are suitable for unimodal
arousal prediction. It was also concluded that arousal prediction performance within
-15.82% of speech, relative CCC, can be obtained from head-based features.

In the second experiment, the proposed feature sets were evaluated with speech
and face features for multimodal continuous affect prediction using DNNs. The ex-
perimentation included a fusion study, cross-modal interaction feature investigation,
and the proposal for, and evaluation of, teacher-forced learning with multi-stage re-
gression (TFL-MSR). TFL-MSR is a method for leveraging correlations between
affect dimensions to improve affect prediction. An algorithm screening-based sensit-
ivity was also performed to highlight important feature groups for prediction in the
different corpora. Model fusion performed better than feature fusion in the experi-
ment. Relative CCC performance increases of 4.91% and 18.23% on RECOLA and
13.18% and 74.17% on SEMAINE above model fusion speech and face were observed
for arousal and valence respectively for multimodal systems that used all modalit-
ies. One eye and face cross-modal interaction feature was discovered for valence
prediction on RECOLA and it was able to improve CCC prediction performance by
2.66%. TFL-MSR improved valence prediction on RECOLA but not on SEMAINE
where a small arousal and valence correlation relationship was present. Interesting
cross-corpus similarities and differences were found in the sensitivity analysis that
indicated some feature groups have similar importances, while other feature groups’
importances were inverted across the social situations in the corpora. The final
models of this work produced test set CCC results of 0.812 for arousal and 0.463 for
valence on RECOLA and 0.616 for arousal and 0.436 for valence on SEMAINE.

The usefulness of the proposed head and eye features has been shown in this
research, and they can also facilitate model interpretability efforts as the handcrafted
features are themselves interpretable. This work provides researchers with new
affective feature sets from video and methods that can improve affect prediction
and potentially other social and affective computing efforts.
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Chapter 1

Introduction

Emotion has been studied since ancient Greece and has attracted a lot of scholarly

attention. Descartes proposed a number of passions (emotions) of the soul (mind)

in his final published work [1], while Darwin postulated that emotion expressions

could be deciphered from visual and audible cues in man and animals [2]. In recent

times, affective computing has become a thriving research field, with multidisciplin-

ary research efforts being developed from psychology and computer science (among

other fields) for automatic recognition and synthesis of affective states. With the

increasing development and ubiquity of technology today, there has never been a

more important time to extend our understanding of the cues available for affective

computing. Affective computing can be a power for good, with applications pos-

sible in fields such as cyber (patho)physiology/psychology assessment [3]–[6] and

human-computer interaction [7].

Within affective computing, recognition of basic emotions or categories of affect

had traditionally been the community’s focus. However, there has been increased in-

terest in continuous prediction of dimensional affect in recent times [3], [8], [9]. This

is perhaps due to the improved realism of this approach. For example, emotion and

affect are inherently subjective and nuanced, transcending clear category boundaries

in all but stereotypical or prototypical displays. Moreover, affect varies across time

and expression in different people, or even within the same person in a different

context [10]. Predicting affect dimensions continuously allows for representations of

affect that may escape human verbal description and allow temporal gradients of

affect to be obtained [11]. Speech, video, face and physiological measures have been

investigated for continuous affect prediction [12]–[15]. However, visual affective cues

from head- and eye-based modalities have not been explored to any great extent.

1
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1.1 Problem statement

1.1.1 Problem space

In continuous affect prediction, researchers aim to automatically predict a numerical

value for affect dimensions in pseudocontinuous time. In order to make predictions,

a model (or models) must be trained using a machine learning (ML) algorithm (or

numerous algorithms) on data. An example of the generation process for primary, or

raw, data can be seen in Figure 1.1 (a), where two individuals are interacting using

computers connected by a network. The subjects are encoding their affective states

into an audio-video recording while also decoding their interlocutor’s affective states

from the audio-video stream as part of the social situation. This recorded primary

data is then annotated, as in Figure 1.1 (b), where a human rater provides numerical

judgements of their perceptions of affective dimension intensities based on a subject’s

external display. The annotations are usually provided by more than one annotator

[3], [11], [16] in order to gather a more reliable estimate of affect perception for later

model training and prediction performance evaluation.

After primary data has been gathered and annotated, features are extracted

from the audio-video data. A model is then trained using these features as inputs

to the model as depicted in Figure 1.1 (c). Extracting features involves calculating

attributes of the raw data. Ideally, these attributes perform well for the prediction

task, in this case, continuous affect prediction. The focus of the work presented in

this dissertation involves investigating the benefit of head- and eye-based feature

sets for audio-video continuous core affect prediction. Core affect is composed of

two dimensions, namely, arousal, ranging from activated to deactivated, and valence,

ranging from pleasant to unpleasant. It is a component of all affective experience [17]

and due to its ever-present nature, successful prediction of core affect is beneficial

for affective computing.

1.1.2 Research question

The research question addressed in this Ph.D dissertation is

For audiovisual communication, how much of an improvement in the continuous

prediction of core affect can be achieved by processing the combined cues gathered

from an individual’s speech, head and eyes?

Since core affect [17] is under assessment in this work, references to “affective state”

or “affect prediction” for the experiments carried out in this work are used as short-

hand for core affective state or core affect prediction respectively.
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(a)

(b)

(c)

Figure 1.1: Continuous affect prediction model development stages: (a) raw audi-
ovisual data collection, (b) affect dimension annotation, (c) affective feature extrac-
tion and model training (affect dimension learning) for later prediction.
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Multimodal continuous affect prediction aims to increase model performance by

leveraging additional information extracted from different modalities. Speech and

facial features, for example, have been extensively investigated in affective research,

resulting in feature sets and taxonomies [7], [18]–[21] for these modalities. Also,

it is known that eye and head gestures can compliment facial displays of emotion

[22]–[24], while emotion perception in speech is enhanced in the presence of head-

based cues [25], [26]. Furthermore, the eyes’ pupils are known to react to affectively

salient events [27]–[29], while paying attention to the eyes of individuals can assist

in decoding affective signals [30]. Less research attention has been given to cues

based on different head- or eye-based measures for continuous affect prediction from

audio-video, however, despite evidence of their contribution to affect perception and

displays. The head and eye modalities require exploration so that more affective

information can be extracted from subject-provided videos and the benefit of con-

sidering these modalities as part of affect prediction systems can be assessed. The

scope of the research of the visual modalities in this work was limited to their use in

the presence of speech with the intention to augment and/or compliment speech for

affect prediction. For the experiment chapters of this dissertation, Chapter 4 and

Chapter 5, the main research question of this dissertation was further broken into

unimodal and multimodal subquestions respectively. This was done to assess the

potential of head- and eye-based features on their own and when included as part of

multimodal system input. A number of challenges for this research are presented in

Section 1.2. These challenges informed experimental designs to sufficiently answer

the subquestions and overall research question for this research.

1.2 Challenges

1.2.1 Input features

Engineering a high-quality feature set for modelling algorithms is a difficult task

requiring knowledge of the underlying process [31]. As part of the engineering pro-

cess, a low-level representation of a required feature, a low-level descriptor (LLD),

must be sought. In some cases, these LLD representations are calculated from raw

or preprocessed raw data and the time resolution for these features often ranges

from tens to hundreds of milliseconds. After a set of LLDs has been selected, mid-

and high-level features may be obtained across longer time windows, or time chunks

[31], to enhance feature representations prior to modelling, resulting in an initial

feature set. Some high-level features include mean and standard deviation (SD)

functionals of LLDs for a specific time window [21], [32]. It is also possible to gen-

erate, or automatically learn, feature representations directly from raw data using
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a neural network [33], [34]. Also, the generated features from different modalities

may interact with each other (e.g. head movement and speech interaction) resulting

in further informative features of affect that should be investigated for multimodal

systems [35]. Also, in the process of generating features as input to algorithms,

some poor predictors of affect may be added inadvertently. Challenges raised by

this process include:

• What features should be gathered from specific modalities and how should

they be extracted for the purpose of continuous affect prediction?

• Do cross-modal feature interactions exist and are they useful for prediction?

The Literature Review, Chapter 2, indicates how the first research challenge question

can be addressed. Chapter 4 provides a proposal for an evaluation of head- and

eye-based feature sets for continuous affect prediction inspired from the reviewed

literature. The extraction of the proposed features using different temporal windows

is also evaluated in the chapter. The second research challenge question listed above

pertains to multimodal evaluation of the proposed features. This issue is addressed

in Chapter 5.

1.2.2 Modelling

For modelling continuous affect, considerations can include which modelling tech-

nique to use, how to employ features or predictions from different modalities for final

predictions and how best to take advantage of correlated affect dimensions. Both

traditional machine learning and deep learning modelling techniques have been em-

ployed in affective computing. Each modelling technique brings with it challenges

such as gathering enough training data, selecting appropriate parameter values and

avoiding overfitting in model training. Also, researchers accept that affective di-

mensions are correlated [35] and this can be used for modelling purposes, however,

affect dimensions are often modelled separately [14], [36].

Some challenges of continuous affect prediction modelling therefore include:

• What algorithm or modelling technique is best for the prediction of continuous

affect?

• How should features or modality predictions be fused together to make the

most effective multimodal model?

• Should correlations between affective dimensions be employed for modelling,

and if so, how should this be done?
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For the first research challenge listed above, the review of relevant research,

Chapter 2, showed what modelling techniques have been used, and research oppor-

tunities, for continuous affect prediction modelling. The second and third research

challenge questions above are addressed in Chapter 5 of this document, where mul-

timodal experimentation was conducted.

1.2.3 Gold standard annotations

In continuous affect prediction, target values for learning and prediction consist

of estimations of consensus human annotator judgements for perceptions of affect

based on a subject’s external (face, eyes, speech) display. Therefore, a limitation

in modelling is that the target to be learned and predicted is not true in a literal

sense and the term “ground-truth” does not apply for continuous affect prediction.

The annotations provide an accessible, subjective affect perception from a group of

raters in pseudocontinuous time and this way of measuring latent affect variables is

termed gold standard. Since human annotators provide the gold standard, factors

that can have effects on the provided affect judgements include individual annotator

(dis)agreement with consensus, affective predisposition/personality [10] and reaction

time [9]. Therefore, an important challenge for this work is:

• How should annotations be processed in order to promote gold standard an-

notation reliability and model performance?

This research challenge is addressed in both Chapters 4 and 5. In each of these

chapters, effort to improve the gold standard by way of annotator delay compensa-

tion was performed.

1.3 Research objectives

Following from the identified research question and challenges that arise in continu-

ous affect prediction, the research objectives of the work presented in this disserta-

tion are as follows:

• An evaluation of previous work and current approaches related to continuous

affect prediction using speech-, head- and eye-based cues and the identification

of opportunities for advancing continuous affect prediction.

• The proposal for feature sets from head and eye modalities along with temporal

feature window, gold standard time-shifting, and feature selection investiga-

tions using the proposed features as unimodal input to deep neural networks.
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• The further use of the proposed feature sets to include a fusion study and an

investigation of cross-modal interactions of the proposed features and speech

and face features as multimodal input to deep neural networks.

• Develop and evaluate a method for leveraging correlations in affect dimensions.

• The selection of the final, developed models from this project for continuous

affect prediction that are assessed on the test sets based on the validation set

experimentation.

1.4 Research contributions

In meeting the research objectives set out for this work, the following research

contributions are provided for the affective computing community:

For the first contribution of this work, head- and eye-based feature sets are pro-

posed for continuous affect prediction. The features were evaluated in a unimodal

affect prediction experiment to assess their usefulness and their performances were

compared with unimodal speech- and face-based affect prediction systems. Different

temporal windows, gold standard time-shifts and feature selection techniques were

evaluated for the modalities under consideration as part of the experiment. The

results showed that only the head-based features are suitable for unimodal arousal

prediction from the feature sets proposed. Feature sets from the head performed

second-best for arousal prediction, after speech only, on both corpora used for eval-

uation, and crucially, these performances were above a required minimum perform-

ance baseline. Head-based features also performed best for valence prediction on

one of the experimental corpora, but they did not meet the minimum performance

baseline estimated for valence for this evaluation.

For the second contribution, fusion of the proposed features with speech and

face features was investigated to assess if, and by how much, the proposed features

can benefit multimodal affect prediction. Cross-modal feature interactions were in-

vestigated and a novel valence learning and prediction method that uses arousal

annotations on the training and validation sets and arousal predictions on the test

set for valence modelling is proposed. Only one cross-modal interaction feature was

found for valence prediction, while a few intra-modal feature interactions were found

for arousal prediction. These interaction features improved feature fusion prediction

performance for some experimental evaluations. The novel method for valence mod-

elling, teacher-forced learning with multi-stage regression (TFL-MSR), was shown to

improve valence prediction performance when there is a correlation between arousal

and valence, something that is not always present. The best-performing multimodal

models produced in this work included the proposed head- and eye-based features.
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These models use a simpler core learning algorithm compared to related research

while providing good performance for arousal prediction. This experiment showed

that the proposed features can benefit multimodal continuous affect prediction by

providing additional quality information sources for prediction.

These contributions were informed by a review of the literature, which revealed

evidence for research opportunities in developing head- and eye-based cues for con-

tinuous affect prediction. From the review, it was shown that head- and eye-based

cues are underexplored for continuous affect prediction and descriptors and methods

that should be investigated were identified.

Software to allow the research community to extract feature sets used in Chapters

4 and 5 are made available on this project’s GitHub repository1. Software generated

for experimentation/dissemination in this work is released under the responsible AI

licence2. This source code licence disallows health and medical issue surveillance

and diagnostics without human involvement, for example. Also, all the work in

this dissertation was carried out on publicly available audio-video research corpora

where the consent of the participant subjects was given.

1.5 Peer-reviewed publications

Publications resulting from this work, for which outputs may have been taken ver-

batim, include the following:

J. O’Dwyer, N. Murray, and R. Flynn, “Eye-based Continuous Affect Prediction”,

in 2019 8th International Conference on Affective Computing and Intelligent In-

teraction (ACII), IEEE, Sep. 2019, pp. 137–143, ISBN: 978-1-7281-3888-6. DOI:

10.1109/ACII.2019.8925470.

J. O’Dwyer, “Speech, Head, and Eye-based Cues for Continuous Affect Prediction”,

in 2019 8th International Conference on Affective Computing and Intelligent In-

teraction Workshops and Demos (ACIIW), IEEE, Sep. 2019, pp. 16–20, ISBN:

978-1-7281-3891-6. DOI: 10.1109/ACIIW.2019.8925042.

J. O’Dwyer, N. Murray, and R. Flynn, “Head and Eye Features with Teacher-forced

Learning for Multimodal Audio-Video Continuous Affect Prediction”, planned for

submission to International Journal of Human-Computer Studies.

1.6 Overview of this dissertation

The remainder of this dissertation is structured as follows. Chapter 2 provides a

review of the literature with a focus on head- and eye-based affect signalling and

1https://github.com/sri-ait-ie/Non-intrusive affective computing
2https://www.licenses.ai/

https://doi.org/10.1109/ACII.2019.8925470
https://doi.org/10.1109/ACIIW.2019.8925042
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perception and continuous affect prediction using speech-, head- and eye-based cues.

Important background information is provided and research results that informed

the selection of the proposed features and motivated this project are discussed. Fol-

lowing the review of related work, Chapter 3 provides information on the affective

corpora and experimental approach chosen for this research. The selected audio-

video affect corpora are presented, discussed and explored quantitatively. The core

affect learning algorithm and a high-level experiment architecture for the experi-

mental results chapters to follow are also detailed in this chapter. In Chapter 4,

head- and eye-based feature sets are proposed and evaluated in a unimodal continu-

ous affect prediction experiment. The experimental work culminates in Chapter 5

where multimodal fusion of the proposed feature sets with speech and face features

is presented. Cross-modal interaction features and affect dimension correlation ex-

ploitation by way of TFL-MSR is also investigated in this chapter. A final summary

and concluding remarks for this dissertation are given in Chapter 6.



Chapter 2

Literature Review

This chapter provides background theory and a critique of research relevant to this

project. In Section 2.1, background on emotion/affect representation is given along

with discussion on identified affective phenomena for prediction in this work. This

is followed by a review of evidence promoting and informing the use of head- and

eye-based cues for continuous affect prediction in Section 2.2. An introduction to

commonly used algorithms and performance measures, and a review of continuous

affect prediction work related to this research is provided in Section 2.3. Concluding

remarks for this chapter are provided in Section 2.4

2.1 Emotion/affect representation

In order to provide computational systems for affect or emotion analysis, a theoret-

ically sound description of emotion or affect must be obtained. There are multiple

schools of thought within psychology as to which of basic emotions [37]–[39], ap-

praisal theories [40], [41], or dimensional affect [17], [42] best describe subjective

feeling or emotion representation (i.e. an individual’s internal subjective state).

Basic emotion theorists posit that emotions can be discretely classed, for example

happy or angry, based on observed expressions. Appraisal theories rely on sub-

jective recall (appraisal) of an individual’s internal state while dimensional affect

describes components of, but not all of, affective experience. Emotion concepts

(words) are needed to accompany dimensional measurements along with context

and other factors [17]. Figure 2.1 illustrates the different approaches taken in the

field, ranging from basic emotion to psychological constructionist theories. Each of

these approaches have advantages and disadvantages, which are briefly explored in

the following sections.

10
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Figure 2.1: Emotion/affect theories ranging from basic emotions through appraisal
theories to psychological construction/constructionist from [43]. Image adapted to
suit this dissertation with permission. ©Elsevier 2016.

2.1.1 Basic emotion theories

Darwin’s theory of emotion [2] suggests that emotions are of a natural kind; they are

hardwired, innate, and have universal expression across cultures and in some cases,

species. Some basic emotion theorists inspired by this theory include Tomkins [44]

and Ekman [38], who base their theories on facial expressions of emotion categories.

Other Darwinian examples include Panskepp [37] and Adolphs [45], who argue that

emotions represent functional states of the brain with homologies between human

and non-human animals. These theorists do not agree on the number of basic

emotion categories or functions, but they do all adopt an evolutionary view. Within

this framework emotions are viewed as natural, caused, and biologically primitive.

Perhaps the most widely accepted of these emotion theories within affective com-

puting is Ekman’s six basic emotions [38]: happiness, sadness, anger, fear, surprise

and disgust. An advantage of Ekman’s approach is the simplicity of the model,

which is attractive for computation as there are a few clearly distinguishable cat-

egories to be recognised. Also, intuitively, it might appear that some facial ex-

pressions of emotion contain more general information across cultures, for example,

prototypical displays of happiness. A drawback of this approach, however, is the

potential of basing emotion categories solely on facial expressions, whether impli-

citly or explicitly. Ekman himself acknowledges that emotions can exist without

them being facially expressed (e.g. shame and guilt), and that deceptive displays of

emotion from the face are possible [46]. More generally, describing emotion solely

using basic emotion theory (i.e. discrete, general/natural categories) means redu-

cing a complex event, into a simpler, irreducible one which may not account for all

the variation in emotion episodes. This has been contested by appraisal [47] and

dimensional theorists [17] within psychology.
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2.1.2 Appraisal theories

Appraisal theories rely on subjective evaluations provided by individuals that relate

to their own perceived internal state based on events and situations [41]. Compared

to basic emotion theory, which suggests that emotion is biologically primitive and in-

nate, appraisal theories require cognitive evaluations of subjective experience. These

theories therefore provide for heterogeneity in emotion episodes. Within these theor-

ies, there exist both causal (i.e. emotions are caused or elicited) and constructionist

(i.e. individuals psychologically construct their emotion or affect) appraisal theories

[43]. For a causal appraisal theory example, Scherer’s component process theory

[41], [48], shown in Figure 2.1, proposes that stimulus evaluation checks linked to

valence, activation and power, correspond to relevance, implications, coping poten-

tial, and normative significance appraisal objectives. These sequential appraisals

determine the emotion that an individual experiences at a given moment. Some

appraisal variables within this framework include, novelty, intrinsic pleasantness,

and goals/needs for the relevance appraisal objective and control, power, and ad-

justment for the coping potential appraisal objective. This model is comprehensive

in its approach as it takes the physiology, action tendencies, motor expression, and

subjective feelings of the individual into account for each appraisal process as shown

in Figure 2.2. On the other hand, the Ortony, Clore and Collins (OCC) appraisal

model [40], [49] does not view emotion to be caused by subjective appraisal, instead

to be psychologically constructed based on individuals and situations. In this model

emphasis is placed on situations and the appraisals provide structure rather than

cause. OCC theory appraisals are provided based on valenced (evaluative) reactions

to event outcomes, acts of agents and aspects of objects at the highest level, as

shown in Figure 2.3. This results in pleased or displeased, approving or disapprov-

ing, and liking or disliking affective reactions, respectively, to these differing aspects

of appraisal [49].

Self-reported appraisals have been described as possibly the best indicator of

prototypical emotion episodes by dimensional affect theorists [17]. Also, subjects

implicitly take individual differences and context into account in their appraisals of

their own state which is advantageous for this approach. However, appraisal theories

do present some practical disadvantages for certain computational applications. The

reliance on self-reporting may not be desirable if detailed temporal resolution of af-

fect measurements are required, or if it is either impossible or unreasonable to query

a subject for their appraisals. Some pathologies, such as dementia or dysarthria,

and computer usage such as gaming or audio-video calling, are some examples. The

work of appraisal theorists is important for affective computing, however. These

theories provide agreement on the utility of evaluative (valence) measurements [40],
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Figure 2.2: Scherer’s component process theory from [48]. Copied with permission.
©Elsevier 2005.

[41], [48], [49] for affective computing efforts. Moreover, these theories provide valid-

ity for some dimensional theories of affect in addition to highlighting some variables

and processes that are beneficial when researchers can take advantage of subjective

appraisals.

2.1.3 Dimensional theories of affect and emotion

Modern dimensional theories of affect and emotion follow from Wundt [50], where he

reasoned that fundamental feelings, which can develop into emotions, are described

as having some mixture of the components: pleasurable-unpleasurable, exciting-

depressing, and straining-relaxing. Other components that he claimed as charac-

teristic of emotion include intensity and a temporal component called occurrence.

In recent times, there has been many affect dimensions employed for affect and emo-

tion description, e.g.: approach, arousal, attention, certainty, commitment, control,

dominance, effort, fairness, identity, obstruction, safety, upswing, liking, novelty,

intensity and valence [11], [42], [51]–[53]. Within affective computing, arousal and

valence are the most commonly incorporated dimensions in continuous affect pre-

diction corpora despite an argument that emotion is not two-dimensional [51]. The

authors of [51] do concede, however, that the additional dimensions that they pro-
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Figure 2.3: OCC model of emotion structure adapted from [40].
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pose for emotion description (dominance, novelty) with arousal and valence may

not account for all emotion. This means that a low-dimensional representation of

emotion, if possible, is still an open problem.

Scholsberg first proposed a two-dimensional structure of facial emotion expres-

sion [54] and this model was later refined and shown to represent a cognitive structure

of affect by Russell [42]. Russell’s circumplex model (Figure 2.4) is composed of two

graphically orthogonally placed bipolar dimensions, namely, arousal, ranging from

positive (activated/aroused) to negative (deactivated/sleepiness), and valence ran-

ging from positive (pleasant) to negative (unpleasant/misery). This two-dimensional

structure of affect was later termed core affect [17], which the authors state is al-

ways present but need not be directed at anything. Core affect describes important

features of a prototypical emotion episode. The authors distinguish a prototypical

emotion episode from core affect as “a complex process containing an antecedent,

appraisal, physiological, affective, and cognitive changes, along with behavioural

responses and self-categorisation” [17]. Therefore, core affect is a required but not

sufficient phenomenon for measurement in the explanation of complex emotion struc-

ture. A core affect measurement can be taken as the distance from the centre of

the circle, comprised of an arousal and valence measurement, to a point within or

along the circumplex shown in Figure 2.4. A disadvantage to this approach is that it

describes only features or properties of an emotion episode as opposed to appraisal

theories, which can theoretically provide better estimates of such complex events.

Also, this measurement model on its own may be unable to distinguish between com-

binations of high positive arousal, low negative valence states, for example, emotion

instances of fear vs anger. However, core affect does have the advantage of being

ever-present, resulting in potentially increased temporal resolution for this type of

affect if it can be estimated accurately. Additionally, core affect has the benefit of

fewer requirements for measurement as it comprises only one important aspect of

emotion, not the entire multidimensional emotion space. These benefits are partic-

ularly important for continuous affect prediction where temporal gradients of affect

are sought.

2.1.4 Discussion

Both appraisal and dimensional theorists agree that emotion is complex and multifa-

ceted [17], [40], [41], [51]. Therefore, while it is perhaps true that certain prototypical

emotion instances may be considered innate or basic, these instances may not al-

ways be observable in everyday emotion displays. These appraisal and dimensional

theorists additionally agree that both valence (evaluative) and arousal (physiolo-

gical) features of experience should be considered for affect or emotion assessment.
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Figure 2.4: Two-dimensional circumplex model of affect from [42] with various affect
concept words plotted.

In some cases there is an additional focus on power/dominance (level of control or

helplessness) and novelty (also encompassing unexpectedness/unpredictability) di-

mensions [41], [51]. It is therefore clear, from this review of psychological literature,

that the accurate measurement and prediction of valence and to a lesser extent,

arousal, is of utmost importance to the affective computing community. The OCC

appraisal theory places less focus on arousal [49] for affective experience and emo-

tion, a sentiment echoed in [10]. However, omitting arousal would render affective

computing researchers not measuring core affect, which, this author believes, is a

fundamental consideration in affective computing research, based on the reviewed

literature [17], [40], [41], [50].

In terms of impact, the effective measurement and prediction of arousal and

valence can be beneficial in several ways. Arousal, the state of interoception or in-

ternal physiological evaluation, interacts with autonomic nervous system activation

and wakefulness states of the brain in addition to affect [55]. Its effective prediction

can find application in everyday scenarios where high negative arousal (e.g. sleepi-

ness) is unsafe or unwanted, for example, driver drowsiness detection or education

delivery assessment. Conditions of hyperarousal are associated with attention-deficit

hyperactivity disorder, bipolar disorder and anxiety disorders [56], which allows for
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pre-clinical/clinical impact of its successful prediction. Valence, which is also known

as exteroception or external evaluation, lets one know how they are doing: do they

feel positive/negative, or did they find stimuli pleasant/unpleasant, and to what de-

gree? Excessive negative experience of this affect is associated with both depression

and anxiety disorders while sensitivity to this affect is associated with neuroticism

[10], [56]. It is clear that the affective computing community acknowledges the

importance of arousal and valence, with equal emphasis placed on each dimension

in contrast to OCC appraisal theory, for example. Every accepted continuous af-

fect prediction corpus available contains estimations of these measures for affect

prediction in subjects [7], [11], [16], [53]. Therefore, effective prediction of these

measures provides applicability in a number of contexts as data are available for

social situations ranging from human-virtual agent interaction [11] to advertisement

watching/discussion [53].

This section has introduced some models for emotion and affect representation

that have informed the selection of affect measures for investigation in this research.

Inspirational works from psychology have been briefly reviewed and areas of agree-

ment (e.g. valence) identified, while potential areas of impact for affective computing

have also been discussed. For the interested reader, further details on appraisal emo-

tion theories related to affective computing can be found in [57], while interesting

discussions on basic emotion theories vs constructionist theories are provided in [43]

and [58]. The next section deals with the review of evidence promoting head- and

eye-based cues as visual descriptors of affect.

2.2 Head and eye-based affect

Despite a large body of evidence linking head- and eye-based cues to emotional

and motivational state conveyance [22]–[28], [32], [59]–[65], the use of these cues

is underdeveloped for continuous affect prediction. Head cues have been shown to

contribute to emotion signalling during speech [24]–[26], [66] and visual displays of

emotion [24], [59], [60]. There is also an inherent relationship between head pose

and eye gaze [59], [67]. Further, direct (or opposing this, averted) eye gaze is a social

signal [22], [23], [68], while the pupils are responsive during emotional arousal [27],

[28], monetary incentive, penalty, or after verbalisation [29]. Finally, while eye blink

can be considered a confounder for gaze and pupil information, blink rate contributes

information on cognitive processes [69] and complete eye closure alters the neural

response of perceivers of faces [68]. It is clear that head- and eye-based cues are

important for subjects under study. They are also important in the decoding of

affect by raters who observe these visual features. The remainder of this section
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briefly reviews related research and findings regarding salient descriptors of affect

from these modalities.

2.2.1 Head affect

The head can offer important social interaction cues. For example, acknowledgement

cues can take the form of nods, while conveying affective states such as embarrass-

ment can be achieved by turning one’s head slightly away and downward from an

interlocutor according to Cohn et al. [59]. It is usually measured in terms of 3

dimensions, namely, rotation/orientation: yaw; pitch; roll, while a further 3 dimen-

sions are also possible, translation/location: x; y; z, as are higher-level features such

as head nods. Kaliouby and Robinson [70] used head nod, tilt and shake HMM fea-

tures learned from head pitch, roll and yaw sequences respectively. They combined

these features with facial gestures to learn mental state classifiers and found that

head nod was linked with the agreement state and head shake was linked with the

disagreement state. The authors further used the head and facial features combined

to successfully recognise complex mental states automatically. This is important for

affective computing because the brain may not respect the line between affect and

cognition [71]. Gunes and Pantic [72] used similar head features to [70] and achieved

results comparable to speech for unimodal continuous affect prediction using SVR.

In a cross-cultural perception study by Shibata et al. [60], high-arousal was found to

be associated with an upright head and trunk while low-arousal was associated with

the trunk moved back and the head moved forward or back. Negative-valence was re-

lated to a head and a trunk lying forward across cultures in this study. The authors

further showed that trunk and head angles were significant features in regression

analysis (arm and leg configurations were also included as regression features) for

each of arousal, valence and dominance affect classes. Adams et al. [24] found the

head and face to be complimentary during non-verbal subjective emotion recognition

in videos. They also showed that features outside of head nods and shakes may be

beneficial for emotion recognition systems. Recognition rates did not significantly

differ (analysis-of-variance) in videos containing nod/shake cues compared to ones

containing general head motion or static head poses.

In terms of cross-modal complimentarity, head pose/gesture is important for use

with speech cues. In a study of 17 intimate couples, head pitch angular displacements

were found to be larger during conflict when compared to non-conflict discourse by

Hammal and Cohn [62]. Busso et al. [25] showed head cues and speech prosody

to be strongly linked by objective measures (0.69 average r across emotions). They

additionally carried out a subjective experiment that showed emotion perception

changing in the presence of different head motion patterns. Livingstone and Palmer
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[26] concluded that vocalists’ head movements encode emotional information during

speech and song, and that observers could identify emotion based on head movement

alone. Positive vocalisation was associated with an upright held head while negative

vocalisation was associated with a downward held head in their study. Low-level

head-based features have been shown to be effective for unimodal emotion prediction

in the presence of speech by Ding et al. [65]. Forty-five features based on discrete

Fourier transform of angular head movements, gathered using a motion capture

system, along with a static measure of head pitch, were used as input to machine

learning classifiers in [65]. The best results achieved among the classifiers included

94% for neutral, 79% for sad, 57% for happiness and 72% for angry which indicated

that low-level (i.e. not directly discriminating nods, shakes) head-based measures

can be useful for emotion classification. Previous research clearly shows that head

poses and gestures should be considered for continuous affect prediction, both in the

presence and absence of speech.

2.2.2 Eye affect

Eye gaze, the line of sight between an individual and an object of fixation, can

be a powerful social and affective cue. While very complex overall, some simple

examples of gaze-related movements are: fixational movements (fixation, drift), sac-

cades (faster jerky movements), and smoother-type pursuit movements [67]. The

eyes act as both decoders and encoders, with gaze allowing individuals to orient

themselves/their attention toward salient stimuli or decode threat cues. Directly

gazing toward someone else’s eyes while in a state of anger (mutual gaze) allows

one to convey dismay directly at the intended subject. This phenomenon has been

proposed as the shared signal hypothesis by Adams and Kleck [22], [23], where they

suggest that a person’s eye gaze shares information with the intended emotion dis-

play. Within the shared signal hypothesis, direct gaze toward a person is said to

be related to approach-oriented emotions such as joy or anger, and averted gaze

related to avoidance-oriented emotions such as sadness or fear. The eyes have also

been shown to be important features when processing faces during eye saccade sim-

ulation [73] and in the perception of facial emotion displays [22], [23], [74]. Direct

eye gaze has been shown to contribute to attentional blink [63], which is to say,

increased attentional processing on direct gaze stimuli that can cause reduced or di-

minished attentional processing of stimuli at later points in time. Also, Duncan and

Feldman Barrett offer the hypothesis that the amygdala enhances visual awareness,

ensuring environmentally salient information reaches conscious attention [71]. This

is in contrast to traditional thinking of the amygdala as a threat/fear detector. More

recently, interpretation of a study with a patient who suffered amygdala damage,
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[30], indicated that it may not be that the amygdala is a fear detector. Instead, the

amygdala may facilitate spontaneous attention to salient cues associated with fear,

in the case of [30], widened eyes.

In affective computing research on eye gaze, a direct/averted gaze feature was

used to improve facial expression emotion recognition in images by Zhao et al.

[75]. Their results showed that angry, sad, fear and disgust recognition could be

improved by considering direct/averted gaze with facial features. Ringeval et al.

[76] attempted to automatically predict both subject-provided annotations and de-

picted audio-visual displays of affect, based on the annotator’s eye gaze data as

input to SVM. The authors additionally provided correct and random emotion feed-

back (using an on-screen emoticon) to the annotators as part of their experiments

and used gaze count (gaze fixated on emoticon), gaze interval (time spent away

from emoticon) and horizontal and vertical eye gaze movement as their LLDs. The

authors calculated statistics based on the LLDs as part of their feature set and re-

cognised passive/active arousal and negative/positive valence ratings provided by

the subjects 82.2% and 69.9% in cross-validation F-scores respectively. Of further

interest in this work is that the authors found an improvement in classifying the

actual, depicted and gold standard valence values based on the gaze input data, a

score of 74.8%. This work showed that eye gaze data of perceivers may be useful

in generating objective valence annotations. Wang et al. [77] used a Tobii EyeX

controller to gather on-screen x, y eye gaze data that was used together with com-

puter mouse features for stress recognition in computer users. The feature vector

contained gaze-mouse coordination features, including average speed of gaze, speed

of mouse and others. Correctly classified rates of 94.4% and 82.9% were achieved

in 5-fold cross-validation and LOSO-CV respectively, showing the usefulness of eye

gaze and mouse cues in stress detection.

The human pupil allows light to enter the eye retina. Its size is controlled by the

muscles of the iris, which contains nerves and receptors for the autonomic nervous

system, known to generate response output under numerous emotional states [78].

While the pupil size is known to vary under environmental, pathological and phar-

macological conditions [79], there is a body of evidence suggesting its efficacy for

outward neuropsychologic and affective signalling in healthy individuals as well. It

was demonstrated that the pupils provide parasympathetic and sympathetic nervous

system signals by Franco et al. [61]. The authors applied physical stimuli (light flash,

cold) to subjects while measuring pupil frequency responses using singular spectrum

analysis and wavelet analysis (Daubechies family of order 10). The results obtained

showed characteristic frequencies for parasympathetic and sympathetic nervous sys-

tem activity from the stimuli, with wavelet analysis achieving comparable results

to singular spectrum analysis. Neuropsychological evidence has been provided for
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pupilliary responses to reward expectation (forecasted positive valence event) [64].

The pupils have also been known to reflect cognitive load for some time [80], [81].

An EyeLink 1000 eye tracking device was used by Aracena et al. [82] to gather pupil

size and gaze measurements from individuals observing image stimuli and a decision

tree neural network was used emotion recognition based on those inputs. The model

classified the positive/negative/neutral responses of individuals correctly at a 53.6%

rate on a subject-independent basis, based only on pupil size and x, y gaze temporal

sequence features.

Partial eye opening or closure events are involved in certain eye gazes, saccades

[83] and facial expressions of emotion [18]. Additionally, it was suggested that eye

gaze and blink share common signalling pathways by Engelke et al. [84], which

makes incorporation of eye closure and blink important for a complete investigation

of potential eye-based features for affect prediction. Perhaps the most comprehensive

work in using eye-based cues for affective computing is that of Soleymani et al.

[32]. Their features included statistics and spectral power calculations from: pupil

diameter, gaze distance, eye blink, x and y gaze coordinates, and eye scanning

and fixation gathered using a Tobii X120 eye tracker. Their eye-based features

performed best when compared to electroencephalogram and peripheral physiology

measures as input to a SVM for arousal and valence low/neutral/high classification.

For their multimodal experiment, bimodal fusion of electroencephalogram and eye-

based features performed the best overall (arousal = 67.7%, valence = 76.1%) in

LOSO-CV. The results in [32] indicate that eye-based cues are worth investigating

for affect prediction systems.

2.2.3 Head and eye affect

The head and eyes share a close relationship. For example, shortening one’s gaze

assumes head location displacement. Another example of this relationship include

certain emotion signalling of the approach-oriented emotion, joy, being accompanied

by a person’s head being held more upright [26], with gaze directed toward the joyous

stimuli [22], [23]. Alternatively, for avoidance-oriented emotions such as sadness or

fear, a person’s head may be rotated lower [26] along with an averted gaze away

from the threat or unpleasant stimuli [22], [23].

In multimodal affective computing research incorporating head and eyes, head

pitch was shown to move downward, along with changes in yaw and roll, with gaze

moving slightly upward during embarrassment smiles by Cohn et al. [59]. In auto-

matic frustration recognition by Kapoor et al. incorporating eye blink, posture, head

and computer mouse pressure measures, it was found that face and head fidgets and

head velocity were the most discriminative features [85]. However, the authors note
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that fidget measurement may not have been as reliable due to outlier values ob-

served. Ramirez et al. [86] used Omron OKAO vision software to obtain horizontal

and vertical eye gaze, head tilt and smile intensity from video to be used as visual

input feature vectors. These visual features of dimensionality 4 performed com-

parably to the AVEC 2011 baseline visual feature set [87] of dimensionality 5,900,

each using a SVM for high/low arousal and valence classification. They provided

additional validity for their feature set by outperforming the challenge baseline on

the test set using a temporal classification model. Wu et al. [88] used a single high-

level head pose and eye gaze cue which they showed improved arousal and valence

prediction when combined with facial features, compared to unimodal facial-based

affect prediction for continuous affect prediction.

Respondent reactions to negotiation offers were predicted in a dyadic scenario

using a multimodal system (which included speech, eye gaze, head pose and smile

features) at a rate of 70.8% on average for cross-validation by Park et al. [89]. The

authors further noted that symmetric smile, posture, head pose and eye gaze were

predictive of negotiation acceptance, while asymmetric head pose and eye gaze were

predictive of rejected proposals. Head- and eye-based cues have also been incorpor-

ated into the innovative computational behaviour prediction framework MultiSense

by Stratou and Morency [4]. This framework includes open-source and commercial

software and achieved r = 0.882 for distress prediction in LOSO-CV across 100

subjects. Eye gaze x, y and z, gaze distance, along with 6 degrees of freedom head

pose were incorporated into their multimodal framework. Eye opening, gaze, aver-

ted gaze, blink, and head yaw, pitch, and roll were used with speech for depression

classification by Alghowinem et al. [5]. It is also noted that the AVEC 2017 [90]

depression challenge included head pose and eye gaze features in baseline sets. It

is clear that the affective computing community is embracing head- and eye-based

cues, particularly within the psychopathology domain. These are important steps

toward fully understanding and utilising all available data from subject videos and,

moreover, improving affective computing performance and outcomes for society.

2.2.4 Discussion

It is clear from this review that head- and eye-based cues contain useful social

and affective signals. Healthy humans are adept at processing these visual signals

for disambiguating affective displays [22], [23], [30], [71], [74]. Researchers have

successfully incorporated head-based cues in terms of high-level nods, shakes and

fidget cues [72], [85], [86] and low-level head measurements in 3 or 6 degrees of

freedom [4], [25], [26] for affective computing tasks. Low-level head measurements

have the potential to capture cues outside of head nods and shakes, and they have



23 2.2. Head and eye-based affect

been shown to be useful in emotion recognition [24], [65]. Eye-based cues for affective

computing can be comprised of the pupils, gaze, saccades and numerous forms of

eye opening and closure [5], [32]. A further knowledge-based cue such as direct (and

consequently, averted) gaze can be beneficial for automatic systems [5], [75], while

features within gaze such as fixation, scanning and eye closure (lack of gaze) can

also be useful extracted features [32].

A drawback of using some head- and eye-based cues together is that they may

be correlated, perhaps due to their inherent relationship. However, they may offer

complimentary signalling for some affective states [59], [88], [89]. Looking at cross-

modal correlations may be interesting to understand correlated features but it is not

yet certain how these correlations (or lack thereof) interact in some commonly used

deep learning systems. Further, inspired by Gunes et al. [35] who identified cross-

modal feature interactions as important for investigation, interactions of head- and

eye-based features should be explicitly explored. These interactions could include,

as first steps, additive, subtractive, product or quotient interactions. The current

literature implicitly looks at feature interactions, for example, by early feature fusion

before providing input to an algorithm. Explicit feature interaction can provide new

features and insights into affect signalling and perception.

This author acknowledges that pupil cues run the risk of measuring nothing

particularly well if they measure everything (e.g. light accommodation, pharmaco-

logical, pathological, and affective/cognitive). However, their inclusion is important

for a complete study of eye-based cues for affect prediction and there is evidence

of their efficacy in providing affective signals [61], [64], [80]–[82]. Frequency-based

measures should be incorporated from the pupils [61], perhaps in the form of short-

time Fourier transform or wavelet time-frequency representations. Overall it is be-

lieved that head- and eye-based cues can offer complimentary features for multimodal

continuous affect prediction in audio-video. Further, it is believed that head-based

cues can offer competitive performance compared with speech for unimodal arousal

prediction in audio-video. Clear advantages for the head-based modality for this

task are a lack of (audible) noise and reverberation, disadvantages include noises in

the visual domain and illumination. Eye-based cues are important to understand

fully due to their dual role in the affective computing process, both as signalling com-

ponents in subjects and important decoding (perhaps even objectively so [76]) com-

ponents for annotators of audio-video. These cues can be estimated non-intrusively

from video using open-source innovations in computer vision such as OpenFace [91],

[92], which provides ease of use for researchers.

Also, it should be mentioned that there are ethical implications for the research

of head- and eye-based cues for continuous affect prediction, in spite of the benefits

that they can provide. As much as facial pose/gesture, the proposed modalities
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can offer alarming negative consequences of unwanted affect mining or unlawful

affect profiling. Examples of these affective computing mal-uses respectively include

unauthorised affect prediction or profiling someone as depressed without due clinical

assessment. In the former case what is particularly sinister behind this mal-practice

using eye and head cues is that these cues are not commissioned in the same way as

speech. Trying to remain affectively silent in this context means closing one’s eyes

and not moving one’s head or blocking the camera. Clearly, this is not always feasible

with the number of computers and applications that make use of cameras in our daily

lives today. In line with these concerns, and standard ethical research practices that

are also adhered to in the work presented in this dissertation, software generated

for experimentation/dissemination in this work is released under the responsible AI

licence1. This source code licence disallows health and medical issue surveillance and

diagnostics without human intervention, for example. Also, all of the work in this

dissertation was carried out on publicly available audio-video research corpora where

subjects consented to filming and analysis and interact in an audiovisual way. While

claims can be made about the visual modalities in this work, they are in the presence

of speech and intended to augment and/or compliment it. Therefore, performance

cannot necessarily be extrapolated to completely visual affect prediction such as the

aforementioned mal-use where the only “off switch” is to block the head and eyes

or camera.

2.3 Continuous affect prediction

Continuous affect prediction can allow for representations of affect which may es-

cape human verbal description and allows temporal gradients of affect to be ob-

tained [11]. This form of prediction can enable both short-term transient (state)

and longer term (trait) detection of affective states which can be of benefit in nu-

merous domains. This section provides details on commonly used algorithms and

performance measures before critical review and discussion of continuous affect pre-

diction literature. Specifically, SVR and long short-term memory recurrent neural

network (LSTM-RNN) learning algorithms and the concordance correlation coeffi-

cient (CCC) performance measure are presented and discussed. This is followed by

review and critique of state-of-the-art continuous affect prediction research. The

aim of this section is to present accepted methodologies and open research oppor-

tunities applicable to this research. The focus of this section is continuous arousal

and valence prediction in audio-video using speech-, head- and eye-based cues.

1https://www.licenses.ai/
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Figure 2.5: Epsilon-insensitive (with ε = 0.5) loss function used with ε-SVR com-
pared to a MSE loss function (ground-truth = 0). Here it can be seen that errors
within ±ε do not affect the loss function i.e. prediction errors inside ±ε result in
loss = 0.

2.3.1 Support vector regression

SVR is an adaptation by Vapnik [93] of the support vector machine (SVM) classi-

fication algorithm [94] for regression purposes. This algorithm seeks to construct

decision boundaries that maximise the separation between training data points and

a class boundary [94]. The training examples that contribute to the final solution

are known as support vectors. As a regression example, linear epsilon-SVR (ε-SVR)

is discussed in this section. For a prediction value, denoted ŷ, errors within a range

of ±ε to the gold standard target, denoted y, are tolerated (i.e. not penalised for)

using this method, resulting in a soft error margin. The loss function for this re-

gression technique is depicted in Figure 2.5 compared with a mean squared error

(MSE), or L2, loss function.

This ε-SVR loss function is defined as

Lε(y, ŷ) ,

{
0 if |y − ŷ| ≤ ε

|y − ŷ| − ε otherwise.
(2.1)

This results in only points outside y ± ε contributing to the loss as shown further

by the blue points in Figure 2.6.
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Figure 2.6: Example of predictions which have effect on ε-SVR loss function (i.e.
|y − ŷ| > ε) and those which do not (|y − ŷ| ≤ ε). ε = 0.5.

Slack variables, ξ− and ξ+, are introduced to represent the degree to which errors

are greater than ε:

yi ≤ ŷi + ε+ ξ+
i (2.2)

yi ≥ ŷi − ε− ξ−i (2.3)

where ŷi = w>xi + b is the prediction, based on the dot product of weights, w, with

an input feature vector for a training observation index i, xi, plus the bias term, b.

The objective function J , to be minimised to provide weight estimates, ŵ, follows

from [93]:

J = C
N∑
i=1

(ξ+
i + ξ−i ) +

1

2
‖w‖2

2

subject to


yi −w>xi − b ≤ ε+ ξ+

i

w>xi + b− yi ≤ ε+ ξ−i

ξ+
i , ξ

−
i ≥ 0

(2.4)

where C > 0 is a constant called the complexity parameter and ‖w‖2 is the L2 norm.

The C parameter controls the flatness, or, how errors outside ±ε contribute to the

solution. It is equivalent to a 1/λ regularisation constant and therefore, smaller
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C can be thought of as providing higher regularisation. The optimal solution to

Equation (2.4) has the form [95]:

ŵ =
∑
i

αixi (2.5)

where αi ≥ 0. This provides a sparse solution called support vectors (i.e. where

αi > 0) due to only errors outside yi ± ε contributing to the solution. The resulting

support vectors for function representation can be very high-dimensional [96].

Predictions in learned models are made using

ŷ = b̂+ ŵ>x, (2.6)

while expanding for ŵ’s definition gives

ŷ = b̂+
∑
i

αix
>
i x. (2.7)

With the kernelised (i.e. real-valued function with two arguments [95]) solution:

ŷ = b̂+
∑
i

αiκ(xi,x), (2.8)

where in the linear kernel case the original features are used, κ(xi,x) = x>i x.

Advantages of the SVR algorithm in modern day machine learning are the low

hyperparameter count and the capability to perform well on small or sparse data

sets. By way of example, ε and the complexity parameter C are often the only tuned

hyperparameters during linear ε-SVR. In contrast, deep learning models might have

to consider layer count, node count for each layer, learning rate and training itera-

tions among others. SVR helps prevent overfitting by promoting sparsity in solution

vectors, while the transformation of features into a higher dimensional space allows

the algorithm to prevent underfitting. The algorithm can train models using sparse

data quickly due to faster dot product calculations. A disadvantage to SVR, how-

ever, includes a potentially unmanageable amount of support vectors with increasing

training set size. Also, slower training times may be observed in large data sets due

to the way the optimisation problem is traditionally solved (i.e. iterative dual prob-

lem optimisation with small steps). However, if researchers can restrict themselves

to linear SVR, the tool LIBLINEAR [97] provides a fast solver for SVR. The LIB-

LINEAR training time can be reduced even further by choosing primal problem

optimisation only.

SVR is popular for continuous affect prediction model research [3], [7], [14], [98],

[99]. This section has provided an introduction to the SVR algorithm along with

discussion of some benefits and drawbacks to SVR. For further details on SVR the
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(a) (b)

Figure 2.7: A simple RNN illustrated with (a) recurrent connection and, (b) time
unrolled graph adapted from [102, p. 369]. Wx, Wh, and Wo are weight parameter
matrices for input, hidden, and output layers respectively. Time is indexed with t
while the black square indicates a t− 1 delay.

reader is referred to [96]. In the following section, the most popular dynamic-time

regression model algorithm for continuous affect prediction is introduced.

2.3.2 Long short-term memory recurrent neural network

The LSTM-RNN was first presented by Hochreiter and Schmidhuber [100] to avoid

the vanishing gradient problem that standard recurrent neural network (RNN) [101]

suffer from. These neural networks contain what [100] presented as memory units

that allow nodes to store context information during network training. Both RNNs

and LSTM-RNNs are intended for use with sequential data, for example, word

prediction in written language or electricity demand forecasting.

A simple example RNN with one hidden layer is shown in Figure 2.7 to illus-

trate the concept of these networks. Here we can see a recurrent connection in the

hidden layer, h, where at any t > 0 a connection of the t − 1 to the t layer can be

observed. These temporal connections are in addition to weighted input and output

connections in standard feed-forward neural networks. The intention is to allow

information from previous steps in the sequence to be incorporated in later steps.

The shallow network shown in Figure 2.7 (b) depicts output ŷt at each temporal

processing stage t of the network. It is also possible to have only one output at the

end of each input sequence or many outputs (a generated sequence) for one provided

input.

The RNN considered thus far incorporates past inputs along with the present

input for prediction output. Bidirectional RNNs are also possible. Within this
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Figure 2.8: Bidirectional RNN adapted from [102, p. 384]. Layer weight matrices
omitted for illustration purposes.

variant of RNN, both past and future context can be incorporated to produce output

ŷt. Of course, the full input sequence must be received to take full advantage of

future context. A simple bidirectional RNN is shown in 2.8.

The weights in the layers of a RNN are generally initialised to some small ran-

dom values. These values are continually adjusted during model training based on

a learning rate and a loss function value until some stopping criteria for training

have been achieved. In order to adjust the weights for each connection after a for-

ward pass of the network (illustrated in green in Figure 2.9) the gradient of the loss

L(y, ŷ) is backpropagated through the network. For a RNN, this is called back-

propagation through time (BPTT). BPTT involves running the backpropagation

algorithm through the network to obtain partial derivatives of the loss with respect

to the parameter matrices, e.g.: ∂L
∂Wx

, ∂L
∂Wh

, and ∂L
∂Wo

for a unidirectional RNN with

L(y, ŷ) =
T∑
t=1

L(yt, ŷt) (2.9)

where ŷt = Woht and ht = Wxxt + Whht−1 (nonlinear activations and bias terms

omitted for simplicity/illustration as per [103]). The intuition of the BPTT al-

gorithm is shown visually by the red arrows in Figure 2.9. The error gradient can

be seen propagating backwards in time through the recurrent layer.

In order to find the derivatives of the aforementioned parameter matrices [103]:

∂WoL =
T∑
t=1

prod(∂Wŷt
L(yt, ŷt),ht), (2.10)
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Figure 2.9: RNN forward pass (green lines) and backward error propagation pass
or BPTT (red lines) for a RNN with one output ŷ per input sequence. The back-
propagated error is used for weight parameter value updates.
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where prod(.) indicates the product of two or more matrices, provides the output

layer derivatives, and

∂Wh
L =

T∑
t=1

prod(∂Wŷt
L(yt, ŷt),Wo, ∂Wh

ht),

∂WxL =
T∑
t=1

prod(∂Wŷt
L(yt, ŷt),Wo, ∂Wxht)

(2.11)

provides the hidden and input layers’ derivatives respectively. Also, the derivatives

of the hidden layers with respect to the parameter matrices required for the above

calculation are

∂Wh
ht =

t∑
j=1

(W>
h )t−jhj,

∂Wxht =
t∑

j=1

(W>
h )t−jxj

(2.12)

because past hidden layer states affect future hidden states. Within the gradient

descent algorithm, for example, the parameter values can then be adjusted with the

update rule applied across the weight matrices:

Wo = Wo − α∂WoL,

Wh = Wh − α∂Wh
L,

Wx = Wx − α∂WxL.

(2.13)

The constant α above is known as the learning rate and is a real-valued positive

number. The learning rate therefore affects how much the derivatives change the

parameters at each training step.

An issue with RNNs is that the gradients will tend to vanish, or more rarely,

explode with increasing time steps, which results in a lack of parameters training

convergence or unstable optimisation respectively. A lack of training convergence

was shown for a binary classification RNN trained using gradient descent for input

sequences of T = 20 time steps [104], for example. Clearly, it would be beneficial

to model sequences with more time steps than this, which is what the LSTM-RNN,

a gated variant of the RNN intends to provide. A LSTM-RNN cell contains input

(or candidate memory), and gated input, output and forget activations as can be

seen in Figure 2.10 and the Equations (2.14). The forget gate controls the recurrent

cell state connection. Therefore, a node/cell can decide what temporal context to

remember and incorporate it into the cell state and the current temporal output.

The following are the forward equations for a shallow unidirectional LSTM-

RNN [103] with h hidden units and a batch of training examples of size n with
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Figure 2.10: Illustration of a LSTM-RNN node/cell adapted from [102, p. 398].
Input and hidden state output at t−1 can be seen provided to each of: input, input
gate, forget gate, and output gate activations. The cell state, controlled by the
forget gate, has a recurrent self-connection. A recurrent connection of the cell state
is possible through what are called “peephole” connections to the input, forget, and
output gates. Black squares indicate a t − 1 delay. All multiplications shown are
element-wise (also known as Hadamard) products.
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dimensionality d and Xt ∈ Rn×d and Ht−1 ∈ Rn×h (with no peephole connections

from the cell state to input, forget and output gates):

It = σ(XtWxi + Ht−1Whi + bi),

Ft = σ(XtWxf + Ht−1Whf + bf ),

Ot = σ(XtWxo + Ht−1Who + bo),

C̃t = tanh (XtWxc + Ht−1Whc + bc).

(2.14)

It,Ft,Ot ∈ Rn×h, are input, forget, and output gates respectively. Also, C̃t ∈ Rn×h

is the candidate memory, Wxi,Wxf ,Wxo,Wxc ∈ Rd×h and Whi,Whf ,Who, Whc ∈
Rh×h are weight parameters and bi,bf ,bo,bc ∈ R1×h are bias parameters for each

of input, forget, output, and candidate memory respectively additions to input, x,

and hidden, h, layer subscripts while σ is the sigmoid function.

The cell state, Ct, is then given by

Ct = Ft �Ct−1 + It � C̃t (2.15)

where � is the element-wise product. This equation shows how the LSTM-RNN

algorithm forgets as Ft will take a value between 0 and 1 from the sigmoid activation,

controlling how much of memory, cell state Ct−1, is retained. Errors can propagate

successfully through LSTM-RNNs as only relevant temporal dependencies effectively

remain while irrelevant ones are discarded. This is in contrast to standard RNNs

with constant error flow through time and thus the vanishing gradient problem

appearing with long-term dependency modelling.

Lastly, the hidden state output, Ht, is

Ht = Ot � tanh(Ct). (2.16)

Ht can then be used to provide ŷt, where for example one input sequence’s hidden

activations, ht, could be connected to a many-to-one fully-connected neural network

output layer.

It is also possible to model future and past context together using LSTM-RNNs,

where a forward (i.e. past context) LSTM-RNN and a backward (future context)

LSTM-RNN are combined into a bidirectional long short-term memory recurrent

neural network (BLSTM-RNN). Today, both LSTM-RNN variants are widely used

for continuous affect prediction model generation, with good performance achieved

in [12] and [13] using deep variants (i.e. more than one hidden layer) of LSTM-

RNNs. An advantage of LSTM-RNN and dynamic-time regressors generally, for

continuous affect prediction, is the natural fit of generated models for the sequen-
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tial, temporal nature of affect. Context (including temporal context) is important

for emotion/affect and the temporal component of emotion has been reasoned about

since Wundt [50]. Natural temporal components such as antecedent [17], evaluative

reactions [40] and sequential evaluation checks [41] have been theorised as part of,

comprising, or constructing emotion episodes respectively. The ever-present core af-

fect phenomenon accompanies these emotion episodes or parts thereof and of course

can exist outside of emotion episodes. Theoretically, effective modelling of temporal

affective changes may be of benefit to continuous affect prediction.

LSTM-RNNs, particularly the deep-layered variants, also provide advantages in

terms of feature representation. Deep neural networks combine input feature vectors

at each hidden node and subsequent deeper layers. Therefore, feature representa-

tions (and combinations of these features) helpful for the task at hand can be learned

by adjusting the feature weights. Moreover, in the case of LSTM-RNNs, these fea-

ture representations can be learned in a time-dynamic way. Also, from a practical

perspective, perhaps due to the popularity of deep learning in modern times, these

networks provide practical advantages including freely available flexible program-

ming frameworks and fast implementations of algorithms. These advantages allow

the use of various loss functions and gradient-based optimisers, different network

topologies/architectures, training strategies and faster experimental and/or hyper-

parameter evaluation. Albeit these advantages do come at the cost of increased

model complexity, with LSTM-RNNs producing, arguably, some of the most com-

plex and least interpretable of today’s available machine learning models.

This section has provided an introduction to the RNN and LSTM-RNN al-

gorithms, providing information on the algorithms’ operations and theoretical ad-

vantages for continuous affect prediction. For further details on these learning al-

gorithms and related items (e.g. vanishing gradient, optimisation) to RNNs the

reader is referred to [102] and [103]. The following section introduces the predomin-

ant performance evaluation measure currently used for continuous affect prediction.

2.3.3 Concordance correlation coefficient

Continuous affect prediction cannot rely on precision, recall or accuracy measures

based on true/false positive and true/false negative measures associated with clas-

sification due to the required continuous-valued regression/prediction problem to

be solved. The CCC value, however, was proposed by Lin [105] as a measure of

agreement and a reproducibility suitable for continuous-valued measurements. It

can take on values ranging [−1, 1] and provides a measure of both precision (trend

following) and accuracy (error) to overcome issues associated with other measures

of continuous-valued reproducibility. Examples of these problematic measures for
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reproducibility include Pearson’s correlation coefficient, r, which measures precision

only and least squares, which can fail under very small or large errors [105]. Wen-

inger et al. [106] graphically illustrated issues with using Pearson’s r as a continuous

affect prediction evaluation metric where they showed its invariance to scaling and

shifting compared to CCC. A measure that considers the trend, but not the deviation

from gold standard values can be problematic for affect prediction as predictions are

not penalised for under- or over-shooting the true gold standard value. The formula

for Pearson’s r, for comparison to CCC is defined as:

r =
σyŷ
σyσŷ

, (2.17)

where y are ground-truth (or gold standard, in the case of affect prediction) values,

ŷ are predictions and σyŷ is the covariance. An example of the difference between r

and CCC is given is Figure 2.11 for a small paired-data sample. In the figure caption

it can be seen that the perfectly correlated values y and ŷ produce very different r

and CCC values. The large difference is due to the easily observed squared-error, or

shift of -0.5, between y and ŷ that CCC is sensitive to. The CCC for a paired-data

sample is given by

CCC =
2σyŷ

σ2
y + σ2

ŷ + (µy − µŷ)2
, (2.18)

where σ2 denotes the uncorrected sample variance and µ is the mean.

The CCC is an important performance measure for continuous affect prediction,

where both precision and accuracy measures are desirable for performance estima-

tion. The CCC allows effective measurement of both of these performance metrics

in one term. This performance measure is largely used today in continuous affect

prediction research to assess model performance. Moreover, researchers are starting

to use CCC as part of their loss function for model training with improved perform-

ance over MSE in some cases, for example [33], [106]. An advantage of CCC over

MSE promoted by [106] is that training targets need not be standardised when using

this metric as a loss function. However, they also note that a MSE loss function

does maximise correlation while minimising error for standardised target values.

Of course, the linear correlation relationship specified by r values are useful in

affective computing, for example, where error measures are inappropriate such as

data naturally measured on different scales. An example of this is input feature to

arousal or valence target linear relationship assessment. Ideally features would score

high in terms of their linear relationship with either dimension of affect, indicating

that they may be predictive of the respective target affect.
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Figure 2.11: Visualisation of ground-truth, y = {0.1, 0.2, ..., 1.0}, and predictions,
ŷ = {−0.4,−0.3, ..., 0.5}. Estimates of r and CCC are 1 and 0.398 for the sample
respectively.
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2.3.4 Affect learning and prediction

Learning and predicting continuous affect is challenging, prompting increased ef-

forts in modelling affective phenomena using machine learning algorithms. Some

challenges for modelling include obtaining effective input features, addressing tem-

poral delays in gold standard annotations, effectively leveraging obtained annotation

values during modelling and feature stream fusion (for multimodal systems). This

section explores what efforts have been undertaken to address these challenges by

the continuous affect prediction research community. This section of the literature

review focuses solely on speech-, head- and eye-based continuous affect prediction.

The interested reader is directed to the survey by D’Mello and Kory [107], and the

review by Osman and Falk [108], for further information on modalities and affective

computing tasks outside this focus of this review.

2.3.4.1 Speech features

Numerous handcrafted feature sets are available for continuous affect prediction.

These sets have been developed by experts in paralinguistics and computer science

and there is ample evidence to suggest that speech-based cues convey the various

affective states of speakers [109]. Ringeval et al. [12] and Mencattini et al. [110]

used 65 LLDs based on the Interspeech Computational Paralinguistics ChallengE

(ComParE) 2013 speech feature set [31] and their first-order derivatives as speech

input for continuous arousal and valence regression. The LLDs in the Interspeech

ComParE 2013 feature set [31] consist of measures such as loudness, RMS energy,

zero-crossing rate (ZCR), Mel-frequency cepstral coefficients (MFCC) [111] (MFCCs

1-14), fundamental frequency (F0)-based, and voice jitter and shimmer measures.

The LLDs are gathered from prosody, spectral, cepstral, and voice quality speech

feature groups, which are known to perform well for speech processing, music inform-

ation retrieval and voice-based pathology analysis tasks [112]. These LLD features,

and the suprasegmental features gathered based on the LLDs (functionals of the

LLDs), are discussed in-depth Weninger et al. [112]. Test set CCC results achieved

in the literature using the ComParE LLDs, where min, max, range, mean and SD

functionals were applied to the LLDs, are 0.804 for arousal and 0.528 for valence as

part of multimodal input to LSTM-RNN-based networks [12].

Perhaps the most popular handcrafted speech feature set for continuous affect

prediction is the extended Geneva minimalistic acoustic parameter set (eGeMAPS)

set [113] developed by Eyben and colleagues. These features have been included in

numerous audio-visual emotion challenge (AVEC) events as baseline features [3], [8],

[9], [90], [114]. The base set, Geneva minimalistic acoustic parameter set (GeMAPS),

and the extended version, eGeMAPS, are proposals for shared standard feature
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sets for use in voice research and affective computing. These feature sets have a

relatively small size compared to other sets. eGeMAPS with a dimensionality of

88, for example, is favourable in terms of size compared to other proposed sets

such as ComParE 2013 [31] and AVEC 2014 [7] with dimensionalities of 6,373 and

2,268 respectively. Compared to ComParE 2013 [31], the eGeMAPS set includes

vocal tract (formant frequency features), harmonic difference measures and a smaller

number of MFCC (i.e. MFCCs 1-4) LLDs. The justification for the inclusion of the

former LLDs includes evidence of association with emotion, cognitive load, and

pathology. The latter (small number of MFCCs) LLDs are argued to be the most

important MFCCs for affect and paralinguistic analysis. Various means, standard

deviations, rates, count and percentile functionals are then gathered for a specified

time-window and rate to complete the feature set for GeMAPS/eGeMAPS. Some

practical advantages of eGeMAPS include increased ease of model interpretability

and a lower model training time compared to larger feature sets. Brady et al. [14]

achieved test set CCC values of 0.770 (arousal) and 0.687 (valence) for their system,

which included eGeMAPS and other audio features as part of their multimodal

submission.

Phoneme-based features have also been investigated for speech-based continuous

affect prediction. These are short and perceptually distinct sounds that, when com-

bined with other phonemes in a sequence, provide linguistic content from speech.

Huang and Epps [115] investigated phone log-likliehood ratio (PLLR) features for

continuous affect prediction, and they proposed a phonetically-aware acoustic fea-

ture set from speech. Each PLLR feature in [115] consisted of taking the log of

the probability of a phoneme in question divided by the average probability of all

the other phonemes in the set. Each phoneme in the set was modelled by a re-

spective hidden Markov model (HMM). When compared against traditional speech

features, the PLLR features performed comparably or better for arousal and valence

prediction, with more improvement observed for valence than arousal. The authors

also proposed a phonetically-aware acoustic feature set, PA-eGeMAPS, by repeat-

ing the 25-dimensional eGeMAPS LLD features for each of 39-dimensional Eng-

lish phonemes. The proposed 975-dimensional feature set consisted of functionals

(mean of each LLD) that were weighted based on the posterior probabilities of the

phonemes and a weighting parameter that controlled the phonetic-awareness of the

features. CCC results achieved using PA-eGeMAPS features evaluated using leave-

one-subject-out cross-validation (LOSO-CV) ranged from 0.426 to 0.735 for arousal

and 0.221 to 0.429 for valence across a range of corpora tests. Phonetic weighting

parameters used ranged from 0.05 to 0.2 indicating phonetic-awareness can benefit

continuous affect prediction in speech, however, a larger overall feature vector was

used compared with eGeMAPS, for example.
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Bag-of-words (BoW) representations of audio signals have been successfully used

for continuous affect prediction [99], [116]. The bag-of-words representation, origin-

ating from natural language processing, is a word histogram that is generated from

the frequencies of each word in a sequence from a dictionary that is searched. For

example, a bag-of-audio-words can be obtained using unsupervised learning by tak-

ing word representations from a codebook of user-specified size based on LLDs such

as MFCCs. An exemplary test set CCC performance for arousal prediction using

bag-of-audio-words is 0.753 by Schmitt et al. [99], based on SVR on the REmote

COLlaborative and Affective interactions (RECOLA) corpus [16]. Of note in [99]

was the larger temporal window required for feature extraction for valence prediction

compared to arousal for optimal performance. This difference in temporal window

for different affects, and modalities, was also found by Valstar et al. [3]. BoW-based

feature representations are also possible in text and video. BoW-based features have

been provided as baseline feature sets for AVEC since 2017 [9], [90], [114].

A trend that has developed in speech feature extraction for input to learning

algorithms is deep learning of features. Using deep learning, features can be learned

in a supervised (e.g. end-to-end paradigm) or unsupervised way. In either case, fea-

ture representations are learned from the given data (e.g. raw, minimally processed

audio, or LLDs) before being used as input to an algorithm for affect prediction.

This enables automatic learning of useful representations of the data and successful

prediction with less feature engineering effort. In an end-to-end framework, con-

catenation of feature extraction and affect prediction networks is required. Deep

learned representations of speech features for continuous affect prediction have been

used on their own [33], [34], [117]–[119], and combined with traditional handcrafted

features in [120], [121]. Trigeorgis et al. [33] used a combined convolutional neural

network (CNN)-to-BLSTM-RNN architecture in which 1-dimensional temporal con-

volution kernels were learned for feature representations from raw audio and were

applied as

(f ∗ x)(t) =
T∑

k=−T

f(t)x(t− k) (2.19)

where f is the kernel to be convolved with x. Feature transformations, after max

pooling (taking maximum feature values for a specified segment) and perhaps fur-

ther convolutional and pooling layers, are then passed to a BLSTM-RNN for affect

prediction. Chen et al. [120] used features from SoundNet [122], a novel convolu-

tional sound network trained using state-of-the-art image processing model labels, as

part of their multimodal submission to AVEC 2017 [90]. They achieved an arousal

CCC of 0.672 and a valence CCC of 0.756 for continuous prediction on the test

set, showing good generalisation capability for a system considering these features.
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What is further interesting in the approach taken in [120] is that they consider the

interlocutor’s audio features in the continuous affect prediction of subjects, effect-

ively multiplying the input feature vector by 2. They achieved better performance

with this approach than mixed audio (both interlocutor and target subject) features

together for prediction or zeroing out the interlocutor’s audio features and consid-

ering the subject’s speech on its own for prediction. Subsequently, Huang et al.

emulated this approach with success [121]. Considering the interlocutor’s influence

(i.e. features), when data such as speaker turn-taking is available, appears to be a

good strategy toward more effective continuous affect prediction in dyadic scenarios

based on these results.

2.3.4.2 Head and eye features

Features from the visual domain can be extracted using 2-dimensional convolutions

[34], dynamic space-time appearance (visual texture) descriptors [123] or geomet-

ric (measurement/tracking-based) approaches [124]. These approaches to feature

extraction from face images, for example, implicitly contain head- and eye-based

information, however, the contribution of the head and eye features to the overall

visual affect display is not clear from these features. Furthermore, instead of pixel

intensities or textures, higher-level features in the form of specific head- or eye-based

gestures from the visual domain could provide interpretability benefits for affective

computing systems. For example, downward head movement was associated with

sadness in [26] while some specific facial actions (or combinations of facial actions)

are often associated with certain visual displays of affect [18].

Gunes and Pantic [72] used HMMs to learn temporal head-based cues (nods,

shakes, other head movements) based on directional codeword cues obtained from

video. The directional codewords included rightward, upward, leftward, and down-

ward head motion. The total feature vector included: total duration of head move-

ment (codewords), mean and SD of head movement angle and magnitude, log like-

lihoods outputted by the HMMs, and a maximum likelihood classification vs the

HMM outputs. SVR was used for continuous affect learning and prediction based

on these input features. Results comparable to an independent speech-based sys-

tem of the time were achieved. Eyben et al. [125] used a similar feature vector

to [72], however, they also used event-based head nod, head shake, and other head

movement features based on the HMM outputs in their evaluations. That is, the

head-based events were present (equal to 1) or absent (equal to 0) in an utterance and

these features were combined with Ekman’s facial action coding system [18] action

unit (AU) feature events to complete the authors’ visual event-based features. Both

functionals of signal features and event-based audio features were also investigated
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in [125]. The event-based features were combined into a binary string for BoW-

based feature representation. SVR prediction carried out showed the multimodal

event-based features to perform best for valence prediction, while the best result

for arousal used either audio or audio and visual signals combined with multimodal

event-based features. The results in terms of r were 0.699 for arousal and 0.165 for

valence and these scores did not surpass group-of-humans correlation performance

estimates of 0.704 and 0.818 respectively.

Head pose was used with AU features for visual feature input to multimodal

(speech, visual, physiological features) continuous affect prediction systems by Ringeval

et al. [12]. The head pose features included three-dimensional static pose and two

short-term dynamic features, the mean and SD of the optical flow region around

the head. Visual features outperformed audio features for valence prediction while

the reverse was true for arousal in the experiments. The best multimodal affect

prediction systems always included both the audio and visual features. CCC scores

of 0.804 for arousal and 0.528 for valence were achieved using SVR-based model

fusion of LSTM-RNN models on the RECOLA [16] test set.

More recently, Wu et al. [88] used head pose and eye gaze cues gathered from

video to (1) guide an attention mechanism for learning features from face images

and (2) augment facial features for continuous affect prediction. The attention

mechanism used softmax probabilistic output for the weighting of facial features, so

that features in the sequence were given less weighting in the presence of extreme

head rotation, for example. Furthermore, the authors of [88] combined a high-level

CNN-learned pose and gaze feature of dimensionality 1 with the facial features to

provide additional information for prediction. The attention and/or combined pose

& gaze feature augmentation block improved performance compared to prediction

based on the face alone (i.e. the baseline). Unbiased validation set CCC results (i.e.

training or hyperparameter experimentation did not use the validation set) were

0.603 for arousal and 0.686 for valence on the RECOLA [16] corpus. Relative CCC

performance increases of 15.05% and 12.64% above baseline scores were obtained

for arousal and valence respectively. This work showed that head pose and eye gaze

can contribute positively to continuous affect prediction in video.

2.3.4.3 Annotations delay compensation

Weighting annotator ratings, based on the correlation of their ratings with the av-

erage cohort ratings [126] or how informative a sample of training annotations are

[119] has been investigated to improve gold standard quality [3], [9], [90], [114], [119].

It is also accepted by the community that annotators do not instantly provide their

ratings; there is a time delay between observation instant and annotator input.
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BLSTM-RNN/LSTM-RNNs have been used to address this issue [12] as it is im-

plicit in using these algorithms, designed for sequence modelling, that the network

can learn temporally salient features and delays. Improved performance was ob-

tained for the LSTM-RNNs compared to feed-forward neural networks for arousal

and valence prediction, which are unable to take advantage of temporal context in

[12]. Also, explicitly altering the time at which input features and gold standard

targets are aligned prior to model training has resulted in improved LSTM-RNN

performance [127]. Some researchers shifted targets prior to training LSTM-RNNs

irrespective of their dynamic modelling capability [13], [36]. For example, He et

al., altered the temporal alignment of features based on the average CCC between

input feature vectors and training targets before feature selection and BLSTM-RNN

training [13]. They showed a clear difference in average feature-to-target CCC by

altering temporal offsets between inputs and training targets. Others have shown

performance increases on validation set SVR by altering temporal offsets similarly

prior to model training [3], [90], [99]. Mencattini et al. [110], the authors go one

step further and estimate annotator reaction lags based, not only on individual af-

fect dimensions, but also on whether the affect is positive or negative. In their

unique approach, which they call quadrant-based temporal division, annotator reac-

tion lags and feature vectors are estimated based on maximising features-with-target

correlation using correlation-based feature selection after each temporal shift.

Khorram et al. [128] developed a new CNN node that was designed for a multi-

delay sinc network, which comprises both standard CNN nodes and delay-provider

nodes specifically designed to learn delays between input features and targets. The

delayed sinc kernel used in multi-delay sinc network was implemented with a win-

dowed sinc function to approximate the Dirac delta function to provide temporal

delays by lowpass filtering. The bandwidth of the sinc kernel and rectangular tem-

poral window size were pre-selected for these nodes while the time delay parameters

were learned. Results obtained for this network, using 40 mel-frequency bank input

features, did not outperform implicit annotator delay compensation (i.e. LSTM-

RNN [12]) for audio only arousal prediction on the RECOLA [16] test set, but did

so for valence. Also, the results obtained on the German-language subset of SEWA

[53], outperformed LSTM-RNN [120] (on validation set) but they could not out-

perform the explicit annotator reaction lag compensation used with CNN in [129].

Ouyang et al. [130] used an auto-regressive model with exogenous variables for

speech affect prediction. This model can use time-delayed versions of ŷt and xt

while a delay between features and target variables is also possible in addition to

current x values for its prediction at time t. The authors obtained competitive audio

only results on the AVEC 2016 [3] and 2017 [90] development sets, but they did not

provide test set results so model generalisability cannot be fairly assessed.
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2.3.4.4 Feature selection

When generating models for continuous affect prediction, it can arise that not all

input features in a feature set are relevant to the task at hand. Further, there may

be redundant features that can affect model performance, or there may be simply

too many features present in a set for an algorithm to generalise well on unseen data.

Also, with large input feature vectors, algorithms will take longer to train models

and model interpretability enters a larger (i.e. dense) space. This can result in less

progress for both model development and model interpretation efforts. In summary,

the goals of feature selection are to (1) reduce the number of input features in the

feature space, and (2) improve model performance. In order to achieve these goals,

researchers apply a feature selection algorithm to reduce the feature space and/or

select the good subset of features for the task at hand. Optimal feature selection is

a very difficult problem in computer science, it is non-deterministic polynomial-time

hard, and therefore algorithms often use heuristic methods in order to select some

reasonable subset of features.

Affect prediction algorithms have been used that incorporate feature selection

automatically, such as L1 regularised regression [130] which can effectively “zero-

out” features and encourage sparsity due to the L1 penalty applied. In further

supervised approaches, correlation-based feature selection has been used [13], [110],

[131], which selects features that have higher feature-with-target correlation and

lower feature-with-feature correlation to maximise feature relevance and minimise

feature redundancy. A similar approach to feature relevance can also be achieved

using mutual information (MI) estimation instead of correlation such as the mRMR

algorithm [132] which was shown to improve affect prediction performance by Paul

et al. [133]. Further heuristic algorithms include sequential forward selection (SFS),

which iteratively adds features one by one until no performance improvement is

observed for some number of iterations, and filter-based methods. With a filter, a

simple feature-with-target association measure can be applied and features outside

a defined threshold removed. Principal component analysis (PCA) has been used

for unsupervised feature selection [13], [121] and cross-cultural feature adaptation

[134] in continuous affect prediction. PCA finds orthogonal projections in data such

that the projection error is minimised and data are represented as a subspace of

the original data. Users can then select the first k principal components or base

their selection of k components on retaining some percentage of the original data’s

variance to achieve dimensionality reduction compared to the original features. An

advantage to PCA is that it can be done on test set or unseen data [134], with the

limitation of course that the whole test set must be provided in advance. However,

PCA transforms the original features to achieve dimensionality reduction, which
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may be undesirable if strict feature reduction is required. Amiriparian et al. [131]

provided an evaluation of different feature selection algorithms for continuous affect

prediction. Among the numerous techniques employed, SFS was used to achieve

the best arousal prediction performance on both validation and test sets. SFS also

performed best for valence prediction on the validation set, while feature selection

was not able to improve any test set evaluations for this dimension. The authors

concluded that valence requires more features than arousal for prediction, thus ren-

dering their feature reduction approaches ineffective.

2.3.4.5 Affect modelling algorithms

Continuous affect prediction work by Nicolaou et al. [135] showed BLSTM-RNN to

outperform SVR by way of root mean squared error and Pearson’s r performance

metrics. They argued that BLSTM-RNN is particularly suitable for continuous af-

fect prediction due to the temporal nature of affective expression features (onset,

apex, offset). Today, LSTM-RNN/BLSTM-RNNs are by far the most popular of

learning algorithms for continuous affect prediction model generation [13], [33], [34],

[36], [119]–[121], [127], [136]. However, emotion episodes may be short-lived, with

Ekman observing that the majority of emotions exist in the 0.5 to 4 seconds range

[137]. Moreover, it is not always clear what sequence length authors use as input to

their LSTM-RNN/BLSTM-RNN models [36], [136], much less what amount of con-

text is incorporated by humans (already cognitively loaded) in providing continuous

annotations.

Within deep learning approaches, researchers have further used joint-learning in

the form of multi-task learning (MTL) [12], [120], [138] to effectively leverage affect

dimension correlations during modelling. MTL involves simultaneous learning of

prediction tasks in one network, which for continuous affect prediction could include

arousal, valence and dominance learning, for example. In this way, the overall loss

to be used for backpropagation can be the sum or weighted sum, of individual (e.g.

arousal, valence) losses in the hope of capturing feature weights which better describe

affect. MTL has been used to varying degrees of success, with Chen et al. [120]

and Parthasarathy and Busso [138] observing increased continuous affect prediction

performance for MTL compared with single-task learning, although the converse

has also been shown [12]. In [12], MTL was superior for valence prediction using

audio features and arousal prediction using video features. However, the authors

also showed single-task learning to be superior for arousal prediction using audio and

valence prediction using video. This experiment and the trend in the community to

model individual affect dimensions separately [13], [14], [33], [36], [121], [127], [128],

[136], [139], perhaps indicates that MTL may not always be the best option in terms
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of performance.

Sridhar et al. [139] demonstrated that higher regularisation is required for more

effective valence prediction from speech when using a deep feed-forward neural net-

work (DNN). They say that valence cues in speech are more speaker-dependent.

Improved performance using higher dropout, where nodes are randomly not used

for model learning, with probability 0.7, was observed for valence in their work while

arousal and dominance networks performed best with a node-use probability of 0.5.

Another type of MTL that has been carried out in affect prediction, is modelling in-

dividual annotator’s ratings for one single affect dimension. Ringeval et al. [12] took

this approach and found that valence prediction can be improved when modelling

all 6 annotation streams instead of just the mean of all 6 raters. This result did not

hold for arousal prediction from speech, however, so perhaps individual annotation

modelling better captures the idiosyncrasies of valence.

Schmitt et al. [129] used a CNN to investigate the need for recurrence for con-

tinuous affect prediction. The authors showed improved performance on the SEWA

[53] German test partition compared to their previous work [140] for arousal pre-

diction using LSTM-RNN, however, they did not do so for valence. Their results

are comparable to, and in some cases better than, related work using LSTM-RNN.

Perhaps this was because CNN can learn local temporal and spatial features and

these features might be more relevant to the task, albeit further empirical findings

are required to support this.

Outside of deep learning, SVR remains popular for continuous affect prediction,

where it has been used as the main algorithm [131], as part of a multiple regres-

sion system [14], [136] and as a fusion regressor [12], [127], [136]. Murphy [95,

p. 506], however, argues that there are better alternatives. The affective computing

community has investigated some alternatives that Murphy suggests, and others.

Relevance vector machine (RVM), a sparse solution technique that provides prob-

abilistic output, has been used along with Gaussian mixture regression (GMR) and

Gaussian process regression (GPR) for continuous affect prediction by Dang et al.

[141]. The authors of [141] used GMR and GPR to model the affect (mean of the

Gaussian) and uncertainty (SD of the Gaussian) due to the inherent ambiguity in

the affect ratings provided by annotators. The authors used the dominant mixture,

the Gaussian from the mixture group that maximised the conditional probability of

targets, given the features [142], to provide their GMR output. GPR, a kernel-based

regression method, provides probabilistic output by modelling function probabilities

given some data and an additive kernel was used to model temporal feature rela-

tionships. In this way the authors modelled the joint probability of input features

and affect targets (GMR) and the temporal dynamic of the input features (GPR).

Fusion of these two systems with a RVM system was carried out using a further
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RVM for the final regression. GPR was not shown to benefit arousal prediction but

did improve valence prediction which perhaps suggests that the temporal dynamic

of features is important for valence prediction.

Partial least squares (PLS) regression was used to create single-speaker regression

model (SSRM)s for affect prediction, where the SSRMs act as input to a cooperative

regression model (CRM) for speaker affect prediction by Mencattini et al. [110]. The

CRM averages the SSRM predictions dynamically for a temporal window based on

consensus, which is the average CCC of a SSRM with all other SSRMs that fall

into the 60th-percentile or under. For comparison, the authors also investigated

SVR for SSRM building. The results showed that the SVR performed better than

the PLS regression method for SSRMs. However, the PLS method performed best

for building the CRM, which was the more general predictor overall. The authors

suggest that SVR is more prone to overfitting and simpler regression techniques such

as PLS may be more suitable for ensemble methods similar to the CRM method

presented by the authors.

Huang et al. [136] fused BLSTM-RNN, SVR, and PLS predictions by using

another SVR on provided predictions. They achieved novel performance on the

RECOLA [16] corpus validation set but this data partition was used in training and

parameter evaluation and it is therefore difficult to assess model generalisability from

their work. Han et al. [15] also fused multiple regression techniques in their unique

Strength Modelling approach to continuous affect prediction. Their technique is so

called as they aimed to leverage the strengths of both SVR (global optimum solving)

and BLSTM-RNN (temporal context modelling) while minimising each algorithm’s

respective weaknesses. Strength Modelling uses predictions from an initial model

combined with input features as input to a final prediction model. The results in

[15] showed that this approach can improve affect prediction performance.

Regularised linear regression (LR) techniques have also been used for affect pre-

diction [130], [143]. Huang and Epps [143] used regularised LR for learning state and

observation transition matrices for Kalman filter-based continuous affect prediction

from speech. The Kalman filter is a linear-Gaussian state space model that can

provide probabilistic output (mean and covariance) and it is composed of state and

observation models with Gaussian noise assumed for each. The Kalman gain con-

trols how much errors affect the observation model which is in turn used to provide ŷ

predictions based on the state model’s output plus the Kalman gain weighted error,

i.e.

ŷt = x̄t +Gt(yt − x̄t), (2.20)

where Gt is the Kalman gain, x̄t is the initial prediction and yt is an observation
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model output. The authors used a Kalman filter for continuous affect prediction

based on arousal, valence, and first and second-order differences of these dimensions.

They fused this approach with RVM and used speech-based input. They also used a

Kalman filter strictly for RVM output fusion where they improved upon the AVEC

2016 baseline [3] audio valence and arousal validation set scores.

2.3.4.6 Multimodal fusion

The problem of fusing multiple input feature streams for continuous affect prediction

is motivated by the potential for improved model performance. For example, for

a speech cue at a given time, perhaps a downward head tilt might indicate sorrow

visually. It is this complimentarity that researchers seek when fusing multiple feature

streams for affect prediction. Primarily, fusion schemes that have been investigated

fall into the categories: feature, model and decision fusion [144]. For feature fusion,

researchers concatenate signal-based features (i.e. functionals) prior to modelling

the required affect(s) and a larger input feature vector to the model results. A

variation on feature fusion, called string-based fusion, also combines features prior

to modelling except in this case the feature vectors are based on the fusion of event-

based presence/absence binary features [125]. Advantages to these approaches are

that fewer models need to be trained and, arguably, a simpler, more interpretable

model can result. Furthermore, cross-modal feature interactions can be learned in

these models. A disadvantage to these approaches, however, is that feature streams

may require synchronisation prior to modelling. LLD features occurring at different

sampling rates may have to be downsampled prior to feature extraction, invariably

introducing information loss.

Model and decision fusion involves integrating trained model predictions from

each modality model to form one final prediction for the ensemble. Decision fusion

uses a voting or weighting strategy for this, where a model can be used to learn

the decision weights. For example, SVR [9], [12], [114], [121], [127], [136], LR [3],

[8], [131], and Kalman filters [14], [143] have been used to this end. Model fusion

treats modality-wise predictions as intermediate representations, then, as part of the

overall learning process, the representations are combined to form input for (further)

latent space modelling and final prediction. LSTM-RNNs have been used for this

latent space modelling of the intermediate modality representations [13], [118], [135].

An interesting model fusion technique proposed by Nicolaou et al. [135] is output-

associative (OA) model fusion. For OA fusion, both arousal and valence predictions

from models are used for the final arousal or valence prediction. The goal is not

only to provide a prediction based on multiple input modalities but also to leverage

output correlations in determining the final prediction. Some advantages to model
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and decision fusion approaches include the relaxation of feature synchronisation

requirements and the potential to better model individual asynchronous feature

stream information. A clear disadvantage to these approaches is that there are

more models to train, resulting in a more complex overall model to manage (an

ensemble of models).

Chen et al. [118] combined both early feature fusion and model fusion to achieve

2nd place in the AVEC 2019 challenge [114]. In their approach they combined deep

learned audio and video feature streams prior to modelling using BLSTM-RNN,

and they also trained models using the individual modalities. Then, all the trained

models were combined using a further BLSTM-RNN that used the individual and

early-fused feature stream predictions as input. Another novel fusion approach that

has been researched by Han et al. [144] is implicit fusion, which was used for speech-

and face-based continuous affect prediction. Implicit fusion shares some similarities

with model fusion as unimodal model layers are later combined in multimodal shared

layers while it is similar to MTL in that multiple modality losses are optimised during

training. In [144], unimodal models, one for each modality, were learned by using

both audio and video data in training where the auxiliary modality was weighted

to contribute to a joint-learning loss. For prediction, only one modality was used

in their experiments. Implicit fusion provides an advantage of enabling multiple

modalities to be leveraged in model training while facilitating prediction where a

modality is missing from an audio-video sequence.

Feature and decision fusion methods have been compared in the literature.

Ringeval et al. found the best performance with decision fusion in [12] while Amiri-

parian et al. [131] achieved the best performance with feature fusion. In comparing

these, better audio arousal prediction performance was achieved in [12] while better

valence performance was obtained by [131] on the RECOLA [16] corpus. It must be

noted that different algorithms and features sets were used in [12] and [131]. On the

SEWA [53] corpus, the comparison work is not much clearer. In [121], the authors

found that feature fusion performed better than decision fusion for 2 of 3 validation

set evaluations. For their test set evaluations, feature fusion only performed bet-

ter for 3 out of 6 occasions (once for the German test partition and twice for the

Hungarian test partition). Further empirical work is required by the community to

determine the best fusion technique for continuous affect prediction.

2.3.4.7 State-of-the-art affect prediction results summary and discussion

The publications referenced in Sections 2.3.4.1 to 2.3.4.6 are summarised in Table

2.1 and their continuous affect prediction test set results for arousal and valence

are provided. It is noted that some of these results used additional modalities such
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as electro-dermal activity or electrocardiogram features. However, the audio-video

modalities likely contributed most to predictions as this is what annotators have

access to and base their judgements on. The inclusion criteria for the table are

that (1) The work has taken place in the last 5 years and (2) test set CCC results

for arousal and valence prediction are provided as this, in theory2, allows unbiased

estimates of model performances. Cross-cultural works are not listed in this table as

it is believed that a first step in developing relatively unexplored cues for continuous

affect prediction is intra-corpus prediction. The listed publications are considered

benchmarks against which the results presented in this work can be compared.

Input features for continuous affect prediction have traditionally been gathered

based on expert-knowledge handcrafted efforts [7], [31], [113], from the paralin-

guistic/speech domain. However, there has been a trend toward using natural lan-

guage processing [99] and deep learning techniques for this [34], [88] in recent times.

This trend could ease what can be an extensive effort in time and resources for

gathering handcrafted features, if successful. Unfortunately, these approaches do

not conclusively outperform the handcrafted feature sets. For example, audio BoW

[99] do not outperform functionals of handcrafted features [12] for audio only arousal

prediction. Additionally, the best test set result in [99] for valence combined their

BoW with handcrafted features. Further evidence of this, for the deep learned case,

is given in [34]. While the authors outperformed unimodal handcrafted feature sets

on the RECOLA [16] corpus and state their multimodal model greatly outperformed

their unimodal ones, their multimodal system did not outperform [14] if unbiased

estimates of model performance are considered from [34]. Moreover, no results in

[34] outperform that of [12], who used handcrafted features, for arousal prediction.

The multimodal results in [34] are superior to [14] if they consider models that per-

form best on the test set without matching (i.e. best) validation set performances.

The results are biased because, contrary to the validation set results, the best per-

forming models were selected based on test set performance. Both unbiased and

biased estimates of model performance according to this author are provided from

2This is “in theory” due to potential for data leakage. For example, a legitimate test set pass
contains gold standard annotation data not observable by the researcher in formulating their model
according to Kaufman et al. [145] and can be considered an unbiased estimate of performance.
However, if a model is considered based on test set performance with an accompanying learned
model that is not the best performing model on observable inputs and targets (i.e. validation set),
then data leakage has occurred. Here, a human has inadvertently used unseen data in the model
selection process, which is a form of training, therefore providing a biased test set performance
estimate. While this seems obvious, this can very easily happen to researchers who have otherwise
good intentions. The result of this biased approach could lead to degraded model performance on
future tests of the model were a set that more closely matches validation set variance is present,
for example. Finally, test set results where data leakage has occurred are not completely invalid as
they do show a score that could be achieved in modelling test set variance. However, they should
not be taken as unbiased estimates of model performance. Where possible, biased estimates of
continuous affect prediction model performance are highlighted in this work.
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Table 2.1: Summary of State-of-the-art Continuous Affect Prediction Performance
as Measured by Test Set CCC. Publications Are Listed From Highest Performing
to Lowest in Terms of Average CCC (µ) Across Arousal and Valence.

Author(s)
ML

Algorithm(s)
Data set Arousal Valence µ Notes

[14]
SVR,

CNN & RNN,
LSTM-RNN

RECOLA .770 .687 .729
Kalman filter fusion,

speech, face and
physiology input

[13] BLSTM-RNN RECOLA .747 .609 .678

Temporal feature to
annotation offset,

BLSTM-RNN fusion,
speech, face and
physiology input

[34]
CNN &

LSTM-RNN
RECOLA

.715
(.789)

.620
(.732)

.668

End-to-end multimodal,
(biased performance
estimates), speech
and image input

[12] LSTM-RNN RECOLA .804 .528 .666

Individual annotator
modelling,

reaction-time context
modelling, speech,

face, head and
physiology input

[88] CNN RECOLA .603 .686 .645

Head pose and eye
gaze guided attention,

face, head and eye
input

*[15]
SVR,

BLSTM-RNN
RECOLA
SEMAINE

.685

.346
.554
.026

.620

.186

Strength modelling,
audio, video and

face input

[99] SVR RECOLA .753 .430 .592
Annotations delay,
speech input only

*[128]
Multi-delay
sinc CNN

RECOLA
SEWA

.688

.412
.492
.379

.590

.396

Automatic annotator
delay learning,

speech input only

[144]
Gated

recurrent
unit RNN

RECOLA .611 .527 .569
Implicit fusion,

speech and image
input

[119]
CNN &

LSTM-RNN
RECOLA .693 .352 .523

Annotation
informativeness

modelling,
speech input only

[33]
CNN &

BLSTM-RNN
RECOLA .686 .261 .474

End-to-end learning,
speech input only

*Used best corpus average for ranking
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[34] in Table 2.1.

It can be seen from the literature review and Table 2.1 that head- and eye-based

features are relatively unexplored for continuous affect prediction. Only Gunes and

Pantic [72], Eyben et al. [125] and Ringeval et al. [12] used head-based features

while Wu et al. [88] use cues from both of these modalities for affect prediction.

This is despite comparable performance achieved by a head-based system compared

to a speech-based system in [72] and the best performing arousal system from Table

2.1 using head-based features. While [88] used cues from both modalities, they

do not focus on the eye gaze and head cues themselves but rather on how they

can augment facial feature learning and prediction. It could also be argued that

video cues provided for the AVEC challenges (e.g. [7], [8]) provide some information

on head- and eye-based cues. However, the focus of these provided features is on

facial expression and therefore, any head and eye information provided is in spite

of, rather than due to, the feature engineering effort employed. Moreover, from [12],

[72], [88], [125] it is difficult to discern the full extent that head- and eye-based cues

can affect model performance. For example, comparisons against and combinations

with alternative modalities are lacking and many more intra-modal features remain

to be explored (e.g. mutual vs averted gaze, scanning vs fixated gaze, head-based

frequency domain). It is clear that development of head- and eye-based cues for

continuous affect prediction should be developed, based on results presented here

and evidence to follow in the next section. Moreover, to optimise performance of

these cues and to aid efforts in model interpretability, these cues should be developed

initially based on expert/handcrafted feature methodologies.

When gathering input features for modelling algorithms, researchers should con-

sider numerous temporal windows with a view to maximising the impact of extracted

features [3], [99]. In this way temporal context may be captured for the affective

expressions that annotators base their judgements on. Additionally, researchers

should always consider, in some way, how features are temporally aligned with gold

standard annotations to account for annotator reaction lag when providing ratings

based on observed expression. This has been done explicitly, prior to modelling or

using specifically designed algorithms, or implicitly, where the model used encodes

the temporal saliency of features. Some researchers have used explicit temporal

feature-to-target offsets by shifting forward features or shifting back annotations,

even when using time-dynamic regression algorithms [13], [36], [127].

Feature selection approaches taken in the literature have largely used PCA [13],

[121], [134] or correlation-based feature selection [13], [110], [131]. It appears that,

for continuous affect prediction, consideration of nonlinear dependencies (or inde-

pendence) might also be of benefit to the community, however, this has not yet been

fully explored. For example, the mRMR algorithm [132] has performed well for con-
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tinuous affect prediction [133] and in the cognate field of emotion recognition [146],

and perhaps should be considered in future work on continuous affect prediction.

The community is not necessarily in agreement upon which affect learning and

prediction algorithm is best to use, though LSTM-RNN type algorithms currently

dominate the state-of-the-art. It has been questioned whether recurrence is required

for affect prediction [129]. However, more research is needed to determine if CNN,

for example, is a better algorithm than LSTM-RNN in terms of reducing model

complexity and matching or exceeding performance. Schmitt et al. suggest that

this can be the case [129]. However, this author believes that an even simpler feed-

forward DNN architecture may suffice as the temporal window for feature extraction

may capture enough context for continuous affect prediction. Of course, a DNN ar-

chitecture would require explicit compensation for annotator reaction lag. However,

this algorithm can produce a simpler overall model that would also be more suitable

than BLSTM-RNN for real-time prediction. BLSTM-RNN’s requirement of seeing

full sequences prior to prediction make it problematic in this regard. CNN models

are gaining in popularity for prediction [88], [128], [129], so perhaps further em-

pirical evidence (for or against CNN) is forthcoming. Other algorithms employed

include SVR, PLS, probabilistic output models (GMR, GPR, RVM, Kalman filter)

and time-series approaches. Of note is the L1 regression approach used with these

algorithms to train some of these models. This is something that this author be-

lieves should be investigated further for developing an interpretable affect prediction

model. Finally, while the MTL approach for leveraging arousal and valence correla-

tions during modelling has been used, it appears that it is not always effective [12]

nor is the technique ubiquitous for modelling. Also, according to Table 2.1, arousal

is generally predicted with higher fidelity, so there may be an opportunity to in-

vestigate a multiple-stage regression framework, inspired by teacher-forced learning

[102, p. 377], for better valence prediction. In such a framework, arousal annotations

(i.e. from the teacher) could be used to enhance training feature vectors and these

features, or arousal validation set predictions, could be used in valence validation

data.

In terms of fusion methods, there does not appear to be categorical evidence as to

which of feature, decision or model fusion is best for affect prediction. For decision

fusion, popular algorithms include LR and SVR while BLSTM-RNN networks are

regularly used for model fusion. An interesting advantage to LR is that it promotes

model interpretability, where learned weights correspond to final model contributions

in a small search space. Furthermore, it has been suggested that simpler algorithms

might outperform more complex algorithms in ensemble model learning [110]. It is

perhaps therefore important to consider both of these algorithms for decision fusion

while also considering feature fusion, or the most complex technique, model fusion,
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for optimal modelling and appraisal of features.

This section has dealt with reviewing continuous affect prediction research re-

lated to this project. Important methodological steps have been identified for deal-

ing with some challenges in learning and predicting affect (e.g. best input feature

extraction method, annotator delay compensation). Moreover, areas for improve-

ment within continuous affect prediction, such as considering head- and eye-based

features, teacher-forced learning (multi-stage regression) and further pursuing non-

linear feature selection have been identified.

2.4 Conclusion

This chapter has provided introduction and discussion across three core topics for

this dissertation: affect/emotion measurement, head- and eye-based affective cues,

and continuous affect prediction. Theoretically sound and important affect dimen-

sions that make up core affect, arousal and valence, have been shown to be worthy

of investigation in this work. Head- and eye-based features can be beneficial, based

on the review of existing research, and these cues require exploration for continuous

affect prediction. Addressing the use of these features for continuous affect pre-

diction can allow a more holistic use of videos provided by subjects for this task.

Feature sets are required to be developed for this task and further novel investig-

ation of cross-modal feature interactions, including interactions with the popular

speech modality, are required. Some ethical issues of the proposed modalities for

continuous affect prediction have been discussed along with a licencing strategy and

research application intended to disable mal-use of the research experiments and

results to follow.

The review of continuous affect prediction literature informed methodological

and algorithmic approaches taken for the experiments described in the chapters to

follow. These include different temporal windows for feature extraction, techniques

for annotator delay compensation, feature selection and the use of handcrafted fea-

ture engineering techniques, basing features on expert knowledge. The use of deep

learning type algorithms for model generation is important to set this work fairly in

context with that of the literature. Due to the complexity of the task of modelling

affect, and based on works such as [12] and [139], different models (i.e. single task

algorithms) were used for arousal and valence prediction in the experiments. Also,

teacher-forced learning, implemented with multi-stage regression, was proposed as

a novel technique for exploiting affect dimension correlations. The next chapter

details the experimental data and methods used in this work.
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Affective Corpora and

Experimental Approach

3.1 Introduction

This chapter details the affect data sets and the ML algorithm used in this work.

Rationales for selections made are given along with exploration of data and explan-

ation of algorithm operation where necessary. Finally, a high-level experimental

architecture is provided that guides further detailed experimental designs to follow.

3.2 Data set selection

The data sets chosen for this work include RECOLA [16] and Sustained Emotionally

coloured Machine-human Interaction using Nonverbal Expression (SEMAINE) [11]

audio-video affect corpora. These corpora were selected due to (i) the natural affect

displays present, (ii) differences in affect elicitation used, (iii) the high granularity

of continuous arousal and valence annotations, and (iv) the strong experimental

controls employed for data recording. For example, while the Vera am Mittag [147]

corpus does contain arousal and valence ratings, only 5-point discrete Likert scale

values in the range [−1, 1] are provided. Moreover, the annotations in this corpus are

provided at utterance and every third face image frame for audio and image corpus

partitions respectively. This may be fine for turn-level affect recognition, but this

is not the focus of this research, intended for pseudocontinuous affect prediction.

The selected corpora contain continuous number ratings in the range [−1.0, 1.0],

with annotations provided in a discrete-time continuous manner based on audio-

video, thus closer reflecting the true nature of affect which is both nuanced and

continuously varying.

Only naturalistic affect data sets were chosen in this work because acted affect

54
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data sets provide less of a challenge for learning algorithms, where the patterns

to be observed can be exaggerated, and are often prototypical in nature [107]. In

contrast to the exclusion of acted affective corpora, the SEWA corpus [53] was

not selected as it may be overly challenging for developing previously underexplored

affective features. SEWA [53] is a multilingual audio-video affective corpus and it has

been recorded “in the wild”, where different audio and video recording approaches

have been used within the corpus. The AVEC 2014 [7] corpus was also considered,

and preliminary affect prediction results were obtained on this corpus, but this

set was ultimately excluded for two reasons. Less experimental recording control

(lighting) is present in AVEC 2014 [7] and the corpus involves a human-computer

interaction task, which may not reflect audiovisual communication as well as the

selected corpora. The lack of lighting control on AVEC 2014 [7] made gathering

direct gaze features, described in the next chapter, impossible for this work. The

preliminary results gathered on AVEC 2014 [7] provided learning for the work carried

out in this dissertation. These evaluations [148], [149] showed that eye features from

video are worth investigating, and they can improve affect prediction when used with

speech, compared to using speech alone. Another corpus that contains continuous

arousal and valence ratings is HUMAINE [150], which was not selected for this work

due to the lack of recent baseline results for comparison and the larger, less focused

number of experimental settings in the corpus. Moreover, it should be noted that

the selected corpus, RECOLA [16], is widely used for continuous affect prediction

research, which facilitates the comparison of the results of this work against other

recent research. The selected corpora are further explored in the sections to follow.

3.2.1 RECOLA corpus

The RECOLA [16] corpus was selected because it is widely used by the research

community and allows for comparison of results with state-of-the-art approaches

[12]–[14], [33], [34], [88], [99], [128]. The corpus contains audio, visual and physiolo-

gical recordings of dyadic interactions between subjects collaborating on a task in

French. The subjects within each dyad communicated remotely by way of computers

and were required to reach consensus, while being recorded, on how to survive in

a disaster scenario. This resulted in spontaneous affect displays during the social

interaction. Subject meta-data such as subject age, sex and mother tongue are ad-

ditionally provided. Recordings of 23 subjects available in the set were partitioned

into training, validation and test sets with the aim of matching the distributions

used in [12]. Specifically, the training set contained subjects {P16, P17, P19, P21,

P23, P26, P30, P65}, the validation set included subjects {P25, P28, P34, P37, P41,

P48, P56, P58}, and the test set included subjects {P39, P42, P43, P45, P46, P62,
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P64}.
Continuous-valued annotations for arousal and valence in the range [−1, 1] are

provided frame-wise at 25 frames per second for each 5-minute recording in the

data set. The video for the corpus is provided at the same rate as that of the

annotation frequency. Individual annotation traces were provided for this corpus

by 6 annotators (3 male and 3 female), where raters provided their perception of

arousal or valence levels, separately, using a slider within a web-based interface. To

obtain gold standard annotations from this corpus, in this work, the mean of all 6

raters was taken for each subject recording and affect.

3.2.2 SEMAINE corpus

The SEMAINE [11] corpus, of which a small subset of the data set was used, was

selected to assess features developed in another similar, but different corpus, to

provide additional validity for experimental findings. This data set contains audio

and video, recorded using professional lighting and recording equipment, of subjects

interacting in English with sensitive artificial listener (SAL) agents. The SALs

included Solid SAL, a human playing a SAL agent, Semi-automatic SAL, where a

human operator chose from a script to produce a virtual avatar audiovisual response,

and Automatic SAL, a fully autonomous avatar. SAL characters were designed to

give the impression that they were trying to make subjects feel angry, happy, gloomy

or sensible. The subset of SEMAINE taken for the work presented in this dissertation

comes from the Solid SAL scenario, in order to match the RECOLA [16] corpus (i.e.

human-to-human discourse). Compared to free conversation, the only restriction

was that subjects could not ask SAL any questions for the social interaction. The

SAL reminded subjects of this if they did ask them anything. Subjects participated

in these interactions as: operating SAL, interacting with SAL as a user of the

system, or sometimes both (during separate session recordings) within the corpus.

The subset taken for this work includes 6 males and 6 females and the data were

partitioned into training, validation and test sets with the aim of balancing gender

and SAL character interaction. Specifically, the subject recordings that comprised

the training set were from sessions {S15, S21, S25, S34}, the validation set was

comprised of sessions {S55, S59, S65}, and the test set {S72, S77, S84, S107}. The

training and test sets were equally balanced in males, females and angry, happy,

gloomy and sensible character interactions.

This corpus is provided with continuous-valued annotations for arousal, valence,

expectation, intensity and power/dominance affect dimensions, provided at 50 frames

per second. The video for the corpus matches the frame rate of the annotations.

Annotations for arousal and valence in this corpus are provided in the range [−1, 1]
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where the FEELtrace system [151] was used for gathering these ratings simultan-

eously. Each recording was rated by 2-8 annotators. The use of the FEELtrace

system involved moving a cursor in an adjacent window to the video being listened

to and viewed corresponding to their perception of the arousal and valence levels

present in the video. The subset of SEMAINE [11] videos used in this research were

all rated by 6 annotators. Gold standard annotations were taken as the mean of all

of these annotator ratings for each subject recording and affect dimension.

3.2.3 Qualitative comparison of selected corpora

Differences in communication, affect elicitation and affective responses across the se-

lected corpora are given in Table 3.1. Selecting corpora across different experimental

protocols enables the assessment of the efficacy of proposed features for continuous

affect prediction during different task-specific conditions and social scenarios. While

the experimental corpora have beneficial differences, a potential confound is cultural

differences between subjects. It is noted that it cannot be ruled out that one culture

may have a preference for visual affect display as opposed to verbal, biasing the

effectiveness of a particular modality.

Table 3.1: RECOLA and SEMAINE Audio-Video Corpora Language, Task, Com-
munication and Affect Display Settings

Corpus Language Task Communication Affect

RECOLA [16] French
Collaborative dyadic

problem solving
Human to

human
Natural,

spontaneous
SEMAINE [11]

Solid SAL
English

Responding to artificial
character questions

Human to
agent

Natural,
elicited

3.2.4 Quantitative comparisons of selected corpora

For the following analyses, statistics for annotator agreement and arousal and valence

annotations are provided. Visual distributions and correlations between arousal and

valence are also given. Interesting similarities and differences between the corpora

for these analyses are discussed.

3.2.4.1 Average annotator agreement

Average annotator agreement in CCC is provided as the mean CCC across annotator

pairs in Table 3.2. These calculations were carried out for the entire data sets

first, and then the on the individual partitions that contributed to the whole set

analysis. If the average annotator CCC is taken as a baseline, the SEMAINE [11]

corpus provides a high benchmark for automatic system prediction of valence in

Table 3.2 compared to reviewed related works. It is suspected that the annotators
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Table 3.2: Arousal and Valence Group-of-humans Average CCC (the mean CCC
taken from all unique annotator-annotator rating pairs) for Each Data Set/Partition
in the RECOLA and SEMAINE Corpora

Corpus Partition Arousal Valence

RECOLA [16]

Whole set
Training

Validation
Test

.284

.341

.293

.217

.364

.383

.411

.257

SEMAINE [11]

Whole set
Training

Validation
Test

.332

.252

.384

.398

.611

.501

.684

.500

who provided the ratings for SEMAINE [11] are actually a group-of-experts as no

training of annotators is mentioned in the corpus dissemination paper [11]. This

may account for the high agreement in the valence traces. Both corpora appear to

have comparable levels of average CCC across annotator pairs for arousal.

Of note for the SEMAINE [11] average annotator CCC calculations shown is

that the S77 annotator group was not included in the whole set or test set analyses

carried out. This was done because this session was annotated by a different group of

annotators for which only one session sample/recording for that group was available.

The calculated average annotator-annotator CCC scores for this session were 0.062

for arousal and 0.221 for valence. Incorporating these scores into the overall and

test set group CCC scores would appear to lower the overall average but these

scores were not incorporated as it was believed that this annotator group could not

be represented by one sample/recording. This provides a unique challenge for the

SEMAINE [11] test set in this work as model predictions are implicitly required to

generalise to different annotator groups in addition to unseen input data.

It is interesting to note the higher average CCC across all corpora, in general, for

the group-of-humans estimates for valence compared to arousal. For automatic sys-

tems, valence has traditionally been the harder dimension to predict [76] whereas for

humans, based on the sample of data present, the reverse may be true. The values in

Table 3.2 provide minimum practical performance measures and are used through-

out this dissertation for comparison to validation and test set results achieved by

automatic systems.

3.2.4.2 Arousal and valence statistics

Basic arousal and valence statistics for the corpora training sets are given in Table

3.3. It can be seen in both of these tables that there are a lot of unique ratings

for the SEMAINE [11] corpus. This is perhaps due to the experimental protocol

employed for SEMAINE [11], where the unique ratings may have resulted from the

free-flowing style of conversation permitted with the various characters. Situations
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such as this can present a challenge for automatic prediction systems where a lot

of patterns have to be learned on the training data. This issue is profound in the

SEMAINE [11] sample with 12,430 unique valence ratings present and over 13,000

unique arousal values.

Also, of note from these tables is the larger range of valence values in RECOLA

[16] compared to SEMAINE [11]. The wider range of values can be beneficial, where

systems can learn a wider variance in valence data patterns given enough training

examples. This provides a challenging situation for valence model generalisation on

SEMAINE [11] where less variance is available to learn from.

Table 3.3: RECOLA and SEMAINE Corpora Arousal (a) and Valence (b) Training
Set Statistics Including Counts of Zero-rated Values (0s) and One-off (unique) Values

(a) Arousal
Corpus min. mean median max. 0s unique

RECOLA [16] -.595 .009 .053 .400 213 665
SEMAINE [11] -.638 -.119 -.066 .361 0 13,103

(b) Valence
Corpus min. mean median max. 0s unique

RECOLA [16] -.248 .097 .088 .665 194 576
SEMAINE [11] -.329 .112 .154 .481 0 12,430

3.2.4.3 Arousal and valence distributions and correlations

Arousal and valence distributions of each corpus are plotted in Figures 3.1 and

3.2. Respective Pearson’s r values for the corpora arousal and valence are 0.616

and 0.755 for RECOLA [16] and SEMAINE [11]. The correlations quantitatively

illustrate that there are linear relationships across these core affect dimensions that

could be leveraged for modelling. In the case of SEMAINE [11] there is a clear group

of very low valence values that might be considered outliers, which is biasing the

correlation to a low value. It can also be observed in the figures that the corpora

seem positively biased in the valence polarity distribution.

3.3 Machine learning algorithm

Extensive use has been made of SVR and LSTM-RNN-type networks for continuous

affect prediction [12], [14], [34], [36], [131]. The current popularity of LSTM-RNN-

type networks provides for temporal alignment of gold standard target values with

input features. However, this comes at the expense of a complex model. Another dis-

advantage of BLSTM-RNN specifically, is that the entire sequence must be seen by

the model prior to prediction so it can consider both future input values in addition

to past and current input. Moreover, while it has been argued that LSTM-RNNs

can capture the temporally salient features in affect [135], the temporal window for
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Figure 3.1: RECOLA arousal-valence scatter plot. r = .616.

Figure 3.2: SEMAINE arousal-valence scatter plot. r = .755.
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feature extraction may also capture this context if large enough. With this being

said, LSTM-RNNs, and DNNs generally, facilitate multi-level feature interactions

at varying levels of depth, which may be important in multimodal tasks such as

recognising affective expression. Therefore, as a bridge between SVR and LSTM-

RNN, DNNs were used in this work, along with explicit gold standard annotator lag

compensation. Due to the lack of wide use of feed-forward type DNNs for continu-

ous affect prediction, this work provides a contribution in affect modelling for the

community. Specific details on the DNN architecture and training method used are

provided in the sections to follow.

3.3.1 Architecture

The DNN architecture used is the same as Ringeval et al. [12] for their feed-forward

neural network evaluations. Specifically, a DNN with two hidden layers of 160 and

120 hidden nodes were trained and evaluated with single-task learning (i.e. arousal

or valence learning and prediction) using the Cuda recurrent neural network toolkit

(CURRENNT) [152]. A tanh function was used for hidden layer activations where

the forward equations are:

h1 = tanh(W>
1 x + b1); (3.1)

h2 = tanh(W>
2 h1 + b2), (3.2)

where x is an input feature vector, h are hidden layer activations, and W and

b are weight matrices and bias vectors respectively containing parameters to be

learned. Finally, ŷ is provided in the output layer by a linear activation, specifically,

a summation of h2 and a further bias term

ŷ = b+
∑
i

hi, (3.3)

where hi are elements of h2.

3.3.2 Network training and model selection

The DNN training methodology employed follows that of Ringeval et al. [12] with

the only difference being that the early stopping parameter was set to 10 instead of

20. The justification for this alteration was based on faster network training time

and early experimentation showing no performance increase on the validation set for

the larger early stopping time parameter. Prior to network training, weights were

initialised to Gaussian distributed random numbers with a mean of 0 and standard
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deviation of 0.1. Biases were initialised to 1.0. Inputs and gold standard targets

were standardised to zero mean and unit variance prior to training, using means

and standard deviations computed on the whole training partition. In addition,

Gaussian noise with a standard deviation of 0.1 was added to all input features prior

to training as an effort to prevent overfitting. Training took place for a maximum

of 100 epochs using a sum of squared errors objective in mini-batches of size 10.

Stochastic gradient descent with momentum of 0.9 was used for optimisation:

ĝ =
1

m

∑
i

∂θLi, (3.4)

v = βv − αĝ, (3.5)

θ = θ + v, (3.6)

where ĝ is the gradient estimate for a batch of m training examples, Li is a training

example loss, v is the velocity, θ is a parameter to be learned, α is the learning rate

and β = 0.9 is the momentum hyperparameter. This hyperparameter controls how

much an exponentially-weighted moving average of gradients, v, affects the current

gradient. Larger v and smaller α results in higher weighting of previous gradients

compared to the current gradient in the update. Momentum speeds up gradient

descent and provides more reliable steps (less variance) toward optimum parameter

values. Training stopped if no improvement of the performance as measured by

sum of squared error was observed on the validation set for more than 10 epochs

for further regularisation. The network learning rate was held at the default value

in CURRENNT [152], 10−5, for all the experiments. Model selection was always

performed based on models that provided the best validation set performance from

the experiments.

3.4 Experimental architecture

The experimental architecture is intended to provide thorough and fair evaluation

of the proposed features at each experimental stage. A simple visualisation of this

process is shown where features are extracted and models trained in Figure 1.1c.

The overall architecture in high-level terms for the experiments in this dissertation

is as follows:

• Initial feature set proposal(s) for head- eye-based cues based on theory or prior

empirical results.
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• Unimodal modelling using ML algorithms.

• Multimodal modelling using ML algorithms and modality fusion.

• Performance evaluation of trained model performances using CCC.

• Test set passes for the final developed models and retrospective inspection and

discussion of head and eye features used for final models.

The experimental architecture was chosen based on the previously reviewed re-

lated work, where models were trained to learn dimensional and continuous affect.

The chosen performance metric, CCC, as evident from the related research, is now

the de facto performance metric for continuous affect prediction. Finally, for the

retrospective, measures of feature-with-target (arousal and valence) dependence are

provided for selected features that were used as input to the final models. Details

on the specific experiment steps taken at each phase of this work are given in the

chapters to follow. Additional information on software used for the experiments is

provided in Appendix A.

3.5 Conclusion

This section has detailed the data and some methodological steps taken in this work.

Data used has been presented and explored with some similarities and differences

shown across selected data. This provides technical challenges and opportunities,

such as modelling rarely observed or unique annotation values, or effectively lever-

aging correlations between arousal and valence. The high-level experimental archi-

tecture was presented and serves as a guide for more detailed experiments in the

chapters to follow. The next chapter details the exploration of LLDs and the pro-

posal of feature sets, from head and eye modalities, for continuous affect prediction.



Chapter 4

Feature Set Proposals and

Unimodal Evaluations

4.1 Introduction

Eye gaze has been shown to be important for emotion signalling and perception in

the literature [22], [23], [59], [63] while eye pupils are responsive during emotional

arousal [27], [28] and events of various valences such as monetary incentive or pen-

alty [29]. Head pose is also important for emotion recognition both in the presence

and absence of speech [24], [26], [59], [62], [65]. For head-based affect prediction,

assessing frequency domain measures is important as humans have been shown to

be sensitive to these cues while detecting emotion in utterances [65]. Furthermore,

some eye cues share a relationship with head pose [59], [67], [153] as certain gazes

require particular head poses. Feature sets from video that use these modalities for

continuous affect prediction are currently lacking, despite their ease-of-use and po-

tential usefulness. Motivated by these facts, this chapter presents five novel feature

sets, three for eye-based features and two for head-based features. The feature set

proposals were followed by unimodal experiments intended to assess their usefulness.

Specifically, the identified research question for this chapter is

How well do head- and eye-based features perform compared with speech and fa-

cial features for unimodal continuous affect prediction?

Deep learning experiments conducted on the RECOLA [16] and SEMAINE [11]

corpora showed the proposed head-based features to be the best-performing visual

arousal feature set from those evaluated, with speech performing best overall. The

head and eye features performed better than speech and face for valence prediction

on SEMAINE [11]. This was not replicated on RECOLA [16], where face feature

64
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performed best for valence prediction. These results confirm that speech performs

best for unimodal arousal prediction while visual features are best for valence predic-

tion from audiovisual data, results commonly known in the literature. The results

also indicate that head-based features can be of benefit for arousal prediction from

visual features.

4.2 Feature sets

Because of the potential that head- and eye-based features from video have for affect

prediction, this section presents details of processes carried out to calculate LLDs

from this data source and modalities. Explorations of these LLDs are also carried

out before a proposal for affective feature sets from head- and eye-based cues are

given.

4.2.1 Feature set LLDs and exploratory analyses

4.2.1.1 Eye LLDs

The eye-based LLDs were calculated from, or based wholly on, world or camera

coordinates obtained from video using OpenFace [92] (version 2.0.6). They were

gathered frame-wise from each subject’s video recording. Figure 4.1 depicts some

raw data points gathered. Eye blink/closure, blink intensity and x and y gaze angle

(radians) LLDs were taken directly from OpenFace while ∆s of x, y gaze angles,

eye fixation and eye gaze approach required further calculation. OpenFace AU

detection, namely, AU45 c and AU45 r, was used to determine eye blink/closure

and eye blink intensity respectively. For these LLDs, c is the binary presence or

absence of an AU and r is the real-valued intensity of an AU (from 0.0 to 5.0).

OpenFace [92] provides gaze angle radian estimations, where x or y are the average

angles for each coordinate across both eyes. Therefore, eye fixation was determined

by examining the absolute value of the frame-wise change of the x and y radian

measurements. When this measurement did not exceed the allowed fixation drift,

small eye movements within a fixation event, which can be as much as 3.2°/second
according to Lappi [67] fixation was determined as true (= 1) and otherwise, false

(= 0). The degree figure from Lappi [67] was transformed to frame-wise radians

(0.05585rad/frames per second) for the experiments presented here. In the case

of RECOLA [16], which was recorded at 25 frames per second, for example, this

equated to 0.002 radians of allowed movement for each axis during fixation, when

rounded to 3 digits. The gaze distance was calculated as the average distance on

the z axis between each of the 2 outer-eye corner landmarks highlighted in green in
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Figure 4.1: Eye gaze data points provided by OpenFace [91] for eye gaze vectors
(red) and gaze distance (green) estimation.

Figure 4.2: Direct (1) and averted (0) gaze annotation based on frame images.

Figure 4.1. From the gaze distance measurement, eye gaze approach was determined

based on the frame-wise change in z, ∆z, being positive.

An additional eye gaze LLD, direct gaze, where a subject was looking at an

interlocutor, was also extracted. Healthy humans are adept at paying attention to

the eye area of other humans [68] with some amygdala functions dedicated to eye area

attention [30], [71]. For the direct gaze LLD gathered for the experiments, binary

ratings for direct gaze (= 1) and averted gaze (= 0) were manually assigned by this

author for every frame in the RECOLA [16] corpus. These binary annotations were

assigned in the same way to the SEMAINE [11] corpus subset. This process was

carried out based on frame images from OpenFace [92] output as shown in Figure

4.2.

Pupil diameter estimations were obtained from OpenFace [92] eye landmark co-

ordinate differences. The eye landmarks used for pupil diameter estimation are

shown in Figure 4.3. From the eye landmarks shown in the figure, the pupil dia-

meter estimation was taken as max(x2 − x1, y2 − y1) for each frame. Also, only one

pupil was used as the estimator for both eyes as both pupils should be the same in

healthy subjects [79]. The pupil diameter estimations generated a number of pupil

LLDs, namely, numerical pupil diameter and ∆ pupil diameter along with binary

dilation and constriction event data. The latter LLDs are based on pupil diameter
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Figure 4.3: Eye landmark data points provided by OpenFace [92]. Data points used
for pupil diameter estimation are highlighted in black.

measurements in each frame becoming larger or smaller.

For the exploratory analysis, descriptive statistics were compiled for the frame-

wise LLDs on the training partition recordings in order to aid general data un-

derstanding and quality. Following this, the LLD features’ relationships with each

other, and with both arousal and valence, were explored using correlation and MI

analysis. Cover and Thomas [154] describe MI, I(X;Y ), as the entropy between

the joint distribution p(x, y) and the product distribution p(x)p(y) of two random

variables, where p(x) and p(y) are marginal probability mass functions, as described

by Equation (4.1). The mutual information between vectors x and y is the average

information that is known about y given x, expressed in nats in this work.

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(4.1)

For the mutual information estimation, features and target data were first dis-

cretised into N
1
3 bins to facilitate p(x, y) estimation. MI was then estimated between

the features and arousal, and the features and valence, using the empirical distri-

bution method. In this way, both linear and nonlinear feature-with-feature and

feature-with-target relationships were explored, which is required for full explora-

tion of dependencies, as, for example, r = 0.0 does not imply independence. As an

upper-limit reference point, maximum MI estimated in this work, the information of

a variable with itself, was 3.638 nats on RECOLA [16] and 3.584 nats on SEMAINE

[11]. Temporal averaging of the LLDs, applied with 4-, 6- and 8-second windows,

moved forward at a rate of 1 frame per interval, were used for this analysis based

on [3]. This resulted in, for example, a 99% overlap for contiguous feature chunks

when using a 4-second temporal window on data recorded at 25 frames per second.

An example diagram of this frame chunking into the temporal windows is provided

in Figure 4.4.

The results from the descriptive statistics analysis can be seen in Tables 4.1 and

4.2. It can be seen in Table 4.1 that there are not too many unique values for any of
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Figure 4.4: Chunking of frames into temporal windows for average (or other func-
tionals, if required) extraction. The window size shown in bold this diagram is
1-second in size, based on a sampling rate of 25 frames per second, to facilitate
illustration. At each step shown in the diagram, it can be observed that the window
advances in time by a rate of 1 frame.

the numeric variables on either corpus. This table also shows that, due to the one-

sided nature of eye blink intensity, gathering functionals such as minimum values are

unwise for this LLD. The pupil diameter LLD has the least unique values of the eye

descriptors across both corpora. This seems reasonable as the subjects should most

likely all take on ranges of similar values for their pupil sizes [79]. From Table 4.1

(a) it can also be observed that some questionable values were obtained where pupil

diameter estimation failed on RECOLA [16]. For example, a pupil diameter value

of 0.1 mm is not a normal value [79]. Based on this, the proportion of questionable

values for pupil diameter on RECOLA [16] was calculated, defined as the number

of values in this set less than 2 mm, based on [79] which defines the possible range

of values as 2 to 8 mm. In total, these questionable values only made up 0.33% of

the total pupil diameter values in the RECOLA [16] corpus training set. This was

deemed as acceptable noise.

The binary LLD descriptives in Table 4.2 indicate that eye blink/closure is relat-

ively sparse, as would be expected based on a healthy subject’s blinking rates [69].
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Table 4.1: Numeric Pupil LLD Statistics Including Counts of Zero-rated Values (0s)
and One-off (unique) Values Calculated on the (a) RECOLA and (b) SEMAINE
Training Partitions

(a) RECOLA
LLD min. mean median max. 0s unique

x gaze angle -.776 -.035 -.009 .694 6,419 928
y gaze angle -.926 .270 .331 .973 6,309 1,249

∆x gaze angle -.702 .000 .000 .943 7,841 1,428
∆y gaze angle -.739 .000 .000 .926 7,975 2,060

eye blink intensity 0.000 0.260 0.000 5.000 34,105 456
pupil diameter (mm) 0.100 5.480 5.500 8.200 0 456

∆ pupil diameter (mm) -6.200 0.000 0.00 6.500 9,090 1,226

(b) SEMAINE
LLD min. mean median max. 0s unique

x gaze angle -0.351 0.044 0.040 0.403 341 690
y gaze angle -0.288 0.091 0.093 0.642 179 764

∆x gaze angle -0.237 0.000 0.000 0.340 2,765 850
∆y gaze angle -0.358 0.000 0.000 0.293 2,634 293

eye blink intensity 0.000 0.300 0.000 3.900 25,596 381
pupil diameter (mm) 3.800 5.410 5.400 7.5 0 195

∆ pupil diameter (mm) -2.400 0.000 0.000 2.600 9,900 412

Eye blink, which is eye closure of 0.1 to 0.4 seconds1, compared to eye closure (eye

closed > 0.4 seconds) was not discriminated in this work due to the potential avers-

ive signalling component of eye closure events [32]. Eyes fixated was even sparser

than eye blink/closure, with its presence occurring in 11.4% of frames on RECOLA

[16] and only 0.9% on SEMAINE [11]. This is thought to be reasonable for RE-

COLA [16] given the dyadic problem interaction task in question where multiple

gaze shifts and searches were necessary, however, this proportion seems very small

for SEMAINE [11]. Table 4.2 shows that direct gaze is less frequent than averted

gaze in the RECOLA [16] corpus sample while the reverse is true for SEMAINE [11].

The differences across the corpora in terms of these gazing patterns is interesting as

they may provide clues on the social context for video recordings.

The results of the feature-with-feature and feature-with-target dependency ana-

lysis showed that larger temporal windows performed best for feature Pearson’s r

and MI (in nats) with both arousal and valence on both corpora. On RECOLA [16],

the largest correlations with arousal and valence were achieved with x gaze angle

(arousal r = 0.261, valence r = 0.242) for the 8-second temporal window condition.

The largest MI in this corpus for both arousal and valence was also observed for

this descriptor with the same temporal window, MI values of 0.339 and 0.346 for

arousal and valence respectively. On SEMAINE [11], again, the largest relation-

ships were all found for the 8-second temporal window condition. Specifically, eye

blink/closure had the largest correlation with arousal, r = 0.181, and y gaze angle

shared the largest linear relationship with valence, r = 0.495. The y gaze angle LLD

arousal had the strongest nonlinear relationships with both arousal and valence on

1bionumbers.hms.harvard.edu/bionumber.aspx?id=100706&ver=4&trm=blink+frequency&org=
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Table 4.2: Binary Eye-based LLD Statistics (where absence and presence are indic-
ated by 0 and 1 respectively) Calculated on the (a) RECOLA and (b) SEMAINE
Training Partitions

(a) RECOLA
LLD 0s 1s %1s

eye blink/closure 43,124 16,578 28.1%
eyes fixated 52,706 6,996 11.7%

eye gaze approach 30,243 29,459 49.3%
direct gaze 46,440 13,262 22.2%

pupil dilation 34,502 25,200 42.2%
pupil constriction 34,290 25,412 42.6%

(a) SEMAINE
LLD 0s 1s %1s

eye blink/closure 33,187 14,506 30.4%
eyes fixated 47,274 419 0.9%

eye gaze approach 23,771 23,922 50.2%
direct gaze 15,237 32,456 68.5%

pupil dilation 28,832 18,861 39.5%
pupil constriction 28,761 18,932 39.7%

SEMAINE [11], an arousal MI of 0.861 and valence MI of 0.906. These results

provide early indication that functionals of gazing angle LLDs may be relevant for

predicting affect from eye gaze. Further, they show differences across the corpora,

where the left-to-right gazing angle appears to be a more important affective signal

in RECOLA [16] while the up-down gazing angle appears to be more important in

SEMAINE [11].

The strongest positive feature-with-feature linear relationship found on RE-

COLA [16] included eye gaze approach and pupil constriction (r = 0.803), and the

largest negative relationship was y gaze angle and direct gaze (r = -0.640), for 8- and

4-second temporal windows respectively. The y gaze angle and direct gaze LLDs

shared the largest feature-with-feature nonlinear relationship under the 8-second

temporal window condition, a MI of 0.578. On SEMAINE [11], the largest feature-

with-feature linear relationships included pupil constriction and pupil dilation (r =

0.819), from the positive associations, and direct gaze and eye blink/closure (r =

-0.678) from the negative associations. Eye blink intensity and eye blink/closure

shared the largest nonlinear relationship, a MI of 0.902. It could be argued that

there is feature redundancy between eye gaze approach and pupil constriction on

RECOLA [16], and pupil constriction and pupil dilation on SEMAINE [11]. How-

ever, these LLDs were retained in the set for feature extraction and machine learning

processes.

Heat map results of these analyses can be observed for the 8-second temporal

window in Figures 4.5 and 4.6 where some of the aforementioned relationships can

be visually observed. According to Figure 4.5, the eye features are more linearly

relevant for arousal and valence on the RECOLA [16] corpus, but there appears to

be stronger feature redundancies on that set. The stronger nonlinear relationships
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for the eye features with arousal and valence, however, appear on the SEMAINE

[11] set (see Figure 4.6), again with stronger feature-with-feature relationships, or,

redundancies. Overall, this analysis reveals that the larger temporal window, des-

pite providing some information loss (smoothing), appears to be the best for feature

representation and prediction. This is because the larger window most often pro-

duces the largest feature-with-target r and MI. Additionally, in some cases, the

information reduction caused less feature-with-feature correlation, which can bene-

fit for learning algorithms as more unique information can be leveraged for pattern

learning.

4.2.1.2 Head pose LLDs

The head pose LLDs selected for this work include rotational and location measure-

ments of head pose that are estimated from video using OpenFace [92]. Frame-wise

displacements (∆) were also calculated and included in the LLD list. Velocities

were considered as additional LLDs but due to the additional computational cost

and high correlation with displacement, it was decided against including head move-

ment velocities at this time. The feature set LLDs are x (pitch), y (yaw) and z (roll)

of head rotation in world coordinate radians with camera origin, and x, y and z of

head location in camera coordinate millimetres. The descriptives for these LLDs

can be seen in Table 4.3.

Table 4.3 indicates that performing feature scaling to put head pose features

within similar ranges is important as vastly different scales can be observed when

comparing rotation versus location LLDs. There are low amounts of unique values

in the table which suggests that there is adequate but not excessive variation in the

head pose data. More variation in the data is present for the raw x, y, z measure-

ments as opposed to the ∆s, evident by the much lower number of zeros present.

This is expected as differencing can often produce 0 values while additionally intro-

ducing a more stable mean. An advantage of the ∆ features is that they highlight

high-frequency components of the signal, which could be advantageous if the true

affective signal is of a high-frequency nature. In comparing sections (a) and (b) of

Table 4.3, it can be observed that there are a wider range of head movements on

RECOLA [16] compared with that of SEMAINE [11]. The differing interaction tasks

across the corpora may have required different head poses from subjects. It will be

of interest to see if these differences have an effect on prediction system performance.

The feature-with-feature and feature-with-target dependency analyses of the

head LLDs were again carried out using the same temporal windowing methods

as that for the eye-based exploration. It was again found that larger temporal win-

dows were always better for feature-with-target r and MI. The strongest correlations
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(a)

(b)

Figure 4.5: Eye correlation heatmaps for 8-second moving average of LLDs on (a)
RECOLA and (b) SEMAINE.
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(a)

(b)

Figure 4.6: Eye MI heatmaps for 8-second moving average of LLDs on (a) RECOLA
and (b) SEMAINE. Gray-coloured tiles indicate MI > 1.



Chapter 4. Feature Set Proposals and Unimodal Evaluations 74

Table 4.3: Head Pose LLD Statistics Including Counts of Zero-rated Values (0s)
and One-off (unique) Values Calculated on the (a) RECOLA and (b) SEMAINE
Training Partitions

(a) RECOLA
LLD min. mean median max. 0s unique

x location -553.100 4.070 -5.100 259.900 60 2,614
y location -2,218.700 40.280 38.600 1,050.600 35 2,997
z location -2,498.800 407.580 421.300 1,552.000 0 4,499
x rotation -2.750 0.127 0.131 2.722 61 2,143
y rotation -1.426 0.020 0.027 1.495 141 1,956
z rotation -2.938 0.108 0.089 3.056 119 1,840

∆x location -583.700 0.000 0.000 516.600 8,585 1,171
∆y location -2,160.200 0.010 0.000 1,964.900 8,470 1,533
∆z location -2,049.600 0.000 0.000 2,333.600 3,446 1,436
∆x rotation -2.773 0.000 0.000 2.750 4,973 1,935
∆y rotation -2.164 0.000 0.000 1.500 7,036 1,428
∆z rotation -2.848 0.000 0.000 5.994 9,186 1,380

(b) SEMAINE
LLD min. mean median max. 0s unique

x location -156.000 -50.460 -44.200 38.900 1 1,369
y location -22.400 68.540 65.200 132.100 0 1,036
z location 156.600 432.38 448.300 547.000 0 2,351
x rotation -0.468 -0.048 -0.041 0.627 107 848
y rotation -0.452 -0.026 -0.016 0.458 381 777
z rotation -0.345 0.022 0.003 0.426 209 663

∆x location -25.600 0.000 0.000 20.100 7,636 439
∆y location -12.900 0.000 0.000 10.200 6,898 322
∆z location -65.000 0.000 0.000 146.200 2,589 464
∆x rotation -0.492 0.000 0.000 0.193 4,736 618
∆y rotation -0.257 0.000 0.000 0.218 7,332 498
∆z rotation -0.092 0.000 0.000 0.086 10,513 478

with both arousal and valence on RECOLA [16] resulted from the x head location

LLD feature (arousal r = -0.244, valence r = -0.142) for the 8-second window. The

largest MI on this corpus with both arousal and valence resulted from z head loc-

ation, values of 0.505 and 0.526 respectively, again with the 8-second window. For

SEMAINE [11], all the strongest relationships were observed with the 8-second win-

dow condition. Specifically, the strongest correlation with arousal resulted from y

rotation (r = 0.177), while the strongest correlation with valence resulted from y

location (r = -0.449). The largest nonlinear relationships with both arousal and

valence on SEMAINE [11] was from z location (arousal MI = 1.098, valence MI =

1.109).

Some strong feature-with-feature relationships among the LLDs on RECOLA

[16] included ∆ y location and ∆ z location (r = 0.542), y location and z loca-

tion (r = 0.474, MI 0.802), and x location and z location (MI = 0.831). Strong

feature-with-feature relationships observed on SEMAINE [11] were z location and

x location (r = -0.761), x location and y location (r = -0.662), z location and x

location (MI = 1.271), and z location and y location (MI = 1.284). As a general

observation, a higher quantity of noticeable relationships were observed for feature-

with-feature head LLDs compared to the eye-based LLDs. No LLDs were dropped

from the feature set prior to further feature extraction. The results from the best
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performing 8-second temporal window, in terms of feature-with-target r and MI are

provided in Figures 4.7 and 4.8. In the figures, it can be observed that there are

relatively similar feature-with-feature and feature-with-target relationship strengths

across the corpora for the head-based LLDs. The polarity, however, appears re-

versed for the linear relationships across similar variables on the different corpora

depicted in Figure 4.7.

4.2.2 Mid-level features

Further features were gathered from the pupil diameter and head rotation and loc-

ation x, y, z coordinate LLDs in an effort to more fully search these modalities for

affective information. For these mid-level features, which are so called because they

precede further high-level functional feature extraction, a time-frequency, or more

correctly, time-scale, representation was gathered using the discrete wavelet trans-

form.

To measure the frequency components of a signal varying in time one could

use the short-time Fourier transform of the signal. This involves applying the

fast Fourier transform at various short time windows over a signal. However, this

presents users with a dilemma for window selection. Smaller time windows (number

of frames) achieve good time resolution but lower frequency resolution while larger

time windows achieve better frequency resolution at the cost of less time localisation.

This is known as the Gabor (or Heisenberg) uncertainty principle [155]. Wavelet ana-

lysis provides an attractive alternative to the short-time Fourier transform where the

frequency contents of a signal need to be estimated in time. Wavelets, short and fi-

nite oscillating waves with zero mean, have a time-frequency resolution that changes

during analysis (see Figure 4.9) and can provide alternative bases to Fourier decom-

position. Some advantages of wavelets include more efficient frequency support and

the potential to localise aperiodic, or singular, frequency events [156]. This comes at

the cost of not providing true frequency domain representations, while additionally

wavelets still have to deal with the Gabor uncertainty principle as can be seen in

Figure 4.9. Wavelets were employed for this work as abrupt signal changes were

expected that could provide insightful temporal features. Furthermore, frequency

resolution in the lower bands was important. For example, wavelet representations

from pupils of subjects have been used for sympathetic nervous system activation

recognition where good frequency resolution was required for the low frequency com-

ponents (characteristic f = 0.47 ± 0.01Hz) [61]. Also, from dynamic head motion

features up to 15Hz, frequencies up to 5Hz were found to be the most significant of

the dynamic features for automatic emotion recognition in head movement [65].

Wavelet coefficients can be obtained that are an orthogonal and normalised (or-
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(a)

(b)

Figure 4.7: Head pose correlation heatmaps for 8-second moving average of LLDs
on (a) RECOLA and (b) SEMAINE.
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(a)

(b)

Figure 4.8: Head pose MI heatmaps for 8-second moving average of LLDs on (a)
RECOLA and (b) SEMAINE. Gray-coloured tiles indicate MI > 1.
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(a) (b)

Figure 4.9: (a) Short-time Fourier transform with fixed time and frequency res-
olution and (b) wavelet decomposition at varying levels of scale (zoom) and time
resolution. A frequency of interest is shown in both diagrams with different time
and frequency resolutions depending on the analysis method. It can be seen that
the wavelet analysis provides better time resolution for high frequency components
and better frequency resolution for low frequencies.

thonormal) basis of a square integrable function [157]:

ψj,n(t) =
1√
2j
ψ

(
t− 2jn

2j

)
, (4.2)

where t is time, ψ is a mother wavelet function, 2j is the dilation level, and n the

translation. The wavelet transform can be implemented in discrete time by a re-

cursive filter tree, where highpass and lowpass convolution filters provide detail (or

wavelet) and approximation (scale) coefficients respectively for signal decomposi-

tion. After decomposition into high and low frequency bands and downsampling

from the original time-domain signal, further decomposition can occur based on

additional filtering and downsampling of lowpass output. Filters implementing the

Daubechies wavelet of order 10 [158] were selected for the pupil measurements in this

work based on [61]. There is also a scaling function φ for this wavelet family, where

φ replaces ψ in Equation (4.2) to obtain scale coefficients, φj,n(t). The Daubech-

ies wavelets [158] are orthogonal and known for having compact support, which is

to say, good time localisation. The filters were implemented for 7 levels of signal

decomposition on the pupil measurements, which was deemed adequate for charac-

teristic frequency detection associated with affect from this modality [61]. The same

wavelet functions and implementation were selected for the head-based time-scale

feature representations. However, the head-based signals were only decomposed to 4

levels based on previous work on head-based emotion recognition in which the smal-
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lest frequency band assessed was [0, 1]Hz [65]. The 4th decomposition level at the

25Hz sampling rate for RECOLA [16], for example, generated wavelet coefficients in

the band [0.78125, 1.5625]Hz and scale coefficients in the band [0, 0.78125]Hz. Fol-

lowing wavelet decomposition, scale and wavelet coefficients for all decomposition

levels were taken as mid-level features of the signal to which appropriate functionals

were then applied prior to affect learning.

4.2.3 Proposed eye-based feature sets

An initial eye gaze feature set was extracted from three binary [gaze approach,

eyes fixated, eye blink/closure] and five numerical [eye blink intensity, x and y gaze

angles, and ∆x and ∆y gaze angles] LLDs described previously. To enhance the

LLDs for machine learning, statistics and ratios were employed in the feature en-

gineering process. Further, while the LLDs capture short-term changes (∆s), longer

term changes with respect to time were captured using learned regression slopes

for each temporal window. Numerous distributional descriptors were also applied,

including robust and non-robust measures, and higher-order statistics (distribution

skewness, kurtosis). The proposed 79-dimensional eye gaze feature set, GazeVID, is

represented by a 79-dimensional feature vector. The full list of features calculated

for this set is specified in Table 4.4 (a). Due to the one-sided nature of eye blink

intensity (i.e. range [0.0, 5.0]), minimum values and some quartile measurements

were not extracted from this LLD. Also, of note from Table 4.4 (a) is the absence

of minimum values for eye gaze approach time in seconds, due to repeating values

for this functional during early experimentation.

In addition to GazeVID other eye-based features were investigated as additions

to the initial feature set. Namely, these sets were, eGazeVID, an extended version

of GazeVID that includes direct gaze-based features, and EyeVID, which extends

eGazeVID further with the inclusion of pupillometry features. These feature sets

were more difficult to collect in terms of time, for eGazeVID, and computation, for

EyeVID. The proposed 84-dimensional eGazeVID feature set is listed in Table 4.4

(a) and (b) with feature additions to GazeVID highlighted in the (b) section of the

table. This feature set extends GazeVID by 5 features, four features based on direct

gaze and one feature based on eye blink intensity. The direct gaze features include

ratio and time summaries: mean, max, total. Some tested direct gaze summary

features were omitted due to value repetition during initial explorations. The 292-

dimensional EyeVID feature set contains the calculations listed in Table 4.4 (a),

(b), and (c) with feature additions compared to GazeVID/eGazeVID highlighted

in section (c) of the table. This set includes static and dynamic-time pupillometry

measures in addition to time-frequency dynamic measures in effort to leverage the
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Table 4.4: Proposed Affective Eye-based Feature Sets from Video: (a) GazeVID,
a 79-dimensional Eye Gaze Feature Set, (b) Features Added to GazeVID to Make
eGazeVID, an 84-dimensional Feature Set That Extends GazeVID with Human-
knowledge Direct Gaze Annotations, and (c) Features Added to GazeVID and
eGazeVID to Make EyeVID, a 292-dimensional Eye-based Feature Set That In-
cludes Both Gaze and Pupillometry Measures.

(a) GazeVID Feature Set
LLDs (8) Extracted Features

x, y gaze angles,
∆x, y gaze angles,

min, max, mean, median, quartile 1, quartile 3,
skewness, kurtosis, SD, IQR 1-2, IQR 2-3, IQR 1-3,

LR slope, LR intercept

eye blink intensity
max, mean, median, quartile 3, SD, IQR 1-2, IQR 2-3,

IQR 1-3, LR slope, LR intercept
eyes fixated,

eye blink/closure
fixation ratio, fixation time seconds: min, median, mean,

max

eye gaze approach
gaze approach ratio, gaze approach time seconds: median,

mean, max

(b) Features Added to GazeVID for The eGazeVID Feature Set
LLDs (2) Extracted Features

eye blink intensity IQR 1-3

direct gaze direct gaze ratio, direct gaze time seconds: mean, max, total

(c) Features Added to GazeVID and eGazeVID for The EyeVID Feature Set
LLDs (2) & Mid-level Features (14) Extracted Features

pupil diameter,
∆ pupil diameter

min, max, mean, median, quartile 1,
quartile 3, skewness, kurtosis, SD,

IQR 1-2, IQR 2-3, IQR 1-3,
LR slope, LR intercept

Pupil 10-order
Daubechies scale and
wavelet coefficients

at 7 levels of
decomposition

min, max, median, quartile 1, quartile 3,
skewness, kurtosis (kurtosis not

measured at final decomposition level),
SD, IQR 1-2, IQR 2-3, IQR 1-3, RMS, ZCR

(ZCR not applied to scale coefficients)

pupil modality for affect prediction in video.

4.2.4 Proposed head-based feature sets

Statistical calculations on the LLDs of head pose from video complete the proposed

initial 168-dimensional head pose feature set, PoseVID. The full list of features cal-

culated for this set is specified in Table 4.5 (a). Calculations on both the LLDs and

mid-level features of head pose from video complete the proposed increased head

pose/motion feature set from video, PoseVID-adv, short for PoseVID advanced.

This 768-dimensional feature set is enhanced with more dynamic features approx-

imating frequency representations in time compared to the PoseVID set. This of

course does come with the drawback of more requisite computation, however. The

features calculated for PoseVID-adv are given in Table 4.5 (a) and (b) with feature

additions compared to PoseVID highlighted in section (b) of the table.
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Table 4.5: Proposed Affective Head-based Feature Sets from Video: (a) PoseVID,
a 168-dimensional Head Pose Feature Set, and (b) Features Added to PoseVID to
Make PoseVID-adv, a 768-dimensional Feature Set That Extends PoseVID with
Time-frequency Representation Features

(a) PoseVID Feature Set
LLDs (12) Extracted Features

head location x, y, z
∆ head location x, y, z

head rotation x, y, z
∆ head rotation x, y, z

min, max, mean, median, quartile 1, quartile 3,
skewness, kurtosis, SD, IQR 1-2, IQR 2-3,

IQR 1-3, LR slope, LR intercept

(b) Features Added to PoseVID for The PoseVID-adv Feature Set
mid-level features (48) Extracted Features

Head location and rotation
x, y, z 10-order Daubechies

scale and wavelet coefficients
at 4 levels of decomposition

min, max, median, quartile 1, quartile 3,
skewness, kurtosis, SD, IQR 1-2, IQR 2-3,

IQR 1-3, RMS, ZCR,
(ZCR not applied to scale coefficients)

4.3 Unimodal affect prediction experiment design

Motivated by state-of-the-art continuous affect prediction results [12]–[14], this sec-

tion presents evaluations of deep learning for continuous affect prediction using

speech-, eye-, head-, and face-based features from audio-video. During each exper-

imental stage, the method that achieved the best validation set CCC was used for

the next experimental stage. Particular experimental steps are further described in

the following sections.

4.3.1 Feature extraction temporal window

Features for input to the DNN were extracted using 4, 6 and 8 second temporal

windows, moved forward at a rate of 1 frame per interval (refer to Figure 4.4 for

this temporal window/chunking method). Each temporal window was tested using

speech, head pose (PoseVID), and eye gaze (GazeVID) features, as input to a DNN

for arousal and valence training and evaluation (validation). This provided a major-

ity vote as to what temporal window should perform well for further experimental

evaluations. The 88-dimensional eGeMAPS [21] speech feature set was gathered

from audio data using openSMILE [113]. The proposed head- and eye-based feature

sets, were gathered using OpenFace [92] and software developed for this work for

LLD, mid-level and functionals features extraction. Temporal feature windows are

denoted Ws for the remainder of this work, where s indicates window size in seconds

for a window W per interval.

The face feature set used was only extracted and evaluated after the majority vote

on the temporal window to be used. The extraction of face features involved func-

tionals extraction from real-valued intensities of AUs in the range [0.0, 5.0] provided

from OpenFace [92] for a given temporal window. These LLDs are AU01, AU02,
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AU04, AU05, AU06, AU07, AU09, AU10, AU12, AU14, AU15, AU17, AU20, AU23,

AU25, AU26 and AU45 intensities. The functionals applied included min, quartile

1, median, mean, quartile 3, max, SD, skewness, kurtosis, IQR 1-2, IQR 2-3, IQR

1-3, LR intercept and slope (with time as the independent variable), which resulted

in a 170-dimensional feature vector contribution from the face.

4.3.2 Arousal and valence gold standard backward time-

shift

Gold standard annotations provided with the RECOLA [16] and SEMAINE [11]

corpora were shifted back-in-time to account for annotator rating time delay [3], [13],

[90]. The gold standard backward time-shift sizes evaluated ranged from 0 to 4.4

seconds in steps of 0.2 seconds. These are referred to as Ds for the remainder of this

work, where s indicates the delay D in seconds applied to gold standard annotations

prior to concatenation with input features. The speech, PoseVID, GazeVID, and

face feature sets were used at this experimental stage so that modality-wise gold

standard backward time-shifts could be found.

4.3.3 Feature selection

Two supervised MI-based feature selection approaches were used to identify a good

subset of features from each modality or feature set for affect prediction. MI provides

a nonlinear dependency measure between variables, which was a motivation for se-

lecting these approaches in the work presented here using nonlinear machine pre-

diction models. Specifically, a simpler, and less aggressive (assumed, in terms of

feature reduction), filter-based MI technique and a more aggressive mRMR [132]

technique were used for feature selection. For the filter-based selection, MI is es-

timated between the features and arousal, and the features and valence on training

set using the same method as Section 4.2.1.1. Features with MI less than a defined

threshold close to zero were removed. These features were categorised as being in-

dependent of arousal or valence due to the lack of shared information and, therefore,

poor predictors. The mutual information thresholds evaluated in the experiments

were 0.15 nats and 0.2 nats.

The aforementioned filter-based technique is beneficial for its simplicity, however,

it does not consider the role of feature-with-feature dependencies for feature selec-

tion. Ideally, input features would have low redundancy (low feature-with-feature

dependency) and high feature-with-target dependency or relevance. The mRMR

[132] algorithm seeks to provide this by incorporating a MI score for each of feature-

with-target relevance and feature-with-feature redundancy. The mRMR criterion
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is defined as max (D −R) where D is a feature-with-target relevance and R is a

feature-with-feature redundancy. In the experiments, the solution sizes for mRMR

features were set to equal half of the original feature vector size to aggressively

reduce the feature space. The mRMRe package [159] was used for classical (i.e.

not ensemble) mRMR [132] estimation, where, for the continuous variables, MI was

estimated based on a correlation measure:

I(x,y) = −1

2
ln(1− r(x,y)2), (4.3)

where r represents the Pearson correlation between x and y. For the feature selection

techniques employed, feature subsets for arousal or valence were first learned and

selected on the training set. Following this, the learned feature subsets were selected

on the validation partition. At this experimental stage, all the proposed head- and

eye-based feature sets were used in addition to speech and face. This experimental

step formed the final unimodal deep learning evaluations for the experiment.

4.3.4 Model selection and evaluation

DNN model selection for the experiments was based on the neural network model

(and method) that achieved the highest validation set CCC for each modality. In

cases where the CCC of two or more DNN models for a modality were equal during

experimental evaluation, a second metric, mean-squared error, was considered for

model selection.

The CCC scores achieved by the final DNN models for each modality were com-

pared against each other and with the minimum practical baseline scores on the

experimental corpora for both arousal and valence. These practical baseline scores

are the average annotator CCC values shown in Table 3.2. These CCC scores are

0.293 for arousal and 0.411 for valence on the RECOLA [16] validation set and 0.384

for arousal and 0.684 for valence on the SEMAINE [11] validation set.

4.4 Unimodal affect prediction results and discus-

sion

This section presents the results obtained from the unimodal feature extraction tem-

poral window, gold standard backward time-shift and feature selection experiments

involving the proposed head- and eye-based feature sets. Discussion of the effects of

these affect learning parameters on arousal and valence prediction, and feature set

performances and comparisons against other modalities is included.
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4.4.1 Feature extraction temporal windows

Figure 4.10 shows the validation set results achieved on the experimental corpora

for both arousal and valence dimensions for the DNNs under different window size

(Ws) conditions for speech, head pose (PoseVID) and eye gaze (GazeVID) input.

For this experimental stage, the random seed was set at 1787452436. This random

seed initialiser was found to work well on initial experiments using speech and was

used for the remainder of the experiments in this dissertation. In general, the results

indicate that changing the Ws parameter resulted in a change in validation set per-

formance, which is in agreement with the literature [3], [12], [13]. Furthermore, the

results suggest that increasing the analysis window size improved affect prediction

performance. Over these experiments, increasing the window size by 2 seconds gen-

erally resulted in increased affect prediction performance across both corpora and

affect dimensions. These results agree with the earlier LLD exploratory analysis in

Sections 4.2.1.1 and 4.2.1.2. However, arousal in eye gaze on RECOLA [16] and

valence in speech on SEMAINE [11] was best predicted on the validation sets with

the Ws parameter set to 4 seconds. These results could be outliers as they do not

agree with the consensus of improved performance with widening temporal windows.

For the majority vote, setting the Ws parameter to 8 seconds won for this experi-

mental stage and this parameter will be used for the rest of the experiments that

follow. This window parameter often provided the best performance unanimously,

across the modalities, and, at the very least, it performed best for two out of three

of the modalities in question.

Of note from these experiments are the performances of speech, which was the

best-performing modality overall across the corpora for arousal prediction, and head

pose, the best valence prediction modality on SEMAINE [11]. These results echo

how well speech is known to perform for arousal prediction and display potential

for valence recognition in head pose, particularly for human-to-agent (agent played

by a human) conversation. The results also showed head pose to perform well for

arousal prediction from the visual features. This is perhaps because speech, which is

known to perform well for arousal prediction, shares affective information with head

pose [25], [26]. These results provide early evidence that considering head pose can

be of benefit for unimodal affect prediction. They also demonstrate the importance

of selecting an appropriate temporal window for feature extraction.

4.4.2 Gold standard backward time-shift

The results from the gold standard time-shift (Ds) experiments are given in Figure

4.11. Top performers from these experiments as measured by validation set CCC

on RECOLA [16] were speech for arousal, a CCC of 0.741, and face for valence
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(a) (b)

(c) (d)

Figure 4.10: Speech, head pose (PoseVID) and eye gaze (GazeVID) DNN input
prediction validation set CCC scores for RECOLA: (a) arousal and (b) valence, and
SEMAINE: (c) arousal and (d) valence, under different feature temporal window
conditions. Temporal window sizes (Ws) of 4, 6 and 8 seconds were evaluated for
each modality.

prediction, a CCC of 0.519, using Ds values of 3.2 and 3.4 seconds respectively. Top

performers on SEMAINE [11] were speech for arousal, a CCC of 0.680, and head

pose for valence, a CCC of 0.289, using Ds values of 3.0 and 0.6 seconds respectively.

The graphs in Figure 4.11 indicate that there was an increase in performance

followed by a drop-off when increasing the Ds parameter in modalities except the

speech valence condition on RECOLA [16]. This consistency, in general, of improved

performance across the corpora when the gold standard is delayed to compensate

for annotator reaction time-lag is to be expected [3], [129], [131]. Another similarity

across the corpora was that speech always performed best for arousal prediction

while the head pose features always performed second-best overall and best from

the visual features for arousal prediction. Similar to Section 4.4.1, the head pose

features were demonstrated as the best visual descriptor of arousal. They now ap-

pear superior to both eye gaze and face features, respectively, for arousal prediction

from the visual domain. Some differences noted across the corpora at this exper-
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(a) (b)

(c) (d)

Figure 4.11: Arousal (a) and valence (b) validation set CCC scores under different
gold standard backward time-shift conditions. The time shifts (Ds) evaluated ranged
from 0 (not applied) to 4.4 seconds, altered in steps of 0.2 seconds.

imental stage were that arousal and valence prediction performance was worse on

SEMAINE [11] compared with RECOLA [16] and the difference in the best valence

prediction modality. On RECOLA [16], face features provided the best valence

prediction performance while on SEMAINE [11] the head pose features were best

for valence prediction. This could mean that across social situations, for example,

RECOLA [16] involves dyadic problem solving while SEMAINE [11] involves human-

to-agent conversation, different modalities may be more important than others to

predict valence. Also, the RECOLA [16] subjects were observed gazing down at

their desk/notes much more often that the SEMAINE [11] subjects who were only

engaging in conversation. It is possible that the task-oriented downward gazing,

and therefore head tilt, facilitated less emphasis being placed on head cues as an

affective signal by the perceivers/annotators on RECOLA [16].
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Table 4.6: DNN Continuous Affect Prediction CCC Results on the (a) RECOLA
and (b) SEMAINE Validation Sets for the Best Performing Feature Selection (FS)
Method Evaluated for Each Modality (Note: Estimated Group-of-humans Baseline
Validation Set CCC Scores: RECOLA Arousal = 0.293, Valence = 0.411; SEMAINE
Arousal = 0.384, Valence = 0.684)

(a) RECOLA
Arousal Valence

Feature Set CCC N Features FS CCC N Features FS
Speech .741 88 N/A .370 59 MI .200
PoseVID .549 121 MI .200 .312 136 MI .150

PoseVID-adv .572 768 N/A .341 768 N/A
GazeVID .340 44 MI .150 .260 49 MI .200
eGazeVID .378 65 MI .150 .285 42 mRMR
EyeVID .339 146 mRMR .276 113 MI .200
Face .426 85 mRMR .560 66 MI .200

(b) SEMAINE
Arousal Valence

Feature Set CCC N Features FS CCC N Features FS
Speech .736 44 mRMR .160 88 N/A

PoseVID .638 159 MI .150 .289 168 N/A
PoseVID-adv .671 768 N/A .285 694 MI .150

GazeVID .417 40 mRMR .058 79 N/A
eGazeVID .330 42 mRMR .100 74 MI .150
EyeVID .198 260 MI .150 .219 225 MI .200

Face .101 168 MI .150 .160 163 MI .200

4.4.3 Feature selection

The best results obtained as measured by validation set CCC for the feature selec-

tion experiments can be observed in Table 4.6. As shown in the table, no feature

reduction resulted in prediction performance improvements for two modality/affect

evaluations on RECOLA [16] and four modalities on SEMAINE [11]. Generally,

however, the feature sets had their sizes reduced along with performance increases

on the corpora validation sets, showing the employed methods to be effective. For

arousal, the mRMR [132] algorithm was often effective at providing the best feature

subset and performance for the modalities and feature sets evaluated. The larger

feature reductions produced by mRMR [132] is also attractive. For example, the

best performing modality for arousal on SEMAINE [11] was speech where a CCC

of 0.736 was achieved along with a feature set size reduction of 50%. For valence,

mRMR [132] was less successful than the MI filter-based technique for feature selec-

tion. This could be due to a good subset in valence feature space being harder to

find, as has been previously suggested [160], rendering the more aggressive feature

selection technique less fruitful.

For arousal prediction speech was once again a clear winner, in terms of per-

formance, across both corpora. The eGeMAPS [21] speech feature set used provides

computation and potential interpretability benefits due to its relatively small size

in addition to the performance benefits that have been demonstrated here. Head-

based features were once again second-best overall for arousal prediction and best
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for arousal prediction from the visual feature sets. The PoseVID-adv feature set

performed best from the head-based sets. It provided relative performance im-

provements above PoseVID of 4.19% on RECOLA [16] and 5.17% on SEMAINE

[11]. These performance increases were provided by a larger feature vector from the

head, however, where over six hundred extra features were used by PoseVID-adv to

provide these performance increases. Relative to speech, the PoseVID-adv feature

set performed 22.81% worse on RECOLA [16] and 8.83% worse on SEMAINE [11]

for arousal prediction in terms of CCC. Another notable performance was that of

eye gaze on SEMAINE [11] where a validation set CCC of 0.417 was achieved with

the GazeVID set. Curiously, the GazeVID feature set, the smallest of the eye-based

sets, was the best-performing from the eye feature sets on this corpus and affect

and it performed better than face features as well. Unfortunately, GazeVID, or any

eye-based feature set, did not consistently provide better performance for arousal

prediction across the corpora. The face features outperformed the eye features for

arousal prediction on RECOLA [16]. The eye-based feature sets did not perform

within a comparable range to that of speech on either experimental corpus.

There was no clear leader for unimodal valence prediction, across the experi-

mental corpora. The face feature set performed best for valence prediction on RE-

COLA [16] and there were no other modalities that were within a comparable range

of the face system’s performance. Head pose, PoseVID specifically, performed best

for valence prediction on SEMAINE [11] while the larger PoseVID-adv feature set

performed just 1.38% worse relative to the PoseVID set’s performance for valence

prediction. The head-based performances may have been caused by the annotat-

ors for SEMAINE [11] placing more emphasis on head gestures when forming their

valence ratings. Also, as mentioned in the previous section, there is the possibility

that task-oriented downward gazing and head pose may de-emphasise the affective

signalling component of head pose on RECOLA [16]. Interestingly, for valence pre-

diction from the eye-based sets, the largest eye-based set, EyeVID, performed best

for eye-based valence recognition on SEMAINE [11] but not on RECOLA [16]. This

may have occurred due to the more professional lighting and recording set-up used

in SEMAINE [11]. Unfortunately, if this prediction is true, this will limit the use of

the EyeVID feature set to very experimentally controlled or professional recording

settings.

The automatic prediction models were able to outperform the group-of-humans

baseline prediction estimations regularly for arousal across the experimental cor-

pora. For example, all the systems outperformed this baseline CCC of 0.293 on

RECOLA [16] while 4 of 7 (speech, eye gaze and both head pose) systems outper-

formed the baseline CCC value of 0.384 on SEMAINE [11]. The automatic predic-

tion of valence appeared much more difficult in comparison. Only the face feature
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input system outperformed the human performance CCC estimate of 0.411 on the

RECOLA [16] validation set. No automatic system could outperform the group-of-

humans benchmark for valence on SEMAINE [11]. The phenomenon of automatic

prediction systems not being able to match or exceed human performance estimates

for valence on SEMAINE [11] is not new [125]. This shows how difficult it is to

learn the valence in the subjects of the SEMAINE [11] corpus. A reason for this

difficulty may include the culture variability in SEMAINE [11], for example, Irish,

North American, and mainland Europe cultures are present in the subset taken for

this work. Also, there was a smaller subset taken for the SEMAINE [11] training

set compared to that of RECOLA [16] due to the amount of direct gaze annotations

available for SEMAINE [11]. This potentially exacerbated the cultural variability

issue, where there were a smaller number of training patterns to learn from.

4.4.4 General discussion

Head-based continuous affect prediction has achieved results comparable to speech

in unimodal settings in the past [72]. The results in this chapter suggest that head

pose features are second-best when compared with speech for unimodal arousal

prediction. The head-based feature set, PoseVID-adv, performed notably well for

arousal prediction, however. Also, speech and head cues are related for affective

signalling [25], [26]. Based on this, and the performance obtained by head-based

cues in the experiments, there may be potential to exploit the head modality in

different ways to benefit affect prediction systems. For example, head pose features

might be of benefit to predict certain speech-based features when the audio signal

is itself overly noisy. Alternatively, head-based predictions could be employed as a

secondary prediction method in multimodal settings in cases of severely poor audio

conditions. The eye-based feature sets proposed appear inappropriate, performance-

wise, for unimodal arousal prediction. It is still believed, however, that the eye

features can be shown to be useful in multimodal settings.

There was no clear best modality across the experimental corpora for valence

prediction. Valence is more subject-dependent [139] and it is possible that fea-

tures that generally perform well, across subjects, cultures and social situations,

are harder to find for this affect. Human expression analysis is also generally best

approached by using multimodal approaches [24]. For the more difficult-to-predict

valence dimension, the experimental results in this chapter verify this as the valence

prediction results were considerably worse than that of arousal.

Some limitations of the experimental results presented in this chapter include

the unimodal approach taken, which does not consider the complimentarity of the

proposed features with speech and facial features. Furthermore, there may be ad-
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ditional cross-modal features from speech, head, eye, and face modalities that can

provide further information in multimodal settings. Finally, the valence prediction

results in the experiments were poorer than those of arousal. While this is to be

expected [76], further effort toward increasing the performance of valence prediction

should be explored such as investigating the correlation between arousal and valence

for modelling [35].

4.5 Conclusion

This chapter set out to propose feature sets from head- and eye-based cues gathered

from video and to answer the research question:

How well do head- and eye-based features perform compared with speech and fa-

cial features for unimodal continuous affect prediction?

From the experiments conducted, only the head-based features were consistently

shown as suitable for unimodal arousal prediction. The PoseVID-adv feature set

performed best for arousal prediction from the head-based sets proposed. In com-

parison to unimodal speech-based performance, the best arousal prediction modality

overall, the head-based features performed less well. Specifically, head-based arousal

prediction CCC scores were 22.81% less on RECOLA [16] and 8.83% less on SE-

MAINE [11], relative to speech arousal CCCs. The PoseVID-adv feature set also

outperformed estimated human performance baseline CCC values across both ex-

perimental corpora. The head-based feature set, PoseVID-adv, was the best visual

feature set, compared to the eye or face sets, for arousal prediction. For valence

prediction, the experimental results showed face features to perform best on RE-

COLA [16] and the head feature set, PoseVID, to perform best on SEMAINE [11].

No other modalities were comparable, in terms of valence performance on these re-

spective corpora. Only the face feature set performance outperformed the estimated

human performance baseline, however. It is therefore concluded from the experi-

ments that head-based features are suitable for unimodal arousal prediction and

-15.82% relative CCC performance can be obtained from this modality compared

with unimodal speech. It should be noted that many more features (hundreds) are

also required from head pose to obtain such performance. From the valence ex-

perimentation carried out, it is concluded that head- and eye-based features are not

suitable for unimodal valence prediction. This is because, even while the head-based

features performed best in the face-to-face conversation situation of SEMAINE [11],

they did not outperform the estimated human performance measure.
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The next chapter presents results of multimodal affect prediction evaluations

employing the best-performing head- and eye-based feature sets proposed in this

chapter. Feature fusion and cross-modal feature engineering is investigated to op-

timally leverage the complimentarity of the proposed features with speech and face

feature sets. Teacher-forced learning was also investigated to improve valence mod-

elling methodology by exploiting the correlation between arousal and valence.



Chapter 5

Multimodal and Teacher-forced

Learning Experiments

5.1 Introduction

Head-based features were shown to provide good performance for unimodal arousal

prediction from the visual features evaluated in Chapter 4. Due to the unimodal

methodology employed in Chapter 4, the complimentarity and/or redundancy of

modalities and features or whether there exist any beneficial cross-modal affect-

ive features (e.g. holding one’s head high and speaking with joy) could not be

considered. Therefore, the focus of this chapter is multimodal continuous affect pre-

diction where the fusion of speech, head, eye, and face features are considered for

this task. The identified research question for this chapter is

How much of an improvement can head- and eye-based features provide when in-

cluded in multimodal continuous affect prediction systems?

It should be noted that, while face features are included for completeness in this

work, the main goal of this research was to improve upon speech-based perform-

ance. Performance differences for multimodal systems were measured against the

best of either unimodal speech or bimodal speech and face performances for each

affect dimension. This was done to provide a holistic view of the expected improve-

ment when using the proposed head- and eye-based feature sets as one might use all

available modalities in an audio-video stream to improve system performance. Both

early feature fusion, hereafter, feature fusion, and model fusion were evaluated as

methods of combining the modality feature sets in question. Also, while it has long

been noted that an open research opportunity involves investigating cross-modal

feature interactions [35], this has only been done implicitly (i.e. within algorithms).

92
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It is therefore warranted that the space of speech-, head-, eye- and face-based affect-

ive features be searched further by extracting signals based on some combination of

these cues toward uncovering cross-modal interaction features.

Finally, teacher-forced learning with multi-stage regression (TFL-MSR) was used

to leverage the correlation between arousal and valence and put arousal annotations

(i.e. from the teacher/annotators) to further use for valence modelling. TFL-MSR

is not tied to a particular fusion method, like strength modelling [15] but unlike OA

fusion, for example. A difference between TFL-MSR and strength modelling [15],

where preliminary predictions are used to strengthen subsequent models, however,

is that TFL-MSR only uses arousal prediction values on the test set to improve

valence prediction. The arousal training inputs for TFL-MSR valence prediction

are the actual gold standard arousal annotations, hence the term teacher-forced

learning.

Affect prediction experiments were carried out on the RECOLA [16] and SE-

MAINE [11] corpora to evaluate the feature combinations and other experimental

methods used. The results showed that multimodal systems outperformed unim-

odal ones, with model fusion performing best overall on the validation sets. There

were very few cross-modal interaction features found and TFL-MSR was shown to

improve valence prediction on RECOLA [16] but not SEMAINE [11]. The affect

prediction experiments were followed by a feature-with-target relationship analysis

that demonstrated the strongest relationships with arousal and valence for the head

and eye features selected for the final models.

5.2 Multimodal and teacher-forced learning ex-

periment design

This experiment evaluated multimodal input DNN-based models for continuous af-

fect prediction. In addition to feature fusion and model fusion, cross-modal interac-

tion features, an algorithm sensitivity analysis and TFL-MSR were also investigated

in the experiments. The experimental steps are shown in Figure 5.1. The techniques

used are further discussed in the sections to follow.

5.2.1 Feature extraction, gold standard backward time-shift,

and feature selection

The eGeMAPS [21] speech feature set was gathered from audio data using openSMILE

[113] as the core speech feature set for the experiments. However, the ComParE 2013

[31] LLDs and their first order derivatives were also extracted using openSMILE
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Figure 5.1: Experimental steps. For (early) feature fusion, gold standard backward
time-shift and feature selection was carried out. Following this, the feature fusion
evaluation, using feature fusion and model fusion were performed where the best
modality feature sets and selection techniques from Chapter 4 were used for model
fusion. This was followed by cross-modal feature generation, and these features were
combined with feature fusion feature vectors for evaluation. The model (head & eye)
sensitivity analyses were then performed by way of feature group screening-based
sensitivity analysis. The affect prediction experiments culminated with the multi-
stage regression using teacher-forced arousal features and final model evaluations on
the test set. After the main experiments (outside the broken-line boxes) the head-
and eye-based features’ relationships with arousal and valence was evaluated for the
features from these modalities that were selected for the final systems.

[113]. From these LLDs, min, mean, max, range and SD functionals were extrac-

ted. This was done to allow fair comparison against the best performing arousal

prediction system from the literature [12]. These features were used instead of the

eGeMAPS [21] features for the speech contribution in a small set of final validation

set experiments. While no automatic feature selection was applied to the ComParE

2013 [31] LLD-based functionals, six of the functionals had to be manually removed

from the set due to the occurrence of repeating values. The resulting feature vector

was of size 644.

The speech, head, eye and face features for input to the DNN were extracted

using an 8-second analysis window, moved forward at a rate of 1 frame per inter-
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val. This window size generally performed best for affect learning and prediction in

Chapter 4 (Section 4.4.1) and was used here for all modalities and modality combin-

ations. For this experiment, only windows that contained all modalities were used

for prediction to allow accurate assessment of modality contributions when they are

all considered together. The resulting training, validation and test set sizes were

57,190, 57,906, and 50,382 respectively for RECOLA [16] and 46,096, 46,537 and

56,286 respectively for SEMAINE [11].

The gold standard backward time-shifts applied for unimodal speech-, head-,

eye- and face-based feature sets for model fusion were the same as those used in

Section 4.4.2. Additionally, the feature set and feature selection method used for

these unimodal contributions to model fusion were the same as those from the un-

imodal evaluations of Chapter 4 (Section 4.4.3). For example, PoseVID-adv with no

feature selection was always used, across the corpora, to model arousal from head-

based features and EyeVID with MI feature selection was used to model valence from

eye-based features on SEMAINE [11]. Gold standard backward time-shifts were es-

timated for feature fusion based on maximising DNN CCC performance on the val-

idation set for 23 values of Ds parameters tested, i.e. Ds = 0, 0.2, 0.4, ...4.4. Feature

selection for feature fusion was carried out using the same mutual information-based

methods presented in Chapter 4 for each modality combination investigated.

5.2.2 Feature fusion

Both feature fusion and model fusion were employed for the experiments. Due to

the focus on head- and eye-based feature research in this work, the following feature

combinations were evaluated: speech & head, speech & eye, speech & face, head &

eye, speech & head & eye, face & head & eye and all modalities. This allowed com-

parisons of the proposed features against the face features, both with and without

speech features, and combined with each other in multimodal systems. For feature

fusion, sometimes referred to as early feature fusion, the row-wise concatenation

of features from each modality into one, larger feature vector was performed prior

to DNN training. This fusion method allows for numerous interactions of features

inside a DNN.

Model fusion was achieved using the same method as [13], therefore, predictions

from each individual modality were fused after convolving them with a Gaussian

filter with a window of size 120 frames. The σ parameter of the Gaussian, which

controls finite Gaussian support size, was set to 2.5. This fusion process is shown

in Figure 5.2. The filter tail values were not used for preparing the training and

validation examples. Therefore, 60 samples from the start and end of this set were

removed, resulting in 120 fewer examples in the experimental corpora validation
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Figure 5.2: Gaussian-smoothed DNN model fusion.

sets for model training and evaluation. This gave more confidence in the final

training examples because predictions were only provided where the filter was fully

applied to the initial prediction signal. This came at the cost of increased delay

(no predictions for first 60 samples) and short-stopping (no predictions for last 60

samples) for filtered predictions. Smoothed predictions were then passed as training

examples to another DNN with the same topology. The same training methodology

was used for the fusion DNN as for the individual modality DNNs. Unimodal DNN

predictions on the validation set were split randomly 50-50 (training-validation %)

in order to try to provide a balance between training data and validation data.

This randomisation was carried out using the set.seed() function from the R base

package with a seed value argument of 1. The partitioning aimed to achieve enough

training fit while additionally providing good validation set performance estimation.

Validation set CCC calculations for the model fusion performances were always

based on the unimodal speech gold standard time-shift parameter (Section 4.4.2).

This was done as speech is a key modality to be improved upon when predicting

affect using multimodal methods.

5.2.3 Cross-modal feature generation and evaluation

Following the initial fusion evaluation of the feature sets, interactions across feature

modalities were investigated to identify potentially salient predictors of affect. This

was based on results where head pose/gesture changed emotion perception during

utterances [25], [26], [65], pupils changed after utterances during a memory task [29],

and head pose assisted facial emotion recognition [24]. To search the cross-modal

interaction feature space, addition, subtraction, multiplication and division interac-

tions were assessed using autoML. Specifically, a proprietary tool, h2o driverlessAI

(version 1.7) was used, where a generalised linear model (GLM) was used for predic-
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Figure 5.3: h2o driverlessAI basic experimental settings.

tion to evaluate generated features. A GLM extends linear models to handle error

distributions other than Gaussian, unifying a number of regression approaches. The

identity link was used in this work, which is the LR case of a GLM. The results

taken from driverlessAI were the generated interaction features and not the models

or predictions. While it is accepted that multimodal modelling is beneficial for affect

prediction, what feature interactions are salient for prediction is often unknown and

hidden within the model. The purpose of this investigation was to identify some of

these features.

For this feature generation method, all feature vectors from each modality were

combined using feature fusion with no feature selection. This was done to search the

feature space as thoroughly as possible for potential cross-modal feature interactions.

The driverlessAI software was used with settings shown in Figure 5.3. The R2 scorer

used is defined as

R2 = 1−
∑

i(yi − ŷi)2∑
i(yi − µy)2

(5.1)

and it provides a measure of explained variance of y by ŷ that can also be inter-

preted as the square of the Pearson’s r between y and ŷ. This scorer selection

was made as it was the best match for r, which has previously been used for con-

tinuous affect prediction performance measurement, from the scorers available in

driverlessAI. The random seed value for both arousal and valence experiments on

both corpora was 1,234. The driverlessAI expert settings for the experiments in-

cluded feature engineering effort (10), target transformation (identity), enable target

encoding (disabled), while the only enabled learning algorithm was GLM.

Features that were obtained were then evaluated within the core experiment.

To achieve this, cross-modal features were merged with the corresponding best-

performing arousal and valence feature fusion sets, then training and validation set

prediction was performed. For example, the best performing face & head & eye

feature fusion system had its best-performing feature vector increased by n features,

where n were cross-modal interaction features between a pair from these three mod-
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alities. The features were not evaluated with the model fusion approach because

each unimodal model for fusion clearly disallows cross-modal feature interactions.

5.2.4 Feature group screening-based sensitivity analysis

Inspired by fractional factorial design [161], a screening-based algorithm sensitivity

analysis was performed for head- and eye-based feature group contributions to the

prediction systems. This was carried out to provide information on important factors

in terms of feature groups for affect prediction from the proposed sets. Another

reason for this analysis was to select the highest performing feature sets should

feature selection have not provided the best solutions. The screening was carried

out using feature group removal, where only one feature group is removed prior

to training and evaluation at each step of the analysis. The nine possible head-

based feature group removals at this stage were: all head location, all head rotation,

head location and rotation x, y, and z respectively, and all simple head location

and rotation features (i.e. PoseVID). The eleven possible eye-based feature group

removals included: eye gaze approach, direct gaze, x and y gaze angles, eyes fixated,

eye closure/blink, eye blink intensity, pupil constriction, pupil dilation, and pupil

diameter features (including wavelet features).

Feature groups that resulted in a large relative performance drop were deemed

more important for modelling. They contributed notably to the overall model per-

formance. Also, in the event that performance increases occurred after feature group

removal, these feature groups were deemed poorer predictors and were candidates for

removal from the feature sets for the final models. Performance decreases were gen-

erally expected at this experimental stage, however, it was also believed that some

feature groups were redundant, harming performance. Therefore, feature group re-

movals that provided performance benefit increases of one standard deviation or

more above the average CCC for the modality screening were retained for final

model evaluations.

5.2.5 Teacher-forced learning with multi-stage regression

It is generally known, and it has been shown in Section 3.2.4.3, that there are correl-

ations between arousal and valence. However, the community has not investigated

teacher-forced learning [102, p. 377] as an improved method for affect modelling.

Teacher-forced features are traditionally applied by incorporating t−1 ground-truth

values as additional features for prediction at time t in a RNN. This work instead

proposes separating target values by affect dimension instead of time so that arousal

knowledge (from annotators) and predictions can be used for learning and predict-

ing valence. The described approach, teacher-forced learning, was investigated and
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the results compared against a baseline (i.e. standard regression) and multi-task

learning, which has often been used for joint modelling of affect dimensions [12],

[120], [138]. The teacher-forced features were employed only for valence learning,

the teacher-forced learning stage of this method, in the experiments. That is, the

annotations provided for arousal were added as an input feature vector such that a

valence feature vector of size N is increased to N + 1. This process was carried out

for valence training and validation data only as test data annotations must be left

unseen. In all cases, paired arousal data used as features had gold standard time-

shifts applied that matched the best-performing unimodal arousal systems. For the

final test set pass, multi-stage regression was implemented where predictions from

the best performing arousal model were first made on the test set. These predic-

tions were then passed as feature input to the final valence model in addition to

the traditional input features to complete the proposed TFL-MSR approach. This

process was carried out under the assumptions that arousal can be predicted with

higher fidelity than valence [31], [76].

TFL-MSR is similar to MTL [120], [138], in that it aims to leverage the correla-

tion of arousal and valence for better feature representation in neural networks. A

key difference between TFL-MSR and MTL, however, is that TFL-MSR uses arousal

as an additional feature, as opposed to a target like in MTL. This also differenti-

ates TFL-MSR from strength modelling [15] in which preliminary predictions are

used to strengthen subsequent models and affect dimensions are treated separately.

The TFL-MSR approach to valence prediction uses knowledge gained for arousal

prediction toward improved valence prediction on a test set. This was investigated

to improve valence prediction performance as it appeared more difficult to predict

from the results in Section 4.4.3.

5.2.6 Final model evaluations

A test set pass was carried out for arousal and valence prediction for the highest

performing models from the validation experiments to provide unbiased estimates

of model performance on each experimental corpus. However, additional test set

passes were carried out on the experimental corpora for two reasons. First, both

systems incorporating the ComParE 2013 [31] LLD functionals and eGeMAPS were

run on the test sets. This was to ensure fair system comparisons with [12], which

used ComParE 2013 [31] LLD-based functionals, while also allowing fair comparison

with published eGeMAPS test set results [13], [14]. Furthermore, close comparison

against [12] is important because the authors used head-based features as part of

multimodal input for affect prediction. Second, to provide validity for the TFL-MSR

method, a model that used this method and a model that did not were applied to the
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test partition where TFL-MSR performed best on the validation set. This provides

the best assessment of the improvement of this method above standard regression,

that is, on both validation and test data. Before all test set passes, however, the final

models were selected based on validation set performance. This provides information

detailing the biased and unbiased estimates of model performance on the test set.

Final model results were compared to both average annotator CCC and independent

results from the literature previously cited.

5.2.7 Post-hoc head- and eye-based feature retrospective

For the feature retrospective, the top 10 performing head- and eye-based features

from the experiments were listed in terms of r and MI dependency measures with

arousal and valence. These features were compared in terms of r and MI to the best-

performing speech and face features in terms of arousal and valence relationships on

the RECOLA [16] and SEMAINE [11] training sets. This was done to show, in a

model agnostic way, which features from the proposed sets are important descriptors

of arousal and valence.

5.3 Multimodal and teacher-forced learning res-

ults and discussion

This section presents the results obtained from the multimodal experiments. Com-

parisons and discussion of the results achieved compared with independent results

from the literature and analysis of important feature relationships with arousal and

valence are also provided.

5.3.1 Multimodal fusion

The best performing Ds parameter evaluation results for the multimodal feature fu-

sion combinations investigated in this experiment are given in Table 5.1. In general,

a lower gold standard time-shift was found for valence than arousal. Interestingly,

however, for the fusion of all modalities, the arousal gold standard time-shift was

always lower than that of valence across both of the corpora. Assuming that the

gold standard annotators used all modalities available to them when forming their

ratings, perhaps the fusion of all modalities provides the best estimator of the delay

in providing annotations. Of course, different modalities may be more salient con-

tributors to ratings of different affect dimensions at different times. In assessing

the performance of feature fusion obtained across affect dimensions and corpora,

Table 5.1 shows that the multimodal (all modalities) systems performed best for
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valence prediction but not for arousal prediction. The best feature fusion arousal

systems used bimodal speech and another modality on both the SEMAINE [11]

and RECOLA [16] validation sets. This indicates that, while valence may be more

unconsciously recognisable than arousal [76], conscious valence perception and an-

notation actions that follow may take longer than that of arousal by requiring more

information from more modalities.

The results for the best performing feature selection methods for feature fusion

and combinations of unimodal models usings model fusion can be observed in Table

5.1. For arousal prediction, it can be seen that model fusion always outperformed

feature fusion. For head & eyes and face & head & eyes feature fusion, there is

a drop in performance when comparing the Table 5.1 results with the unimodal

head results in Table 4.6 for both corpora. In further comparisons of the feature

fusion performances with the unimodal results from Table 4.6, it was noted that

only feature fusion systems that included face features on RECOLA [16] for valence

were able to improve prediction. The model fusion systems largely outperformed the

unimodal systems of Chapter 4, however. These results suggest some redundancies

across the feature modalities that resulted in poor feature interaction representations

or perhaps sub-optimal fusion of the modalities, temporally, with the affect to be

predicted.

The best arousal results in Table 5.1, CCC values of 0.833 on RECOLA [16] and

0.859 on SEMAINE [11], show the potential of combining all the employed modal-

ities for prediction. For these cases, features for arousal prediction were integrated

at different unimodal Ds parameter values, therefore, this model could take advant-

age of modality information at different levels of time integration. Other notable

performances from the arousal model fusion results was that of speech & head &

eyes, on both corpora. On RECOLA [16], this system achieved a CCC of 0.809, a

performance 2.88% lower relative to the top performing system along with 86 fewer

features compared to the system that used all modalities. On SEMAINE [11], a

CCC of 0.831 was achieved by the speech & head & eye system, a performance

3.26% lower relative to the top performing all modalities system along with 169

fewer features.

The valence results in Table 5.1 appear to repeat the outcome of the arousal ex-

perimentation, that model fusion is superior to feature fusion. Model fusion provided

the best performance from the valence experiments, providing CCC values of 0.694

on RECOLA [16] and 0.843 on SEMAINE [11], with all modalities used as input

on both corpora evaluations. From Table 5.1 (b) it is noted that the visual feature

fusion systems always outperformed the model fusion systems, however. This shows

that, for valence prediction, the visual features can offer complimentary interactions

for feature representation inside DNNs for in some situations, specifically, the RE-
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Table 5.1: Multimodal Fusion DNN Validation Set Prediction CCC Results on RE-
COLA for (a) Arousal and (b) Valence, and SEMAINE for (c) Arousal and (d)
Valence for the Best Performing Feature Selection (FS) Method and Ds Parameter
Evaluated with Resulting Feature Vector Sizes Listed as N Features (Note: Estim-
ated Group-of-humans Baseline Validation Set CCC Scores: RECOLA Arousal =
0.293, Valence = 0.411; SEMAINE Arousal = 0.384, Valence = 0.684)

(a) RECOLA Arousal
Feature Fusion Model Fusion

Modalities CCC N Features FS Ds CCC N Features
Speech & head .717 679 MI .150 2.6 .796 858
Speech & eyes .728 86 mRMR 3.2 .787 155
Speech & face .740 129 mRMR 3.6 .794 175
Head & eyes .558 549 MI .200 2.8 .573 835

Speech & head & eyes .733 470 mRMR 3.4 .809 924
Face & head & eyes .544 1,022 N/A 2.8 .608 921
All modalities .705 731 MI .200 3.6 .833 1010

(b) RECOLA Valence
Feature Fusion Model Fusion

Modalities CCC N Features FS Ds CCC N Features
Speech & head .473 682 MI .150 2.4 .433 836
Speech & eyes .265 116 MI .200 2.0 .435 110
Speech & face .545 187 MI .200 3.2 .587 186
Head & eyes .421 852 N/A 3.2 .337 812

Speech & head & eyes .533 470 mRMR 2.4 .519 879
Face & head & eyes .631 1,022 N/A 3.2 .588 931
All modalities .639 1,110 N/A 3.8 .694 998

(c) SEMAINE Arousal
Feature Fusion Model Fusion

Modalities CCC N Features FS Ds CCC N Features
Speech & head .694 783 MI .150 3.0 .818 814
Speech & eyes .706 mRMR 86 3.0 .785 86
Speech & face .563 254 MI .150 2.8 .759 214
Head & eyes .559 765 MI .150 3.0 .772 810

Speech & head & eyes .705 468 mRMR 3.0 .831 855
Face & head & eyes .527 933 MI .150 3.0 .807 979
All modalities .538 1,105 N/A 2.2 .859 1,024

(d) SEMAINE Valence
Feature Fusion Model Fusion

Modalities CCC N Features FS Ds CCC N Features
Speech & head .276 246 MI .150 3.0 .524 258
Speech & eyes .195 330 MI .150 3.0 .680 315
Speech & face .131 129 mRMR 2.8 .484 253
Head & eyes .260 460 N/A 2.8 .721 1,395

Speech & head & eyes .278 548 N/A 1.4 .804 484
Face & head & eyes .203 568 MI .150 2.8 .756 559
All modalities .284 718 N/A 3.8 .843 648

COLA [16] problem solving task in this case. Of further note for the face & head

& eyes visual systems in Table 5.1 (b) is that they indicate practical benefit on the

validation set using either fusion method on RECOLA [16]. These multimodal sys-

tems outperformed the average CCC estimated from a group of human annotators,

a CCC score of 0.411. Only the model fusion systems in Table 5.1 (d) were able

to outperform the group of human annotators estimate for valence, a CCC score of

0.684, on SEMAINE [11].
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Table 5.2: h2o driverlessAI autoML-Generated Feature Interactions Extracted
Based on Validation Set Performances for (a) RECOLA Arousal, (b) RECOLA
Valence and (c) SEMAINE Arousal

(a) RECOLA Arousal
Features

HNRdBACF sma3nz amean / loudness sma3 amean,
db scale coeffs l3 head rotation z min + db scale coeffs l4 head rotation x median

(b) RECOLA Valence
Features

AU12 SD / delta gaze angle x quartile 3

(b) SEMAINE Arousal
Features

db scale coeffs l1 head rotation y skewness × delta head location z median

5.3.2 Cross-modal interaction features

The results from the cross-modal interaction feature generation are given in Table

5.2, with feature names shown as they appear in the sets from the experiment. For

arousal prediction, it is noted that no cross-modal features were generated, only

intra-modal interactions were found on both corpora. This provides some explana-

tion on why feature fusion of eye or eye and face features with the head feature set

does not always improve arousal prediction performance from visual input. There

may not be as many feature interactions that aid arousal prediction feature repres-

entation from the visual modalities. In the case of speech, it is long known that this

modality performs well for arousal prediction [35]. This experiment provides further

evidence of this in Table 5.2 (a), however, this time an explicit feature candidate

for the interactions that could occur inside deep learning algorithms is given. It is

interesting to note that there was a head-based intra-modal feature found for arousal

on both RECOLA [16] and SEMAINE [11].

For valence, Table 5.2 (b) shows a cross-modal feature candidate generated from

face and eye signal interaction on [16]. There were no interaction features found

on the SEMAINE [11] corpus. This finding suggests that multimodality is more

important for valence than arousal as this was the only case where a cross-modal

feature interaction arose. The interaction generated on RECOLA [16] consisted of

face, AU12 SD, and eye gaze, delta gaze angle x quartile 3, features. Specifically,

this interaction feature means that measurements of the intensity of raising the

lip corners (smiling, while not showing the teeth) scaled by an eye gaze left/right

angle measurement, may benefit valence prediction. Eye and smile interactions for

some displays of affect have been known to exist for some time, [59], and this result

provides a cross-modal feature candidate for such interactions.

The effect of the generated feature interactions when included with the best

feature fusion DNN systems from the previous section are given in Table 5.3. Only
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Table 5.3: Feature Fusion DNN Continuous Affect Prediction Validation Set Results
Where Interaction Features Were Incorporated on (a) RECOLA and (b) SEMAINE
with Improvement Above Standard Feature Sets Highlighted (†)

(a) RECOLA
Arousal Valence

Modalities CCC N Features CCC N Features
Speech & head .705 681 - -

Speech & eye gaze .720 87 - -
Speech & face .726 130 - -

Head & eye gaze .566† 550 - -
Speech & head & eye gaze .689 472 - -
Face & head & eye gaze .508 1,023 .613 1,023

All modalities .733† 733 .656† 1,111

(b) SEMAINE
Arousal

Modalities CCC N Features
Speech & head .843† 784

Speech & eye gaze - -
Speech & face - -

Head & eye gaze .469 766
Speech & head & eye gaze .632 469
Face & head & eye gaze .379 934

All modalities .620† 1,106

modality combinations where feature interactions were generated were evaluated.

The table shows that the interaction measures were largely ineffective for arousal

prediction, with performance degradation in 5 out of 7 cases in Table 5.3 (a) and

3 of 5 cases in Table 5.3 (b). Adding the interaction measures improved the fusion

of all modalities on RECOLA [16], a relative performance increase of 3.98%, but

this CCC (0.733) still fell short of the best-performing feature fusion system for

arousal (speech & face, CCC = 0.740). In Table 5.3 (b), it can be observed that

there was a noticeable performance in speech & head system performance after the

inclusion of the intra-modal head-based interaction feature. This particular system

achieved a CCC of 0.843 on the SEMAINE [11] validation set, this was the best

feature fusion arousal performance achieved on this corpus, a 19.41% relative CCC

improvement compared to the next best feature fusion system. This head interaction

feature also improved system performance when added to the multimodal system

that incorporated all the available modalities. These results once again show the

potential that head-based features have for arousal prediction from visual features.

A performance increase for valence prediction was observed with the cross-modal

interaction feature as part of the multimodal system that included all modalities, a

relative CCC increase of 2.66%. A 2.85% relative performance degradation occurred

when incorporating this feature in the face & head & eye gaze system compared to

when it was not added.
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5.3.3 Screening-based sensitivity analysis

Model fusion outperformed feature fusion in the validation set experimentation thus

far. Therefore, based on the improved arousal and valence prediction perform-

ance using model fusion, this fusion method is the focus of the experimental results

presented and discussed in this and the following sections. The best-performing

arousal and valence model fusion systems incorporated all modalities in the fusion

framework. Therefore, as part of the screening-based sensitivity analysis for head-

and eye-based feature contributions to the models, unimodal model feature group

screening was first performed. This was followed by multimodal evaluations for

notably beneficial unimodal feature group removals.

5.3.3.1 Head feature groups sensitivity analysis

The validation set results after unimodal head-based feature group removals are

given in Figure 5.4. In Figure 5.4 (a) it is shown that removing head rotation resul-

ted in the largest performance drop (12.59% relative CCC performance reduction),

suggesting this group to be the most important from the set for arousal prediction

on RECOLA [16]. Further, removing either head rotation y (yaw) or head loca-

tion x was detrimental to resulting models, yielding 5.77% and 4.72% relative CCC

performance reductions on this corpus. A performance increase was observed for

the removal of head location z (3.15% increase, CCC = 0.590) for the head arousal

system on RECOLA [16]. The largest arousal prediction performance decrease on

SEMAINE [11], shown in Figure 5.4 (c), was produced by the removal of head loca-

tion z features, a 21.91% relative CCC reduction. This is the converse of this feature

group’s behaviour on RECOLA [16] where a performance increase was observed for

the removal of this feature group. Similar to RECOLA [16], however, was that re-

moving either head rotation y or head location x provided performance degradation

on the SEMAINE [11] validation set. Removing all head location features from the

head feature set provided a 0.75% performance increase on the SEMAINE [11] val-

idation set. The performance increases that were observed on both corpora were

greater than the average CCC + 1SD for that corpora and were further evaluated

in model fusion.

For valence prediction on the RECOLA [16] validation set, large relative CCC

performance decreases were observed for the removals of head location (11.73%),

head rotation (10.56%), head rotation z (roll) (7.63%) and head rotation y (6.45%)

feature groups. These performance changes are shown in Figure 5.4 (b). Increases

in valence prediction performance during screening were observed for removals of

head location y (4.99% increase, CCC = 0.358), head location x (3.81% increase,

CCC = 0.354) and head rotation x (pitch) (1.17% increase, CCC = 0.345) features
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on this corpus. Only the first two feature group removals provided performance

increases of 1SD or more above the average CCC and were further evaluated in

model fusion. On SEMAINE [11], removing all head location or just the head

location y features provided the same degradation, 86.51% relative (CCC = 0.039),

for valence prediction on the validation set. These results are depicted in Figure

5.4 (d). This suggests that the majority of performance degradation after removing

head location features was caused by the head location y group on this corpus. CCC

performance decreases were also observed for head rotation (49.83%), head rotation

z (roll) (31.83%) and head rotation y (34.60%) feature group removals on SEMAINE

[11]. A 25.61% (CCC = 0.363) performance increase was observed on SEMAINE

[11] after the removal of the head location z features. This performance increase

was greater than the average CCC + 1SD for this affect dimension and was further

evaluated in model fusion.

From these results, head rotation appears important for affect prediction using

the proposed sets, with head rotation y the most important within that group, across

affect dimensions and corpora. An interesting difference across the corpora and affect

dimensions was the importance of head location z features. These features appear

beneficial (performance degradation when they were removed) for arousal prediction

on SEMAINE [11] but not on RECOLA [16]. Alternatively, the head location z

features appear important for valence prediction on RECOLA [16] but this is not so

for SEMAINE [11]. While there are some similarities that can be observed across

the corpora and affect dimensions, this sensitivity analysis indicates that different

head features can have different importances in different social situations. Based on

this, efforts in prediction domain adaptation, feature selection specifically, can be

rewarded by providing suitable feature sub-sets for different social situations.

5.3.3.2 Eye feature groups sensitivity analysis

The unimodal eye-based screening sensitivity analysis results are shown in Figure

5.5. The arousal experimentation shows that all feature groups contributed posit-

ively to model performance on RECOLA [16], there were no performance increases

observed after removing any feature groups on this corpus. The most important

feature groups as evaluated on RECOLA [16], and shown in Figure 5.5 (a), are gaze

angle x, the left to right gazing angle, eyes fixated and gaze approach. In the latter

two cases of feature group removal, there was only one feature removed as that was

all that was selected for these feature groups using mutual information feature se-

lection. However, their removal during screening caused notable arousal prediction

performance degradation. These features were gaze fixation time ratio and gaze

approach time in seconds mean and when removed, CCC decreases of 25.93% and
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(a) (b)

(c) (d)

Figure 5.4: Head-based prediction relative validation set CCC % change under differ-
ent feature group screening conditions on RECOLA for (a) arousal and (b) valence,
and on SEMAINE for (c) arousal and (d) valence. The head-based feature sets,
prior to screening, provided validation set CCC scores of 0.572 for arousal and 0.341
for valence on RECOLA and 0.676 for arousal and 0.289 for valence on SEMAINE.

26.19% respectively compared to the original feature set were observed. Gaze angle

x and eyes fixated were also shown to be important feature groups for validation set

prediction on SEMAINE [11] where relative CCC decreases of 35.01% and 28.54%

respectively were found after their removal. These results are depicted in Figure

5.5 (c). It can also be seen in this figure that the eye blink and eye closure fea-

tures were important for arousal prediction from the eye signals on SEMAINE [11].

The removal of the gaze angle y features were the only feature group that caused a

performance increase on the SEMAINE [11] validation set. A relative performance

increase of 1.44% was observed which improved arousal prediction from the eyes to

a CCC of 0.423, this removal was also evaluated at the model fusion stage.

The eye-based valence screening analysis results are shown in Figure 5.5 (b) and

(d). It can be seen that the algorithm for model generation benefited by inclusion

of gaze angle x, direct gaze and eye blink intensity based feature input on RECOLA
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[16]. Of these three feature groups, the direct gaze feature group appears to be par-

ticularly important. The CCC performance decrease when this group was removed,

31.58%, was caused by just two features, direct gaze time in seconds max and direct

gaze time ratio. Performance increases for valence prediction on RECOLA [16] were

observed after the removal of eyes fixated (7.72% increase, CCC = 0.307) and gaze

angle y (11.58% increase, CCC = 0.318) feature groups respectively. Only the gaze

angle y group removal provided a performance benefit of 1SD or above compared to

the average CCC for this group and was further evaluated for model fusion. For the

SEMAINE [11] evaluations, all the feature groups appeared to have provided bene-

fits to the learning algorithm. The most important feature groups were gaze angle

x, eye gaze approach and eyes fixated feature groups, and their removals provided

116.84%, 107.72% and 94.75% relative CCC performance decreases when removed

respectively. For eye gaze approach and eyes fixated features the performance de-

gradation observed was provided by three features and one feature respectively. The

eye fixation feature in question is eye fixation time ratio.

5.3.3.3 Model fusion sensitivity analysis

The final results of the screening-based sensitivity analysis, the model fusion evalu-

ations, are detailed in Table 5.4. The valence results in section (b) of this table are

given for both individual feature group removals and combined, based on improve-

ment for each individual group removal, feature group removals on RECOLA [16].

For arousal on RECOLA [16], in Table 5.4 (a), it can be seen that removing head

location z provided improved model fusion performance, a validation set CCC of

0.850 on the validation set. Removing the gaze angle y features only provided the

best valence model fusion performance on RECOLA [16] as can be seen in Table 5.4

(b). This was thought to have occurred due to a reduced intra-training feature cor-

relation by removing these features alone and not the head location x features. This

was not confirmed by correlation analysis, however, where the average r across the

input training vectors was 0.377 after removing the gaze angle y feature group from

its unimodal model; average r was 0.346 when both head location x and gaze angle

y were removed. In addition, the average feature-with-target valence correlations

were also computed and improved with the removal of both of these feature vectors

(removal of gaze angle y feature group µr = 0.407, removal of both head location x

and gaze angle y feature groups µr = 0.414). To be sure that there were no non-

linear effects unaccounted for, average feature-with-feature and feature-with-target

MI values were also assessed and the results of the correlation analysis were rep-

licated. Despite what appears to be an improved feature vector when both feature

groups were removed, the neural network was able to learn a better representation
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(a) (b)

(c) (d)

Figure 5.5: Eye-based prediction relative validation set CCC % change under differ-
ent feature group screening conditions on RECOLA for (a) arousal and (b) valence,
and on SEMAINE for (c) arousal and (d) valence. The eye-based feature sets, prior
to screening, provided validation set CCC scores of 0.378 for arousal and 0.285 for
valence on RECOLA and 0.417 for arousal and 0.285 for valence on SEMAINE.

with only the gaze angle y group removed. Therefore, the removal of gaze angle y

feature group only from its unimodal model was chosen for the rest of the valence

experiments on RECOLA [16].

The model fusion evaluations on the SEMAINE [11] validation set are shown

in Table 5.4 (c) and (d). Only the gaze angle y feature group removal was able

to improve the model fusion performance for arousal prediction on SEMAINE [11].

This removal was therefore retained for the rest of the arousal prediction experiments

on this corpus.
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Table 5.4: Model Fusion DNN Validation Set CCC Results on RECOLA for (a)
Arousal and (b) Valence and SEMAINE for (c) Arousal and (d) Valence After Re-
moving Feature Groups Causing Unimodal Model CCC Performance Increases of ≥
1 SD Above the Average CCC for That Modality and Affect Dimension (∆ CCC
in the table signifies the relative percentage change in CCC compared to when no
feature group removals were applied, N/A)

(a) RECOLA Arousal
Features Removed CCC N features ∆ CCC

N/A .834 1,010 -
Head location z .850 882 2.04%

(b) RECOLA Valence
Features Removed CCC N features ∆ CCC

N/A .694 998 -
Head location x .695 870 0.14%
Head location y .681 870 -1.44%
Gaze angle y .723 983 4.18%

Head location x and gaze angle y .721 855 3.89%

(c) SEMAINE Arousal
Features Removed CCC N features ∆ CCC

N/A .859 1,024 -
Head location .857 640 -0.23%
Gaze angle y .862 1,008 0.35%

(d) SEMAINE Valence
Features Removed CCC N features ∆ CCC

N/A .843 648 -
Head location z .820 620 -2.73%

5.3.4 Teacher-forced learning

The validation set results for valence prediction incorporating teacher-forced learning

(arousal annotations as an additional training and validation feature) are provided in

Table 5.5. Due to delays and short-stopping introduced by the Gaussian smoothing

where the window tails were not used, padding was required prior to using arousal

predictions as features on the test set. Arousal predictions were therefore set to 0.0

for the multi-stage regression method where 60 predictions were missing at both the

start and end of the final test set.

The results of TFL-MSR showed this method to be effective on the validation set

for the unimodal models on RECOLA [16] as shown in Table 5.5 (a). The teacher-

forced feature always improved unimodal prediction when compared to either stand-

ard regression or MTL on this corpus. MTL consistently resulted in a decrease in

model performance compared to standard regression. This is thought to have oc-

curred due to the feature selection methods applied, which were aimed at retaining

good feature-with-target information for valence, not arousal. The features were

therefore not optimal for half of their required prediction task in the MTL approach.

In the RECOLA [16] validation set experiments the benefit of using TFL-MSR for

valence prediction was not always certain. Model fusion performance was reduced by

0.97% compared to standard regression when the teacher-forced method was used for
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all unimodal models for fusion. This is thought to have occurred because each of the

unimodal models received nearly identical arousal annotations (only Ds parameters

applied differentiated the information) in training and validation, which resulted

in more correlated unimodal predictions (less unique information for later fusion)

for model fusion input. This suspicion was confirmed using correlation analysis. It

was found that the average r across TFL-MSR unimodal model prediction pairs

was 0.545 while the average r for the unimodal prediction pairs using the standard

method was 0.377. Clearly, while the teacher-forcing method can benefit prediction,

care is required so as not to overuse the teacher-provided information. Based on this

observation, TFL-MSR was not used for head and face unimodal models for fusion

as it did not increase model performance as much as for the speech- and eye-based

models. As seen in Table 5.5 (a), these removals were beneficial, providing the best-

performing valence model on RECOLA [16], a validation set CCC of 0.740, a 2.35%

relative improvement compared to standard valence regression.

The TFL-MSR technique was shown to be ineffective on the SEMAINE [11]

corpus. In Table 5.5 (b) it can be observed that TFL-MSR regularly performed

worse than the standard regression or MTL approaches to valence prediction on the

validation set. This was thought to have occurred due to a low correlation between

arousal and valence on the validation set compared to the training set. This suspicion

turned out to be true. While this correlation was high on the SEMAINE [11] training

set, r = 0.755, as explored in Section 3.2.4.3, the validation set correlation between

arousal and valence on SEMAINE [11] was only 0.1. This provides an explanation as

to why TFL-MSR did not provide a performance benefit on SEMAINE [11]. Even if

arousal values were predicted with high fidelity on this corpus and partition, these

arousal values simply do not appear indicative of valence on the validation set.

Following the evaluation of the multimodal systems incorporating eGeMAPS

[21], similar evaluations were performed using the ComParE [31] LLD-based func-

tionals. This provides a perspective where a feature set with no valence-oriented

feature selection was evaluated using TFL-MSR. Due to the previous poor result

for TFL-MSR on SEMAINE [11] this method was only evaluated on RECOLA [16].

However, ComParE [31] LLD-based results that did not use the TFL-MSR method

on SEMAINE [11] were also gathered to facilitate ComParE [31] LLD-based model

fusion input and unimodal comparison of this feature set with eGeMAPS [21]. The

results of this experimentation are given in Table 5.6. Arousal results are also

provided in this table as they are required for TFL-MSR at the testing stage but

have not yet been acquired for the ComParE [31] LLD-based functionals thus far.

While not the focus of this section, it is interesting to note the differences in the

unimodal performances presented in Table 5.6 for the ComParE-based set [31] and

the previous eGeMAPS [21] results without feature selection (Section 4.4.2). The
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Table 5.5: DNN Valence Validation Set Prediction CCC Results on (a) RECOLA
and (b) SEMAINE for Unimodal and Model Fusion of All Modalities Using Stand-
ard, MTL, and TFL-MSR Learning Approaches

(a) RECOLA

Modality/Fusion
Standard Regression

CCC
MTL
CCC

TFL-MSR
CCC

Speech .342 .310 .487
Head .358 .345 .371

Eye gaze .318 .286 .506
Face .560 .546 .597

Model fusion .723 .697 .716
Model fusion

(teacher-forced features for
speech and eye model input only)

- - .740

(b) SEMAINE

Modality/Fusion
Standard Regression

CCC
MTL
CCC

TFL-MSR
CCC

Speech .160 .129 -.018
Head .289 .328 .269

Eye gaze .219 -.054 .075
Face .160 .101 .109

Model fusion .843 .690 .831

unimodal ComParE-based [31] results were always inferior for arousal and valence

on both RECOLA [16] and SEMAINE [11]. The unimodal eGeMAPS [21] systems

previously obtained CCC scores of 0.741 and 0.314 for arousal and valence respect-

ively on RECOLA [16], and 0.679 and 0.160 for arousal and valence respectively on

SEMAINE [11] (Figure 4.11). Of course, while eGeMAPS [21] seems superior for

unimodal prediction from these evaluations, this does not guarantee its success as

part of a multimodal prediction system. This is the subject of the remaining affect

predction evaluations.

Contrary to the previous results for TFL-MSR (Table 5.5), Table 5.6 (a) shows

that TFL-MSR caused a large performance decrease when combined with the ComParE-

based [31] speech features for unimodal valence prediction. This is thought to have

occurred because this feature set without feature selection is naturally suited for

arousal prediction, not valence. In this case, providing the teacher-forced arousal

feature resulted in an additional feature that was correlated with the other features

and did not provide additional information or useful feature interactions for valence

prediction. Therefore, the final model fusion result shown in the table does not

use the teacher-forced features for the speech-based unimodal model input to the

ensemble when using the ComParE-based [31] features. Additionally, teacher-forced

features were not used for head and face unimodal model input to model fusion

based on the results in Table 5.5. From Table 5.6 (a) it can bee seen that the

best performing arousal result thus far was produced using the ComParE-based [31]

features as speech input, a CCC score of 0.856.
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Table 5.6: Validation Set Results for Systems Incorporating ComParE LLD Func-
tionals Speech: Unimodal, and Model Fusion of All (Best Unimodal) Modalities on
(a) RECOLA and (b) SEMAINE (Note: TFL-MSR only employed on RECOLA
due to previously poor performance for this method on SEMAINE)

(a) RECOLA
System Arousal CCC Valence CCC
Speech .705 .210

Speech with TFL-MSR - .035
Model fusion .856 .739‡
TFL-MSR used (for eye model input only)‡

(b) SEMAINE
System Arousal CCC Valence CCC
Speech .429 -.001

Model fusion .843 .831

5.3.5 Final prediction results

The final validation set results are given in Table 5.7 where both speech-based in-

put feature set variations were used on each corpus for this experimental stage.

To be noted from the validation set experimentation is that the visual systems

never outperformed the multimodal systems that included speech, hence, they are

not included in this table. It can be seen that the eGeMAPS-based [21] model

outperformed the ComParE [31] LLD functionals-based model on the RECOLA

[16] validation set for valence prediction, while the reverse is true for arousal. On

SEMAINE [11], the models that incorporated the eGeMAPS [21] features always

outperformed the models that included the ComParE [31] LLD functionals-based

features on the validation set, however, their performances were comparable. Un-

biased estimates of model performance were gathered on the test set for these better

performing systems that have their validation set results highlighted in bold in Table

5.7. Biased estimates of model performance, test set passes that were carried out for

experimental completeness not based on maximum validation set performance, were

gathered for the other systems from Table 5.7. The biased estimates are important

to fairly compare with other research or evaluate the TFL-MSR method proposed.

However, final model performance claims and model selection in this work are based

on observable data (i.e. training and validation data) and unbiased performance

estimates, with the final test set pass providing only out-of-sample model scoring.

Of the unbiased model performance estimates given in Table 5.7, the arousal test

set CCC scores are among some of the best performances that this author is aware of

on each corpus. The valence system evaluated on RECOLA [16] needs improvement,

however, where a CCC of 0.463 was achieved. The validation set performance of this

system is very different to the test set performance (valence validation CCC = 0.740,

valence test CCC = 0.463), which suggests validation set overfitting. To remedy this,

regularisation is a possible method for model improvement. The issue of poorer test
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Table 5.7: Validation and Test Set Results (including biased test set estimates*)
for the Best Performing eGeMAPS and ComParE LLD-based Variations of Mul-
timodal DNN Continuous Affect Prediction Systems From the Experiments on (a)
RECOLA and (b) SEMAINE (Note: Estimated Group-of-humans Baseline Test Set
CCC Scores: RECOLA Arousal = 0.217, Valence = 0.257; SEMAINE Arousal =
0.398, Valence = 0.500)

(a) RECOLA
Validation Test

System Arousal CCC Valence CCC Arousal CCC Valence CCC
Model fusion (eGeMAPS speech)‡ .850 .740 .771* .463
Model fusion (ComParE speech)‡ .856 .739 .812 .428*

TFL-MSR used valence learning & prediction‡

(b) SEMAINE
Validation Test

System Arousal CCC Valence CCC Arousal CCC Valence CCC
Model fusion (eGeMAPS speech) .862 .843 .616 .436

Model fusion (ComParE speech) .843 .831 .404* .259*

set results for valence prediction is present on SEMAINE [11] also, as can be seen

in Table 5.7 (b). However, valence prediction has proved to be very challenging on

this corpus for other authors also [15], [125]. From the unbiased model performance

estimates in Table 5.7 it can also be observed that valence prediction on SEMAINE

[11] was the only scenario where an automatic system did not exceed the minimum

practical performance baseline. The value, for this affect dimension on SEMAINE

[11] is an estimated group-of-humans CCC of 0.500 as calculated in Section 3.2.4.1.

To compare the TFL-MSR method to standard regression on the test set, a

result for the best performing eGeMAPS [21] valence system that did not use this

method was obtained on RECOLA [16]. The result of this was a test set CCC

of 0.379. This provides some evidence of the benefit of TFL-MSR compared with

the standard approach for valence prediction in some situations. Specifically, when

arousal and valence share a correlation relationship on the test set that is somewhat

similar to the observed relationship on the training set. Put differently, a lack of

train-test mismatch is required for this relationship. The best unbiased estimate of

model performance for the TFL-MSR approach reached a CCC of 0.463 on RECOLA

[16] compared with a CCC of 0.379 where arousal values/predictions were not used

for learning/prediction. This 22.16% relative increase in CCC was provided with

only two extra features for learning and prediction as well. Arousal annotations or

predictions were only used for speech- and eye-based model input as part of the

overall model fusion ensemble.

The test set results obtained, compared to similar approaches from the literature,

are provided in Table 5.8. The unbiased estimates of arousal model performance

achieved in this work on each corpus, Table 5.8 (b) and (c), compares favourably to

the published work used for comparison. Also, the biased, in terms of this exper-

iment, arousal result that used eGeMAPS performed well in comparison with the
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other systems that also considered these features as part of multimodal input (Table

5.8 (a)). It is noted that the final feature vectors used in this work are generally

larger than those of the referenced authors. A benefit of this work compared to

those referenced Table 5.8 (a) and (b), however, is the lack of physiological data

input features used, which required sensors to be attached to subjects. Moreover,

He et al. [13] and Brady et al. [14] used additional speech feature vectors besides

eGeMAPS [21] in their approaches. It is noted that the best unbiased valence pre-

diction performance from this work, Table 5.8 (a), is poor in comparison to the other

research work. The results in Table 5.8 (b) corroborate these findings where poorer

performance compared to Ringeval et al. [12] was found for valence prediction.

Table 5.8 (b) and (c) contains comparative work from authors that used face

and head [12] and face/head pose- and eye-influenced feature [15] input as part of

their multimodal continuous affect prediction systems. It is clear from Table 5.8 (b)

that the head (PoseVID-adv) and eye (eGazeVID) features developed in this work

and included in this system are advantageous when included for multimodal audio-

video input for arousal prediction. The valence result is less convincing, however,

when comparing against the result of [12] in this table section. The additional

performance that they achieved may have been due to the use of physiological data

from subjects, as previously mentioned, or due to the more complex LSTM-RNN

model used. For the SEMAINE [11] corpus, it can be seen in Table 5.8 (c) that the

approach taken in this work performed well when compared with the other published

work’s unbiased test set results [15]. Unfortunately, this performance came at the

technical cost of using more input features and a more complex fusion approach

than Han et al. [15]. A disadvantage of their work is the complex combination of

both SVR and BLSTM-RNN that they used that ultimately performed quite poor

for valence prediction. Model complexity aside, the prediction performance achieved

on SEMAINE [11] again shows that the proposed features can positively contribute

to continuous affect prediction. PoseVID-adv and GazeVID were used as part of

arousal model input, and PoseVID and EyeVID were used as part of valence mode

input on this corpus.

It can be seen from Table 5.8 that the DNN-based arousal models of this work

were able to match or outperform the LSTM-RNN-based models. This provides

some empirical results that recurrence, and thus a more complex model, is not

required for continuous arousal prediction. Other authors have also shown non-

recurrent models to perform well compared to LSTM-RNN-based models for arousal

prediction [129]. Recurrence may still be required for effective valence prediction,

however, how much recurrence (100 frames? full sequence?) and alternatives to deep

learning recurrent models will be the subject of future study. There is of course a

caveat that for the simpler DNN-based models presented in this work, an appropri-
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Table 5.8: Multimodal Fusion DNN CCC Results Obtained in This Work on the
Test Set Compared Against Related Research That Used: (a) eGeMAPS on RE-
COLA, (b) ComParE LLD Functionals for Speech (and head-based visual input) on
RECOLA and (c) Multimodal Audio-video Approaches on SEMAINE

(a) eGeMAPS speech contribution to multimodal systems on RECOLA
Arousal Valence N Features ML Algorithm(s) Fusion Authors

.747 .609
102 (arousal),
176 (valence)

BLSTM-RNN Model fusion [13]

.770 .687 955
SVR, CNN+RNN,

LSTM-RNN
Kalman filter [14]

.753 .399
84 (arousal),
283 (valence)

DNN Feature fusion This work

.771 .463
882 (arousal),
985 (valence)

DNN Model Fusion This work

(b) ComParE LLD functionals speech and head-based visual input included as
contribution to multimodal systems on RECOLA

Arousal Valence N Features ML Algorithm(s) Fusion Authors

.804 .528
1,150 (arousal),
1,420 (valence)

LSTM-RNN Decision fusion [12]

.812 .428
1,438 (arousal),
1,562 (valence)

DNN Model fusion This work

(c) Multimodal audio-video approaches on SEMAINE
Arousal Valence N Features ML Algorithm(s) Fusion Authors

.346 .026 75
SVR &

BLSTM-RNN
Decision fusion [15]

.616 .436
1,008 (arousal),
648 (valence)

DNN Model fusion This work

ate gold standard time-shift for the annotations must be found for model training.

Finding high-performing gold standard time-shift values for different modalities that

do not overfit to specific situations (e.g. the training set) may be problematic. Re-

searchers have tried to learn delays automatically as part of prediction models but

large differences in test set results compared to validation set results were found

[128]. More research is therefore needed for automatic learning of these delays. A

final observation on the results in Table 5.8 is that the currently developed models

from the literature and this work do not lend themselves well to model interpretab-

ility. This is due to the generally large amount of nonlinear transformations and

feature interactions inside the neural networks used [162]. It is believed, however,

that the head- and eye-based features of this work can be deployed successfully with

other more interpretable models if required. The use of interpretable models is im-

portant for future high-stakes affective computing systems, such as those that might

be applied in healthcare [163], for example.

5.3.6 Feature retrospective

Prior to looking back at the head- and eye-based features’ relationships with arousal

and valence, relationship scores from the speech and face modalities were obtained

for comparison. To achieve this, the best linear and nonlinear feature-with-target re-

lationships from these modalities that contributed to the final systems were gathered
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Table 5.9: The Highest-performing of the Speech- and Face-based Feature Rankings
by Correlation (absolute value) and Mutual Information (nats) on RECOLA for (a)
Arousal and (b) Valence, and SEMAINE for (c) Arousal and (d) Valence, Calculated
on the Corpora Training Sets

(a) RECOLA Arousal
Feature r Feature MI

pulse-code modulation RMS energy
simple moving average derivative SD

.756
pulse-code modulation RMS energy

simple moving average derivative min
.737

(b) RECOLA Valence
Feature r Feature MI

action unit 12 intensity max .636 action unit 12 intensity max .708

(c) SEMAINE Arousal
Feature r Feature MI

spectral flux UV simple moving average
(applied on 3 non-zero frames only)

arithmetic mean
.533 action unit 12 intensity max 1.184

(d) SEMAINE Valence
Feature r Feature MI

action unit 7 intensity mean .609 action unit 17 intensity max 1.149

on the corpora training sets. The results of these calculations are given in Table 5.9.

It can be seen in the table that features based on the first-order derivative of the

digitised speech signal energy share the highest feature-with-arousal relationships

on RECOLA [16]. For valence, the same feature, based on the AU12 intensity, an

action unit based on lip corner puller (author’s interpretation: smile with no teeth),

shares the highest relationships with valence on this corpus. On SEMAINE [11],

shown in Table 5.9 (c), a spectral flux acoustic signal feature provided the best cor-

relation with arousal and AU12 intensity max shared the largest MI or nonlinear

relationship with this affect dimension. Features based on AU7 and AU17 shared

the highest linear and nonlinear relationships respectively from the speech and face

modalities with valence on SEMAINE [11]. AU7 is formally called lid tightener

which is interpreted by this author as a drawing together of both sets of eyelids that

does not result in eye closure. AU17, formally called chin raiser, is a movement of

the chin facial muscles that causes a raising of the lower lip centre and slight lip

corner depression according to this author.

The top features, as ranked by feature-with-target relationships, from the head

modality that were selected for the final continuous affect prediction systems are

given in Table 5.10. From this table, the wavelet coefficient-based features appear

to be promising features arousal prediction on both corpora. On RECOLA [16], the

3rd level decomposition wavelet coefficients-based ([1.5625, 3.125]Hz) features make

up the top 5 feature-with-target r relationships, all based on the head location x

signal. For the nonlinear relationships with arousal on this corpus, the summaries

of simpler head measurements fared well, 7 of the 10 top-performers as ranked by
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MI are based on these measures. Many of these top-performers were based on

head location y measurements. Scale coefficients from the wavelet decomposition

regularly appeared in the arousal MI rankings on RECOLA [16] as well. Scale coeffs

l1 head location y max (from [0, 6.25]Hz band) ranked 2nd and scale coeffs l2 head

location y max (from [0, 3.125]Hz band) ranked 4th in terms of MI. On SEMAINE

[11], the 4th level decomposition wavelet coefficients-based features ([3.125, 6.25]Hz

band) comprise 9 out of 10 of the top feature-with-target r ratings and the majority

of these relationships arose from decomposition of head location z. The SEMAINE

[11] arousal features, Table 5.10 (c), are the only head features that have arousal

MI relationships higher than their speech and face counterparts. All the top 5

MI relationships in this table are larger than the relationship calculated for face

MI with arousal. Similar to RECOLA [16], the SEMAINE [11] MI relationships

were largely provided by the summaries of simpler measurements/calculations from

the head signal while scale coeffificent-based features are present in the top-ranked

features as well. Different from RECOLA [16], however, is that the z axis location

measurement appears more important in terms of MI with arousal on SEMAINE

[11].

The head feature relationships with valence are given in Table 5.10, sections (b)

and (d). There are some similarities across the arousal and valence relationships on

RECOLA [16]. The 3rd level decomposition wavelet coefficient head-based features

once more occur regularly in the top 10 features as ranked by r. For the nonlinear

feature relationships with valence on RECOLA [16], 6 of the top 10 features as

ranked by MI are from the head location z signal. The highest feature relationship

with valence, however, is ∆ head location y min, a MI of 0.616. This estimated

MI is 12.99% less (relative) than the strongest face modality MI with valence. On

SEMAINE [11], head location z features make up the majority of top-ranked valence

relationships. As was the case for the head arousal features on SEMAINE [11], all

the top 5 MI relationships in this table are larger than the relationship calculated

for face MI with valence. Surprisingly, head rotation x (pitch) features that were

expected to regularly score highly for this affect, based on [26], [65], are not prevalent

in the top-ranked feature lists in this analysis.

In summary, these results mean that both left-to-right and up-down head meas-

urements can play important complimentary roles in affect prediction in some situ-

ations, for example RECOLA [16], with one contributing more to modelling the

linear part, and the other, the nonlinear aspect of arousal from head pose/motion.

In other social scenarios, SEMAINE [11] being the example from this work, the

pose distance or z axis location measurements can carry more of the affective sig-

nal from the head. The results provide some empirical evidence for Schinerla’s

approach-withdrawal hypothesis [164], [165], that one would approach or withdraw
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Table 5.10: Top Head-based Features Selected for the Final Model Fusion DNN Sys-
tem Ranked by Correlation (absolute value) and Mutual Information on RECOLA
for (a) Arousal and (b) Valence, and SEMAINE for (c) Arousal and (d) Valence,
Calculated on the Corpora Training Sets

(a) RECOLA Arousal
Feature r Feature MI

wavelet coeffs l3 head location x IQR 1-3 .420 head location y max .599
wavelet coeffs l3 head location x quartile 3 .410 scale coeffs l1 head location y max .581
wavelet coeffs l3 head location x IQR 2-3 .404 ∆ head rotation y max .577

wavelet coeffs l3 head location x quartile 1 -.400 scale coeffs l2 head location y max .561
wavelet coeffs l3 head location x IQR 1-2 .401 head location y quartile 3 .553
wavelet coeffs l4 head location x IQR 1-3 .385 ∆ head location x max .551

∆ head location x IQR 1-3 .384 ∆ head rotation x max .549
wavelet coeffs l4 head location x quartile 1 -.380 ∆ head rotation y min .545

∆ head location x quartile 3 .372 scale coeffs l1 head location y quartile 3 .543
wavelet coeffs l4 head location x IQR 1-2 .368 head rotation y min .541

(b) RECOLA Valence
Feature r Feature MI

∆ head location y IQR 1-2 .363 ∆ head location y min .616
∆ head location y IQR 1-3 .349 head location z max .607

wavelet coeffs l3 head location x IQR 1-3 .336 ∆ head rotation x min .606
wavelet coeffs l3 head location y IQR 1-3 .332 ∆ head location z min .602

∆ head location x quartile 3 .331 ∆ head location z IQR 1-3 .595
wavelet coeffs l3 head rotation x quartile 3 .327 ∆ head location x max .593
wavelet coeffs l3 head location x IQR 2-3 .323 head location z quartile 3 .591
wavelet coeffs l3 head rotation y IQR 1-2 .323 scale coeffs l1 head location z quartile 3 .589

wavelet coeffs l3 head location x quartile 1 -.322 head location z min .588
wavelet coeffs l3 head location y quartile 3 .320 ∆ head rotation y max .587

(c) SEMAINE Arousal
Feature r Feature MI

wavelet coeffs l4 head location z IQR 1-3 .496 head location z max 1.239
wavelet coeffs l2 head location z ZCR .480 head location z min 1.226

wavelet coeffs l4 head location z quartile 1 -.480 ∆ head location z min 1.198
wavelet coeffs l4 head location z IQR 1-2 .471 head location y max 1.197

wavelet coeffs l4 head location z quartile 3 .466 head location z quartile 3 1.186
wavelet coeffs l4 head location z IQR 2-3 .444 scale coeffs l1 head location z quartile 3 1.183
wavelet coeffs l4 head location x IQR 1-3 .435 scale coeffs l2 head location z quartile 3 1.178

wavelet coeffs l4 head location x quartile 3 .425 scale coeffs l1 head location z max 1.167
wavelet coeffs l4 head location y IQR 1-3 .421 scale coeffs l3head location z quartile 3 1.167
wavelet coeffs l4 head rotation y IQR 1-3 .420 head location z median 1.165

(d) SEMAINE Valence
Feature r Feature MI

head rotation x quartile 3 .492 head location z max 1.251
∆ head rotation x IQR 2-3 -.473 head location z min 1.207

head rotation x median .470 head location z median 1.155
head location y mean -.467 head location z quartile 1 1.152
head rotation x mean .467 head location z quartile 3 1.152

head location y median -.465 ∆ head location z IQR 1-3 1.135
head location y quartile 1 -.456 head location y max 1.127
head location y quartile 3 -.448 ∆ head location z max 1.127

head location y min -.433 head rotation x max 1.103
head rotation x quartile 1 .429 head location z mean 1.102

from stimuli depending on its content and intensity. In the observed relationships

from the experimentation, the approach or withdrawal of individuals (z axis loca-

tion measurements) was a reasonable nonlinear signal of the valence observed by the

annotators across both corpora.

In Table 5.11, the top 10 eye features as ranked by feature-with-target correlation

and MI on each corpus are given. These results show that the eye-based features
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generally share a better relationship with arousal than valence on RECOLA [16]

while the reverse is true for SEMAINE [11]. Gaze angle measurements are clearly

important for arousal prediction from the eyes across both corpora according to

Table 5.11. These features make up 8 of the top r values and 9 of the top MI

measurements from a possible 10 on RECOLA [16]. On SEMAINE [11], 8 of the

top 10 features as rated by r and 8 of the top 10 as rated by MI are gaze angle-based.

In comparing the relationships across the corpora, gaze angle y measurements were

highly rated more often on SEMAINE [11] whereas the relationships on RECOLA

[16] are more mixed between x and y gazing angles.

The gaze angle-based features were less dominant in relation to the top valence

relationships. There were 5 of 10 appearances for these feature groups in Table

5.11 (b) for both r and MI measurements on RECOLA [16] respectively. The same

proportions for the gaze angle feature group’s relationships compared to all other

relationships were found on SEMAINE [11] also, and are shown in Table 5.11 (d).

Interestingly, the top 4 eye features as rated by MI on SEMAINE [11] were all better

that the top-rated face feature for this corpus and affect. In spite of the similarities

across the corpora, the other descriptors that are highly rated for valence include

features related to specific forms of gaze (eyes closed, eye blink intensity, direct gaze,

gaze approach) on RECOLA [16] and pupil-based measures on SEMAINE [11]. It

is possible that the differences in the observed relationships for valence across the

corpora can be attributed to the professional lighting and recording equipment used

in SEMAINE [11]. This is a drawback for consideration of deploying the proposed

pupil features in everyday situations. Lighting and recording conditions, unless

highly controlled, appear to render the pupil features unusable.

5.3.7 General discussion

In the experiments, the head- and/or eye-based features were able to improve upon

the best unimodal performers of Chapter 4 when model fusion was used. Sur-

prisingly, feature fusion, when performed early, was generally unable to improve

upon the best unimodal systems of Chapter 4. The best systems from the fusion

experimentation were always the model fusion systems that used all modalities.

These systems, or the other multimodal systems that included head & eye input,

always showed clear performance improvements above the next best performing

bimodal model fusion system. The experiments therefore show the efficacy of the

proposed feature sets as auxiliary features for multimodal continuous affect predic-

tion in audio-video when fused appropriately. Different modalities have different

response times in humans [166], [167], which perhaps led to model fusion’s success

where modalities are integrated with arousal or valence at different times for learn-
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Table 5.11: Top Eye-based Features Selected for the Final Model Fusion DNN Sys-
tem Ranked by Correlation (absolute value) and Mutual Information on RECOLA
for (a) Arousal and (b) Valence, and SEMAINE for (c) Arousal and (d) Valence,
Calculated on the Corpora Training Sets

(a) RECOLA Arousal
Feature r Feature MI

gaze angle x quartile 3 .324 gaze angle x max .551
gaze angle x max .319 ∆ gaze angle y min .548

gaze angle x median .288 ∆ gaze angle x max .532
gaze angle x mean .286 ∆ gaze angle y max .529
gaze angle y min -.265 ∆ gaze angle x min .522

direct gaze time ratio .260 gaze angle y min .501
direct gaze time secs total .245 gaze angle x min .488

gaze angle x SD .244 eye blink intensity max .479
∆ gaze angle y IQR 1-3 .236 gaze angle y max .458

∆ gaze angle y quartile 3 .232 gaze angle x quartile 3 .427

(b) RECOLA Valence
Feature r Feature MI

gaze angle x quartile 3 .276 gaze angle x max .548
gaze angle x max .275 eye blink intensity max .486

gaze angle x quartile 1 .217 gaze angle x quartile 3 .395
direct gaze time ratio .192 gaze angle x quartile 1 .385

direct gaze time secs max .188 ∆ gaze angle x SD .312
gaze angle x SD .168 eyes closed time secs min .306

eye blink intensity IQR 2-3 .166 direct gaze time secs max .302
eye blink intensity max .152 gaze angle x SD .273
gaze angle x IQR 1-2 .104 eyes closed time ratio .266

eyes closed time secs min -.100 direct gaze time ratio .236

(a) SEMAINE Arousal
Feature r Feature MI

gaze angle y SD .309 gaze angle y max 1.157
delta gaze angle y IQR 2-3 -.280 ∆ gaze angle y max 1.136
delta gaze angle y IQR 1-2 -.276 ∆ gaze angle x min 1.121

gaze angle y IQR 2-3 .252 gaze angle x min 1.118
gaze angle y max .251 eyes closed time secs max 1.002

gaze angle y kurtosis -.249 gaze angle y mean .863
gaze angle x min -.238 gaze angle x quartile 1 .794

gaze approach time secs mean .235 eyes closed time secs min .660
gaze approach time secs max .221 gaze angle y SD .611

gaze angle y mean .212 ∆ gaze angle y skewness .591

(b) SEMAINE Valence
Feature r Feature MI

∆ gaze angle y IQR 1-3 -.592 gaze angle y min 1.184
∆ gaze angle y quartile 3 -.591 gaze angle y max 1.169
∆ gaze angle y IQR 2-3 -.589 eye blink intensity max 1.157

∆ gaze angle y quartile 1 .583 gaze angle x max 1.153
∆ gaze angle y IQR 1-2 -.577 delta pupil diameter mm min 1.147

pupil dilation time secs mean .534 ∆ gaze angle y min 1.127
wavelet coefficients l1 IQR 2-3 -.527 ∆ pupil diameter mm max 1.126

wavelet coefficients l1 quartile 3 -.526 pupil diameter mm min 1.125
wavelet coefficients l1 IQR 1-3 .521 pupil diameter mm max 1.121

wavelet coefficients l1 quartile 1 -.517 ∆ gaze angle x max 1.104

ing. This also highlights future opportunities for early feature fusion. Different

modalities could be integrated with arousal or valence at different times, shifting

features forward at different rates, modality-wise, prior to training. This could facil-

itate better feature representations within neural networks for this fusion method.

To search the speech, face, head, and eye multimodal feature space further, cross-

modal interaction features were investigated using autoML. Cross-modal features
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were not found for arousal in the experiments on both corpora, only within-modality

feature interactions were found for this affect dimension. A large performance in-

crease was observed when an intra-modal head-based interaction feature was used

for speech & head arousal prediction SEMAINE [11]. This likely occurred due to the

head modality’s efficacy as a visual predictor of arousal combined with this feature’s

favourable interactions with the rest of the feature vector inside the neural network.

One cross-modal face and eye gaze interaction was found for valence on RECOLA

[16]. A performance increase was also observed when using this cross-modal feature

for feature fusion-based multimodal valence prediction. This is reasonable because

eye signals are often considered to be part of subject’s facial displays and annotat-

ors most likely experience and perceive some of these shared signals simultaneously.

These results showed some promise for exploring interaction features explicitly, in

agreement with other literature on multi- and cross-modal affect signalling [24], [59].

Algorithm sensitivity analyses, performed by way of feature group screening,

showed head rotation-based features (head rotation y-based features in particular)

to be important for both unimodal arousal and valence prediction tasks across both

experimental corpora. These features did not appear as often as highly ranked with

arousal or valence compared to their head location counterparts during a feature

retrospective performed after modelling, however (Table 5.10). This indicates the

importance of features with smaller relationships with target values to the feature set

as a whole because they contribute information that is useful for the overall modality

feature representations. An interesting difference between RECOLA [16] and SE-

MAINE [11] during the sensitivity analysis was the large difference in performance

when head location z features were removed. Removing these features appeared

to benefit arousal model performance on RECOLA [16], while a large performance

penalty was paid for their removal on SEMAINE [11]. Further, this relationship was

reversed for the valence sensitivity analysis where head location z features degraded

prediction performance on RECOLA [16] but benefited prediction on SEMAINE

[11]. The removal of head location z features also benefited the final multimodal

arousal model performance on RECOLA [16]. For the eyes, the sensitivity analysis

showed that valence models performed notably better with the exclusion of gaze

angle y features for unimodal prediction on RECOLA [16]. A similar relationship

was observed on SEMAINE [11], but for the arousal dimension. Furthermore, this

removal of gaze angle y-based features from the unimodal models had a positive

effect for the multimodal model fusion prediction ensembles. It appears that differ-

ent head- and eye-based features can have different importances in different social

situations for affect prediction. This difference could perhaps be leveraged toward

socio-affective context processing in the future as differences in context have been

discussed as important for emotion signal disambiguation [45].
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The final test set results for arousal prediction compared favourably with other

published work for audio-video multimodal affect prediction on both corpora [12]–

[15]. Additionally, these results were provided with the advantage of a simpler

core learning algorithm. A drawback of the approach taken in this work was the

larger input feature vectors compared to the other authors, however. The final

valence systems require improvement also, even in light of improved performance

compared to an independent multimodal approach [15] on SEMAINE [11]. A dif-

ferent algorithm or more regularisation and/or other hyperparameter alteration for

the current DNN algorithm may be required to improve upon the obtained valence

results. An interesting finding on the validation valence performances was that the

proposed TFL-MSR improved prediction performance on RECOLA [16] but not on

SEMAINE [11], due to a low arousal-valence correlation on the latter corpus. The

final valence test set result on RECOLA [16] improved by a relative performance in-

crease of 22.16%, compared to when this method was not applied. The experiments

also showed that overuse of teacher-forced features is not beneficial for model fusion

input and using a valence-oriented feature selection method may be required for the

method to work. All the model performances on the test set, except valence on SE-

MAINE [11], surpassed the group-of-humans CCC performance estimates, therefore

showing a practical benefit of the features proposed and models used, in general.

Overall, the results highlight the importance of using multimodal approaches in

human expression analysis, which has been identified previously [24], [25].

5.4 Conclusion

In this chapter, the proposed head- and eye-based feature sets were evaluated in

multimodal settings to answer the research question:

How much of an improvement can head- and eye-based features provide when in-

cluded in multimodal continuous affect prediction systems?

From the experiments that were carried out it was shown that combining all the

available modalities by way of model fusion always performed best for affect pre-

diction. In comparing these multimodal systems against the best of unimodal or

bimodal speech and/or face feature input systems, the multimodal systems were

4.91% better for arousal and 18.23% better for valence on RECOLA [16] and 13.18%

better for arousal and 74.17% better for valence on SEMAINE [11], relative CCC.

These CCC results are given in Table 5.1. It is therefore concluded from these exper-

iments that incorporating head and eye cues as part of multimodal input for affect
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prediction can improve arousal performance by 9.05% and valence performance by

46.02% on average.

During further experimentation, automatically generated cross-modal interac-

tion features were not found for arousal on either corpus but one was found for

valence on RECOLA [16]. A technique to exploit human arousal annotation know-

ledge gained by models during training, TFL-MSR, was investigated for affect pre-

diction for the first time. This method was shown to be effective on RECOLA [16]

but not on SEMAINE [11]. This technique did not work on SEMAINE [11] due

to a very small relationship observed between arousal and valence on the valida-

tion set of this corpus. When the arousal-valence relationship is not very small,

TFL-MSR allows annotation knowledge to be further exploited on unseen test data

using multi-stage regression as evident by the final RECOLA [16] test set results.

This provides new opportunities for researchers to take further advantage of arousal

annotations provided by subjects to improve valence prediction when the testing

conditions are appropriate. The systems developed in this work are based on less

complex feed-forward DNN models compared to commonly used LSTM-RNN-based

models. The performances obtained for arousal prediction in the experiments com-

pared favourably with other published work and this indicates that recurrence is not

a requirement for prediction of this affect dimension. An identified limitation with

this work and that of the other published studies was the high degree of complexity

of the models used for prediction. This could be problematic should interpretable

affect prediction models ever be required. The features developed in this work could

be employed in future interpretable continuous affect prediction systems, however,

in domains where this may be required, such as healthcare [163].

The models from this chapter provide the final, developed arousal and valence

models from this work based on the validation set performances achieved. In the

next chapter, a summary of the work presented in this dissertation along with final

conclusions and suggestions for future work is provided.



Chapter 6

Summary and Future Work

6.1 Summary

The focus of the research in this dissertation was the improvement of continuous af-

fect prediction using audio and video. This involved developing head- and eye-based

features and methodologies for this task. The review of related work, carried out in

Chapter 2, showed that head and eye cues were underexplored for continuous affect

prediction despite the benefits they can provide [4], [22]–[26], [32], [59], [65], [71],

[80], [81]. The speech modality was often used as an upper-end baseline to improve

upon in the experiment chapters, Chapters 4 and 5. An estimated affect predic-

tion performance from a group-of-human annotators was also used as a minimum

performance benchmark in these chapters.

Chapter 4 involved the proposal for feature vectors from the head, PoseVID

and PoseVID-adv, and eyes, GazeVID, eGazeVID and EyeVID, for continuous af-

fect prediction. Different temporal windows for feature extraction, annotator delay

compensation for gold standard values and feature selection methods were evalu-

ated using a DNN on the RECOLA [16] and SEMAINE [11] affective corpora to

appraise the feature sets. The proposed features were only considered as unimodal

input to the DNN and their performances were compared against unimodal speech

and face input. In general, an 8-second temporal window for feature extraction per-

formed best in the experiments. The best-performing systems from the experiment

were speech, without feature selection, for arousal prediction, a CCC of 0.741, and

face, using simple MI-based filter feature selection, for valence, a CCC of 0.560,

on RECOLA [16]. On SEMAINE [11], the speech system that employed mRMR

feature selection performed best for arousal prediction, achieving a CCC of 0.736,

and head input without feature selection, PoseVID specifically, performed best for

valence prediction, a CCC of 0.289. The proposed head feature sets performed well

for arousal prediction, with PoseVID-adv without feature selection specifically per-
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forming second-best for arousal prediction on both corpora, while also exceeding

estimated human performance baselines. Another notable performance for arousal

overall was that of the GazeVID feature set; it surpassed the human performance

baseline on both corpora. Even though PoseVID performed best for valence pre-

diction on SEMAINE [11], it did not surpass human performance. It was therefore

concluded that head-based features are suitable for arousal prediction on their own

and performance within -15.82% relative CCC compared with speech can be ob-

tained.

In Chapter 5, further evaluation of the proposed feature sets was carried out

by way of multimodal fusion, cross-modal feature interaction and TFL-MSR exper-

imentation. The features were compared to and combined with speech and facial

features for continuous affect prediction using a DNN on the RECOLA [16] and SE-

MAINE [11] corpora to achieve this. Model fusion of all modalities performed best

from the fusion methods evaluated and performance improvements were observed

when head and eye features were included in multimodal systems. On RECOLA

[16], model fusion of all modalities provided relative CCC performance increases

of 12.57% for arousal prediction and 18.23% for valence prediction compared with

model fusion speech & face. On SEMAINE [11], model fusion of all modalities out-

performed model fusion speech & face by 13.18% for arousal prediction and 74.17%

for valence prediction, all relative CCC. Only one cross-modal interaction feature

was found, a face (smile with no teeth) and gaze (left-to-right angle) interaction

for valence prediction on RECOLA [16], and this feature was able to improve fea-

ture fusion valence performance. A screening-based learning algorithm sensitivity

analysis was performed that showed interesting similarities and differences across

the affective corpora, and therefore, social situations. Head rotation y(yaw)-based

features appeared important across both corpora for arousal prediction while head

location z was a poor feature group for arousal prediction on RECOLA [16] but not

on SEMAINE. Another interesting difference across the corpora was that removing

gaze angle y features benefited valence prediction on RECOLA [16] and arousal

prediction on SEMAINE [11], they were a poor feature group for these cases. The

TFL-MSR method that incorporated arousal annotations and predictions as a fea-

ture was shown to benefit continuous valence prediction on RECOLA [16] but not

SEMAINE [11]. TFL-MSR assisted in providing the best-performing valence sys-

tem on RECOLA [16] but degraded performance on SEMAINE [11], where only a

small correlation between arousal and valence was present during evaluation. In

this chapter, it was concluded that the proposed feature sets can benefit continuous

affect prediction and that TFL-MSR can improve valence prediction performance

with appropriate (i.e. the arousal and valence correlation is not small/weak) testing

conditions.
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6.2 Primary contributions

The two major contributions of the work presented in this dissertation are as follows:

• Feature vectors are proposed from the underexplored head- and eye-based in-

formation sources for the purpose of continuous affect prediction. Parameters

for use with the proposed features are given and the usefulness of the head-

based features was shown for unimodal continuous arousal prediction using

DNN. Different performances were obtained for the differing head- and eye-

based feature sets of varying sizes and complexities. This shows that the more

complex feature sets are not always better; especially notable was the most

complex eye feature set, EyeVID, which generally performed worse than its

simpler counterparts.

• The head and eye feature sets were combined with speech and facial features

for multimodal experiments and cross-modal feature interaction, and a new

method for valence learning, TFL-MSR, was investigated. Improved mul-

timodal affect prediction performance for DNN models was observed when the

head and eye features were included as part of system input, demonstrating

their value as auxiliary information sources from video. One cross-modal in-

teraction feature was found involving face and eye gaze for valence. The TFL-

MSR method was shown to improve valence prediction performance when there

is not a small correlation relationship present between arousal and valence.

6.3 Final conclusions and perspectives

In Section 1.1.2 the following research question was posed:

For audiovisual communication, how much of an improvement in the continuous

prediction of core affect can be achieved by processing the combined cues gathered

from an individual’s speech, head and eyes?

The multimodal experiment provided results that showed an increase for arousal

prediction above the next-best system that incorporated speech ranging from 4.91

to 18.23% relative CCC. By incorporating the proposed features, valence predic-

tion was improved by 18.23 to 74.17% relative CCC. Averaging these experimental

results, relative performance improvements of 9.05% for arousal and 46.20% for

valence can be obtained by combining the head and eye feature sets with speech,

thus providing answers to the research question for each core affect dimension.
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From the experiments, it can also be concluded that a DNN can outperform

a LSTM-RNN for continuous arousal prediction. Therefore, a simpler model can

perform well for this task, albeit with additional processing required in the form of

gold standard backward time-shifting. The temporal context modelling capabilities

of the LSTM-RNN are therefore questionable, outside of gold standard alignment,

for arousal prediction. It may be that the context window of 8 seconds used in this

work might be enough to capture the temporally salient features in an affect display

as judged by annotators. Five feature sets from head- and eye-based modalities

have been proposed in this work, of which four have been shown to generally benefit

multimodal continuous affect prediction. The EyeVID feature set showed limited

effectiveness, only providing a benefit for valence prediction in the professional re-

cording setting of SEMAINE [11]. A novel method has been proposed for valence

modelling, TFL-MSR, and this was shown to provide benefits above standard regres-

sion learning for the prediction of valence. The final multimodal models, based on

the validation set results achieved in this work, are the Chapter 5 models. Namely,

these are the model fusion multimodal model incorporating ComParE for arousal,

the model fusion multimodal model incorporating eGeMAPS using TFL-MSR for

valence on RECOLA [16] and the eGeMAPS model fusion multimodal models on

SEMAINE [11].

The head and eye feature sets generated and evaluated in this work have the

potential to assist in affective computing interpretability efforts. This means that

with the appropriate model, why predictions are made, based on observed input

values, can be understood appropriately skilled individuals. The reason why this

can be done is that named entities are provided for the features, guided from previ-

ous psychological and affective computing research, that themselves have potential

to be interpreted. This stands in contrast to unnamed, nonlinear and (many) fea-

ture/activation interaction-dependent automatically-learned neural network activa-

tion features. These deep-learned features can perform well for affect prediction and

require minimal feature engineering effort [33], [34], however, such features are not

interpretable at this time. Interpretable affective computing may be very important

in the future, for high-stakes decisions such as those required in healthcare [163], for

example.

Some wider implications for the head and eye feature sets researched in this work

include their potential applicability for audio-visual pathology research and other

speech related tasks. For example, 3 degrees-of-freedom head movement and eye

closure and gaze features have been used with speech for multimodal depression

classification [5]. The features developed in this dissertation, based on 6 degrees-

of-freedom head movement and some eye features not used in [5] may benefit mul-

timodal depression recognition. Head- and eye-based features have also been used
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as part of a mixed closed/open-source post-traumatic stress disorder estimation sys-

tem [4], highlighting another pathology application where the features developed in

this research could be applied. It has also been shown that visual features increase

speech perception [168] and non-linguistic vocal outburst recognition [169] in the

presence of audibile noise, while eye gaze features appear important for automatic

conversation analysis [170], [171]. Outside of core affect prediction, the feature sets

produced in this work can provide new visual descriptors to study other aspects of

audiovisual social interactions and their dynamics.

6.4 Limitations and future work

Some limitations of the work in this dissertation include the small subset of SE-

MAINE [11] used and the perhaps sub-optimal temporal delays applied to gold

standard values used for feature fusion in the final experiment. Based on this, fu-

ture work could investigate different methods for finding suitable delays for gold

standard annotations, including modality-wise asynchronous feature fusion delays.

A brute-forcing method of using many easily trained models such as L1 regularised

regression [172] could be carried out. This could supply a multiple-modality-time-

integration regression model or modality delay hypotheses for other, more complex

models. This work could be done on RECOLA [16] and an expanded SEMAINE [11]

subset. Further evaluation of the features proposed in this work as feature candid-

ates for interpretable affect prediction models [162] could also be carried out. Also,

the implementation of automatic direct gaze detection methods [173] for gathering

the direct gaze-based features of this work is another possible future work direction.

Finally, the features developed in this work could be compared against other head

and eye sets that have been applied to social role [171] and engagement [170] detec-

tion in automatic conversation analysis. It is hoped that this research informs and

inspires the future development of head- and eye-based continuous affect prediction

and other affective and social computing applications.



Appendix A

Software Tools/Packages and

Revisions

The R programming language and interpreter [174] was the primary programming

language and execution environment for the feature generation carried out in this

work. Further software tools, revision numbers and notes for when they were used

are provided in Table A.1 along with information on R packages used in the exper-

iments.

Table A.1: Experimental Software Tools/Packages and Revisions

Software Version Notes

R 3.4.4
Programming language & interpreter, mean, median, quartile,

SD, LR and Pearson’s r calculations using R base package
RStudio 1.1.383 Integrated development environment

openSMILE 2.3.0 Speech feature extraction
CURRENNT 0.2 rc1 DNN training and prediction

mplayer 1.1-4.8 mp4 to Waveform Audio File Format conversion for openSMILE
R package, DescTools 0.99.21 CCC analysis
R package, infotheo 1.2.0 MI estimation
R package, e1071 1.6.8 Skewness and kurtosis calculations
R package, ncdf4 1.16 netcdf file writing for CURRENNT

R package, mRMRe 2.0.9 mRMR feature selection
R package, wavelets 0.3.0.1 Discrete wavelet transform
R package, seewave 2.1.0 ZCR and RMS calculations

R package, smoother 1.1 Gaussian smoothing
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Acronyms

AU action unit. 40, 41, 65, 81, 82, 103, 117

autoML automatic machine learning. xii, 96, 103, 121

AVEC audio-visual emotion challenge. 22, 37–39, 42, 47, 48, 51, 55

BLSTM-RNN bidirectional long short-term memory recurrent neural network.

33, 39, 42, 44, 46, 48, 50, 52, 59, 115, 116

BoW Bag-of-words. 39, 41, 49

BPTT backpropagation through time. vii, 29, 30

CCC concordance correlation coefficient. i, viii–xiii, 24, 34–39, 41, 42, 46, 49, 50,

57, 58, 63, 81, 83–90, 95, 96, 98, 100–102, 104–114, 116, 123, 125–127, 130

CNN convolutional neural network. 39, 41, 42, 45, 50, 52, 116

ComParE Interspeech Computational Paralinguistics ChallengE. xiii, 37, 38, 93,

94, 99, 111–114, 116, 128

CRM cooperative regression model. 46

CURRENNT Cuda recurrent neural network toolkit. 61, 62, 130

DNN deep feed-forward neural network. i, ix, xii, xiii, 45, 52, 61, 81, 83–85, 87,

93–96, 101–104, 110, 112, 114–116, 119, 121, 123–128, 130

eGeMAPS extended Geneva minimalistic acoustic parameter set. xiii, 37, 38, 81,

87, 93, 94, 99, 111–116, 128

F0 fundamental frequency. 37

FS Feature Selection. xii, 87, 102

GeMAPS Geneva minimalistic acoustic parameter set. 37, 38
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GLM generalised linear model. 96, 97

GMR Gaussian mixture regression. 45, 52

GPR Gaussian process regression. 45, 46, 52

HMM hidden Markov model. 18, 38, 40

IQR inter quartile range. 80–82, 119, 121

LLD low-level descriptor. viii, xi, xiii, 4, 20, 37–39, 47, 63, 65–77, 79–81, 84, 93,

94, 99, 111, 113, 114, 116

LOSO-CV leave-one-subject-out cross-validation. 20–22, 38

LR linear regression. 46, 47, 52, 80–82, 97, 130

LSTM-RNN long short-term memory recurrent neural network. viii, 24, 28, 31–

34, 37, 41, 42, 44, 45, 47, 50, 52, 59, 61, 115, 116, 124, 128

MFCC Mel-frequency cepstral coefficients. 37–39

MI mutual information. viii, 43, 67, 69–71, 73–75, 77, 82, 83, 87, 95, 100, 102, 108,

117–121, 125, 130

ML machine learning. 2, 50, 54, 63, 116

mRMR minimum redundancy maximum relevance. 43, 51, 82, 83, 87, 102, 125,

130

MSE mean squared error. vii, 25, 35

MTL multi-task learning. xii, 44, 45, 48, 52, 99, 110–112

OA output-associative. 47, 93

OCC Ortony, Clore and Collins. vii, 12, 14, 16, 17

openSMILE open speech and music interpretation by large-space extraction. 81,

93, 130

PCA Principal component analysis. 43, 51

PLLR phone log-likliehood ratio. 38

PLS Partial least squares. 46, 52
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RECOLA REmote COLlaborative and Affective interactions. viii–xiii, 39, 41, 42,

46, 48–50, 54–60, 64–74, 76, 77, 79, 82–90, 93, 95, 100–114, 116–126, 128, 129

RNN recurrent neural network. vii, 28–31, 33, 34, 50, 98, 116

RVM Relevance vector machine. 45–47, 52

SAL sensitive artificial listener. 56, 57

SD standard deviation. xii, 4, 37, 40, 41, 45, 80–82, 94, 103, 105, 106, 108, 110,

117, 121, 130

SEMAINE Sustained Emotionally coloured Machine-human Interaction using Non-

verbal Expression. viii–xiii, 50, 54, 56–60, 64, 66, 67, 69–74, 76, 77, 82–90, 93,

95, 100–126, 128, 129

SFS sequential forward selection. 43, 44

SSRM single-speaker regression model. 46

SVM support vector machine. 20–22, 25

SVR support vector regression. vii, 18, 24–27, 39–42, 44–47, 50, 52, 59, 61, 115,

116

TFL-MSR teacher-forced learning with multi-stage regression. i, xii, xiii, 7, 9, 93,

99, 100, 110–114, 123, 124, 126–128

ZCR zero-crossing rate. 37, 80, 81, 119, 130
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[86] G. A. Ramirez, T. Baltrušaitis and L.-P. Morency, ‘Modeling Latent Dis-

criminative Dynamic of Multi-dimensional Affective Signals’, en, in Affective

Computing and Intelligent Interaction, S. D’Mello, A. Graesser, B. Schuller

and J.-C. Martin, Eds., ser. Lecture Notes in Computer Science, Berlin,

Heidelberg: Springer, 2011, pp. 396–406, isbn: 978-3-642-24571-8. doi: 10.

1007/978-3-642-24571-8_51.

[87] B. Schuller, M. Valstar, F. Eyben, G. McKeown, R. Cowie and M. Pantic,

‘AVEC 2011–The First International Audio/Visual Emotion Challenge’, en,

in Affective Computing and Intelligent Interaction, S. D’Mello, A. Graesser,

B. Schuller and J.-C. Martin, Eds., ser. Lecture Notes in Computer Science,

Berlin, Heidelberg: Springer, 2011, pp. 415–424, isbn: 978-3-642-24571-8.

doi: 10.1007/978-3-642-24571-8_53.

[88] S. Wu, Z. Du, W. Li, D. Huang and Y. Wang, ‘Continuous Emotion Re-

cognition in Videos by Fusing Facial Expression, Head Pose and Eye Gaze’,

in 2019 International Conference on Multimodal Interaction, ser. ICMI ’19,

Suzhou, China: Association for Computing Machinery, Oct. 2019, pp. 40–48,

isbn: 978-1-4503-6860-5. doi: 10.1145/3340555.3353739. [Online]. Avail-

able: https://doi.org/10.1145/3340555.3353739.

[89] S. Park, S. Scherer, J. Gratch, P. Carnevale and L. P. Morency, ‘Mutual

Behaviors during Dyadic Negotiation: Automatic Prediction of Respondent

Reactions’, in 2013 Humaine Association Conference on Affective Computing

and Intelligent Interaction, Sep. 2013, pp. 423–428. doi: 10.1109/ACII.

2013.76.

[90] F. Ringeval, B. Schuller, M. Valstar, J. Gratch, R. Cowie, S. Scherer, S.

Mozgai, N. Cummins, M. Schmitt and M. Pantic, ‘AVEC 2017: Real-life

Depression, and Affect Recognition Workshop and Challenge’, in Proceedings

of the 7th Annual Workshop on Audio/Visual Emotion Challenge, ser. AVEC

https://doi.org/10.1109/JSTSP.2016.2609843
https://doi.org/10.1109/JSTSP.2016.2609843
https://doi.org/10.1016/j.ijhcs.2007.02.003
https://doi.org/10.1016/j.ijhcs.2007.02.003
http://www.sciencedirect.com/science/article/pii/S1071581907000377
http://www.sciencedirect.com/science/article/pii/S1071581907000377
https://doi.org/10.1007/978-3-642-24571-8_51
https://doi.org/10.1007/978-3-642-24571-8_51
https://doi.org/10.1007/978-3-642-24571-8_53
https://doi.org/10.1145/3340555.3353739
https://doi.org/10.1145/3340555.3353739
https://doi.org/10.1109/ACII.2013.76
https://doi.org/10.1109/ACII.2013.76


Bibliography 146

’17, New York, NY, USA: ACM, 2017, pp. 3–9, isbn: 978-1-4503-5502-5. doi:

10.1145/3133944.3133953. [Online]. Available: http://doi.acm.org/10.

1145/3133944.3133953.
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Schröder, ‘’feeltrace’: An instrument for recording perceived emotion in real

time’, en, in ISCA Tutorial and Research Workshop (ITRW) on Speech and

Emotion, ISCA, 2000.

[152] F. Weninger, ‘Introducing CURRENNT: The Munich Open-Source CUDA

RecurREnt Neural Network Toolkit’, Journal of Machine Learning Research,

vol. 16, pp. 547–551, 2015. [Online]. Available: http://jmlr.org/papers/

v16/weninger15a.html.

[153] U. Hess, R. B. Adams Jr. and R. E. Kleck, ‘Looking at you or looking else-

where: The influence of head orientation on the signal value of emotional facial

expressions’, Motivation and Emotion, vol. 31, no. 2, pp. 137–144, 2007, issn:

1573-6644(Electronic),0146-7239(Print). doi: 10.1007/s11031-007-9057-

x.

[154] T. Cover and J. Thomas, Elements of Information Theory. New York: John

Wiley, 1991.

https://doi.org/10.1049/iet-spr.2016.0336
https://doi.org/10.1109/ICME.2008.4607572
https://doi.org/10.1109/ICME.2008.4607572
https://doi.org/10.1109/ISSC.2017.7983611
https://doi.org/10.1109/BIBM.2017.8217968
https://doi.org/10.1007/978-3-540-74889-2_43
https://doi.org/10.1007/978-3-540-74889-2_43
http://jmlr.org/papers/v16/weninger15a.html
http://jmlr.org/papers/v16/weninger15a.html
https://doi.org/10.1007/s11031-007-9057-x
https://doi.org/10.1007/s11031-007-9057-x


Bibliography 154

[155] D. Gabor, ‘Theory of communication. Part 1: The analysis of information’,

Journal of the Institution of Electrical Engineers - Part III: Radio and Com-

munication Engineering, vol. 93, no. 26, pp. 429–441, Nov. 1946, Conference

Name: Journal of the Institution of Electrical Engineers - Part III: Radio and

Communication Engineering. doi: 10.1049/ji-3-2.1946.0074.

[156] I. Daubechies, ‘The wavelet transform, time-frequency localization and signal

analysis’, IEEE Transactions on Information Theory, vol. 36, no. 5, pp. 961–

1005, Sep. 1990, issn: 0018-9448. doi: 10.1109/18.57199.

[157] S. Mallat, A Wavelet Tour of Signal Processing, Third Edition: The Sparse

Way, 3rd. USA: Academic Press, Inc., 2008, isbn: 0123743702.

[158] I. Daubechies, ‘Orthonormal bases of compactly supported wavelets’, Com-

munications on Pure and Applied Mathematics, vol. 41, no. 7, pp. 909–996,

Oct. 1988, issn: 00103640. doi: 10.1002/cpa.3160410705. [Online]. Avail-

able: http://doi.wiley.com/10.1002/cpa.3160410705.

[159] N. De Jay, S. Papillon-Cavanagh, C. Olsen, N. El-Hachem, G. Bontempi

and B. Haibe-Kains, ‘mRMRe: An R package for parallelized mRMR en-

semble feature selection’, en, Bioinformatics, vol. 29, no. 18, pp. 2365–2368,

Sep. 2013, Publisher: Oxford Academic, issn: 1367-4803. doi: 10.1093/

bioinformatics/btt383. [Online]. Available: https://academic.oup.

com/bioinformatics/article/29/18/2365/239921.

[160] S. Amiriparian, M. Gerczuk, S. Ottl, N. Cummins, M. Freitag, S. Pugachevskiy,

A. Baird and B. Schuller, ‘Snore Sound Classification Using Image-Based

Deep Spectrum Features’, in Interspeech 2017, vol. 2017-August, ISCA: ISCA,

Aug. 2017, pp. 3512–3516. doi: 10.21437/Interspeech.2017-434. [Online].

Available: http://www.isca-speech.org/archive/Interspeech%7B%5C_

%7D2017/abstracts/0434.html.

[161] ‘5.3.3.4. Fractional factorial designs’, in NIST/SEMATECH e-Handbook of

Statistical Methods, National Institute of Standards and Technology, 2012.

[Online]. Available: https://www.itl.nist.gov/div898/handbook/pri/

section3/pri334.htm (visited on 08/06/2020).

[162] C. Molnar, G. König, J. Herbinger, T. Freiesleben, S. Dandl, C. A. Scholbeck,

G. Casalicchio, M. Grosse-Wentrup and B. Bischl, ‘Pitfalls to Avoid when

Interpreting Machine Learning Models’, in 37th International Conference on

Machine Learning, arXiv: 2007.04131, Jul. 2020. [Online]. Available: http:

//arxiv.org/abs/2007.04131.

https://doi.org/10.1049/ji-3-2.1946.0074
https://doi.org/10.1109/18.57199
https://doi.org/10.1002/cpa.3160410705
http://doi.wiley.com/10.1002/cpa.3160410705
https://doi.org/10.1093/bioinformatics/btt383
https://doi.org/10.1093/bioinformatics/btt383
https://academic.oup.com/bioinformatics/article/29/18/2365/239921
https://academic.oup.com/bioinformatics/article/29/18/2365/239921
https://doi.org/10.21437/Interspeech.2017-434
http://www.isca-speech.org/archive/Interspeech%7B%5C_%7D2017/abstracts/0434.html
http://www.isca-speech.org/archive/Interspeech%7B%5C_%7D2017/abstracts/0434.html
https://www.itl.nist.gov/div898/handbook/pri/section3/pri334.htm
https://www.itl.nist.gov/div898/handbook/pri/section3/pri334.htm
http://arxiv.org/abs/2007.04131
http://arxiv.org/abs/2007.04131


155 Bibliography

[163] C. Rudin, ‘Stop explaining black box machine learning models for high stakes

decisions and use interpretable models instead’, Nature Machine Intelligence,

vol. 1, no. 5, pp. 206–215, May 2019, issn: 25225839. doi: 10.1038/s42256-

019-0048-x.

[164] T. C. Schneirla, ‘An evolutionary and developmental theory of biphasic pro-

cesses underlying approach and withdrawal’, in Nebraska symposium on mo-

tivation, 1959, Oxford, England: Univer. Nebraska Press, 1959, pp. 1–42.

[165] G. Greenberg, Approach/Withdrawal Theory. Springer International Publish-

ing, 2017, pp. 1–6. doi: 10.1007/978-3-319-47829-6_1074-1.

[166] A. Jain, R. Bansal, A. Kumar and K. Singh, ‘A comparative study of visual

and auditory reaction times on the basis of gender and physical activity

levels of medical first year students’, International Journal of Applied and

Basic Medical Research, vol. 5, no. 2, p. 124, 2015, issn: 2229-516X. doi:

10.4103/2229-516x.157168.

[167] J. Gu, L. Cao and B. Liu, ‘Modality-general representations of valences per-

ceived from visual and auditory modalities’, NeuroImage, vol. 203, p. 116 199,

Dec. 2019, issn: 10959572. doi: 10.1016/j.neuroimage.2019.116199.

[168] E. Vatikiotis-Bateson, A. V. Barbosa, C. Y. Chow, M. Oberg, J. Tan and

H. C. Yehia, ‘Audiovisual lombard speech: Reconciling production and per-

ception’, Proceedings of the International Conference on Auditory-Visual Speech

Processing, pp. 45–50, 2007.

[169] F. Eyben, S. Petridis, B. Schuller and M. Pantic, ‘Audiovisual vocal outburst

classification in noisy acoustic conditions’, in ICASSP, IEEE International

Conference on Acoustics, Speech and Signal Processing - Proceedings, 2012,

pp. 5097–5100, isbn: 9781467300469. doi: 10.1109/ICASSP.2012.6289067.

[170] T. Kawahara, K. Inoue, D. Lala and K. Takanashi, ‘Audio-Visual Conver-

sation Analysis by Smart Posterboard and Humanoid Robot’, in ICASSP,

IEEE International Conference on Acoustics, Speech and Signal Processing -

Proceedings, vol. 2018-April, Institute of Electrical and Electronics Engineers

Inc., Sep. 2018, pp. 6573–6577, isbn: 9781538646588. doi: 10.1109/ICASSP.

2018.8461470.

[171] L. Zhang and R. J. Radke, ‘A Multi-Stream Recurrent Neural Network for

Social Role Detection in Multiparty Interactions’, IEEE Journal on Selected

Topics in Signal Processing, vol. 14, no. 3, pp. 554–567, Mar. 2020, issn:

19410484. doi: 10.1109/JSTSP.2020.2992394.

https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1007/978-3-319-47829-6_1074-1
https://doi.org/10.4103/2229-516x.157168
https://doi.org/10.1016/j.neuroimage.2019.116199
https://doi.org/10.1109/ICASSP.2012.6289067
https://doi.org/10.1109/ICASSP.2018.8461470
https://doi.org/10.1109/ICASSP.2018.8461470
https://doi.org/10.1109/JSTSP.2020.2992394


Bibliography 156

[172] R. Tibshirani and R. Tibshirani, ‘Regression Shrinkage and Selection Via the

Lasso’, JOURNAL OF THE ROYAL STATISTICAL SOCIETY, SERIES B,

vol. 58, pp. 267–288, 1994. [Online]. Available: http://citeseer.ist.psu.

edu/viewdoc/summary?doi=10.1.1.35.7574.

[173] M. Roddy and N. Harte, ‘Detecting conversational gaze aversion using unsu-

pervised learning’, in 2017 25th European Signal Processing Conference (EU-

SIPCO), ISSN: 2076-1465, Aug. 2017, pp. 76–80. doi: 10.23919/EUSIPCO.

2017.8081172.

[174] R Core Team, R: A language and environment for statistical computing, R

Foundation for Statistical Computing, Vienna, Austria, 2018. [Online]. Avail-

able: https://www.R-project.org/.

http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.35.7574
https://doi.org/10.23919/EUSIPCO.2017.8081172
https://doi.org/10.23919/EUSIPCO.2017.8081172
https://www.R-project.org/

	Introduction
	Problem statement
	Problem space
	Research question

	Challenges
	Input features
	Modelling
	Gold standard annotations

	Research objectives
	Research contributions
	Peer-reviewed publications
	Overview of this dissertation

	Literature Review
	Emotion/affect representation
	Basic emotion theories
	Appraisal theories
	Dimensional theories of affect and emotion
	Discussion

	Head and eye-based affect
	Head affect
	Eye affect
	Head and eye affect
	Discussion

	Continuous affect prediction
	Support vector regression
	Long short-term memory recurrent neural network
	Concordance correlation coefficient
	Affect learning and prediction

	Conclusion

	Affective Corpora and Experimental Approach
	Introduction
	Data set selection
	RECOLA corpus
	SEMAINE corpus
	Qualitative comparison of selected corpora
	Quantitative comparisons of selected corpora

	Machine learning algorithm
	Architecture
	Network training and model selection

	Experimental architecture
	Conclusion

	Feature Set Proposals and Unimodal Evaluations
	Introduction
	Feature sets
	Feature set LLDs and exploratory analyses
	Mid-level features
	Proposed eye-based feature sets
	Proposed head-based feature sets

	Unimodal affect prediction experiment design
	Feature extraction temporal window
	Arousal and valence gold standard backward time-shift
	Feature selection
	Model selection and evaluation

	Unimodal affect prediction results and discussion
	Feature extraction temporal windows
	Gold standard backward time-shift
	Feature selection
	General discussion

	Conclusion

	Multimodal and Teacher-forced Learning Experiments
	Introduction
	Multimodal and teacher-forced learning experiment design
	Feature extraction, gold standard backward time-shift, and feature selection
	Feature fusion
	Cross-modal feature generation and evaluation
	Feature group screening-based sensitivity analysis
	Teacher-forced learning with multi-stage regression
	Final model evaluations
	Post-hoc head- and eye-based feature retrospective

	Multimodal and teacher-forced learning results and discussion
	Multimodal fusion
	Cross-modal interaction features
	Screening-based sensitivity analysis
	Teacher-forced learning
	Final prediction results
	Feature retrospective
	General discussion

	Conclusion

	Summary and Future Work
	Summary
	Primary contributions
	Final conclusions and perspectives
	Limitations and future work

	Software Tools/Packages and Revisions
	Acronyms

