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Abstract 

Gait analysis is a technique that is used to understand movement patterns and, in some 

cases, to inform the development of rehabilitation protocols. Traditional rehabilitation 

approaches have relied on expert guided feedback in clinical settings. Such efforts 

require the presence of an expert to guide the re-training (to evaluate performance and 

provide feedback), the user to attend a clinic and is based on subjectivity of the clinician. 

Nowadays, potential opportunities exist to employ the use of digitized “feedback” 

modalities to help a user to “understand” improved gait technique. This is important as 

clear and concise feedback can enhance the quality of rehabilitation, recovery, and 

prevent injury. A critical requirement emerges to consider the quality of feedback from 

the user perspective i.e. how they process, understand and react to the feedback. 

In this context, this PhD thesis reports on the design, development, and evaluation of a 

gait feedback system with two feedback modalities: haptic and augmented reality (AR). 

The initial part of this PhD work focused on evaluating different motion capture systems 

as part of an overall gait analysis system. The objective was to develop an alternative, 

cheaper and more accessible system. The proposed gait system (which included 

integrated camera and inertial sensors) was compared with the gold standard in motion 

capture. This was important to determine the most accurate capturing system to use in 

a feedback application. 

The next and major contributions of the PhD project focused on the design of a gait 

feedback system and evaluating the user Quality of Experience (QoE) of the two gait 

feedback modalities for knee alignment. The aim of the feedback is to reduce knee varus 

and valgus misalignments, which can cause serious orthopaedics problems. The QoE 

analysis aimed to understand how users perceived the proposed Haptic & AR systems 

in terms of utility, usability, interaction, and immersion. This involved assessing the 

easiness to adjust to feedback (utility), how easy the feedback was to understand 

(usability), how users interact with the feedback (interaction), and the awareness of 

body while moving (immersion). This analysis considered objective (improvement in 

knee alignment), subjective (questionnaire responses) user metrics, and implicit user 

metrics (e.g. physiological responses such as heart rate, electrodermal activity and eye 

information) from users. The findings show statistically significant higher QoE ratings 

for AR feedback. AR feedback also significantly reduces the number of varus 
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misalignment (by 31%) when compared to baseline readings. Gender analysis showed 

significant differences in performance for the number of misalignments and time to 

correct valgus misalignment for AR feedback for males. The male AR group, the level 

of reduction for varus was 45% and 18% for valgus misalignments (p<0.05). Consistent 

with the male group, although to a lesser extent, AR feedback reduced the number of 

varus misalignments by 35% for the female subgroup (not significant when compared 

to the baseline).  

Physiological responses of participants to feedback stimuli are also presented. Event-

based comparisons of heart rate showed higher variability for participants during haptic 

feedback, which could be an indicator of stress and was also reported in the male 

subgroup. The haptic and AR groups also showed significant differences in 

electrodermal activity (EDA) for varus, partial alignment (only one leg aligned) and 

complete aligned (both legs aligned), which could also indicate increased task demand. 

EDA signals were also filtered through frequency analysis. Pupil analysis reported that 

when a participant receives AR or haptic feedback and both legs were misaligned (varus 

or valgus), the pupil diameter was significantly greater for the haptic group, which could 

indicate an increased task demand. The final analysis dealt with bivariate correlations 

of physiological measures to check whether involuntary responses after feedback can 

be correlated and linked to stressful situations. The analysis reported that physiological 

measures of pupil, skin conductance, and heart rate are correlated to some extent.
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1 Introduction 
This chapter outlines the project scope and introduces the research question, key 

contributions and publications achieved during this PhD work. 

1.1 Introduction 

The study of human motion is important as it deals with many application areas such as 

military, sports, medical, robotics, cinema, game creation, and evaluating performance 

[1].  The study of gait is also an important part of human motion. By definition, gait is 

a repetitive sequence of movements of lower limbs that moves the body forward, while 

simultaneously maintaining stability of the body [2]. During gait, one limb acts as a 

movable support, in contact with the ground, while the contralateral limb advances in 

the air. It is a cyclic movement as limbs invert their roles with each successive step [3]. 

In general, gait analysis involves the measurement, processing, and systematic 

interpretation of biomechanical parameters that characterize human movement. 

Through gait analysis, it is possible to identify limitations in movement and provide 

information to guide rehabilitation procedures for orthopaedic issues such as knee varus 

and valgus misalignments. It also includes prehabilitation for injury and re-injury 

prevention. 

The assessment of human gait facilitates identification of movement deficiencies and 

abnormalities that are associated with the development of chronic injuries and diseases 

[4]. From a research perspective, it can also enhance many existing rehabilitation 

protocols, help with prevention of diseases, and monitor patients pre and post surgeries. 

Knee valgus and varus are factors that can lead the development of such diseases and 

are the use case selected for this feedback evaluation. Gait assessment also provides 

objective data to support gait re-retraining. Gait can be analysed and assessed using a 

variety of methods such as: clinical evaluation techniques; the use of high-speed 

cameras; force plates; and inertial sensors [5].  

Despite novel methods and technologies to evaluate and improve gait as stated above, 

there is a lack of research on novel “feedback” methods that can be combined with gait 

systems to correct or adapt to a gait abnormality. It is known that feedback is a powerful 

tool for motor skill learning and it helps with sensory perceptual information as part of 
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performing and learning a skill [6]. The accuracy of exercise performance with feedback 

in physiotherapy influences the healing process of the patient greatly [7]. For 

rehabilitation to be successful, it is crucial that the patient can understand the feedback 

provided, either from a clinician or a system. Many rehabilitation and retraining systems 

use feedback as an important tool for patient learning and to evaluate progress [8]. Some 

of the feedback modalities in training systems include: 2D screens; haptic; audio; expert 

guidance; and in more recent times Virtual Reality (VR) and Augmented Reality (AR) 

[9-11]. AR is an interactive experience in a real-world environment whereby real world 

objects are augmented with virtual information [12]. The use of AR via wearable smart 

glasses in the field of gait rehabilitation is an area under researched to-date. AR gives 

freedom of movement to the user, which can greatly enhance the quality of feedback in 

rehabilitation. It is also a promising as it can be a light weight, portable and visual 

feedback.  

This work has focused, as the primary aim, on understanding a user`s perceptual quality 

of haptic and AR based gait feedback within a holistic gait analysis system. However, 

measuring the user perceptual quality of multimedia experiences is a complex and 

challenging task, which can be evaluated using qualitative methodologies such as QoE. 

Quality of Experience (QoE) is a user centric paradigm that allows us to evaluate the 

“degree of enjoyment or annoyance of an application, system, or service” of a 

multimedia experience [13]. It represents “the fulfilment of user’s expectation in respect 

to utility and enjoyment of that application or service” [14]. QoE studies consider 

numerous factors at various levels such as at human (e.g. gender, age), context (e.g. gait 

misalignments), and system levels (e.g. comparison of different feedback 

methodologies). As such, QoE is an appropriate framework to employ to answer the 

proposed questions outlined in this research.  

In the context of the work presented here, the utility (i.e. if a system is useful in 

satisfying a user’s needs) and usability (i.e. easiness of using a system) of the feedback 

are the key concerns. In the recent years, with the advent of internet, advanced sensors, 

and internet of things (IoT), new proposals on evaluating QoE in a continuous manner 

have been proposed [15, 16], and models of assessing several multimedia systems were 

built [17]. As such, the proposed work presents a novel and rigorous QoE evaluation of 

two feedback modalities (AR vs Haptic) within a low-cost gait analysis system. These 
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comparisons are at human (gender analysis), system (AR vs haptic feedback), and 

context (gait feedback for knee valgus and varus) levels. This evaluation includes data 

analysis from post-test self-reported measures (explicit), objective data comparison in 

terms of user responses (i.e. changes in gait if any) to each of the feedback modalities 

and physiological (implicit) measures of user’s QoE. In the next section, the research 

questions and key contributions of this work are presented. 

1.2 Project Proposal and Research Question 

As outlined, the primary aim of this PhD is with respect to understanding user`s 

perceptual quality of haptic and AR based gait feedback within a holistic gait analysis 

system. This QoE comparison has been undertaken at several levels: human (gender 

analysis), system (AR vs haptic feedback), context (knee valgus and varus, angles) 

levels. It employs at system level, the development of a low-cost gait analysis system 

that can provide quantitative gait variables such as angles and feedback to users. It also 

includes the user’s acceptability through a QoE evaluation and assessment of 

physiological responses of heart rate, skin conductance, and pupil of each feedback 

modality. 

The research question for this PhD work is:  

“What type of feedback, considering haptic and AR, supports the highest QoE in a 

low-cost gait analysis system?” 

To address this research question, several research sub-questions are defined for this 

project: 

• SubRQ1: Can we objectively and accurately evaluate gait performance in a 

low-cost gait analysis system? 

• SubRQ2: What do users self-report when experiencing different feedback 

systems in terms of key aspects such as experience and effort? 

• SubRQ3: Can physiological measurements support a better understanding of 

user’s response in the context of a QoE evaluation in a gait feedback

 system? 

• SubRQ4: What type of feedback is easier to understand during gait? Haptic or 

AR feedback? 
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• SubRQ5: Does gender influence user’s QoE in a gait feedback system? 

1.3 Contributions 

The main contribution of this PhD work is the development and QoE evaluation of a 

gait feedback system. The following are the contributions of this PhD work:  

(I) To design, build and evaluate a low-cost motion capture system for user 

centred multimodal gait assessment. This research involved comparing 

marker-less motion capture systems (e.g. Multiple Microsoft Kinects) and 

Inertial sensors (Shimmer and X-Sens IMUs) with the gold standard VICON 

system.  

(II) To design and develop feedback modules and integrate these with the motion 

capture system using the optimum devices outlined in (I). This research and 

development resulted in the gait analysis and feedback system. 

(III) To compare different feedback modalities for the gait feedback system 

considering objective variables of gait (e.g. knee alignment) and QoE 

subjective (explicit) evaluation (MOS questionnaires, NASA TLX, emotion 

rates). 

(IV) To assess the physiological response to different types of feedback considering 

physiological responses (implicit measures) of heart, skin and eye responses. 

It also considers bivariate correlations (if any). 

In order to answer the research questions defined and achieve the contributions outlined, 

the following were the research objectives of this PhD work: 

• Research and critique existing technology in gait analysis focused on wearable and 

camera-based systems. This included performing a state-of-the-art review on gait 

analysis across related domains (e.g. hip and knee replacement, varus and valgus 

knee).  

• Evaluate if effective gait analysis can be achieved by the integration of wearable 

devices and marker-less motion capture and determine the accuracy of this system 

in comparison to a gold standard system.  

• Perform a state-of the-art review of QoE evaluations in the key areas related to the 

scope of this PhD work: feedback modalities (e.g. audio, visual, VR, AR, expert 
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guidance, etc), rehabilitation, and gait analysis. Research and apply different 

feedback approaches in a multimodal gait analysis system.  

• Develop a low-cost motion capture system by the integration of camera systems 

and inertial measure units. 

• Develop a wireless real-time streaming protocol and gait analysis system 

considering inertial measure units. 

• Develop haptic and augmented reality modules that uses socket connections to the 

main gait system. 

• Experimentally verify how each of each feedback module influence user’s QoE in 

gait evaluation. 

• Research and critique research on user QoE in terms of feedback, subjective 

evaluation, and physiological signals.  

• Experimentally, capture and analyse how users self-report their perception of 

different feedback stimuli (haptic and AR) using post-test QoE questionnaires (e.g. 

system questionnaires, SAM emotion scale, NASA-TLX.)  

• Evaluate the acceptability of wearable feedback devices from the QoE user 

perspective i.e. evaluate acceptability and utility of feedback system.  

• Experimentally, evaluate how physiological measures, workload and emotion 

affects QoE in a gait feedback. 

1.4 List of Publications 

Published: 

Thiago Braga Rodrigues, Ciarán Ó Catháin, Noel E O’Connor, and Niall Murray. A 

Quality of Experience Assessment of Haptic and Augmented Reality Feedback 

Modalities in a Gait Analysis System. PLoS ONE (2020), 15(3), e0230570. 

DOI:https://doi.org/10.1371/journal.pone.0230570 

Thiago Braga Rodrigues, Debora Pereira Salgado, Ciarán Ó Catháin, Noel E 

O’Connor, and Niall Murray. Human gait assessment using a 3D marker-less 

multimodal motion capture system. Multimedia Tools and Applications (2019), 79(3), 

2629-2651. DOI:https://doi.org/10.1007/s11042-019-08275-9 
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Thiago Braga Rodrigues, Ciarán Ó Catháin, Declan Devine, Kieran Moran, Noel E 

O’Connor, and Niall Murray. An evaluation of a 3D multimodal marker-less motion 

analysis system. In Proceedings of the 10th ACM Multimedia Systems Conference 

(MMSys ’19) (2019). Association for Computing Machinery, New York, NY, USA, 

213–221. DOI:https://doi.org/10.1145/3304109.3306236 

In addition to the above listed papers that were a core reflection of the PhD work, the 

following list includes other academic outputs which were contributed to during my 

PhD study: 

Debora Pereira Salgado, Thiago Braga Rodrigues, Felipe R. Martins, Eduardo L.M. 

Naves, Ronan Flynn, Niall Murray, The Effect of Cybersickness of an Immersive 

Wheelchair Simulator, Procedia Computer Science. (160), (2019), 665-670, ISSN 

1877-0509, DOI:https://doi.org/10.1016/j.procs.2019.11.030. 

Thiago Braga Rodrigues, Debora Pereira Salgado, Mauricio C. Cordeiro, Katja M. 

Osterwald, Teodiano F.B. Filho, Vicente F. de Lucena, Eduardo L.M. Naves, Niall 

Murray, Fall Detection System by Machine Learning Framework for Public Health, 

Procedia Computer Science, 141, (2018), 358-365, ISSN 1877-0509, 

DOI:https://doi.org/10.1016/j.procs.2018.10.189. 

Debora Pereira Salgado, Felipe Roque Martins, Thiago Braga Rodrigues, Conor 

Keighrey, Ronan Flynn, Eduardo Lázaro Martins Naves, Niall Murray. 2018. A QoE 

assessment method based on EDA, heart rate and EEG of a virtual reality assistive 

technology system. In Proceedings of the 9th ACM Multimedia Systems Conference 

(MMSys ’18). Association for Computing Machinery, New York, NY, USA, 517–520. 

DOI:https://doi.org/10.1145/3204949.3208118 

In writing: 

Thiago Braga Rodrigues, Ciarán Ó Catháin, Noel E O’Connor, and Niall Murray. A 

QoE evaluation of haptic and augmented reality feedback in a gait analysis considering 

physiological and subjective workload assessment. IEEE Access, (2020). 

Thiago Braga Rodrigues, Ciarán Ó Catháin, Noel E O’Connor, and Niall Murray. 

Quality of Experience in haptic and AR feedback: Pupillometry and emotion as 

measures of cognitive efforts in gait. IEEE Transactions on Multimedia, (2020). 
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Thiago Braga Rodrigues, Ciarán Ó Catháin, Noel E O’Connor, and Niall Murray. A 

QoE model of feedback in gait analysis considering implicit and explicit measures. 

IEEE Transactions on Multimedia, (2020). 

1.5 Thesis Outline 

This PhD thesis is organised in six chapters. This first chapter has introduced the 

motivation for the research, the problem to be solved, the research questions and the 

thesis contributions and publications. Chapter two presents related works for the 

research areas related to the scope of this PhD, namely: gait and Motion Capture, 

Immersive multimedia such as Virtual Reality (VR), Augmented Reality (AR), and 

Haptic interfaces, and QoE. The third chapter describes the first case study of this 

project: An evaluation of 3D multimodal marker-less systems for motion capture and 

gait analysis. It contains the aims, methodology and two evaluations conducted as part 

of an overall gait analysis system. This chapter also gives considerations for the second 

case study of the project and informs the gait system employed. The fourth and fifth 

chapters focus on a detailed reporting of the QoE evaluation of haptic and AR feedback 

in gait analysis. It contains aims, methodology, and QoE evaluations of the gait 

feedback system. This chapter reports results of tests with participants for varus and 

valgus misalignment, physiological and workload assessment, and emotion responses 

as measures of cognitive efforts considering questionnaires and pupillary responses. 

The sixth chapter concludes this PhD thesis, discussing the key findings and 

highlighting remaining challenges and recommendations for other research and studies.  
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2 Related Work 
This chapter presents and critiques related works in gait feedback, motion capture, 

immersive multimedia, and quality of experience. Section 2.1 gives an overview of 

existing research on gait and gait analysis. It also describes the differences within 

the area of motion capture including the use of marker-less-based systems, inertial 

measures, and marker-based systems for gait analysis. Section 2.2 discusses the role 

of feedback and as part of this, including immersive systems. Section 2.3 defines 

QoE and informed research in the area of user experience. It describes related works 

in QoE considering different questionnaires, physiological signal analysis, and 

many other measures of QoE. The aim of this chapter is to give the reader 

background on these topics as well as literature used to define the final scope of this 

research. 

2.1 Gait and Motion Capture 

Human gait is the sequence of movements of the lower limbs that promotes body 

locomotion and stability during walking [18]. It is difficult, in clinical subjective 

observation, to analyse gait and identify deviation from normality without using 

systems capable of analysing and quantifying movement, such as motion capture 

systems. Such limitations have led physicians, biologists, engineers, and academics to 

highlight the need for systems that can provide objective data that describe movement, 

via accurate recording of human movement, or gait analysis [19]. 

2.1.1 Gait Analysis 

Gait analysis is achieved through the measurement, processing and systematic 

interpretation of biomechanical parameters that characterize human movement [18]. 

The appropriate identification of gait parameters promotes assessment of movement 

limitations and aids in the development of appropriate rehabilitation and prehabilitation 

procedures [20]. Clinical gait analysis implies the ability to acquire and evaluate, in an 

instrumented way, the kinematic (study of motion), kinetic (study of forces and 

torques), and myoelectric information (electric properties of muscles) of the movement. 

It also includes the ability to interpret this information clinically by integrating 

specialized personnel [21]. 
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Gait laboratories have been set up to offer accurate gait analysis and evaluate the 

performance and functionality of populations with musculoskeletal disability or 

dysfunction. These laboratories can develop quantitative methods of measurement and 

analysis based on scientific and technical knowledge of human movement [20, 21]. For 

gait analysis, each sequence of movement involves a series of interactions between two 

segmented lower limbs and body mass. The sequence of these functions performed by 

a limb is called the gait cycle (Fig. 1). Each cycle is composed of several actions that 

pass from one phase to another, with overlapping stages, with no specific end point of 

one stage and the beginning of the other [22]. 

 

Figure 1. Gait cycle 

Understanding the kinematics of the human movement is important to evaluate 

functional performance of limbs under normal and abnormal conditions. For example:  

kinematic aspects can support diagnosis and inform intervention plans in the case of an 

orthopedic surgical intervention, and design of a prosthesis with the purpose of restoring  

function [19]. Patients suffering from numerous conditions can benefit from 

instrumented gait analysis, e.g., those with cerebral palsy, traumatic brain injury, 

neuromuscular diseases, traumatic spinal cord injuries, and those that require congenital 

amputations of the lower limbs or hip replacement procedures [23, 24]. The 

instrumented gait analysis can be used to indicate if a movement or force is aberrant, 

physiotherapy procedures, and adequacy of orthoses and prostheses.  

2.1.2 Varus and Valgus Knee 

The Hip and knee are weight bearing joints and play a key role in gait stability. The 

displacement of knee - called varus/valgus - is a misalignment of the tibiofemoral joint. 

The valgus knee (as per Fig. 2a) is a condition whereby the knees turn outwards, whilst  

the varus knee (Fig. 2c) is a condition where  the knee to turns inwards [25]. This 

disorder occurs because the tibia is not aligned correctly with the femur, giving a 

different shape to the leg line. Varus and valgus deformities affects about 70% of people 
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with knee problems in the western population [26, 27]. It is also linked to osteoarthritis 

which is the most common joint disorder in the world [28]. 

 

Figure 2. Tibia alignment: Varus (2a), normal (2b), and varus (2c) knee. Red arrows 

represent misalignment in the tibiofemoral joint. The blue arrows represent alignment 

of the tibiofemoral joint. Adapted from [29]. 

Excessive varus/valgus alignment can lead to serious orthopaedics problems such as 

osteoarthritis [30]. Extreme cases of knee misalignment may need to be addressed 

surgically. If not properly treated, it can result in severe injuries from joint wear to 

diseases, e.g. knee arthrosis and osteoarthritis. However, in less severe cases, symptoms 

can be reduced with physiotherapy, corrective exercises, and through gait re-training 

[31]. There are some rehabilitation procedures that help reduce  varus/valgus knee, such 

as strengthening of the hip and knee muscles [7]. Rehabilitation or corrective exercises 

are prescribed and explained by the clinician. Progress on rehabilitation is typically 

assessed in a subjective manner by a physiotherapist.  

2.1.3 Motion Capture 

In Biomechanics, Motion Capture (MoCap), is a concept used to describe systems 

capable of recording body movement through some devices e.g. video cameras and 

inertial sensors. These systems vary in the number and configuration of cameras, 

whether or not they use markers, the representation of the captured data, processing 

algorithms, and application [32]. From this recorded data, kinematic variables of motion 

are calculated. Such systems allow a quantitative movement evaluation and study of 

human or animal musculoskeletal system [33]. There are two main types of MoCap 
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technologies: marker-based motion capture and marker-less-based MoCap, defined 

based on the need (or not) to use reflective markers to detect position. Each type of 

MoCap technology establishes needs and constraints for the environment in which to 

capture motion, thus defining the process for the motion capture and the calibration. 

Moreover, each technology has its pros and cons in gait evaluation [34]. 

 Marker-Based Motion Capture Technologies 

In marker-based MoCap systems, markers are placed at specific anatomical locations. 

Video cameras with optical electronic devices are used to capture the movements made 

by the user. The cameras are strategically positioned in space, to allow the tracing of 

those markers during each trial. Subsequently, the data of these markers are analysed 

by a computer that tracks each marker position in the three-dimensional space and 

reconstructs the trajectory of each marker [1].  

Marker-based optical systems are expensive and require high-resolution cameras and 

specialized software for data processing. The benefit of these systems is that they 

provide excellent accuracy and great detail in the reconstruction of the movements [35]. 

Some drawbacks include high cost, complex set up and expertise to use them, and the 

occlusion of markers during the movements. In case of occlusions, further post capture 

processing to fill the gaps is required. Despite these limitations, marker-based systems 

are still the most used systems in gait analysis [1, 34]. An example of a marker-bases 

MoCap system is the VICON system (Fig.3). 
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Figure 3. Vicon system and markers 

The VICON system offers solutions in three-dimensional motion capture in applications 

such as gait analysis, postural analysis, motor control, and gait retraining. It can also be 

used to assess the biomechanics of high performance athletes, as well as other species 

in the field of veterinary studies with accuracy and high sampling frequency [36]. This 

system consists of a data station, video cameras and infra-red projectors capable of 

capturing human movement by the detection of reflective markers placed on a body 

[37]. 

In marker-based MoCap, reflective markers should be taped directly onto the skin of 

the user. In addition to concerns of using adhesive products that are not harmful, the 

attachment must be sweat resistant and sufficiently adherent so that the participant can 

move and perform the movement in the most natural way possible. Another important 

aspect is the difficulty in the repeatability of marker positioning when captures are 

performed on different days and the need to implement algorithms that address these 

differences [38]. 

Whilst known marker-based MoCap systems, such as the VICON system [36] provide 

highly accurate data, a number of issues exist as mentioned above. As a result, research 
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and industry have also looked at MoCap technologies that do not require the use of 

reflective markers. Technologies such as the Microsoft Kinect [39] (which uses RGB-

D cameras), can capture 3D skeleton data using anatomic landmarks. Such systems 

potentially provide a better user experience with no movement restriction (truly 

ecologically valid data) and faster set up [40]. Thus, marker-less tracking technologies 

like the Kinect are an attractive alternative to marker-based systems. 

 Marker-less-based Motion Capture Technologies 

Some MoCap technologies do not require the use of reflective markers. Such 

approaches are less restrictive, thus giving the impression of greater freedom of 

movement to the user and can overcome the problem of occlusion. The operation of the 

marker-less MoCap is based on the analysis of the silhouette of the image of the user 

who is performing the movement in contrast to the background of the image and depth 

information. The point cloud formed by the silhouette is combined with an articulated 

model of the human body (Fig.4). The marker-less MoCap technique has been widely 

used in the creation of devices that efficiently perform the task of translating human 

motion into a coordinate point that can be mapped by the computer [41].  

 

Figure 4. Kinect point cloud from depth sensor. 

The depth of a point cloud in the scene is calculated by a Time-of-Flight (ToF) camera 

from the time the light emitted by the camera travels to the destination and returns to 

the receiving sensor. These cameras generate images at low resolutions, but at a high 
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frame rate per second [42]. An example of marker-less-based MoCap is the Microsoft 

Kinect. 

 Microsoft Kinect 

The Microsoft Kinect (MS Kinect), first introduced in November 2010 (Fig.5), is a 

motion capture device developed for the Xbox 360 and Xbox One. With the Kinect, 

Microsoft has created an innovative technology capable of allowing players to interact 

with electronic games without the need to have a control / joystick. It has brought novel 

innovative user experience to the gamers and researchers. The device also offers the 

possibility to monitor, depending on the field of vision, the movement of several people 

at the same time. The Kinect was discontinued in 2015 and it was replaced by the Azure 

Kinect, with similar technology for developers. The Azure Kinect has an array of seven 

microphones and features cameras with wide or narrow angle views for different use 

cases. It also has a 12MP camera with a color flow that is aligned with the depth system. 

It is even possible to sync multiple Azure Kinect devices to get different views of the 

environment. Although Kinect was launched as a gaming peripheral, the accessory 

immediately stimulated the interest of researchers who were attracted by depth detection 

and skeleton tracking. Despite the recent development of the Azure Kinect, this work 

used the MS-Kinect, which was available at the time. 

.  

Figure 5. Microsoft Kinect 

The most important functions of MS-Kinect are associated with tracking the user's 

movements against the interface. For such functionality, hardware components such as 
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an infrared light emitter, multiple video cameras, an infrared camera, a vector of 

microphones, a three-axis accelerometer and a camera tilt motor are used (Fig.6) 

 

Figure 6. Kinect Components. Available at [43] 

MS Kinect can return three-dimensional position of a set of points associated with the 

main joints of the human body, based on a human reference skeleton [44]. Each skeleton 

is composed by 25 joint points. The Kinect V2 joint map is shown on Fig.7. 
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Figure 7. Kinect V2 joint map. Available at [45]. 

With the MS Kinect, the marker-less MoCap technology demonstrates more accuracy 

and performance compared with similar technologies [46], allowing this technique to 

enter not only the realm of entertainment, but also Biomechanics,  and specifically gait 

analysis [47].  

 Multiple-Kinects 

The skeletal tracking of a single Kinect has some limitations: (i) it was designed to track 

the users facing the sensor (frontal views); (ii) it cannot discriminate between the frontal 

and rear views (e.g. even if the user is facing the opposite direction, the sensor still 

assumes a frontal view); (iii) its tracking frequently fails due to occlusions (e.g. the arms 

are occluded by other body parts); (iv) Ability to assess/measure/tolerate rotations 

around the vertical axis is limited; (v) the field of view within which it can track users 

is quite limited. Crucially, in terms of model accuracy, different joints have variations 

in accuracies e.g. lower joints are less accurate compared to upper joints [48].  

In order to have a 360o of tracking area, increasing the field of view and increasing 

precision in skeleton detection, multiples Kinects can be employed for a wider detection 

range. Figure 8 shows a wider detection range when more Kinects are combined. 
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Following the detection range, the gait analysis using multiple Kinects should be in the 

middle of all sensors.  

 

Figure 8. Multiple Kinects detection ranges 

Thereafter skeletons from all Kinects can be aligned, synchronized, and a full 360o 

fused skeleton can be generated using matrix transformations and quaternion fusions 

[49].  

Many authors used the Microsoft Kinect and multiple Kinects to estimate 3D human 

motion and gait analysis. [50] investigated the accuracy of a single Kinect for clinical 

measurement. This study has found that the Kinect can be used in a clinical environment 

and achieved maximum 3D difference of 5cm for all joints when compared with the 

VICON system. [51], proposed a Dual-Kinect tracking comparing with VICON with 

results of absolute error not exceeding 20mm.  

Multiple Kinects systems are also used in rehabilitation and motion analysis. [52] 

proposed a multi Kinect assessment for quantitative gait against marker-based MoCap 

system to extract full body kinematics (it did not include inertial sensors) showing 

spatiotemporal gait similarity of 0.88 when compared with VICON. The results of this 

study concluded that a Multi Kinect system can provide accurate motion analysis. 

Although these authors found out that their system can track motion in two or more 

viewpoints, their system is not capable of track full 360o motion and does not consider 

the view from the back, which is a limitation. These studies have the conclusion that 

due to the occlusion limitation of a single Kinect; a multiple Kinect system can be an 

alternative for motion analysis. 
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 Marker-less Systems and Gait Analysis 

The authors in [53] proposed a gait analysis system composed by only a single RGB 

camera. The methodology applied generates a silhouette using particles filtering from a 

synthetic image. The authors reported that the sample rate was quite low (20hz) and as 

a result, they could not get angle changes of more than 5o between two frames. They 

reported results for longitudinal displacement of the knee and ankle. Their comparison 

against a VICON system was presented via graphical differences with no calculations. 

Some movements and joints are occluded due to the limitation of using a single view 

camera.  

In [54], a multi Kinect system was developed for gait assessment. This technique 

converted skeleton frames from a single Kinect into a feature vector. This work 

considered “centre of mass” (COM) as centre of hip, shoulder and spine joints. They 

also captured stride times, and angular velocities in different phases of stride. Their 

system was compared with reference values from Kinect and did not consider any other 

comparison method with a gold standard system like the VICON system. The results 

have shown that multiple Kinects can be applied to capture human movement and assess 

gait. They have applied the system to capture spatiotemporal gait variables and found 

correlation of 0.97 for right stride length, 0.83 for left stride length, and 0.92 for gait 

time. 

In [55], the authors proposed a low-cost marker-less MoCap system using a single 

Microsoft Kinect to obtain 3D joint position and extract gait spatiotemporal features. 

Their method defined toe contact to mark starting and ending points of a full gait cycle 

(full walk) and generated gait variables. They considered the variables of speed, step 

length (distance between two steps), step time; stride length (distance between two 

strides), and stride time. This study defined what are some of the most important gait 

spatiotemporal variables in use today. They compared the system with the 3DMA (3D 

Motion Analysis) system [56] and concluded that poor detection of anatomic landmarks 

in lower body caused the system to be inaccurate in calculating  some variables such as 

step time (diff between Kinect and 3DMA -0.17), and stride time (diff between Kinect 

and 3DMA -0.20).  

In [57], a multi Kinect system was developed for gait assessment comparing results 

with VICON. The results have shown that multiple Kinects can be applied to capture 
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human movement and assess gait. They have applied the system to capture 

spatiotemporal gait variables and found correlation of 0.97 for right stride length, 0.83 

for left stride length, and 0.92 for gait time. The results of the study in this dissertation 

have shown correlation of 0.99 for gait time and 0.95 for right and left stride length. 

Although these authors found out that their system can track motion in one, two or more 

viewpoints, their system was not capable of tracking full 360o motion and did not 

consider the view from the back, which restricts the system to applications at frontal 

views. The gait system presented in this dissertation considers the full 360o view from 

users and can capture 3D, spatial and temporal gait variables. 

2.1.4 Wearable Sensors 

The idea of a worldwide network of connected sensors that exchange information 

between them is quite broad and it is common to call the concept Internet of Things 

(IoT). Recently, there has been an explosion of consumer wearable technologies, such 

as fitness bands or smart watches and devices that provide diagnostic and monitoring 

information on movement and motion. These technologies are part of a field within IoT: 

the wearable [58]. The wearable industry is expected to have revenue of more than 50 

billion dollars by 2023 [59]. However, the development of such sensors has been 

hindered by non-user considered design and complexities across several domains such 

as safety, communication, fitness, and health. Examples of connected sensors are 

Inertial Measurement Units, or simply called IMUs. 

 Inertial Measurement Units (IMUs) 

Inertial sensors are devices capable of monitoring velocity and variations in acceleration 

by converting inertial measures, into some known physical change. The captured signal 

is then converted by a transducer and converted into an electrical signal. This electrical 

signal is subjected to linear and non-linear filtering processes to create an input signal 

estimate. The final output will represent a calibrated value of measured acceleration or 

velocity [60]. 

An Inertial Measurement Unit (IMU) is created when 2 or more inertial sensors are 

combined in the same circuit. An IMU is an electronic device capable of measuring 

different parameters of a body like acceleration, force, angular rate, and magnetic field 
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around the object by combining accelerometers, gyroscope, and magnetometers (Fig.9 

and Fig.10) [60, 61]. 

 

Figure 9. Accelerometer and gyroscope IMU. Available at [62] 

In a single integrated circuit, each IMU has micro-machined mechanical structures 

forming mechanical transducers, responsible for carrying out the task of sensing. The 

sensor is composed of microstructures capable of giving analogical electrical signals 

corresponding to the forces to which the sensor was subjected [60]. For simple tasks, 

devices that provide digitized, digitally filtered, and processed signals can be used 

including those that store previous readings in memory, all independently, without the 

need of a main CPU [63]. Whether the sensor provides a raw output without any 

treatment or a ready-to-use processed output will depend on the characteristics of the 

chosen device and, the output [60, 61, 63]. 

The category of IMU is represented by three types of devices: 

• Accelerometers: capable of measuring linear acceleration in the direction of a 

reference axis. Acceleration is the rate of change of velocity in time, represented 

in m/s2 (meter per second squared). 

• Gyroscopes: capable of measuring the angular velocity around a reference axis. 

The angular velocity is a magnitude representing the rate of change of the 

angular position in time, whose unit of measure in the International System is 

rad/s (radian per second). 
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• Magnetometer: capable of measuring the intensity, direction, and direction of 

magnetic fields in their vicinity. In general, they are used in geophysical studies 

related to the Earth's magnetic field and the magnetosphere.  

 

Figure 10. IMU and rotations 

Accelerations and angular velocities are vector signals, having magnitude and direction. 

If only one component of the vector is measured, the sensor is characterized by 1D or 

an axis. If two or three components of the vector are captured, the sensor is characterized 

as a 2D or 3D accelerometer, respectively. 

 IMUs in Gait Analysis 

The use of IMUs for human motion capture has been studied for some time. With the 

development of microelectronics, the integration of sensors has become more viable, 

and the miniaturization of inertial units has allowed their use in Biomechanics, and also 

in gait analysis[64]. Gait analysis using wearable devices like IMUs, can offer an 

inexpensive, accurate, and an efficient way to provide gait assessment for rehabilitation 

and in diagnostics to detect abnormalities in walking, due to medical conditions, and 

sports injuries [65]. [66] used inertial sensors to present a low-cost gait monitoring for 

3 body segments, showing that 3D orientation can be obtained by using IMUs outside 

the lab in any unconstrained environment. 

The most well-known application of IMUs in gait rehabilitation and assessment is the 

use of sensors for impact detection and motion analysis. The benefits of this application 
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as a therapeutic has been published and include posture and balance corrections, 

increased locomotion capacity, and improved range of motion of the upper and lower 

limbs [67]. To perform biomechanical measurements, such as range of motion, it is 

necessary to incorporate more than one IMU so that angular evaluation is possible. The 

sensors are positioned at the midpoint of the limbs to facilitate this [68]. 

With the evolution of inertial sensors, human movement has been studied in diverse 

environments and situations like research, gaming and medical, making use of only a 

few IMU in contact with the body. In addition, collected data can provide some 

important gait variables such as acceleration, angular velocity, height, and movement 

direction. 

In [69], the authors used 9DOF IMUs for gait temporal assessment and concluded that 

IMUs could be used to assess temporal gait parameters with high correlation between 

IMUs and gold standard systems (0.97 for gait time and 0.82 for stride time).  

The authors in [70] developed a real-time estimation of temporal gait variables using 

6DOF IMUs and have correlation results of 0.93 for stride time, and 0.97 for velocity 

against the GAITRite (GR) system [71]. These studies have shown that IMUs can offer 

a low-cost tool for temporal gait variables, even though they did not capture any three-

dimensional information. To capture spatiotemporal and 3D variables of gait, a 

combined system using 3D points from Kinect and IMUs may be a low-cost alternative 

for gold standard gait systems. 

Integrating inertial sensors with a single Kinect has been applied in rehabilitation and 

motion analysis. [72] and [73] are the closest to the proposed work found in the 

literature. These authors used a single Kinect integration with 6 DOF (Degrees of 

Freedom) inertial sensors for rehabilitation purposes in post-stroke patients. They found 

out that the integration is possible but further improvement in calibration and more 

degrees of freedom from inertial sensors is required (The developed system of this 

dissertation applies a 9DOF inertial sensor and Multiples Kinect). [73] has also used a 

single Kinect and inertial sensors to build a system to help post-stroke patients showing 

application in a clinical setting. However, no integration is described. Other authors 

fused a single Kinect for low-cost skeleton tracking and refined gesture recognition 

achieving an overall recognition rate of 93% [74, 75]. 
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Considering these works and to the best of the author’s knowledge, the novelty of the 

capturing system proposed in this work lies in the fact that: (a) no works in the literature 

have integrated IMUs with a fused Kinect skeleton from multiple Kinect by the 

combination of 3D points (x, y, z) and quaternion orientation (w, i, j, k) generating in a 

360o view; (b) presents a real-time wireless synchronization and streaming protocol for 

multiple IMUs; (c) supports easy set up and is low cost; (d) provides 3D and kinematic 

data with 9 degrees of freedom; (e) enables fully body reconstruction; (f) provides 

accurate join angles; and, (g) is marker-less and can be used in any environment. To 

examine the utility of the gait system, a comparison with the gold standard VICON was 

performed. Further in this document the developed gait system is introduced. The 

proposed system framework, signal processing, and experimental protocol will be also 

described. 

2.2 Immersive Multimedia in Gait Analysis 

Besides the capturing part of the system, feedback modules were designed for this 

project. The modules were composed by different technologies: haptic interface, AR 

(The network architecture also allows the use of other feedback modules). This section 

discusses some applications of immersive multimedia and the rationale behind the 

choice of haptic and AR feedback over other technologies. 

2.2.1 Feedback Modalities 

The existing literature presents various feedback mechanisms that are widely used 

across the literature. However, novel immersive technologies such as Augmented 

Reality (AR) are emerging that potentially have utility. AR, relatively speaking, is 

unexplored in terms of gait feedback and in this study, I aimed to evaluate how users 

perceive such feedback, as well as assessing the utility of AR compared to the state-of-

the-art haptic feedback approach. In addition, current feedback technologies have some 

limitation in gait such as: 

• 2D screens – This approach does not allow the user to walk freely in any 

direction they want, they always need to walk towards the screen and must have 

their head up facing the screen. 
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• Audio – In order to comply to the audio guidance, users need to clearly 

understand the guidance which can be confusing. The existing literature also 

highlights that visual based feedback has higher utility than audio for gait re-

education [76].  

• Expert guidance – It has many benefits, but requires the user to attend an expert 

clinic, the expert to be available and is based on subjectivity of the clinician. 

These current tools have been shown to have utility but as discussed above they also 

have individual limitations which are motivations of the current study. 

2.2.2 Haptic Interfaces 

The term “haptic interface" refers to devices that allow the user to touch, feel or 

manipulate simulated objects in virtual environments and teleoperated systems. Haptic 

interfaces also use 3D displays and 3D stereo sound devices applied through images 

and sounds promoting the feeling of immersion within the virtual space [76]. In addition 

to user immersion, haptic systems must provide real-time interaction with the virtual 

environment and data transfer through a tactile interface. Examples of haptic interfaces 

include vibrotactile controllers, jackets, gloves, bracelets, and others (Fig. 11) [77, 78]. 



Chapter 2:Related Work 

      Thiago Braga Rodrigues - PhD Thesis    25 

 

Figure 11. Haptic interfaces. haptic glove (15a), haptic controller (15b), japtic jacket (15c) 

Adapted from [79], haptic bracelet (15d) 

Haptic feedback can be classified into three large groups as they provide: force 

feedback, tactile feedback, or self-sensing feedback. Each of them provides information 

to user regarding feedback interface depending on desired characteristics. Interfaces that 

provide force feedback provide data related to the hardness, weight and inertia of the 

virtual object [80]. The interfaces that provide tactile feedback allow users to acquire 

data such as the geometry of the virtual object, its roughness and temperature, among 

others. Finally, the interfaces that provide self-receptive feedback give information 

about user's body position or posture [81]. 

Haptic feedback has been studied in many works related to human activities [82], motor 

learning [83], and gait retraining [84]. Numerous works have compared haptic feedback 

with other modalities and have reported haptic: to be “less intrusive” than virtual reality 

feedback [85]; to be better in supporting task performance when compared to visual 
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feedback for lower extremities [86] in gait; not to affect ecological validity of 

interaction compared with other modalities [87]; and, to be easier to understand and 

followed when compared to auditory and visual stimuli [76].  

Haptic feedback was also used to enhance the realism of a walking experience in 

multimodal environments [88], which may inform the benefit of using it to enhance user 

experience in different applications (e.g. games, movies). Haptic feedback has also been 

used as an important tool in gait retraining for treatment of knee osteoarthritis [89]. In 

[90], closely aligned to the focus of this work, a gait re-training system employed haptic 

feedback to change gait parameters including varus/valgus misalignments. They 

reported the ability of participants to perceive haptic feedback. They also highlighted 

issues whereby users were confused when receiving more than one feedback 

simultaneously (i.e. on different parts of the body). The system and results served as 

basis for this work on informing the use of haptic feedback to capture and improve gait 

parameters including knee alignment. Beyond the study mentioned above, there are 

other feedback modalities that could be used in gait re-training such as Virtual and 

Augmented Reality. 

2.2.3 Virtual and Augmented Reality 

Every decade, the technological scenario reformulates into a new and important cycle. 

In the 80s, PCs changed the world and the way companies and people organize data. 

The 90's were important into connecting everyone through the internet. The early 2000 

were important with the development of smartphone devices [91]. 

As with this we move into a new cycle, in addition to the use of wearable devices, haptic 

interfaces, Virtual Reality (VR), Augmented Reality (AR) and Mixed Reality (MR) are 

on the rise (Fig. 12). These are immersive technologies that already allow us to interact 

with others and experience the world like never before. 
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Figure 12. Platform Waves history. Available in [91]. 

 Virtual Reality 

Virtual Reality (VR) is an artificial environment created from software that can deceive 

user's senses. VR technologies include visual, sound and even tactile effects to immerse 

users into the environment. Virtual reality allows complete immersion in a simulated 

environment, with or without user interaction [92]. 

Currently, virtual reality is based on stereoscopic displays such as glasses and Head-

mounted Displays (HMD) (Fig.13), being mostly disseminated for entertainment. 

However, the concept encompasses much more than visual effects and it has been 

around for a long time. VR is not just for games and entertainment, but its use is 

increasing for many business and services [93]. VR is definitely changing the industry 

of sport, athletes training, mental health, medical training, and education. It represents 

changes in the way people may interact in the future [94]. 
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Figure 13. The Oculus Rift CV1 (Consumer Version 1), a virtual reality headset made by 

Oculus VR and released in 2016. Available at [95]. 

VR is a technology with applications in diverse areas such as health, retail, education, 

real estate, military, live events, entertainment, and engineering. In health, many 

applications are already being carried out by many professionals and companies 

specialized in patient care. VR technology is utilised for training health professionals 

such as doctors, nurses and caregivers of patients. It allows the recreation of real work 

situations efficiently, with low cost, and, most important, at no risk to a patient [96]. 

As well as exercise simulator games, very popular on virtual gaming platforms, VR can 

be used in therapies in which patients need stimuli to move. The use of virtual reality in 

the form of interactive games or even just in other scenarios increases the engagement 

of therapy, which becomes more interesting and stimulating for the patient [93]. In 

addition, the procedure assists the therapist, who can have access to the patient's 

movement data, which allows them to assess  the effectiveness of  treatment, and 

subsequently alter  exercises and  specific parameters based on patient performance, 

ensuring a therapy as well. more exclusive for different people [97]. Even though VR 

is an emerging technology, it is quite limited in some applications that requires 

awareness of the body and movements such as sports and gait re-training.  
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 Augmented Reality  

Augmented Reality (AR) is a technology that allows the combination and insertion of 

virtual contents in the real environment. This insertion is done in real time through small 

screen(s) close to users’ eyes, providing an experience of digital elements in the real 

world [98]. AR systems present the following properties: combines real and virtual 

objects; runs interactively in real time; aligns real and virtual objects with each other; 

and, can be applied to all senses, including hearing, touch and smell [99].  

A well-known example of AR is the mobile game Pokémon Go by Niantic and The 

Pokémon Company International (Fig. 14) [100]. In this sense, real elements captured 

by a mobile camera and virtual AR elements coexist promoting high user experience. 

 

Figure 14. Pokémon GO. In this game augmented elements are mixed within the real world 

through smartphone cameras. Available at [100]. 

The use of AR is not restricted to smartphones. There are special devices called Smart 

Glasses that can always be worn, assisting the user with information, calls, messages, 

GPS guidance, among others. This technology is still actively being researched, with 

companies trying to produce the best option for customers,  resulting in multiple 
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innovative models designed for different purposes [101]. Generally, smart glasses aim 

to provide life monitoring services, as well as the creation of a platform to take pictures 

and make more authentic video clips. They can also be equipped with AR technology, 

to help you in everyday life at home or at work. 

Smart glasses work through a combination of screens, sensors, and accelerometers, 

along with smart software and internet connectivity to increase utility. They tend to 

come with touchpads and / or voice controls to help users navigate the software that 

controls them and can be incorporated either into the glasses, a handheld device, or both. 

Currently, there are a few devices available, but most of them are not really intended 

for consumer use but for development purposes. Epson Moverio (Fig. 15) is an example 

of smart glasses designed for professional use and development and was used in this 

work [102]. 

 

 

Figure 15. Epson Moverio BT-300 - Augmented Reality Glasses. 

Some authors have applied AR in gait analysis in different ways. In [103], a low-cost 

gait analysis system was developed using AR markers and a single video camera. The 

AR markers were used to track body segments and capture gait variables. Even though 

the authors achieved calibration and accurate tracking for gait angles (errors of spatial 

parameters below 23mm), they highlighted the use of markers as a limitation (e.g. this 

system could not be used for treadmill walking for example). The use of different AR 
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devices was also reported for guided walking over obstacles in [104, 105]. This research 

indicated that novel AR technologies can be used to improve elements of walking 

performance, such as body stability, gaze, and locomotor control [106, 107].  

Considering these works, the use of AR for gait feedback has not been deeply explored. 

There are some exploratory works that suggest employing AR for gait retraining. The 

results reported in [108] indicated a significant improvement in gait and movement 

skills when compared to  a 2D monitor. Other research examining the use of AR in gait 

posture training [109] reported statistically significant improvements in posture, 

balance, and velocity. In [4], a gait retraining system was developed to modify footprint 

parameters. The authors concluded that AR could help to quickly modify user’s 

footprint parameters. Although these works make a valuable contribution, there was no 

qualitative metric employed that informs if users were satisfied or enjoyed the feedback 

experience. This is critical because it informs designers about how the users enjoy, 

engage, and experience such systems. Consideration of the current literature and the 

lack of deep exploration of AR as a tool to provide gait feedback, it was chosen as one 

feedback module of the system proposed in this dissertation. All the different feedback 

approaches have advantages and disadvantages. Such issues are validation for why QoE 

assessments of such feedback mechanisms are required. 

2.3 Quality of Experience (QoE) 

The term “quality” refers to a set of attributes that meets customers’ needs and maintains 

a high standard for products and services [110]. Quality in relation to products and / or 

services takes several definitions such as efficiency, added value, legal requirements, 

durability, absence of defects, and more [111]. Even within quality evaluation methods, 

finding a quality assessment methodology that considers system, human, and context 

factors can be a challenge. The QoE framework defined by [112] states: 

“The degree of delight or annoyance of a person whose experiencing involves an 

application, service, or system.  It results from the person’s evaluation of the fulfillment 

of his or her expectations with respect to the utility and/or enjoyment in the light of the 

person’s context, personality and current state.” 

QoE is used to understand user perceptual quality of multimedia experiences. It 

measures total system performance using subjective and objective measures not only 
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for customers but also for users of a specific device for example. QoE has grown now 

into a multidisciplinary research field on user perceived QoE, evaluating the 

relationship of a wide range of human, context, and system factors (Fig. 16). 

 

Figure 16 - Factors influencing user QoE, adapted from [113] 

QoE takes into consideration three categories of factors that influence experience. It 

considers how system, human and contextual factors contribute to a user's perceived 

quality of an application, service or system [17]. As this study aimed to assess knee 

misalignments, varus/valgus were defined as context influence factors of QoE.  

Previously literature has identified that incidence of varus/valgus differs across gender 

[114, 115], thus gender is considered a human influence factor. Anatomical differences 

between males and females lead to differences in knee alignment. Differences in lower 

extremity alignment are potentially a causal factor in the development of anterior 

cruciate ligament injuries in females [116]. Females, in general, have wider hips than 

males, which can cause kinematic abnormalities such as knee valgus/varus, leading to 

increased risk of injury [117]. An example of how the three main factors are applied in 

this work is shown in Fig. 17.  
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Figure 17. QoE influence factors of gait feedback system. 

2.3.1 Methods of Evaluating QoE 

Evaluating user’s QoE involves taking each user state and translating it into information 

or a model. There are several ways of evaluating quality such as the use of 

questionnaires and instruments that can quantify user’s physiological state. These 

mechanisms are divided into explicit, implicit, and objective measures. 

 Explicit Measures of user QoE 

Explicit measures are directly asked or captured from participants and are essential for 

QoE studies. Examples include the use of questionnaires, where the participant’s 

opinion, or experience is quantified objectively. Several authors have used QoE 

assessment in multimedia systems as a paradigm to quantify how various factors of the 

system influence perceived quality levels from the user perspective. In [118], user QoE 

levels were compared in an immersive Virtual Reality and Augmented Reality 

applications. A sample size of twenty-one participants was divided randomly into two 

groups. Both objective and subjective metrics were gathered. The authors considered 

system, psychological, and user factor to evaluate quality. The QoE evaluation 

suggested that users felt safer and accustomed with the use of AR when compared to 

virtual reality. This was another indication on the use of AR for this study. 

In [119], a QoE evaluation of a motor skills rehabilitation game was developed. The 

authors have assessed QoE through user engagement, task success, interaction, and 
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socialization. This study reported that high QoE scores can be linked to higher 

performance. These works demonstrate the need for a qualitative study examining 

different applications, such as gaming performance, and rehabilitation of impaired 

children. 

In order to evaluate quality, subjective assessment can guide companies and researchers 

to make better decisions and evaluate user’s opinion. In practice, this strategy involves 

those who carry out the research and, of course, willing participants. 

2.3.1.1.1 ITU-T Standards (MOS, ACR, DCR) 

The ITU Telecommunication Standardization Sector (ITU-T) [120] is a group of experts 

around the world that gives standards and recommendations for works in Information 

Communication Technology (ICTs), which also gives support for QoE studies. The 

“Methods for Objective and Subjective Assessment of Quality” document from ITU-T, 

proposed various questionnaires as subjective evaluation tools. These employ opinion 

scores such as Mean Opinion Score (MOS), Absolute Category Rating (ACR), and 

Degradation Category Rating (DCR).  

ITU-T recommends the use of ACR questionnaires for listening tests, and tests that 

evaluate speech. The category judgment is done one at a time and rated independently 

on a scale after the participant views or listens to a sample. The method leans to a low-

quality sensitivity. The quality scales are done with 1-5, 1-9 or 1-11 ranges.  

The DCR questionnaire is a modified version of the ACR procedure, which tends to a 

high-quality sensitivity. The procedure is done by rating a 5-point degradation category 

scale for speech evaluation (e.g. “sample is inaudible”, “sample is annoying”). 

One of the main instruments that mediates this relationship and makes it possible to 

obtain subjective information is a MOS questionnaire, which was used in this work due 

to its good representation of a group opinion. 

2.3.1.1.2 MOS Questionnaires 

In QoE studies, MOS questionnaires can represent the overall quality of a stimulus or 

system [120]. MOS is expressed as a numerical representation. It can be represented by 

different rating ranges such as 1-5, 1-7, 1-100 [120]. The MOS is calculated as the 

arithmetic mean over individual measures as in (1). 
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𝑀𝑂𝑆 =
∑ 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑛

𝑁
𝑛=1

𝑁
         (1) 

Where Measure are individual scores for every variable or question for a number N of 

subjects. 

Many authors used questionnaires in QoE evaluation [15, 118, 121, 122]. The ITU 

Telecommunication Standardization Sector (ITU-T) [120] provides recommendations 

for work in Information Communication Technology (ICTs) and gives support for QoE 

studies. The authors in [121] have used a MOS questionnaire to evaluate experience for 

an immersive VR environment. This was a study that explained that you can compare 

different groups using the same questionnaire. The study also informed a capturing 

protocol that can be used consistently in QoE studies. 

MOS questionnaires can also be used to evaluate specific quality factors such as system 

utility, usability, immersion, and interaction [123]. The authors in [124] showed that 

questionnaires can be used to evaluate how system usability can influence gaming QoE. 

Every study is different, and the researcher should decide which questionnaire to use. 

There is no standard questionnaire, so quality assessment can be a hard task despite  the 

flexibility of the assessment [125]. The development of the MOS questionnaire in this 

dissertation will be discussed further in this document. 

Beyond MOS questionnaire and objective measures, there are also some standardized 

questionnaires such as the NASA-TLX and SAM that provide good understanding on 

user`s arousal and cognitive workload. The use of these subjective metrics is widely 

validated in literature. Works as [126-128], report different studies using NASA-TLX 

and SAM questionnaires and are also metrics for QoE studies [129]. 

 Self-Assessment Manikin Questionnaire 

The Self-Assessment Manikin (SAM) questionnaire evaluates elements of emotion 

such as valence (pleasure), arousal, and dominance. Valence, or hedonic tone, is the 

level of pleasure or annoyance to a situation, event, or object. Arousal refers to the level 

of excitement after the occurrence of an event, and dominance refers to the dominant 

control of the emotion [130]. Higher scores of the SAM questionnaire represent greater 

excitement and emotion control. An example of a SAM scale is shown in Fig. 18.  
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Figure 18. SAM questionnaire example. Available at [130]. 

This type of analysis can represent different levels of emotion and give the researcher a 

better understanding of the target system, group, or object. An example is the use of 

VAD (valence arousal dominance) plots for emotion analysis as in Fig. 19. 
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Figure 19. VAD graph. Extracted from [130] 

 NASA-TLX 

When assessing feedback systems developed for the purpose of learning, there is a need 

to assess the workload experienced when completing a task. The Nasa-Task Load Index 

(NASA-TLX), is a multi-dimensional scale that can estimate workload [131]. This 

validated questionnaire is widely used in many QoE studies and consists of two parts 

that assess mental demand, physical demand, temporal demand, performance, effort, 

and frustration. The description of each parameter is shown in Fig. 20. 
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Figure 20. NASA-TLX descriptions. 

 Implicit Measures of Experience 

Implicit measures are used to evaluate meaningful psychological outcomes. These 

variables are usually captured indirectly and therefore do not ask people to directly 

report their responses. In QoE studies, the use of physiological measures is important 

to assess experience, cognitive workload, emotion, etc. In terms of multimodal systems, 

there are some authors using physiological signal assessment as part of the QoE 

evaluation [122, 129, 132-134]. These authors evaluate from a user experience context, 

electroencephalography (EEG) sensors [135, 136], functional near-infrared 

spectroscopy (fNIRS), and others [132]. These studies are contributing to the QoE 

research by creating models that incorporate technical, contextual, and human factors 

in design and evaluation.  

There are other authors using physiological measurements in QoE [137], evaluating 

virtual and AR immersion [134], and feedback to users [138]. In a multimodal system, 

it is possible to evaluate system feedback in QoE factors for training and education 

[139]. In the work of [140], a new immersive Virtual Reality (VR) gaming system was 
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developed, and users learned how to operate a real forklift through simulation. This 

example can be applied in gait re-education using feedback parameters like augmented 

AR, and haptic feedback.  

The QoE evaluation of a gait system can assess how users are dealing with sensors, if 

they are having clear feedback, if the sensors are comfortable, user centered, provide 

valid ecological data, and providing context-based and appropriate feedback to patients 

and to clinicians. Explanation on how physiological signals were used in this study will 

be presented later in this document.  

 Objective Measures 

Objective measures refer to a set of quantitative variables used in the analysis and 

description of a study subject. This type of analysis may me more accurate since the 

observation is more controlled that a qualitative analysis [141]. In this study, the 

objective measures were variables related to a person’s gait and feedback performance. 

For gait, the captured variables were gait angles such as hip and knee flexion, trunk 

angles, and tibia angles (for valgus/varus feedback). Other variables included spatial 

variables like gait and stride lengths, and temporal variables such as gait cycle time, 

stride times, and velocity. These variables were captured by different motion capture 

system as used as part of the motion capture analysis. 

Variables related to performance included the number of varus, valgus, and 

misalignments (assesses through tibia angles). The time in each misalignment was also 

captured to evaluate if after receiving feedback, the participant reduced the time in 

misalignment. The purpose of the objective evaluation was to see how participants 

objectively reacted to each feedback modality (to check if there was any improvement 

after feedback). 

2.4 Final Considerations 

Considering existing literature, the justification of the importance of this study goes 

beyond the topic of QoE and biomechanics. It is expected that this work along with all 

published works will serve as a basis for future researchers within the health arena. This 

may help with the development of new rehabilitation procedures using augmented, real-

time, biofeedback. 
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The existing literature presents various feedback mechanisms that are widely used in 

many studies. However, novel immersive technologies such as AR are emerging that 

potentially have greater utility. AR is relatively speaking unexplored in terms of gait 

feedback and in this work, we aim to evaluate how users perceived the feedback and 

the utility of AR compared to the state-of-the-art haptic feedback approach. In addition, 

current feedback technologies have some limitation as in (i) 2D screens, which do not 

allow the user to walk freely in any direction they want. Users need to always walk 

towards the screen and must have their head up facing the screen; (ii) Audio, users need 

to clearly understand the guidance which can be confusing. The existing literature also 

highlights that visual based feedback has higher utility than audio for gait re-

education;(iii) Expert guidance has many benefits, but requires the user to attend an 

expert clinic, the expert to be available, the additional cost of  paying an expert,, and  is  

based on the subjectivity of a clinician’s interpretation of patient movement. 

These current tools have been shown to have utility but as discussed above they also 

have individual limitations. In order to evaluate AR feedback regarding these 

limitations, the proposed study provides information via objective analysis (e.g. 

improvement after AR feedback) and subjective analysis such as questionnaires to 

assess the utility of using AR (including its limitations). AR is shown to be portable, 

wearable and immerses the user.  

In consideration of the above discussed body of literature, the presented work is novel, 

as a QoE assessment has not previously been completed for gait retraining using 

augmented biofeedback. Also, the evaluation and analysis of users’ QoE (self-reported 

measures and objective measures) of Haptic and AR feedback modalities as part of a 

gait analysis system has not been previously examined and is important in order to 

establish best practice. The focus is on comparing subjective and objective metrics for 

correcting knee alignment with these two different feedback modalities (Haptic and 

AR). 
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3 3D Marker-less System for 

Gait Analysis 
3.1 Study Aims 

Before developing the gait feedback system, it was important to evaluate different 

Motion Capture (MoCap) systems to decide what would be the ideal capturing system 

to provide feedback. The main aim of this study was to evaluate if motion analysis could 

be achieved by the integration of inertial devices and marker-less Motion Capture and 

determine how accurate such system could be in comparison to a gold standard system 

such as the Vicon system. To demonstrate the utility of the developed system, a 

comparison report with the VICON system was conducted.  

As part of the system comparison, the application of the gait system in gait analysis to 

extract gait features by combination of inertial and 360o skeletons was evaluated. In 

addition, the system overview outlines the designed and developed synchronization 

modules, and real-time streaming protocol and fusion of accelerometer, gyroscope, and 

magnetometer data for quaternion representation in R4. 

In the next section, the gait system and discussion of results of system testing are 

presented. The proposed system framework, signal processing, and experimental 

protocol is also described. 

3.2 Motivation 

Although gait standard systems such as VICON system have excellent precision, as 

outlined in the related work section, the cost of equipment can be inhibitive. There may 

be some situations where high-performance systems like the VICON are not required. 

The high cost and specific installation make it difficult to be used in clinical applications 

for example. Also, the need for reflective markers can be an obstacle and invasive for 

human analysis in elders and persons recovering from orthopaedic surgeries. 

Constructing a 3D multimodal motion analysis system that can provide valid data using 

inexpensive motion capture devices like the Microsoft Kinect and inertial sensors, can 

be an alternative to these expensive systems for motion analysis. Hence, the aim of this 



Chapter 3:3D Marker-less System for Gait Analysis 

  Thiago Braga Rodrigues - PhD Thesis 42 

study was to evaluate if a system which combines marker-less 3D motion capture with 

low cost inertial sensors provides an accurate method of human motion capture. 

Accurate gait analysis is important in sports analysis, medical field, and rehabilitation. 

Although gait analysis is performed in several laboratories in many countries, there are 

many issues such as: (i) the high cost of precise Motion Capture systems; (ii) the scarcity 

of qualified personnel to operate them; (iii) expertise required to interpret their results; 

(iv) space requirements to install and store these systems; as well as difficulties related 

to the measurement protocols of each system; (vi) limited availability (vii) and the use 

of markers can be a barrier for some clinical use cases (e.g. patients recovering from 

orthopaedics surgeries). 

After comparing the multimodal gait system as stated in the first publication (“An 

Evaluation of a 3D Multimodal Marker-Less Motion Analysis System”), some questions 

regarding gait variables needed to be analysed, including an updated literature review. 

After some adjustments, the aim is to update the multimodal gait system in a way that 

it provides gait variables as part of a full gait analysis system. A gait comparison with 

results from the VICON system for gait spatiotemporal variables: gait cycle time, stride 

time, gait length (distance between two strides), stride length, and velocity was 

performed, which are reported in the second publication of this study (“Human Gait 

Assessment Using a 3D Marker-less Multimodal Motion Capture System.”). The system 

was also evaluated on its ability to assess knee and hip joint angles accurately through 

bootstrap analysis. In the next section, the gait system is introduced, and results from 

the first and second comparison are discussed. 

3.3 Study overview 

3.3.1 First Analysis - 3D Motion Analysis System 

Motion analysis is a technique used by clinicians that quantifies human movement by 

using camera-based systems. Marker-based motion analysis systems have been used 

across a variety of application domains, from Interactive 3D Tele-Immersion (i3DTI) 

environments to the diagnosis of neuromuscular and musculoskeletal diseases [142, 

143].  



Chapter 3:3D Marker-less System for Gait Analysis 

      Thiago Braga Rodrigues - PhD Thesis    43 

In this study, from a system perspective, a cheaper, alternative and more accessible 

system for motion analysis is presented. The ultimate aim is to use the output of this 

multimodal gait analysis system as part of an immersive gait feedback tool. In real-time, 

it can advise the user on their gait performance (as well as potentially providing accurate 

clinical data to clinicians).  

With the initial focus on the capture system, a novel multimodal gait system that 

integrates Multiple Microsoft Kinects (employing RGB-D cameras) with multiple IMU 

sensors was developed and evaluated. A comparison of this system with the VICON 

system (the gold standard in motion capture) is presented. The marker-less motion 

capture system combines data from 4 skeletons generating 3D and complete 360 

degrees in view skeleton. The analysis found component similarity of 97% for knee 

angles and 98% for hip angles. These results show that in the context of our use case, 

this system can, by combining data from the Multi Kinect system and IMUs, provide a 

cheaper, sufficiently accurate and more accessible human motion analysis system. More 

details of this study are shown below. 

3.3.2 Second Analysis – Gait Analysis 

In general, gait analysis involves the measurement, processing, and systematic 

interpretation of biomechanical parameters that characterize human movement. 

Through gait analysis, it is possible to identify limitations in movement and provide 

information to guide rehabilitation and prehabilitation procedures for orthopaedics 

surgeries. Currently, gait analysis is performed in biomechanical laboratories. The data 

from three-dimensional kinematic systems can be obtained through synchronized 

infrared and high-speed cameras [144]. It is also possible to capture ground reaction 

force data via force platforms[145]. The combination of joint movement and angles, in 

addition to spatiotemporal kinematic and individual anthropometric characteristics, can 

be used to describe gait. All these variables can be assessed through capturing 

technologies[18]. 

In this study, a gait comparison of the multimodal system in terms of gait spatiotemporal 

variables is presented. The novel multimodal system combines data from inertial and 

3D depth cameras and outputs spatiotemporal gait variables. A comparison of this 

system with the VICON system (the gold standard in Motion Capture) was performed 
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with gait spatiotemporal variables: gait cycle time, stride time, gait length (distance 

between two strides), stride length, and velocity. The system was also evaluated with 

knee and hip joint angles measurement accuracy. The results show high correlation for 

spatiotemporal variables and joint angles inside the 95% bootstrap prediction when 

compared with VICON. 

 The remainder of this chapter is structured as follows: discussion of results and 

comparison across some related work, conclusion which includes future study and 

potential applications. 

3.3.3 Comparison with literature 

Marker-less MoCap technologies have being used in gait analysis to detect gait events 

and in rehabilitation. Some marker-less technologies apply RGB cameras in gait. In 

[146], a 2D marker-less gait analysis was proposed using a single depth camera. Their 

system had an upright calibration protocol and tracks pelvis and feet segments. They 

compared their results with a marker-based technology with correlation between 0.82 

and 0.99. Their system contained spatiotemporal variables and stride time error less 

than 0.02s.  

The authors in [53] have proposed a gait analysis system composed by only a single 

RGB camera. The methodology applied generates a silhouette using particles filtering 

from a synthetic image. The authors reported that the sample rate was quite low (20hz) 

and as a result, they could not get angle changes of more than 5o between two frames. 

They reported results for longitudinal displacement of the knee and ankle. Their 

comparison with the system with VICON system was presented via graphical 

differences with no calculations. Some movements and joints are occluded due to the 

limitation of using a single view camera.  

In[54], a multi Kinect system was developed for gait assessment. This technique 

converted skeleton frames from a single Kinect into a feature vector. This work 

considered “centre of mass” (COM) as centre of hip, shoulder and spine joints. They 

also captured stride times, and angular velocities in different phases of stride. Their 

system was compared with reference values from Kinect and did not consider any other 

comparison method with a gold standard system like the VICON system. The results 

have shown that multiple Kinects can be applied to capture human movement and assess 
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gait. They have applied the system to capture spatiotemporal gait variables and found 

correlation of 0.97 for right stride length, 0.83 for left stride length, and 0.92 for gait 

time. The results of the gait system from this dissertation have shown correlation of 

0.99 for gait time and 0.95 for right and left stride length. In this work, the multimodal 

approach (optical mark-less combined with inertial sensors) was strictly compared with 

the marker-based VICON system.   

As shown in the literature review, a lot of studies used MoCap systems in gait. For 

instance, [55] shows a low-cost marker-less MoCap system to extract gait 

spatiotemporal features. They considered the variables of speed; step length (distance 

between two steps); step time; stride length (distance between two strides); and stride 

time. This was an indication on the variables needed to evaluate gait. 

In [57], the authors have applied the system to capture spatiotemporal gait variables and 

found correlation of 0.97 for right stride length, 0.83 for left stride length, and 0.92 for 

gait time. The results from the developed gait system in this dissertation showed 

correlation of 0.99 for gait time and 0.95 for right and left stride length. Although these, 

authors found out that their system can track motion in one, two or more viewpoints, 

their system was not capable of tracking full 360o motion and did not consider the view 

from the back. The proposed gait system from this dissertation considers the full 360o 

view from users and can capture 3D, spatial and temporal gait variables. 

The first study dealt with fusing IMU and multiple depth sensors for angles and 

principal component analysis of knee and hip, which resulted in comparison across 

individual sensors. The second study, which is available at [147], presents the 

evaluation from a gait perspective in terms of spatiotemporal variables. In the next 

section, the gait system is introduced. The chapter also contains results and discussion 

of system testing. The proposed system framework, signal processing, and experimental 

protocol is also described. 

3.4 System Design 

The system combines unit quaternions from each Kinect joint with quaternions from 4 

inertial measurement units to promote integration. The system was used to measure 3D 

points of 12 joints from the Kinect fused skeleton and flexion-extension angles of the 

knee and hip in a walking trial in 10 participants with 12 trials per participant.  
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The gait assessment system captures and combines metadata of 4 MS Kinect cameras, 

and data from 4 Shimmer IMU. The multimodal architecture is composed by a Multi 

Kinect module, and an IMU module as per Fig. 21. It also contains real-time 

synchronization protocol and an orientation filter [148]. 
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Figure 21. Gait System diagram containing 4 Kinect skeletons and 4 IMU data as inputs and a 

fused 360o skeleton, angles, and gait spatiotemporal variables as outputs. 
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3.4.1 Multi Kinect Module 

Being aware of the limitations of a single Kinect, such as occluded joints and limited 

area of movement (only front view), a module containing 4 MS Kinects was developed 

as per Fig. 21. The module also captured spatiotemporal gait variables. Each Kinect was 

powered by its own computer (4 quadcore Intel Core i7, 16GB DDR3 RAM, 3.2Ghz 

and Graphics processing unit). Each Kinect was also connected to the master server 

which processes the data from the Kinects and generates the fused 3D skeleton. Each 

Kinect captures a skeleton from one view perspective. The angle range of the Kinect is 

57.5° horizontal and 43.5o vertical [44]. The multi-Kinect fusion enables full human 

body motion capture in 4 views.  

The multi Kinect system contains 3 components: input, processing, and output. The 

input component consists of 4 skeletons (one for each Kinect). The processing 

component is responsible for synchronization, calibration, noise reduction, and skeleton 

fusion as in [149]. The output component returns the original 4 skeleton data and a fused 

360° skeleton. For calibration purposes, all Kinects are kept at same height (0.8 meters), 

and the distance between Kinects in a square arrangement is 4.1 meters. The diagonal 

distance is 6m. This arrangement is kept for all experiments to provide consistent data 

(Fig. 22). 

 

Figure 22. Kinect arrangement setup 

To use skeleton data of 4 Kinects, the coordinate transformation between each Kinect 

into a “master” Kinect must be performed. For this transformation, the frontal Kinect 

(K0xyz) is accepted as the “master” Kinect and all other Kinects must refer to that 3D 
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system. Using the coordinate transformation relationship as per eqn. 3, one Kinect’s 

skeleton coordinate system can be transformed to the second Kinect’s skeleton 

coordinate system by applying a transformation matrix. As a result, the skeleton 

coordinates in both Kinect skeleton are representing the same coordinate data system. 

To discover the coordinate transformation matrix, a closed-form solution using unit 

quaternions is adopted to get a 4×4 transformation matrix [150] as in (2). 

𝑀𝐴𝐵 = (

𝑅[0][0] 𝑅[0][1] 𝑅[0][2] 𝑇𝑥

𝑅[1][0] 𝑅[1][1] 𝑅[1][2] 𝑇𝑦

𝑅[2][0] 𝑅[2][1] 𝑅[2][2] 𝑇𝑧

0 0 0 1

)                (2) 

Considering: 

a) MAB – 4x4 transformation matrix to change one local Kinect A into a global 

coordinate B. 

b) R[m][n] – The 3x3 rotation matrix 

c) T – The 3x1 translation vector 

To discover the transformation matrix of each Kinect (local coordinate system) into the 

K0 global coordinate system, (3-4) should be applied as per: 

𝐵𝑖 = 𝑠𝑅 ∗ 𝐴𝑖 + 𝑇                                                                     (3) 

or 

(
𝑥′
𝑦′

𝑧′

) = 𝑠 (

𝑅[0][0] 𝑅[0][1] 𝑅[0][2]

𝑅[1][0] 𝑅[1][1] 𝑅[1][2]

𝑅[2][0] 𝑅[2][1] 𝑅[2][2]

) ∗ (
𝑥
𝑦
𝑧
) + (

𝑇𝑥
𝑇𝑦
𝑇𝑧

)            (4) 

d) Bi – 3xN matrix representing the unit quaternion of the Kinect global 3D point 

e) Ai – 3xN matrix representing the unit quaternion of the Kinect local 3D point 

f) s – Scale factor if needed (default 1) 

To obtain the transformation matrix and calibrate one Kinect skeleton to K0 skeleton, 

at least four joints must be detected by the two calibrating Kinect at the same time. It 

was assumed that captured skeleton data is reliable when the person is standing in front 

of the sensor and two Kinects can track all 20 joints at the same time in a static trial. To 

get the more accurate transformation matrix, 120 frames of reliable skeleton data are 
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captured. The sum of the 20 joints coordinate difference values between calibrated 

Kinect and KO is calculated as per (5). 

𝐶𝐷𝑉𝑖 = ∑ ([

𝐴𝑗 . 𝑥

𝐴𝑗 . 𝑦
𝐴𝑗 . 𝑧

1

] − 𝑀𝐴𝐵 ∗  [

𝐵. 𝑥
𝐵𝑗. 𝑦
𝐵. 𝑧
1

])20
𝑗=0 , (𝑖 = 0,… , 119)     (5) 

By comparing 120 sums of the coordinate difference values, the transformation matrix 

with minimum coordinate difference sum is chosen. Note that because the sampling 

frequency of the multi Kinect system is 35Hz, an oversampling was completed to 

synchronize the gait system with the other modules of the system. This synchronization 

was achieved by the Kinect server. The server ensured the packets for each Kinect 

arrived simultaneously to ensure synchronization. 

 The Multi Kinect Skeleton Fusion 

Each Kinect skeleton contains 20 3D joints. The Kinect SDK provides the joint tracking 

state of every joint and it is important in this study to determine each transformation 

matrix. This property has three values: “Tracked”, “Inferred”, and “NotTracked”. 

“Tracked” indicates that the joint is detected by the depth frame. “Inferred” indicates 

the joint is not being captured by the depth frame but there is a calculation to determine 

the joint. “NotTracked” indicates that the joint position is indeterminable. This led to 

calculating the skeleton confidence (SC) when generating the transformation matrixes 

as in (6). This property is used to filter unreliable data (Skeletons with many “Inferred” 

and “NotTracked” joints) from Multi Kinects. 

𝑆𝐶𝑘 = ∑ 𝐽𝑆𝑗
19
𝑗=0 , (𝑘 = 0, … ,3;  𝑗 = 0,… ,19)      (6) 

j) SCk – The skeleton confidence from the kth Kinect  

k) JSj – The jth joint tracking state (1 if “Tracked”, else 0) 

A single Kinect is ideal to track a user from a frontal side. Hence, for the back-side 

detection, the Kinect SDK still captures the user as a frontal view, capturing a 

noncurated skeleton. Based on the SC, 2 points were reduced for the SC calculation if 

it is a “back” Kinect (K2) as in (7). 
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𝑆𝐶𝑘 = {
𝑆𝐶𝑘 − 2, 𝑖𝑓  𝑘𝑡ℎ = 𝐾2 "𝑏𝑎𝑐𝑘" 
𝑆𝐶𝑘,                                        𝑒𝑙𝑠𝑒 

, (𝑘 = 0,… ,3)    (7) 

Due to this limitation, not all Kinects can track a reliable skeleton of the user and the 

most reliable skeleton is selected as main skeleton. For being the “main” Kinect, K0 has 

the highest priority, followed by K1, K3, and K2. 

Each 2 adjacent Kinects are fused to generate a fused skeleton. The joint weight of each 

joint of two Kinects are then calculated. To calculate the joint weights, each skeleton 

confidence and tracking states of both skeletons are combined as in (8) and based on 

the joint weight, smoother fused skeletons are generated as per (9). The final fused 

skeleton is composed of all joints of the smoother skeletons. 

𝐽𝑊𝑘𝑗 = {
𝑆𝐶𝑘, 𝑖𝑓  JS𝑗 = "𝑇𝑟𝑎𝑐𝑘𝑒𝑑" 

𝑆𝐶𝑘/2,                               𝑒𝑙𝑠𝑒 
      (8) 

c) SCk – The skeleton confidence from the kth Kinect  

d) JSj – The jth joint tracking state (1 if “Tracked”, else 0) 

SJ⃗⃗⃗  j =
JW1j.TAS⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

1j +JW2j.TAS⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
2j 

JW1j+JW2j
         (9) 

e) SJ⃗⃗⃗  j – The jth smoothed joint coordinate vector  

f) JW1 and JW2 – The jth joint weights of the two adjacent Kinects 

g) TAS⃗⃗ ⃗⃗ ⃗⃗  ⃗
1j and TAS⃗⃗ ⃗⃗ ⃗⃗  ⃗

2j  – The jth joint’s coordinate vectors of the two adjacent 

Kinects 

3.4.2 Inertial Measurement Unit Module 

The IMU module contains 4 IMU sensors. A real-time wireless synchronization and 

streaming protocol for multiple IMU needed to be designed and developed. The 

developed protocol fuses, in real-time, accelerometer, gyroscope, and magnetometer 

data and generates the quaternion orientation. The data is synchronized with the 

computer CPU clock ensuring no data is lost. 

A MATLAB script for the multi IMU streaming was developed to perform the 

following capture protocol: sampling frequency of all sensors was defined to be 51.2Hz 

to avoid sensor drifting; internal configuration of each IMU; synchronization between 

the sensors; and, start/stop IMU system data capture. More specifically in terms of 
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internal configuration of each IMU, 10 streams of data were available and captured: 3D 

acceleration from accelerometer (Accxyz), 3D angular velocity from gyroscope 

(Gyroxyz), 3D magnetic field from a magnetometer (Magxyz), and a timestamp [151]. 

As discussed later in this section, the Accxyz, Gyroxyz, Magxyz, were fused to provide 

quaternion representation.  Each IMU has enough internal memory to store sessions but 

each of the sensors has its own time clock. Hence, synchronization of all 4 IMU during 

data capture is required. An algorithm was designed and implemented to achieve 

synchronization. Pseudo code for this algorithm is provided in Algorithm 1.  

 

To represent orientation of a rigid body or frame coordinates in 3D space, a quaternion 

representation was employed. This complex number representation can define any 

spatial rotation around a fixed point or coordinate system. A quaternion q = [q0 q1 q2 

q3], can be used to get an angle θ about a fixed Euler axis [49] and (10). To get the angle 

Algorithm 1: Real-time Multi Shimmer Streamer 

function MultiShimmer(comPorts, jointNames, captureTime) 

Input: 4 com Ports (one for each IMU), joint names, and capture time 

Output: The .csv files containing each IMU data 

1:  if all sensors are connected through BT protocol then 

2:   Define Shimmer Handle Class instance; 

3:   Define sample rate; 

4:   Set internal board to 9DOF; 

5:   Enable Shimmer internal sensors (Acc, Gyro, Mag); 

6:   Synchronize sensor clock with PC 

7:   if IMUs are ready to capture then 

8:    Start assessment and capture 

9:    Audio alert 

10:   while elapsedTime < captureTime do 

11:    Write data in CVS file 

12:    IMU quaternion sensor fusion  

13:   end while 

14:   Stop assessment and capture 

15:   Audio alert 

14:   Write the percentage of packets to detect any lost information 

15:   end 

16:  Disconnect Shimmers 

21:  end 

22: end 
 

[Algorithm 1. The function receives COM ports, joint names and capture time and 

generates synchronized and calibrated sensor data. The function also generates 

quaternions for Euler angle calculation] 
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between two joints, quaternion matrixes were obtained by the fusion of the 3 IMU 

internal modules (Accxyz, Gyroxyz, Magxyz,) using a Madgwick-based orientation 

filter [148]. 

 

Figure 23. Kinect joints and IMU quaternion for integration. 

The quaternion generated by the function can represent spatial rotation of each sensor 

and represents angles in each axis. Having each Euler angle, it is then possible to 

reference one IMU to another and get the angle between two sensors. The angle between 

two IMUs was used as part of the walking evaluation during experiments. The 

integration of the multi Kinect skeleton and IMU Modules was achieved by combining 

unit quaternions from 2 Kinect joints Kxyz and quaternions from the IMU located in the 

mid-point of those 2 joints q = [q0 q1 q2 q3] by rotating the quaternion q around vector 

v directing the two Kinect joints (v = K1 - K2) as in (11) and Fig. 23. After getting the 

angles of IMU and Kinect, the angles are merged, and a combined output is generated. 

[
𝜙
𝜃
𝛹

] =  

[
 
 
 
 arctan

2(𝑞0 𝑞1 +𝑞2 𝑞3 )

1−2(𝑞1
2+𝑞2

2)

arcsin (2(𝑞0 𝑞2 − 𝑞3 𝑞1 ))

𝑎𝑟𝑐𝑡𝑎𝑛
2(𝑞0 𝑞3 +𝑞1 𝑞2 )

1−2(𝑞2
2+𝑞3

2) ]
 
 
 
 

                                        (10) 

𝜙 − 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑥 𝑎𝑥𝑖𝑠
𝜃 − 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑦 𝑎𝑥𝑖𝑠
𝛹 − 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑏𝑜𝑢𝑡 𝑡ℎ𝑒 𝑧 𝑎𝑥𝑖𝑠

 



Chapter 3:3D Marker-less System for Gait Analysis 

  Thiago Braga Rodrigues - PhD Thesis 54 

𝑣′ = [

𝑣1
′

𝑣2
′

𝑣3
′
] [

(1 − 2𝑞2
2 − 2𝑞3

2) 2(𝑞1𝑞2 + 𝑞0 𝑞3) 2(𝑞1𝑞3 − 𝑞0 𝑞2)

2(𝑞1𝑞2 − 𝑞0 𝑞3) (1 − 2𝑞1
2 − 2𝑞3

2) 2(𝑞2𝑞3 + 𝑞0 𝑞1)

2(𝑞1𝑞3 + 𝑞0 𝑞2) 2(𝑞2𝑞3 − 𝑞0 𝑞1) (1 − 2𝑞1
2 − 2𝑞2

2)

] [

𝑣1

𝑣2

𝑣3

]     (11) 

3.5 Experimental Protocol 

The experimental protocol adheres to the approach taken in numerous related works in 

the literature [152-154] and included a number of steps:  

a) Participant recruitment. 

b) Information sheet and consent form (Appendix A and B). 

c) Plug-in gait marker placement for VICON system (Appendix C). 

d) Joint measurements for VICON system (Appendix D). 

e) 12 trials per participant (1 calibration and walks). 

10 healthy participants completed 12 trials each, providing a total of 96 individual 

datasets. During each trial, motion data was captured using the multimodal system and 

VICON simultaneously, hence allowing direct comparison.  

Before the experiment, an information sheet was given to each participant to explain 

the experiment, purpose of the project, and data confidentiality procedures. The 

participant was also required to sign a consent form. As part of the set-up stage of the 

experiment, reflective markers were placed on the body with double sided tape 

following the Plug-In-Gait methodology from VICON [155]. Each marker placement 

and measurement took approximately 45 minutes. After mark placement, joint 

measurements were taken to provide additional data on each participant. This 

measurement was taken in the following body segments: arms, legs, height, hip, and 

shoulders. Finally, the 4 Shimmer IMUs were attached to the participant's body using 

elastic straps. The sensors were placed at mid-points of chest, sacrum, thigh, and tibia 

(Fig. 24) [156].  
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Figure 24. IMU leg sensor placement. The sensors were placed at mid-points of chest, sacrum, 

thigh, and tibia. 

A single trial was achieved when the participant completed a full gait cycle 0-100% 

(Fig. 1) towards the frontal Kinect. This cycle happens when the participant steps on 

the ground (heel strike), removes the heel stepping with the other foot (initial swing), 

and steps on the ground with the same foot in heel strike (terminal swing) [22].  

 

Figure 1. Gait cycle (Same as in Chapter 2) 

The three streams of data (Kinects, IMU, and VICON) were normalized and 

synchronized showing a gait cycle. Before data collection, static trials were performed 

to calibrate the Multi Kinect system, the IMUs, and VICON system as per Fig. 25. 
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Figure 25. Static trials. These trials calibrated all streams of data: Vicon and gait system. Raw 

data from each sensor was also saved for all trials. 

3.6 Data and Signal Processing 

3 distinct datasets were captured for each user in each trial: Multi Kinect, Shimmer, and 

VICON. The Multi Kinect dataset of 5 skeletons (4 single Kinect Skeletons and 1 fused 

Kinect Skeleton) was stored in a .csv file and each skeleton were composed of 20 joint 

points. Data from Shimmer IMU was stored in a matrix format as described in Section 

3.4. The VICON dataset, like Kinect, was in 3D position format, and was captured 

(VICONxyz) on a per reflective marker basis. During each trial, some of the markers 

were occluded (a known problem with VICON). Hence, post-test, each VICON trial 

needed to be processed separately, frame per frame, to ensure all gaps were filled using 

spline fill and pattern fill gap filling operations [157]. 

To compare VICON and each Kinect three tasks needed to be completed: (1) select 

Kinect joints that can be related to VICON reflective markers (e.g. same body segment; 

right arm, right leg, hip; (2) change VICON local coordinate system into Kinect global 

coordinate system; and, (3) synchronize both systems with an external event. For (3), a 

jump on a force plate was used and this event captured by the force plate generated a 

trigger for the systems. 
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Figure 26. (a) Kinect joint index, (b) VICON Plug-in-gait marker placement 

As per Fig. 26, 12 joints were selected via the Plugin GAIT and were compared with 

respective Kinect joints. These were: right shoulder (3, RSHO), shoulder centre (5, 

CLAV), left shoulder (6, LSHO), spine (10, STRN), right hip (12, RASI), left hip (13, 

LASI), right knee (14, RKNE), left knee (15, LKNE), right ankle (16, RANK), left 

ankle (17, LANK), right foot (18, RTOE), and left foot (19, LTOE); all of which are 

important for GAIT variable extraction and analysis. Fig. 27 shows that there is a 

difference between VICON markers and Kinect joint. This difference is explained 

because each marker is attached onto skin whilst Kinect joints are inferred in the 

anatomic position for the joint. However, this difference is not considered for joint 

signal comparison, and it was filtered during calibration procedure.  
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Figure 27. 3D plot of VICON and Multi Kinect points. Each VICON point is captured by an 

external marker onto skin. The Kinect joint is inferred by the real 3D anatomic position 

It is possible to develop comparison methods using Cross-correlation for each single 

Kinect and Multi Kinect with VICON. The Cross-correlation is the similarity 

measurement of two signals with the displacement of one relative to other. This 

correlation has many uses like pattern recognition and signal displacement [158]. 

Considering each joint point in space (Kinectxyz and VICONxyz) as 3 distinct signals, 

the correlation of the signal can be evaluated. For the gait system, Principal Component 

Analysis (PCA) was applied. PCA is the statistic method to orthogonally convert a set 

of observations of possibly correlated variables into linear observations called Principal 

Components [159]. 

3.6.1 Gait Prediction and Confidence Bands 

Hip and knee angles were evaluated as these joints are weight-bearing joints and most 

susceptible to require bone surgical interventions [160-162]. To evaluate angles from 

all data sets, two approaches were required: first, having three distinct points in space 
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and second the quaternion function and Euler angles from two IMU. The angle between 

3 points is equivalent of the angle between two vectors defined by the same 3 points. 

Gait analysis often utilizes continuous curves to evaluate a full gait cycle. The cycle 

happens when the participant steps on the ground (foot strike), removes the heel 

stepping with other foot (initial swing), and step on the ground with the same foot in 

foot strike (terminal swing) [163]. Gait angle data is not composed of single points and 

cannot be statistically evaluated using common statistical analysis [164]. When dealing 

with single observations of data, prediction intervals are made for a probability interval. 

For continuous data, the analogous prediction contains a new prediction every time a 

new curve is added from population [165]. This method is called bootstrap and can give 

prediction intervals for gait curves at any confidence interval [166]. 

3.6.2 Spatiotemporal Variables 

To evaluate the gait system, in addition to gait graphs, it is also important to evaluate 

spatial variables like gait and stride length, and temporal variables such as gait cycle 

time, stride times, and velocity. For those variables, an analysis of spatiotemporal 

variables of walk was performed. All variables of gait were also compared with the 

VICON system.  

3.7 Results and Discussion 

To evaluate the gait system, analysis on the cross-correlation of VICON and each 

Kinect, and principal components analysis of VICON with the gait system were 

performed. The results are presented in the following sections. 

3.7.1 Differences in 3D space per joint and Cross-correlation 

Table 1 displays the difference in 3-dimensional space between the Multi Kinect system 

joint locations and the VICON system. The mean difference of joint locations was found 

to be 3.10 cm for all joints in all trials (literature states differences from 0.3-10cm). 

When a VICON and Kinect signal differ, it is possible to measure the similarity using 

cross-correlation. The results of this cross-correlation are presented in Table 2.  
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Table 1. Joint location difference in cm: VICON and Multi Kinect comparison. 

 Joints/differences in cm 

 RSHO CLAV LSHO STRN RASI LASI 

 8.70 8.70 0.15 1.12 1.81 0.98 

 LKNE LKNE RANK LANK RTOE LTOE 

 2.58 2.58 0.33 2.31 3.92 3.92 

The Cross-correlation between VICON and Kinect shows that the frontal Kinect (K0) 

and the Multi Kinect (MK) have better results for cross-correlation 0.86 and 0.85 than 

the other combinations as expected (Table 2). The results for VICON and Kinects can 

be explained because the walking motion was performed towards the K0 and the sensor 

was programmed in a manner such that the best capture occurs when user faces the 

device. However, a single Kinect is not enough for a full 360o capture. Considering that 

the Multi Kinect skeleton is formed by the fusion of lateral and posterior Kinects (K1, 

K2, and K3), the Multi Kinect could maintain a stable joint correlation (0.85). The 

results for cross-correlation for Kinects 1, 2, and 3 have demonstrated that the 

correlation of each Kinect compared against VICON depends on which Kinect the 

participant is facing. This problem is overcome with a 3D multi Kinect in use. 
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Table 2. Cross-correlation per joint 

Joint K0 K1 K2 K3 MK 

RSHO 0.98 0.58 -0.39 0.44 0.98 

CLAV 0.74 0.41 -0.34 0.26 0.74 

LSHO 0.98 0.60 -0.44 0.45 0.98 

STRN 0.97 0.51 -0.37 0.34 0.97 

RASI 0.95 0.36 -0.26 0.18 0.95 

LASI 0.94 0.39 -0.29 0.16 0.94 

RKNE 0.82 0.35 -0.11 0.09 0.85 

LKNE 0.80 0.08 -0.14 0.12 0.81 

RANK 0.82 0.36 -0.19 0.47 0.76 

LANK 0.89 0.21 -0.11 0.34 0.84 

RTOE 0.60 0.28 -0.18 0.39 0.64 

LTOE 0.80 0.19 -0.09 0.33 0.78 

Mean 0.86 0.36 -0.24 0.30 0.85 

3.7.2 Knee and Hip angles 

Hip and knee angles were evaluated as these joints are weight-bearing joints and most 

susceptible to require bone surgical interventions [167]. To evaluate angles from all 

data sets, two approaches were used: first, having three distinct points in space and 

second: from the quaternion function and Euler angles from two IMU. The angle 

between 3 points is equivalent of the angle between two vectors defined by same 3 

points (12-14). Considering 3 points P1, P2, and P3 and vectors 𝑢 and 𝑣: 

𝑢 =  𝑃1 − 𝑃2 and 𝑣 = 𝑃3 − 𝑃2                                (12) 

cos𝜃 =
𝑢.𝑣

|𝑢||𝑣|
                                                                 (13) 

𝜃 = 𝑎𝑟𝑐𝑜𝑠 (
𝑢.𝑣

|𝑢||𝑣|
)                                                       (14) 

Figures 28 and 29 show VICON, IMU, and gait system knee flexion angles in a gait 

cycle. Figures 30 and 31 show the same type of graph for hip flexion angles. The main 

areas of difference are highlighted in red: where the results exceed one standard 

deviation from VICON. From the figures presented, the x axis shows the percentages 

of gait from 0 to 100%. The initial phase 0% happens when the heel contacts the ground 

and 100% when the same heel contacts the ground. The y axis represents flexion angles 
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of hip and knee. The grey curve reflects one standard deviation from Vicon. From these 

graphs, visual representation of the gait cycle graphs of IMU, gait system and VICON 

can be visualized. From the visual perspective, the IMU itself and the integration of 

IMUs with Kinects provides better angle representation (Fig 28b and Fig. 29, Fig. 30b, 

and Fig. 31). 

 

 
Figure 29. Vicon vs. Kinects and Vicon vs. IMU (Shimmer) for knee flexion angles. 
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Figure 28. Vicon vs. Gait System for knee Flexion angles 
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Figure 30. Vicon vs. Kinects and Vicon vs. IMU (Shimmer) for hip flexion angles 

 

Figure 31 - Vicon vs. Gait System for hip flexion angles 

To ensure similarities between the VICON and the other systems (Kinect frontal “K0”, 

Multi Kinect, Shimmer, and gait system) are evaluated, statistical analysis was 

performed. Principal Component Analysis (PCA) was employed as it can extract the 

main components of variance and correlation. KMO & Bartlett’s Test of Sphericity 

[168] was employed as it is a measure of sampling adequacy of the data for component 

analysis for knee and hip angles. The KMO value must be above 0.6. and the sigma 

value less than 0.05%. The KMO value for knee and hip angles were 0.714 and 0.657, 

respectively, and sigma values of 0.02% and 0.03% were observed. These values assure 

PCA suits the data analysed [31]. 
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 PCA in knee flexion. 

PCA was employed to determine (via variance), how many components could be used 

in the analysis. The total Eigenvalue must be above 1 in order to have a valid 

component. Eigenvalues of two main components of knee flexion groups were 5.34 and 

1.4 and only components 1 and 2 were used. Component 1 explained 69.68% of 

variance, and component 2 explained 15.89%. Table 3 shows similarity of systems 

based on component 1 and 2 for the knee flexion group. Two groups are similar when 

they have component analysis close to 1. Because of that, no similarity was found in: 

VICON with Kinect 0, Shimmer, and gait system (0.97, 0.96 and 0.97, respectively). 

These can help to explain the similarities found in the gait angle graphs  

Table 3. Component matrix for knee flexion group 

System Component 

1 2 

VICON 1 0.01 

Kinect 0 0.97 0.00 

Kinect 1 -0.49 0.06 

Kinect 2 -0.36 0.08 

Kinect 3 0.71 -0.27 

Multi Kinect 0.80 0.24 

IMU 0.96 .127 

Gait System 0.97 .194 

 

 PCA in hip flexion. 

PCA was also employed to determine (via variance), how many components could be 

used in the analysis for hip angles. Eigeinvalues of two main components of hip flexion 

groups were 6.17 and 1.04. Components 1 and 2 are used. Component 1 explained 

7.14% of variance, and component 2 explained 13.05%. Table 4 shows similarity of 

systems based on component 1 and 2. Similarity found in: VICON with gait system 

(0.98). These results indicate that only a single Kinect or an IMU would be enough to 

represent angles, but they do not represent the combined system. A single Kinect does 

not represent the full 3D body in 360o and an IMU does not give 3D points in space. 

The fact that IMU itself was capable of replicate hip angles with 0.99% for PCA, was 

an indicator that maybe IMUs alone are enough for some studies. 
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Table 4. Component matrix for hip flexion group 

System Components 

  1     2 

VICON 1 0.19 

Kinect 0 0.98 0.10 

Kinect 1 -0.55 0.45 

Kinect 2 -0.37 -0.10 

Kinect 3 0.33 0.85 

Multi Kinect 0.97 -0.19 

IMU 0.99 -0.03 

MM System 0.98 -0.02 

3.7.3 Gait Prediction and Confidence Bands results 

This section presents the 95% bootstrap prediction band of VICON compared with 

Multi Kinect, IMU, and gait system. The graphs in red represent the Multi Kinect and 

IMU outputs whereas the blue represents the gait System representation. The flexion 

angles are defined in full gait cycle. The area between two black curves represent the 

VICON prediction band. Any curve outside this area does not fit the VICON curve, 

hence it cannot be used to evaluate angles. From the figures presented, the x axis shows 

the percentages of gait from 0 to 100%. The initial phase 0% happens when the heel 

contacts the ground and 100% when the same heel contacts the ground. The y axis 

represents flexion angles of hip and knee.  

For the Knee and Hip flexion curves from Multi Kinect module (Fig. 32), since there is 

a processing time in generating a fused skeleton, filtering noise, and calibrating 

coordinates, there is also a delay in outputting of gait graphs and might be an issue 

where applications demand precise timing information. The use of the MS Kinect in 

applications at higher speed (e.g. sprinting, fast movements, sports mechanics) is 

discouraged. The prediction band informs that for initial knee flexion angles (0o - 20o) 

and maximum flexion (60o - 80o degrees), the MK module was outside the prediction 

band and could not represent the VICON curve for all degrees. The hip flexion curve 

for the 60o - 80o angles is also outside the prediction band of VICON.  
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Figure 32. Knee and hip flexion angles from Multi Kinect module (red) and confidence bands 

of 95% from Vicon. 

For the Knee and Hip flexion curves from IMU module (Fig. 33), there is no delay in 

outputting gait graphs. The IMUs can provide information at higher sample rates when 

compared with Kinect. Initial flexion angles from knee and hip are outside prediction 

band. The IMU module can represent gait graphs of hip and knee. However, they cannot 

represent 3D points and could not be used in applications where 3D and body 

representation are essential.  

 
Figure 33. Knee and hip flexion angles from IMU module (red) and confidence bands of 95% 

from Vicon. 

The proposed gait system by the combination of MK and IMU could provide knee and 

hip angles from gait as per Fig. 34. From these graphs, visual representation of the gait 

cycle graphs of the gait system are generated. The current analysis examined knee and 

hip angles as these are the main weight bearing joints related to human gait. Based on 

the 95% bootstrap prediction, the gait system is capable of replicating angles in the 

sagittal plane of knee and hip and kept the output within the prediction bands.  
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Figure 34. Knee flexion angles from gait system (blue) and confidence band of 95%. 

Different analysis of gait angles across different modules of the system was published 

in previous chapter and [147]. Spatiotemporal analysis was also provided for a complete 

human gait analysis. 

3.7.4 Spatiotemporal results 

Table 5 shows results for spatiotemporal gait variables. This table compares VICON 

with the gait system. The results from the sigma value explains that there is no 

significant difference between two groups. Spatiotemporal units are defined; s = 

seconds, m = meters, m/s = meters per second of gait cycle. It includes statistic results 

for an independent t-test. Assuming equal variances, the results showed that both groups 

VICON and gait system are comparable, thus the system outputs similar values. Lower 

accuracy of the MS Kinect for some lower joints like ankles and toes were found. This 

could interfere on the capability of the system to provide gait length (r = 0.88). The 

highest correlation was for gait cycle time (r = 0.99), thus the system could constantly 

capture the human gait from all trials. Considering works in literature [54, 57, 69], the 

system presented in this chapter was capable of outputting spatiotemporal variables with 

higher correlation between gait system and VICON. The literature on [146], an 

impressive work on Multiple Kinects, which has not compared their results with a gold 

standard system, reported results of 0.97 for right stride length, 0.83 for left stride 

length, and 0.92 for gait time. The current study demonstrates correlations of 0.99 for 

gait time and 0.95 for right and left stride length, which was a positive result, superior 

to the above described literature. 
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Table 5. Spatiotemporal results – VICON vs. Gait System 

Variable Group Mean Sd 

 

Sig (2-tailed) 

Pearson’s 

Correlation 

(r) 

Gait Cycle (s) VICON 1.308 0.037 0.714 0.996 

 Gait System 1.300 0.036   

Right Stride (s) VICON 0.709 0.022 0.390 0.956 

 Gait System 0.700 0.014   

Left Stride (s) VICON 0.598 0.025 0.901 0.908 

 Gait System 0.600 0.029   

Gait length (m) VICON 0.958 0.152 0.840 0.886 

 Gait System 0.941 0.160   

Stride length (m) VICON 0.585 0.046 0.087 0.950 

 Gait System 0.535 0.053   

Velocity (m/s) VICON 0.734 0.127 0.892 0.919 

 Gait System 0.724 0.130   

 

3.8 Conclusion and considerations for next study 

The system presented in this chapter is a novel multimodal gait system, that combined 

a multiple Kinects module and inertial sensors module. The system performance was 

compared with the gold standard VICON system. This comparison included comparing 

VICON signals against all possible multi Kinect 3D Kinect skeleton composed of 4 

physical Kinects and 1 generated 360o multi Kinect skeleton. In addition, a comparison 

of VICON flexion-extension angles with the multi Kinect system and gait system (multi 

Kinect + IMU) was presented. The results have presented analysis and discussion on 

signals differences between the proposed system and VICON, as well as angles 

estimation differences from inertial sensors integration. The analysis has demonstrated 

the utility of the gait system (inclusive of its limitations). Based on this, many potential 

use cases of the gait system can be proposed. The system can promote angle estimation 

from the IMUs and position in space of multi Kinect. The proposed system is cheap; 

easy to set up; displays clear and easily interpretable results; is marker-less; supports 

360 degrees of motion analysis; is portable; and does not require a large set up space or 

environment.  

The analysis has demonstrated the utility of the gait system (inclusive of its limitations). 

Based on this, many potential use cases of the gait system can be proposed. Analysis 

and consideration of the results infers that the system was capable of replicating gait 
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angles of Knee and Hip with 95% bootstrap confidence interval. Spatiotemporal results 

showed similarity with significant results of 99% on gait cycle time (s), 95% on right 

stride time (s), 90% on left stride time (s), 88% on gait length (m), 95% on stride length 

(m), and 91% on gait velocity (m/s). 

A summary of capabilities of the gait system with other techniques described in this 

chapter is shown in Table 6. MoCap Technologies such as VICON have high levels of 

precision and accuracy, however, difficulties with set up, high cost, and the use of 

markers provided barriers for use in applications and fields. The system considers the 

use of IMUs as a form to enhance joint angles, it is marker-less which makes set up 

quick and easy, and provided accurate spatiotemporal gait variables. Applications of the 

multimodal gait system are beyond low-cost gait analysis, it includes rehabilitation 

feedback, and Virtual and Augmented Reality applications which are topics the next 

chapter.  

Table 6. Technology comparison 

Feature Description VICON Multi-Kinect IMU Gait System 

Marker-less Use markers?     

Portable 
Lightweight 

sensors  
    

360o View 
Can be used in 

any view? 
    

Quick set-up Easy set-up     

Low-cost Final price.     

Body frame 
Can reproduce 

3D body? 
    

Temporal Gait 
(e.g. time 

between steps) 
    

Spatial Gait 
(e.g. distance 

between steps) 
    

Joint angles 
(e.g. knee 

angle) 
    
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These results indicated that this gait system could be used for gait analysis. Considering 

the next steps of this project outlined in the introduction (gait feedback for varus/valgus 

feedback), it was decided that only IMUs would be enough for the intended feedback 

application.  

Considering the hardware requirements for this project to address varus/valgus 

alignment, it was chosen an IMU that uses Wi-Fi instead of Bluetooth [169]. In this 

way, the range of the system would be increased, and the system would be even more 

portable.  

Next chapter introduce an updated system utilizing only IMUs as a real-time immersive 

multimedia haptic/Augmented Reality feedback tool for gait analysis. 
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4 Study 1: QoE Evaluation of 

Haptic and AR feedback 

for varus/valgus 
4.1 Study Aims 

In the previous chapter, the design and evaluation of a system capable of providing gait 

variables was presented. The next part of the holistic gait feedback system is evaluating 

different feedback modalities. The study presented in this chapter aims to compare two 

feedback modalities: haptic and Augmented Reality (AR) in gait. The aim of the 

feedback is to reduce varus/valgus misalignments (see Section 4.4.3), which can cause 

serious orthopaedics problems such as osteoarthritis and injuries [25]. This chapter is 

an “explicit” post experience comparison of the two different types of feedback that 

considers 3 different types of post experience questionnaires (MOS, NASA-TLX, and 

SAM). The study also looks at subjective evaluation through questionnaires and 

assesses differences across gender. 

4.2 Motivation 

For issues identified through gait analysis, traditional rehabilitation approaches have 

relied on expert guided feedback in clinical settings. Such efforts require the presence 

of an expert to guide the re-training (to evaluate any improvement) and the patient to 

travel to the clinic. Nowadays, potential opportunities exist to employ the use of 

digitized “feedback” modalities to help a user to “understand” improved gait technique. 

This is important as clear and concise feedback that is easy to understand can enhance 

the quality of rehabilitation and recovery.  

A critical requirement emerges to consider the “quality” of feedback from the user 

perspective i.e. how they process, understand and react to the feedback. In this context, 

this chapter reports results of a QoE evaluation of two feedback modalities: AR and 

Haptic employed as part of an overall gait analysis system. 
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The existing literature presents various feedback mechanisms that are used in many 

research works (discussed in the related work). However, novel immersive technologies 

such as AR) are emerging that potentially have utility. These current tools have been 

shown to have utility but as discussed in the literature review, they also have individual 

limitations which provide rationale for the current study. In order to test AR experience 

in gait feedback and to assess those limitations against state-of-the-art technologies, the 

QoE evaluation is necessary and it is the motivation of this study. 

4.3 Study Overview 

This chapter reports the results of a QoE evaluation of two feedback modalities: AR 

and Haptic employed as part of an overall gait analysis system. The aim of the feedback 

is to reduce varus/valgus misalignments. The QoE analysis reported in this chapter 

considers objective (improvement in knee alignment) and subjective (questionnaire 

responses) user metrics. 26 participants, as part of a within subject design, answered 3 

different categories of questions. Firstly, they answered 12 questions on QoE aspects 

such as utility, usability, interaction, and immersion of the feedback modalities via post-

test reporting. Other post-test questionnaires included NASA-TLX to assess cognitive 

workload, and SAM for assessment of emotion. In addition, for all participants, 

objective metrics of participant performance (changes in angles and alignment) were 

also considered as indicators of the utility of each feedback modality. From the 

developed questionnaire, the findings show statistically significant higher QoE ratings 

for AR feedback. In addition, the number of knee misalignments was reduced to a 

greater extent after users experienced AR feedback (35% improvement with AR 

feedback when compared to haptic, which had no significant improvement). Gender 

analysis showed significant differences in performance for number of misalignments 

and time to correct valgus misalignment for AR feedback for males. The female group 

self-reported higher utility and QoE ratings for AR when compared to the male group.  

4.4 Gait Feedback System Design 

The gait feedback system was fully designed in order to provide gait analysis and 

feedback. The gait system is composed of a capturing module, a presentation module 

and a data processing module and its design was informed from the studies and analysis 

presented in Chapter 3. The capturing module consists of 6 IMUs. The Feedback 
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module contains two components: Haptic and Augmented Reality modules. Finally, the 

data processing system is a quadcore Intel Core i7 laptop, 16GB DDR4 RAM, 3.2Ghz, 

GTX 1060-6GB was used to integrate all modules and is also the Wi-Fi WebSocket 

server for all modules as per Fig. 35. In order to capture gait angles and knee alignment, 

the capturing module of IMUs was developed. 
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Figure 35. Gait feedback system modules and system architecture. The figure shows sensor 

placement and coordinate systems from different views. 
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4.4.1 Capturing Module – IMU 

The capturing module contains 6 X-Sens IMU’s [169] and placed on the body at mid-

points of chest, sacrum, thigh, and tibia as per Fig. 35. A real-time Wi-Fi protocol for 

multiple IMUs was developed in C#. Even though this sensor was from a different 

brand, the accuracy and setup were the same as the previous study. The only difference 

was from a capturing perspective, where the X-Sens IMU allows Wi-Fi interfaces. This 

protocol was responsible for both data streaming and synchronization. This protocol is 

important as it ensures that no data is lost, that feedback is presented without delay, and 

that all modules can work independently. In terms of internal configuration of each 

IMU, 10 streams of data were captured: 3D acceleration from triaxial accelerometer 

(Accxyz), 3D angular velocity from triaxial gyroscope (Gyroxyz), 3D magnetic field from 

a triaxial magnetometer (Magxyz), and UNIX timestamp. As discussed later in this 

section, the internal sensors were fused, in real time, to provide a quaternion 

representation. The datasets from the IMU’s were synchronized with the computer CPU 

clock ensuring minimum packet loss. This capturing module processes in real time 

quaternion and Euler angles of each sensor and generates angles for knees, hips, tibia, 

and trunk lean in any 3D plane. Data from the sensors was sampled at 40Hz on all three 

axes and sent through a Wi-Fi interface to the server computer. The updated algorithm 

for Euler angles is a novel contribution of this work. There was no other research to 

date that reported 3D angle generation from quaternion and Euler angle integration 

[122, 170]. 

To represent the orientation of a rigid body, or frame coordinates in 3D space, a 

quaternion representation was employed. This complex number representation defines 

any spatial rotation around a fixed point or coordinate system. A quaternion q = [q0 q1 

q2 q3] was used to calculate an angle θ about a fixed Euler axis [156, 171]. To get the 

angle between two joints with IMU, quaternion matrixes were obtained by fusion of the 

3 internal modules (Accxyz, Gyroxyz, Magxyz) using a Madgwick-based orientation filter 

[148]. 

The quaternion generated by the orientation filter represents the spatial rotation of each 

IMU and can generate any joint angle (knee angle in this case) for each axis. Having 

each Euler angle, it is then possible to reference one IMU to another and determine the 
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angle between two sensors. This angle between the two IMU’s was used as part of the 

walking evaluation during experiments. 

At the start of each test, while the user was standing sensor calibration was obtained 

using the IMU quaternion in Euler angles (θx, θy, and θz) in North-East-Down (NED) 

ZYX sequence as in (15). 

                [

θ𝑥

θ𝑦

θ𝑧

] =  

[
 
 
 
 arctan

2(𝑞0𝑞1+𝑞2𝑞3)

1−2(𝑞1
2+𝑞2

2)

arcsin (2(𝑞0𝑞2 − 𝑞3𝑞1))

𝑎𝑟𝑐𝑡𝑎𝑛
2(𝑞0𝑞3+𝑞1𝑞2)

1−2(𝑞2
2+𝑞3

2) ]
 
 
 
 

      (15) 

To find the tibia projection angle in the frontal, lateral, and sagittal planes, unit vectors 

on each quaternion coordinate system need to be calculated. This calculation converts 

the current quaternion of each IMU to direction cosine matrices. The calibrated 

θ𝑥, θ𝑦, θ𝑧 is converted into a unit vector in the ZYX order as in (16).  

[

IMU𝑥

𝐼𝑀𝑈𝑦

IMU𝑧

] =  [

𝐶𝑜𝑠(θ𝑦)𝐶𝑜𝑠(θ𝑧) −𝐶𝑜𝑠(θ𝑦)𝑆𝑖𝑛(θ𝑧)

𝐶𝑜𝑠(θ𝑧)𝑆𝑖𝑛(θ𝑥)𝑆𝑖𝑛(θ𝑦) + 𝐶𝑜𝑠(θ𝑥)𝑆𝑖𝑛(θ𝑧) 𝐶𝑜𝑠(θ𝑥)𝐶𝑜𝑠(θ𝑧) − 𝑆𝑖𝑛(θ𝑥)𝑆𝑖𝑛(θ𝑦)𝑆𝑖𝑛(θ𝑧)

−𝑆𝑖𝑛(θ𝑥) 𝐶𝑜𝑠(θ𝑦)𝑆𝑖𝑛(θ𝑥)

...   

...

𝑆𝑖𝑛(θ𝑧)

 −𝐶𝑜𝑠(θ𝑦)𝑆𝑖𝑛(θ𝑥) + 𝐶𝑜𝑠(θ𝑥)𝑆𝑖𝑛(θ𝑦)𝑆𝑖𝑛(θ𝑧)

𝐶𝑜𝑠(θ𝑥)𝐶𝑜𝑠(𝑦)

]      (16) 

This equation is then applied to calibrated Euler angles. To get any IMU angle, each 

IMU quaternion is converted to a Direction Cosine Matrix (DCM) (17) and multiplied 

by the direction vector IMU = (IMUx, IMUy, IMUz) as in (18). Finally, a trivial solution 

of a right-angle triangle of IMUx, IMUy, IMUz on the directional vector (v) is applied 

to get angle at the desired plane (19). The angle 𝜃 between two IMU will be as in (20). 

The simplified algorithm is also presented in Appendix E 

𝐷𝐶𝑀 = [

(𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2) 2(𝑞1𝑞2 + 𝑞0 𝑞3) 2(𝑞1𝑞3 − 𝑞0 𝑞2)

2(𝑞1𝑞2 − 𝑞0 𝑞3) (𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2) 2(𝑞2𝑞3 + 𝑞0 𝑞1)

2(𝑞1𝑞3 + 𝑞0 𝑞2) 2(𝑞2𝑞3 − 𝑞0 𝑞1) (𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2)

]  (17) 

[

𝑣𝑥

𝑣𝑦

𝑣𝑧

] = [𝐷𝐶𝑀] [

IMU𝑥

𝐼𝑀𝑈𝑦

IMU𝑧

]         (18) 
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𝜃𝐼𝑀𝑈 =  atan (
𝑣𝑥

𝑣𝑧
)          (19) 

𝜃 =  𝜃𝐼𝑀𝑈1 − 𝜃𝐼𝑀𝑈2         (20) 

The real-time angle and feedback output from the system is shown as per Fig. 36. This 

output showed gait angles and a feedback control, which will be discussed in the next 

section. 

 

 

Figure 36. Angle output from Gat feedback system 

4.4.2 Feedback Modules 

In this section, Haptic and AR feedback modules are presented.  

 Haptic Module 

A bespoke wearable haptic module was designed and manufactured for gait feedback 

purposes as illustrated in Fig. 40. The design and manufacture of this module was done 

as part of the PhD contribution. As per related works section, no off-the-shelf haptic 

modules satisfied the requirements of being lightweight, wearable, and provide a haptic 

sensation. The Haptic module was developed to provide the correct feedback to the user 

according to his/her movements [77]. The two haptic modules had an ESP8266 Wi-Fi 

microcontroller board with a WebSocket client. Each module was composed of a leg 

mounted strap; two vibration units (Fig. 40a); and a communication and microcontroller 

module with battery unit (Fig. 40b).  
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Figure 37. Haptic feedback module. It contains haptic motors (a) and the Wi-Fi 

microcontroller responsible for the web-socket client (b). 

The leg mounted bracelet is attached to the users’ skin as per Fig. 35. The vibration 

units are enclosed within the plastic casing. All the units are sheltered within ABS 

plastic cases (30x30x10mm) for the haptic module and (40x30x10mm) for the Wi-Fi 

microcontroller.  

Each haptic module contained a vibrating coin motor. It operates on 3V DC and 70mA 

and it generates a modular vibration of 12000RPM. It is used to give alerts, haptic 

feedback, and it is light weighed so it can be attached onto user’s skin. The design of 

the circuit contains MOSFET transistors operating as switches. There was also a pulse 

width modulation control to allow precise change of the intensity of the vibration unit, 

if required [172, 173]. The frequency of vibration was decided according to literature 

and guidelines. When the signal is received by the communication unit, the vibrating 

unit provides a high level TTL output signal to the transistor’s gate. This signal leads 

the transistor to operate in the “saturation region” and permitting the current to reach 

the motor. A freewheel diode was installed across each motor of the vibration units to 

remove voltage spikes due to inductive nature of the load when switched off [174]. This 

prevents malfunction of the hardware, protecting the I/O ports of the microcontroller 

inside the communication unit from electromotive force (EMF). The circuit is available 

in Fig. 38. 

            

Fig. 3. – Haptic feedback module. It contains haptic motors (a) and the Wi-Fi 

microcontroller responsible for the web-socket client (b). All the units are 

sheltered within ABS plastic cases (30x30x10mm) for the haptic module and 

(40x30x10mm) for the Wi-Fi microcontroller.   
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Figure 38. Electronic circuit of haptic module. 

 Augmented Reality Module 

The AR module consisted of an Epson Moverio Bt-300 Smart Glasses [102] (Fig. 15) 

connected with a WebSocket protocol [175]. A WebSocket client in the AR module 

was employed as it allowed the web server to establish a connection with the feedback 

application and communicate directly with it without any delay (typically web 

communication consists of a series of requests and responses between the client and the 

web server, where, for real-time applications, this technique is not well suited [175]). 

The sequence diagram of the socket architecture is presented in Fig. 39.  
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Figure 39. Sequence diagram of the SocketServer 

With the use of WebSockets, a connection is established only once, and the 

communication between the server and the feedback application could follow without 

problems related to delay and synchronization. 

4.4.3 Activation of Feedback Modules 

The feedback state diagram is shown in Fig. 40. The user input from the Capturing 

Module (IMUs) is compared with the kinematic model which controls the feedback 

mechanism according to the activation threshold. The kinematic model was defined as 

in Fig. 40, with activation thresholds for each feedback defined at +7o for valgus, and -

7o for varus i.e. if valgus/varus angle extended beyond the defined threshold, feedback 

was provided to the user. These values represent normal angle limits of knee alignment 

[176].  
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Figure 40. Feedback state diagram. User knee angle is used as input, which will be compared 

constantly with kinematic model. Adapted from [29]. 

In this model, every reading from the capturing module is processed and compared with 

threshold values. Every person has their own walking style and for this reason it is 

difficult for a participant to have perfect alignment throughout every single part of the 

gait cycle while walking naturally. The model flowchart is shown in Fig. 41. 
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Figure 41. Feedback flowchart. The feedback is given according to the captuting module 

angle input. 

The feedback in the Haptic module was presented as vibrations on each leg whenever 

the participant’s tibial angle was above or below the activation thresholds for valgus 

and varus. The correct alignment of each leg resulted in “no vibration” (i.e. no feedback 

provided) on the Haptic bracelet (Fig. 42). The objective given to the participant was to 

receive the least amount of vibration as possible. This was explained during the training 

phase which is discussed in detail in section 4.4.  Participants were told that no feedback 

from haptic means they are in correct alignment.  

The feedback in the AR module was presented as circle visualizations on the AR 

glasses. This was presented to the participant whenever the tibial angle was above or 

below the activation thresholds for valgus and varus. For each leg, three circles control 

the states of the knee according to valgus and varus angles. The correct alignment of 

each leg is achieved when the blue circle in the middle is lit. The objective given to the 

participant is to keep the circles blue during trial. For AR module, user sees a projection 

of 6 circles in their field of view (3 of each leg as per Fig. 42). 



Chapter 4:Study 1: QoE Evaluation of Haptic and AR feedback for varus/valgus 

      Thiago Braga Rodrigues - PhD Thesis    83 

 

Figure 42. – AR and Haptic feedback activation controls. AR feedback is controlled by 

coloured circles: red for misalignments and blue for alignment. Haptic controls are vibrations 

on each leg: 1 and 4 for Valgus, 2 and 3 for Varus. Adapted from [29] 

4.5 Experimental Protocol 

This study was approved by the Athlone Institute of Technology Research Ethics 

Committee on the 23rd of January of 2019. Participants consent was obtained in written 

format and stored in a secure location. Data were anonymized for all trials and 

participants. After ethical approval, a test with healthy participants was conducted. A 

convenience sampling approach was employed to recruit twenty-six participants (13 

males, 13 females) with an average age of 27.54 (± 6.57) years. Due to previous knee/ 

walking abnormalities identified via a screening protocol (see section 4.5.1), data from 

two the participants were omitted. The gender balance guidelines have been applied as 

per ITU-P913 standards for objective and subjective quality assessment [120]. A within 

group experimental design was employed; hence each participant experienced both the 

haptic and AR feedback modalities. The ordering of how the participants experienced 

the feedback was randomised. Participants were tested on two different days, with at 

least 7 days between tests [177]. The protocol adhered to the approach taken in 

numerous related works in the literature [15, 118, 121] and included the steps outlined 

in Fig. 43.  
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Figure 43. Testing protocol. This protocol was consistent during all trials for all participants. 

During the information phase, each participant was greeted and thanked for their 

participation. After a brief explanation, written consent was obtained. Information and 

Consent forms are available in Appendix F and G, respectively. Participants were 

brought to the waiting room and were provided with an information sheet that fully 

described the experiment. The screening phase assessed participants visual acuity, color 

perception, and ability to perceive the haptic stimuli, and required achievement of a 

threshold score to be eligible for testing [178-180]. For the Snellen test, a score of 20/20 

was required. For the Ishihara test, thirty-eight color plates were used and only 4 errors 

were allowed during examination. For the haptic screening, participants were required 

to differentiate 4 vibration patterns and location [180]. Upon completion, baseline 

metrics of gait angles in the sagittal plane: left and right hip, left and right knee, and 

trunk lean were captured over a two-minute period using the sensor system in response 

to the different feedback modalities outlined in section 4.4.2. It was also captured, left 

and right tibia (for varus/valgus assessment) in the frontal plane. For this experiment, 

only tibia angle was analysed to evaluate the effectiveness of the   feedback with regard 

to reducing varus/valgus misalignment. Full gait analysis considering all angles will be 

evaluated as part of a future work study. 

For training and testing phases, participants were randomly assigned into two groups 

(Haptic/AR, and AR/Haptic) depending on which feedback the participant experienced 
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first. Each participant in a group experienced one of the feedback modalities and had at 

least a week break before they were presented with the alternative modality feedback. 

As part of the training, participants were introduced to the AR and the haptic modules 

as appropriate for the given test day. The devices were fitted to the participant by the 

principal investigator and an opportunity for adjustment was provided to ensure there 

was no discomfort. After sensor placement, participants were securely guided to a 

treadmill where they were asked to select a walking speed with which they felt 

comfortable. This represented a typical day walking pace (the range selected by users 

was between 2.5 and 4 miles per hour). Following this, in the test, the speed each 

participant selected was maintained for training and testing of both feedback modalities. 

Instructions for each feedback were explained with 3 feedback sheets (available in 

Appendix H) showing the difference between the three different knee states (valgus, 

normal, varus). Participants were aware that each leg was independent so that even 

though one leg was in a valgus state, the other one could be aligned for example. 

Participants walked 2 minutes for baseline capture (no feedback), 30 seconds for 

feedback training, and 2 minutes (with feedback). After the test the participant answered 

questions regarding experience. 

4.5.1 QoE MOS Questionnaire 

Twelve questions were asked of all participants on the experience of both feedback 

modalities and answered the questionnaire twice in each testing feedback. For the 

subjective analysis, QoE factors were evaluated in form of questionnaires after the gait 

assessment phase as per Fig 43. QoE takes into consideration how system, human and 

contextual factors contribute to a user's perceived quality of a system [17]. The literature 

suggests that the accepted approach to measuring a user’s perceived quality of his or 

her experience is based on self-reported measures via post-experience questionnaires. 

The developed questionnaire was used to determine an overall mean opinion score 

(MOS) based on feedback from users [181].  

The twelve questions were developed to evaluate system utility (questions 1-3), 

usability (questions 4-6), interaction (questions 7-9), and immersion (questions 10-12). 

For each of those 4 assessment variables, 4 standard questionnaires were used as 

guidelines: The System Usability Scale (SUS), ITU-T methods for subjective 

assessment of quality, Igroup presence questionnaire (IPQ), and Computer System 
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Utility Questionnaire (CSUQ) [120, 182-184]. The rating system used was a seven-

point Likert scale to determine whether or not the participants agreed with each 

statement. The full questionnaire is available in Appendix I and per Table 7. The 

ordering of the questions was randomised for the different participants to negate any 

ordering effects. 

 

4.5.2 NASA-TLX and SAM questionnaires 

The Nasa Task Load Index was also part of the subjective analysis of QoE. This tool 

can determine in six different dimensions, the subjective workload during tests 

(feedback). The test evaluated mental demand, physical demand, temporal demand, 

effort, performance, and frustration level [131].  

Table 7. MOS Questionnaire 

QoE Factor Question 

Utility 

Q1 When I received feedback, I adjusted easily and quickly. 

Q2 My walking style changed during experiment. 

Q3 The system could not be used without the support of an expert. 

Usability 

Q4 The feedback was easy to understand. 

Q5 I needed to learn a lot of things before I could use the system. 

Q6 The system was difficult to use. 

Interaction 

Q7 The feedback was clear. 

Q8 
I had to concentrate in order to understand what the system expected 

me to do. 

Q9 The system provided consistent feedback. 

Immersion 

Q10 I was aware of my body whilst moving. 

Q11 
I was aware of the real world surrounding while walking (e.g. 

sounds, room temperature, other people, etc.)? 

Q12 I was engaged with the system. 

Answering Scales 
①Strongly Agree / ②Agree / ③More or less Agree / ④Undecided    

⑤More or less disagree / ⑥Disagree / ⑦Strong Disagree 
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In the context of this work, mental demand was used to evaluate how much thinking 

was required to process feedback and align legs. Physical demand evaluates the amount 

of physical activity required to perform alignment. Temporal demand evaluated the 

amount of time pressure to align legs. Effort assessed how hard the participant had to 

work to achieve alignment. Performance was related to the level of success in 

completing the task. Finally, frustration level aimed to evaluate how insecure was the 

participant during the task. This questionnaire was used to compare AR and haptic 

feedback workload.  

The Self-Assessment Manikin (SAM) scale was used to measure emotion according to 

the participant’s opinion. Participants were asked to mark in a pictorial scale, the 

affective reaction to the stimuli presented in the test (haptic and AR feedback). This 

scale aims to measure three dimensions of emotion response: valence, arousal, and 

dominance. The results of both questionnaires will be presented later in this chapter. 

4.6 Data and Signal Processing 

As outlined in the methodology section, QoE and objective metrics were captured for 

each trial. Participants were categorized into AR and haptic. Subgroups of males (N=13) 

and females (N=13) were also randomly assigned for gender analysis purposes. In order 

to compare differences across groups, a Shapiro-Wilk normality test [185] was 

conducted. All variables displayed normal distribution (p>0.05). A dependent samples 

t-test was performed on the data with 95% confidence level to compare both groups. 

For the objective analysis, differences between AR and haptic groups are examined for 

number of alignments after receiving feedback, and the amount of time participants 

were not aligned. The same analysis considering gender is also reported. These 

comparisons were done by dependent samples t-test at 95% confidence level. The QoE 

model (QoEMF) for each feedback for a number p of participants was designed to be 

average of the four-assessment metrics: Utility (UtF), Usability (UsF), Interaction (InF), 

and Immersion (ImF) as in (eqn. 21). 

𝑄𝑜𝐸𝑀𝐹 = ∑
𝑈𝑡𝐹𝑛 + 𝑈𝑠𝐹𝑛+ 𝐼𝑛𝐹𝑛+𝐼𝑚𝐹𝑛

4

𝑝
𝑛=1       (21) 
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4.7 Results 

In this section the analysis and discussion of the data captured during the experiment is 

presented. This includes objective measures of performance (i.e. number of 

misalignments for each feedback modality); and subjective evaluation from post-test 

questionnaires (QoE, NASA-TLX and SAM) for each of the feedback modalities. In 

addition, gender analysis is included. 

4.7.1 Objective Results 

For the objective data, analysis on how the participant reacted to each of the types of 

feedback i.e. if or how did they change their walking style based on each feedback 

modality are presented. For each leg, three distinct states were defined: varus, correct 

position, and valgus. For each state, the time the participants remained in misalignment 

during the experiment, and the number of times the participant needed feedback 

(feedback cue) during the experiment (2 minutes) is reported. The number of complete 

alignments (both legs in correct position) and misalignments for each leg are also 

reported. 

Table 8 contains performance report of varus and valgus alignment of all participants 

after experiencing AR feedback. It also includes a further categorization by gender. 

Table 9 reports the same results for the haptic feedback. The results show statistically 

significant differences between the AR and Haptic feedback in terms of the number of 

varus, valgus, and total misalignments for baseline and test. Participants performed 

better with AR feedback, with a reduction of 31% for varus and 13% for valgus. All 

reported results considered 95% and 90% confidence interval. Statistically significant 

differences in performance are reported for the AR feedback in terms of reducing varus 

and total misalignments with a two-tailed p < 0.1 and p < 0.05. For gender analysis, the 

male improved for varus (45% p = 0.034) and valgus (18% p = 0.073) while females 

did not have statistically significant improvement. The ordering of feedback did not 

influence performance (p > 0.1).  
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Table 8. Number of Varus and Valgus and Improvement for AR feedback per gender 

Group Trial Augmented Reality Feedback 

 Varus Valgus Total Misalignments 

Participants 

Baseline 62.772 59.363 122.136 

Testing 43.272 51.181 94.454 

Sig. (2-tailed) 0.048 ** 0.444 0.046 ** 

Improvement 33% 13% 22% 

 Varus Valgus Total Misalignments 

Male 

Baseline 76.454 74.363 150.820 

Testing 54.818 52 106.818 

Sig. (2-tailed) 0.034 ** 0.073* 0.041 

Improvement 45% 18% 33% 

 Varus Valgus Total Misalignments 

Female 

Baseline 49.090 44.363 93.454 

Testing 31.727 50.363 82.090 

Sig. (2-tailed) 0.187 0.735 0.632 

Improvement 35% -13% 13% 

* p < 0.1, ** p < 0.05 

 

* p < 0.1, ** p < 0.05 
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Table 10 and Table 11 contain performance data in terms of how long users were in the 

varus and valgus positions during the 2 minutes trials. The data demonstrates that only 

AR feedback could reduce varus time with statistically significant difference between 

the baseline and testing.  In response to AR feedback participants demonstrated a 

decrease in the amount of time spent in varus by 11%, valgus by 64% and Total 

misalignments by 37%. Males, in AR feedback had significant improvement in valgus 

time (63% p = 0.047). The performance for the Haptic feedback increased the number 

of misalignments with the male group (-49% p = 0.06). This suggests that the users were 

somewhat confused by the haptic feedback similar to what has been previously reported 

[90]. Statistically significant differences in performance were only reported for the AR 

feedback in reducing varus and total misalignments with a two-tailed p<0.05. The 

Table 9. Number of Varus and Valgus and Improvement for haptic feedback per gender 

Group Trial Haptic Feedback 

 Varus Valgus Total Misalignments 

Participants 

Baseline 55.2727 61.5455 116.8182 

Testing 47.1364 56.1818 103.3182 

Sig. (2-tailed) 0.359 0.546 0.167 

Improvement 15% 9% 12% 

 Varus Valgus Total Misalignments 

Male 

Baseline 71.3636 67.1818 138.5455 

Testing 65.2727 65.0000 130.2727 

Sig. (2-tailed) 0.684 0.841 0.565 

Improvement 9% 3% 6% 

 Varus Valgus Total Misalignments 

Female 

Baseline 39.1818 55.9091 95.0909 

Testing 29.0000 47.3636 76.3636 

Sig. (2-tailed) 0.344 0.566 0.187 

Improvement 26% 15% 20% 

* p < 0.1, ** p < 0.05 
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ordering of feedback did not influence performance (p > 0.05).   

 

Table 10. Time in varus and valgus and improvement after AR feedback per gender. 

Group Trial Augmented Reality Feedback 

 
Varus Time 

(s) 

Valgus Time 

(s) 

Total Misalignments 

Time (s) 

Participants 

Baseline 76.292 75.566 151.858 

Testing 67.785 26.669 94.454 

Sig. (2-tailed) 0.877 0.039 ** 0.040 ** 

Improvement 11% 64% 37% 

 
Varus Time 

(s) 

Valgus Time 

(s) 

Total Misalignments 

Time (s) 

Male 

Baseline 66.504 63.934 130.438 

Testing 51.067 23.918 114.985 

Sig. (2-tailed) 0.737 0.047 ** 0.439 

Improvement 22% 63% 12% 

 
Varus Time 

(s) 

Valgus Time 

(s) 

Total Misalignments 

Time (s) 

Female 

Baseline 86.080 87.198 173.279 

Testing 84.503 72.299 156.803 

Sig. (2-tailed) 0.915 0.188 0.450 

Improvement 1% 17% 9% 

* p < 0.1, ** p < 0.05 
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4.7.2 Self-Reported Questionnaire Results 

 QoE Questionnaire 

Table 12 present results of the MOS self-reported measures via post-test questionnaires. 

Table IV presents the results considering the gender variable. Since the AR and Haptic 

groups were randomized repeated measures, a dependent samples t-test was performed 

on the data with 95% confidence level using the IBM statistical analysis software 

package SPSS [186]. As per Table 12, out of the 12 questions asked, only Question 1, 

which  asked if whenever the participant received feedback, he or she adjusted easily 

and quickly, reported a statistically significant difference between AR and Haptic 

feedback with a two-tailed p value of 0.015, p<0.05.  

Table 11. Time in varus and valgus and improvement after haptic feedback per gender. 

Group Trial Haptic Feedback 

 
Varus Time 

(s) 

Valgus Time 

(s) 

Total Misalignments 

Time (s) 

Participants 

Baseline 70.9096 83.6540 154.5637 

Testing 85.6217 75.3399 160.9567 

Sig. (2-tailed) 0.142 0.348 0.635 

Improvement -21% 10% -4% 

 
Varus Time 

(s) 

Valgus Time 

(s) 

Total Misalignments 

Time (s) 

Male 

Baseline 58.5155 83.2045 141.7200 

Testing 87.2491 70.4224 157.6617 

Sig. (2-tailed) 0.060 * 0.373 0.460 

Improvement -49% 15% -11% 

 
Varus Time 

(s) 

Valgus Time 

(s) 

Total Misalignments 

Time (s) 

Female 

Baseline 83.3037 84.1036 167.4074 

Testing 83.9944 80.2574 164.2517 

Sig. (2-tailed) 0.958 0.736 0.857 

Improvement -1% 5% 2% 

* p < 0.1, ** p < 0.05 
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The AR group reported a MOS rating of 4.458 whereas the Haptic feedback 3.5 

(p<0.05). This result is confirmed that even not knowing performance, participants felt 

the AR feedback was more effective in reducing misalignments. Considering the 

discussion in section 4.7,1 about how participants responded to the haptic feedback (i.e. 

increase in misalignments), these results raise an interesting question about the ease of 

understanding haptic feedback for participants. For all other questions, excluding 

Question 2, the AR feedback had greater MOS than Haptic feedback (although not 

statistically significant).  

Table 13 presents results of the QoE Questionnaire compared by gender. The female 

group reported a statistically significant difference  between AR and Haptic for 

Question 1. Male group also reported a statistically significant difference for Question 

2 (“My walking style changed during experiment.”) and Question 12 (“I was engaged 

with the system.”). 

Table 12. MOS Questionnaire Results 

QoE Factor Question 

AR Haptic 
 

MOS Std. Dev MOS Std. Dev 
Sig. 

(2-tailed) 

Utility 

Q1 4.458 1.414 3.500 1.588 0.015 ** 

Q2 4.625 1.469 5.000 1.216 0.367 

Q3 3.083 2.205 2.708 2.331 0.362 

Usability 

Q4 5.667 0.917 5.458 0.932 0.307 

Q5 4.625 1.377 4.875 1.191 0.366 

Q6 5.000 1.180 4.917 1.613 0.714 

Interaction 

Q7 5.583 0.881 5.458 0.833 0.479 

Q8 2.542 2.167 2.042 1.944 0.261 

Q9 5.333 1.239 5.208 1.318 0.664 

Immersion 

Q10 5.250 1.152 5.500 1.022 0.207 

Q11 1.917 2.083 1.708 1.574 0.585 

Q12 5.208 0.932 4.583 1.767 0.100 

** p < 0.05 
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Table 13. MOS Questionnaire Results 

Male 

QoE 

Factor 

Question 

AR Haptic  

MOS Std. Dev MOS Std. Dev 
Sig. 

(2-tailed) 

Utility 

Q1 4.417 1.564 3.667 1.723 0.169 

Q2 4.000 1.758 5.250 0.621 0.044 ** 

Q3 3.083 2.353 2.667 2.424 0.318 

Usability 

Q4 5.583 1.164 5.083 1.083 0.111 

Q5 4.667 1.435 4.917 1.083 0.555 

Q6 4.833 1.403 4.583 1.781 0.491 

Interaction 

Q7 5.417 1.164 5.333 0.887 0.723 

Q8 2.333 2.229 1.583 1.729 0.212 

Q9 5.167 1.337 4.917 1.729 0.555 

Immersion 

Q10 5.167 1.466 5.250 1.356 0.754 

Q11 1.083 1.505 1.333 1.073 0.536 

Q12 5.083 1.164 3.667 2.059 0.043 ** 

Female 

QoE 

Factor 

Question 

AR Haptic  

MOS Std. Dev MOS Std. Dev 
Sig. 

(2-tailed) 

Utility 

Q1 4.500 1.314 3.333 1.497 0.049 ** 

Q2 5.250 0.753 4.750 1.602 0.309 

Q3 3.083 2.151 2.750 2.340 0.653 

Usability 

Q4 5.750 0.621 5.833 0.577 0.754 

Q5 4.583 1.378 4.833 1.337 0.515 

Q6 5.167 0.937 5.250 1.422 0.777 

Interaction 

Q7 5.750 0.452 5.583 0.792 0.551 

Q8 2.750 2.179 2.500 2.110 0.718 

Q9 5.500 1.167 5.500 0.674 1.000 

Immersion 

Q10 5.333 0.778 5.750 0.452 0.175 

Q11 2.750 2.301 2.083 1.928 0.314 

Q12 5.333 0.651 5.500 0.674 0.504 

** p < 0.05 
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Utility, Usability Interaction, Immersion, and QoEM scores of AR and Haptic feedback 

compared by gender are shown in Fig. 44. AR feedback showed significant Utility (p < 

0.05) for the female group, which indicated that females found AR feedback more 

useful than Haptic feedback for this experiment. This QoE factor is related to 

adjustment to feedback, changes in walking style and system support. 

 

Figure 44. QoE questionnaire scores for AR and Haptic feedback by gender at 95% 

confidence interval. 

 Self-Reported NASA-TLX Results 

Weighted Nasa Task Load Index (NASA-TLX) results for haptic and AR groups are 

presented in Table 14. The group analysis showed a statistically significant difference 

for physical demand, which showed that haptic feedback demanded higher physical 

workload when compared to Augmented Reality. There was no statistically significant 

difference for gender groups. 
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For all the other variables, there were no statistically significant differences between 

groups and gender. However, mental demand, physical demand, and performance were 

variables with high task load index for both groups. These results indicate that the main 

variables of perceived workload from participants were linked to the mental process for 

feedback, physical effort required for task completion, and effort in completing 

feedback task (align legs).  

 Self-Reported SAM Questionnaire Results 

Self-reported SAM questionnaire results for haptic and AR groups are shown in Table 

15. The results show high valence, arousal, and dominance for AR and haptic feedback. 

There were no significant differences between gender. 

Table 14. NASA-TLX results – Between groups 

Variable Group Sig. (2-tailed) Mean Std. Deviation Std. Error Mean 

Mental 
Haptic 0.836 207.500 127.390 26.003 

AR   215.625 142.488 29.085 

Physical 
Haptic 0.019* 151.875 143.329 29.257 

AR   71.458 77.044 15.727 

Temporal 
Haptic 0.478 66.875 117.147 23.913 

AR   48.333 49.292 10.062 

Performance 
Haptic 0.230 158.750 113.877 23.245 

AR   120.417 104.173 21.264 

Effort 
Haptic 0.592 171.042 120.271 24.550 

AR   150.833 138.428 28.257 

Frustration 
Haptic 0.797 48.333 127.080 25.940 

AR   57.917 129.043 26.341 

Mean 
Haptic 0.996 44.306 20.813 4.248 

AR   44.278 20.839 4.254 

* p < 0.05 
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The results of SAM questionnaire showed that participants reported for both groups 

high affective quality of valence. They also reported high emotional arousal for both 

groups. Both groups also reported high emotion dominance.  

4.8 Discussion 

In this section we discuss the results of the comparison between AR and haptic feedback 

based on the self-reported measures of QoE, NASA and SAM.  

Due to the fact that haptic feedback was studied across many fields such as 

rehabilitation and gait re-education, we had expected that haptic feedback would result 

in higher objective and subjective scores [84]. Haptic information is given directly at 

the joint that the user needs to change whilst AR feedback the participant needed to 

process visual information and change the leg related to that change. Surprisingly, AR 

feedback could not only reduce the number of misalignments, but  the subjective 

questionnaire analysis demonstrated that users felt that AR feedback was better than 

haptic for reducing the number of misalignments as  asked  in Question 1 of the 

questionnaire (adjustment to feedback). 

The results indicate that both feedback modalities reduce the occurrence of varus and 

valgus misalignments. However, AR feedback significantly reduces the number of 

varus misalignment (by 31%) when compared to baseline readings. Whilst the 

reductions for valgus (for AR) and for varus and valgus for haptic were not significant. 

Looking deeper at the analysis, surprisingly for the male AR group, the level of 

reduction for varus was 45% (and 18% for valgus misalignments). Consistent with the 

Table 15. SAM results – Between groups 

Variable Group Sig. (2-tailed) Mean Std. Deviation Std. Error Mean 

Valence 
Haptic 0.884 7.291 1.944 0.396 

AR 
 

7.583 1.639 0.334 

Arousal 
Haptic 0.908 6.916 1.442 0.294 

AR 
 

7.041 1.517 0.309 

Dominance 
Haptic 0.999 6.333 2.180 0.445 

AR 
 

6.333 2.180 0.445 
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male group, although to a lesser extent, AR feedback reduced the number of varus 

misalignments by 35% for the female group (not significant when compared to 

baseline). These results demonstrate the utility of employing both feedback types, but 

in particular AR feedback. It also raises an interesting question as to why females did 

not display a significant change after receiving feedback. These results are important 

for the research community and are also a good platform to build on for future work. 

For example, future research should assess physiological measures and what happens 

in a clinical setup for males and females. In this way, it will provide a better 

understanding on the reaction to feedback at physiological level and any correlation (if 

any).  

For the QoE analysis, subjective evaluation questionnaires assessing feedback utility, 

usability, interaction, and immersion was performed. Table 12 reported results of the 

MOS questionnaire for all participants. When participants were asked about adjustment 

after feedback in Question 1 (“When I received feedback, I adjusted easily and 

quickly.”), they felt that AR was more effective in changing varus and valgus 

misalignments. This agrees with the objective analysis in Table 8. For the MOS 

questionnaire considering gender, the male group reported that they believed their 

walking style changed based on the AR feedback. They also reported higher 

engagement when using the AR glasses than haptic devices. The female group reported 

higher utility for AR feedback (p=0.049). These difference between gender groups 

highlight the importance of considering human factors and employing QoE analysis in 

these types of novel feedback studies. The between analysis of the Nasa-TLX showed 

higher physical demand for haptic group. This variable indicated that the response to 

haptic feedback is mode physically demanding than AR. SAM questionnaire result 

showed high valence, arousal, and dominance for both feedback. Although the between 

analysis of SAM questionnaire was not statistically significant, participants had high 

emotion control for both modalities, which is a positive result for any of the feedback.  

Given that numerous studies have previously investigated various feedback modalities 

such as 2d visual and haptic, this study provides a new paradigm in using immersive 

technologies in gait re-training and promotion of rehabilitation and prehabilitation 

protocols. 
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4.9 Conclusion and considerations for next study 

This chapter presented a comparison of Haptic and Augmented Reality as feedback 

modalities in a gait analysis system. It compared each modality, in terms of objective 

and subjective ratings, how users perceived and responded to Haptic and Augmented 

Reality feedback. Based on the results, the novel AR approach has significant potential 

as a method of reducing misalignments, and therefore potentially reducing the risk of 

injury development. The objective evaluation tells us that AR significantly reduces the 

number misalignments. In addition, the subjective questionnaire assessment provides 

interesting results in terms of how users perceived positive changes to their gait as a 

result of AR feedback. The agreement of objective and subjective evaluations serves as 

basis of using AR as part of a rehabilitation and prehabilitation protocol. Both gender 

groups considered reported that AR had greater utility than haptic feedback. The male 

group showed statistically significant improvement in varus, valgus, total misalignment, 

and valgus time. Future work will also examine if AR feedback not only provides higher 

QoE scores but also promotes less cognitive workload in comparison with haptic as well 

as instantiation of the QoE model proposed above.  

Next chapter will deal with results of a physiology-based QoE evaluation and bivariate 

correlations of AR and haptic feedback. 
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5 Study 2: Physiological-

based QoE Assessment of 

Haptic and AR Feedback in 

Gait 
5.1 Study Aim 

After evaluating the gait feedback system for varus and valgus misalignments for haptic 

and AR feedback, the objective evaluation concluded that AR could reduce the number 

of varus and valgus misalignments. Also, the subjective evaluation showed higher QoE 

scores for the AR group when compared to haptic. Subsequently, the aim of this next 

study is to compare these feedback modalities at a physiological level (e.g. what 

happens with the skin conductance, heart rate or pupil diameter when a participant 

interprets and responds to feedback). The analysis also considered gender subgroups. 

5.2 Motivation 

The rationale for this chapter, and the previous is derived from a need to developing 

rehabilitation and prehabilitation protocols that not only consider objective 

improvements in gait, but also assess the user’s perspective using the QoE paradigm. 

This is important as it not only evaluates objectively how a user reacts to feedback but 

also how they interpret and understand such stimuli, Understanding quality from the 

user perspective can be a challenging task as it involves many factors such as human, 

system and context factors as discussed in previous chapters of this dissertation. 

The use of subjective evaluation such as the use of questionnaires is a good strategy for 

quality evaluation [120]. However, subjective assessments are dependent on self-

reporting and are “post” the experience. Physiological measures such as heart, skin, and 

pupil response can  be used to understand the human perception and responses after 

receiving a stimulus and may allow detection and evaluation of cognitive load, emotion, 

stress, and numerous other factors [187-189].   
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In quality assessments, physiologic metrics can be used to evaluate the quality of 

feedback from the user perspective implicitly [190]. This helps to develop a deeper 

understanding on how users process, understand and react to different feedback 

modalities. In this context, this chapter reports results of an implicit QoE evaluation of 

two feedback modalities: Augmented Reality (AR) and Haptic.  

5.3 Study Overview 

This study is a novel QoE assessment of haptic and AR feedback applied as an overall 

gait analysis system. For the same experiment described in chapter 5, physiological 

measures of each participant during baseline and testing were also captured. The data 

of those 26 participants (13 females and 13 males) included information such as heart 

IBI (Interbeat interval), heart rate (HR), Electrodermal Activity (EDA) and pupil 

diameter. The study aimed to assess if these metrics changed based on feedback 

modality, and gender. It also looked at bivariate correlations that could appear in each 

of the physiological signals. 

5.3.1 Comparison with literature 

Physiological signals as user experience metrics are broadly used in many research 

fields such as biomechanics, signal processing, machine learning, and general medicine 

[191-193]. These signals contain information that can represent the state of humans 

such as workload and stress. In this way, the monitoring and interpretation of these 

signals are significant for researchers, and the rehabilitation itself. This can inform the 

development of new rehabilitation protocols and help with the success of the 

rehabilitation. 

Rehabilitation studies aim to evaluate and restore lost motor functions in the treatment 

of motor disabilities or other parameters such as knee alignment or body posture [7, 25]. 

Traditional rehabilitation approaches have relied on expert guided feedback, which  

have also used some physiological measures such as electromyography (EMG signals) 

to evaluate performance [194]. The use of signals such as EMG and Heart Rate 

Variability (HRV) are applied to assess muscle strength, detect patterns and in the use 

case of varus and valgus, it is used only to detect activities , muscle strength [195-197], 

and assess risk of injuries [198].  
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Nowadays, potential opportunities exist to employ the use of different physiological 

metrics such as EDA from skin conductance, and pupillometry (pupil 

dilation/contraction) during feedback to provide a more detailed understanding  of the  

user`s perceptual and emotional state, hence it can improve the quality of rehabilitation. 

There are some authors that have previously used physiological signals in evaluating 

QoE. [134] developed a QoE assessment of VR and AR, which integrated measures of 

skin through EDA, and HR. The authors concluded that AR was better than VR with 

less incorrect responses, and in terms of physiological measures, there was a 

consistency for metrics of EDA and HR for both groups. Other examples include several 

surveys and literature reviews on the use of physiological and psychophysiology-based 

QoE [190, 199].  

 Heart Rate Variability (HRV) 

HRV is a metric that includes heart variation over Inter-Beat Intervals (IBI) and Heart 

Rate (HR). The literature states that variables of HRV can detect heart abnormalities, 

and these variables can also be related to emotion arousal, for example [200, 201]. 

HRV has shown to be reduced in individuals with acute time pressure, which is a 

psychological stress that occurs when a person has less time available. HRV has shown 

to be reduced with patients with elevated anxiety state when in focused attention [202, 

203]. During walking, HRV is shown to increase when participants have longer walking 

distance [203]. 

The Inter-Beat Interval (IBI) is the time interval between two successive R waves 

(including an R wave) [204]. In the sinus rhythm, the R-R interval must be constant. Its 

duration depends on the heart rate. This measure can be used to estimate heart rate. In 

the E4 sensor, IBI is derived from the Blood Volume Pulse (BVP). 

HR is a metric that responds to stress [189]. Biologically, mental stress can therefore 

lead to increased platelet activation, increased blood viscosity and acute reductions in 

plasma circulating volume. Cardiovascular responses mainly result in an increase in HR 

and blood pressure. For this study, mean values of IBI and HR were calculated at 

baseline, prior to testing each event of varus, valgus, and misalignments. These 

variables are relevant for QoE studies as they can not only report group physiological 

responses, but it can also indicate specific events that are linked to stress and attention.  
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 Electrodermal Activity (EDA) 

EDA is a metric that is linked to Skin Conductance Response (SCR). It is also known 

as galvanic skin response (GSR), electrodermal response (EDR), psychogalvanic reflex 

(PGR), sympathetic skin response (SSR) and level of conductivity of the skin (SCL) X. 

It is possible to visualize EDA responses before and after an event such as feedback as 

per Fig. 45.  

 

Figure 45. EDA responses after a stimulus. Extracted from [205] 

The traditional EDA approaches states that skin resistance varies according to the state 

of sweat glands in the skin X. Sweating is controlled by the sympathetic nervous system, 

and the conductance of the skin is an indication of psychological or physiological 

arousal [188]. If the sympathetic branch of the autonomic nervous system is highly 

excited, then sweating the gland's activity also increases, which in turn increases the 

conductance of the skin. In this way, skin conductance can be a measure of emotional 

and sympathetic responses, which is important for QoE studies [206]. 

EDA is a common measure of autonomic nervous system activity, with a long history 

of being used in psychological research. Many biofeedback therapy devices use EDA 

as an indicator of the user's stress response in order to help the user control anxiety. 

EDA signal is often combined with recording heart rate, respiratory rate, and blood 

pressure, because they are all autonomously dependent variables [207].  
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Beyond traditional event-related SCRs analysis by comparing the amplitude of 

individual peaks against a pre-stimulus baseline, there are other methods of analysing 

EDA signals [205]. Some of these methods include the analysis of signal derivatives 

and frequency domain analysis. To highlight changes in the skin conductance first and 

second derivatives can be used to detect peaks and sudden changes and peak shifts in 

the skin conductivity [188]. EDA signals are also known to be detected at some specific 

frequencies. The separation of the signal according to these values help to detect true 

EDA events and remove signal artifacts. For frequency values, SCR events are detected 

at bandwidths of 0.05 to 0.1 (F0SC), 0.1 to 0.2 (F1SC), 0.2 to 0.3 (F2SC) and 0.3 to 0.4 

(F3SC) Hz as per some studies in literature [187, 188].  

To the best of the authors knowledge, the use of metrics such as EDA, HR, pupil, is a 

topic that is not yet deeply explored in gait and gait feedback, however is important as 

it provides important information about how the user implicitly responds and processes 

feedback and as such is one of the key novel parts  of this work. 

 Pupillometry 

The study of the pupil has become a very useful element for studying the autonomic 

nervous system. It is based on the measurement of pupil diameter under certain 

conditions and stimuli. The evaluation is part of the neuroophthalmological 

examination, mainly in the evaluation of the afferent and efferent optical pathway [208]. 

The pupil is directly connected to the iris with the function of controlling the amount of 

light that enters the eyes. The dilation of the pupil has also been shown to be related to 

the brains response of stressful situations, and therefore provides useful information in 

a QoE assessments [209]. On occasions that take away comfort, the sympathetic 

nervous system stimulates the production of a high adrenaline load, a hormone that, in 

turn, induces pupil dilation as in Fig. 46. On the other hand, the tendency is for it to 

remain contracted in situations of rest or less stress.  
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Figure 46. Pupil dilation after stimulus. 

The pupil size varies between 1mm (miosis) and 8mm (mydriasis) [210]. Under normal 

conditions, they are symmetrical in shape, position and are approximately the same size, 

with a difference of up to 0.4 mm being considered normal, although some authors 

consider differences of up to 1 mm are still considered normal [211]. Pupils tend to 

dilate in situations of sympathetic activation (fear, joy, surprise)[212]. However, the 

evaluation of the pupil is very subjective, as its responses translate into small changes 

in their diameter. In addition to having several clinical applications, the study of the 

pupil is still widely used in psychology and in QoE studies to verify the reaction after a 

stimulus [190, 213], which gives more information of the physiological state of 

participants. 

The remainder of this chapter explores the use of physiological and subjective measures 

in the gait feedback study. The study design, experimental protocol, results and also a 

discussion is presented. 

5.4 System Design 

The system design for this study considered the capture of physiological measures. 

These metrics were captured offline and data were processed by a system in a quadcore 

Intel Core i7 laptop, 16GB DDR4 RAM, 3.2Ghz, GTX 1060-6GB. Data capture was 
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achieved with the Empatica E4 wristband ([214] and Fig. 47) for EDA,  and IBI (inter-

beat interval for HR).  

 

Figure 47. E4 data visualization. Available at [214]. 

The E4 is a medical certificated sensor that consists of a Photoplethysmography (PPG) 

sensor, which can measure Blood Volume Pulse (BVP), Heart Rate (HR), Heart Rate 

Variability (HRV), and other cardiovascular features that can be derived. It also 

contains a 3-axis accelerometer, and an Electrodermal Activity (EDA) sensor, which 

can measure sympathetic nervous system arousal [215]. 

Pupil information was captured with the Binocular Mount Add-on for the Epson 

Moverio BT-300 from Pupil Labs [216] (Fig. 48). This add-on can provide low-latency 

eye tracking pipeline to detect saccades and quick fixations [213, 217]. 
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Figure 48. Eye tracking add-on for Moverio BT-300. Available at [216]. 

5.5 Experimental Protocol  

The data for this experiment was captured as part of the e study described in the previous 

chapter. Participants consent was obtained in written format and stored in a secure 

location. Data were anonymized for all trials and participants. After ethics approval, a 

test with healthy participants was conducted. This test also considered the capture of 

physiological measures from E4 and pupil information from the eye tracking. 

The gender balance guidelines have been applied as per ITU-P913 standards for 

objective and subjective quality assessment [120].  

5.6 Data and Signal Processing 

As outlined in the experimental protocol section, subjective metrics from questionnaires 

and physiological measures of EDA, IBI, and pupil were captured. Participants data 

were categorized into AR and haptic. Subgroups of males (N=13) and females (N=13) 

were also randomly defined for gender analysis purposes. In order to assess the 

suitability of the data for parametric analysis, a Shapiro Wilks normality test was 

conducted  [185]. All variables were with a normal distribution (p>0.05).  

The data from E4 was captured with the E4 connect from Empatica, which separates 

each trial into different .csv files of acceleration, blood volume pressure, electrodermal 

activity, heart rate and inter beat interval. Those files were also synchronized with 

different leg events using UNIX timestamps.  
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5.6.1 Event based analysis 

For all trials, data from E4 and pupil sensors were sliced and synchronized with the 

timestamps from the objective data from the experiments detailed in the previous 

chapter. Trials were categorized as baseline (2 minutes data without feedback), test (2 

minutes data with feedback), varus (2 legs misaligned with feedback), valgus (2 legs 

misaligned with feedback), 2 error (2 legs misaligned varus or valgus with feedback), 1 

error (one leg misaligned with feedback), and complete alignment (both legs aligned 

with feedback). Each leg had 3 different states as in 1,2,3 for left leg, and 4,5,6 for the 

right leg. This way, the 9 possible states are defined as in Table 16. 

 

For all groups a between and within analysis was performed. The motivation for this 

analysis was to identify significant differences across groups and within groups. The 

between and within gender analysis was also included. Normalities test and a pre-test 

on baselines were conducted to ensure the samples followed normal distributions and 

that there were no statistically significant differences across baselines (AR and haptic 

baseline). 

For the between analysis, the analysis of covariances (ANCOVA) was performed. 

Effect interactions were also reported to make sure the difference is explained by 

covariances. Gender was a factor to check any interaction effect. Firstly, it was checked 

if there was any statistically significant difference between baselines. Secondly, 

homogeneity test for variables were made to ensure normal distributions and then 

checked any interaction effects. 

Table 16. Event-based states 

State (L - R) Left Leg Right Leg Output 

1 - 4 Varus Valgus 2 errors 

1 - 5 Varus Alignment 1 error (Varus) 

1 - 6 Varus Varus Varus 

2 - 4 Alignment Valgus 1 error (Valgus) 

2 - 5 Alignment Alignment Complete Alignment 

2 - 6 Alignment Varus 1 error (Varus) 

3 - 4 Valgus Valgus Valgus 

3 - 5 Valgus Alignment 1 error (Valgus) 

3 - 6 Valgus Varus 2 errors 
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After the between analysis, a within analysis considered dependent samples t-test with 

95% confidence level. In this analysis, differences (before and after feedback) were 

analysed for AR and haptic groups. The within analysis considering gender is also 

reported. In this analysis, it was considered event-based comparisons to check what 

happens before and after an event (e.g. How does the heart rate change when a 

participant aligns both legs?) 

5.6.2 Heart Rate Variability Analysis 

The Heart Rate Variability (HRV) analysis included the signals of Inter-Beat Interval 

(IBI) and Heart Rate (HR) (captured with the E4 sensor). These are important variables 

as they can be related to emotional arousal and anxiety for example as mentioned in the 

previous section. 

The extracted IBI file contained a UNIX timestamp, with heterogeneous frequency, 

which made it hard for time-based analysis. IBI analysis is done for many studies for 

static conditions, studies with low motion, and in case of high motion studies, it is 

advisable to use the calculated HR [218, 219]. In this analysis, mean values of HRV 

metrics were used and synchronized with alignment events. 

5.6.3 EDA Analysis 

The EDA analysis included time-domain analysis of SCR, and frequency domain 

analysis of the EDA signal. The time domain analysis was done in an event-based 

manner. For each EDA signal, mean and standard deviation of derivatives for each event 

were calculated. The variables of the time domain of EDA are presented on Table 17. 

These variables are important as they not only represent EDA during feedback 

(compared to baseline) but also how is EDA changing after different user responses to 

feedback such as alignment, and misalignments. Additionally, frequency analysis and 

derivatives can give a better understanding of true EDA events and filter signal artifacts. 
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Table 17. Time Domain Analysis – Electrodermal Activity analysis (EDA). 

Indicator Description 

mEDA Mean of all EDA (Test and baseline). 

m1Der Mean of first derivative of EDA signals. Detects EDA events. 

m2Der Mean of second derivative of EDA signals. Detects EDA events and 

signal concavity. 

mEDAVarus Mean of all EDA (Test and baseline varus). 

m1DerVarus Mean of first derivative of EDA signals. Detects EDA events for 

varus. 

m2DerVarus Mean of second derivative of EDA signals. Detects EDA events and 

signal concavity for varus. 

mEDAValgus Mean of all EDA (Test and baseline valgus). 

m1DerValgus Mean of first derivative of EDA signals. Detects EDA events for 

valgus. 

m2DerValgus Mean of second derivative of EDA signals. Detects EDA events and 

signal concavity for valgus. 

mEDAAlign Mean of all EDA (Test and baseline complete alignment). 

m1DerAlign Mean of first derivative of EDA signals. Detects EDA events for 

complete alignment. 

m2DerAlign Mean of second derivative of EDA signals. Detects EDA events and 

signal concavity for complete alignment. 

mEDA2E Mean of all EDA 2 legs misaligned (varus, valgus, one leg varus 

other valgus, etc). 

m1Der2E Mean of first derivative of EDA signals. Detects EDA events for 2 

legs misaligned (varus, valgus, one leg varus other valgus, etc). 

m2Der2E Mean of second derivative of EDA signals. Detects EDA events and 

signal concavity for 2 legs misaligned (varus, valgus, one leg varus 

other valgus, etc). 

mEDA1E Mean of all EDA 1 leg aligned.  

m1Der1E Mean of first derivative of EDA signals. Detects EDA events for 1 

leg aligned. 

m2Der1E Mean of second derivative of EDA signals. Detects EDA events and 

signal concavity for 1 leg aligned. 
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5.6.4 Pupil Analysis 

The pupil analysis in this study included the analysis of baseline, test, and all single 

events linked to leg alignments. It also considered how the pupil dilation changed prior 

to and after each event, which is used to assess if there is any change regarding the pupil 

dilation. The variables of pupil are specified in Table 18.  

 

5.7 Results and Discussion 

This section deals with the results of the physiological and subjective measures. For all 

measures, results are reported between groups and gender, within groups and gender. 

The full statistics report is presented in Appendix J. 

5.7.1 Heart Rate Variability Results 

 IBI 

Results from IBI between groups are presented in Table 17.  

Table 18. Pupil variables for analysis 

Indicator Description 

Mean results (z-scores) 

Baseline Pupil baseline capture 

Test Pupil test capture 

2R Both legs aligned 

1A One leg aligned 

2E Both legs misaligned. 

Event-based results (z-scores) 

2E1R Participant had 2 mistakes and corrected one leg.  

1R2E Participant had 1 leg aligned and now has 2 mistakes. 

2R1E Participant had 2 legs aligned and now has 1 mistake. 

1E2R Participant had 1 leg aligned and now has 2 aligned. 
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The results showed no interaction effect was found for variables of IBI between groups. 

These results are reporting that both groups showed similar mean for IBI values There 

was no interaction for gender for AR and haptic groups. It is important to know that IBI 

measures can be less accurate during walking. The literature suggests that the use of HR 

in this case is recommended to remove artifacts that can be captured during movement 

[220]. More information will be reported in the HR analysis. Within group analysis of 

IBI is shown in Table 20.  

 

Table 19. IBI results between groups 

Variable Normal Sig(2-tailed) F ETA Sq. Haptic Std. AR Std. 

MNN 0.517 0.792 0,071 0.004 0.748 0.161 0.754 0.22 

SDNN 0.489 0.341 0.958 0.053 0.061 0.023 0.094 0.07 

RMSSD 0.146 0.185 1.912 0.101 0.088 0.032 0.117 0.04 

 

Table 20. IBI results within groups 

Haptic 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

MNN_Baseline 
0.436 

0.709 0.110 0.599 0.820 

MNN_Test 0.749 0.161 0.587 0.910 

SDNN_Baseline 
0.297 

0.095 0.071 0.024 0.166 

SDNN_Test 0.062 0.023 0.039 0.085 

RMSSD_Baseline 
0.358 

0.106 0.043 0.062 0.149 

RMSSD_Test 0.088 0.032 0.056 0.120 

AR 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

MNN_Baseline 
0.166 

0.699 0.170 0.528 0.869 

MNN_Test 0.754 0.227 0.527 0.982 

SDNN_Baseline 
0.226 

0.065 0.031 0.034 0.096 

SDNN_Test 0.095 0.071 0.024 0.166 

RMSSD_Baseline 
0.205 

0.089 0.043 0.046 0.133 

RMSSD_Test 0.118 0.045 0.073 0.163 
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As per Table 20, there was no interaction effect within groups. The gender analysis 

showed no significant difference by gender and groups. It was not possible to analyse 

IBI for all events as this is a metric difficult to be captured when in motion (i.e. walking, 

sprinting). However, event-based heart metrics were estimated with HR, which are fine 

in this kind of analysis. 

 Heart Rate 

For HR, there was no statistically significant difference between baselines (p = 0.431) 

and the samples followed normal distributions (p = 0.342). The between analysis 

included parallel differences between groups for each event (varus, valgus, 2 

misalignments, 1 alignment, and complete alignment). Results from HR between 

groups are presented in Table 21. A statistically significant difference for range of HR 

for full alignment was observed for AR when compared to haptic. The AR group 

showed a lower range of HR, which could infer that participants cardiac response was 

elevated with haptic feedback.  
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Further analysis by gender did not show statistically significant differences for any 

variable.  Full report is shown in Appendix J. 

5.7.2 EDA Results 

This section reports results of electrodermal activity (EDA) considering time domain 

and frequency domain results.  

Table 21. Parallel differences in each event – Between groups 

Group (1 haptic 2 AR) Sig. (2-tailed) Mean Std. Deviation 

meanHR 
1 

0.753 
-1.885 18.213 

2 -0.303 15.606 

rangeHR 1 
0.054 

-2.600 11.464 

2 6.101 17.640 

meanHRvarus 1 
0.298 

-3.857 8.763 

2 0.883 3.745 

rangeHRvarus 1 
0.528 

-7.538 15.453 

2 -0.987 6.462 

meanHRvalgus 1 
0.898 

-4.994 18.600 

2 -5.800 6.875 

rangeHRvalgus 1 
0.187 

-7.540 12.471 

2 1.115 14.183 

meanHRalignment 1 
0.316 

-3.511 20.196 

2 2.424 17.076 

rangeHRalignment 1 
0.033* 

-5.272 11.573 

2 4.874 17.955 

meanHR2E 1 
0.848 

-2.195 18.543 

2 -1.180 13.043 

rangeHR2E 1 
0.095 

-4.640 11.728 

2 2.939 15.473 

meanHR1A 1 
0.708 

-2.316 18.698 

2 -0.459 14.470 

rangeHR1A 1 
0.089 

-5.399 11.880 

2 2.137 17.027 

* p < 0.05 
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 Time Domain Results 

Results from EDA between groups are presented in Table 22. First, it was checked if 

there was any statistically significant difference between baselines. Secondly, sphericity 

test for variables were made for the variables mEDA (mean of signals EDA), 1derEDA 

(first derivative EDA), and 2derEDA (Second Derivative EDA). There were no 

statistically significant differences between variables between groups and gender.  

 

Results from EDA within groups are presented in Table 23. Statistically significant 

differences were found in haptic feedback for mean of EDA, mean EDAC3C4 (valgus), 

mean C2C5 (complete alignment), and mean 1A (1 leg aligned). AR feedback showed 

statistical differences for mean EDAC3C4 (valgus), mean C2C5 (complete alignment), 

and mean 1A (1 leg aligned). All these variables demonstrated that mean EDA increased 

after receiving haptic and AR feedback.  

For gender analysis, male group reported significant differences for haptic feedback for 

mean EDA, mean EDAC2C5 (complete alignment), and mean 1A (1 leg aligned). For 

haptic feedback, the male group reported a significant difference for valgus. All these 

variables reported higher mean of EDA when receiving feedback. Surprisingly, the 

female group did not show any statistically significant difference for any feedback type 

(Appendix J). 

Table 22. EDA results between groups 

Variable Normal Sig(2-tailed) F ETA Sq. Haptic Std. AR Std. 

mEDA 0.517 0.792 0,071 0.004 0.748 0.161 0.754 0.22 

1derEDA 0.489 0.341 0.958 0.053 0.061 0.023 0.094 0.07 

2derEDA 0.146 0.185 1.912 0.101 0.088 0.032 0.117 0.04 
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 Frequency Domain Results 

 It is important to assessed data in the frequency domain in order to detect true EDA 

events and remove signal artifacts [221]. Following the literature, true EDA signals are 

Table 23. EDA results within groups 

Haptic 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

mEDABaseline 
0.025* 

0.373 0.671 -0.298 1.045 

mEDATest 
0.528 0.862 -0.333 1.390 

mEDABaseline 
0.097 

0.281 0.179 0.102 0.461 

mEDAC1C6 
0.350 0.219 0.131 0.568 

mEDABaseline 
0.048* 

0.533 0.957 -0.425 1.490 

mEDAC3C4 
0.682 1.128 -0.447 1.810 

mEDABaseline 
0.047* 

0.411 0.733 -0.322 1.145 

mEDAC2C5 
0.567 0.937 -0.369 1.504 

mEDABaseline 
0.065 

0.433 0.766 -0.332 1.199 

mEDA2E 
0.610 0.941 -0.332 1.551 

mEDABaseline 
0.022* 

0.373 0.671 -0.298 1.045 

mEDA1A 
0.522 0.843 -0.321 1.365 

AR 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

mEDABaseline 
0.068 

0.287 0.485 -0.198 0.772 

mEDATest 
0.458 0.773 -0.314 1.231 

mEDABaseline 
0.280 

0.593 1.027 -0.435 1.620 

mEDAC1C6 
0.837 1.465 -0.628 2.302 

mEDABaseline 
0.004* 

0.231 0.148 0.083 0.380 

mEDAC3C4 
0.283 0.168 0.115 0.451 

mEDABaseline 
0.020* 

0.287 0.485 -0.198 0.772 

mEDAC2C5 
0.404 0.657 -0.253 1.061 

mEDABaseline 
0.128 

0.317 0.528 -0.212 0.845 

mEDA2E 
0.549 0.956 -0.407 1.505 

mEDABaseline 
0.090 

0.287 0.485 -0.198 0.772 

mEDA1A 
0.461 0.788 -0.328 1.249 

* p < 0.05 
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found between 0-0.4hz. The different spectral bandwidths of EDA signals are found in 

Table 24 and Figure 49.  

 

 

Figure 49. Example of frequency spectrum of EDA signal 

Spectral results showed frequency-based EDA for both haptic and AR feedback. It was 

also compared paired differences within haptic and AR groups. Significant differences 

for spectral F0SC within haptic feedback were found in EDA baseline-test (Sig. 0.033), 

and baseline-EDA 1A (1 leg aligned) (Sig. 0.04). Higher spectral power found for 

baseline EDA 1A, which can infer that more true EDA signals were reported when the 

participants had only one leg aligned. The AR group did not report statistically 

significant F0SC frequencies. 

Table 24. EDA results within groups 

Indicator Description 

F0SC 
The spectral power in bandwidths 0.05 to 0.1 

F1SC 
The spectral power in bandwidths 0.1 to 0.2 

F2SC 
The spectral power in bandwidths 0.2 to 0.3 

F3SC 
The spectral power in bandwidths 0.3 to 0.4 
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Statistically significant differences of F1SC were found in haptic feedback in EDA 

baseline-test (Sig. 0.038). F1SC frequencies were also found for AR feedback in EDA 

baseline-EDA 1A (1 leg aligned) (Sig. 0.04). 

Statistically significant differences of F2SC were found in haptic feedback in EDA 

baseline-test (Sig. 0.041). F2SC frequencies were also found for AR feedback in EDA 

baseline-EDA 1A (1 leg aligned) (Sig. 0.05). The results did not show any F3SC 

frequencies for any variable of EDA.  

Although these results are not in time-domain, they are important because they show 

where true EDA signals could be found for the presented dataset and help to understand 

human reaction of feedback considering skin conductance. More results considering 

EDA signals will be discussed in the section 5.7.4 regarding bivariate correlations. 

5.7.3 Pupil Analysis Results 

First, it was checked if there was any statistically significant difference between 

baselines. Secondly, sphericity test for variables were made for the variables of pupil. 

There were three events for pupil: 2 Error (both legs misaligned), 1 Error (1 Leg 

misaligned), 2 Right (both legs aligned). There was a significant pupil dilation (increase 

in diameter) for AR feedback for 2 right and 1 Error but not significant. There was a 

significant pupil dilation for haptic feedback when both legs were misaligned, which 

can show a stressful state (Table 25). These differences are also shown in Fig. 50. No 

difference was found between gender. 

 

Table 25. Pupil results between groups 

Variable Normal Sig(2-tailed) F Haptic Std. AR Std. 

m2Right 
0.409 0.961 0.002 -0.002 0.288 0.003 0.370 

m1Right 
0.861 0.736 0.115 0.031 0.207 0.052 0.198 

m2Error 
0.345 0.037* 4.681 0.188 0.501 -0.106 0.329 

* p < 0.05 
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Figure 50.  Z-score pupil diameter for 2 misaligns. 

For pupil diameter, both means of each state and event-based differences were assessed. 

For example, if a participant aligns two legs, pupil diameter was evaluated before and 

after that total alignment. The event-based results of pupil are shown in Table 26.  

 

The results of Table 26 showed that pupil diameter increased when participant aligned 

one leg for AR feedback. The results also showed that there was a relaxation of pupil 

for haptic feedback for the same event type. 

There were no significant differences between baselines and testing, however 

significant differences were observed between AR and Haptic. Within analysis of the 

female group for haptic feedback demonstrated that pupil diameter increased when 

Table 26. Event-based results of pupil – Between groups 

Group (1 haptic 2 AR) Sig. (2-tailed) Mean Std. Deviation 

mean2E1R 1 
0.049* 

-0.095 0.308 

2 0.152 0.360 

mean1R2E 1 
0.091 

0.144 0.381 

2 -0.099 0.410 

mean2R1E 1 
0.288 

0.064 0.446 

2 -0.089 0.451 

mean1E2R 1 
0.179 

-0.123 0.380 

2 0.023 0.293 

* p < 0.05 
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females achieved full alignment (p = 0.016), which may indicate that finding alignment 

in response to haptic feedback may cause stress for the female group. No statistically 

significant differences were found for the male group.  

5.7.4 Bivariate Correlations 

Another way to check the influence of physiological variables and its effects on subjects 

is through bivariate correlations. It is well known that correlation does not necessarily 

mean causation and should be evaluated carefully. All physiological variables were 

tested for correlation and only the statistically significant values are displayed on Table 

27. 

   

The results showed positive correlation between EDA and 1st derivative of valgus. The 

derivatives are useful because they detect true events of EDA. This result is an 

indication that there were true EDA events for valgus alignment, and they follow the 

pattern of the mean of the EDA signals.  

There was also a negative correlation between EDA and pupil when both aligned. This 

result showed that as participants align both legs, the EDA response increases and pupil 

diameter decreases. This is an interesting result and may indicate a less stressful state 

after aligning both legs. Physiologically, this is supported by literature as they are both 

controlled by the sympathetic nervous system, which is responsible for involuntary 

responses to dangerous and stressful situations [187, 188]. 

Another result showed a negative correlation between EDA and pupil when one leg is 

aligned. This result exposes that as participant align one leg, the EDA response 

Table 27. Event-based results of pupil – Between groups 

Variable 1 Variable 2 Pearson (r) Sig. (2-tailed) 

EDA 1st Derivative EDA valgus 0.516 0.014* 

EDA Alignment Pupil 2 alignment  -0.757 0.030* 

EDA Alignment Pupil 1 alignment -0.750 0.032* 

1st Derivative EDA Varus Pupil 2 alignment 0.828 0.021* 

1st Derivative 2 Alignment HR Valgus 0.600 0.011* 

* p < 0.05 
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increases and pupil diameter decreases. This result also agrees with the correlation 

above as these are involuntary responses to stress or relaxation. 

Another negative correlation was found between 1st derivative of varus and pupil when 

2 aligned. This result exposes that as participant align both legs, the EDA response 

increases and pupil diameter decreases. Derivatives filters EDA events.  

The last negative correlation was found between 1st derivative for full alignment and 

HR when in Valgus. This result exposes that as participant align both legs, the HR 

response decreases it is possible to detect EDA events. The literature reported similar 

correlations across different studies. Effects of heart rate, EDA, and pupil are linked to 

stressful situations and they are also related to arousal effects [222, 223]. 

5.8 Conclusion 

This chapter presented a physiological-based QoE assessment of haptic and Augmented 

Reality feedback in a gait analysis system. It compared, in terms of physiological 

ratings, how users perceived and responded to Haptic and Augmented Reality feedback.  

Event-based comparisons of range of heart rate showed higher variability for 

participants during haptic feedback, which can be an indicator of stress [189]. This 

variability was also reported in the male group. The haptic group also showed 

significant differences in electrodermal activity (EDA) for varus, partial alignment 

(only one leg aligned) and complete aligned (both legs aligned). This increase in EDA 

after feedback is a metric that was deeply analysed and reported in this chapter. The AR 

group showed significant difference for EDA for the same events (varus, partial 

alignment, and complete alignment). The male group did not demonstrate any 

difference in response when comparing both feedback modalities. There also significant 

results for frequency domain spectral analysis of event-based EDA, which detected the 

true EDA frequencies. 

For the pupil diameter, a statistically significant difference was found between AR and 

haptic. When the participant received AR or haptic feedback and both legs were 

misaligned (varus or valgus), the pupil diameter was significantly smaller for the AR 

feedback, even though the participant received a visual-type feedback, which could 

mean that haptic feedback causes more stress in all participants. The results from pupil 
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diameter also showed that as participants became misaligned (inefficient feedback), the 

pupil dilated significantly in the AR group. For the haptic feedback, more specifically 

in the female group, there was a significant pupil dilatation when participants were fully 

aligned. 

There were correlations in the physiological measures such as derivatives of EDA, 

event-based EDA, and second derivatives. The results showed that EDA signals could 

be linked to pupil and heart variables to some extent. The correlations make sense as all 

physiological variables captured in this study are controlled by the sympathetic nervous 

system which is linked to rapid involuntary response to dangerous or stressful situations. 

The next chapter concludes this dissertation and provides future work consideration and 

recommendations for the scientific community. 
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6 Conclusion and Future 

Work 
This chapter presents the conclusion of the thesis and proposes possible directions for 

future research. 

6.1 Conclusion 

This key findings from this PhD thesis were the results from a QoE evaluation of haptic 

and AR feedback in a low-cost gait feedback system. The initial part of this PhD project 

focused on the low-cost gait system development and Motion Capture (MoCap) 

evaluation in human movement capture (3D joints), specifically focussing on the 

assessment of gait. The objective was to develop an alternative, cheaper and more 

accessible system based on the integration of a camera system and inertial sensors. A 

comparison of the low-cost system with a gold standard in motion capture, was 

performed and the developed marker-less system could not only replicate 3D joints and 

gait angles, but it could also present gait spatiotemporal variables. Based on this, many 

potential use cases of the gait system could be proposed, including integration with 

feedback modules.  

At a system level, the proposed system is a cheaper alternative. The price of the low-

cost system was less than 5% of the cost of VICON which cost approximately 200.000 

€ [224]. The system provides clear and easily interpretable results; supports 360 degrees 

of motion analysis; is easily portable; and does not require large set up space or 

environment. From the gait perspective, the system was capable of measuring gait 

angles of knee and hip with 95% bootstrap confidence interval, when compared to the 

gold standard. Spatiotemporal results showed similarity with significant results of 99% 

on gait cycle time (s), 95% on right stride time (s), 90% on left stride time (s), 88% on 

gait length (m), 95% on stride length (m), and 91% on gait velocity (m/s).  

Considering the hardware requirements for this project to address varus/valgus 

alignment, it was decided to only use IMUs for the gait feedback application. In this 

way, the range of the system would be increased, and the system would be even more 

portable. 
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The second part of the project has focused on evaluating QoE of the different gait 

feedback modalities: AR and haptic. The feedback aimed to reduce knee varus and 

valgus misalignments, which can cause serious orthopaedics problems, such as 

osteoarthritis and injuries [25, 30, 167]. Despite current feedback modalities such as 2D 

screens, audio, expert guidance are widely used for some applications, there are 

opportunities in applying immersive technologies such as AR feedback in gait. Results 

of the QoE evaluation of AR and Haptic feedback were presented considering explicit 

(questionnaires), implicit (physiological) and objective metrics and correlation analysis. 

Objective results revealed that participants performed better with AR feedback, with a 

reduction of 31% for varus and 13% for valgus. The male improved for varus (45% p = 

0.034) and valgus (18% p = 0.073) while females did not have significant improvement.  

Explicit results of questionnaires have demonstrated that the novel AR feedback not 

only provided better performance in reducing misalignments, but it also showed less 

physical demand when compared to haptic. Participants felt the adjustment was easier 

with AR when compared to haptic. This was similar reported in the female group.  

Implicit physiological measures of participants were also presented. Event-based 

comparisons of range of heart rate showed higher variability for participants during 

haptic feedback, which is an indicator of stress and was also reported in the male group. 

There was no statistically significant difference in the AR group. 

The haptic and AR groups also showed significant differences in electrodermal activity 

(EDA) for varus, partial alignment (only one leg aligned) and complete aligned (both 

legs aligned), which are indicative of increased stress. True EDA signals were filtered 

through frequency analysis. Pupil analysis showed that whenever the participant 

received AR or haptic feedback and both legs were misaligned (varus or valgus), the 

pupil diameter was significantly smaller for the AR group. The final achievements dealt 

with bivariate correlations for physiological measures, which were important as they 

were linked to sympathetic nervous responses, which are linked to involuntary response 

to stressful situations and they are also related to arousal effects. The literature reported 

similar correlations across different studies [222, 223]. This gives a contribution for the 

work as there was no other work to date that reported a physiological report of gait and 

gait feedback. A summary of the QoE evaluation is presented on Table 28. 
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Table 28. QoE Summary for Haptic vs. Augmented Reality (AR) Feedback 

Metric Variable Within Groups Between Groups 

 Haptic AR Haptic AR 

Number of 

Misalignment 

Varus Reduction 15% 31% * - - 

Valgus Reduction 9% 13% - - 

Total Misalignments  12% 22% * - - 

Misalignment 

reduction 

Time on Varus (s) -21% 11% - - 

Time on Valgus (s) -10% 64% * - - 

Total Misalignments Time (s) -4% 37% * - - 

MOS (0-7) MOS (Q1)  
 

3.5* 4.45* 

MOS (QoEM)   4.24 4.44 

NASA-TLX Physical Demand 
 

151.87* 71.45* 

SAM VAD 
 

- - 

HRV (IBI) Mean 0.04 0.05 0.74 0.75 

SDNN -0.03 0.03 0.06 0.09 

RMSSD -0.01 0.02 0.08 0.11 

HRV (HR) Mean - - -1.88 -0.30 

Range - - -2.60 11.46 

Mean Varus - - -3.85 0.883 

Range Varus - - -7.53 -0.98 

Mean Valgus - - -4.99 -5.80 

Range Valgus - - -7.54 1.11 

Mean Alignment - - -3.51 2.42 

Range Alignment - - -5.27 * 4.87 * 

EDA (Time-

domain) 

Mean 0.15* 0.17 0.74 0.75 

1st Derivative 0.00 0.00 0.06 0.09 

2nd Derivative 0.00 0.00 0.08 0.11 

Mean Valgus 0.14* 0.05* 0.06 0.24 

Mean Varus 0.06 0.24 0.14 0.05 

Mean Alignment 0.15* 0.11* 0.15 0.11 

EDA 

(Frequency-

domain) 

F0SC (0.05-0.1hz)  - - - 

F1SC (0.1-0.2hz)  - - - 

F2SC (0.2-0.3hz)  - - - 

F3SC (0.3-0.4hz) - - - - 

Pupil (z-scores) Varus/Valgus -0.01 -0.01 0.18* -0.10* 

Alignment -0.004 -0.004 -0.002 0.003 

Pupil (Event-

based) 

Varus/Valgus to 1 alignment -0.247 -0.247 -0.09 0.15 

1 alignment to Varus/Valgus 0.24 0.24 0.14 -0.09 

Full alignment to 1 leg aligned 0.15 0.15 0.064 -0.089 

1 Leg Aligned to full 

alignment 

-0.146 -0.146 -0.123 0.023 

* p < 0.05; - No interaction effect. 
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In summary, this project closes a QoE study considering the development of a full gait 

system (hardware and software), and evaluation considering explicit and implicit 

measures of gait. It also reported physiological measures of heart, skin conductance, 

and pupil. Future work will include novel QoE methodologies and applications, the use 

of learning algorithms, and clinical studies. 

6.2 Reflection of Research Questions 

The proposed research question for this PhD work: “What type of feedback, considering 

haptic and AR, supports the highest QoE in a low-cost gait analysis system?” was 

addressed with both literature and the outlined studies. It was concluded that overall, 

the AR feedback supported highest QoE in the gait feedback system. The sub research 

questions of this project were also answered. 

SubRQ1: “Can we objectively and accurately evaluate gait performance in a low-cost 

gait analysis system?” 

This question was addressed by the initial comparison of the gait system with VICON. 

The gait capturing system was capable not only of evaluating gait angles and 

spatiotemporal variables, but it showed very accurate results when compared to the gold 

standard VICON.  

SubRQ2: “What do users self-report when experiencing different feedback systems in 

terms of key aspects such as experience and effort?” 

This question was partially addressed with support of the literature and with the QoE 

studies with participants. Post-test questionnaires were used to subjectively evaluate 

QoE. The AR feedback promoted highest QoE in this study. The NASA-TLX resulted 

in significantly higher physical demand for haptic feedback. There was no difference in 

emotion responses for both groups as they both reported high arousal, valence, and 

dominance. 

SubRQ3: “Can physiological measurements support a better understanding of user’s 

response in the context of a QoE evaluation in a gait feedback system?” 

Another contribution of this work was at physiological level. Measures of heart, skin 

conductance and pupil were captured and showed differences for AR and haptic 
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feedback. The pupil became significantly relaxed after a complete alignment with the 

AR feedback. Measures of heart and skin were observed in the haptic group, which 

could indicate a stressful condition due to autonomic nervous system responses.  

SubRQ4: “What type of feedback does user understand better during walk? Haptic or 

Augmented Reality feedback?” 

This question was addressed by the objective analysis of gait. AR feedback was the only 

feedback that could not only reduce the number of misalignments, but also reduced the 

time participants stayed in a misaligned state. This question was also addressed with the 

self-reported responses. Questionnaires reported less physical demand of AR when 

compared to haptic. Participants also felt the adjustment was easier with AR when 

compared to haptic. 

SubRQ5: “Can gender influence user’s QoE in a gait feedback system?” 

With the gender analysis, it was possible to have some understanding of how females 

and males processed information for this study. It is well known by the literature that 

females and male have anatomical differences that could directly influence varus and 

valgus misalignments [26, 27, 117]. It was possible to conclude that gender is an 

influence factor of QoE in gait feedback, which can lead to further studies with this 

topic. 

6.3 Limitations 

The limitations of this study include hardware considerations, the objective variables of 

gait and feedback, QoE modelling, and some statistical considerations.  

Considering hardware limitations, the Microsoft Kinect sensor used in the first study 

was discontinued. Even though the sensor is not being produced, there are currently 

many other alternatives such as the Azure Kinect, Intel RealSense, and Orbbec Astra 

[225]. However, this limitation did not affect the development of this projection as the 

developed algorithms can be used in any depth sensor alternative mentioned above. 

Another hardware limitation is the type of AR glasses used. New, and more ergonomic 

AR glasses are constantly developed. The test could also be done with some of the new 

glasses to improve further the user experience. 
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From a gait capturing perspective, the study could also be done with different variables 

of gait for feedback such as hip, trunk, and ankle angles. Although the advantages of 

using other variables as feedback input, it would be outside the scope of this project and 

can also be implemented as future contribution. Even though this limitation can be 

questioned, the gait IMU system has proven to capture gait angles in any anatomical 

plane.  

A limitation from the feedback perspective would include the need of an adaptive 

feedback that takes into consideration individual inputs from user (e.g. individual values 

of feedback, anthropometric variables, and learning algorithms). In this way, the 

feedback would be more individual, hence, the improving the possibility of better 

performance and the quality of rehabilitation. However, this study has shown the 

capabilities of AR feedback, and even its limitation. Refined algorithms can also be 

used in clinical studies as part of the future work. 

Finally, from a QoE perspective, this study could include further analysis to try to 

understand deeper the differences at cognitive level of males and females. Another 

contribution would be the development of QoE models for gait feedback and the use of 

inferential statistics to extend the sample outputs results into a population to evaluate 

the possibility of clinical QoE studies. 

6.4 Future Work 

There are many potential directions for this work. Looking at QoE analysis, several 

studies using the female population, which is a target population for knee misalignments 

can be performed. Another QoE contribution can be the detection of workload, stress, 

even emotion using machine learning classifiers and physiological measures [226, 227]. 

The QoE study of long-term interventions can also be a future study. In this manner, 

progression of the participant’s alignment can be observed, which can lead to 

applications in a clinical population.   

There are also opportunities to apply deep learning algorithms such as classifiers to 

detect gait abnormalities and develop refined feedback methodologies for rehabilitation. 

In this way, long term interventions assessing changes in gait over time can be done. 

Another intervention can be to assess gait feedback at higher speeds and applications in 

sports such as sprint and smart gyms [228]. This research direction creates opportunities 
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to collaboration with sports research centres, and the development of smart applications 

towards health, sports education, and rehabilitation. 

Other examples include the use of feedback for clinical studies [229-231]. It is known 

that traditional rehabilitation approaches rely on the expert guidance [8, 23, 97]. 

Another possible contribution for this project is to clinically assess clinical participants 

such as potential knee replacement patients, and to evaluate post-surgery recovery 

[232]. This can be an application of the system to aid physiotherapists and clinicians 

with feedback outputs.   

All these topics can be part of the natural progression of this work. My aim is to continue 

exploring the capabilities of motion capture and immersive technologies with a deeper 

understanding of user centred QoE research.





References 

      Thiago Braga Rodrigues - PhD Thesis    131 

References 

[1] J. G. Richards, "The measurement of human motion: A comparison of," 

Human Movement Science, vol. 18, pp. 589-602, 1999. 

[2] A. V. S. Ferreira et al., "Comparison of motor function in patients with 

Duchenne muscular dystrophy in physical therapy in and out of water: 2-year 

follow-up," Acta Fisiatrica, vol. 22, no. 2, pp. 51-54, 2015. 

[3] K. Shivesh, "Contribution to modeling of human walking gait cycle over stride 

based on robotics for pedestrian navigation solution," ed. Nantes: Ecole 

Centrale de Nantes, 2015. 

[4] S. Bennour, B. Ulrich, T. Legrand, B. Jolles, and J. Favre, A gait retraining 

system using augmented-reality to modify footprint parameters: Effects on 

lower-limb sagittal-plane kinematics. 2017. 

[5] G. F. Harris and J. J. Wertsch, "Procedures for gait analysis," Archives of 

Physical Medicine and Rehabilitation, vol. 75, no. 2, pp. 216-225, 1994, doi: 

10.5555/uri:pii:0003999394903999. 

[6] L. S. Figueiredo, H. Ugrinowitsch, A. B. Freire, J. B. Shea, and R. N. Benda, 

"External Control of Knowledge of Results: Learner Involvement Enhances 

Motor Skill Transfer," Perceptual and Motor Skills, vol. 125, no. 2, pp. 400-

416, 2018, doi: 10.1177/0031512517753503. 

[7] A. A. Jafarnezhadgero, M. Majlesi, H. Etemadi, and D. G. E. Robertson, 

"Rehabilitation improves walking kinematics in children with a knee varus: 

Randomized controlled trial," Annals of Physical and Rehabilitation Medicine, 

vol. 61, no. 3, pp. 125-134, 2018/05/01/ 2018, doi: 

https://doi.org/10.1016/j.rehab.2018.01.007. 

[8] K. Carr, N. Zachariah, P. Weir, and N. McNevin, An Examination of Feedback 

Use in Rehabilitation Settings. 2011, pp. 147-160. 

[9] A. Ahrens, K. D. Lund, M. Marschall, and T. Dau, "Sound source localization 

with varying amount of visual information in virtual reality," PLOS ONE, vol. 

14, no. 3, p. e0214603, 2019, doi: 10.1371/journal.pone.0214603. 

[10] D. Hartanto, I. L. Kampmann, N. Morina, P. G. M. Emmelkamp, M. A. 

Neerincx, and W.-P. Brinkman, "Controlling Social Stress in Virtual Reality 

Environments," PLOS ONE, vol. 9, no. 3, p. e92804, 2014, doi: 

10.1371/journal.pone.0092804. 

[11] C. E. Stepp, Q. An, and Y. Matsuoka, "Repeated Training with Augmentative 

Vibrotactile Feedback Increases Object Manipulation Performance," PLOS 

ONE, vol. 7, no. 2, p. e32743, 2012, doi: 10.1371/journal.pone.0032743. 

https://doi.org/10.1016/j.rehab.2018.01.007


A Quality of Experience Evaluation of Augmented Reality and Haptic Feedback in a low-cost Gait 

Analysis System 

  Thiago Braga Rodrigues - PhD Thesis 132 

[12] T. Minh Vu, N. Katushin, and J. Pumwa, "Motion tracking glove for 

augmented reality and virtual reality," in Paladyn, Journal of Behavioral 

Robotics vol. 10, ed, 2019, p. 160. 

[13] K. Brunnström et al., Qualinet White Paper on Definitions of Quality of 

Experience. 2013. 

[14] W. Robitza et al., "Challenges of future multimedia QoE monitoring for 

internet service providers," Multimedia Tools and Applications, vol. 76, no. 

21, pp. 22243-22266, 2017/11/01 2017, doi: 10.1007/s11042-017-4870-z. 

[15] N. Murray, B. Lee, Y. Qiao, and G. Miro-Muntean, "The Impact of Scent Type 

on Olfaction-Enhanced Multimedia Quality of Experience," IEEE 

Transactions on Systems, Man, and Cybernetics: Systems, vol. 47, no. 9, pp. 

2503-2515, 2017, doi: 10.1109/TSMC.2016.2531654. 

[16]  A. Floris and L. Atzori, "Quality of Experience in the Multimedia Internet of 

Things: Definition and practical use-cases," in 2015 IEEE International 

Conference on Communication Workshop (ICCW), 8-12 June 2015 2015, pp. 

1747-1752, doi: 10.1109/ICCW.2015.7247433.  

[17] M. Martini, C.-W. Chen, Z. Chen, T. Dagiuklas, L. Sun, and X. Zhu, QoE-

Aware Wireless Multimedia Systems. 2012, pp. 1153-1156. 

[18]  J. Lei, Q. Zhu, J. Wu, and R. Xiong, "Gait analysis of human locomotion 

based on motion capture system," in 2014 IEEE 9th Conference on Industrial 

Electronics and Applications (ICIEA), Hangzhou, 2014.  

[19] D. Kobsar, S. T. Osis, B. A. Hettinga, and R. Ferber, "Gait Biomechanics and 

Patient-Reported Function as Predictors of Response to a Hip Strengthening 

Exercise Intervention in Patients with Knee Osteoarthritis," PLoS ONE, vol. 

10, no. 10, 2015. 

[20] D. RB, "Reflections on clinical gait analysis," J Electromyogr Kinesiol, vol. 7, 

no. 4, pp. 251-257, 1997. 

[21] D. Sutherland, "The evolution of clinical gait analysis part III--kinetics and 

energy assessment.," Gait Posture, vol. 4, pp. 447-461, 2005. 

[22] A. Kharb, V. Saini, Y. Jain, and S. Dhiman, "A Review of Gait Cycle and its 

Parameters," International Journal of Computational Engineering & 

Management, vol. 13, no. 78-83, 2011. 

[23] S. Krishnan, A. Dawood, R. Richards, J. Henckel, and A. Hart, "A review of 

rapid prototyped surgical guides for patient-specific total knee replacement," 

The Bone and Joint Journal, vol. 94-B, no. 11, pp. 1457-1461, 2012. 

[24] B. Monaghan, T. Grant, W. Hing, and T. Cusack, "Functional exercise after 

total hip replacement (FEATHER) a randomised control trial," BMC 

Musculoskeletal Disorders, vol. 13, no. 237, 2012. 



References 

      Thiago Braga Rodrigues - PhD Thesis    133 

[25] L. Sharma et al., "Varus and valgus alignment and incident and progressive 

knee osteoarthritis," (in eng), Annals of the rheumatic diseases, vol. 69, no. 11, 

pp. 1940-1945, 2010, doi: 10.1136/ard.2010.129742. 

[26] K. Tamari, P. Tinley, and K. Aoyagi, "Gender and age-related differences in 

axial alignment of the lower limb among healthy Japanese volunteers: 

comparative and correlation study," (in eng), J Jpn Phys Ther Assoc, vol. 6, 

no. 1, pp. 25-34, 2003, doi: 10.1298/jjpta.6.25. 

[27] A. Chang et al., "Frequency of varus and valgus thrust and factors associated 

with thrust presence in persons with or at higher risk of developing knee 

osteoarthritis," (in eng), Arthritis Rheum, vol. 62, no. 5, pp. 1403-1411, 2010, 

doi: 10.1002/art.27377. 

[28] Y. Zhang and J. M. Jordan, "Epidemiology of osteoarthritis," (in eng), Clin 

Geriatr Med, vol. 26, no. 3, pp. 355-369, 2010, doi: 

10.1016/j.cger.2010.03.001. 

[29] P. Darin A. "Use of a medial unloader knee brace to alter knee alignment – 

implications for knee osteoarthritis treatment." EXSS IMPACT. 

https://uncexss.wordpress.com/2016/03/21/843 (accessed June 21, 2020). 

[30] G. M. Freisinger et al., "Relationships between varus-valgus laxity of the 

severely osteoarthritic knee and gait, instability, clinical performance, and 

function," (in eng), Journal of orthopaedic research : official publication of 

the Orthopaedic Research Society, vol. 35, no. 8, pp. 1644-1652, 2017, doi: 

10.1002/jor.23447. 

[31] A. Baudet et al., "Cross-Talk Correction Method for Knee Kinematics in Gait 

Analysis Using Principal Component Analysis (PCA): A New Proposal," 

PLOS ONE, vol. 9, no. 7, p. e102098, 2014, doi: 

10.1371/journal.pone.0102098. 

[32] T. Andriacchi, L. Muendermann, S. Corazza, and A. Chaudhari, "A new era in 

the capture of human movement; markerless capture of human movement," 

Journal of Biomechanics - J BIOMECH, vol. 39, 12/31 2006, doi: 

10.1016/S0021-9290(06)83680-8. 

[33] T. P. Andriacchi and E. J. Alexander, "Studies of human locomotion: past, 

present and future," J Biomech, vol. 33, no. 10, pp. 1217-1224, 2000. 

[34] E. Ceseracciu, Z. Sawacha, and C. Cobelli, "Comparison of Markerless and 

Marker-Based Motion Capture Technologies through Simultaneous Data 

Collection during Gait: Proof of Concept," PLoS One, vol. 9, no. 3, 2014. 

[35] P. Eichelberger et al., "Analysis of accuracy in optical motion capture – A 

protocol for laboratory setup evaluation," Journal of Biomehanics, vol. 49, pp. 

2085-2088, 2016. 

[36] Vicon, ed: Vicon Motion Systems Ltd. 

https://uncexss.wordpress.com/2016/03/21/843


A Quality of Experience Evaluation of Augmented Reality and Haptic Feedback in a low-cost Gait 

Analysis System 

  Thiago Braga Rodrigues - PhD Thesis 134 

[37] A. Pfister, A. West, S. Bronner, and A. Noah, "Comparative abilities of 

Microsoft Kinect and Vicon 3D motion capture for gait analysis," Journal of 

medical engineering & technology, vol. 38, pp. 1-7, 05/30 2014, doi: 

10.3109/03091902.2014.909540. 

[38] P. Merriaux, Y. Dupuis, R. Boutteau, P. Vasseur, and X. Savatier, "A Study of 

Vicon System Positioning Performance," Sensors, vol. 17, no. 1591, 2017. 

[39] Microsoft, "Kinect for Xbox One," ed: Microsoft Corporation, 2015. 

[40] S. L. Colyer, M. Evans, D. P. Cosker, and A. I. T. Salo, "A Review of the 

Evolution of Vision-Based Motion Analysis and the Integration of Advanced 

Computer Vision Methods Towards Developing a Markerless System," Sports 

Medicine - Open, vol. 4, no. 1, p. 24, 2018/06/05 2018, doi: 10.1186/s40798-

018-0139-y. 

[41] W. I. Sellers and E. Hirasaki, "Markerless 3D motion capture for animal 

locomotion studies," Biology Open, vol. 3, pp. 356-368, 2014. 

[42]  S. Schuon, C. Theobalt, J. Davis, and S. Thrun, "High-Quality Scanning 

Using Time-Of-Flight Depth Superresolution," in IEEE Computer Society 

Conference on Computer Vision and Pattern Recognition Workshops, 

Anchorage, AK.  

[43] M. T. C. b. W. You. "The Hardware of Kinect Sensor. ." 

https://maythecodebewithu.wordpress.com/2013/07/28/the-hardware-of-

kinect-sensor (accessed June 21, 2020). 

[44] G. Billie, "Microsoft Kinect Sensor Evaluation," NASA Technical Reports 

Server (NTRS), Albuquerque, NM, 2011.  

[45] S. Li, L. Cui, C. Zhu, B. Li, N. Zhao, and T. Zhu, "Emotion recognition using 

Kinect motion capture data of human gaits," (in eng), PeerJ, vol. 4, pp. e2364-

e2364, 2016, doi: 10.7717/peerj.2364. 

[46] H. M. Hondori and M. Khademi, "A Review on Technical and Clinical Impact 

of Microsoft Kinect on Physical Therapy and Rehabilitation," Journal of 

Medical Engineering, 2014. 

[47] S. Springer and G. Y. Seligmann, "Validity of the Kinect for Gait 

Assessment:," Sensors, vol. 16, no. 2, p. 194, 2016. 

[48] S. Choppin, B. Lane, and J. Wheat, "The accuracy of the Microsoft Kinect in 

joint angle measurement," Sports Technology, vol. 7, no. 1-2, pp. 98-105, 

2014. 

[49]  S. W. Shepperd, "Quaternion from rotation matrix. [four-parameter 

representation of coordinate transformation matrix," NASA, Ed., 1978: NASA 

Publisher. [Online]. Available: 

https://ntrs.nasa.gov/search.jsp?R=19780048191. [Online]. Available: 

https://ntrs.nasa.gov/search.jsp?R=19780048191 

https://maythecodebewithu.wordpress.com/2013/07/28/the-hardware-of-kinect-sensor
https://maythecodebewithu.wordpress.com/2013/07/28/the-hardware-of-kinect-sensor
https://ntrs.nasa.gov/search.jsp?R=19780048191
https://ntrs.nasa.gov/search.jsp?R=19780048191


References 

      Thiago Braga Rodrigues - PhD Thesis    135 

[50] K. Otte et al., "Accuracy and Reliability of the Kinect Version 2 for Clinical 

Measurement of Motor Function," PLOS ONE, vol. 11, no. 11, p. e0166532, 

2016, doi: 10.1371/journal.pone.0166532. 

[51]  F. Schlagenhauf, S. Sreeram, and W. Singhose, "Comparison of Kinect and 

Vicon Motion Capture of Upper-Body Joint Angle Tracking," in 2018 IEEE 

14th International Conference on Control and Automation (ICCA), 12-15 June 

2018 2018, pp. 674-679, doi: 10.1109/ICCA.2018.8444349.  

[52] D. J. Geerse, B. H. Coolen, and M. Roerdink, "Kinematic Validation of a 

Multi-Kinect v2 Instrumented 10-Meter Walkway for Quantitative Gait 

Assessments," PLOS ONE, vol. 10, no. 10, p. e0139913, 2015, doi: 

10.1371/journal.pone.0139913. 

[53] J. Saboune and F. Charpillet, "Markerless Human Motion Tracking from a 

Single Camera Using Interval Particle Filtering," International Journal on 

Artificial Intelligence Tools, vol. 16, no. 4, pp. 593-609, 2007. 

[54]  M. Gabel, R. Gilad-Bachrach, E. Renshaw, and A. Schuster, "Full Body Gait 

Analysis with Kinect," in 34th Annual International Conference of the IEEE 

EMBS, San Diego, 2012.  

[55] R. A. Clark, K. J. Bower, B. F. Mentiplay, K. Paterson, and Y.-H. Pua, 

"Concurrent validity of the Microsoft Kinect for assessment of spatiotemporal 

gait variables," J Biomech, vol. 46, pp. 2722-2725, 2013. 

[56] S. Systems, "Clincal 3DMA," ed: Stt Systems. 

[57] B. Muller, W. Ilg, M. A. Giese, and N. Ludolph, "Validation of enhanced 

kinect sensor based motion capturing for gait assessment," PLoS ONE, vol. 12, 

no. 4, pp. 1-18, 2017. 

[58] S. Patel, H. Park, P. Bonato, L. Chan, and M. Rodgers, "A review of wearable 

sensors and systems with application in rehabilitation," Journal of 

NeuroEngineering and Rehabilitation, pp. 9-21, 2012. 

[59] Observer. "The Wearable Tech Industry Is Expected to Hit $54 Billion by 

2023." https://observer.com/2019/08/wearable-tech-industry-hit-54-billion-by-

2023/ (accessed 1 June, 2020). 

[60] V. Kempe, Inertial MEMS: Principles and Practice. Cambridge: Cambridge 

University Press, 2011. 

[61] N. Ahmad, R. A. R. Ghazilla, N. M. Khairi, and V. Kasi, "Reviews on Various 

Inertial Measurement Unit (IMU) Sensor Applications," International Journal 

of Signal Processing Systems, vol. 1, no. 2, pp. 256-262, 2013. 

[62]  J. Stober, L. Fishgold, and B. Kuipers, "Learning the sensorimotor structure of 

the foveated retina," in EpiRob, 2009.  

https://observer.com/2019/08/wearable-tech-industry-hit-54-billion-by-2023/
https://observer.com/2019/08/wearable-tech-industry-hit-54-billion-by-2023/


A Quality of Experience Evaluation of Augmented Reality and Haptic Feedback in a low-cost Gait 

Analysis System 

  Thiago Braga Rodrigues - PhD Thesis 136 

[63] R. Mooney, G. Corley, A. Godfrey, L. R. Quinlan, and G. ÓLaighin, "Inertial 

Sensor Technology for Elite Swimming Performance Analysis: A Systematic 

Review.," Sensors, vol. 16, no. 1, 2016. 

[64] D. Rodríguez-Martín, C. Pérez-López, A. SamàOrcID, J. Cabestany, and A. 

Català, "A Wearable Inertial Measurement Unit for Long-Term Monitoring in 

the Dependency Care Area.," Sensors, vol. 13, no. 10, pp. 14079-14104, 2013. 

[65] W. Tao, T. Liu, R. Zheng, and H. Feng, "Gait Analysis Using Wearable 

Sensors," Sensors, vol. 12, no. 2, pp. 2255-2283, 2012. 

[66]  A. Ahmadi et al., "Human gait monitoring using body-worn inertial sensors 

and kinematic modelling," in 2015 IEEE SENSORS, Busan, 2015, pp. `1-4.  

[67] H. Sveistrup, "Motor rehabilitation using virtual reality," Journal of 

NeuroEngineering and Rehabilitation, vol. 1, no. 10, 2004. 

[68]  G. Alankus, A. Lazar, M. May, and C. Kelleher, "Towards customizable 

games for stroke rehabilitation," in Proceedings of the SIGCHI Conference on 

Human Factors in Computing Systems, Atlanta, 2010, pp. 2113-2122.  

[69] D. V. Henri et al., "The implementation of inertial sensors for the assessment 

of temporal parameters of gait in the knee arthroplasty population," Clinical 

Biomechanics, vol. 54, pp. 22-27, 2018. 

[70] A. Ferrari, P. Ginis, M. Hardegger, F. Casamassima, L. Rocchi, and L. Chiari, 

"A Mobile Kalman-Filter Based Solution for the Real-Time Estimation of 

Spatio-Temporal Gait Parameters," IEEE Transactions on Neural Systems and 

Rehabilitation Engineering, vol. 24, no. 7, pp. 764-773, 2016. 

[71] "The GAITRite standard," ed. 

[72] A. Bó, M. Hayashibe, and P. Poignet, "Joint Angle Estimation in 

Rehabilitation with Inertial Sensors and its Integration with Kinect," 

Conference proceedings : ... Annual International Conference of the IEEE 

Engineering in Medicine and Biology Society. IEEE Engineering in Medicine 

and Biology Society. Conference, vol. 2011, pp. 3479-83, 08/01 2011, doi: 

10.1109/IEMBS.2011.6090940. 

[73] H. Mousavi Hondori, M. Khademi, and c. lopes, Monitoring Intake Gestures 

using Sensor Fusion (Microsoft Kinect and Inertial Sensors) for Smart Home 

Tele-Rehab Setting. 2012. 

[74] S. Feng and R. Murray-Smith, Fusing Kinect Sensor and Inertial Sensors with 

Multi-rate Kalman Filter. 2014, pp. 2.3-2.3. 

[75] K. Liu, C. Chen, R. Jafari, and N. Kehtarnavaz, "Fusion of Inertial and Depth 

Sensor Data for Robust Hand Gesture Recognition," IEEE Sensors Journal, 

vol. 14, 06/01 2014, doi: 10.1109/JSEN.2014.2306094. 

[76] R. Sigrist, G. Rauter, R. Riener, and P. Wolf, "Augmented visual, auditory, 

haptic, and multimodal feedback in motor learning: A review," Psychonomic 



References 

      Thiago Braga Rodrigues - PhD Thesis    137 

Bulletin & Review, vol. 20, no. 1, pp. 21-53, 2013/02/01 2013, doi: 

10.3758/s13423-012-0333-8. 

[77]  T. McDaniel, S. Krishna, D. Villanueva, and S. Panchanathan, "A haptic belt 

for vibrotactile communication," in 2010 IEEE International Symposium on 

Haptic Audio Visual Environments and Games, 16-17 Oct. 2010 2010, pp. 1-2, 

doi: 10.1109/HAVE.2010.5623962.  

[78] S. Krishna, S. Bala, T. McDaniel, S. McGuire, and S. Panchanathan, 

"VibroGlove: an assistive technology aid for conveying facial expressions," 

presented at the CHI ’10 Extended Abstracts on Human Factors in Computing 

Systems, Atlanta, Georgia, USA, 2010. [Online]. Available: 

https://doi.org/10.1145/1753846.1754031. 

[79] Seosensory. "Neosensory – Experience Sound as Touch and Gain New 

Awareness." https://neosensory.com/ (accessed June 21, 2020 ). 

[80] D. Chen and J.-B. Chossat, HaptiVec: Presenting Haptic Feedback Vectors in 

Handheld Controllers using Embedded Tactile Pin Arrays. 2019. 

[81] H. A. Sonar, A. P. Gerratt, S. P. Lacour, and J. Paik, "Closed-Loop Haptic 

Feedback Control Using a Self-Sensing Soft Pneumatic Actuator Skin," Soft 

robotics, 2019. 

[82]  J. v. d. Linden, E. Schoonderwaldt, and J. Bird, "Towards a real-time system 

for teaching novices correct violin bowing technique," in 2009 IEEE 

International Workshop on Haptic Audio visual Environments and Games, 7-8 

Nov. 2009 2009, pp. 81-86, doi: 10.1109/HAVE.2009.5356123.  

[83] J. Lieberman and C. Breazeal, "TIKL: Development of a Wearable 

Vibrotactile Feedback Suit for Improved Human Motor Learning," IEEE 

Transactions on Robotics, vol. 23, no. 5, pp. 919-926, 2007, doi: 

10.1109/TRO.2007.907481. 

[84]  J. Xu, U. H. Lee, T. Bao, Y. Huang, K. H. Sienko, and P. B. Shull, "Wearable 

sensing and haptic feedback research platform for gait retraining," in 2017 

IEEE 14th International Conference on Wearable and Implantable Body 

Sensor Networks (BSN), 9-12 May 2017 2017, pp. 125-128, doi: 

10.1109/BSN.2017.7936023.  

[85] Y. Gaffary, B. L. Gouis, M. Marchal, F. Argelaguet, B. Arnaldi, and A. 

Lécuyer, "AR Feels “Softer” than VR: Haptic Perception of Stiffness in 

Augmented versus Virtual Reality," IEEE Transactions on Visualization and 

Computer Graphics, vol. 23, no. 11, pp. 2372-2377, 2017, doi: 

10.1109/TVCG.2017.2735078. 

[86] T. Koritnik, A. Koenig, T. Bajd, R. Riener, and M. Munih, Comparison of 

visual and haptic feedback during training of lower extremities. 2010, pp. 540-

6. 

[87] L. Kauhanen, T. Palomäki, P. Jylänki, F. Aloise, M. Nuttin, and J. d. R. 

Millan, Haptic Feedback Compared with Visual Feedback for BCI. 2006. 

https://doi.org/10.1145/1753846.1754031
https://neosensory.com/


A Quality of Experience Evaluation of Augmented Reality and Haptic Feedback in a low-cost Gait 

Analysis System 

  Thiago Braga Rodrigues - PhD Thesis 138 

[88] L. Turchet, P. Burelli, and S. Serafin, "Haptic Feedback for Enhancing 

Realism of Walking Simulations," IEEE Transactions on Haptics, vol. 6, no. 

1, pp. 35-45, 2013, doi: 10.1109/TOH.2012.51. 

[89]  P. Shull, K. Lurie, M. Shin, T. Besier, and M. Cutkosky, "Haptic gait 

retraining for knee osteoarthritis treatment," in 2010 IEEE Haptics Symposium, 

25-26 March 2010 2010, pp. 409-416, doi: 10.1109/HAPTIC.2010.5444625.  

[90]  K. L. Lurie, P. B. Shull, K. F. Nesbitt, and M. R. Cutkosky, "Informing haptic 

feedback design for gait retraining," in 2011 IEEE World Haptics Conference, 

21-24 June 2011 2011, pp. 19-24, doi: 10.1109/WHC.2011.5945455.  

[91] DigiCapital. "Augmented, Virtual & Mixed Reality analytics platform, market 

reports, strategy consulting, investment banking: AR/VR data you can trust, 

analytics you can rely on." https://www.digi-capital.com/ (accessed. 

[92] M. Sanchez-Vives and M. Slater, "From presence to consciousness through 

virtual reality," Nature reviews. Neuroscience, vol. 6, pp. 332-9, 05/01 2005, 

doi: 10.1038/nrn1651. 

[93] K. Ahir, K. Govani, R. Gajera, and M. Shah, "Application on Virtual Reality 

for Enhanced Education Learning, Military Training and Sports," Augmented 

Human Research, vol. 5, no. 1, p. 7, 2019/11/29 2019, doi: 10.1007/s41133-

019-0025-2. 

[94] A. Colbert, N. Yee, and G. George, "The digital workforce and the workplace 

of the future," ed: Academy of Management Briarcliff Manor, NY, 2016. 

[95] Oculus. "Oculus | VR Headsets & Equipment." https://www.oculus.com 

(accessed June 6, 2020 ). 

[96] C. F. Durham and K. R. Alden, "Enhancing patient safety in nursing education 

through patient simulation," in Patient safety and quality: An evidence-based 

handbook for nurses: Agency for Healthcare Research and Quality (US), 2008. 

[97] M. C. Howard, "A meta-analysis and systematic literature review of virtual 

reality rehabilitation programs," Computers in Human Behavior, vol. 70, pp. 

317-327, 2017. 

[98] J. Carmigniani, B. Furht, M. Anisetti, P. Ceravolo, E. Damiani, and M. 

Ivkovic, "Augmented reality technologies, systems and applications," 

Multimedia tools and applications, vol. 51, no. 1, pp. 341-377, 2011. 

[99]  S. R. R. Sanches, M. Oizumi, C. Oliveira, E. F. Damasceno, and A. C. 

Sementille, "Aspects of User Profiles That Can Improve Mobile Augmented 

Reality Usage," in 2017 19th Symposium on Virtual and Augmented Reality 

(SVR), 1-4 Nov. 2017 2017, pp. 236-242, doi: 10.1109/SVR.2017.38.  

[100] P. A. Rauschnabel, A. Rossmann, and M. C. tom Dieck, "An adoption 

framework for mobile augmented reality games: The case of Pokémon Go," 

Computers in Human Behavior, vol. 76, pp. 276-286, 2017. 

https://www.digi-capital.com/
https://www.oculus.com/


References 

      Thiago Braga Rodrigues - PhD Thesis    139 

[101] P. Rauschnabel and Y. K. Ro, Augmented Reality Smart Glasses: An 

Investigation of Technology Acceptance Drivers. 2016, pp. 123-148. 

[102] Epson. "Epson Moverio BT-300." Epson. https://moverio.epson.com/ 

(accessed 15, 2019). 

[103] G. Nagymáté and R. M. Kiss, "Affordable gait analysis using augmented 

reality markers," PLOS ONE, vol. 14, no. 2, p. e0212319, 2019, doi: 

10.1371/journal.pone.0212319. 

[104] G. J. Diaz, M. S. Parade, S. L. Barton, and B. R. Fajen, "The pickup of visual 

information about size and location during approach to an obstacle," PLOS 

ONE, vol. 13, no. 2, p. e0192044, 2018, doi: 10.1371/journal.pone.0192044. 

[105] J. Matthis, S. Barton, and B. Fajen, "The critical phase for visual control of 

human walking over complex terrain," Proceedings of the National Academy 

of Sciences, vol. 114, 07/24 2017, doi: 10.1073/pnas.1611699114. 

[106] K. Binaee and G. J. Diaz, "Assessment of an augmented reality apparatus for 

the study of visually guided walking and obstacle crossing," Behavior 

Research Methods, vol. 51, no. 2, pp. 523-531, 2019/04/01 2019, doi: 

10.3758/s13428-018-1105-9. 

[107] R. Kothari, K. Binaee, J. S. Matthis, R. Bailey, and G. J. Diaz, "Novel 

apparatus for investigation of eye movements when walking in the presence of 

3D projected obstacles," presented at the Proceedings of the Ninth Biennial 

ACM Symposium on Eye Tracking Research & Applications, Charleston, 

South Carolina, 2016. 

[108] Y. A. Sekhavat and M. S. Namani, "Projection-Based AR: Effective Visual 

Feedback in Gait Rehabilitation," IEEE Transactions on Human-Machine 

Systems, vol. 48, no. 6, pp. 626-636, 2018, doi: 10.1109/THMS.2018.2860579. 

[109] C.-H. Lee, Y. Kim, and B.-H. Lee, "Augmented reality-based postural control 

training improves gait function in patients with stroke: Randomized controlled 

trial," Hong Kong Physiotherapy Journal, vol. 32, no. 2, pp. 51-57, 

2014/12/01/ 2014, doi: https://doi.org/10.1016/j.hkpj.2014.04.002. 

[110] S. M. Dahlgaard-Park, The SAGE encyclopedia of quality and the service 

economy. SAGE Publications, 2015. 

[111] N. Elassy, "The concepts of quality, quality assurance and quality 

enhancement," Quality Assurance in Education, vol. 23, no. 3, pp. 250-261, 

2015. 

[112] S. Möller and A. Raake, Quality of Experience: Advanced Concepts, 

Applications and Methods. 2014. 

[113]  T. Ebrahimi, "Quality of multimedia experience: past, present and futur," in 

MM''09: Proceedings of the seventeen ACM international conference on 

Multimedia, 2009.  

https://moverio.epson.com/
https://doi.org/10.1016/j.hkpj.2014.04.002


A Quality of Experience Evaluation of Augmented Reality and Haptic Feedback in a low-cost Gait 

Analysis System 

  Thiago Braga Rodrigues - PhD Thesis 140 

[114] T. Haines, J. McBride, N. Triplett, J. Skinner, K. Fairbrother, and T. J. Kirby, 

"A comparison of men's and women's strength to body mass ratio and 

varus/valgus knee angle during jump landings," Journal of sports sciences, 

vol. 29, pp. 1435-42, 09/15 2011, doi: 10.1080/02640414.2011.599039. 

[115] R. J. Schmitz et al., "Varus/valgus and internal/external torsional knee joint 

stiffness differs between sexes," (in eng), Am J Sports Med, vol. 36, no. 7, pp. 

1380-1388, 2008, doi: 10.1177/0363546508317411. 

[116] K. A. Russell, R. M. Palmieri, S. M. Zinder, and C. D. Ingersoll, "Sex 

differences in valgus knee angle during a single-leg drop jump," (in eng), J 

Athl Train, vol. 41, no. 2, pp. 166-171, Apr-Jun 2006. [Online]. Available: 

https://www.ncbi.nlm.nih.gov/pubmed/16791301 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472649/. 

[117] C. E. Quatman and T. E. Hewett, "The anterior cruciate ligament injury 

controversy: is "valgus collapse" a sex-specific mechanism?," (in eng), Br J 

Sports Med, vol. 43, no. 5, pp. 328-335, 2009, doi: 

10.1136/bjsm.2009.059139. 

[118]  C. Keighrey, R. Flynn, S. Murray, and N. Murray, "A QoE evaluation of 

immersive augmented and virtual reality speech &amp; language assessment 

applications," in 2017 Ninth International Conference on Quality of 

Multimedia Experience (QoMEX), 31 May-2 June 2017 2017, pp. 1-6, doi: 

10.1109/QoMEX.2017.7965656.  

[119] L. Omelina, B. Bonnechère, S. Van Sint Jan, and B. Jansen, Analyzing the 

quality of experience of computer games in rehabilitation: the therapist's 

perspective. 2016, pp. 105-108. 

[120] ITU-T, "Methods for the subjective assessment of video quality, audio quality 

and audiovisual quality of Internet video and distribution quality  television in 

any environment," Telecomunication Standardization Sector of ITU, 2016.  

[121]  D. Egan, S. Brennan, J. Barrett, Y. Qiao, C. Timmerer, and N. Murray, "An 

evaluation of Heart Rate and ElectroDermal Activity as an objective QoE 

evaluation method for immersive virtual reality environments," in 2016 Eighth 

International Conference on Quality of Multimedia Experience (QoMEX), 6-8 

June 2016 2016, pp. 1-6, doi: 10.1109/QoMEX.2016.7498964.  

[122] T. Braga Rodrigues, C. Ó Catháin, N. E. O’Connor, and N. Murray, "A 

Quality of Experience assessment of haptic and augmented reality feedback 

modalities in a gait analysis system," PLOS ONE, vol. 15, no. 3, p. e0230570, 

2020, doi: 10.1371/journal.pone.0230570. 

[123] A.-N. Moldovan, I. Ghergulescu, and C. H. Muntean, "VQAMap: A novel 

mechanism for mapping objective video quality metrics to subjective MOS 

scale," IEEE Transactions on Broadcasting, vol. 62, no. 3, pp. 610-627, 2016. 

https://www.ncbi.nlm.nih.gov/pubmed/16791301
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1472649/


References 

      Thiago Braga Rodrigues - PhD Thesis    141 

[124]  I. Hupont, J. Gracia, L. Sanagustín, and M. A. Gracia, "How do new visual 

immersive systems influence gaming QoE? A use case of serious gaming with 

Oculus Rift," in 2015 Seventh International Workshop on Quality of 

Multimedia Experience (QoMEX), 26-29 May 2015 2015, pp. 1-6, doi: 

10.1109/QoMEX.2015.7148110.  

[125] J. Lewis, The Revised Mean Opinion Scale (MOS-R): Preliminary 

Psychometric Evaluation. 2001. 

[126] R. Harte et al., "Human-Centered Design Study: Enhancing the Usability of a 

Mobile Phone App in an Integrated Falls Risk Detection System for Use by 

Older Adult Users," JMIR Mhealth Uhealth, vol. 5, no. 5, p. e71doi: 

10.2196/mhealth.7046. 

[127] P. Hoonakker et al., "Measuring workload of ICU nurses with a questionnaire 

survey: the NASA Task Load Index (TLX)," IIE Transactions on Healthcare 

Systems Engineering, vol. 1, no. 2, pp. 131-143, 2011/04/01 2011, doi: 

10.1080/19488300.2011.609524. 

[128] T.-M. Bynion and M. Feldner, "Self-Assessment Manikin," 2017, pp. 1-3. 

[129] E. Hynes, R. Flynn, B. Lee, and N. Murray, A Quality of Experience 

Evaluation Comparing Augmented Reality and Paper Based Instruction for 

Complex Task Assistance. 2019, pp. 1-6. 

[130] G. Verma and U. S. Tiwary, "Affect Representation and Recognition in 3D 

Continuous Valence-Arousal-Dominance Space," Multimedia Tools and 

Applications, vol. 76, 11/27 2015, doi: 10.1007/s11042-015-3119-y. 

[131] S. Hart, Nasa-task load index (Nasa-TLX); 20 years later. 2006. 

[132] R. Gupta, H. J. Banville, and T. H. Falk, "Multimodal Physiological Quality-

of-Experience Assessment of Text-to-Speech Systems," IEEE Journal of 

Selected Topics in Signal Processing, vol. 11, no. 1, pp. 22-26, 2017. 

[133] R. Schatz, T. Hossfeld, L. Janowski, and S. Egger-Lampl, From Packets to 

People: Quality of Experience as a New Measurement Challenge. Berlin: 

Springer, 2013. 

[134]  C. Keighrey, R. Flynn, S. Murray, S. Brennan, and N. Murray, "Comparing 

User QoE via Physiological and Interaction Measurements of Immersive AR 

and VR Speech and Language Therapy Applications," in Proceedings of the 

on Thematic Workshops of ACM Multimedia 2017, Mountain View, 2017.  

[135]  A. Moldovan, I. Ghergulescu, S. Weibelzahl, and C. H. Muntean, "User-

centered EEG-based multimedia quality assessment," in 2013 IEEE 

International Symposium on Broadband Multimedia Systems and 

Broadcasting (BMSB), 5-7 June 2013 2013, pp. 1-8, doi: 

10.1109/BMSB.2013.6621743.  



A Quality of Experience Evaluation of Augmented Reality and Haptic Feedback in a low-cost Gait 

Analysis System 

  Thiago Braga Rodrigues - PhD Thesis 142 

[136] I. Ghergulescu and C. H. Muntean, "A Novel Sensor-Based Methodology for 

Learner's Motivation Analysis in Game-Based Learning," Interacting with 

Computers, vol. 26, no. 4, pp. 305-320, 2014, doi: 10.1093/iwc/iwu013. 

[137] U. Engelke, D. P. Darcy, G. H. Mulliken, S. Bosse, and M. G. Martini, 

"Psychophysiology-based QoE Assessment: A Survey," MEASURING QOE 

FOR ADVANCED MEDIA TECHNOLOGIES AND SERVICES, no. JSTSP 

SPECIAL ISSUE, 2016. 

[138] Z. Jie and H.-J. Kim. (2013, January) User Feedback Oriented Quality of 

Experience Management Framework. China Communications.  

[139] D. Bogusevschi, C. Muntean, and G.-M. Muntean, "Teaching and learning 

physics using 3D virtual learning environment: A case study of combined 

virtual reality and virtual laboratory in secondary school," Journal of 

Computers in Mathematics and Science Teaching, vol. 39, no. 1, pp. 5-18, 

2020. 

[140]  I. Hupont, J. Gracia, L. Sanagustín, and M. A. Gracia, "How do new visual 

immersive systems influence gaming QoE? A use case of serious gaming with 

Oculus Rift," in 2015 Seventh International Workshop on Quality of 

Multimedia Experience (QoMEX), Pylos-Nestoras, 2015.  

[141] W. Stiles, "Quality-Control in Qualitative Research," Clinical Psychology 

Review, vol. 13, pp. 593-618, 12/31 1993, doi: 10.1016/0272-7358(93)90048-

Q. 

[142]  N. Zioulis et al., "3D tele-immersion platform for interactive immersive 

experiences between remote users," in 2016 IEEE International Conference on 

Image Processing (ICIP), 25-28 Sept. 2016 2016, pp. 365-369.  

[143] H. L. Mjøsund, E. Boyle, P. Kjaer, R. M. Mieritz, T. Skallgård, and P. Kent, 

"Clinically acceptable agreement between the ViMove wireless motion sensor 

system and the Vicon motion capture system when measuring lumbar region 

inclination motion in the sagittal and coronal planes," BMC musculoskeletal 

disorders, vol. 18, no. 1, p. 124, 2017. 

[144]  G. Zhao, G. Liu, H. Li, and M. Pietikainen, "3D gait recognition using 

multiple cameras," in  7th International Conference on Automatic Face and 

Gesture Recognition, 2006. FGR 2006., Southampton, 2006.  

[145]  M. Derlatka, "Human Gait Recognition Based on Signals from Two Force 

Plates," in International Conference on Artificial Intelligence and Soft 

Computing, Berlin, 2012.  

[146] A. Castelli, G. Paolini, A. Cereatti, and U. Della Croce, "A 2D Markerless Gait 

Analysis Methodology: Validation on Healthy Subjects," Computational and 

Mathematical Methods in Medicine, vol. 2015, no. 186780, 2015. 

[147]  T. B Rodrigues, C. Ó Catháin, D. Devine, K. Moran, N. E. O'Connor, and N. 

Murray, "An Evaluation of a 3D Multimodal Marker-less Motion Analysis 



References 

      Thiago Braga Rodrigues - PhD Thesis    143 

System," in ACM Multimedia Systems Conference 2019, Amherst, MA, USA, 

ACM, Ed., 2019, doi: http://dx.doi.org/10.1145/3304109.3306236.  

[148]  M. Sebastian O. H., H. Andrew J. L., and V. Ravi, "Estimation of IMU and 

MARG orientation using a gradient descent algorithm," in 2011 IEEE 

International Conference on Rehabilitation Robotics, Zurich, 2011.  

[149] T. Wei, B. Lee, Y. Qiao, A. Kitsikidis, K. Dimitropoulos, and G. Nikos, 

Experimental study of skeleton tracking abilities from microsoft kinect non-

frontal views. 2015. 

[150] H. Berthold K. P., "Closed-form solution of absolute orientation using unit 

quaternions," Journal of the Optical Society of America, vol. 4, no. 4, pp. 629-

642, 1987. 

[151] Shimmer, "Shimmer3 IMU Unit," ed: © Shimmer. 

[152] F. Stief, H. Böhm, K. Michel, A. Schwirtz, and L. Döderlein, "Reliability and 

Accuracy in Three-Dimensional Gait Analysis: A Comparison of Two Lower 

Body Protocols," Journal of applied biomechanics, vol. 29, pp. 105-111, 02/01 

2013, doi: 10.1123/jab.29.1.105. 

[153] H. Kainz et al., "Reliability of four models for clinical gait analysis," Gait & 

Posture, vol. 54, 04/01 2017, doi: 10.1016/j.gaitpost.2017.04.001. 

[154] A. Ferrari et al., "Quantitative comparison of five current protocols in gait 

analysis," Gait & posture, vol. 28, pp. 207-16, 09/01 2008, doi: 

10.1016/j.gaitpost.2007.11.009. 

[155] "Plug-in Gait Reference Guide," ed: Vicon Motion Systems, 2018. 

[156] L. S. Vargas-Valencia, A. Elias, E. Rocon, T. Bastos-Filho, and A. Frizera, 

"An IMU-to-Body Alignment Method Applied to Human Gait Analysis," (in 

eng), Sensors (Basel), vol. 16, no. 12, p. 2090, 2016, doi: 10.3390/s16122090. 

[157] VICON, "Fill gaps in trial data," ed: Vicon Motion Systems, 2018. 

[158] R. Keane and R. Adrian, "Theory of cross-correlation analysis of PIV images," 

Applied Scientific Research, vol. 49, pp. 191-215, 01/07 1992, doi: 

10.1007/BF00384623. 

[159] H. Abdi and L. J. Williams, "Principal component analysis," WIREs Comput. 

Stat., vol. 2, no. 4, pp. 433–459, 2010, doi: 10.1002/wics.101. 

[160] E. Lau, C. Cooper, D. Lam, V. Chan, K. Tsang, and S. A, "Factors Associated 

with Osteoarthritis of the Hip and Knee in Hong Kong Chinese: Obesity, Joint 

Injury, and Occupational Activities," American Journal of Epidemiology, vol. 

152, no. 9, pp. 855-862, 2000. 

[161] S. E. Calce, H. K. Kurki, D. A. Weston, and L. Gould, "The relationship of 

age, activity, and body size on osteoarthritis in weight-bearing skeletal 

regions," International Journal of Paleopathology, vol. 22, pp. 45-53, 2018. 

http://dx.doi.org/10.1145/3304109.3306236


A Quality of Experience Evaluation of Augmented Reality and Haptic Feedback in a low-cost Gait 

Analysis System 

  Thiago Braga Rodrigues - PhD Thesis 144 

[162] U. Kujala, J. Kaprio, and S. Sarna, "Osteoarthritis of weight bearing joints of 

lower limbs in former elite male athletes," BMJ: British Medical Journal, vol. 

308, no. 6923, pp. 231-234, 1994. 

[163] A. Kale et al., "Identification of humans using gait," EEE Transactions on 

Image Processing, vol. 13, no. 9, pp. 1163-1173, 2004. 

[164] A. Muro-de-la-Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla, "Gait 

Analysis Methods: An Overview of Wearable and Non-Wearable Systems, 

Highlighting Clinical Applications," Sensors, vol. 14, no. 2, pp. 3362–3394, 

2014. 

[165] V. C. Bacon-Shone and J. Bacon-Shone, "Gait of Normal Hong Kong Chinese 

Children: The Bootstrap Approach," Hong Kong Physiotherapy Journal, vol. 

18, no. 1, pp. 21-25, 2000. 

[166] M. W. Lenhoff, T. J. Santner, J. C. Otis, M. G. E. Peterson, B. J. Williams, and 

S. I. Backus, "Bootstrap prediction and confidence bands: a superior statistical 

method for analysis of gait data," Gait and Posture, vol. 9, pp. 10-17, 1999. 

[167] R. Chaganti and N. Lane, "Risk factors for incident osteoarthritis of the hip 

and knee," Current reviews in musculoskeletal medicine, vol. 4, pp. 99-104, 

08/02 2011, doi: 10.1007/s12178-011-9088-5. 

[168] I. K. Center, "KMO and Bartlett’s Test," 2018. 

[169] XSens. "Xsens | 3D Motion Tracking Technology." 

https://www.xsens.com/products/mtw-awinda/ (accessed. 

[170] T. B. Rodrigues, D. P. Salgado, C. Ó. Catháin, N. O’Connor, and N. Murray, 

"Human gait assessment using a 3D marker-less multimodal motion capture 

system," Multimedia Tools and Applications, 2019/12/05 2019, doi: 

10.1007/s11042-019-08275-9. 

[171] V. Hu, E. Charry, M. Umer, A. Ronchi, and S. Taylor, An inertial sensor 

system for measurements of tibia angle with applications to knee valgus/varus 

detection. 2014, pp. 1-6. 

[172] C. Liu, C. Ma, J. Zhou, L. Liu, S. Yue, and Q. Gong, "Feedback control for 

two-degree-of-freedom vibration system with fractional-order derivative 

damping," Journal of Low Frequency Noise, Vibration and Active Control, 

vol. 37, p. 146134841772595, 08/21 2017, doi: 10.1177/1461348417725958. 

[173] S. Ryu, D. Pyo, S.-C. Lim, and D.-S. Kwon, "Mechanical Vibration Influences 

the Perception of Electrovibration," Scientific Reports, vol. 8, no. 1, p. 4555, 

2018/03/14 2018, doi: 10.1038/s41598-018-22865-x. 

[174] M. F. Rahman, D. Patterson, A. Cheok, and R. Betz, "30 - Motor Drives," in 

Power Electronics Handbook (Fourth Edition), M. H. Rashid Ed.: 

Butterworth-Heinemann, 2018, pp. 945-1021. 

https://www.xsens.com/products/mtw-awinda/


References 

      Thiago Braga Rodrigues - PhD Thesis    145 

[175]  V. Bhatia, S. Joshi, and R. Chapaneri, "Websocket-Evented Real-Time Online 

Coding Collaborator," in Smart Intelligent Computing and Applications, 

Singapore, S. C. Satapathy, V. Bhateja, and S. Das, Eds., 2019// 2019: 

Springer Singapore, pp. 325-334.  

[176] O. A Ilahi, N. R Kadakia, and M. Huo, "Inter- and intraobserver variability of 

radiographic measurements of knee alignment," The American journal of knee 

surgery, vol. 14, pp. 238-42, 02/01 2001. 

[177] V. Borisov, G. Sprint, D. J. Cook, and D. L. Weeks, "Measuring Changes in 

Gait and Vehicle Transfer Ability During Inpatient Rehabilitation with 

Wearable Inertial Sensors," (in eng), Proc IEEE Int Conf Pervasive Comput 

Commun Workshops, vol. 2017, p. 10.1109/PERCOMW.2017.7917600, 2017, 

doi: 10.1109/PERCOMW.2017.7917600. 

[178] N. Gregori, W. Feuer, and P. Rosenfeld, Novel method for analyzing Snellen 

visual acuity measurements. 2010, pp. 1046-50. 

[179] R. W. Pickford, "The Ishihara Test for Colour Blindness," Nature, vol. 153, 

no. 3891, pp. 656-657, 1944/05/01 1944, doi: 10.1038/153656b0. 

[180] J. A. Bell-Krotoski, E. E. Fess, J. H. Figarola, and D. Hiltz, "Threshold 

Detection and Semmes-Weinstein Monofilaments," Journal of Hand Therapy, 

vol. 8, no. 2, pp. 155-162, 1995/04/01/ 1995, doi: 

https://doi.org/10.1016/S0894-1130(12)80314-0. 

[181]  A. A. Laghari, H. Hui, M. Shafiq, and A. Khan, "Assessing effect of Cloud 

distance on end user's Quality of Experience (QoE)," in 2016 2nd IEEE 

International Conference on Computer and Communications (ICCC), 14-17 

Oct. 2016 2016, pp. 500-505, doi: 10.1109/CompComm.2016.7924751.  

[182] A. Bangor, P. T. Kortum, and J. T. Miller, "An Empirical Evaluation of the 

System Usability Scale," International Journal of Human–Computer 

Interaction, vol. 24, no. 6, pp. 574-594, 2008/07/29 2008, doi: 

10.1080/10447310802205776. 

[183] T. Schubert, F. Friedmann, and H. Regenbrecht, "The Experience of Presence: 

Factor Analytic Insights," Presence: Teleoperators and Virtual Environments, 

vol. 10, no. 3, pp. 266-281, 2001/06/01 2001, doi: 

10.1162/105474601300343603. 

[184] J. Lewis and J. R, IBM Computer Usability Satisfaction Questionnaires: 

Psychometric Evaluation and Instructions for Use. 1993, p. 57. 

[185] P. Mishra, C. M. Pandey, U. Singh, A. Gupta, C. Sahu, and A. Keshri, 

"Descriptive statistics and normality tests for statistical data," (in eng), Ann 

Card Anaesth, vol. 22, no. 1, pp. 67-72, Jan-Mar 2019, doi: 

10.4103/aca.ACA_157_18. 

[186] A. Field, Discovering Statistics using IBM SPSS Statistics. Sage Publications 

Ltd., 2013, p. 952. 

https://doi.org/10.1016/S0894-1130(12)80314-0


A Quality of Experience Evaluation of Augmented Reality and Haptic Feedback in a low-cost Gait 

Analysis System 

  Thiago Braga Rodrigues - PhD Thesis 146 

[187] H. F. Posada-Quintero, J. P. Florian, A. D. Orjuela-Cañón, and K. H. Chon, 

"Electrodermal Activity Is Sensitive to Cognitive Stress under Water," (in 

English), Frontiers in Physiology, Original Research vol. 8, no. 1128, 2018-

January-17 2018, doi: 10.3389/fphys.2017.01128. 

[188] R. Zangroniz, A. Martinez Rodrigo, J. M. Pastor García, M. López Bonal, and 

A. Fernández-Caballero, "Electrodermal Activity Sensor for Classification of 

Calm/Distress Condition," Sensors, vol. 17, p. 2324, 10/12 2017, doi: 

10.3390/s17102324. 

[189] H.-G. Kim, E.-J. Cheon, D.-S. Bai, Y. H. Lee, and B.-H. Koo, "Stress and 

Heart Rate Variability: A Meta-Analysis and Review of the Literature," (in 

eng), Psychiatry Investig, vol. 15, no. 3, pp. 235-245, 2018, doi: 

10.30773/pi.2017.08.17. 

[190] U. Engelke et al., "Psychophysiology-Based QoE Assessment: A Survey," 

IEEE Journal of Selected Topics in Signal Processing, vol. PP, pp. 1-1, 09/15 

2016, doi: 10.1109/JSTSP.2016.2609843. 

[191] O. Faust, Y. Hagiwara, T. J. Hong, O. S. Lih, and U. R. Acharya, "Deep 

learning for healthcare applications based on physiological signals: A review," 

Computer Methods and Programs in Biomedicine, vol. 161, pp. 1-13, 

2018/07/01/ 2018, doi: https://doi.org/10.1016/j.cmpb.2018.04.005. 

[192]  G. Chanel, A.-A. Karim, and P. Thierry, "Valence-arousal evaluation using 

physiological signals in an emotion recall paradigm," in 2007 IEEE 

International Conference on Systems, Man and Cybernetics, 7-10 Oct. 2007 

2007, pp. 2662-2667, doi: 10.1109/ICSMC.2007.4413638.  

[193] P. Bonato, P. Boissy, U. Della Croce, and S. H. Roy, "Changes in the surface 

EMG signal and the biomechanics of motion during a repetitive lifting task," 

(in eng), IEEE transactions on neural systems and rehabilitation engineering : 

a publication of the IEEE Engineering in Medicine and Biology Society, vol. 

10, no. 1, pp. 38-47, Mar 2002, doi: 10.1109/tnsre.2002.1021585. 

[194] C. S. Klein, S. Li, X. Hu, and X. Li, "Editorial: Electromyography (EMG) 

Techniques for the Assessment and Rehabilitation of Motor Impairment 

Following Stroke," (in English), Frontiers in Neurology, Editorial vol. 9, no. 

1122, 2018-December-18 2018, doi: 10.3389/fneur.2018.01122. 

[195] Y. Nagano, H. Ida, M. Akai, and T. Fukubayashi, "Effects of jump and balance 

training on knee kinematics and electromyography of female basketball 

athletes during a single limb drop landing: pre-post intervention study," Sports 

Medicine, Arthroscopy, Rehabilitation, Therapy & Technology, vol. 3, no. 1, p. 

14, 2011/07/14 2011, doi: 10.1186/1758-2555-3-14. 

[196] L.-Q. Zhang, D. Xu, G. Wang, and R. W. Hendrix, Muscle strength in knee 

varus and valgus. 2001, pp. 1194-1199. 

https://doi.org/10.1016/j.cmpb.2018.04.005


References 

      Thiago Braga Rodrigues - PhD Thesis    147 

[197] D. B. Chaffin, M. Lee, and A. Freivalds, "Muscle strength assessment from 

EMG analysis," (in eng), Medicine and science in sports and exercise, vol. 12, 

no. 3, pp. 205-11, 1980. 

[198] T. E. Hewett, B. T. Zazulak, G. D. Myer, and K. R. Ford, "A review of 

electromyographic activation levels, timing differences, and increased anterior 

cruciate ligament injury incidence in female athletes," (in eng), Br J Sports 

Med, vol. 39, no. 6, pp. 347-350, 2005, doi: 10.1136/bjsm.2005.018572. 

[199] J. Donley, C. Ritz, and M. Shujau, Analysing the Quality of Experience of 

Multisensory Media from Measurements of Physiological Responses. 2014. 

[200] S. Haiblum-Itskovitch, J. Czamanski-Cohen, and G. Galili, "Emotional 

Response and Changes in Heart Rate Variability Following Art-Making With 

Three Different Art Materials," (in eng), Frontiers in psychology, vol. 9, pp. 

968-968, 2018, doi: 10.3389/fpsyg.2018.00968. 

[201] Y. Wu, R. Gu, Q. Yang, and Y.-j. Luo, "How Do Amusement, Anger and Fear 

Influence Heart Rate and Heart Rate Variability?," (in English), Frontiers in 

Neuroscience, Original Research vol. 13, no. 1131, 2019-October-18 2019, 

doi: 10.3389/fnins.2019.01131. 

[202] P. Jönsson, "Respiratory sinus arrhythmia as a function of state anxiety in 

healthy individuals," International journal of psychophysiology, vol. 63, no. 1, 

pp. 48-54, 2007. 

[203] A. Lima et al., "Walking capacity is positively related with heart rate 

variability in symptomatic peripheral artery disease," European Journal of 

Vascular and Endovascular Surgery, vol. 52, no. 1, pp. 82-89, 2016. 

[204] F. Shaffer and J. P. Ginsberg, "An Overview of Heart Rate Variability Metrics 

and Norms," (in eng), Front Public Health, vol. 5, pp. 258-258, 2017, doi: 

10.3389/fpubh.2017.00258. 

[205] H. Posada-Quintero and K. Chon, "Innovations in Electrodermal Activity Data 

Collection and Signal Processing: A Systematic Review," Sensors, vol. 20, p. 

479, 01/15 2020, doi: 10.3390/s20020479. 

[206] C. M. Laine, K. M. Spitler, C. P. Mosher, and K. M. Gothard, "Behavioral 

triggers of skin conductance responses and their neural correlates in the 

primate amygdala," (in eng), J Neurophysiol, vol. 101, no. 4, pp. 1749-1754, 

2009, doi: 10.1152/jn.91110.2008. 

[207] E.-H. Jang, B.-J. Park, M.-S. Park, S.-H. Kim, and J.-H. Sohn, "Analysis of 

physiological signals for recognition of boredom, pain, and surprise emotions," 

(in eng), J Physiol Anthropol, vol. 34, no. 1, pp. 25-25, 2015, doi: 

10.1186/s40101-015-0063-5. 

[208] D. H. McDougal and P. D. Gamlin, "Autonomic control of the eye," (in eng), 

Compr Physiol, vol. 5, no. 1, pp. 439-473, 2015, doi: 10.1002/cphy.c140014. 



A Quality of Experience Evaluation of Augmented Reality and Haptic Feedback in a low-cost Gait 

Analysis System 

  Thiago Braga Rodrigues - PhD Thesis 148 

[209] R. L. van den Brink, P. R. Murphy, and S. Nieuwenhuis, "Pupil Diameter 

Tracks Lapses of Attention," PLOS ONE, vol. 11, no. 10, p. e0165274, 2016, 

doi: 10.1371/journal.pone.0165274. 

[210] E. Alexandridis and C. Baumann, "[Actual and apparent size of the pupil of 

the human eye]," (in ger), Optica acta, vol. 14, no. 3, pp. 311-6, Jul 1967, doi: 

10.1080/713818034. Wirkliche und scheinbare Pupillenweiten des 

menschlichen Auges. 

[211] D. Iacoviello, "Analysis of pupil fluctuations after a light stimulus by image 

processing and neural network," Computers & Mathematics with applications, 

vol. 53, no. 8, pp. 1260-1270, 2007. 

[212] M. Bradley, L. Miccoli, M. Escrig, and P. Lang, "The pupil as a measure of 

emotional arousal and autonomic activation," Psychophysiology, vol. 45, pp. 

602-7, 08/01 2008, doi: 10.1111/j.1469-8986.2008.00654.x. 

[213] S. Schmitz, F. Krummenauer, S. Henn, and H. Dick, "Comparison of three 

different technologies for pupil diameter measurement," Graefe's archive for 

clinical and experimental ophthalmology = Albrecht von Graefes Archiv für 

klinische und experimentelle Ophthalmologie, vol. 241, pp. 472-7, 06/01 2003, 

doi: 10.1007/s00417-003-0669-x. 

[214] E. Inc. "E4 wristband." https://e4.empatica.com/e4-wristband (accessed 2020). 

[215]  C. McCarthy, N. Pradhan, C. Redpath, and A. Adler, "Validation of the 

Empatica E4 wristband," in 2016 IEEE EMBS International Student 

Conference (ISC), 29-31 May 2016 2016, pp. 1-4.  

[216] P. L. GmbH. "Pupil Labs: Add awareness to your VR/AR experience." 

https://pupil-labs.com/products/vr-ar/tech-specs/ (accessed. 

[217] B. Ehinger, K. Groß, I. Ibs, and P. König, A new comprehensive Eye-Tracking 

Test Battery concurrently evaluating the Pupil Labs Glasses and the EyeLink 

1000. 2019. 

[218] J. Parák, A. Tarniceriu, P. Renevey, M. Bertschi, R. Delgado, and I. Korhonen, 

Evaluation of the Beat-to-Beat Detection Accuracy of PulseOn Wearable 

Optical Heart Rate Monitor. 2015. 

[219] M. Davila, G. Lewis, and S. Porges, "The PhysioCam: A Novel Non-Contact 

Sensor to Measure Heart Rate Variability in Clinical and Field Applications," 

Front Public Health, vol. 5, 11/22 2017, doi: 10.3389/fpubh.2017.00300. 

[220]  J. Pietilä et al., "Evaluation of the accuracy and reliability for 

photoplethysmography based heart rate and beat-to-beat detection during daily 

activities," Singapore, 2018: Springer Singapore, in EMBEC & NBC 2017, pp. 

145-148.  

[221] H. Posada-Quintero and K. Chon, Frequency-domain electrodermal activity 

index of sympathetic function. 2016, pp. 497-500. 

https://e4.empatica.com/e4-wristband
https://pupil-labs.com/products/vr-ar/tech-specs/


References 

      Thiago Braga Rodrigues - PhD Thesis    149 

[222] C.-A. Wang, T. Baird, J. Huang, J. D. Coutinho, D. C. Brien, and D. P. 

Munoz, "Arousal Effects on Pupil Size, Heart Rate, and Skin Conductance in 

an Emotional Face Task," (in eng), Frontiers in neurology, vol. 9, pp. 1029-

1029, 2018, doi: 10.3389/fneur.2018.01029. 

[223] P. Ren, A. Barreto, Y. Gao, and M. Adjouadi, "Comparison of the use of pupil 

diameter and galvanic skin response signals for affective assessment of 

computer users," Biomedical sciences instrumentation, vol. 48, pp. 345-50, 

07/31 2012. 

[224] A. Patrizi, E. Pennestri, and P. P. Valentini, Comparison between low-cost 

marker-less and high-end marker-based motion capture systems for the 

computer-aided assessment of working ergonomics. 2015, pp. 1-11. 

[225] d. S. Expert. "3d Scanner Alternatives for Microsoft's Discontinued Kinect." 

https://3dscanexpert.com/alternatives-microsoft-discontinues-kinect-popular-

low-cost-3d-scanner/ (accessed 16 June, 2020). 

[226] V. Vasilev, J. Leguay, S. Paris, L. Maggi, and m. Debbah, Predicting QoE 

Factors with Machine Learning. 2018, pp. 1-6. 

[227] P. Casas et al., Predicting QoE in cellular networks using machine learning 

and in-smartphone measurements. 2017, pp. 1-6. 

[228] A. Tadayon, T. McDaniel, and S. Panchanathan, "Functional Case Study 

Evaluation of the SmartGym: An Anticipatory System to Detect Body 

Compliance," presented at the Proceedings of the 3rd International Workshop 

on Multimedia for Personal Health and Health Care, Seoul, Republic of Korea, 

2018. [Online]. Available: https://doi.org/10.1145/3264996.3265004. 

[229] E. Halilaj, A. Rajagopal, M. Fiterau, J. L. Hicks, T. J. Hastie, and S. L. Delp, 

"Machine learning in human movement biomechanics: Best practices, 

common pitfalls, and new opportunities," (in eng), J Biomech, vol. 81, pp. 1-

11, 2018, doi: 10.1016/j.jbiomech.2018.09.009. 

[230] A. Baca, Methods for recognition and classification of human motion 

patterns—A prerequisite for intelligent devices assisting in sports activities. 

2012, pp. 55-61. 

[231] E. Dorschky, M. Nitschke, C. Martindale, A. van den Bogert, A. Koelewijn, 

and B. Eskofier, "CNN-based Estimation of Sagittal Plane Walking and 

Running Biomechanics from Measured and Simulated Inertial Sensor Data," 

05/18 2020, doi: 10.3389/fbioe.2020.00604. 

[232] V. Camomilla, E. Bergamini, S. Fantozzi, and G. Vannozzi, "Trends 

Supporting the In-Field Use of Wearable Inertial Sensors for Sport 

Performance Evaluation: A Systematic Review," (in eng), Sensors (Basel), vol. 

18, no. 3, p. 873, 2018, doi: 10.3390/s18030873. 

https://3dscanexpert.com/alternatives-microsoft-discontinues-kinect-popular-low-cost-3d-scanner/
https://3dscanexpert.com/alternatives-microsoft-discontinues-kinect-popular-low-cost-3d-scanner/
https://doi.org/10.1145/3264996.3265004


Appendix A – Participant Information Sheet 

  Thiago Braga Rodrigues - PhD Thesis 150 

Appendix A – Participant Information Sheet 

Participant Information Sheet 

 
 

1. An Assessment of Microsoft Kinect for Motion Capture 

Brief explanation of title: The purpose of this study is to evaluate the performance of 
Microsoft Kinect to measure human Gait. It will compare the accuracy of the MS Kinect 
system combined with Shimmer inertial sensors, against the VICON motion capture 
system (gold standard in motion analysis). 
 
The Microsoft Kinect is a motion sensor developed for the Xbox 360 and Xbox One. It 
is resident in many homes around the world as a system used for gaming. It can track 
user’s movement. It allows players to interact with video games without a joystick, 
innovating in the field of gameplay, hence it is completely non-invasive as no markers 
need to be placed on the human body – it estimates joint locations. Beside the gaming 
experience, the MS Kinect can be a powerful tool in human movement analysis, 
capturing biomechanical data like joint angles and velocity.  
 
Shimmer is a non-invasive inertial sensor system that enables the capture, 
transmission, processing and display of body’s data. Shimmer offers a flexible wireless 
sensor platform, scientifically reliable data and complete control of data capture, 
interpretation and analysis. 
 
2. Introduction 

I am inviting you to take part in a research study taking place in the School of Health 
and Human Performance in Dublin City University. The aim of this document is to 
explain why the research is being carried out and what it will involve. If you are not 
clear on any points, please do not hesitate to contact me. Thank you for reading this. 
 
3. What is the purpose of the project? 

We will compare the performance of the VICON motion capture system with the MS 
Kinect and Shimmer Sensors. We will evaluate gait parameters in healthy participants. 
In our project we are using the MS Kinect and Shimmer sensors as a motion capture 
system. Through gait analysis systems it is possible to evaluate the walking movement, 
see differences in joint angles, and compare with standard values. 

In this study we aim to promote an assessment of your gait movements and evaluate 
the results. We are using the Microsoft Kinect to capture metadata (numbers), and 
through the Kinect depth camera we can estimate your joints evaluating your gait 
movement. We are also using the Shimmer device to estimate velocity, displacement, 
and angle. 

 
4. Do I have to take part? 

It is entirely up to you to decide whether you wish to take part in this study. Refusal to 
take part is entirely at your discretion. If you decide to take part, you can keep this 
information sheet and will be required to sign a consent form. 
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5. What does the experiment involve? 

This experiment will be taken in a laboratory in the DCU. It should last maximum 30 
minutes. It involves walking through a path of approximately 4 meters. This path is 
captured by Kinect and the Shimmer will capture the data. The lab will consist of a 
chair, a specific path (where you will be requested to walk), and a set of Microsoft 
Kinects.  
 
 
6. What do I have to do? 

You do not have to do anything before the testing. This is a non-invasive test. For the 
test you just need to walk through the path in your normal walking speed.  
 
7. What are the possible disadvantages and risks of taking part? 

There are no disadvantages and risk during this test.  
 
 
8. Will my taking part in this project be kept confidential? 

We will be capturing only metadata (numbers). The results of this experiment will be 
stored and any information collected during this test will be strictly confidential.  

 

9. What will happen to the results of the research project? 

The results of this experiment will be used to produce papers for publication as part of 
my research. 
 
10. Thanks! 

Just like to say, thank you very much for your time and help with this experiment. 
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Appendix B – Participant Consent Form 

Centre Number:  
Study Number:  
Participant Identification Number:  
 
 

CONSENT FORM  
 

Title of Project: An Assessment of Microsoft Kinect for Motion Capture 
Name of Researcher: Thiago Braga Rodrigues 
 

Please initial box  

1. I confirm that I have read the information sheet dated............................          
(version............) for the above study and have had the opportunity to ask questions.  
 

2. I am satisfied that I understand the information provided and have had enough time    
to consider the information.  

3. I understand that my participation is voluntary and that I am free to withdraw at any    
time, without giving any reason, without my legal rights being affected.  

4. I agree to take part in the above study.                    
 
 
 
 
________________________  ________________  ____________________  

Name of Participant   Date    Signature  
 
 
 
_________________________  ________________  ____________________  

Name of Person taking consent  Date    Signature  
(if different from researcher)  
 
 
 
_________________________  ________________  ____________________  

Researcher    Date    Signature  
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Appendix C – Plug-In-Gait Marker Placement 
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Appendix D – Participant Measurements Sheet  

Centre Number:  
Study Number:  
Participant Identification Number:  

Participant Measurements 
 

Title of Project: An Assessment of Microsoft Kinect for Motion Capture 
Name of Researcher: Thiago Braga Rodrigues 
Date: 
 

 

1 – Take measurements while setting VICON markers  
2 – Put Shimmers (1 – Spine S – 2 Spine Base – 3 – R Hip-Knee – 4 – R Knee Ankle) 
3 – Movements: 

a) Static Trial – 1 trial          Stand in the middle of sensors, Wait 

b) Walk Trial – 8 trials          1 – Jump, 2 – Walk, 3 – Jump, 4 – Wait  

c) Squat Trial – 2 Trials        8 Squats, Wait 

Knee lifts – 2 Trials          8 knee lifts, Wait 

  

MEASUREMENTS 

                  Left   /    Right 

 1: Height   _______        

 2: Weight   _______    

 3: Hip - Hip _______                               

 4: Hip – Ankle           ______/_______ 

 5: Hip – Knee             ______/_______ 

 6: Knee – Ankle         ______/_______ 

 7: Ankle – Foot          

______/_______ 

 8: Shoulder –Spine S ______/_______ 

 9: Spine S – Spine M ______/_______ 

 10: Spine M – Spine B ______/_______ 

 11: Shoulder – Elbow ______/_______ 

 12: Elbow – Wrist     ______/_______ 

 13: Wrist – Hand      ______/_______ 
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Appendix E – IMU Algorithm  

// This is a simplified algorithm to provide angles in any plane 

using IMUS. Do not use this without authorization. 

// Author: Thiago Braga Rodrigues 

 

private void timer1_Tick(object sender, EventArgs e) 

{ 

     

    int i_ori = 0; 

    int i_qua = 0; 

    double[,] _dcmQref = new double[3,1]; 

    string text = ""; 

    XsVector3 _datas; 

    XsQuaternion _quaternion  = new XsQuaternion(0, 0, 0, 0); 

 

 

    foreach (KeyValuePair<uint, ConnectedMtData> data in 

_connectedMtwData) 

    { 

   

        if (data.Value._orientation != null) 

        { 

             

            _quaternion = 

_quaternion.fromEulerAngles(data.Value._orientation); 

          //  Console.WriteLine("[{0}]", string.Join(", ", 

_quaternion.w())); 

 

            array_qua[i_qua] = _quaternion.w(); 

            array_qua[i_qua + 1] = _quaternion.x(); 

            array_qua[i_qua + 2] = _quaternion.y(); 

            array_qua[i_qua + 3] = _quaternion.z(); 

 

            _datas = data.Value._calibratedData.m_acc; 

            text += string.Format("...", 

                                   data.Value._orientation.x(), 

                                   data.Value._orientation.y(), 

                                   data.Value._orientation.z(), 

data.Key); 

            array_ori[i_ori] = data.Value._orientation.x(); 

            array_ori[i_ori + 1] = data.Value._orientation.y(); 

            array_ori[i_ori + 2] = data.Value._orientation.z(); 

 

            _oriminuscal[i_ori] = array_ori[i_ori] - 

_oricalibrated[i_ori]; 

            _oriminuscal[i_ori + 1] = array_ori[i_ori + 1] - 

_oricalibrated[i_ori + 1]; 

            _oriminuscal[i_ori + 2] = array_ori[i_ori + 2] - 

_oricalibrated[i_ori + 2]; 

 

            _accxyz[i_ori] = _datas.value(0); 

            _accxyz[i_ori + 1] = _datas.value(1); 

            _accxyz[i_ori + 2] = _datas.value(2); 

        } 

        i_ori += 3; 

        i_qua += 4; 

        //  _oriminuscal = array_ori - _oricalibrated; 
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    } 

     

    _qref1.assign(array_qua[0], array_qua[1], array_qua[2], 

array_qua[3]);     //Sensor 1 

    // ... repeat 

 

    _dcmQref1 = _DCMqua(_qref1); 

    // ... repeat 

 

    _Euler1[0, 0] = _oricalibrated[0]; 

    // ... repeat 

 

    _Tibia1 = _EulerAnglesToMatrix(_Euler1, 1); 

    _Tibia2 = _EulerAnglesToMatrix(_Euler2, 1); 

    _Femur1 = _EulerAnglesToMatrix(_Euler3, 1); 

    _Femur2 = _EulerAnglesToMatrix(_Euler4, 1); 

    _Sacrum = _EulerAnglesToMatrix(_Euler5, 1); 

    _Trunk  = _EulerAnglesToMatrix(_Euler6, 1); 

 

    _result1 = _MultiplyMatrix(_dcmQref1, _Tibia1); 

    // ... repeat 

 

    // These are angles from the unit vectors 

    _angle1 = _toDeg(Math.Atan(_result1[0, 1] / _result1[0, 0])); // 

L sensor 1 Tibia angle plane XY 

    _angle2 = _toDeg(Math.Atan(_result2[0, 1] / _result2[0, 0])); // 

R sensor 2 Tibia angle plane XY 

 

    _angle3 = _toDeg(Math.Atan(_result3[0, 2] / _result3[0, 0]) - 

Math.Atan(_result1[0, 2] / _result1[0, 0])); // L sensor 3 angle       

plane XZ 

    _angle4 = _toDeg(Math.Atan(_result4[0, 2] / _result4[0, 0]) - 

Math.Atan(_result2[0, 2] / _result2[0, 0])); // L sensor 3 angle       

plane XZ 

 

    _angle5 = _toDeg(Math.Atan(_result5[0, 2] / _result5[0, 0]) - 

Math.Atan(_result3[0, 2] / _result3[0, 0])); // M sensor 5 angle       

plane XZ 

    _angle6 = _toDeg(Math.Atan(_result5[0, 2] / _result5[0, 0]) - 

Math.Atan(_result4[0, 2] / _result4[0, 0])); // M sensor 5 angle       

plane XZ 

 

    _angle7 = _toDeg(Math.Atan(_result6[0, 2] / _result6[0, 0])); // 

M sensor 6 angle       plane XZ 

 

    _angle1A = _toDeg(Math.Atan(_result1[0, 2] / _result1[0, 0])); 

    _angle2A = _toDeg(Math.Atan(_result2[0, 2] / _result2[0, 0])); 

 

 

} 
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Appendix F – Participant Information Sheet 

Information Sheet 

1. A Quality of Experience Evaluation of an Adaptive Multimodal Feedback 

System for Gait Analysis 

In this experiment, we aim to evaluate user quality of experience when using two 
feedback mechanisms for knee alignment: haptic and augmented reality using smart 
glasses. The haptic system is built in a way to give tactile sensation on the body 
position where the movement must be changed whilst the augmented reality glasses 
project objects to the wearer’s field of view. The aim of the study is to determine 
whether a user’s quality of experience is higher with haptic or augmented reality 
feedback. 

2. Introduction 

I am inviting you to take part in a research experiment to be carried out in the Software 
Research Institute in Athlone Institute of Technology. The aim of this document is to 
explain why the research is being carried out and what it will involve. If you are not 
clear on any points, please do not hesitate to contact me. Thank you for reading this. 

3. What is the purpose of the project? 

In this experiment we aim to promote an assessment of your knee alignment. You will 
be assessed through inertial information from wearable devices and feedback will be 
given in haptic and augmented way. You will be asked to fill out a questionnaire at the 
end of this experiment for a quality assessment.  

To evaluate gait parameters, it is necessary to develop some tests using motion 
wearable devices. Through gait analysis systems it is possible to evaluate the walking 
movement, joint alignment and angles. Through feedback, it is possible to help users 
to change their knee alignment.  

4. Do I have to take part? 

It is entirely up to you to decide whether you wish to take part in this experiment. 
Refusal to take part is entirely at your discretion. If you decide to take part, you can 
keep this information sheet and will be required to sign a consent form. 

5. What does the experiment involve? 

 
This experiment will take place in laboratory (u212) in the AIT Engineering Building. It 
should last approx. 40 minutes. It involves walk in a normal pace on a treadmill while 
using some devices. The lab will consist of a treadmill, inertial sensors, AR glasses, 
and haptic device. The participant will be asked to fill out a questionnaire at the end of 
the testing to give their thought on the quality of experience. 
 

6. What do I have to do? 

On the day of the test, prior to realization, participants should not undertake physical 
exercise.  
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7. What are the possible disadvantages and risks of taking part? 

There is no direct risk during this test. Risk of falling is minimal. Should a participant at 
any point feel any problem it is important to communicate this to the PI.  

8. Will my taking part in this project be kept confidential? 

This test will be recorded, and any information collected during this test will be strictly 
confidential. It will not be possible to recognise you from this experiment. 

9. What will happen to the results of the research project? 

The results of this experiment will be used to produce some papers for publication as 
part of my research. 

10. Thanks! 

Just like to say, thank you very much for your time and help with this experiment. 
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Appendix G – Participant Consent Form 

Consent Form 
 

Title of project: A Quality of Experience Evaluation of an Adaptive Multimodal 

Feedback System for Gait Analysis 

Principal Investigator: Thiago Braga Rodrigues 

 
Please Tick the Box  

 

1. I am satisfied that I understand the information provided and have had 
enough time to consider the information. 

 

2. I do not suffer from photosensitive epilepsy or any other form of epilepsy.  

3. I’m not pregnant and/or I am not experiencing any symptoms of pregnancy.  

4. I have not consumed alcohol beverages for the last 24 hours.  

5. I slept at least 6 hours on last 24 hours.   

6. I understand that my participation is voluntary and that I am free to withdraw 
at any time, without giving any reason, without my legal rights being 
affected. 
 

 

7. I understand that any data collected in the course of this study will be used 
for research purpose only and in the strictest confidence. Any information 
related to me will be discarded at the completion of this research.  

 

8. I agree to take part in the above study.  

9. I confirm that I have read the information sheet dated ___/___/2018  for the 
above study and have had the opportunity to ask questions. 

 

10.  Gender:  Female    Male     
 

 

 
________________________ ________________ ____________________  

Name of Participant 
 

Date Signature 

_________________________ ________________ ____________________  

Name of Person taking consent 
(if different from researcher) 
 

Date Signature  

_________________________ ________________ ____________________  

Researcher Date Signature  
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Appendix H – Feedback Explanation Sheets  

 

Alignment (Text was not shown to participants) 
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Varus (Text was not shown to participants) 
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Valgus (Text was not shown to participants) 
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Appendix I – QoE Questionnaire 

Subject ID: __Date: ____/___/___  Gender: F  M   Feedback order: 1   2  

 

Questionnaire – Part 1 

 

Bellow, you will see statements regarding your experience from today. Please 

indicate, how each statement applies to your experience. Please remember: Read 

through statements to make sure you understand them. If you have any questions, 

please ask the assessor. 

 
1. The feedback was clear. 

 

Strongly 
agree 

Agree 
 

More or less 
agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 

 

2. I had to concentrate in order to understand what the system expected me 

to do. 

 

Strongly 
agree 

Agree 
 

More or less 
agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 

 

3. The system provided constant feedback. 

 

Strongly 
agree 

Agree 
 

More or less 
agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 

4. The feedback was easy to understand. 

 

Strongly 
agree 

Agree 
 

More or less 
agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 
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5. I needed to learn a lot of things before I could use the system. 

 

Strongly 
agree 

Agree 
 

More or less 
agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 

 

6. The system was difficult to use. 

 

Strongly 
agree 

Agree 
 

More or less 
agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 

7. I was aware of my body whilst moving. 

 

Strongly 
agree 

Agree 
 

More or 
less agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 

                 

 

8. I was aware of the real world surrounding while walking (e.g. sounds, 

room temperature, other people, etc.)? 

 

Strongly 
agree 

Agree 
 

More or 
less agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 

 

9. I was not engaged with the system. 

 

Strongly 
agree 

Agree 
 

More or 
less agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 

 

10. When I received feedback, I adjusted easily and quickly. 

 

Strongly 
agree 

Agree 
 

More or 
less agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 
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11. My walking style changed during experiment. 

 

Strongly 
agree 

Agree 
 

More or 
less agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 

 

12. The system could not be used without the support of an expert. 

 

Strongly 
agree 

Agree 
 

More or 
less agree 

Undecided 
More or 

less 
disagree 

Disagree 
Strong 

Disagree 

① ② ③ ④ ⑤ ⑥ ⑦ 
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Questionnaire - Part 2 

 

 
You will be asked to rate your emotions towards to experience in using the system.  It 

will be asked to rate on three separate scales.  
 

Rating Scales 

 

1. Valence (Pleasant level)  

 

Unpleasant   Unsatisfied  Neutral           Pleased          Pleasant 

 
 

2. Arousal (Excitement level) 

 

     Excited         Wide-awake  Neutral             Dull               Calm 

 
 

3. Dominance (Emotion Control level) 

 

Dependent        Powerlessness    Neutral        Powerful  Independent 
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Questionnaire – Part 3 

 

The evaluation you are about to perform is a technique that has been developed by Nasa 

to assess the relative importance of six factors in determining how much workload you 

experienced while preforming a task that you recently completed. These six factors are 

defined below on this page.  

Read through them to make sure you understand what each factor means. If you have 

any questions, please ask your administrator.  

 

Workload factors Definition 

Mental Demand Level 
(low/high) 

How much mental add perceptual activity was 
required (for example, thinking, deciding, 
calculating, remembering, looking, searching, 
etc)? Was the task easy or demanding, simple or 
complex, forgiving or exacting? 
 

Physical Demand Level 
(low/high) 

How much physical activity was required (for 
example, pushing, pulling, turning, controlling, 
activating, etc.)? Was the task easy or 
demanding, slow or brisk, slack or strenuous, 
restful or laborious? 
 

Temporal Demand Level 
(low/high) 

How much time pressure did you feel due to 
the rate or pace at which the tasks or task 
elements occurred? Was the pace slow and 
leisurely or rapid and frantic? 
 
 

Performance Level(good/poor) 

How successful do you think you were in 
accomplish the goals of the task set by the 
experimenter (or yourself)? How satisfied were 
you with your performance in accomplish these 
goals? 
 

Effort Level (low/high) 

How hard did you have to work (mentally and 
physically) to accomplish your level of 
performance? 
 

Frustration Level (low/high) 

How insecure, discouraged, irritated, stressed, 
and annoyed versus secure, gratified, content, 
relaxed, and complacent did you feel during the 
task? 
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For each pair, choose the factor that was more important to your experience of the 
workload in the task that you recently performed: 

1 
 
 Temporal Demand 
 

 
 Mental Demand 
 

2 
 
 Performance 
 

 
 Mental Demand 
 

3 
 
 Mental Demand 
 

 Effort 
 

4 
 
 Temporal Demand 
 

 Effort 
 

5 
 
 Physical Demand 
 

 
 Performance 
 

6 
 
 Performance 
 

 
 Temporal Demand 
 

7 
 
 Effort 
 

 
 Physical Demand 
 

8 
 
 Mental Demand 
 

 Physical Demand 
 

9 
 
 Performance 
 

 Frustration 

10 
 
 Effort 
 

 Performance 
 

11 
 
 Frustration 
 

 Effort 

12 
 
 Frustration 
 

 Mental Demand 

13 
 
 Physical Demand 
 

 Temporal Demand 

14 
 
 Physical Demand 
 

 Frustration 

15 
 
 Temporal Demand 

 Frustration 
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You will now be presented with a Series of rating scales for the system.  

 

For each of the six scales, evaluate the task you recently performed by cross on the 

scale’s location that matches your experience. Each line has two endpoint that describe 

the scale. 

 

Consider your responses carefully in distinguishing among the different task conditions 

and consider each individually.  

 

1. Mental Demand (How mentally demanding was the task?/ How much mental 

and perceptual activity did you spend for this task?) 

 
         Very Low         Very High 

 

2. Physical Demand (How physically demanding was the task?/ How much 

physical activity did you spend for this task?) 

 
         Very Low                      Very High 

 

3. Temporal Demand (How hurried or rushed was the pace of the task?/ How 

much time pressure did you feel in order to complete this task?) 

 

 
         Very Low                                     Very High 

 

4. Performance (How successful were you in accomplishing what you were asked 

to do?/ How successful do you think you were in accomplishing the goals of 

the task?) 

 
           Good                            Poor 

 

5. Effort (How hard did you have to work to accomplish your level of 

performance?) 

 
          Very Low                Very High 

 

 

6. Frustration (How insecure, discouraged, irritated, stressed, and annoyed were 

you during this task?) 

 
        Very Low                 Very High 
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Appendix J – Statistics Report 

This is a report of all variables from E4 and pupil. 

1 – How to detect interaction between groups for different variables: ANCOVA 

1 – Baseline full factorial – Is there any difference. (Pre-test) 

2 – Baseline and Test custom – Homogeneity (Custom test all graphs) 

3 – Baseline and Test full factorial– Difference between groups 

Heart Rate Variability Analysis 

1 - IBI 

Variables from IBI – Between Groups 

First, we checked that there is no statistically significant difference between baselines, which can let us to do an 

ANCOVA test. Second, we run the homogeneity test for variables. No interaction was found 

Variabl

e 

Pre-

test  

Homogeneit

y  

ANCOV

A (Sig) 

F ETA 

Sq. 

Haptic Sd.  AR Sd. 

MNN 0.85

8 

0.517  0.792 F(1,19)=0,07

1 

0.00

4 

0.748

5 

0.161

0 

0.754

2 

0.227

4 

SDNN 0.38

3 

0.489 0.341 F(1,17)=0.95

8 

0.05

3 

0.061

7 

0.023

2 

0.094

8 

0.071

3 

RMSSD 0.34

0 

0.146 0.185 F(1,17)=1.91

2 

0.10

1 

0.088

0 

0.032

0 

0.117

0 

0.045

0 

 

Variables from IBI – Between (Gender) 

Variable ANCOVA (Sig) F ETA Sq. Haptic Sd.  AR Sd. 

MNN (M) 0.366 F(1,7)=0.933 0.118 0.818 0.221 0.691 0.117 

MNN (F) 0.332 F(1,9)=1.05 0.105 0.692 0.078 0.8078 0.2911 

 

Variables from IBI – Within Groups 

Haptic      

Variable 
Sig(2-tailed) 

Mean Std. Dev Lower Upper 

MNN_Baseline 
0.436 0.709 0.110 

0.599 0.820 

MNN_Test  
0.749 0.161 

0.587 0.910 

SDNN_Baseline 
0.297 0.095 0.071 

0.024 0.166 

SDNN_Test  
0.062 0.023 

0.039 0.085 

RMSSD_Baselin

e 

0.358 0.106 0.043 

0.062 0.149 

RMSSD_Test  
0.088 0.032 

0.056 0.120 

AR      

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

MNN_Baseline 0.166 0.699 0.170 0.528 0.869 

MNN_Test 
 

0.754 0.227 0.527 0.982 

SDNN_Baseline 0.226 0.065 0.031 0.034 0.096 

SDNN_Test 
 

0.095 0.071 0.024 0.166 

RMSSD_Baselin

e 

0.205 0.089 0.043 0.046 0.133 

RMSSD_Test 
 

0.118 0.045 0.073 0.163 

Variables from IBI – Within Groups and Gender 
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MALE (Haptic) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

MNN_Baseline 
0.340 0.7189 0.0505 

0.668 0.769 

MNN_Test  
0.8190 0.2215 

0.597 1.040 

SDNN_Baseline 
0.396 0.1257 0.0915 

0.034 0.217 

SDNN_Test  
0.0673 0.0312 

0.036 0.098 

RMSSD_Baselin

e 

0.511 0.1214 0.0377 

0.084 0.159 

FEMALE (Haptic) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

MNN_Baseline 
0.848 0.701 0.149 

0.553 0.851 

MNN_Test  
0.692 0.078 

0.614 0.771 

SDNN_Baseline 
0.606 0.064 0.030 

0.034 0.096 

SDNN_Test  
0.056 0.014 

0.042 0.071 

RMSSD_Baselin

e 

0.611 0.090 0.048 

0.042 0.139 

      

MALE (AR) 

Variable 
Sig(2-tailed) 

Mean Std. Dev Lower Upper 

MNN_Baseline 
0.340 0.719 0.050 

0.668 0.769 

MNN_Test  
0.819 0.222 

0.597 1.040 

SDNN_Baseline 
0.396 0.126 0.092 

0.034 0.217 

SDNN_Test  
0.067 0.031 

0.036 0.098 

RMSSD_Baselin

e 

0.511 0.121 0.038 

0.084 0.159 

FEMALE (AR) 

Variable 
Sig(2-tailed) 

Mean Std. Dev Lower Upper 

MNN_Baseline 
0.220 0.728 0.169 

0.559 0.898 

MNN_Test  
0.808 0.291 

0.517 1.099 

SDNN_Baseline 
0.394 0.055 0.022 

0.034 0.077 

SDNN_Test  
0.069 0.024 

0.044 0.093 

RMSSD_Baselin

e 

0.317 0.074 0.023 

0.052 0.097 

 

For the IBI analysis we found no correlation between and within groups as expected. This variable could assess 

some diseases and variability of the heart rate.  

2- Heart Rate 

Variables from HR – Between Groups 

First, we checked that there’s no statistically significant difference between baselines, which can let us to do an 

ANCOVA test. Second, we run the homogeneity test for variables. No interaction was found 

Variable Pre-

test  

Homogeneity  ANCOVA 

(Sig) 

F ETA 

Sq. 

Haptic Sd.  AR Sd. 

HR 0.431 0.342 0.694 F(1,43)=0.157 0.004 86.2 14.64 87.78 6.90 

rangeHR 0.051 03057 0.382 F(1,43)=0.779 0.018 17.38 15.37 15.19 6.29 

 

Variables from HR – Between Gender 

Variable ANCOVA 

(Sig) 

F ETA Sq. Haptic Sd.  AR Sd. 

HR (M)* 0.722 F(1,20)=0.130 0.006 85.225 6.357 87.281 20.62 
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HR (F)* 0.601 F(1,20)=0.283 0.014 87.017 7.188 88.62 6.814 

rangeHR(M) 0.144 F(1,18)=2.338 0.115 22.61 20.53 15.93 7.27 

rangeHR(F) 0.370 1,20 =0.843 0.040 12.58 6.06 14.52 5.47 

 

Variables from HR – Within Groups 

Haptic 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

HR_Baseline 0.927 86.512 8.604 
77.909 95.116 

HR_Test 
 

86.209 14.650 
71.559 100.859 

RangeHR_Base 0.111 11.280 6.170 
5.109 17.450 

RangeHR_Test  17.380 15.372 
2.009 32.752 

AR 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

HR_Baseline 0.625 89.670 17.016 
72.653 106.686 

HR_Test 
 

87.785 6.901 
80.884 94.686 

RangeHR_Base 0.289 17.796 14.273 
3.522 32.069 

RangeHR_Test  15.196 6.292 
8.904 21.487 

 

Variables from HR– Within Groups and Gender 

MALE (Haptic) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

HR_Baseline 0.868 86.151 10.338 
75.813 96.490 

HR_Test 
 

87.281 20.622 
66.659 107.903 

RangeHR_Base 0.128 11.270 5.569 
5.701 16.839 

RangeHR_Test  22.610 20.535 
2.075 43.145 

FEMALE (Haptic) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

HR_Baseline 0.427 86.843 7.116 
79.727 93.959 

HR_Test 
 

85.226 6.357 
78.868 91.583 

RangeHR_Base 0.666 11.288 6.924 
4.364 18.212 

RangeHR_Test  12.587 6.069 
6.518 18.655 

MALE (AR) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

HR_Baseline 0.843 90.243 23.319 
66.924 113.561 

HR_Test 
 

88.623 6.815 
81.808 95.437 

RangeHR_Base 0.618 17.163 11.917 
5.246 29.079 

RangeHR_Test  15.933 7.274 
8.659 23.207 

FEMALE (AR) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

HR_Baseline 0.207 89.145 9.174 
79.971 98.319 

HR_Test 
 

87.017 7.188 
79.829 94.206 

RangeHR_Base 0.368 18.376 16.661 
1.715 35.037 

RangeHR_Test  14.520 5.479 
9.041 19.999 
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Parallel differences for different types of events – Between groups 

Group (1-haptic 2 AR) Sig. (2-tailed) Mean Std. Deviation Std. Error Mean 

meanHR 1 0.753 -1.885 18.213 3.798 

2   -0.303 15.606 3.254 

rangeHR 1 0.054 -2.600 11.464 2.390 

2   6.101 17.640 3.678 

meanHRvarus 1 0.298 -3.857 8.763 3.919 

2   0.883 3.745 1.675 

rangeHRvarus 1 0.528 -7.538 15.453 7.727 

2   -0.987 6.462 3.731 

meanHRvalgu

s 

1 0.898 -4.994 18.600 5.369 

2   -5.800 6.875 2.174 

rangeHRvalgu

s 

1 0.187 -7.540 12.471 3.944 

2   1.115 14.183 5.014 

meanHRalign

ment 

1 0.316 -3.511 20.196 4.211 

2   2.424 17.076 3.917 

rangeHRalign

ment 

1 0.033 -5.272 11.573 2.413 

2   4.874 17.955 4.119 

meanHR2E 1 0.848 -2.195 18.543 3.867 

2   -1.180 13.043 3.163 

rangeHR2E 1 0.095 -4.640 11.728 2.445 

2   2.939 15.473 3.995 

meanHR1A 1 0.708 -2.316 18.698 3.899 

2   -0.459 14.470 3.017 

rangeHR1A 1 0.089 -5.399 11.880 2.477 

2   2.137 17.027 3.550 

 

 Parallel differences for different types of events – Between groups MALE 

Group (1-haptic 2 AR) Sig. (2-tailed) Mean Std. Deviation Std. Error Mean 

meanHR Haptic 0.793 1.130 21.925 6.611 

AR   -1.620 26.387 7.956 

rangeHR Haptic 0.098 11.340 22.670 6.835 

AR   -1.230 7.919 2.388 

meanHRvarus Haptic 0.567 -0.202 4.027 2.847 

AR   -4.192     

rangeHRvarus Haptic   -3.530     

AR   2.280     

meanHRvalgus Haptic 0.787 -5.330 7.491 3.058 

AR   -7.989 22.406 7.922 

rangeHRvalgus Haptic 0.410 -0.568 14.502 6.485 

AR   -7.390 11.723 4.786 

meanHRalignment Haptic 0.544 4.135 24.719 8.240 

AR   -3.455 29.232 8.814 

rangeHRalignment Haptic 0.039 11.956 23.713 7.904 

AR   -5.132 8.787 2.649 

meanHR2E Haptic 0.887 -0.482 18.232 6.446 
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AR   -2.074 26.858 8.098 

rangeHR2E Haptic 0.181 6.138 21.421 8.096 

AR   -3.824 8.486 2.559 

meanHR1A Haptic 0.760 0.889 20.133 6.070 

AR   -2.258 27.076 8.164 

rangeHR1A Haptic 0.115 7.109 22.270 6.715 

AR   -4.809 8.841 2.666 

 

Parallel differences for different types of events – Between groups Female 

Group (1-haptic 2 AR) Sig. (2-tailed) Mean Std. Deviation Std. Error Mean 

meanHR Hapt

ic 

0.842 -1.617 6.792 1.961 

AR   -2.128 5.503 1.589 

rangeHR Hapt

ic 

0.318 1.298 10.125 2.923 

AR   -3.856 14.221 4.105 

meanHRvarus Hapt

ic 

0.434 1.606 4.240 2.448 

AR   -3.773 10.116 5.058 

rangeHRvarus Hapt

ic 

0.473 0.285 8.591 6.075 

AR   -10.810 17.145 9.898 

meanHRvalgus Hapt

ic 

0.129 -6.505 6.869 3.434 

AR   0.996 5.035 2.517 

rangeHRvalgus Hapt

ic 

0.376 3.920 16.265 9.390 

AR   -7.765 15.408 7.704 

meanHRalign

ment 

Hapt

ic 

0.103 0.885 5.874 1.857 

AR   -3.562 6.234 1.800 

rangeHRalign

ment 

Hapt

ic 

0.435 -1.500 7.042 2.227 

AR   -5.401 14.059 4.058 

meanHR2E Hapt

ic 

0.856 -1.800 6.963 2.321 

AR   -2.307 5.647 1.630 

rangeHR2E Hapt

ic 

0.341 0.140 8.143 2.879 

AR   -5.388 14.434 4.167 

meanHR1A Hapt

ic 

0.796 -1.694 6.841 1.975 

AR   -2.369 5.722 1.652 

rangeHR1A Hapt

ic 

0.483 -2.422 9.033 2.608 

AR   -5.940 14.510 4.189 
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EDA Analysis 

Skin conductance can be an indication of psychological or physiological arousal.  

Variables from EDA – Between Groups 

First, we checked that there is no statistically significant difference between baselines, which can let us to do an 

ANCOVA test. Second, we run the homogeneity test for variables. No interaction was found 

Variable Pre-

test  

Homogeneit

y  

ANCOV

A (Sig) 

F ETA 

Sq. 

Haptic Sd.  AR Sd. 

meanED

A 

0.61

9 

0.925 0.693 F(1,43)=0.15

8 

0.00

4 

0.5284 0.86

1 

0.458 0.77

2 

1derEDA 0.97

2 

0.475 0.523 F(1,41)=0.41

4 

0.01

0 

0.40*E

-4 

3.3E-

3 

1.1E-

4 

5.1E-

3 

2derEDA 0.34

0 

0.153 0.185 F(1,35)=2.43

2 

0.06

5 

-

2.443E

-3 

5.3E-

3 

-

3.37E

-4 

1.2E-

3 

 

Variables from EDA – Between Groups and Gender 

Variable ANCOVA 

(Sig) 

F ETA 

Sq. 

Haptic Sd.  AR Sd. 

meanEDA(M) 0.492 F(1,19)=0.492 0.025 0.678 1.113 0.4544 0.625 

meanEDA(F) 0.433 F(1,21)=0.639 0.030 0.390 0.560 0.462 0.915 

1derEDA (M) 0.365 F(1,19)=0.861 0.043 -3.6E-3 6.82E-3 -8.5E-5 4.3E-4 

1derEDA (F) 0.524 F(1,19)=0.421 0.022 4.5e-4 3.4E-3 3.31E-4 1.21E-3 

2derEDA (M) 0.123 F(1,18)=2.621 0.127 -3.6E-3 6.82E-3 -8.5E-5 4.3E-4 

2derEDA (F) 0.863 F(1,14)=0.031 0.002 -1.1E-3 2.98E-3 -6.97E-4 1.9E-3 

 

 

Variables from EDA – Within Groups 

Haptic 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

meanEDABaseline 0.025 0.373 0.671 -0.298 1.045 

meanEDATest 
 

0.528 0.862 -0.333 1.390 

meanEDABaseline 0.097 0.281 0.179 0.102 0.461 

meanEDAC1C6 
 

0.350 0.219 0.131 0.568 

meanEDABaseline 0.048 0.533 0.957 -0.425 1.490 

meanEDAC3C4 
 

0.682 1.128 -0.447 1.810 

meanEDABaseline 0.047 0.411 0.733 -0.322 1.145 

meanEDAC2C5 
 

0.567 0.937 -0.369 1.504 

meanEDABaseline 0.065 0.433 0.766 -0.332 1.199 

meanEDA2E 
 

0.610 0.941 -0.332 1.551 

meanEDABaseline 0.022 0.373 0.671 -0.298 1.045 

meanEDA1A 
 

0.522 0.843 -0.321 1.365 

meanFirstDerivativeEDABaseline 0.310 -0.001 0.006 -0.008 0.005 

meanFirstDerivativeEDATest 
 

0.000 0.003 -0.003 0.004 

meanFirstDerivativeEDABaseline 0.474 0.000 0.000 0.000 0.000 
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meanFirstDerivativeEDAC1C6 
 

0.000 0.000 0.000 0.001 

meanFirstDerivativeEDABaseline 0.490 -0.003 0.009 -0.012 0.006 

meanFirstDerivativeEDAC3C4 
 

0.002 0.014 -0.012 0.016 

meanFirstDerivativeEDABaseline 0.743 -0.002 0.007 -0.009 0.005 

meanFirstDerivativeEDAC2C5 
 

-0.005 0.030 -0.034 0.025 

meanFirstDerivativeEDABaseline 0.110 -0.002 0.007 -0.009 0.005 

meanFirstDerivativeEDA2E 
 

0.030 0.070 -0.040 0.101 

meanFirstDerivativeEDABaseline 0.172 -0.001 0.006 -0.007 0.005 

meanFirstDerivativeEDA1A 
 

0.018 0.058 -0.040 0.075 

meanSecondDerivativeEDABaseline 0.481 -0.007 0.030 -0.037 0.022 

meanSecondDerivativeEDATest 
 

-0.002 0.005 -0.008 0.003 

meanSecondDerivativeEDABaseline 0.482 0.000 0.000 0.000 0.000 

meanSecondDerivativeEDAC1C6 
 

0.006 0.012 -0.006 0.017 

meanSecondDerivativeEDABaseline 0.666 -0.015 0.043 -0.058 0.028 

meanSecondDerivativeEDAC3C4 
 

-0.005 0.038 -0.043 0.033 

meanSecondDerivativeEDABaseline 0.519 -0.009 0.033 -0.042 0.024 

meanSecondDerivativeEDAC2C5 
 

-0.032 0.134 -0.165 0.102 

meanSecondDerivativeEDABaseline 0.328 -0.009 0.034 -0.043 0.024 

meanSecondDerivativeEDA2E 
 

0.094 0.376 -0.282 0.470 

meanSecondDerivativeEDABaseline 0.591 -0.007 0.028 -0.035 0.022 

meanSecondDerivativeEDA1A   0.010 0.116 -0.106 0.125 

AR 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

meanEDABaseline 0.068 0.287 0.485 -0.198 0.772 

meanEDATest 
 

0.458 0.773 -0.314 1.231 

meanEDABaseline 0.280 0.593 1.027 -0.435 1.620 

meanEDAC1C6 
 

0.837 1.465 -0.628 2.302 

meanEDABaseline 0.004 0.231 0.148 0.083 0.380 

meanEDAC3C4 
 

0.283 0.168 0.115 0.451 

meanEDABaseline 0.020 0.287 0.485 -0.198 0.772 

meanEDAC2C5 
 

0.404 0.657 -0.253 1.061 

meanEDABaseline 0.128 0.317 0.528 -0.212 0.845 

meanEDA2E 
 

0.549 0.956 -0.407 1.505 

meanEDABaseline 0.090 0.287 0.485 -0.198 0.772 

meanEDA1A 
 

0.461 0.788 -0.328 1.249 

meanFirstDerivativeEDABaseline 0.124 -0.001 0.004 -0.005 0.003 

meanFirstDerivativeEDATest 
 

0.001 0.005 -0.004 0.006 



Appendix J – Statistics Report 

      Thiago Braga Rodrigues - PhD Thesis    177 

meanFirstDerivativeEDABaseline 0.527 -0.004 0.008 -0.012 0.005 

meanFirstDerivativeEDAC1C6 
 

0.000 0.005 -0.005 0.005 

meanFirstDerivativeEDABaseline 0.101 0.000 0.001 -0.002 0.001 

meanFirstDerivativeEDAC3C4 
 

0.009 0.017 -0.008 0.025 

meanFirstDerivativeEDABaseline 0.285 -0.001 0.004 -0.005 0.003 

meanFirstDerivativeEDAC2C5 
 

0.013 0.062 -0.048 0.075 

meanFirstDerivativeEDABaseline 0.054 -0.001 0.004 -0.006 0.003 

meanFirstDerivativeEDA2E 
 

0.009 0.018 -0.009 0.028 

meanFirstDerivativeEDABaseline 0.222 -0.001 0.004 -0.005 0.003 

meanFirstDerivativeEDA1A 
 

0.005 0.021 -0.017 0.026 

meanSecondDerivativeEDABaseline 0.252 -0.007 0.022 -0.029 0.015 

meanSecondDerivativeEDATest 
 

0.000 0.001 -0.002 0.001 

meanSecondDerivativeEDABaseline 0.550 -0.019 0.040 -0.058 0.021 

meanSecondDerivativeEDAC1C6 
 

-0.004 0.016 -0.020 0.012 

meanSecondDerivativeEDABaseline 0.779 -0.003 0.005 -0.008 0.002 

meanSecondDerivativeEDAC3C4 
 

-0.019 0.192 -0.211 0.173 

meanSecondDerivativeEDABaseline 0.176 -0.007 0.021 -0.028 0.014 

meanSecondDerivativeEDAC2C5 
 

0.032 0.109 -0.077 0.141 

meanSecondDerivativeEDABaseline 0.631 -0.007 0.022 -0.029 0.015 

meanSecondDerivativeEDA2E 
 

-0.024 0.143 -0.167 0.119 

meanSecondDerivativeEDABaseline 0.584 -0.006 0.020 -0.026 0.013 

meanSecondDerivativeEDA1A   -0.013 0.046 -0.059 0.034 

 

Variables from EDA– Within Groups and Gender 

MALE (Haptic) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

meanEDABaseline 0.023 0.523 0.949 -0.426 1.473 

meanEDATest 
 

0.678 1.114 -0.435 1.792 

meanEDABaseline 0.000 0.426   0.426 0.426 

meanEDAC1C6 
 

0.522   0.522 0.522 

meanEDABaseline 0.150 0.704 1.244 -0.541 1.948 

meanEDAC3C4 
 

0.869 1.459 -0.590 2.329 

meanEDABaseline 0.038 0.612 1.039 -0.427 1.650 

meanEDAC2C5 
 

0.787 1.227 -0.440 2.014 

meanEDABaseline 0.056 0.617 1.159 -0.542 1.776 

meanEDA2E   0.766 1.283 -0.517 2.048 

meanEDABaseline 0.020 0.523 0.949 -0.426 1.473 

meanEDA1A   0.676 1.095 -0.419 1.771 
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meanFirstDerivativeEDABaseline 0.433 -0.002 0.009 -0.011 0.006 

meanFirstDerivativeEDATest 
 

0.000 0.003 -0.003 0.004 

meanFirstDerivativeEDABaseline 0.000     0.000 0.000 

meanFirstDerivativeEDAC1C6 
 

    0.000 0.000 

meanFirstDerivativeEDABaseline 0.365 -0.005 0.011 -0.016 0.006 

meanFirstDerivativeEDAC3C4 
 

0.006 0.017 -0.010 0.023 

meanFirstDerivativeEDABaseline 0.379 -0.003 0.010 -0.013 0.007 

meanFirstDerivativeEDAC2C5 
 

0.003 0.010 -0.007 0.013 

meanFirstDerivativeEDABaseline 0.189 -0.004 0.010 -0.015 0.006 

meanFirstDerivativeEDA2E 
 

0.055 0.097 -0.042 0.151 

meanFirstDerivativeEDABaseline 0.255 -0.002 0.009 -0.011 0.006 

meanFirstDerivativeEDA1A 
 

0.029 0.080 -0.050 0.109 

meanSecondDerivativeEDABaseline 0.477 -0.013 0.041 -0.054 0.028 

meanSecondDerivativeEDATest 
 

-0.004 0.007 -0.010 0.003 

meanSecondDerivativeEDABaseline 0.000 0.000   0.000 0.000 

meanSecondDerivativeEDAC1C6 
 

0.000   0.000 0.000 

meanSecondDerivativeEDABaseline 0.712 -0.024 0.055 -0.079 0.031 

meanSecondDerivativeEDAC3C4 
 

-0.009 0.050 -0.059 0.041 

meanSecondDerivativeEDABaseline 0.429 -0.016 0.045 -0.061 0.029 

meanSecondDerivativeEDAC2C5 
 

0.001 0.020 -0.019 0.021 

meanSecondDerivativeEDABaseline 0.361 -0.020 0.051 -0.072 0.031 

meanSecondDerivativeEDA2E 
 

0.212 0.570 -0.358 0.781 

meanSecondDerivativeEDABaseline 0.548 -0.013 0.041 -0.054 0.028 

meanSecondDerivativeEDA1A   0.026 0.170 -0.144 0.196 

FEMALE (Haptic) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

meanEDABaseline 0.204 0.236 0.196 0.040 0.432 

meanEDATest 
 

0.391 0.561 -0.170 0.952 

meanEDABaseline 0.336 0.209 0.182 0.027 0.391 

meanEDAC1C6 
 

0.263 0.227 0.037 0.490 

meanEDABaseline 0.256 0.276 0.153 0.123 0.428 

meanEDAC3C4 
 

0.401 0.309 0.092 0.710 

meanEDABaseline 0.305 0.231 0.202 0.029 0.433 

meanEDAC2C5 
 

0.370 0.570 -0.201 0.940 

meanEDABaseline 0.235 0.291 0.199 0.092 0.489 

meanEDA2E 
 

0.488 0.624 -0.136 1.113 

meanEDABaseline 0.204 0.236 0.196 0.040 0.432 
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meanEDA1A 
 

0.381 0.534 -0.154 0.915 

meanFirstDerivativeEDABaseline 0.486 -0.001 0.001 -0.002 0.001 

meanFirstDerivativeEDATest 
 

0.000 0.003 -0.003 0.004 

meanFirstDerivativeEDABaseline 0.474 0.000 0.000 0.000 0.000 

meanFirstDerivativeEDAC1C6 
 

0.000 0.000 0.000 0.001 

meanFirstDerivativeEDABaseline 0.207 0.000 0.001 -0.001 0.001 

meanFirstDerivativeEDAC3C4 
 

-0.004 0.006 -0.010 0.001 

meanFirstDerivativeEDABaseline 0.452 -0.001 0.001 -0.002 0.000 

meanFirstDerivativeEDAC2C5 
 

-0.011 0.040 -0.051 0.029 

meanFirstDerivativeEDABaseline 0.381 -0.001 0.001 -0.002 0.001 

meanFirstDerivativeEDA2E 
 

0.011 0.037 -0.026 0.047 

meanFirstDerivativeEDABaseline 0.320 0.000 0.001 -0.002 0.001 

meanFirstDerivativeEDA1A 
 

0.006 0.019 -0.013 0.025 

meanSecondDerivativeEDABaseline 0.805 -0.001 0.002 -0.003 0.001 

meanSecondDerivativeEDATest 
 

-0.001 0.003 -0.004 0.002 

meanSecondDerivativeEDABaseline 0.558 0.000 0.000 0.000 0.000 

meanSecondDerivativeEDAC1C6 
 

0.009 0.015 -0.006 0.023 

meanSecondDerivativeEDABaseline 0.231 -0.002 0.003 -0.005 0.002 

meanSecondDerivativeEDAC3C4 
 

0.001 0.001 0.000 0.001 

meanSecondDerivativeEDABaseline 0.359 -0.001 0.002 -0.004 0.001 

meanSecondDerivativeEDAC2C5 
 

-0.068 0.194 -0.262 0.125 

meanSecondDerivativeEDABaseline 0.021 -0.001 0.002 -0.003 0.001 

meanSecondDerivativeEDA2E 
 

0.003 0.004 -0.001 0.007 

meanSecondDerivativeEDABaseline 0.150 -0.001 0.002 -0.003 0.001 

meanSecondDerivativeEDA1A   -0.006 0.011 -0.016 0.005 

MALE (AR) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

meanEDABaseline 0.217 0.2277 0.1406 0.2277 0.1406 

meanEDATest 
 

0.4544 0.6255 0.4544 0.6255 

meanEDABaseline 0.000 0.2446   0.2446   

meanEDAC1C6 
 

0.3421   0.3421   

meanEDABaseline 0.019 0.2459 0.1465 0.2459 0.1465 

meanEDAC3C4 
 

0.3072 0.1658 0.3072 0.1658 

meanEDABaseline 0.111 0.2277 0.1406 0.2277 0.1406 

meanEDAC2C5 
 

0.3566 0.3233 0.3566 0.3233 

meanEDABaseline 0.261 0.2554 0.1400 0.2554 0.1400 

meanEDA2E 
 

0.6089 0.9178 0.6089 0.9178 

meanEDABaseline 0.245 0.2277 0.1406 0.2277 0.1406 

meanEDA1A 
 

0.4684 0.6988 0.4684 0.6988 

meanFirstDerivativeEDABaseline 0.402 0.0000 0.0007 0.0000 0.0007 
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meanFirstDerivativeEDATest 
 

0.0020 0.0075 0.0020 0.0075 

meanFirstDerivativeEDABaseline 0.000 0.0005   0.0005   

meanFirstDerivativeEDAC1C6 
 

0.0002   0.0002   

meanFirstDerivativeEDABaseline 0.280 0.0001 0.0008 0.0001 0.0008 

meanFirstDerivativeEDAC3C4 
 

0.0069 0.0166 0.0069 0.0166 

meanFirstDerivativeEDABaseline 0.338 0.0000 0.0007 0.0000 0.0007 

meanFirstDerivativeEDAC2C5 
 

0.0285 0.0891 0.0285 0.0891 

meanFirstDerivativeEDABaseline 0.216 0.0000 0.0007 0.0000 0.0007 

meanFirstDerivativeEDA2E 
 

0.0077 0.0171 0.0077 0.0171 

meanFirstDerivativeEDABaseline 0.392 0.0000 0.0007 0.0000 0.0007 

meanFirstDerivativeEDA1A 
 

0.0084 0.0312 0.0084 0.0312 

meanSecondDerivativeEDABaseline 0.568 -0.0006 0.0023 -0.0006 0.0023 

meanSecondDerivativeEDATest 
 

-0.0001 0.0004 -0.0001 0.0004 

meanSecondDerivativeEDABaseline 0.000 -0.0001   -0.0001   

meanSecondDerivativeEDAC1C6 
 

-0.0006   -0.0006   

meanSecondDerivativeEDABaseline 0.146 -0.0010 0.0027 -0.0010 0.0027 

meanSecondDerivativeEDAC3C4 
 

0.0477 0.0778 0.0477 0.0778 

meanSecondDerivativeEDABaseline 0.344 -0.0006 0.0023 -0.0006 0.0023 

meanSecondDerivativeEDAC2C5 
 

0.0445 0.1428 0.0445 0.1428 

meanSecondDerivativeEDABaseline 0.525 -0.0009 0.0025 -0.0009 0.0025 

meanSecondDerivativeEDA2E 
 

0.0094 0.0434 0.0094 0.0434 

meanSecondDerivativeEDABaseline 0.376 -0.0006 0.0023 -0.0006 0.0023 

meanSecondDerivativeEDA1A 
 

-0.0202 0.0664 -0.0202 0.0664 

FEMALE (AR) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

meanEDABaseline 0.130 0.341 0.667 0.341 0.667 

meanEDATest 
 

0.462 0.916 0.462 0.916 

meanEDABaseline 0.340 0.680 1.165 0.680 1.165 

meanEDAC1C6 
 

0.961 1.661 0.961 1.661 

meanEDABaseline 0.043 0.203 0.170 0.203 0.170 

meanEDAC3C4 
 

0.234 0.187 0.234 0.187 

meanEDABaseline 0.115 0.341 0.667 0.341 0.667 

meanEDAC2C5 
 

0.448 0.874 0.448 0.874 

meanEDABaseline 0.233 0.372 0.731 0.372 0.731 

meanEDA2E 
 

0.495 1.035 0.495 1.035 

meanEDABaseline 0.124 0.341 0.667 0.341 0.667 

meanEDA1A 
 

0.454 0.894 0.454 0.894 

meanFirstDerivativeEDABaseline 0.196 -0.002 0.005 -0.002 0.005 

meanFirstDerivativeEDATest 
 

0.000 0.001 0.000 0.001 

meanFirstDerivativeEDABaseline 0.538 -0.005 0.009 -0.005 0.009 

meanFirstDerivativeEDAC1C6 
 

0.000 0.006 0.000 0.006 

meanFirstDerivativeEDABaseline 0.293 -0.001 0.002 -0.001 0.002 

meanFirstDerivativeEDAC3C4 
 

0.012 0.019 0.012 0.019 

meanFirstDerivativeEDABaseline 0.151 -0.002 0.005 -0.002 0.005 

meanFirstDerivativeEDAC2C5 
 

0.000 0.001 0.000 0.001 

meanFirstDerivativeEDABaseline 0.162 -0.003 0.006 -0.003 0.006 
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meanFirstDerivativeEDA2E 
 

0.011 0.021 0.011 0.021 

meanFirstDerivativeEDABaseline 0.158 -0.002 0.005 -0.002 0.005 

meanFirstDerivativeEDA1A 
 

0.001 0.003 0.001 0.003 

meanSecondDerivativeEDABaseline 0.293 -0.015 0.033 -0.015 0.033 

meanSecondDerivativeEDATest 
 

-0.001 0.002 -0.001 0.002 

meanSecondDerivativeEDABaseline 0.565 -0.023 0.045 -0.023 0.045 

meanSecondDerivativeEDAC1C6 
 

-0.005 0.018 -0.005 0.018 

meanSecondDerivativeEDABaseline 0.422 -0.006 0.007 -0.006 0.007 

meanSecondDerivativeEDAC3C4 
 

-0.136 0.287 -0.136 0.287 

meanSecondDerivativeEDABaseline 0.306 -0.014 0.031 -0.014 0.031 

meanSecondDerivativeEDAC2C5 
 

0.016 0.046 0.016 0.046 

meanSecondDerivativeEDABaseline 0.544 -0.013 0.029 -0.013 0.029 

meanSecondDerivativeEDA2E 
 

-0.054 0.193 -0.054 0.193 

meanSecondDerivativeEDABaseline 0.579 -0.012 0.027 -0.012 0.027 

meanSecondDerivativeEDA1A 
 

-0.006 0.015 -0.006 0.015 

 

Parallel differences for different types of events – Between groups  

Group Sig(2 ta) Mean Std. 

Deviation 

Std. Error 

Mean 

meanEDAVarus Haptic 0.5258 0.0683 0.0397 0.0229 

AR 0.4208 0.2444 0.4378 0.1958 

meanFirstDerivativeEDAVarus Haptic 0.7345 0.0005 0.0007 0.0005 

AR 0.5815 0.0038 0.0123 0.0055 

meanSecondDerivativeEDAVarus Haptic 0.7782 0.0057 0.0115 0.0066 

AR 0.7196 0.0146 0.0500 0.0223 

mean1Varus Haptic         

AR   0.0220 0.0428 0.0214 

mean2Varus Haptic 0.6621 0.0003     

AR   0.0118 0.0213 0.0106 

mean3Varus Haptic 0.9169 0.0053 0.0045 0.0032 

AR 0.8871 0.0064 0.0123 0.0061 

mean4Varus Haptic 0.7157 0.0012     

AR   0.0088 0.0170 0.0085 

meanEDAValgus Haptic 0.1267 0.1494 0.2067 0.0654 

AR 0.1748 0.0515 0.0490 0.0141 

meanFirstDerivativeEDAValgus Haptic 0.6413 0.0050 0.0218 0.0069 

AR 0.6494 0.0089 0.0172 0.0050 

meanSecondDerivativeEDAValgus Haptic 0.6827 0.0099 0.0703 0.0222 

AR 0.6735 -0.0163 0.1879 0.0567 

mean1Valgus Haptic 0.2333 0.0331 0.0527 0.0186 

AR 0.1489 0.0028 0.0032 0.0014 

mean2Valgus Haptic 0.5338 0.0077 0.0107 0.0038 

AR 0.5170 0.0043 0.0081 0.0033 

mean3Valgus Haptic 0.3086 0.0167 0.0369 0.0130 

AR 0.2923 0.0019 0.0027 0.0010 

mean4Valgus Haptic 0.3408 0.0210 0.0486 0.0172 

AR 0.2852 0.0010 0.0026 0.0011 
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meanEDAAlignment Haptic 0.6463 0.1559 0.3183 0.0730 

AR 0.6576 0.1171 0.2245 0.0468 

meanFirstDerivativeEDAAlignment Haptic 0.3010 -0.0026 0.0324 0.0079 

AR 0.2731 0.0147 0.0614 0.0134 

meanSecondDerivativeEDAAlignment Haptic 0.1709 -0.0228 0.1423 0.0345 

AR 0.1742 0.0383 0.1150 0.0271 

mean1Alignment Haptic 0.1654 0.0112 0.0297 0.0074 

AR 0.2235 0.0017 0.0039 0.0009 

mean2Alignment Haptic 0.6205 0.0106 0.0271 0.0066 

AR 0.5759 0.0213 0.0845 0.0176 

mean3Alignment Haptic 0.1970 0.0068 0.0161 0.0039 

AR 0.2380 0.0017 0.0066 0.0014 

mean4Alignment Haptic 0.7191 0.0098 0.0211 0.0050 

AR 0.6928 0.0151 0.0592 0.0123 

meanEDA2E Haptic 0.7549 0.1763 0.3544 0.0886 

AR 0.7440 0.2325 0.6350 0.1457 

meanFirstDerivativeEDA2E Haptic 0.2519 0.0323 0.0762 0.0190 

AR 0.2832 0.0105 0.0215 0.0051 

meanSecondDerivativeEDA2E Haptic 0.2618 0.1036 0.4097 0.1024 

AR 0.2789 -0.0172 0.1444 0.0350 

meant12E Haptic 0.8750 0.0209 0.0434 0.0120 

AR 0.8765 0.0241 0.0562 0.0162 

meant22E Haptic 0.6060 0.0182 0.0488 0.0131 

AR 0.6082 0.0108 0.0205 0.0055 

meant32E Haptic 0.5992 0.0112 0.0291 0.0081 

AR 0.5931 0.0197 0.0501 0.0134 

meant42E Haptic 0.3018 0.0230 0.0513 0.0137 

AR 0.3211 0.0081 0.0182 0.0047 

meanEDA1A Haptic 0.8258 0.1484 0.2898 0.0604 

AR 0.8260 0.1739 0.4706 0.0981 

meanFirstDerivativeEDA1A Haptic 0.3467 0.0190 0.0631 0.0135 

AR 0.3586 0.0058 0.0219 0.0046 

meanSecondDerivativeEDA1A Haptic 0.4981 0.0162 0.1428 0.0298 

AR 0.4847 -0.0064 0.0523 0.0114 

meant11A Haptic 0.2992 0.0266 0.0538 0.0120 

AR 0.3128 0.0125 0.0313 0.0067 

meant21A Haptic 0.2360 0.0217 0.0517 0.0110 

AR 0.2487 0.0080 0.0175 0.0036 

meant31A Haptic 0.3967 0.0109 0.0226 0.0047 

AR 0.3929 0.0061 0.0143 0.0030 

meant41A Haptic 0.6960 0.0096 0.0205 0.0044 

AR 0.6950 0.0069 0.0240 0.0050 

Parallel differences for different types of events – Between groups and gender 
Male 

Group  Sig (2-

tailed) 

Mean Std. 

Deviation 

Std. Error 

Mean 

meanEDAVarus Haptic 0 0.096     

AR 0 0.097     
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meanFirstDerivativeEDAVarus Haptic 0       

AR 0 0.000     

meanSecondDerivativeEDAVarus Haptic 0 0.000     

AR 0 -0.001     

mean1Varus Haptic 0       

AR 0 0.001     

mean2Varus Haptic 0       

AR 0 0.001     

mean3Varus Haptic 0       

AR 0 0.001     

mean4Varus Haptic 0       

AR 0 0.000     

meanEDAValgus Haptic 0.251 0.166 0.239 0.097 

AR 0.339 0.061 0.057 0.020 

meanFirstDerivativeEDAValgus Haptic 0.722 0.011 0.027 0.011 

AR 0.744 0.007 0.016 0.006 

meanSecondDerivativeEDAValgus Haptic 0.491 0.015 0.094 0.038 

AR 0.500 0.049 0.077 0.029 

mean1Valgus Haptic 0.286 0.039 0.064 0.029 

AR 0.260 0.002 0.003 0.001 

mean2Valgus Haptic 0.557 0.009 0.012 0.006 

AR 0.558 0.005 0.009 0.004 

mean3Valgus Haptic 0.323 0.024 0.047 0.021 

AR 0.351 0.002 0.003 0.001 

mean4Valgus Haptic 0.305 0.031 0.061 0.027 

AR 0.334 0.001 0.003 0.001 

meanEDAAlignment Haptic 0.660 0.175 0.212 0.071 

AR 0.655 0.129 0.244 0.074 

meanFirstDerivativeEDAAlignment Haptic 0.502 0.006 0.019 0.007 

AR 0.462 0.029 0.089 0.028 

meanSecondDerivativeEDAAlignment Haptic 0.591 0.017 0.061 0.020 

AR 0.580 0.045 0.143 0.045 

mean1Alignment Haptic 0.334 0.006 0.009 0.003 

AR 0.351 0.003 0.006 0.002 

mean2Alignment Haptic 0.654 0.017 0.038 0.013 

AR 0.610 0.038 0.121 0.037 

mean3Alignment Haptic 0.195 0.010 0.021 0.007 

AR 0.243 0.000 0.001 0.000 

mean4Alignment Haptic 0.591 0.009 0.020 0.007 

AR 0.537 0.026 0.084 0.025 

meanEDA2E Haptic 0.555 0.149 0.166 0.063 

AR 0.512 0.354 0.878 0.293 

meanFirstDerivativeEDA2E Haptic 0.169 0.059 0.106 0.040 

AR 0.248 0.008 0.017 0.006 

meanSecondDerivativeEDA2E Haptic 0.329 0.232 0.621 0.235 

AR 0.381 0.010 0.043 0.015 
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meant12E Haptic 0.987 0.033 0.059 0.024 

AR 0.987 0.032 0.075 0.031 

meant22E Haptic 0.560 0.008 0.011 0.005 

AR 0.542 0.015 0.025 0.009 

meant32E Haptic 0.608 0.020 0.043 0.017 

AR 0.645 0.011 0.022 0.008 

meant42E Haptic 0.549 0.026 0.056 0.023 

AR 0.579 0.012 0.024 0.009 

meanEDA1A Haptic 0.668 0.153 0.183 0.055 

AR 0.671 0.241 0.646 0.195 

meanFirstDerivativeEDA1A Haptic 0.414 0.032 0.087 0.026 

AR 0.420 0.008 0.031 0.009 

meanSecondDerivativeEDA1A Haptic 0.405 0.039 0.209 0.063 

AR 0.393 -0.020 0.067 0.021 

meant11A Haptic 0.289 0.051 0.073 0.024 

AR 0.320 0.022 0.043 0.013 

meant21A Haptic 0.318 0.036 0.070 0.021 

AR 0.326 0.013 0.024 0.007 

meant31A Haptic 0.385 0.018 0.030 0.009 

AR 0.387 0.008 0.017 0.005 

meant41A Haptic 0.754 0.016 0.027 0.008 

AR 0.754 0.012 0.034 0.010 

FEMALE 

Group  Sig (2-

tailed) 

Mean Std. 

Deviation 

Std. Error 

Mean 

meanEDAVarus Haptic 0.576 0.055 0.045 0.032 

AR 0.430 0.281 0.497 0.248 

meanFirstDerivativeEDAVarus Haptic 0.700 0.001 0.001 0.000 

AR 0.579 0.005 0.014 0.007 

meanSecondDerivativeEDAVarus Haptic 0.832 0.009 0.015 0.010 

AR 0.765 0.018 0.057 0.028 

mean1Varus Haptic         

AR   0.029 0.049 0.029 

mean2Varus Haptic 0.652 0.000     

AR   0.015 0.025 0.014 

mean3Varus Haptic 0.808 0.005 0.004 0.003 

AR 0.769 0.008 0.014 0.008 

mean4Varus Haptic 0.692 0.001     

AR   0.012 0.020 0.011 

meanEDAValgus Haptic 0.340 0.125 0.179 0.089 

AR 0.375 0.032 0.019 0.009 

meanFirstDerivativeEDAValgus Haptic 0.156 -0.004 0.005 0.003 

AR 0.194 0.013 0.021 0.010 

meanSecondDerivativeEDAValgus Haptic 0.381 0.002 0.003 0.002 

AR 0.415 -0.130 0.281 0.140 

mean1Valgus Haptic 0.735 0.023 0.036 0.021 

AR   0.007     

mean2Valgus Haptic 0.774 0.006 0.009 0.005 

AR   0.002     
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mean3Valgus Haptic 0.599 0.004 0.007 0.004 

AR 0.528 0.001 0.000 0.000 

mean4Valgus Haptic 0.635 0.004 0.006 0.004 

AR   0.000     

meanEDAAlignment Haptic 0.813 0.139 0.403 0.127 

AR 0.823 0.106 0.215 0.062 

meanFirstDerivativeEDAAlignment Haptic 0.309 -0.011 0.040 0.013 

AR 0.372 0.002 0.005 0.001 

meanSecondDerivativeEDAAlignment Haptic 0.209 -0.067 0.194 0.069 

AR 0.220 0.030 0.077 0.027 

mean1Alignment Haptic 0.240 0.016 0.042 0.015 

AR 0.339 0.001 0.001 0.000 

mean2Alignment Haptic 0.837 0.005 0.012 0.004 

AR 0.825 0.006 0.019 0.005 

mean3Alignment Haptic 0.757 0.004 0.011 0.004 

AR 0.765 0.003 0.009 0.002 

mean4Alignment Haptic 0.550 0.010 0.023 0.007 

AR 0.561 0.005 0.017 0.005 

meanEDA2E Haptic 0.683 0.198 0.462 0.154 

AR 0.690 0.124 0.306 0.097 

meanFirstDerivativeEDA2E Haptic 0.907 0.012 0.037 0.012 

AR 0.907 0.013 0.026 0.009 

meanSecondDerivativeEDA2E Haptic 0.502 0.004 0.004 0.001 

AR 0.511 -0.041 0.197 0.066 

meant12E Haptic 0.748 0.011 0.024 0.009 

AR 0.757 0.016 0.034 0.014 

meant22E Haptic 0.468 0.026 0.065 0.023 

AR 0.449 0.007 0.016 0.006 

meant32E Haptic 0.345 0.003 0.005 0.002 

AR 0.406 0.031 0.075 0.030 

meant42E Haptic 0.414 0.021 0.051 0.018 

AR 0.425 0.005 0.012 0.004 

meanEDA1A Haptic 0.804 0.145 0.371 0.107 

AR 0.804 0.113 0.235 0.068 

meanFirstDerivativeEDA1A Haptic 0.629 0.006 0.020 0.006 

AR 0.644 0.003 0.008 0.002 

meanSecondDerivativeEDA1A Haptic 0.308 -0.005 0.011 0.003 

AR 0.334 0.006 0.033 0.010 

meant11A Haptic 0.416 0.007 0.015 0.005 

AR 0.422 0.003 0.005 0.001 

meant21A Haptic 0.437 0.007 0.017 0.005 

AR 0.459 0.003 0.006 0.002 

meant31A Haptic 0.825 0.005 0.012 0.003 

AR 0.824 0.004 0.011 0.003 

meant41A Haptic 0.818 0.003 0.007 0.002 

AR 0.819 0.002 0.006 0.002 
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Pupil Analysis 

Variables from pupil – Between Groups 

First, we checked that there is no statistically significant difference between baselines, which can let us to do 

ANOVA test. Second, we run the homogeneity test for variables. There are three events for pupil: 2 Error (both 

legs misaligned), 1 Error (1 Leg misaligned), 2 Right (both legs aligned). Pupil increased diameter for AR 

feedback for 2 right and 1 Error but not significant. There was a significant increase in pupil diameter for haptic 

feedback when both legs were misaligned (stress state), which is an unexpected result. The plot confirms this 

Variable Pre-

test  

Homogeneity  ANOVA 

(Sig) 

F Haptic Sd.  AR Sd. 

Mean2Right 1 0.409 0.961 F(1,39)=0,002 -0.002 0.288 0.003 0.370 

Mean1Right 0.383 0.861 0.736 F(1,41)=0.115 0.031 0.207 0.052 0.198 

Mean2Wrong 0.340 0.345 0.037 F(1,36)=4.681 0.188 0.501 -

0.106 

0.329 

 

 

  

 
 
Variables from pupil – Between Groups and gender 

No Difference was found between genders. 

Variables from pupil by event– Between groups 

 
1H 2 AR 

 
df Sig. (2-

tailed) 

Mean 

Difference 

Std. Error 

Difference 

95% CI 
 

Mean Std. 

Deviation 

Lower Upper 

meanbaselineP 0.000 0.000 39.000 0.996 0.000 0.000 0.000 0.000 
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0.000 0.000 38.778 0.996 0.000 0.000 0.000 0.000 

meanTestP 0.000 0.000 41.000 0.949 0.000 0.000 0.000 0.000 

0.000 0.000 40.813 0.949 0.000 0.000 0.000 0.000 

mean2right -0.006 0.295 37.000 0.964 -0.004 0.093 -0.193 0.185 

-0.002 0.288 36.779 0.964 -0.004 0.093 -0.194 0.185 

mean1right 0.040 0.208 41.000 0.892 0.009 0.063 -0.119 0.136 

0.031 0.207 40.887 0.892 0.009 0.063 -0.119 0.136 

mean2wrong 0.177 0.514 33.000 0.950 -0.011 0.172 -0.360 0.338 

0.188 0.501 32.764 0.950 -0.011 0.172 -0.360 0.339 

mean2E1R -0.095 0.308 29.000 0.049 -0.247 0.120 -0.492 -0.001 

0.152 0.360 27.642 0.050 -0.247 0.121 -0.494 0.000 

mean1R2E 0.144 0.381 31.000 0.091 0.243 0.139 -0.041 0.526 

-0.099 0.410 30.595 0.089 0.243 0.138 -0.039 0.524 

mean2R1E 0.064 0.446 38.000 0.288 0.153 0.142 -0.134 0.441 

-0.089 0.451 37.683 0.287 0.153 0.142 -0.134 0.441 

mean1E2R -0.123 0.380 38.000 0.179 -0.146 0.107 -0.362 0.070 

0.023 0.293 33.762 0.185 -0.146 0.108 -0.366 0.074 

 

Variables from pupil by event– Between groups and gender - no difference and effect found 

Variables from pupil –Within Groups  

Variables from HR– Within Groups and Gender 

MALE (Haptic) 

Variable Sig(2-tailed) Mean Std. Dev Lower Upper 

Variable Sig. (2-tailed) mean Std. Dev Lower Upper 

meanbaselineP   z-score 0.000   

meanTestP 
 

z-score 0.000   

mean2right 0.665 0.056 0.243 -0.18721 0.299504 

mean2wrong 
 

0.158 0.596 -0.43853 0.754461 

mean2right 0.616 0.049 0.230 -0.18105 0.279817 

mean1right 
 

0.001 0.114 -0.11309 0.115678 

mean1right 0.288 -0.005 0.112 -0.11732 0.107633 

mean2wrong 
 

0.184 0.568 -0.38445 0.752177 

mean2E1R 0.753 0.105 0.509 -0.40406 0.61342 

meanb2E1R 
 

0.134 0.647 -0.51356 0.781389 

mean1R2E 0.920 0.122 0.623 -0.5007 0.744845 

meanb1R2E 
 

0.109 0.311 -0.20238 0.419904 

mean2R1E 0.952 0.054 0.265 -0.21087 0.318857 

meanb2R1E 
 

0.049 0.230 -0.18099 0.279783 

mean1E2R 0.877 0.044 0.235 -0.19077 0.278728 

meanb1E2R 
 

0.055 0.203 -0.14829 0.258414 

FEMALE(Haptic) 

meanbaselineP 
 

z-score 0.000   

meanTestP 
 

z-score 0.000   

mean2right 0.706 0.0271 0.346 -0.31897 0.373098 

mean2wrong 
 

0.1211 0.421 -0.29953 0.541794 

mean2right 0.459 -0.0538 0.341 -0.39435 0.286665 

mean1right 
 

0.0875 0.277 -0.18916 0.364063 

mean1right 0.126 -0.0699 0.139 -0.20909 0.069266 
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mean2wrong 
 

0.1940 0.441 -0.24664 0.634719 

mean2E1R 0.205 0.1189 0.493 -0.37416 0.611947 

meanb2E1R 
 

0.2914 0.489 -0.19794 0.780676 

mean1R2E 0.016 0.2832 0.512 -0.22829 0.79478 

meanb1R2E 
 

-0.0616 0.425 -0.4862 0.363096 

mean2R1E 0.489 0.1077 0.342 -0.23378 0.449264 

meanb2R1E 
 

-0.0245 0.367 -0.39137 0.342369 

mean1E2R 0.110 -0.0720 0.333 -0.4051 0.261133 

meanb1E2R 
 

0.1866 0.282 -0.09539 0.468607 

MALE(AR) 

Variable Sig. (2-tailed) mean Std. Dev Lower Upper 

meanbaselineP   z-score 0.000   

meanTestP 
 

z-score 0.000   

mean2right 0.276 0.045 0.306 -0.26125 0.350952 

mean2wrong 
 

-0.143 0.288 -0.43043 0.145283 

mean2right 0.513 0.027 0.294 -0.26644 0.321221 

mean1right 
 

0.078 0.202 -0.12317 0.279946 

mean1right 0.117 0.061 0.206 -0.14467 0.266933 

mean2wrong 
 

-0.143 0.288 -0.43043 0.145283 

mean2E1R 0.363 0.048 0.280 -0.23121 0.328118 

meanb2E1R 
 

-0.048 0.228 -0.27554 0.180195 

mean1R2E 0.154 -0.524 1.161 -1.68423 0.636829 

meanb1R2E 
 

-0.300 1.235 -1.53478 0.935485 

mean2R1E 0.761 0.000 0.349 -0.34899 0.348533 

meanb2R1E 
 

0.029 0.292 -0.26225 0.321037 

mean1E2R 0.442 0.017 0.292 -0.27511 0.308376 

meanb1E2R 
 

-0.048 0.345 -0.39218 0.297037 

FEMALE(AR) 

Variable Sig. (2-tailed) mean Std. Dev Lower Upper 

meanbaselineP   z-score 0.000   

meanTestP 
 

z-score 0.000   

mean2right 0.803 -0.020 0.442 -0.46112 0.422072 

mean2wrong 
 

-0.076 0.370 -0.44609 0.293499 

mean2right 0.779 -0.020 0.442 -0.46112 0.422072 

mean1right 
 

0.029 0.201 -0.1719 0.229469 

mean1right 0.341 0.029 0.201 -0.1719 0.229469 

mean2wrong 
 

-0.076 0.370 -0.44609 0.293499 

mean2E1R 0.241 0.075 0.391 -0.31629 0.465617 

meanb2E1R 
 

-0.126 0.631 -0.75661 0.505172 

mean1R2E 0.834 -0.151 0.506 -0.6572 0.355287 

meanb1R2E 
 

-0.178 0.606 -0.78369 0.42767 

mean2R1E 0.420 -0.119 0.409 -0.52719 0.290035 

meanb2R1E 
 

0.025 0.449 -0.42371 0.473649 

mean1E2R 0.893 -0.090 0.360 -0.44989 0.270335 

meanb1E2R 
 

-0.076 0.487 -0.56323 0.411296 
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Frequency Domain Analysis – Electrodermal Activity analysis (EDA). Between Groups 

Indicator Description 

F0SC The spectral power in bandwidths 0.05 to 0.1 

F1SC The spectral power in bandwidths 0.1 to 0.2 

F2SC The spectral power in bandwidths 0.2 to 0.3 

F3SC The spectral power in bandwidths 0.3 to 0.4 

 

Within subject analysis 

 

Haptic  
Paired Differences t df Sig. 

(2-t)  
Mean Std. 

Deviation 

Std. Error 

Mean 

95% Confidence Interval of 

the Difference 

   

 
Lower Upper 

   

meanbl1 - 

meant1 

-0.005 0.011 0.002 -0.010 0.000 -2.282 22 0.033 

meanbl1 - 

meant134 

-0.033 0.053 0.019 -0.077 0.011 -1.776 7 0.119 

meanbl1 - 

meant125 

-0.011 0.030 0.007 -0.027 0.005 -1.511 15 0.152 

meanbl1 - 

meant12E 

-0.021 0.043 0.012 -0.047 0.005 -1.737 12 0.108 

meanbl1 - 

meant11A 

-0.027 0.054 0.012 -0.052 -0.001 -2.208 19 0.040 

meanbl2 - 

meant2 

-0.004 0.009 0.002 -0.008 0.000 -2.203 22 0.038 

meanbl2 - 

meant234 

-0.008 0.011 0.004 -0.017 0.001 -2.039 7 0.081 

meanbl2 - 

meant225 

-0.011 0.027 0.007 -0.025 0.003 -1.618 16 0.125 

meanbl2 - 

meant22E 

-0.018 0.049 0.013 -0.046 0.010 -1.391 13 0.188 

meanbl2 - 

meant21A 

-0.022 0.052 0.011 -0.045 0.001 -1.965 21 0.063 

meanbl3 - 

meant3 

-0.001 0.003 0.001 -0.003 0.000 -2.175 22 0.041 

meanbl3 - 

meant316 

-0.005 0.004 0.003 -0.045 0.035 -1.680 1 0.342 

meanbl3 - 

meant334 

-0.017 0.037 0.013 -0.048 0.014 -1.283 7 0.240 

meanbl3 - 

meant325 

-0.007 0.016 0.004 -0.015 0.001 -1.742 16 0.101 

meanbl3 - 

meant32E 

-0.011 0.029 0.008 -0.029 0.006 -1.381 12 0.192 

meanbl3 - 

meant31A 

-0.011 0.023 0.005 -0.021 -0.001 -2.311 22 0.031 

meanbl4 - 

meant4 

-0.001 0.003 0.001 -0.002 0.000 -1.631 22 0.117 

meanbl4 - 

meant434 

-0.021 0.049 0.017 -0.062 0.020 -1.219 7 0.262 

meanbl4 - 

meant425 

-0.010 0.021 0.005 -0.020 0.001 -1.980 17 0.064 

meanbl4 - 

meant42E 

-0.023 0.051 0.014 -0.053 0.007 -1.672 13 0.118 
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AR 

  
Mean Std. 

Deviation 

Std. Error 

Mean 

95% Confidence Interval of 

the Difference 

t df Sig. 

(2-t)  
Lower Upper 

meanbl1 - 

meant1 

-0.0069 0.0236 0.0049 -0.0171 0.0033 -1.396 22 0.176 

meanbl1 - 

meant116 

-0.0220 0.0428 0.0214 -0.0901 0.0461 -1.028 3 0.379 

meanbl1 - 

meant134 

-0.0028 0.0032 0.0014 -0.0068 0.0012 -1.975 4 0.119 

meanbl1 - 

meant125 

-0.0017 0.0039 0.0009 -0.0036 0.0001 -1.985 19 0.062 

meanbl1 - 

meant12E 

-0.0241 0.0562 0.0162 -0.0598 0.0116 -1.484 11 0.166 

meanbl1 - 

meant11A 

-0.0125 0.0313 0.0067 -0.0263 0.0014 -1.866 21 0.076 

meanbl2 - 

meant2 

-0.0040 0.0148 0.0031 -0.0104 0.0024 -1.302 22 0.206 

meanbl2 - 

meant216 

-0.0118 0.0213 0.0106 -0.0457 0.0221 -1.106 3 0.350 

meanbl2 - 

meant234 

-0.0043 0.0081 0.0033 -0.0129 0.0042 -1.311 5 0.247 

meanbl2 - 

meant225 

-0.0213 0.0845 0.0176 -0.0578 0.0153 -1.207 22 0.240 

meanbl2 - 

meant22E 

-0.0108 0.0205 0.0055 -0.0226 0.0011 -1.968 13 0.071 

meanbl2 - 

meant21A 

-0.0080 0.0175 0.0036 -0.0155 -

0.0004 

-2.184 22 0.040 

meanbl3 - 

meant3 

-0.0020 0.0080 0.0017 -0.0054 0.0015 -1.173 22 0.253 

meanbl3 - 

meant316 

-0.0064 0.0123 0.0061 -0.0259 0.0132 -1.036 3 0.376 

meanbl3 - 

meant334 

-0.0019 0.0027 0.0010 -0.0044 0.0007 -1.786 6 0.124 

meanbl3 - 

meant325 

-0.0017 0.0066 0.0014 -0.0047 0.0012 -1.222 20 0.236 

meanbl3 - 

meant32E 

-0.0197 0.0501 0.0134 -0.0486 0.0093 -1.468 13 0.166 

meanbl3 - 

meant31A 

-0.0061 0.0143 0.0030 -0.0124 0.0003 -1.990 21 0.060 

meanbl4 - 

meant4 

-0.0019 0.0067 0.0014 -0.0048 0.0010 -1.364 22 0.186 

meanbl4 - 

meant416 

-0.0088 0.0170 0.0085 -0.0358 0.0182 -1.035 3 0.377 

meanbl4 - 

meant434 

-0.0010 0.0026 0.0011 -0.0038 0.0017 -0.971 5 0.376 

meanbl4 - 

meant425 

-0.0151 0.0592 0.0123 -0.0407 0.0104 -1.227 22 0.233 

meanbl4 - 

meant42E 

-0.0081 0.0182 0.0047 -0.0182 0.0019 -1.729 14 0.106 
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Bivariate Correlations 

Variable 1 Variable 2 Pearson 

(r) 

Sig. (2-tailed) Description 

EDA 1sr Derivative 

EDA valgus 

0.516 0.014 Positive correlation between EDA and 1st 

derivative of valgus. First derivative helps to 

detect the events of EDA 

EDA Varus Pupil 2 

alignment  

-757 0.030 Negative correlation between EDA in varus 

and pupil when both aligned. This result 

exposes that as participant align both legs, the 

EDA response increases and pupil diameter 

decreases.  

EDA Varus Pupil 1 

alignment 

-750 0.032 Negative correlation between EDA in varus 

and pupil when one leg is aligned. This result 

exposes that as participant align one of 

another leg, the EDA response increases and 

pupil diameter decreases. 

1st 

Derivative 

EDA Varus 

Pupil 2 

alignment 

-828 0.021 Negative correlation between 1st derivative of 

varus and pupil when 2 aligned. This result 

exposes that as participant align both legs, the 

EDA response increases and pupil diameter 

decreases. Derivative reports EDA events. 

 

1st 

Derivative 2 

Alignment 

HR Valgus -600 0.011 Negative correlation between 1st derivative 

for 2 alignments and HR when in Valgus. 

This result exposes that as participant align 

both legs, the HR response increases and 

pupil diameter decreases. 

 

 

 

 

 

 

 


