
 

Architectural Design and Evaluation for Distribution and 
Governance of Vehicular Information in Smart Cities 

 

  

Roger Young 

A Thesis Submitted for the Degree of Doctor of Philosophy 

 

Supervisors:  

Dr. Sheila Fallon  

Dr. Paul Jacob  

 

Funded By 

Irish Research Council: EBPPG/2018/206 

Tech-Auto Ltd 

 

 

Submitted to Athlone Institute of Technology, 20th July 2020  

                                                                    
 



 

ii 
 

 

DECLARATION 

I hereby declare that the work presented in this transfer thesis is solely my own work and 

that to the best of my knowledge the work I present is original except where indicated by 

a reference to other respective authors or organisations.   

Signed: _____________________________   

Roger Young  
  
Date:  

  

  

  

  

  

 

 

 

 

 

 

 

  



 

iii 
 

Acknowledgements 

The journey of a PhD was not just four years, but eight. To say it’s a long and difficult 

journey is an understatement. However, it is also an enjoyable journey. One that I could 

not have taken alone. For this reason, there are many people I would like to sincerely 

thank. First, to the amazing staff at AIT. From day one I felt at home and it was a pleasure 

to learn from such a great group of peers.  I wish to express my sincere gratitude to my 

main supervisor Dr. Sheila Fallon, Lecturer in the Dept. of Software and Electronics 

Engineering in Athlone Institute of Technology, for providing me with the opportunity to 

complete my PhD.  I could not have asked for a better supervisor and I am so grateful for 

your knowledge, time, feedback and enthusiasm over the past 4 years. I would also like 

to thank my second supervisor Dr. Paul Jacob. Your feedback and experience has been 

invaluable throughout the course of this work.  And to my fellow Post Graduate 

researchers who have been there on many occasions to provide valuable insight and 

support when needed, I thank you. 

This work was funded by the Irish Research Council and Tech-Auto Ltd for which I am 

very grateful, with a special thank you to Dr. Denis O’Dwyer for this amazing opportunity. 

Finally, I owe everything to my beautiful wife Una and three fantastic children. This has 

been a long road for all of us, and without your continuous love and support, these past 

eight years would not have been possible.  

 

 

 

 

 



 

iv 
 

Abstract 

The rate at which we generate data nowadays has instigated a migration of data processing 

concepts and technologies from the Cloud-Computing paradigm. The potential destructive 

impact of “Internet of Things” on the current network infrastructure has been addressed 

by the rise of Edge Processing and Fog-Computing. However, it is clear that imminent 

technologies such as Smart Cities and Connected Vehicles need a collaborative platform 

of Edge/Fog/Cloud for success. Aggregated vehicle data can provide “data blanketing” of 

every street throughout a city, giving an accurate snapshot of current traffic and driving 

behaviour. Gathering such data is referred to as Vehicle Telematics, and can be obtained 

through On-Board Units (OBU). Modern vehicles generate up to 5GB an hour, with newer 

models generating far more. Processing and transmitting this information in the most 

efficient way possible is a hotly researched topic. 

In this thesis we design, implement, and evaluate a novel data-centric architecture with 

capabilities of performing bi-directional communication between Edge/Fog/Cloud nodes. 

Our architecture, WAVE-Flow, consists of a combination of Flow Based Programming 

and the WAVE communication protocol, with the focus on Vehicle-to-Infrastructure 

scenarios (V2I). With much of the current literature focusing on the communication 

protocols between OBUs and Road-Side Units (RSU), this work develops a set of 

mechanisms within the nodes that enhances governance over data processing and 

distribution. 

WAVE employs the IPv6 protocol, and also introduces a WAVE Short Message Protocol 

(WSMP). Due to high mobility, connectivity between vehicles and RSUs may be unstable. 

Furthermore, RSUs may only be situated at hotspots throughout a city, such as traffic 

intersections. This may be problematic as vehicles may be out of range before data 

transmission is finished. To combat this issue, we develop an in-vehicle mechanism called 

W-V6 that switches between WSMP and IPv6 depending on its proximity of an RSU.  

We have extended the WAVE protocol with a specific message set designed for vehicle 

telematics. The WAVE-Flow architecture stores the message locally in-vehicle until 

requested by an RSU.  However, if, for example the vehicle moves out of the transmission 

range of the RSU, and can no longer transmit via WSMP, the message will be packaged 

as a UDP packet and sent via IPv6 to the RSU.  Results will show our W-V6 mechanism 

extends the service area of the RSU by hybridizing the communication protocols available 

in multi-interface vehicles. 
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1 Introduction 

1.1 Context and Motivation 

Over the next few years we are going to witness numerous unifications and crossovers of 

some of the more well-known buzzwords/technologies of recent times. Internet of Things, 

Big Data, Real-time Processing, Edge and Fog-Computing, Connected Vehicles, and so 

on, will no longer be viewed as specific threads of research. Instead, the focus will turn to 

how much these technologies are compatible with one another and can enhance each 

other’s success stories. One prime example is Smart Cities. Smart Cities are cities that 

embrace the IoT concept to improve quality of life for its dwellers. Gathering data from 

heterogeneous devices throughout the city, in-turn, generating big data that produces 

valuable trends and insight for city developers. Data is commonly regarded as the newest 

natural resource, a resource which in this scenario can vastly improve mobility, public 

utilities, safety and a cleaner environment.  

    Since the introduction of Cloud-Computing, we have seen a massive surge in data 

related technologies. The Cloud allowed companies to invest in more sensor devices, 

which in turn provided more valuable information that could be translated to profit. 

Managing large amounts of data was made possible by technologies such as Hadoop and 

MapReduce. However, newer applications required faster response times, meaning 

traditional batch processing techniques were no longer feasible. Real-Time processing 

technologies such as Apache Spark and Apache Storm addressed this issue. These 

platforms opened up new doors for developers to apply algorithms and logic to data 

instantaneously which suited many scenarios, the automotive industry in particular.  

    Year on year we are generating an exponential amount of data, and although real-time 

processing helps manage this huge quantity, it is not enough. This brought about the 

introduction of Edge-Computing, where devices that generate the data are given some 

processing capability to reduce transmission to the Cloud. This was followed by the 

introduction of Fog-Computing, where existing network nodes are given processing 

capability between the Edge and Cloud. Fog-Computing bridges the gap between the 

Cloud and end devices by enabling computing, storage, networking, and data management 

on network nodes along the IoT-to-Cloud path. A combination of Edge/Fog-Computing, 

Real-Time Processing and the Cloud makes the Internet of Things possible. Otherwise, 
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sending all data to the Cloud would just result in network overload, latency issues, and 

overall poor quality of service.  

    Connected Vehicles within a Smart City are set to play a major role. Simply put, 

vehicles are computers on wheels, with over 2500 sensors that provide highly accurate 

information on traffic and driving behaviour, weather and road conditions, to name but a 

few. Recent advancements in communication protocols between vehicles (V2V), and 

vehicles and surrounding infrastructure (V2I) have enhanced safety issues greatly in urban 

areas, but also opened opportunities for non-safety applications. One such example is 

vehicle telematics/fleet management. Recently, it is becoming more apparent, that vehicle 

telematics may hold tremendous potential as a key enabler for the development of Smart 

Cities. Rich vehicle data has potential to make, not just Smart Cities, but our environment, 

a safer and cleaner place.  

 

1.2 Problem Statement & Contributions 

Is it possible to design a data-centric architecture with the necessary performance to 

support bi-directional communication between Edge/Fog/Cloud nodes in an IoT 

paradigm? 

With projected figures of 50 billion connected devices by 2020 [1] , how data is distributed 

and governed will play a significant role in the success of the oncoming Internet of Things 

paradigm. The current network infrastructure is already strained, forcing many of the 

world’s leading telecommunication companies to invest in Research and Development for 

potential solutions in dealing with the ever-rising growth of data. This brought about the 

introduction of Edge-Computing, and later Fog-Computing. However, currently there are 

a lack of IoT platforms for developers to implement their applications on Edge devices. 

This is also one of the key gaps in realizing Fogs potential, along with applicable use 

cases. Therefore, in defining a reference architecture for IoT applications, certain 

requirements must be addressed, such as evaluating a suitable programming platform, 

local processing potential, data capturing techniques, coordination and governance 

capability. With this in mind, the following research questions must be addressed. 
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1) In terms of communication and collaboration between nodes, to what degree can Flow 

Based Programming address the heterogeneity of services and applications in 

Vehicle-to-Infrastructure scenarios (V2I)? 

The number of applications utilizing Flow Based Programming (FBP) has been growing 

over the past number of years, in line with the introduction of IoT. For this reason we aim 

to design, implement and evaluate a FBP inspired architecture called DAGLADs 

(Distribution & Governance of Large Datasets). The aim of DAGLADs is to enhance Edge 

Processing, with the added benefit of instant governance from the Cloud. We evaluate 

DAGLADS against the current state of the art Cloud approach, with the aim of 

maintaining computational accuracy while minimizing transmission to the Cloud. Other 

important aspects for a successful IoT platform such as advanced Edge analytics 

capabilities and collaborative task offloading to the Cloud will also be taken into 

consideration during the evaluation. DAGLADS will be presented as an Edge/Cloud 

platform. However, our overall goal is to create an architecture that spans across 

Edge/Fog/Cloud. For this, we need a suitable use-case. Interaction between Connected 

Vehicles and Smart Cities infrastructure is a prime example of Edge/Fog/Cloud, therefore, 

if one was to focus on a platform for IoT applications, Connected Vehicles would be an 

optimal use case, which leads to addressing the following questions. 

2) For vehicle telematics to be considered a key enabler in the development of Smart 

Cities, which in-vehicle data capturing technology provides the most accurate sensor 

data? 

Connected Vehicles provide a wealth of data that may be used in the development of Smart 

Cities. Although future OBUs may ingest data directly from the vehicle network, currently 

most industry based technologies and also current literature capture data via the OBDII 

standard. This is due to its ease of access and installation. OBDII is often used as ground 

truth when comparing to other fleet management systems such as GPS based technologies. 

However, another less utilized standard exists called FMS. Originally only for buses and 

trucks, FMS can now be installed in passenger vehicles via a FMS gateway. As our focus 

is on vehicle information in urban areas, choosing the most accurate data capturing 

technology is imperative. For this reason we evaluate and compare both standards 

simultaneously, providing analysis on the most reliable standard to use when monitoring 

driving behaviour, traffic behaviour, and environmental factors such as CO2 emissions. 
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3) Can a Multi-Tier Flow Based Programming Architecture enhance the distribution and 

governance of vehicle sensor information in Smart Cities? 

 

    The initial design of our reference architecture was to perform intelligent distributed 

data processing within an IoT context. However, with Connected Vehicles interaction with 

surrounding infrastructure considered a growing research topic, we redesign our 

DAGLADs architecture to compliment the inclusion of RSUs (Fog Devices) and the de-

facto V2V communication protocol WAVE. One of the novelties of WAVE is that higher 

layer applications have the ability to determine lower layer parameters such as data rate, 

transmission power etc. We aim to enhance this concept with a novel architecture called 

WAVE-Flow in which higher layer applications in the RSU can modify lower layer 

parameters on vehicle OBUs. In essence, RSUs have governance over the transmission of 

information from the vehicles. This will be achieved by bringing together the concepts of 

FBP and WAVE with the aim of shedding new light on the role FBP may play in V2V/V2I 

scenarios. 

 

    WAVE supports two messaging protocols, IPv6 and WSMP. WSMP is a fast, one-hop 

messaging system for dissemination of safety beacons, whereas IPv6 can be utilized for 

internet connectivity and multi-hop purposes. In terms of a unicasting scenario such as 

vehicle telematics in V2I, WSMP provides higher throughput with lower packet loss. 

However, a major drawback is once out of range, it can no longer transmit to the RSU. To 

combat this issue, we design and evaluate an in-vehicle mechanism called W-V6 that 

switches from WSMP to IPv6 once the vehicle is out of proximity of an RSU. 

 

    As a use case for WAVE-Flow, we introduce a city wide fleet management platform. 

We also introduce a specific message set for vehicle telematics. As part of the use case, 

exhausting simulations of numerous combinations of lower layer parameter modifications 

will be tested. To the best of the authors’ knowledge, this will be the first body of work 

that takes into consideration data rate, QoS mechanisms, and data granularity for the 

enhancement of packet delivery in a V2I unicast scenario. It is also the first body of work 

to perform an in-depth comparison of WSM and UDP in one-hop scenarios. In our use-

case, RSUs act as control portals to the vehicles in its vicinity. Mechanisms on the RSU 

can determine at what granularity and data rate vehicles transmit their messages, 

dependant on external parameters such as current traffic congestion.  WAVE-Flow can be 

considered as the main contribution of this thesis. 
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1.3 Publications 

The idea and the contributions presented in this thesis are part of several peer reviewed 

research papers. In this subsection we give the list of our publications sorted by date. 

Figure 1 presents a hierarchical view of our reference architecture. As shown, our 

architecture is evaluated in two platforms, DAGLADS and WAVE-Flow. The bottom 

layer shows the different areas in which we contributed with a numbered link to our 

publications.  

 

Figure 1: Hierarchical Structure of Reference Architecture & Contributions 

 

1) An Architecture for Intelligent Data Processing on Edge Devices in an IoT 
Environment  

Young, R., Fallon, S., & Jacob, P. (2017, April). An architecture for intelligent data processing on iot Edge 
devices. In 2017 UKSim-AMSS 19th International Conference on Computer Modelling & Simulation 
(UKSim) (pp. 227-232). IEEE. 

2) A Governance Architecture for Self-Adaption & Control in IoT Applications 
Young, R., Fallon, S., & Jacob, P. (2018, April). A Governance Architecture for Self-Adaption & Control 
in IoT Applications. In 2018 5th International Conference on Control, Decision and Information 
Technologies (CoDIT) (pp. 241-246). IEEE  
 

3) Dynamic Collaboration of Centralized & Edge Processing for Coordinated 
Data Management in an IoT Paradigm 

Young, R., Fallon, S., & Jacob, P. (2018, May). Dynamic collaboration of centralized & Edge processing 
for coordinated data management in an IoT paradigm. In 2018 IEEE 32nd International Conference on 
Advanced Information Networking and Applications (AINA) (pp. 694-701). IEEE. 
 

4) A Flow Based Architecture for Efficient Distribution of Vehicular 
Information in Smart Cities  
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Young, R., Fallon, S., Jacob, P., & Dwyer, D. O. (2019, October). A Flow Based Architecture for Efficient 
Distribution of Vehicular Information in Smart Cities. In 2019 Sixth International Conference on Internet 
of Things: Systems, Management and Security (IOTSMS) (pp. 93-98). IEEE. 
 

5) Vehicle Telematics and its Role as a Key Enabler in the Development of Smart 
Cities 

Young, R., Fallon, S., Jacob, P., & Dwyer, D. O. (2020). Vehicle Telematics and its Role as a Key Enabler 
in the Development of Smart Cities. IEEE Sensors Journal. 

6) A Flow Based Architecture for a Multi-User Fleet Management System in 
Smart Cities 

To be submitted to IET Smart Cities 

 
 

 
1.4 Thesis Layout 

Chapter 2 provides an in-depth review on a number of relevant areas to our thesis, 

including Edge/Fog Computing, Smart Cities, Connected Vehicles, WAVE, and Flow 

Based Programming. In chapter 3 we design an IoT architecture with strong focus on real-

time Edge processing and bi-directional communication. This chapter presents the design 

and methodology of our DAGLADS architecture, while detailing the fundamental 

requirements, technology used, architectural entities and the system components within 

each entity. Chapter 3 concludes with a series of implementations and results of 

DAGLADS.  

    As our focus turns to Connected Vehicles within a Smart City, chapter 4 discusses the 

vehicle network, and analyses in-vehicle data capturing techniques. The goal of chapter 4 

is to provide insight on the most accurate data capturing standard in terms of monitoring 

driving and traffic behaviour.  In chapter 5 we introduce our multi-tier architecture 

WAVE-Flow. The WAVE-Flow architecture builds on the methodology and knowledge 

gained from chapter 3 and 4, allowing us to incorporate our reference architecture in a 

V2I use case. Finally, chapter 6 concludes our overall findings and limitations of the 

thesis. 
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2 Literature Review 

With considerable predictions of connectivity to the web over the coming years, ongoing 

research exists to address the issues surrounding the exponential increase of data. The 

introduction of Edge-Computing, where Edge devices come with the capability to process 

and analyse newly generated data, now allows for the distribution of some data analytics 

from the Cloud to the Edge devices. Although Edge and Cloud-Computing are evolving 

rapidly, architectures that efficiently coordinate computations in a dynamic manner are 

still in their infancy. While Edge-Computing may perform better in low latency real time 

prediction, the Cloud approach is advantageous in storage and processing power. It is 

evident a collaborative system that avails of the benefits from both models is fundamental 

to the success of IoT [2].  

    The more recent introduction of Fog-Computing can be seen as computation taking 

place in the layer between the Edge and the Cloud. Currently, there are many definitions 

of Fog-Computing, with much literature still interchanging between Fog and Edge. For 

example, [3] provides an in-depth survey on Edge-Computing and its role as a key enabler 

for many future technologies like 5G, IoT, augmented reality and vehicle-to-vehicle 

communications by connecting Cloud-Computing facilities and services to the end users. 

However, the authors categorized and classified the state of the art in Edge-Computing as 

Cloudlets, Fog and Mobile Edge-Computing. In contradiction to this, the authors of [4] 

provide insight into Fog-Computing and similar programming models, stating Fog-

Computing provides computing, networking, storage, and control anywhere from cloud 

to things; while Edge-Computing tends to be limited to computing at the edge.  In [5], it 

states that despite the existence of the concept for several years now, commercial 

deployments of Fog-Computing are yet to take off. Part of the reason is there are still an 
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inadequate number of widely deployed or critical applications that find Fog beneficial. 

There also seems to be a lack of clarity on the application model, runtime and management 

environments for a Fog platform.   

 

2.1 Migration of Computation from the Cloud 

Traditionally, IoT devices, and wireless sensor networks (WSNs) were commonly 

designed to transfer data to remote servers and computing Clouds as discussed in [6], [7], 

and [8]. Cloud offers infrastructure, platform, and software as services (IaaS, PaaS, SaaS). 

Application developers can use a variety of these services depending on the needs of the 

applications they develop. Recent work such as [9] propose a real-time job scheduler in 

Hadoop for Big Data. The scheduler aims to manage cluster resources in such a way that 

the real time jobs will not be affected by the long running (batch jobs), and vice-versa. 

The case study is applied as support for Smart City applications, taxicabs in particular. 

Although efficient in its design, all data is transferred to a single location in a completely 

centralized scheduler.  

    The authors of [10] propose an architecture for streaming spatio-temporal event 

processing, analysis and near real-time visualization. It is comprised of fully open source 

software and focuses on a use case involving a fleet of snowploughs. Information on the 

plows are published to the public, as well as road coverage data. Technologies such as 

LocationTech GeoMesa, GeoTools, and GeoServer are used to enable geospatially-aware 

complex event processing (CEP) solutions. There are some challenges when it comes to 

processing stream geospatial events, such as handling differences in event and processing 

time. However, the inclusion of software such as Apache Storm [11] and Apache Kafka 

[9] into this architecture addressed such problems. The authors of  [12] propose a Big Data 

pre-processing quality framework that focuses on the Quality of Big Data (QBD). This 
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framework aims at solving data quality issues that occur when attempting to apply data 

quality concepts to large data sets. All of the above-mentioned papers are versions of a 

centralized approach, which leaves them vulnerable to latency issues and network load. 

Both [13] and [14] reiterate the well-known fact that sending all data to the Cloud will 

require prohibitively high bandwidth if it is to provide greater service and faster quality. 

Also, in terms of mission critical data such as safety information for Connected Vehicles, 

the Cloud paradigm alone, is obsolete. Figure 2 shows a typical Cloud-centric scenario in 

which all sensor data is sent to the Cloud for analytics and storage. As shown in the image, 

this leaves potential for network bottlenecks when the bandwidth cannot sustain the influx 

of data to the Cloud.  

 

Figure 2: Typical Cloud-Centric Scenario 

  

2.1.1 Edge-Computing 

Over the past three to four years, we have noticed a shift in the data-mining paradigm. 

There has been a significant rise in published work in this timeframe that focuses on Edge-

Computing. It may also be a fair assumption to say that over the past 24 months in 

particular, Fog-Computing is the computing model receiving most attention. The rest of 
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this section will begin with reviewing work solely based on Edge analytics before moving 

onto recent Fog-Computing literature.   

    In Edge-Computing, physical assets like pumps, generators and motors are physically 

wired into a system utilizing a programmable automation controller (PAC). PACS add 

intelligence that allows for Edge analytics close to the sensor devices. As discussed, Edge-

Computing has drawn much attention in both industry and academia. This is due to the 

widely accepted fact that processing close to source is paramount to the success of IoT. 

Connected Vehicles provide a perfect example for such a scenario. With each vehicle 

generating up to 5GB of data an hour, and future vehicles predicted to generate far more, 

it is inconceivable to send this data to the Cloud, especially in life and death situations 

such as autonomous driving. Mission critical decisions such as these require on board 

decision-making, eliminating the risk of network failure.   

    There is much literature in this area that presents solutions to reduce data transmission 

to the Cloud. The work presented in [15] examines the benefits of data mining on the 

wireless, battery-powered, smart sensing devices at the Edge points of IoT. The authors 

implement three specific algorithms: Linear Spanish Inquisition Protocol (L-SIP), 

ClassAct, and Bare Necessities (BN). These algorithms fall under GSIP, or General 

Spanish Inquisition Protocol (SIP). Under SIP, nodes only send unexpected information. 

The goal of this work was to transform data at source into valuable information, in turn 

reducing packet transmissions, energy use, and storage space.  Results showed packet 

reduction of between 95% - 99.98% demonstrating the importance of Edge mining in an 

IoT environment.  

    Nectar Agent is presented in [16], a solution that automates the switching between 

different data handling algorithms on Edge devices. It also has the capacity of adjusting 

and analysing data reduction methods. The authors introduce three flavours of a new 
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algorithm capable of performing real-time reduction of incoming time series items based 

on the concept of Perceptually Important Points. The paper present a method called 

Streamification, where data reduction algorithms work upon data streams.  Evaluations 

are made using real datasets from street, household, and robot sensors.  Accuracies of 76.1 

% to 93.8 % are reached.    

    As demonstrated by the papers above, several interesting proposals have emerged 

recently from the realization that not all IoT generated data are of equal importance. This 

has led to certain strands of research to focus on sending “important” data to the Cloud. 

However, although this may be sufficient in certain scenarios, many companies may not 

want to simply discard raw data as it may still obtain valuable information. In many cases, 

it may prove beneficial to focus on filtering and transmitting “relevant” data at source, but 

also have the potential to temporarily locally store “all” data for batch processing at a later 

date.  

    Hortonworks [17] demonstrated the simulation of bi-directional data communication 

between an on-vehicle platform and the Cloud. This was achieved by loading Apache 

MiNifi onto a custom Qualcomm modem located in a connected car, allowing the vehicles 

to transmit data to their HDF (Hortonworks Data Flow) platform [18]. The demo 

highlighted how to deliver critical capabilities for vehicle communication. The centralized 

HDF platform could process key data such as speed and geo-location in real time. MiNifi 

could manage how and when to transmit much larger but less time-relevant data, (system 

diagnostics, etc.) This data could be batched on the vehicle and sent in bursts over known 

Wi-Fi locations. This is an effective solution as bandwidth over LTE is expensive. When 

testing our proposed architecture DAGLADS, HDF will be used as the centralized 

approach for comparison. This is because HDF can be viewed as current state-of-the-art 

in real time processing.  
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FocusStack [19] is an Edge/Cloud platform created by combining OpenStack, one of the 

most popular open source cloud management platforms, with the AT&T Labs Geocast 

System (ALGS), a multi-tiered geographic addressing (GA) network subsystem that 

allows packets to be sent to (all devices in) a geographic region instead of a specific set 

of IP endpoints, as in IP unicast or multicast. Linux based containers are deployed to the 

edge devices which in turn allows developers to implement custom applications. 

FocusStack is similar to our proposed Edge/Cloud platform, with the main difference 

being our platform is not confined to deployment of applications to a specific region.   

Similar Edge development platforms include NodeRED and Apache Edgent. However, 

NodeRED does not have a general way for configuring applications dynamically, and 

Edgent does not provide any "deployment" mechanisms, it does however, recommend to 

FTP the application to the device and modify the device to start the application upon start-

up [20]. The work in [21] presented the foundations of a new ongoing Horizon 2020 

research project called LightKone that extends Edge-Computing for general-purpose 

computation, making it more scalable and flexible, and providing a set of mechanisms to 

simplify development and deployment of applications. The LightKone approach is based 

on the use of synchronisation-free shared mutable data combined with robust and efficient 

hybrid gossip communication primitives.   

    Although there is a shift towards Edge-Computing, it is not without its own shortfalls. 

The authors of [22] discussed the issues that surround Edge processing. It points out that 

Edge devices are most often battery powered. This is problematic as sending and receiving 

data drains energy quickly on mobile devices and smart sensors. Furthermore, [23] stated 

that although there are ongoing parallel advances in Cloud-Computing and Edge-

Computing, interactions between these platforms in handling live data analytics from the 

communication perspective have been rarely investigated in the literature. This statement 
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is reiterated in [24]. Taking all of this information into account, it further cements our 

research question in the need for a collaborative platform for IoT programming. Figure 3 

shows a typical Edge-Computing paradigm. Analytics performed closer to where the data 

is generated reduces traffic to the Cloud, which, in turn, reduces the risk of network 

latency. This solution is also cost effective for businesses in terms of bandwidth and 

storage costs.  

 

Figure 3: Typical Edge-Computing scenario  

2.1.2 Fog-Computing  

As previously mentioned, Fog-Computing has received much interest recently. As stated 

in [25], Fog is an architecture that distributes computation, communication, control and 

storage closer to the end users along the Cloud-to-things continuum, including numerous 

types of devices.  Early works such as [26] and [27] introduced Fog concepts to aid in 

analytics of sensor data. The authors of [26] proposed IFoT (Information Flow of Things) 

middleware. IFoT provides four functions: 1) the distribution of tasks issued by 

application software into subtasks and distributed execution of the sub-tasks over multiple 

Edge and Fog devices. 2) Distribution of data streams over Fog devices. 3) Real-time 
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analysis of the data streams, and 4) Seamless integration of sensors and actuators. A use 

case involving a face recognition system for person tracking was provided using a 

Raspberry Pi by locally processing video streams in real-time and a distributed manner.  

    Krikkit [28] is an open-source solution initiated by Cisco, but has been acquired by 

Eclipse. It is a publish/subscribe mechanism where rules are registered on the Edge/Fog 

gateways that communicate with sensors.  It is in the process of specifying a data format 

and a mechanism for “telling the network-Edge devices” which data to forward and how. 

Krikkit is a promising concept but is still in development stage; also, it is uncertain as to 

whether it will be implemented only on router like devices. SpanEdge [29] is a two-tier 

processing platform that utilizes close to the edge devices such as routers and gateways. 

The approach of SpanEdge is to distribute stream processing applications across central 

and near-the-edge data centres in order to reduce the response latency and bandwidth 

consumption and thus improving the performance of stream processing applications. 

Although the name may suggest Edge processing, it is evident in this work they are 

referring to a Fog/Cloud processing platform. In fact, the author stated SpanEdge 

leverages the state-of-the-art solutions for hosting applications close to the network edge, 

such as cloudlets and Fog. 

    Authors of [30] described Fog-Computing as a model to complement the Cloud through 

the distribution of the computing-plus-networking resources from remote data centres 

towards Edge devices. The goal is to save energy and bandwidth, while simultaneously 

increase the QoS level provided to the users. As a consequence, Fog Nodes (FNs) are 

virtualized networked data centres which run atop access points at the Edge of the access 

network, in order to give rise to a three-tier IoE/Fog/Cloud hierarchical architecture. This 

is in line with our proposed architecture, in which RSUs can be seen as the Fog nodes in 

a V2I scenario. This work also details a high level overview of a Fog architecture in a 
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Smart City, citing 4 layers; the physical layer where data is generated, the network layer 

guarantees data transport between the Edge devices and the overall Smart City 

infrastructure, the fog layer that performs real time aggregation and orchestration and 

finally the supervision layer that provides user friendly interfaces offered by the Smart 

City ecosystem. This is similar to our city wide architecture, however, in our use case, the 

fog layer and the network layer will be intertwined, as RSUs act as network devices with 

processing capabilities. 

    As discussed in our problem statement, and one of the underlying objectives of our 

work, [31] reiterated the fact that there is still a major challenge for developers to program 

their services to leverage the benefits of Edge and Fog-Computing. The authors presented 

FogFlow, an IoT Smart City platform. To showcase their platform they presented three 

use cases, unfortunately none were vehicle related for comparison. In their architecture, 

three entities are described; Cloud, Edge nodes and devices. Devices in this work refer to 

nodes such as vehicles, and cite that devices may include computation and communication 

capabilities. However, in FogFlow, the work was focused on the Fog nodes and Cloud 

doing the processing, and there is no bi-directional collaboration between 

Edge/Fog/Cloud, which will be a necessity in many scenarios. 

    Figure 4 shows a typical Fog-Computing paradigm. As shown, Fog-Computing aims at 

processing on network devices between the Edge and Cloud. Matt Vasey, director of IoT 

business development, Microsoft and an Open Fog Consortium officer, stated that “Edge 

is to Fog as apple is to fruit”. Therefore, it is perceivable that both Edge and Fog-

Computing will work in unison to reduce data transmission to the Cloud.  
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Figure 4: Typical Fog-Computing scenario 

2.1.3 Paradigm Shift Review 

It is clear that the introduction of Edge/Fog will play a major role in future technologies. 

It is also clear that Edge /Fog are not here to replace Cloud, but to complement it. This is 

further stated in [32], which reviewed the state-of-art of the analytics network 

methodologies, which are suitable for real-time IoT analytics. This work provides a 

thorough study of the existing IoT platforms, while stressing the importance of real-time 

analytics. Furthermore, [5] reviewed various dimensions of system architecture, 

application characteristics and platform abstractions that are manifested in this Edge, Fog 

and Cloud ecosystem. The author stated that the current lack of a platform ecosystem to 

design and run IoT applications that can use the Fog paradigm, is one of the key gaps in 

realizing Fogs potential. The authors also state that although IoT Edge management 

technologies such as Azure IoT Gateway and Amazon AWS Greengrass are becoming 

available, application platforms are still in their infancy.   
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2.2 Fog in Smart Cities 

Throughout the world, major cities are experiencing ever-increasing urbanization and 

mobility challenges. Current estimates of 55% of the world’s population residing in cities 

and towns are set to increase to 68% by 2050. An ever-growing population is adding much 

pressure on existing infrastructure, forcing city leaders to look towards technologies such 

as “Internet of Things” to aid in improving municipal quality of life, transforming cities 

into “Smart Cities”. The introduction of IoT laid the foundations of Smart Cities, making 

real the vision of complete connectivity and interaction amongst heterogeneous devices. 

In academia, the definition of a Smart City is “an urban-development vision to integrate 

information and communication technology (ICT) and IoT technology in a secure fashion 

to manage a city’s assets.” However, a more favourable explanation was coined by R. 

Giffinger and H. Gudrun when quoting “A city becomes smart only if the performance 

indicators improve for several interconnected areas, such as the economy, people, 

governance, the environment, living, and mobility”.  

    Smart Cities are only possible with a combination of Edge/Fog/Cloud. With millions of 

heterogeneous devices generating large quantities of data, it is simply infeasible to send 

everything to the Cloud. There are numerous Smart City architectures in the literature 

which were reviewed to provide us some insight into current state of the art. The vision of 

SMARTIE (Secure and sMARter ciTIEs data management) [33] and [34] is to create a 

distributed framework for loT-based applications storing, sharing and processing large 

volumes of heterogeneous information. This is an EU funded project, that although 

primarily focuses on privacy and security, may be implemented in many scenarios. 

However, the overall structure of SMARTIE is more centralized than our proposed 

architecture, providing specific APIs for different applications throughout the city.  



 

18 
 

    A Fog based architecture for Smart Cities is proposed in [35]. In this article, the 

challenges and opportunities of applying Fog-Computing in a vehicle scenario are 

discussed, and a regional cooperative fog-computing-based intelligent vehicular network 

(CFC-IoV) architecture is proposed. CFC-IoV adopts a coordinator to provide low-delay 

coordination services for IoV applications. Similar to our proposal, CFC-IoV is an open 

system to heterogeneous networks. Authorized users, such as government service 

providers, and users, are able to add new entities to the Fog-Computing system. However, 

the bulk of the work in CFC-IoV is carried out by the distributed fog servers throughout 

the city, with the role of the RSUs limited to access points.  

    The Santander project [36] described the deployment and experimentation architecture 

of the Internet of Things experimentation facility being deployed at Santander city. It is 

an EU commissioned project that represents a unique city-scale experimental research 

facility. Their testbed structure is similar to our proposed architecture, in that it consists 

of a testbed server, a gateway tier and an IoT node tier. The Santander platform is 

adaptable to many use-cases such as parking management, environment monitoring, and 

participatory sensing where mobile phones are used as sensors. Because the experiment 

mostly uses Wireless Sensor Networks (WSNs) for ingesting data, the inter-tier 

connectivity is a mix of Wi-Fi, 3G, Bluetooth and Ethernet interfaces. Bonomi [37] of 

Cisco present a four tier architecture for Connected Vehicles in Smart Cities. The 

architecture proposed to consider the 4 steps that every IoV communication always 

involves which are: Embedded systems and sensors, Multi service Edge, Core, Data centre 

and Cloud.   

    DOCTraMS [38] is a system that monitors and disseminates traffic conditions using a 

decentralized infrastructure. On-board units and roadside units do not need to be 

interconnected or connected to a central computer. These elements exchange information 
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to update their tables that describe the traffic conditions of each road segment presented. 

These characteristics allow the system to be used even in locations where there is no power 

infrastructure or cellular coverage. 

    The authors of  [39] presented TrasoNET, an integrated network framework that 

provides real-time intelligent transportation services to Connected Vehicles by exploring 

the data analytics and networking techniques. TrasoNET focuses on providing vehicles a 

real-time status on local traffic. TrasoNETs consists of the following 4 components;  

Access Infrastructure: The access infrastructure consists of evolved Node Bs (eNBs) and 

RSUs. Mobile devices like smartphones connect to eNBs via LTE, whereas vehicles 

connect to RSUs via DSRC or WI-FI.  

Mobile Devices: Smartphones or vehicles.  

Central controller: Connects to the eNBs and RSUs. It acts as an interface between the 

physical network routers and the network operators to specify network services. 

Cloud: The majority of data analytics is performed here. 

   This work also introduced the concept of a regional RSU, a coordination node that 

connects to a number of local RSUs. Similar to [35], the role of RSUs seems to be little 

more than access points for vehicles. However, this is in contrast to the recent introduction 

of Cisco Kinetic [40]. Cisco’s IoT platform Kinetic presents RSUs as powerful processing 

devices, similar to our proposal. In fact, Kinetic utilizes a flow based programming 

approach to perform decision making on data in motion in IoT scenarios. This is a focal 

point of our proposal. RSUs are set to have advanced processing capabilities, and as the 

closest infrastructure devices to the Edge, hold great potential in acting as governing nodes 

throughout an urban area. Such nodes can process and make decisions faster, gaining 

valuable insight from vehicle sensor information instantaneously.  
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    It must be noted there are other works that utilize RSUs as coordination managers in 

vehicle applications. The authors of [41] utilized RSUs as coordination nodes to aid in 

formulating a distributed service model for optimizing the service placement on moving 

vehicles. In this work, a Control Node (CN), or cluster head, is chosen among a group 

vehicles that will update the cluster state in terms of location and resource availability to 

the RSU. The CN is chosen as it will be the node that has the greatest probability of staying 

in the cluster until the service has completed. Similarly, [42] proposed a system in which 

the RSU chooses a cluster head from a group of vehicles, in which the RSU and cluster 

head are responsible for the V2V communication with the aim of finding traffic 

congestion and the shortest path for data transmission between nodes. 

 

2.3 Connected Vehicles & Data Capturing Techniques 

    Projections show that urbanization, combined with the overall growth of the world’s 

population could add another 2.5 billion people to urban areas by 2050. [43]. This 

coincides with the increasing trend of our reliance on vehicles. The United States, claims 

an average of 812 cars for every 1,000 people. In China, the number of vehicles is expected 

to reach 250 million by the end of 2020 [39]. Connectivity is increasing around the world 

and its expansion to vehicles is no exception. With improvements in connectivity, sensing, 

and computation, the future will see vehicles used as development platforms capable of 

generating rich data, acting based on inference, and effecting great change in 

transportation, the human-vehicle dynamic, the environment, and the economy [44]. 

Increased vehicular sensing and connectivity creates troves of useful data. A growth in 

vehicle and Cloud-Computing power, as well as scalable data handling tools, has made 

gleaning critical insights from vast data sets tenable. This is further aided with the 

decreasing price and power consumption of microcontrollers, which are now integrated in 

many vehicle components. With this, local application development and data aggregation 
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is now possible. There is a wealth of literature stating the importance of the role vehicles 

in urban areas may play [45]–[50], in terms of improving urban mobility, reducing 

pollution, and enhancing safety. 

2.3.1 Vehicle Telematics 

Vehicle telematics holds great potential in terms of making not just Smart Cities, but our 

environment, a safer and cleaner place. Initially, the goal of vehicle telematics was to help 

businesses lower operational costs, while monitoring driver behaviour and vehicle health. 

However, a growing number of companies are beginning to prioritize their fuel efficiency 

and carbon footprint. This change is not only driven by reducing fuel related costs, but 

also government initiatives to combat the rise in Greenhouse Gas Emissions (GHG). The 

transportation sector is responsible for a significant fraction of total Greenhouse Gas 

emissions, second only to energy production. Worryingly, while emissions from other 

sectors are generally decreasing, those from transportation have increased by 36% since 

1990 [51]. This has led the automotive industry to invest in a volume of technologies that 

reduce the necessity of fossil fuels. However, widespread use of electric vehicles is still a 

distant vision, meaning other fuel saving technologies are required. One such method is 

Eco-Driving.  

    The characteristics of Eco-Driving are generally well defined and easily characterized 

[52]–[57]. They involve such things as accelerating moderately (moving up gears between 

2000 and 2500 revolutions), reducing hard deceleration by anticipating traffic flow and 

upcoming signals, maintaining a steady driving speed, route choice, and eliminating 

excessive idling [57].  Compared to other solutions, the implementation of Eco-Driving is 

relatively low-cost and immediate, and the improvement in fuel efficiency can be up to 

45%, which is also a significant reduction in carbon emissions. There are generally two 

ways of monitoring Eco-Driving; Using GPS and sensor data such as accelerometers and 
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positioning from devices like smart phones, or acquiring data such as vehicle speed 

directly from the vehicle network. However, combining both would provide the most 

efficient results. As will be discussed, to extract information from the vehicle we use a 

combination of devices that capture raw vehicle data, convert it to readable format, and 

enriches with GPS information. 

    There is a large body of work that focuses on the benefits of eco-driving. The authors 

of [57] discussed the benefits of eco-driving in terms of cost savings and reducing 

emissions. It pointed out the primary advantages are that it can apply to any vehicle, across 

an entire fleet of vehicles immediately (as opposed to being phased in), resulting in 

immediate net savings to individuals from day one from greater fuel efficiency. The 

methodology of [55] consisted of installing in-vehicle monitoring technology via an 

OBDII port. The results show that gasoline and hybrid vehicles decreased average idling 

between 4% and 10% per vehicle per day, leading to an average emissions decrease of 1.7 

kg of CO2 per vehicle per day. The authors of  [58] performed studies on the eco-driving 

skills of drivers. As a result of the training, reduction of fuel economy by 13.6% in average 

was achieved, which was reduced to 4% after a three month period. Similarly, [59] 

assessed driving behaviour of two groups.  853 drivers received training in eco-driving 

technique while 203 were monitored as a control group. This study found the driver 

education led to a statistically significant reduction in fuel use of 4.6% or 0.51 litres per 

100 km compared to the control group. The above papers show the importance of 

monitoring driving behaviour in terms of fuel and CO2 reduction. However, the methods 

of data extraction range from OBDII to using fuel-cards and paper forms for measuring 

fuel usage. Our goal is to evaluate OBDII and FMS standards over the same trips 

simultaneously, comparing them to actual fuel used, which we calculate from odometer 

readings and fuel used before and after a trip. Our aim is to give a clear indication of the 

most accurate standard for fleet telematics/urban mobility monitoring. 
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2.3.2 Controller Area Networks (CAN) 

Modern vehicles are equipped with a highly complex network of electronic devices. 

Around 70 Electronic Control Units (ECUs) communicate with each other over the 

standard communication protocol known as Controller Area Network (CAN), Figure 5. 

Controller Area Networks were introduced by Bosch in 1991 to simplify the 

communication between different ECUs within a vehicles using one single pair of twisted 

wires, known as CAN-High and CAN-Low. The CAN-Bus is serial based, meaning the 

information travels along the CAN-Bus one bit at a time. On the CAN-High a redundant 

signal is transferred which is inverted compared to CAN-Low line. When CAN-High goes 

high, in the same time, CAN-Low goes low, in the same proportion [60].  

    CAN is a highly efficient protocol with the capability of providing a communication 

rate of up to 1Mbps [61]. CAN-Bus messages utilize a broadcasting system, allowing all 

ECUs to send and receive messages from the CAN-Bus. There are two well-known 

interfaces and standards that connect to the CAN-Bus; OBDII and FMS. While the CAN-

Bus can be regarded as the networking system, OBDII and FMS can be viewed as 

languages that interpret the CAN data.  

 

Figure 5: Example of CAN and ECUs within a vehicle 
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2.3.3 OBDII Standard 

Since 1996 in the U.S and 2001 in Europe, all passenger vehicles come equipped with an 

OBDII (On-Board Diagnostics) port, usually located under the steering wheel. The 

standard was developed by the Society of Automotive Engineers (SAE). This specification 

was defined for all manufactured vehicles to enable the regulation of vehicle emissions, 

so as to ensure that the Environmental Protection Agency (EPA) standards are met [62]. 

The aim of OBDII was to provide communication to the CAN-Bus, giving access to real-

time data from ECUs of the vehicle. The OBDII-II standard specifies the connector and 

its pinout, the electrical signalling protocols available, and the messaging format. Five of 

the 16 pins are standardized as shown in Figure 6. Pin 4 and 5 link to chassis ground and 

signal ground respectively, Pin 6 and 14 connect to CAN-High and CAN-Low 

respectively, and pin 16 connects to the vehicles power source. The remaining pins are 

vendor specific. 

    There are over 200 available parameters available via OBDII, which are called PIDs, 

and are requested via their hexadecimal identification number [63]. For example, vehicle 

speed has a PID of 010D. OBDII PIDs can be requested using an OBDII adapter, and sent 

to a smartphone using Bluetooth or Wi-Fi. Due to its ease of access, a large number of 

telematics companies identified the OBDII port as a way of obtaining vehicle data to 

support the delivery of new fleet telematics services and started to exploit it in their 

solutions [64]. However, as the name suggests, OBDII was not created for this purpose. 

Its original purpose was for mechanics to request diagnostic information. OBDII works 

on a request basis, with many experts regarding it as an intrusive way of gaining data.  
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Figure 6: OBDII pinout 

2.3.4 FMS Standard 

In 2002, six major truck manufacturers (Volvo, Scania, Iveco, MAN, DAF, and Mercedes-

Benz) decided to create a standardized vehicle interface for GPS based tracking systems, 

called the FMS (Fleet Management System) standard [65]. FMS is a subset of CAN-Bus 

data specifically created for fleet surveillance. There are currently over 30 FMS 

parameters that are specifically for fleet management. FMS is a high-sampled, reliable, 

wide-ranging and measured data provider solution. The data refresh rate is 10 milliseconds 

for direct CAN-Bus reading compared to the recommended 1-2 seconds for the OBDII 

port.  FMS, until recently, was mostly available in trucks and buses, but the introduction 

of FMS gateways allows for the standard to be used in passenger cars and vans. Unlike its 

OBDII counterpart, FMS gateways have access to all CAN-Bus parameters, which, in 

some vehicles, totals over 2500. FMS has significant advantages over OBDII, in terms of 

security, data granularity, data precision, and it is far less intrusive as will be discussed.  

2.3.5 Benefits and Limitations of OBDII/FMS 

The benefits of OBDII is its ease of access and reduced installation time and cost. The 

OBDII port is easily accessible and there are a wealth of OBDII adapters and third party 

apps to avail of, Figure 7. However, [66] stated that using request-response with OBDII 

will force the ECU to enter a diagnostic session, thereby suspending other ECU’s 

processes. The ECU provides priority to the latency sensitive, safety operations and stops 

OBDII’s request-response queries. As a result, the overall query response time will be 

increased. The OBDII device is classed as intrusive in the sense that it repeatedly sends 
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messages to the vehicle computer to request data. This becomes more problematic when 

the OBDII Bluetooth device is connected to a smartphone, and the internet. It is a potential 

safety and security weakness as passers-by, in theory, can connect to the OBDII adapter 

via Bluetooth and pass commands to the vehicle. Numerous vehicle companies such as 

BMW and Mercedes are opposed to the ease of access to the OBDII port.  

    “OBDII has been designed to service cars in repair shops. In no way, it has been 

intended to allow third parties to build a form of data-driven consumption on the access 

through this interface [64].  

    Some telematics companies acquire vehicle data directly from the CAN, connecting to 

the CAN-High and CAN-Low wires. However, a key challenge is doing so in a non-

intrusive way [64]. Cutting or soldering connections to the vehicle CAN network can 

disturb its operation and cause damage. Recently, the development of a ‘CAN-Bus clip’, 

Figure 7, a non-intrusive reading device that clips to the outside of the cables, has 

addressed this issue. The clip does not puncture the protective sheath around the cables, 

instead, it ‘senses’ data passing through the wires, directly from the CAN network. In the 

image below, the yellow and blue twisted wires are CAN-High and CAN-Low (the four 

wires close together connect to the FMS gateway). 

    The CAN-Bus clip is safe, reliable and coded to understand each make & model. For 

this work, the clip is connected to a FMS gateway, which transforms the CAN signals into 

the FMS format. The cost of integrating an FMS gateway and clip in the vehicle is more 

costly than the OBDII option. It may also be necessary to require professional assistance 

in fitting the hardware in the vehicle. So, the decision in choosing which standard falls to 

the users’ willingness to pay more for higher quality data. 
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Figure 7: Left; OBDII Adapter & Smartphone App. Right; Inventure Contactless Clip. 

    In general, a wide variety of vehicle sensors can provide valuable information. For 

example: a speedometer would be needed to detect a sudden decrease of speed, which 

could mean a danger of collision for the vehicles driving behind; when several vehicles 

detect that their average speeds are very low for a long time, it probably means that they 

are in a traffic jam; a substantial difference among the spinning of wheels could be due to 

the existence of sliding pavement; a deployed airbag could mean that the vehicle has 

crashed [67]. 

    To date, the majority of literature has retrieved CAN signals via the OBDII port. Certain 

studies have compared OBDII data to GPS data when monitoring driving behaviour, 

regarding OBDII as ground truth. For instance, [68] performed a comparison between 

GPS and OBDII, reporting that GPS and smartphone sensor based techniques, combined 

with map and/or crowd-sourced data, can achieve greater than 94% correlation to OBDII 

information with regards to vehicle speed, acceleration etc. However, most modern 

telematics applications, and previous work such as [69], combine smartphone technology 

and internet access to collect and monitor driver behaviour retrieved via OBDII.  

    There are limitations in the literature regarding comparisons of vehicle data. A small 

comparison of OBDII and FMS was presented in [70], where the authors measure a 
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limited number of parameters with the aim of choosing the best standard for a specific 

requirement. Vehicle speed and RPM were measured and compared, with only slight 

differences recorded. The real difference in FMS and OBDII was recorded when 

monitoring fuel economy. Testing shows the FMS fuel rate to be highly accurate 

compared to OBDII. However, only a basic algorithm using OBDII parameters was tested. 

The same authors again stated in [71] that when comparing OBDII and FMS, differences 

in vehicle speed and RPM can only be noticed in short measuring time (10-20 seconds).  

With regards to calculating fuel economy, corresponding calibration factors are required 

for OBDII. However, as previously mentioned, only a small number of parameters, and 

only one OBDII fuel algorithm was tested for a specific requirement. In comparison, our 

work evaluates numerous algorithms and a larger body of parameters from both OBDII 

and FMS. With the aim of comparing standards across numerous requirements in relation 

to Smart Cities.  

    A system was proposed in [66] to log OBDII data and direct CAN signals at the same 

time. This work primarily focused on the rates of data acquisition using a limited number 

of CAN and OBDII parameters for comparison. The OBDII adapter had a maximum 

request rate of 9Hz for one parameter, compared to 25 Hz for CAN. Although the authors 

state that the quality of analysis can be improved by having more information, results on 

improved accuracy due to an increase in data granularity were not provided. 

    Through combining the vast sensory information gathered from moving vehicles, with 

other Smart City experiments such as [36], [72], and [73], there becomes a wealth of 

information that gives invaluable insight into traffic behaviour, CO2 emissions, pollution, 

temperature, humidity and so on. For these reasons, it is clear that CAN-Bus sensors hold 

significant importance and have a major role to play in the future development of Smart 

Cities. 
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2.4  WAVE Communication Protocol 

Vehicle Ad-Hoc Networks (VANETS) [74],[75], [76] use a radio technology that allows 

vehicles in close proximity to exchange valuable information with one another, with the 

aim of enhancing road safety, traffic, and improve travel times. More recently, Internet of 

vehicles, [77], [78], [79] aims to integrate VANET technology with its surrounding 

environment, through the inclusion of RSUs. This is commonly referred to as V2I, or V2X 

[80], [48].  

    V2V and V2I rely on a technology called Dedicated Short Range Communication 

(DSRC) [81]. DSRC uses IEEE 802.11p, often referred to as Wireless Access for 

Vehicular Environments (WAVE). IEEE 802.11p was chosen for DSRC based on the fact 

that traditional IEEE 802.11 (a, b, g, n) are the most widely used wireless local area 

network standards in the world. Because of that, the cost of supporting equipment is low. 

802.11p is better suited to the high mobility of V2V and V2I because of its changes in its 

MAC and PHY layers; i.e. discarding the need for authentication.  

   It is useful to appraise the differentiation between Basic Service Set (BSS), Service Set 

Identifier (SSID), and Basic Service Set Identifier (BSSID) to estimate the adjustments to 

the MAC layer introduced in IEEE 802.11p. A BSS is the fundamental part of the IEEE 

802.11 standard and consists of a set of stations that can communicate with each other. 

An SSID represents the name with which the network distinguishes itself and is 

communicated, for instance, through a beacon frame by an access point (AP) in the case 

of BSS infrastructure. On the contrary, the BSSID recognizes the MAC address, 

composed of 6 bytes, of the access point. A new feature introduced in IEEE 802.11p is 

represented by the WAVE mode [82].   Whereas the traditional IEEE 802.11 standards 

connect to a Basic Service Set (BSS) via an access point, WAVE operates outside the 
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context of a BSS (OCB) via a Provider/User scenario, the provider usually being an RSU. 

There is no MAC sublayer setup required before nodes exchange data frames OCB. The 

BSSID field of a frame sent OCB is set to all 1 s, i.e., 0xFFFFFF in hex notation, which 

is called the wildcard value. 

The communication zone covered by a WAVE node is limited to 1km in line of sight, and 

less in non-line of sight, < 100m. When vehicles are moving at speed, this gives little time 

to exchange data, hence the need to discard authentication setup. 

 

Figure 8: WAVE Protocol Stack and associated IEEE standards 

    As shown in Figure 8, WAVE supports IP based services along with its own WSMP 

(Wave Short Message Protocol).  WSMP, as defined by IEEE 1609.3 [83] plays a key role 

in WAVE. The networking services provided by IEEE1609.3 are essential contributors to 

the low-latency and low-overhead characteristic. WSMP is specifically designed for the 

efficiency of WAVE devices in vehicular environments which allows applications to 

directly control physical parameters i.e., channel number, transmitter power and data 

rate used in transmitting messages [84]. There are two kinds of message transmission in 
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WSMP, Wave Service Advertisements (WSA) and Wave Short Messages (WSM) which 

will be discussed in the next section.  

    The main goal of WSMP is to support high-rate, low-latency communications between 

WAVE devices in a rapidly varying radio frequency environment. Management functions 

are performed by the WAVE Management Entity (WME) in which two WAVE device 

roles are defined. Devices transmitting WSAs which indicate the availability for data 

exchange assume the provider role, while those that can receive WSAs and have the 

potential to participate in data exchanges assume the user role. This information is stored 

in a Management Information Base (MIB) in the WME.  Because there is no infrastructure, 

WAVE works on a channel switching basis. OBUs and RSUs transmit information 

through a 5.9 GHz (5.85-5.925 GHz) frequency band, which is divided into channels; a 

control channel and service channels; the CCH ID is 178 [81]. Table 1 shows the layout 

of the currently recognised channels. 

Table 1: Current Control Channels and Service channel in the WAVE frequency range 

 

    The default duration of the service intervals and control intervals is set to 50 ms, as 

recommended by the WAVE standard.  Coordination between channels uses Coordinated 

Universal Time (UTC) for a global time reference provided by a global satellite navigation 

system. WSMP data is the only kind of data allowed to be transmitted on the Control 

Channel. All IPv6 data is restricted to the Service Channels. 
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2.4.1 Wave Service Announcements (WSA) 

A WAVE node, which can be an On-Board Unit (OBU) or a Road-Side Unit (RSU) may 

advertise available services by way of sending periodic messages known as WSAs on the 

control channel. In turn, this node becomes a provider. Each WSA may include 

information needed to receive and process the information of the service being advertised, 

as well as the service channel to switch to. Nodes that are interested in this advertised 

information (Users), switch to the service channel provided, and begin exchanging 

information with the providing node.  

    In essence, a provider is creating a network on a specified service channel, and is 

advertising the network on the control channel via WSA. If the information being 

exchanged on the new network is of interest, a user will switch to that service channel and 

exchange information with the provider. Figure 9 shows a scenario between nodes 

exchanging data. 

 

Figure 9:  Provider/User exchanging information in WAVE during 50 ms intervals 

    Figure 10 shows the configuration GUI of a WSA using Estinet network simulator [85]. 

As shown in the image, the provider determines the service channel, data rate, transmit 

power, and priority of the application it is transmitting. Also included is a Provider Service 

Identifier (PSID), a globally unique value which resides in the header of the WSA. The 

PSIDs are designated to different services/applications, for example, safety messages are 

designated PSID1, Vehicle Telematics applications have been designated the PSID 3. If 
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users are not configured to listen for PSID 3, they will ignore WSAs containing a PSID3 

header. There is also another parameter called the Provider Service Context (PSC). This 

parameter is optional and can be used to provide additional information about the service. 

Currently, there is no literature that evaluates the role of PSC. However, this parameter 

will be implemented and evaluated as part of our city wide fleet management use-case, 

and also play a role in RSU governance.  

    If IP services are required, the WSA contains a Wave Routing Advertisement (WRA). 

The WRA contains the information needed by an OBU to access the Internet. The RSU 

will act as a gateway in this scenario, providing the OBU with its IP configurations.  

2.4.1.1 Quality of Service (QoS) 

Like its predecessors, 802.11p relies on Carrier Sense Multiple Access with Collision 

Avoidance (CSMA/CA) for quality of service. Because all nodes have to share the same 

medium, two nodes cannot transmit at the same time. CSMA/CA provides the following 

structure: 

A node that has a frame to send first senses the wireless medium.  If the medium is idle, 

the node begins transmission of its frame. However, if the medium is busy, the node 

performs random back-off by choosing a number of idle time slots to wait before 

transmission.  

    Two QoS mechanisms in particular may be configured in WAVE scenarios; Enhanced 

Distributed Channel Access (EDCA) and RTS/CTS (request-to-send/clear-to-send). 

EDCA configurations may be included in the WSA. EDCA [86] is a QoS mechanism that 

can prioritize messages into categories based on importance. EDCA consists of four 

default Access Categories (AC), consisting of independent back-off entities to provide 

service differentiation. Each node supports four ACs with different QoS expectations. 

Consequently, outgoing packets are mapped to corresponding AC depending on their QoS 
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requirements [87]. Prioritization in this access mode is reached by assigning different 

values of following contention parameters to each AC: 

AIFS – Arbitration Interframe Space that defines the free time interval before back off 

stage 

CW – Contention Window with its minimum and maximum size that provides the range 

of possible back off defer slots before starting the transmission. Similarly, with smaller 

maximum and minimum range higher priority is achieved. 

TXOP – Transmission opportunity duration that specify a maximum time a station can 

designate on packet exchange. Thus, the larger TXOP duration the greater channel 

occupation possible. 

    There are four levels of priority in EDCA; Voice, Video, Best Effort and Background, 

Table 2. In the case of two data packets looking to transmit at the same time, voice would 

be given preference to transmit, whereas the other packet would back-off and wait for the 

next available slot for transmission. 

Table 2: Default EDCA Parameters 

 

    As expected, there is a large body of literature on EDCA in V2V broadcast scenarios as 

the focus is with safety messages, which require priority over other packets. In a sense, a 

priority scheme like EDCA only makes  sense  if  there  is  other  traffic  to  give  priority  

over,  as  such researching high priority settings in isolation makes little sense.  However, 

this work aims to provide valuable insight in the operation of various contention window 

(CW) values in a unicast setting. Previous works such as [88] tested different CW sizes in 
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a broadcasting scenario, coming to the conclusion that the contention window value of 15 

is most adequate for safety beacons (15 falls under the video priority in EDCA). This will 

be taken into consideration in our simulations.   

    Another, albeit less reviewed QoE mechanism available is RTS/CTS [89]. The reason 

why RTS/CTS is less studied in V2V and V2I is because it doesn’t apply to broadcast 

scenarios. However, as our focus is on unicasting, later chapters will evaluate the role it 

may play in improving distribution of our messages. The main goal of RTS/CTS is to 

address the “hidden node” problem, which is one of the main contributors to packet loss 

in vehicle scenarios. Because of the high mobility in vehicle scenarios, hidden nodes are 

a major issue. The problem occurs when two vehicles that may be in range of an RSU for 

example, but not in range of each other (they cannot sense each other) try to transmit at 

the same time causing packet collision.  

    Although 802.11p defines different data rates between 3 and 27 Mbps, 6Mbps was the 

data rate initially assumed in the standardization process, and since then it has been 

generally accepted as the default data rate. Higher data rates make use of high order 

modulation schemes and coding rates, and therefore require higher transmission power 

levels to reach a target destination node or area. This can be problematic in broadcasting 

scenarios, as higher transmission power can lead to more interference from further away 

vehicles. However, high data rates also reduce the packets’ duration and therefore the 

channel load and interference. On the other hand, low data rates reduce the required 

transmission power levels to reach a target node. In contrast, they increase the packets’ 

duration, channel load and interference. The authors of [90] presented the case for 6Mbps 

not being the optimal data rate for beaconing, reiterating the fact that high data rates reduce 

packets duration on the channel. For this reason, we will perform simulations using all 

available data rates in WAVE. 
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Figure 10: Configuration example of a WSA using Estinet Network Simulator 

2.4.2 Wave Short Messages (WSM) 

The messages utilized by WSMP are known as WAVE Short Messages (WSM). WSM 

are designed to consume minimal channel capacity. The minimum WSM overhead is 5 

bytes, and even with options and extensions it will rarely exceed 20 bytes. In comparison, 

a UDP overhead through IPv6 requires a minimum of 48 bytes. For many applications, 

especially in the active safety area, it is sufficient to exchange information in form of 

safety beacons between vehicles within immediate vicinity. In the EU, the beacon 

messages are referred to as Cooperative Awareness Messages (CAM), where as in the U.S 

they have been defined as Basic Safety Messages (BSM). There are slight differences 

between both message sets, however, they expect to be unified in the near future. From 

here, we will refer to these messages as beacons.  Beacons are constructed from parameters 

directly from the vehicle CAN-Bus and enriched with GPS information. Table 3 shows 

the beacon message set. There are other parameters readily available to join the beacon; 
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for instance, if a driver hits the brakes, the Anti-Lock Braking System (ABS) parameter is 

added to the next beacon, alerting nearby vehicles of a sudden stop. Information stored 

within beacons provides a snapshot of current driver and traffic behaviour. Therefore, 

storing and aggregating this data can provide much insight to fleet managers about their 

fleets over a given time. 

Table 3: Typical Message set of Beacons 

Timestamp 3D 

Position 

Position 

Accuracy 

Speed Heading 

Heading Vehicle 

Size 

Steering 

Wheel 

Angle 

Acceleration Brake 

Status 

 

2.4.3 IP Services 

The choice between using WSMP or IPv6 depends on the requirements of a given 

application [2]. Single-hop messages, like those upon which collision prevention 

applications are based, typically use the bandwidth-efficient WSMP, while multi-hop 

packets use IPv6 for its routing capability. However, there is a limited amount of work 

that focuses on the implementation of IPv6 in WAVE. In [91] it stated that IPv6 works 

under certain assumptions for the link model that do not necessarily hold in WAVE. For 

instance, IPv6 assumes symmetry in the connectivity among neighbouring interfaces. 

However, interference and different levels of transmission power may cause 

unidirectional links to appear in WAVE, which may severely affect IPv6’s effectiveness 

in its operation. Furthermore, it states that the current standard allows for a WAVE user 

to consume infrastructure based IP services only if there is a direct connection between 

RSU (i.e., WAVE provider) and WAVE user. Such condition is an undesired limitation 

of the WAVE standards. Other mechanisms are necessary to give access to the IP services 
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to vehicles that exceed the one-hop range of WAVE users that do not directly hear the 

RSU. 

    An evaluation of IPv6 was conducted in [92]. The authors state that due to the diverse 

media involved in V2V such as DSRC, Wi-Fi, 3G, WiMAX, and LTE, IPv6 is the most 

promising technology that enables a convergence of such different communications over 

diverse media. This work investigates the issues regarding IP-communications over 

DSRC band. The investigation is made through field test experiments using 

communication devices equipped with hardware interfaces for different media as well as 

an IPv6 stack. Results showed it is possible to maintain stable communications between 

a vehicle and an RSU for longer than one kilometre of distance in line of sight scenario 

using a combination of a high power and a low data rate. However, this work was tested 

on a quiet road with just one vehicle. 

    Accommodating for IPv6 is further reiterated through the introduction of 5G based 

platforms. One such platform is CogITS [93]. The goal of CogITS is to address two 

challenges in implementing Intelligent Transport Systems (ITS).  

1) Development of a reliable ITS communication network infrastructure 

2) How to monitor V2V information remotely, or how to deploy the concept of live 

vehicles, in other words, the in-car real-time monitoring. 

To address these issues, the authors propose a Cognition-enabled network management 

that utilizes machine learning techniques, towards an improved approach for the existing 

decision making logic, thanks to the data pattern techniques implemented inside the 

management solution. CogITS is comprised with six major parts: 

Information Processing Manager, Decision Making Manager, Policy/Ontology Manager, 

Actuation Manager, Context Manager, and Device Manager. The context manager focuses 

on the V2V technologies such as WAVE and the context they provide, such as QoS and 
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Broadcast storms. WAVE-Flow is complimentary to platforms like CogITS, and may 

provide additional governance within the CogITS context manager.  

 

2.5 Data Dissemination & Packet Loss 

There is a large area of research that focuses on routing protocols and broadcasting in 

VANETS [74]. While routing algorithms are out of scope of our work, we will briefly 

discuss some of the known issues with routing and data dissemination in V2V and V2I 

scenarios. This will give us an idea on the expected packet loss rate in V2V/V2I scenarios. 

It is also important to make aware when multi-hop routing in VANETs is mentioned in 

current literature, they are relying on the IP services in WAVE as currently WSMP does 

not support multi-hop. However it must be noted that in Europe, 802.11p is used as a basis 

for the ITS-G5 standard, which supports the GeoNetworking protocol. GeoNetworking is 

a network layer protocol that provides packet routing in an ad-hoc network. It makes use 

of geographical positions for packet transport, and supports multi-hop communication.  

    There is a wealth of work focusing on routing protocols in WAVE. For example, [94] 

performed a comparative study on routing protocols in VANET. This paper reported the 

overall performance evaluation of two existing routing protocols namely, Ad hoc On-

Demand Distance Vector (AODV) and Dynamic Source Routing (DSR). In their testing, 

using 60 vehicles, packet loss was 76% for DSR and 73% for AODV. Similarly, [95] and 

[96] reported packet loss within the same range for the same routing protocols for 50 

vehicles.  

    One of the underlying issues with broadcasting in VANET scenarios is network 

overload and packet loss. This is due to a number of reasons, such as “Broadcast Storms”, 

where vehicles retransmit incoming messages from other vehicles; in turn, causing the 

same messages being transmitted multiple times, congesting the network and causing high 
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packet loss ratio (PLR). Another issue is the disconnected network problem, where there 

are not enough vehicles in close proximity to forward messages. There are many concepts 

to address the issues of broadcast storms and the disconnected network problems, 

however, there is a lack of technologies that address both [97].  

    There are two main methods for dissemination of safety beacons in VANET; the 

broadcast approach and Geocasting. The problem with the broadcast approach is not just 

broadcast storms, there is also the issue that messages are sent to all vehicles without 

exception, which is useless in many scenarios. There are many techniques adopted in the 

literature to improve this issue. For example, one such technique is called slotted 

persistence [98], which is a TDMA inspired approach in which different waiting time slots 

are assigned to vehicles depending on their locations. A shorter waiting time is assigned 

to the vehicles located furthest from the broadcaster.  

    Another dissemination technique is Geocasting [99]. Geocast protocols aim at 

disseminating information only to vehicles inside a specific geographical area, called ZOR 

or Zone of Relevance. This is can be seen as a more feasible approach as safety events are 

only of interest to vehicles in a specific location. Without leaving the scope of this work, 

we will address [100] which  proposed a novel distributed beacon scheduling scheme 

referred to as the context awareness beacon scheduling (CABS) which is based on spatial 

context information dynamically scheduling the beacon by means of TDMA-like 

transmission. The proposed beacon scheduling scheme was evaluated using different 

traffic scenarios within both a realistic channel model and IEEE 802.11p PHY/MAC 

model in their simulation. The simulation results showed that the performance of the 

CABS scheme was better than periodic scheduling in terms of packet delivery ratio and 

channel access delay. CABS along with two ray ground propagation model improved 

packet loss for 300 vehicles from 80% to 50%. 
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    The issues mentioned above are not resigned to V2V. V2I scenarios also suffer from 

network overhead and high packet loss. Certain applications, particularly non-safety 

applications may be unicast; i.e., transmitting to a specific node, an RSU for example. 

This also causes issues as the RSU is receiving a large quantity of information 

simultaneously from a large amount of vehicles, resulting in collisions and packet loss. 

Also, the hidden node issue can affect QoS in unicast scenarios in V2I, as multiple vehicles 

out of range of each other may attempt to transmit to the RSU at the same time. 

 

2.6 Flow Based Programming  

Implementing the appropriate programming model should not be overlooked when 

creating a solution for data processing. Developers have to address issues in relation to 

dynamically configuring and managing data processing tasks over Cloud and Edge 

devices, and optimizing task allocation for minimal latency and bandwidth consumption. 

Although the majority of programming in the data processing world has its roots in the 

procedural programming model, our architecture is based on a model that is beginning to 

make its way into the IoT mainstream.   

    Flow based programming (FBP) [101] is a model ideally suited to IoT. The aim of FBP 

is to concentrate on the data and data streams first before deciding what processes are 

needed to convert between the different data streams. In Object-orientated programming, 

you have to decide on the object classes, and then decide what messages each class should 

be able to respond to [102]. While it is possible to create real time interactive IoT 

applications using traditional programming tools, it can quite often be a difficult task. 

Developers are required to learn new protocols, while creating data processing 

components, and link them together. In recent years, several runtime environments such 

as [103], [104] and [105] have begun to implement FBP inspired approaches. One major 
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advantage to FBP, although not necessarily expressed visually, lies at the heart of several 

visual programming languages. Visual data flow programming languages (VDFPLs) 

[106] have been used in many other domains such as high performance parallel 

computing, leveraging multi core processors, music and industrial applications [107] . 

FBP is best understood as a coordination language opposed to a programming language.  

     One of the prime advantages of FBP is its modularity, meaning the degree to which a 

system's components may be separated and recombined. Nate Edwards of IBM [108] 

coined the term "configurable modularity" to denote an ability to reuse independent 

components just by changing their interconnections. A main characteristic of systems that 

exhibits “configurable modularity” is that you can build them out of "black box" reusable 

modules. While it is necessary to connect them together, they do not have to be modified 

internally to make this happen. FBP has three main components:  

Black Boxes:  Each black box, or process, in the application is an instance of a component 

that essentially receives some data, processes it and forwards the output to another black 

box, creating a dataflow.  

Bounded Buffers: These are the connections between the black boxes. Black boxes are 

connected to one to another through ports defined by their components. The black box 

receives data through an input port and transmits the result through an output port. Black 

boxes may have multiple input and output ports. It does not need to know anything about 

the other black boxes are connected to those ports.   

Information Packets (IP): IPs are the data that travels through the network. IPs are most 

often in the form of structured packets or streams of packets.  They can be owned by only 

one black box at a time, which will either pass it along to the next process in the network 

or drop it. Figure 11 shows a basic dataflow between an Edge device and the Cloud, 

consisting of numerous black boxes, connected via bounded buffers.   
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Figure 11: Basic FBP dataflow between Edge Device and Cloud Server  

    The modular fashion of FBD would ease the distribution of the flows from the Clouds 

to the IoT devices leveraging the Edge-Computing concept. As previously mentioned, 

there are a growing number of recent works beginning to implement FBP. Node-RED 

[105] is an open source project created by IBM. It allows the user to build IoT applications 

and services, but has been designed as a run-time for individual services. In [109], the 

authors examined the development of IoT applications from the perspective of the Fog-

Computing paradigm. The authors implement a Distributed DataFlow (DDF) 

programming model that utilises computing infrastructures across the Fog and the Cloud. 

The framework is based on Node-RED (NR). The authors extend NR with their creation 

Distributed Node-RED (DNR), to ease the development process while allowing 

developers to leverage resources between devices and the Cloud to build Fog based IoT 

applications. While this model provides an easy way to design and develop IoT 

applications, there are several open issues. To facilitate the communication between 

devices spanning multiple networks, it may be necessary to include a distributed discovery 

and communications infrastructure. In addition, currently there is only a prototype design 

and early work is discussed without any platform readily available.   

    UFlow was proposed in [110]. UFlow is a concept of data flow transformation closer 

to the source, on the devices with constrained resources. The authors analysed two tier 
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IoT architecture composed of devices and the Cloud.  The scientific contribution of the 

paper as well as the concept of the data flow transformation is that the UFlow framework 

can be executed on a variety of resource-constrained embedded devices, and can be 

implemented on a NodeRED platform. FogFlow is proposed in [31]. The aim is to ease 

the service orchestration and scalability for geo-distributed Smart Cities. Through the 

implementation of the dataflow programming model, developers in FogFlow only define 

a service topology and decompose the IoT service into multiple processing units (black 

boxes).  

    In relation to Fog-Computing, [111] cited that how to efficiently deal with dynamic 

variations and transient operational behaviour of Fog-Computing is a crucial challenge 

within the context of choreographing complex services. Furthermore, with the rapid 

increase of the scale of IoT deployments, the heterogeneity, dynamicity, and uncertainty 

within Fog environments and increased computational complexity further dramatically 

aggravate this challenge. Taking this into account, it is this author’s opinion that the format 

of FBP and how it can process data in motion, including converting data types quickly can 

address complex issues such as stated above. 

 

2.7 Discussion 

The aforementioned papers have provided valuable insight about the current state of the 

art. As discussed, there is a large body of relevant work in this area to build on. This 

section showed how and why there is a recent paradigm shift from the Cloud centric 

approach to Edge and Fog-Computing. What is apparent throughout the literature is the 

lack of platforms for developers to deploy and maintain IoT applications on Edge/Fog 

nodes. This statement is backed up in recent survey papers [32], [5], [23] and [112].   
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This chapter has shown the main difference in functionality between Edge and Fog lies in 

two areas; locality of processing, and networking between multiple devices. In many 

scenarios, Fog will be implemented on infrastructure nodes whereas Edge-Computing will 

be implemented on infrastructure-less nodes. In the near future, the difference between 

the roles that Edge and Fog-Computing provide may become more transparent with the 

adoption of larger IoT applications such a Smart Cities and Connected Vehicles.  It is 

apparent that any architectural proposals should have the capability to allow coordination 

between Edge/Fog and Cloud-Computing. Due to the lack of compute power on some 

Edge devices, it may be necessary to split the IoT applications into multiple tasks, with 

the heavier computational tasks performed at the Fog or Cloud layers. This, in effect, 

should reduce latency for the more mission critical tasks. This area will also be taken into 

account in the following chapters of this thesis.   

   This chapter has shown that vehicles have potential to be a key enabler in the 

development of Smart Cities due to the wealth of sensor data, and also their mobility 

throughout the city. It is also imperative that vehicles have strong processing and 

communication capabilities. The body of work presented in this chapter has strengthened 

our focus on answering the research questions presented in chapter one. Although we have 

discussed multiple bodies of work that present Edge processing capabilities, there seems 

to be a lack of bi-directional communication that allow developers to make instantaneous 

changes in the local processing on Edge nodes. Furthermore, in terms of vehicles in urban 

areas, it is our goal to enhance RSUs from access points to governing bodies in a V2I 

scenario, while focusing more on bidirectional communication between OBUs and RSUs 

that is presented in the current state of the art. 

    Because of the limited work on IPv6 in WAVE, along with the fact IP services may be 

a valid alternative for distributing vehicle sensor data in V2I, we will dedicate a section 
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of our results to evaluating IP in our simulations. Most vehicles in the near future will 

consist of multi-interfaces (802.11p and 802.11 a/b/g/n), so it is important to perform an 

evaluation on IP, using results mentioned in the packet loss section above as a baseline.  

    To address the issue of RSUs receiving too much data at any given time, we introduce 

a mechanism that allows the RSU to modify the granularity of packet inter-arrival times 

from the vehicles. QoS mechanisms will also be evaluated within our architecture. EDCA 

is widely used in broadcast scenarios, giving priority to safety messages, however 

RTS/CTS may be more applicable to our use case. It is our aim that a combination of QoS 

mechanisms, increasing the data rate and granularity may improve the distribution of our 

messages in the use case. To finish this section, it is no coincidence that there is a recent 

growth of interest in flow-based programming. Reviewed papers in this section, along 

with the number growing applications in industry that use this programming model 

strengthen its case for use in IoT. For this reason, it will be the programming model of 

choice for the proposed architecture.  
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3 Distribution And Governance of LArge Datasets  
(DAGLADS) 

3.1 Architectural Design & Methodology  

There are several design goals for an adequate reference architecture. The definition of a 

“Distribution And Governance of LArge Data Sets” (DAGLADS) Reference Architecture 

(DRA) is built on existing standardisation efforts in order to specify a high-level 

architecture, DRA, for the system. In this way, the requirement for in-depth knowledge of 

the state-of-the-art is addressed. As pointed out in the previous chapter, there is a lack of 

platforms for IoT applications on Edge/Fog devices. With this in mind, the goal of this 

chapter is to define the fundamentals required for our reference architecture, and present 

the methodology to meet said requirements. This section will also define the entities/nodes 

and their relationship within the architecture. Within each node, system components and 

accompanying dataflows will be detailed, giving an overall view on the communication 

and collaboration between nodes. Finally, this chapter concludes with implementations 

and results of the reference architecture showing its capability in an IoT paradigm. 

Building on knowledge gained from the literature and using current state-of-the-art as a 

reference, this chapter will provide a discussion on what methodology is required to 

answer the following research questions.   

Is it possible to design a data-centric architecture with the necessary performance to 

support bi-directional communication between Edge/Fog/Cloud nodes in an IoT 

paradigm? 

In terms of communication and collaboration between nodes, to what degree can Flow 

Based Programming address the heterogeneity of services and applications in a Vehicle-

to-Infrastructure scenarios (V2I)? 
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3.1.1 Defining the Reference Architecture  

In order to achieve the research questions, first we must consider the following 

requirements and fundamentals:  

Latency Sensitivity – The driving force behind Edge Processing is to reduce latency. The 

proposed architecture must be capable of offering the end users low-latency-guaranteed 

applications and services. Local processing reduces the execution time of a task and 

increases the speed of decision-making.    

Generality - Due to the heterogeneity of Edge/ Fog nodes, the architecture must be capable 

of handling a diversity of data types, and data generation rates.   

Efficiency – A set of rules must be set to monitor and efficiently utilize resources on the 

Edge device. The reasons for this are that Edge/Fog devices may have limitations in 

compute power, memory and storage.   

Programmability – Developers should have the ability to deploy and modify the 

applications remotely. This will require an efficient bi-directional communication system 

between Edge devices and the Cloud.  

The following Edge capabilities are crucial to a business’s IoT success:   

Out-of-the-box bidirectional connectors   

Remote management for Edge devices   

Data processing capabilities at the Edge   

Self-contained Edge nodes   
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3.2 Architectural Software Overview 

3.2.1 Programming Model 

To address the above requirements and necessary capabilities, our first step was to choose 

an efficient programming model. IoT software must be efficient in a dynamic environment 

and have the ability to seamlessly deal with many concurrent inputs and outputs. Handling 

large amounts of interactions between IoT things will prove to be a very challenging task. 

It will be necessary to have in place an appropriate organization of data processing. The 

traditional way of implementing processing logic is often based on Service Oriented 

Architecture (SOA), where devices expose their functionalities as services, which are then 

consumed by the ones deployed in the Cloud [8]. However, the velocity at which data is 

created in an IoT environment can make that approach insufficient [110].   

    Our literature review has shown that Flow Based Programming (FBP) can be viewed 

as a technology where an application is constructed as a network of asynchronous 

processes exchanging data chunks and applying transformations to them. The creator of 

FBP proposed that developers spend less time thinking about the order in which things are 

executed (control flow), and more time focusing on the data and the transformations that 

are applied to it (data flow). The goal of FBP is that application development has a more 

natural flow to it. Although first created at IBM in the late 1960s as a software 

development paradigm, there has been a noticeable increase in technologies inspired by 

the FBP paradigm recently. Authors of  [113] discuss many of the inherent benefits with 

the data flow /flow-based programming paradigm, including implicit pipeline parallelism, 

exceptional composability, testability, inspectability and code re-use. Projects such as 

NoFlo, NodeRED, Apache Nifi, and Cisco Kinetic have begun to focus on the strengths 

of FBP and the processing of data flows, which is a major requirement of the modern data-

driven applications, thus making it a viable programming model for this oncoming 

paradigm shift.   
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3.2.1 Flow Based Programming Technology 

Apache Nifi [114] is a data in motion technology that uses flow based processing. The 

main goal of Nifi is to automate the flow of data between systems. Nifi provides a user 

friendly GUI and contains over 200 processors. The user can create a real time dataflow 

by dragging processors onto the canvas. Each processor is configured by the user to 

perform a specific action on the passing data. Each piece of data flowing through the Nifi 

dataflow is referred to as a flowfile. The built in Nifi processors can be configured to 

perform a wealth of actions such as converting data formats, adding attributes to the data, 

and routing data based on attributes. There is also a collection of processors available for 

ingesting data from a multitude of sources including URLs, ports, databases, local file 

systems, and external sources such as Edge devices. Nifi is one of the main components 

of the proposed architecture and has often been associated with the term “The Swiss army 

knife for IoT”. Figure 12 provides an example of the Nifi canvas with a group of 

processors connected to form a dataflow. Table 4 describes the Nifi phrases and the FBP 

counterparts. 

 

Figure 12: Example of Nifi Dataflow and a collection of connected processors  

    Nifi was created by the National Security Agency (NSA) and acquired by Hortonworks. 

Nifi addresses many of the technical challenges associated with IoT, such as adding extra 
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security to the transportation of data with built-in support for SSL, SSH, HTTPS, 

encrypted content and role-based authentication/authorization and handles a diversity of 

datatypes as described above. Apache MiNifi [56] is a sub project that can perform almost 

all of the actions Nifi can. MiNifi does not come with a GUI and is much more lightweight 

and optimized to perform on smaller Edge devices. Dataflows are created on the central 

Nifi server and downloaded onto the Edge devices featuring MiNifi. 

Table 4: Comparison of Nifi Terms and FBP Counterparts 

Nifi Term  FBP Term  Description  

Flowfile  Information  

Packet  

A FlowFile represents each object moving through the 
Nifi system.   

Processor  BlackBox  Processors perform the work on the passing flowfile. A 
processor is doing some combination of data routing, 
transformation, or mediation between systems. 
Processors have access to attributes of a given FlowFile 
and its content stream.   

Connection  Bounded Buffer  Connections provide the actual linkage between 
processors. These act as queues and allow various 
processes to interact at differing rates. These queues can 
be prioritized dynamically and can have upper bounds 
on load, which enable back pressure  

 

    Nifi can also be seen as an advanced ETL tool, (Extract, Transform, and Load). The 

ETL process became a popular concept in the 1970s. Data extraction is where data is 

extracted from data sources; data transformation is where the data is transformed for 

storing in the proper format or structure for the purposes of querying and analysis; and 

data loading is where the data is loaded into the final target database. Figure 13 shows an 

ETL dataflow, where operations are performed on the data before it is finally stored. 

Apache Nifi has the capability to perform the transformations while the data is in motion. 

For our work, Apache version 1.8.0 was used. 
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Figure 13: Typical ETL scenario 

 

3.2.2 Cloud Platform 

    Current Hadoop distributions are provided by data analysis companies, with the top 

three being Cloudera, Hortonworks and MapR. These distributions are open source and 

provide businesses with a platform containing multiple technologies for data processing, 

analysis and storage. However, although these distributions are regarded as current state 

of the art for data analysis, they are completely centralized. Hortonworks, however, has 

released a platform called Hortonworks dataflow (HDF) which includes software that 

allows companies to begin processing data closer to source. HDF is a suite of tools that 

give the user full control of data from its generation on the Edge devices, while solving 

the real time challenges of collecting multiple types of data from a multitude of sources.   

    The three applications within HDF are Apache Nifi, Apache Kafka and Apache Storm. 

Apache Nifi is a fundamental part of the proposed architecture and will be discussed in 

detail in the following section. Apache Kafka [115] is used as the messaging service as it 

provides high throughput, reliable delivery, and horizontal scalability.  Kafka is a low 

latency-messaging platform for real-time streaming data sources. Within Kafka, there are 

four main components; Producers, Consumers, Topics and Brokers. Kafka messages are 

organized into Topics, which are a category or feed name to which records are published. 

A producer pushes messages to a specific topic; a consumer pulls messages from a specific 
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topic. Kafka runs in a cluster, as it is a distributed system, and each node in the cluster is 

known as a broker.   

    Apache Storm is a distributed computation system that performs real time processing 

on large amounts of data. There are five key elements of Storm; Tuples, Streams, Spouts, 

Bolts and Topologies. A Tuple is a list of ordered elements. Generally, it is a set of 

comma-separated values. A stream is an unbounded sequence of tuples that is processed 

and created in parallel in a distributed fashion. Spouts are the source of data; in this case, 

they will be the Kafka Topics. Bolts are the process units. They process incoming streams 

and produce output streams. Topologies can be viewed as a network of spouts and bolts.   

    The following section will describe the main technologies used in the creation of the 

proposed architecture.  

3.2.3 Data Science Platform 

Anaconda is a python based Data Science platform [116], which comes with over 700 

python and R packages. The Anaconda platform is used throughout this work to create all 

learning models and python codes that are executed. The primary library used for this 

work is Scikit-learn [117] a machine-learning tool built on NumPy, SciPy, and Matplotlib. 

All of the technologies used are open source and readily available. Anaconda 5.0.0.1 was 

used for this work, along with NumPy 1.1.3.1 and Scikit-learn 0.19.0. 

3.2.4 Automated ML Technology  

TPOT [118] is a Python Automated Machine Learning (AutoML) tool that optimizes 

machine-learning pipelines using genetic programming. TPOT was an additional package 

that was installed on Anaconda and can be viewed as a Data analyst assistant. It works by 

intelligently exploring thousands of possible pipelines to find the best one for your data. 

Once completed, it provides a python code to build the model with the most optimized 

hyper parameters. AutoML algorithms are not as simple as fitting one model on the 
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dataset; they are considering multiple .machine learning algorithms with multiple pre-

processing steps. With the default settings, TPOT will evaluate 10,000 pipeline 

configurations before finishing. The user can alter these parameters to perform a quicker 

search if necessary. Figure 14 represents the area automated by TPOT.  

  

 

Figure 14: Area in which TPOT aims to automate  

3.2.5 Service User Interface 

Netcat is a computer networking utility tool designed to read and write data across TCP 

and UDP connections using the TCP/IP protocol. It is often referred to as a Swiss army 

knife utility due to its versatility. Netcat is used as a service UI throughout this work, 

allowing the developer to push requests into the dataflows in real time and view the output 

through specified ports.  

 

3.3 Architectural Entities  

The DAGLADS architecture consists of three main entities:  

IoT Sensor Device – The IoT devices are the sensor devices that create the data. In many 

scenarios, these will have limited resources, and transmit data to an Edge gateway device 

for processing.  
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Edge Container – The Edge container represents an Edge device with local processing 

capability. In some cases, it may represent the device generating the data, in other cases it 

may represent a device acting as a gateway for less powerful IoT sensor devices. Data is 

ingested from the IoT devices and is processed locally or offloaded to the Cloud. 

Central container. The Edge container may be viewed as an agent to the Central container. 

The Central container is a Cloud server with large processing and storage capacity. A 

service UI allows the developer to push control information into the dataflows between 

the Edge and Central containers in real time.   

 

Figure 15: Reference architecture showing dataflows between Edge&Cloud. Solid lines represent sensor data moving 
through Edge&Cloud components. Dotted lines represent control information passed to the local processing unit. 

    Figure 15 represents the data movement between components of the reference 

architecture. Solid lines represent data movement whereas dotted lines represent control 

information. Through the service UI, the developer can seamlessly modify, in real time, 

the data analytics performed on the Edge and Central container. This is achieved by 

passing control information into the dataflow, which in turn, is transmitted to the Edge 

containers. Data received from the Edge containers may also be viewed in real-time 

through the service UI.  

    The Central container ingests data from the Edge, where it is routed to a central database 

for storage, or the processing unit for further analysis. The processing unit performs model 
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building as it has access to a learning algorithm repository and the local database. Models 

may be implemented on the central container or pushed out to the Edge containers. The 

processing unit also performs data mining, in real time and/or batch. The Central container 

acts as a coordinator for the Edge devices/agents with the ability to send control 

information to its agents. This information is determined by external factors or user 

requests directly from the service UI.   

    The Edge container ingests data from the IoT devices and passes it to the local 

processing unit. Developers’ generic applications are incorporated into the local 

processing unit. Data analysis may be influenced by internal factors such as network 

connectivity, CPU or RAM usage, external factors such as bandwidth, or requests received 

from the central controller. This authors publications [119], [120], and [121] were devoted 

to various implementations of the DAGLADS architecture.  

 

3.4 Edge & Cloud Components 

Building on the reference architecture shown in Figure 15, this section further breaks 

down the components on the Edge and Cloud nodes that allow for bi-directional 

communication and collaboration. For example, within the local processing unit on the 

Edge node, are a number of components that create a task deployment scheme for 

monitoring system and energy consumption. This allows for a collaborative protocol 

between the Edge and Cloud, where computation may be offloaded to the Cloud to 

preserve local resources.  

3.4.1 Edge Container Components:  

System Monitor: A monitoring system regularly checks, at set intervals, the main system 

components such as CPU usage, RAM usage, network connectivity, and storage. The 

developer, via the Central container can modify the thresholds. When the thresholds are 
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exceeded, an alert is written to a monitoring.txt file and is detected by the Application 

Server.  

Application Server: Performs processing on incoming sensor data and stores the output 

locally, or returns to the central container. The server regularly checks alerts from the 

monitoring.txt file at set intervals, to determine what processing occurs locally. Custom 

software is in place that will offload computations to the Central container based on the 

alerts. The application server is configured to ingest data via a specified TCP/UDP port. 

Flowfiles are passed into the application server via FBP processors such as PutTCP, or 

PutUDP.  For this reason, the application server is used where a higher velocity stream of 

data occur, or mission critical data is processed.   

Local Storage: In most cases, local storage may be limited on Edge containers. The system 

monitor regularly checks the storage capacity on the Edge container. When a disk-usage 

threshold is exceeded, a custom mechanism compresses and offloads data from the local 

storage to the Central container. Blocks of data are offloaded at set intervals until a 

minimum disk-usage threshold is reached. For example, when the system detects storage 

has passed 80% disk-usage, data is compressed and offloaded to the Cloud in 20MB 

blocks at set intervals. This may also be configured on a time-of-day based scheme, 

whereas data is offloaded in off-peak hours such as 12.00 a.m. – 4.00 a.m. daily.  

Listening server: Ingests control information from the Central container. Incoming 

information is assessed with custom protocols that will modify system components based 

on the received information. The incoming information may consist of new applications, 

models, or parameters to be changed within the Edge container system components.  

    Figure 16 shows the dataflows within the listening server. A RemoteProcessGroup 

processor is configured to ingest information from the Central Controller. The RouteText 

processor is configured to filter and direct the incoming information to the waiting 
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applications. Each dataflow contains an ExecuteStreamCommand processor that will run 

the necessary requirements to address the modifications. Custom applications are 

configured to modify specific components in the Edge container. Figure 17 provides a 

pseudocode example of the protocols in place.   

 

Figure 16: Listening Server Dataflow- Remote processor group (far right) passes information received from the 
central controller into the dataflow 

 
  

 

Figure 17: An example of the protocols in place on the listening server 

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 

 

 

 



 

59 
 

Apache MiNifi: Allows for bi-directional communication between the Edge and Central 

container. MiNifi is also configured to move data throughout the Edge container. Sensor 

data is ingested and passed into the application server, while control information is 

ingested from the Central container and passed into the listening server, as shown in Figure 

18. 

 

Figure 18: Overview of logic within system components that make up the task deployment scheme on the 
Edge container. Solid line represents sensor data moving through the system. Dotted line represents 
control information from the Cloud moving through the system. Minifi is responsible for the dataflow 
through the system. 

3.4.2  Central Container System Components:  

User Configurations: GUI or service UI that allows the developer to pass control 

information to the Edge devices. 

Cloud Processing Server: Listens for incoming data from the Edge container in situations 

where task offloading occurs due to limitations or restraints on the Edge device.   

Cloud Storage: A large storage unit that holds all data ingested from the Edge containers. 

Further analysis takes place and future models are built from this stored data.  
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    Figure 19 presents an overview of components on both Edge and Central container. 

Solid black lines represent data flow, dotted lines represent control information flow 

whereas red lines represent data transmitted as a result of offloading. 

 

Figure 19: Overview of system components. Solid black lines represent data flow, dotted lines represent 
control information flow whereas red lines represent data transmitted as a result of offloading 

 

3.5 DAGLADS Implementation & Evaluation 

To evaluate DAGLADS, we consider two implementations. Implementation I evaluates 

DAGLADS against the current state of the art centralized approach. Here, we aim to show 

how the powerful processing technologies such as the centralized Apache Storm, can be 

emulated on less powerful edge devices. Apache Nifi/MiNifi are primarily data moving 

technologies with minimal processing capabilities. However, here we combine Nifi with 

custom applications on the edge devices, enhancing Edge processing capabilities that are 

in line with the Cloud approach.  Implementation II further enhances Edge processing 

capabilities through combining Nifi with learning algorithms for local processing, and 

custom techniques for transmitting data from Edge to Cloud efficiently. For our 

implementations, we use Raspberry Pi’s as the Edge devices and a HP Laptop as the 

Cloud. The specifications of the Pi are as follows: 1 GB of Ram and a CPU; 4× ARM 
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Cortex-A53, 1.2GHz. The specifications of the HP laptop are 16GB of Ram and a CPU; 

Intel Core i5, 8th generation. 

3.5.1 Implementation I 

First, a comparison is made against a well-known centralized approach demonstrated by 

Hortonworks. A streaming analytics use case for a fleet of trucks as specified in [122] is 

considered. This evaluation considers driver performance consisting of average speeds 

and unsafe event notifications. Trucks generate millions of events for any given route. 

Normal events include vehicle starting, vehicle stopping etc. Violation events include 

speeding, excessive acceleration, excessive breaking and unsafe tail distance. The 

Business Requirement of the HDF demo is to stream the trucking events in, filter on 

violations and do real-time alerting when “lots” of erratic behaviour is detected for a given 

driver over a short period.   

In the HDF trucking application, a data simulator creates the data. Apache Nifi, located in 

the Cloud ingests all data from the trucks and separates the incoming data into two 

dataflows. As shown in Figure 20, the first dataflow, “truck_geo_events”, extracts the 

lines of data featuring the truck events. The second dataflow, “truck_speed_events”, 

extracts the lines of data featuring the speed of the truck. These dataflows are forwarded 

to Kafka Topics and to Storm Spouts.  Storm bolts calculate the average speeds of the 

drivers over a specified timeframe and also filters violations and performs real-time 

analysis, detecting erratic behaviour for a driver over a short period. If a driver creates 

five violations in a three-minute window, an alert is sent directly to the fleet manager.   

    The HDF application is further enhanced with a collaboration of Spark MLlib, which 

transforms HDF from a streaming application to a prediction application. This is achieved 

by building a model from the trucking company’s datasets. Information such as historical 

truck events are enriched with weather and payroll context, which provides a model for 
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prediction of future driver violations. A GUI is provided, Figure 21 , showing the driver 

routes and events in real time.  

    The goal of this implementation is to compare DAGLADs processing capabilities 

against the more powerful centralized approach, with the aim of maintaining 

computational accuracy while minimizing data transmission to the Cloud. In 

Implementation 1.1, we extend the processing from the centralized HDF approach to the 

trucks. Apache MiNifi, combined with custom applications, is used on the trucks to 

perform processing and filtering before forwarding data to the main Nifi server, which 

incorporates custom applications to enrich driver violations with weather context in real-

time. Implementation 1.2 evaluates an enhanced architecture in which all processing, 

filtering and data enrichment occur on the trucks.     

 

Figure 20: HDF with Nifi ingesting data and passing to storm for processing 
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Figure 21: Real-time GUI showing driver routes and behaviour   

3.5.2 Implementation II 

Implementation I introduced the capabilities of FBP and the benefits of processing locally. 

However, it is entirely unidirectional, and not a true representative of the proposed 

architecture. Implementation II is a representation of this authors published papers [120] 

and [121] and illustrates a distributed configuration management protocol, which 

coordinates processing between the Edge and Central Container. A vehicle use case that 

predicts driver alertness is evaluated. The dataset used for this work was initially proposed 

in a Kaggle competition called “Stay Alert! The Ford Challenge” [123]. The objective 

was to design a classifier that detects whether the driver is alert or not, employing data 

acquired from over 100 participants while driving.  The dataset consists of 30 features. 

Eight of these features are Physiological and are represented with a P, (P1, P2, P3 etc.).  

11 are Environmental, represented with E. 11 are Vehicular features, and represented with 

V. For each observation, an output “IsAlert” is labelled with 1 indicating that the driver is 

alert or 0 if not alert. 
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    In this implementation, advanced data mining libraries are installed on the Edge device. 

Driver drowsiness is predicted locally without the need to transmit to the Central 

container. This is advantageous as the risk of network bottleneck and high latency is no 

longer an issue, considering alerting a driver may be considered mission critical. Results 

are then stored locally. A system is also created that will transmit a summarization of data 

every minute to the Cloud. One of the drawbacks for many Edge devices is the lack of 

local storage. To address this, a system is created that compresses blocks of data every ten 

minutes and transmits to the Central server, reducing the local disk usage space while 

transmitting all data at a significantly lower rate.   

   In implementation II, TPOT is used on the Central container to build and optimize the 

algorithm most suited for the dataset. AutoML algorithms are not as simple as fitting one 

model on the dataset; they are considering multiple machine learning algorithms with 

multiple pre-processing steps. With the default settings, TPOT will evaluate 10,000 

pipeline configurations before finishing, meaning it will iterate through 10,000 

combinations of hyper parameters to find the best performing model. The user can alter 

these parameters to perform a quicker search if necessary. For this use case, we evaluated 

500 pipeline configurations, which took 2 hours. TPOT is incorporated into the 

architecture to automatically build the most suitable models, where Nifi and MiNifi are 

configured to automatically distribute the TPOT model to the Edge devices.  

   This section will demonstrate the advantages of including TPOT to automatically build 

the models before distribution. No feature engineering was performed on the data before 

executing TPOT. The training dataset was split 70-30, building the model on 30% of the 

data and validating the model on the remaining 70%. After running TPOT for two hours 

on the training data, it provided a model with the most optimized hyper parameters. The 

chosen model was an ExtraTreeClassifier. As a comparison, five other algorithms were 
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tested, with just their default settings. Note, one of the algorithms we tested was an 

ExtraTreeClassifier with its default settings. This aims to show the improvement 

optimizing hyper parameters via TPOT can make.  

    Table 5 represents the individual model accuracies that were tested. As shown, the 

automated model built by TPOT scored highest, enhancing the accuracy by 0.3% and the 

auc by 1.1% for this particular dataset. Overall, TPOTs inclusion to the architecture is 

justified due to its improved results and automated nature.  

Table 5: Model Scores on Validation Dataset 

Algorithm  Accuracy (%) ROC_AUC (%)  

Logistic Regression  78.7  77.6  

KNearest Neighbour  83.2  82.3  

RandomForestTree Classifier  97.6  97.4  

DecisionTree  96.2  96.1  

ExtraTreeClassifier  97.8  96.6  

TPOT Model  98.1  97.7  

 

 

3.6 DAGLADS Results 

The section describes the results obtained from the implementations of our proposed 

architecture. Much of this section is taken from already published work from the author 

and will be displayed in a format that shows the evolution of the architecture. 

Implementation I will provide an introductory approach to Flow Based Programming and 

its Edge processing capabilities and has been published in [119]. Implementation II is the 

result of publications [120], [121] and aims to show the benefits of adding advanced 



 

66 
 

analytical libraries to the Edge containers, which will provide a final instalment of 

implementations that include a computational collaboration between Edge and Central 

container via task offloading from the Edge to the Cloud. Apache Nifi and its sub project 

MiNifi are the FBP applications used in the following scenarios. It must be noted, 

Nifi/MiNifi are primarily data streaming technologies with no processing capabilities. 

However, combined with the author’s custom software, the goal is to emulate powerful 

centralized processing technologies on Edge devices.   

3.6.1 Implementation 1.1:  Local Processing  

MiNifi is installed on Raspberry Pi’s representing the trucks. The goal is to emulate the 

processing achieved by Storm in the centralized HDF approach. Figure 22 shows the 

dataflows created through MiNifi. Dataflow 1 calculates the average speed. Dataflow 2 

filters unsafe events. Dataflow 3 determines if five unsafe events have occurred within 

three minutes. If true, an email is sent directly to the fleet manager. All data is saved 

locally which can be uploaded in batch at a later stage.  The main Nifi server ingests the 

data from the Edge devices for further processing.  

    To separate the incoming sensor data into individual dataflows, a RouteText processor 

is configured with regular expressions that forward truck_speed_events and 

truck_geo_events to separate dataflows. Truck_geo_events is subsequently split into two 

further dataflows. The Speed_events data, (dataflow 1), consists of a MergeContent 

processor that merges single flowfiles into a user specified amount. This is useful when 

performing computations that require a specified timeframe of data or a certain amount of 

data. An UpdateAttribute processor is configured to give the merged content a filename. 

This allows us to create a sliding window that provides an average speed over five 

seconds.  Once the processing has been completed, the results can be stored locally or 

forwarded to the main Nifi server.   
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    Dataflow 2 uses a RouteText processor configured to filter out all “unsafe” events, 

which are then forwarded to the main Nifi server. In the HDF use case, Storm sends an 

alert to the fleet manager whenever a driver creates five unsafe events in a three-minute 

time window. Dataflow 3 emulates this action using a RouteText processor to filter out 

unsafe events. This data is merged into a file containing three-minutes of data. A custom 

program acting a sliding window, calculates if five violations have occurred in the 

specified timeframe. If true, a PutEmail processor will alert the fleet manager immediately 

with a file containing a list of violations occurred.   

    The Nifi server ingests and separates incoming data from the Edge devices, Figure 23. 

The average speed data is extracted and can be forwarded to a dashboard for further 

analysing, or forwarded to storage. Unsafe events are also extracted. A dataflow on the 

main Nifi server enriches all unsafe events with real-time weather attributes. This dataflow 

consists of a number of processors that extract the latitude and longitude attributes before 

sending them to a weather API using an InvokeHTTP processor, Figure 25, and receives 

an immediate weather response in JSON format. An EvaluateJSONpath processor parses 

the JSON file for weather in relation to wind, rain and fog. These new weather attributes 

are then appended to the original Geo_events flowfile.  A conversion is executed on the 

incoming data to translate attributes including weather and events into binary, preparing 

it for the Spark prediction model, as shown in Figure 24. This is achieved through a custom 

python application.  
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Figure 22: Dataflows created on Raspberry Pi, emulating local processing on truck                                 

 

Figure 23: Dataflows created on Apache Nifi server emulating Cloud server 

 

Figure 24: Enriching and formatting truck events for Spark Model 

Feature Scaling to Improve 

Algorithm performance 
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Figure 25: Information passing through InvokeHTTP processor over 5 minute period 

   Figure 25 shows an example of the information each processor provides over a five 

minute period. This includes how much data is ingested by the processor (In), and how 

much leaves the processor (Out). In this example, the InvokeHTTP processor is 

configured to post incoming latitude and longitude features to a weather API, and retrieve 

current weather status from that area. As shown, the processor ingested 2.99KB of data, 

enriched it with weather context from the weather API and passed 9.97KB of data to the 

following processor. This occurred 22 times over the five-minute period.  

    The simulation is configured to create data for both 1 driver and 23 drivers. The quantity 

of data produced is controlled by increasing the granularity of data production from 

500ms, 250ms to 100ms. Table 6 illustrates the quantity of data transmitted from the Edge 

device in the single driver evaluation.  

Table 6: Quantity of Data Transmitted – Single Driver (Without Weather Context) 

Data Interval (ms) Centralized Approach -All Data 

Transmitted to Cloud (KB) 

Edge Device Processing (KB) Data Reduction 

100 625.76 KB 10.43 KB 98.33% 

250 297.82 KB 8.72 KB 97.07% 

500 141.48 KB 8.66 KB 93.88% 

 

    Figure 26 graphically represents the data from Table 6. It illustrates that the 

architectural implementation reduces the quantity of data transmitted for centralized 

processing by up to 98%, while maintaining computational accuracy.     
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Figure 26: Quantity of Data Transmitted – Single Driver (Without Weather Context) 

    Table 7 illustrates the quantity of data transmitted from an Edge devices for a 23-driver 

evaluation when the effect of weather context was not considered. Figure 27 graphically 

represents the results of the same simulation. 

Table 7: Quantity of Data Transmitted – 23 Drivers (Without Weather Context) 

Data Intervals (ms) Centralized Approach (KB) Edge Processing (KB) Data Reduction 

100 13240 344.7 97.4% 

250 6140 162.66 97.35% 

500 3240 88.95 97.25% 
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Figure 27: Quantity of Data Transmitted – 23 Drivers (Without Weather Context) 

    Table 6 and Table 7 illustrate that from both a single driver and 23 drivers evaluation, 

as the velocity of data increased a slight increase in performance was experienced. In the 

single driver scenario there was a 93.88% reduction in data transmitted when data was 

processed on the Edge device at 500ms granularity. When the data production rate was 

increased by a factor of 5, with data produced every 100ms the data reduction by 

processing on the Edge device increased to 98.33%. The improved performance results 

from merged content when calculating the average speed. When data was created at higher 

velocity, more content needed to be merged to aggregate 5 seconds of data, yet still 

resulting in one output.   

3.6.2 Implementation 1.2 – Data Enrichment on the Edge   

    In this section, we describe the architectural implementation where processing, filtering 

and data enrichment of weather context occur on the Edge devices. Figure 28 illustrates 

the three dataflows created on the Edge device for this scenario.  

Dataflow 1 calculates the average speed.  

Dataflow 2 enriches each unsafe event with weather attributes, and prepares it for the 

SparkML prediction model. Dataflow 3 is identical to dataflow 3 in scenario 1.  
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Figure 28: Architecture 2 – Dataflows on Edge for Processing, Enriching, and Filtering 

     Figure 29 is an actual image of the dataflows created in Nifi. As shown, sections of the 

dataflow can be named and coloured. This is advantageous in keeping track of different 

sections of a dataflow. 

 

Figure 29: Actual image of dataflow where enrichment occurs.  

    In this section, we compare the performance of centralized processing and Edge 

processing considering the effect of weather conditions.  Table 8 illustrates the quantity 

of data transmitted from the Edge device in the single driver evaluation with weather 

context.  
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Table 8: Quantity of Data Transmitted – 1 Driver (With Weather Context) 

Data Granularity (ms) Central Approach (KB) Edge Approach (KB) Data Reduction 

100 626.43 37.97 93.94% 

250 288.57 27.18 90.58% 

500 144.58 17.22 88.09% 

 

    Figure 30 is a graphical representation of the results. It illustrates that our enhanced 

architectural implementation reduces the quantity of data required to be transmitted for 

centralized processing by up to 94% when the context of weather conditions is considered.      

 

Figure 30: Quantity of Data Transmitted – 1 Driver (With Weather Context) 

    Table 9 illustrates the quantity of data transmitted from the Edge device for a 23-driver 

evaluation when the effect of weather was considered. Figure 31 graphically represents 

the data.  

Table 9: Quantity of Data Transmitted – 23 Drivers (With Weather Context) 

Data Intervals (ms) Central Approach (KB) Edge Approach (KB) Data Reduction 

100 13430 2659.6 80.2% 

250 6140 1153.66 81.21% 

500 3230 620.26 80.8% 
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Figure 31: Quantity of Data Transmitted – 23 Drivers (With Weather Context) 

    Table 8 and Table 9 illustrate that when the context of weather is included; the Edge 

processing approach still has good performance in comparison to a centralized processing 

approach when considering data transmission and computational accuracy. The results do 

however illustrate that when weather context is considered, dangerous drivers create more 

unsafe events. These unsafe events generate multiple weather requests, which are 

processed on the Edge device.  

3.6.3 Implementation 2.1 – Advanced Local Processing  

Here we focus on the performance of adding advanced analytical libraries to the Edge 

containers. As discussed, Implementation II focuses on predicting driver drowsiness, and 

demonstrates computational collaboration between Edge and Central container via task 

offloading from the Edge to the Cloud. MiNifi, python and Sci-kit libraries are installed 

on a Raspberry Pi representing the Connected Vehicle. A dataflow consisting of multiple 

processors are installed via MiNifi.  The test dataset is placed in the Pi. A SplitText 

processor is configured to ingest the data one line at a time from the test dataset, followed 
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by a ControlRate processor configured to set the rate at which each flowfile travels 

through the dataflow.  Here, it is set at one flowfile every 2 seconds, emulating the vehicle 

creating data in real time. An UpdateAttribute processor assigns each feature within the 

flowfile an attribute name. This allows the attributes to be split and routed separately if 

necessary. Figure 34 shows a representation of the architecture.  

    The next step in the dataflow is to duplicate the incoming flowfile and route it separately 

to the prediction model in the application server, and the summarization process. This is 

achieved using a RouteText processor as shown in Figure 32. The processor is configured 

with regular expressions; flowfiles matching the regular expressions can be forwarded one 

direction, with the unmatching flowfile forwarded elsewhere, or dropped. In this scenario, 

the flowfile is duplicated and forwarded to two separate dataflows.  

 

Figure 32: Dataflows on Edge Container 

    The first dataflow forwards the flowfiles to an application server via PutTCP processor. 

Here, a custom python application, which uses the sci-kit library, makes a prediction on 

the incoming data against the prediction model. The output is appended to the flowfile, 

and stored locally for future model building. If driver drowsiness is predicted, an alert can 

be sent to the driver’s phone and/or the fleet manager’s office.   
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    The second dataflow forwards the flowfiles to a MergeContent Processor. In this 

scenario, one minute of data is merged. An ExecuteStreamCommand processor calls 

another custom python application that summarizes the merged block of data. Figure 33 

shows the output of this process.  Transmitting summarized data can be beneficial as 

sending data frequently is resource heavy.  A separate dataflow merges data together over 

a longer period, in this example, 10-minute blocks, before compression. Transmitting 

compressed data greatly reduces data transmission.  The Nifi server ingests the 

compressed data from the Edge devices, which is then decompressed and stored for further 

analysing.  

 

Figure 33: Summarized data over a 5-minute period (count 300 seconds) 

 

Figure 34: Service UI requesting summary of data every 60 seconds  

    The reduction of data transmission was recorded in multiple scenarios. This was 

achieved by increasing the control rate at which data passed through the Edge device. The 

quantity of data produced is controlled by increasing the granularity of data production 

  



 

77 
 

from 2 seconds, 1 second, and 500 ms. Table 10 represents the data reduction over a 5-

minute period. Full data transmission is compared against the data summary and 

compressed data columns combined. As pointed out in previous implementations, as 

velocity of data increased a significant increase in data reduction occurred. The improved 

performance resulted from merging the content. When data was created at a higher 

velocity, more content was merged in the specified period. However, summarized output 

remained the same.   

Table 10: Comparison of full data transmission against summarized and compressed data 

Data Intervals (ms) Full Data 

Transmission 

Compressed 

Summary  

(1 minute intervals) 

Full Compressed data  

(10 Min intervals) 

Total Data Reduction 

2000 20.5KB 1.44 KB  2.95 KB 78.59% 

1000 39.5 KB 1.46 KB 6.6 KB 79.6% 

500 79.9 KB 1.48 KB 12.5 KB 82.5 % 

      

3.6.4 Implementation 2.2: Collaborative Processing / Task Offloading  

As discussed, DAGLADS has the capability of offloading tasks from the Edge container 

to the Cloud. Guaranteeing low-latency applications and services to the end users will be 

fundamental for the Edge/Fog-Computing paradigm. To provide this type of service, 

processing as close to the source as possible will be necessary. However, in certain 

scenarios, this may not be achievable due to a number of circumstances. In such a case, 

offloading certain tasks to the Cloud may free up the already limited resources on the Edge 

containers. Offloading may be determined by multiple factors, including, but not limited 

to, battery power, latency, and local environmental factors.  

    It will be common for Edge containers to be battery powered. In such a scenario, to 

preserve resources it may prove beneficial to process the most time critical data locally 
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and offload less time critical tasks when battery power is falling below a certain threshold. 

However, in this scenario, computation offloading based on battery level was not 

necessary. Instead, we set thresholds based on CPU usage. Three data flows are created 

on the Edge container as depicted in Figure 35. Dataflow 3 is considered the most time 

critical data that must be processed locally at all times.  

    In this scenario, features that determines driver drowsiness is presumed critical.  

Dataflow 1 and 2 represent data that can be processed locally, but not with such demand 

on low latency. These dataflows represent features such as latitude, longitude, speed, 

Driver_ID, Truck_ID etc. When CPU usage rises above a specified threshold, the 

computations that occur on dataflow 1 and 2 are offloaded to the Cloud. The Cloud ingests 

the data from 1 and 2 and processes centrally.  Dataflow 1 and 2 consist of an 

ExecuteStreamCommand processor that calls a python script to perform local analysis. 

Dataflow 3 is routed to the local application server and is constantly processed locally.  

 

Figure 35: Dataflow 3 is time critical and is processed locally at all times. Dataflow 1&2 may be offloaded  

   A separate system monitors CPU usage at regular intervals. For this scenario, a threshold 

of 75% CPU usage was set. A bash programming application, which represents a task 
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scheduler, is configured to trigger an alert if CPU usage rises above the threshold for over 

30 seconds. If true, dataflow 1 will cease processing locally and direct the incoming 

flowfiles directly to the Cloud container. After this action, if CPU remains above 75%, 

dataflow 2 is then offloaded, (This may be true when other tasks such as system updates 

etc. are occurring). This can be reversed when CPU returns below the threshold. 

Tasks/computations on the dataflows may be modified in real time to keep the CPU usage 

below the threshold.  

    System monitoring and resource management may influence decision making in terms 

of task resource allocation on Edge containers by providing useful information such as 

workload and energy usage. The efficiency of advanced embedded systems will play a 

major role in IoT. As previously mentioned, the Edge processing for this work was carried 

out on a raspberry Pi. The specifications of the Pi are as follows: 1 GB of Ram and a CPU; 

4× ARM Cortex-A53, 1.2GHz.   

   Three python scripts were running simultaneously in this scenario (one on each 

dataflow). Each python script was configured to ingest one flowfile at a time, at intervals 

of 500 ms, and score the data off a local model. With Apache MiNifi and the three python 

scripts running, CPU usage was on average 77%.  

    In this scenario, dataflow 1 was offloaded, which lowered the overall CPU usage to 

51.7%. To keep CPU usage below the threshold, a new python application was 

implemented to slightly adjust the manner of which data was processed in dataflow 1. For 

example, by modifying the application to perform a minor process, such as feature 

selection instead of prediction, before transmitting to a Central container for further 

analysing, all three dataflows could be run concurrently, and below the threshold. The 

newly modified dataflow gave a total average CPU usage of 66%. Figure 36 shows the 

Edge containers CPU usage before and after the modification, compared to the threshold.  
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Figure 36: Drop in CPU usage occurs when dataflow 1 is offloaded 

 

3.7 Conclusion 

This section discussed the individual architectural and system components necessary to 

meet the following requirements and fundamentals that must be considered when defining 

a DAGLADS architecture. 

Latency Sensitivity – The proposed architecture offers the end users low-latency 

guaranteed applications and services, due to the advanced local processing capabilities via 

the application server provided on the Edge container, as shown in Implementation II. 

Generality - With the inclusion of Apache MiNifi, and its wealth of processors, the 

architecture is capable of handling a diversity of data types, and data generation rates.   

Dynamism and Efficiency– The inclusion of a monitoring system allows for the self-

adaption of the IoT application on the Edge container. The monitoring system also 

provides a set of rules that efficiently utilize resources on the Edge container   

Programmability – Developers can deploy and modify the applications remotely through 

the service UI on the Central container.  
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System evaluation and results of DAGLADs were presented through multiple 

implementations.   Implementation I showed the role in which FBP can play in an IoT 

scenario. Although Apache Nifi and MiNifi are primarily data streaming technologies, 

when combined with custom applications they can perform advanced processing 

capabilities. Due to their wealth of processors that can be configured to suit almost any 

IoT scenario, and the bi-directional capabilities, confirm FBP based technologies are a 

valuable addition to an IoT architecture. Implementation II focused on advanced Edge 

analytics demonstrating data summarization and task offloading, showing a collaboration 

between the Edge and Central container. This section provided sufficient results that 

showed the importance of Edge analytics in the success of IoT. Significant reduction in 

data transmission lowers the risk of network bottlenecks and also lowers costs in relation 

to bandwidth and storage for businesses.  

The contribution of DAGLADs can be viewed as follows.  

1) An IoT platform that combines FBP and the authors’ custom software to emulate the 

processing capabilities of the current state of the art centralized approach.  

2) A bi-directional IoT platform in which developers can seamlessly distribute control 

information and logic to Edge devices. 
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4 In-Vehicle Data Capturing 

4.1 System Design & Methodology 

Vehicle and driving behaviour information is instrumental when developing traffic 

applications and accident prevention systems throughout a Smart City. Aggressive 

accelerations and decelerations for example, can determine the necessity of speed bumps, 

or lower speed limits, in certain areas. High RPM, idle time, and CO2 emissions can give 

insight into unnecessary length of time spent at traffic junctions. Stop/start events mean 

heavy traffic or roadblocks. Therefore, utilizing the most accurate data capturing 

technique is essential. 

    This section focuses on the development of a novel comparative dataset of vehicle 

CAN-Bus extraction standards. The relevance of this section is to provide the authors and 

readers, an in-depth knowledge of the vehicle network and data associated with it, with 

the majority of this chapter published in [124]. As our overall focus turns to V2I, we use 

vehicle telemetry data as a use case. We also aim to create a specific message set for 

vehicle telematics in Smart Cities, so an understanding of vehicle sensor data, and ability 

to add logic to raw CAN data to create new parameters is imperative. To date, most 

literature relies on OBDII standard for capturing vehicle data. On the other hand, FMS 

standard is mostly used in Trucks and Buses, and only recently became available for small 

vehicles via a FMS gateway. Here, we capture data simultaneously using OBDII and FMS, 

creating a comparative dataset. The main objective of this research is to determine the best 

standard for capturing vehicle sensor data to use when monitoring fuel economy, CO2 

emissions, and other attributes that may affect quality of life in Smart Cities. The aim of 

this contribution is to address the following research question. 

For vehicle telematics to be considered a key enabler in the development of Smart Cities, 

which in-vehicle data capturing technology provides the most accurate sensor data? 
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4.1.1 Hardware  

The OBDII standard requires an OBDII adapter, which transmits data via Bluetooth to a 

smartphone app. The smartphone enriches the OBDII data with GPS information, and if 

required, other sensor data from the smartphone, such as accelerometer readings. The 

OBDII adapter used for this work was a high-end device called OBDLink MX. It 

addresses some of the known issues of other adapters, security in particular. Connection 

to this device requires a unique security scheme, which eliminates the risk of unauthorized 

access. The user requires physical access to enable Bluetooth pairing, making it hacker 

proof. The device is also advertised as the world’s fastest Bluetooth OBDII adapter, up to 

300% faster than other adapters, and can request up to 100 parameters a second, although 

this is far above the recommended 1 request per second.  The adapter also comes with an 

android app that gives the user many options such as parameters to log and frequency of 

logging.  

    The FMS standard requires a CAN-Bus clip, and an FMS gateway, which is then 

connected to an Automatic Vehicle Location (AVL) device. The reason the gateway needs 

to be connected to an AVL is that there are no gateways on the market with GSM 

capabilities, so the data is transferred to an AVL, which enriches the incoming FMS data 

with GPS information before transmission. The AVL used for this project was a Falcom 

Fox-3, a highly capable device that can be configured to read OBDII, FMS and CAN 

information. The Fox-3 can be used as a standalone OBDII device, but for this purpose, it 

was configured to ingest FMS data from the gateway, geo-location enrichment and its 

GSM capability. Fox-3 configurations utilize a proprietary programming language called 

PFAL, which allows the user to request parameters from the FMS gateway, set the 

granularity of requests, and transmit to the Cloud. 
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    The FMS gateway and CAN-Bus clip used are a product of Inventure Automotive, a 

global supplier of CAN data retrieving solutions. The gateway decodes CAN-Bus protocol 

parameters and translates them to FMS format. The CAN-Bus of vehicles are proprietary, 

meaning some CAN-Bus parameters are different. Therefore, you need to have the right 

decoding mechanism to eavesdrop and understand the communication of ECUs on the 

bus.  

4.1.2 Installation 

The OBDII adapter is easily installed as the OBDII port is visible and easily accessible. 

Once the adapter is plugged in, the user pairs the device to the smartphone via Bluetooth 

and is ready to go. There are numerous third party smartphone applications that are 

compatible with most adapters. The FMS option is more complicated and time consuming, 

requiring access behind the vehicle interior. The CAN-Bus clip needs to be directly 

connected to the CAN-High and CAN-Low wires, so professional assistance may be 

required to gain access to these wires, usually via the rear of the OBDII port, Figure 37. 

Once the clip is successfully fitted across the two wires, it is then connected to the FMS 

gateway Figure 38. Finally, the FMS gateway is connected to an AVL which is configured 

to transmit the data via GSM to the fleet manager’s servers, or in this case, an AWS server 

created by the author to ingest and store incoming vehicle data.  

 

Figure 37: Accessing the Can Wires via the rear of the OBDII port. (CAN-High & CAN-Low wires are blue & yellow) 
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Figure 38: CAN-Clip sensing information on CAN-High and CAN-Low wires 

    Figure 39 provides an overview of the architecture used to extract data from the CAN-

Bus via OBDII and FMS. The image shows the contactless clamp fixed directly to the 

CAN-High and CAN-Low wires, feeding data to the FMS gateway, which in turn feeds 

the data to the AVL. The OBDII adapter connects to the visible OBDII under the steering 

wheel and transmits via Bluetooth to the smartphone. 

 

Figure 39: Architecture for receiving FMS and OBDII data from vehicle network 

4.1.3 Data Generation 

The vehicle used for testing was a 2011 Opel Astra. By requesting blocks of 15 parameters 

at a time, we could determine that, overall, 62 OBDII parameters returned data. As the 

recommended rate for requesting OBDII data is 1Hz (one request per second), the author 

was unwilling to request all 62 parameters at once, even though the OBDII adapter claims 
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it can request 100 per second. For testing, 22 OBDII parameters were initially chosen due 

to their relationship with driving behaviour and fuel related parameters. As discussed, 

OBDII was initially developed for diagnostics, so many parameters can be considered 

unsuitable for this evaluation such as system vapour pressure, and battery related 

parameters etc. Other parameters that had no relationship to fleet management, or any 

previous literature in relation to fuel consumption were also ignored. Important 

parameters that were monitored were vehicle speed, RPM, throttle position, Mass-Air 

Flow (MAF), accelerator pedal sensors etc.  

    However, when requesting 22 OBDII parameters at a rate of 2Hz, there were issues 

with duplicate data and missed data. So the number was lowered to 7 parameters, as shown 

in Table 11. Reasons for choosing these parameters were based on their relationship with 

the FMS fuel rate parameter, previously used OBDII fuel algorithms, and their relevance 

in previous studies, as will be discussed. The relationships to FMS fuel rate was 

discovered utilizing Pearson’s correlation. 

    Through this work, two datasets were made available to the research community. The 

reason for two datasets was due to granularity issues with OBDII. Dataset 1 consists of 22 

OBDII parameters and 11 FMS parameters, recorded every second. Dataset 2 consists of 

7 OBDII parameters and 11 FMS parameters, recorded every 500 ms. 

Table 11: List of chosen OBDII and FMS Parameters at 2Hz 

OBDII Parameters FMS Parameters 

Vehicle Speed (Km/H) Vehicle Speed (Km/H) 

Vehicle RPM Vehicle RPM 

MAF Fuel Rate 

Calculated Load Value Accelerator position (%) 

02 Sensor Lambda Clutch Usage 
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Intake Air Temperature Brake Usage 

Drivers Demand- percent torque Total Distance     ( Odometer ) 

 Total_Fuel_Used 

 Vehicle Speed (cm/s) 

 Fuel Level 

 Engine Temp 

 

A description of the OBDII parameters is as follows: 

Vehicle Speed: Current speed of the vehicle in km/hr 

Vehicle RPM: Current Revolutions per minute of engine. 

MAF: Any OBDII-II compliant vehicle is equipped with MAF sensor (or a MAP sensor, 

which allows you to calculate MAF) [125]. MAF is a widely used parameter when 

determining fuel rate via OBDII, with much literature based on its involvement in 

determining instantaneous fuel economy.  

Calculated Load Value: Indicates a percentage of peak available torque. Reaches 100% 

at wide open throttle at any altitude or RPM for both naturally aspirated and boosted 

engines. 

02 Sensor Lambda: Determines the ratio between the amount of oxygen currently present 

in a combustion chamber and the amount that should be present to obtain perfect 

combustion. 

Intake Air Temperature: Monitors the temperature of the air that is entering the engine 

of vehicle. 

Drivers Demand - Percent torque: The requested torque output of the engine by the 

driver. 



 

88 
 

Intake Manifold Absolute Pressure:  IMAP sensor is used to sense engine load. This 

information can be used to adjust ignition timing and fuel enrichment. 

    The FMS parameters are specifically designed for fleet management. Fuel Rate, 

accelerator pedal position, clutch and brake usage, Total Fuel Used, Total Distance 

(Odometer), vehicle speed and RPM, were tested and compared against the available 

OBDII parameters. For ground truth in our evaluation, through monitoring the vehicles 

odometer and fuel gauge before and after trips, we could accurately calculate the amount 

of fuel consumed per trip. This allowed us to evaluate the accuracy of the OBDII 

algorithms for determining fuel rate, and also the accuracy of the FMS Fuel Rate 

parameter. CO2 emissions is also calculated. In relation to monitoring actual vehicle speed 

and stop/start events, the odometer was recorded during trips via a smart phone in a 

controlled environment. This gave us an accurate depiction of real-world information such 

as length of time the vehicle was stopped etc. 

 

4.2 In-Vehicle Data Capturing Results 

4.2.1 Basic Parameters 

The main contribution of this section is to perform a comparison of both vehicle data 

extraction standards in terms of data accuracy, granularity, fuel efficiency and eco-driving 

monitoring. To the best of the author’s knowledge, this will be the most in-depth 

comparison of standards to date. Comparing the basic parameters such as vehicle speed, 

RPM, engine temperature and fuel level was performed with little deviation between the 

standards. Table 12 shows the vehicle speed and RPM statistics recorded from OBDII and 

FMS over 2000 data points, equivalent to 1000 seconds. 
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Table 12: Comparison of OBDII and FMS vehicle speeds and RPM 

Description OBDII Speed 

(Km/H) 

FMS Speed 

(Km/H) 

OBDII RPM FMS RPM 

count 2000 2000 2000 2000 

Mean  19.39  19.92 1348.86 1351.1 

Std Dev 16.77 17.1 528.2 529.3 

Min 0 0 707 716 

25% 0 0 802 802 

50% 21 22 1279.8 1276 

75% 32 33 1815.5 1827 

Max 57 58 3333 3290 

    

    At regular speeds, and over longer distances, both standards provide similar results, as 

shown above. The mean difference between standards for vehicle speed was 0.027 (2.7%) 

and RPM was 0.002 (0.2%). However, it was noticed on numerous occasions during 

testing, that when driving at very low speeds, OBDII has a tendency to drop to zero for 

longer periods, as shown in Figure 40 and Figure 41. This can hinder statistics, particularly 

in heavy traffic scenarios, as shown in Table 13 and Table 14.  FMS also provides useful 

parameters such as clutch and brake usage, and accelerator pedal position (%). Clutch and 

brake parameters work on a binary basis. 1 means the pedal is in use, 0 means not in use. 

Bottom graph on Figure 40 and Figure 41 shows the added features FMS can offer over 

OBDII. Monitoring brake and clutch usage can give valuable insight into driving 

behaviour, particularly in stop and go traffic.  
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4.2.1.1 Scenario 1: 

 

Figure 40: OBDII speed at zero for longer periods. Bottom graph shows extra FMS parameters. In the bottom graph, 
brake usage works on a binary basis, 1 when in use, and 0 when not in use. Accelerator usage is based on Accelerator 

pedal position (%)  

 

Table 13: Statistical Analysis on FMS and OBDII speeds during scenario 1 

Description OBDII Speed (Km/H) FMS Speed (Km/H) 

Count 50 50 

Mean  2.48 3.34 

Std Dev 2.92 3.11 

Min 0 0 

25% 0 1 

50% 2 3 

75% 4 4 

Max 9 13 
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4.2.1.2 Scenario 2: 

 

Figure 41: Another example of OBDII speed going to zero for a longer period. . In the bottom graph, brake usage 
works on a binary basis, 1 when in use, and 0 when not in use. Accelerator usage is based on Accelerator pedal 

position (%)  

Table 14: Statistical analysis on OBDII and FMS Vehicle speed during scenario 2 

Description OBDII Speed FMS Speed 

Count 50 50 

Mean 0.9 1.76 

Std Dev 2.06 1.92 

Min 0 0 

25% 0 0 

50% 0 1.5 

75% 1 3 

Max 8 8 

    

    In scenario 1, the difference between standards at lower speeds was 25.7%, whereas 

scenario 2 was 48.9%. This shows that OBDII is highly inaccurate in slow moving 

scenarios, which may not be desirable in monitoring traffic and driving behaviour in urban 

areas. 
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4.2.2 Data Granularity 

As previously mentioned, FMS has a much higher rate of data available when compared 

to OBDII. Many FMS parameters are available at 10-100Hz. Due to limitations of the 

AVL device used for this work, we could only transmit parameters at a rate of 500ms, 

meaning FMS parameters, 11 in total,  are monitored at 2Hz. The fastest we could request 

the 22 OBDII parameters was 1Hz, however, when reducing the number of parameters, 

we could request seven parameters at 2 Hz. It must be noted that this may be down to the 

test vehicle, as different vehicles may allow for more requests per second.  

    Figure 42 shows vehicle speed over a three minute period, monitoring OBDII data at 

1Hz and FMS at 2Hz. Table 15 shows the analysis of Figure 42.  Figure 43 and Table 16 

represent RPM over the same trip. 

 

Figure 42: Vehicle Speed; FMS at 2Hz, OBDII at 1Hz over a 3 minute period 

 

Figure 43: Engine RPM; FMS at 2Hz, OBDII at 1Hz over a 3 minute period 
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Table 15: Vehicle speed while FMS at 2Hz and OBDII at 1Hz over the same period 

Description OBDII Vehicle Speed FMS Vehicle Speed 

Count 180 360 

Mean 39.228 39.95 

Std Dev 28.548 28.591 

Min 0 0 

25% 13 14 

50% 34 35 

75% 64 65 

Max 92 94 

 

 

Table 16: RPM while FMS at 2Hz and OBDII at 1Hz over same period 

Description OBDII RPM FMS RPM 

Count 180 360 

Mean 1661.692 1670.756 

Std Dev 776.417 770.472 

Min 826.5 654 

25% 949.25 955.5 

50% 1508.5 1572.5 

75% 2234 2149.25 

Max 4043.5 4010 

 

    The results above show slight variations, with a difference of 1.8% for vehicle speed 

and 0.5% for RPM. It may be fair to assume that monitoring basic vehicle parameters at 



 

94 
 

1Hz is as adequate as 2Hz. Similar testing showed very slight variations in monitoring 

fuel economy at 1Hz and 2Hz.  

4.2.3 Fuel Economy 

Fuel rate is a parameter made available on the CAN-Bus, (although rarely available via 

OBDII), given by the ECU. The fuel amount to the injectors is calculated by the ECU, by 

reading, for example, throttle position, engine speed, and vehicle speed. How much fuel 

is needed is calculated through the engine software. The ECU calculates the amount of 

fuel needed, and controls the injector opening times to inject the right amount of fuel [53].  

    Fuel economy is usually represented as the ratio of fuel consumed per distance travelled, 

being measured in terms of litres per 100 km (or in the U.S as MPG - miles per gallon). 

Calculating accurate fuel economy has been the focus of much research. This is due to its 

importance when considering cost savings and also environmental issues. To date, the 

majority of research has acquired OBDII parameters to calculate fuel economy. Further 

calculations can determine CO2 emissions.  

    One OBDII parameter in particular, MAF, is used alongside constant parameters Air–

Fuel Ratio (AFR) and Fuel density (FD), in numerous algorithms for determining fuel 

economy, Table 17. The ideal AFR for a complete combustion, is called stoichiometric 

AFR, and is 14.7:1 for gasoline, and 14.5:1 for diesel; meaning for every one gram of fuel, 

14.5 grams of air are required for a perfect combustion. Fuel density is the weight of fuel 

in grams per litre. 

Table 17: Fuel Information 

Fuel Type Fuel Density AFR Ratio 

Petrol 750g/l 14.7:1 

Diesel 832g/l 14.5:1 
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    Although there are OBDII algorithms that have been used regularly for calculating fuel 

economy [62], [126], [127], many of them are variations of the following two methods. In 

testing, both methods produce the same result. 

Method 1:  

Calculate Kilometres per litre with the following algorithm 

KmL =  
஺ிோ .  ி஽ .  ௏ௌ

ெ஺ி .  ଷ଺଴଴
 

   Where KmL is kilometres’ per litre. AFR is air fuel ratio, FD is fuel density, VS is 

Vehicle speed and MAF is Mass air flow rate. MAF is measured in g/s, so 3600 is used to 

convert to hours. This is then converted to fuel economy with the following. 

Fuel Economy (l/100km)   =  
ଵ଴଴

௄௠௅
 

Method 2:  

Calculate Litres per hour; 

LH =  
ெ஺ி .  ଷ଺଴଴

஺ிோ .  ி஽
                                                                                                   

Fuel economy can then be determined using the following algorithm. 

Fuel Economy (l/100km)   =  
௅ு .  ଵ଴଴

௏ௌ
                                                            

The authors in [128] proposed an enhanced version of Method 2 algorithm with two added 

OBDII parameters. The algorithm is shown as: 

LH =  
ெ஺ி .  ୐୭ୟୢୡୟ୪ୡ .  ଷ଺଴଴

஺ிோ .  (ଵା௅்ி்) .  ி஽
                                                                                         

    Where Loadcalc is calculated load (%), (OBDII PID 0104), and LTFT is Long Term Fuel 

Trim (PID 0107 or 0109). However, LTFT was unavailable on this test vehicle. The 

authors claim LTFT is optional, but may enhance the accuracy. During testing, this 

algorithm will be referred to as M2Enhanced. 
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    As tests will show, Method 1 and 2 do not perform very well. This is due to the constant 

parameter AFR. In reality, engines will often vary from the ideal AFR. Therefore, there is 

an ideal AFR (14.5:1), and an actual AFR. The ratio between the actual air-fuel ratio 

(AFRactual) and the ideal/stoichiometric air-fuel ratio (AFRideal) is called lambda (λ), which 

is reported as a standard OBDII PID 0124, or may be calculated from the commanded 

equivalence ratio parameter. When the air fuel ratio is exactly 14.5:1, λ = 1. However, 

throughout a trip, lambda will change. For example, an air-fuel ratio of 16:1 would 

translate to a lambda value of 1.088, using the algorithm: 

𝜆 =
AFR(actual)

AFR(ideal)
 

4.2.3.1 Proposal 1: Lambda Algorithm: 

Analysis on our dataset showed a high correlation between the 02 sensor, also called the 

lambda sensor, and FMS fuel rate. This was achieved through a Pearson’s correlation 

algorithm against all parameters in the dataset. As FMS Fuel Rate is already considered 

to be an efficient parameter for monitoring fuel economy, any OBDII parameter with a 

correlation to this must be taken into consideration.  The Lambda algorithm includes the 

“02 Sensor”. Most car engines can determine how much fuel to expend into the engine 

based on the voltage of the O2 sensor. These sensors read the amount of unburned oxygen 

in the exhaust. The computer then uses this reading to balance the fuel mixture. As oxygen 

content in the exhaust increases (known as a lean condition) the sensors voltage reading 

decreases. This signals the computer to increase the amount of fuel the injectors are 

delivering. A decrease in oxygen content is known as a rich condition. The oxygen sensor 

voltage increases as a result of this richening, and the computer reacts by reducing fuel 

flow. This process is continuous as long as the engine is running. The proposed Lambda 

algorithm is as follows:     

Fuel Economy (l/100km)   =  100 
ெ஺ி .  ஼ 

஛ .  ୅୊ୖ  .  ୚ୗ
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Where C is a constant (3.6) that converts MAF from g/s to l/h, AFR is Air–Fuel Ratio and 

λ is the 02 Sensor value. 

4.2.3.2 Proposal 2: The D_Demand Algorithm: 

Whilst running statistical analysis on our dataset, a high correlation between “Driver's 

demand engine - percent torque”, (OBDII PID 0161) and the proposed Lambda algorithm 

was discovered. It was noticed that the output from the Lambda algorithm was a 

correlating percentage of the Drivers Demand output (e.g 20%). Furthermore, this 

percentage had a strong correlation with the IaT parameter, for example, when the Lambda 

algorithm output was 20% of the Drivers Demand output, the IaT parameter was 20° 

Celsius. Previous work such as [129] has shown that Intake Air Temperature (IaT) can be 

an important factor in fuel economy. Further testing allowed us to create the following 

algorithm by including both parameters. Calculating IaT as a percentage of Drivers 

Demand, i.e.; (DD /100 * IaT), resulted in an adequately performing fuel economy 

prediction algorithm. As the Drivers demand OBDII parameter often returns negative 

numbers, all parameters in this proposed algorithm were squared to negate this, before 

using the square root as the final output. Further analysing the output of this algorithm 

when comparing it to Proposal 1, we discovered adding 1 to the output brought it much 

closer to Proposal 1 and FMS fuel rate algorithm. The final algorithm is as follows: 

Fuel Economy (l/100km)   = 1 +    √𝐷ଶ .  𝐼𝑎𝑇ଶ 

Where D is “Driver's demand engine - percent torque” divided by 100, and IaT represents 

Intake Air Temperature. 

4.2.3.3 Calculating Actual Fuel Economy 

FMS has two parameters which allowed us to accurately test the algorithms. 

Total_Vehicle_Distance (Odometer) and Total_Fuel_Used are readily available via FMS. 
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This allowed us to calculate how much fuel was used over any given distance, which can 

then be converted into an actual l/100km value. This was calculated with the following: 

Actual (L/100km) = 100 
୘୊ – ୘ୗ 

୓୊ – ୓ୗ
 

Where TF – TS is Total_Fuel_Used at the end of trip, minus Total_Fuel_Used at start of 

trip. OF - OS is Odometer reading at end of trip minus reading at start of trip. 

Table 18: Calculated mean algorithm results over multiple trips. 

 

    Table 18 shows the tested algorithms over multiple trips and driving types. The trips 

include Motorway, Urban, and Country roads. Driving styles such as Urban-Eco, in which 

 
 

Table 19: Error% of FMS Fuel Rate & algorithms compared to the actual fuel economy 
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the driver utilized eco-driving rules, and Urban-Erratic, in which the driver aggressively 

used the accelerator and Brake pedals, were also monitored. The actual distance travelled 

and actual fuel used is included, which allowed us to calculate actual fuel economy. The 

results of the algorithms represent the average fuel economy over each trip. 

Table 19 shows the error rate between the actual fuel economy and the FMS, proposal 1 

and proposal 2 (the three best performing) algorithms over 12 trips. FMS has an average 

error of just 5.3%, closely followed by proposal 1 at 7%, and proposal 2 at 12.9%. 

 

Figure 44: Top graph showing similarity of Proposal 2 and FMS fuel parameter 

    Figure 44 shows the correlation between the best performing algorithms in Trip 1, and 

the accelerator pedal position. This shows the clear influence the accelerator pedal has on 

fuel economy. In this example, there was a 0.984 correlation between FMS fuel rate and 

the accelerator pedal position. There was a 0.856 correlation between Proposal 2 and the 

accelerator pedal position.  
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    Similarly in Trip 2, an urban trip, there was a strong correlation between the accelerator 

pedal position and the best performing fuel algorithms, as shown in Figure 45. There was 

a correlation of 0.92 between FMS fuel economy and the accelerator pedal position. While 

there was a correlation of 0.91 between Proposal 1 and the accelerator pedal position. 

 

Figure 45: Top graph showing similarity between Proposal 1 and FMS fuel.  

4.2.4 Acceleration/Deceleration 

Acceleration and deceleration play a major factor in monitoring driver behaviour. Hard 

acceleration and deceleration have been defined as an increase/decrease of  1.4705 m/s2 

when driving [130]. The authors of [131] collected data using five passenger cars of 

different sizes and performances; the cars were equipped with a data-logging system. The 

data were used to determine the main properties that affect emissions and fuel use. They 

found that the percentage of time when acceleration exceeded 1.5 m/s2 was one of the 

most important parameters, and they considered such states as representative of extreme 

acceleration.  During testing, a number of hard accelerations/decelerations were taken 

place in a controlled environment. Results were monitored by converting the OBDII 
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vehicle speed from km/H to m/s, while FMS has a parameter that gives speed in cm/s. 

Hard Acceleration/deceleration could then be monitored using the following equation. 

𝐴 = (𝑚𝑠 − 𝑚𝑠. 𝑠ℎ𝑖𝑓𝑡 > 1.4705). 𝑠𝑢𝑚 

Where A is an occurrence of aggressive driving behaviour, ms is the current value for m/s2 

and ms.shift is the value of m/s2 one second previous. As expected OBDII and FMS 

provided similar results. In five scenarios, the results are as shown in Table 20.  

Table 20: Monitoring Aggressive driving behaviour 

Scenario OBDII No. of hard 

acceleration/decelerations 

FMS No. of hard 

acceleration/decelerations 

Actual No. of hard 

accelerations/decelerations 

Test 1  36 38 38 

Test 2 30 30 30 

Test 3 27 27 27 

Test 4  30 31 31 

Test 5 19 19 19 

 

4.2.5 CO2 Emissions Calculations 

This section focuses on CO2 emission calculations from the aforementioned fuel 

algorithms. CO2 emissions are calculated from amount of fuel used. As previously 

mentioned, a litre of diesel weighs 832g.  Diesel consists of 86.2% carbon, meaning there 

are 717g of carbon per litre of diesel, which requires 1911g of oxygen to combust. 

Therefore, there is 2628g of CO2 per litre of diesel [44]. With this information, and the 

FMS fuel used parameter, the actual CO2 emissions per trip can be calculated. However, 

OBDII does not have a Fuel Used parameter, so using the fuel algorithms, we can estimate 

the average CO2 emissions in Kg per 100Km using the using the following: 
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𝐶𝑂2௔௩௚ = 𝐶𝑂2௉௅ . 𝐹𝐸 

Where CO2PL is the amount of CO2 per litre (2628g) and FE is the calculated Fuel 

Economy from the algorithms. From here, we can calculate CO2 emissions per trip, using: 

𝐶𝑂2௧௥௜௣ =
𝐶𝑂2௔௩௚

100
  .  𝐴𝐷 

Where AD is actual trip distance.  

    Table 21 shows the calculated average CO2 emissions per 100km during Trip 1. Also 

shown is the calculated CO2 emissions over the trip. As a note, the test vehicle 

specification manual states CO2 emissions for this particular make and model, as 109 g/km 

(10.9kg over 100km). Figure 46 shows the results of our calculations from trip 1. To 

improve the visualization of the other results, Method 1 is not inserted into Figure 46, 

Figure 47, and Figure 48 as it has already been established it is highly inaccurate.  

Table 21: CO2 emissions (per 100km) from fuel algorithms during Trip 1 

 
4.22 
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Figure 46: Calculated CO2 emissions from trip 1 (Motorway).  

Table 22 and Table 23 show the difference in CO2 emissions when driving erratically. 

When comparing actual CO2 emissions per 100km from both tables, an increase of 

43.78% in CO2 emissions can be seen when aggressive accelerating/decelerating is 

performed. Figure 47 and Figure 48 show the results in graph format.  

Table 22: CO2 Calculations from fuel algorithms from trip 2 (Urban-Eco) 
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Figure 47: CO2 emissions from trip 2 calculated from algorithms - Eco 

 
 

Table 23: CO2 Calculations from fuel algorithms from trip 11 (Urban-Erratic) 

 

 

Figure 48: CO2 emissions from trip 11, based on fuel algorithms (Erratic driving) 
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4.3 Conclusion 

This section presented an evaluation of OBDII and FMS standards. While testing 

individual parameters such as vehicle speed and RPM, there is little variation between 

both standards. However, OBDII performs poorly at lower speeds, with a tendency to drop 

to zero in stop and go traffic. In urban areas, this can greatly affect data analysis, with an 

error rate of up to 48% in our tests. Fuel usage is the most important parameter in terms 

of Eco-Driving. An accurate algorithm is imperative for efficiently monitoring fuel 

economy, as incorrect data can greatly skewer calculations regarding driving behaviour 

and CO2 emissions. In this section we introduced two novel OBDII algorithms that 

improve OBDIIs performance for fuel monitoring, however, we have shown FMS to be 

slightly more accurate than OBDII for monitoring Fuel usage and CO2 emissions. Another 

point to consider is OBDII greatly relies on the availability of specific parameters, which 

will not always be the case. 

    FMS also holds an advantage over OBDII with the extra parameters such as clutch and 

brake usage, accelerator pedal position for monitoring driver behaviour, and Total Fuel 

Used and Total Distance Travelled for monitoring actual fuel economy. FMS also 

outperforms OBDII in terms of data granularity, without adding extra load on the vehicle 

network. Overall this study showed that OBDII is capable of monitoring driver behaviour, 

however, FMS would be considered the more accurate, reliable source of CAN-Bus 

information.  
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5 WAVE-Flow  

5.1 Architectural Design & Methodology 

To date, our focus has solely been on Edge-Computing, and an Edge to Cloud paradigm. 

As our focus turns to Vehicle-to-Infrastructure, additional requirements and mechanisms 

need to be included into our DAGLADs architecture. RSUs play a central role in V2I, 

acting as the intermediary device between vehicles and surrounding infrastructure and 

internet connectivity. As discussed throughout the literature, the majority of works define 

RSUs as gateway devices. This section introduces our proposed architecture WAVE-

Flow. The main goal of WAVE-Flow is to enhance communication between OBUs and 

RSUs, while improving the level of governance RSUs can play in V2I. This chapter has 

been published in [132] and work submitted [133]. There is a wealth of literature that 

focus on improving data dissemination in vehicle scenarios. However, the vast majority 

focus on communication and routing protocols. Our goal is to take a more data-centric 

approach, focusing on inner mechanisms of the WAVE devices.  

    One of the novelties of WAVE is that higher layer applications can determine lower 

layer parameters such as data rate, transmission power etc. However, this study brings 

together the concepts of Flow Based Programming and WAVE with the aim of 

introducing a novel concept in which higher layer applications of the RSU can determine 

lower layer parameters of the vehicles. Through FBP, WAVE, and our previous focus on 

bi-directional communication, our aim is to give RSUs governance over the Connected 

Vehicles in the area as shown in Figure 49. 

    In the literature review we mentioned EDCA and the RTS/CTS mechanism, and also 

the modifying of data rates to enhance packet delivery. Taking this into consideration, and 

to be best of the author’s knowledge, we will be the first to evaluate how a combination 
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of QoS mechanisms, modifying data rates and packet inter-arrival times may reduce 

packet loss and collisions while increasing throughput in our simulations.  

 

Figure 49: Higher Layer of RSU governing Lower Layer Parameters of OBU 

    Connected Vehicles will most likely incorporate multiple communication protocols in 

future. Because of existing Wi-Fi hotspots and the upcoming rollout of 5G throughout a 

Smart City, it is our belief that WAVE will not be the only communication medium 

utilized in V2I. With this in mind, we introduce and evaluate an in-vehicle mechanism, 

W-V6, that dynamically changes the medium in which data is transmitted, dependant on 

the vehicles location.  

As a use case for WAVE-Flow, we discuss two scenarios, a multi-user fleet management 

system, and RSU governance. Building on our current architecture DAGLADs and 

previous literature, the aim of this section is to address the following research question.  

Can a Multi-Tier Flow Based Programming Architecture enhance the distribution and 

governance of vehicle sensor information in Smart Cities? 
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5.1.1.1 Estinet 

Deployment and field testing of V2V and V2I is highly costly and requires intensive 

labour. As much of the hardware is still not mainstream, a practical alternative is the use 

of simulation software to evaluate the performance in a wide variety of scenarios. 

Simulating VANET is notoriously difficult due to the priority coding and the need for 

coupling multiple applications such as network simulators and mobility generators. There 

are numerous network platforms such as NS2, NS3 and OMNET that can be integrated 

with other applications to allow for the simulation of VANET. There are also a small 

number of platforms that integrate the mobility and network applications into one. This 

allows for quicker observations of parameter and scenario modification. 

    To test our scenarios, we use EstiNet Network Simulator, formerly known as NCTUns 

[134], [135], [136].  EstiNet is a novel commercial-grade network simulation/emulation 

platform with V2V, V2I and WAVE capabilities. To simulate vehicular traffic, EstiNet 

first supports road-building functions so that cars can move on roads. A road network can 

be built by hand or by importing a roadmap file. Secondly, human driving behaviour is 

applied in a car to control its movement, such as car following, lane changing, overtaking, 

and compliance with traffic light signals. EstiNet 10 is the most recent version and was 

used for our simulations. 

    There is also a choice of nodes available, such as Road-Side Units, 802.11p vehicles, 

ad-hoc vehicles using 802.11a/g/n, and also multi-interface vehicles. Custom user 

configuration files can be implemented on the nodes, determining what data type, data 

size and rate of transmission. As an alternative, real data can be transmitted between nodes 

by pointing the file location to the nodes. Additional modules such as FIFO (queueing), 

flow classification (QoS) can be configured and added to the nodes protocol stack. 
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Communication between nodes can be made visible as shown in Figure 50. The user also 

has the option to configure nodes with a visual transmission range as shown in Figure 51.  

This allows you to view which nodes are in communication range of one another 

(monitoring the hidden node issue). With the above-mentioned features, EstiNet can 

simulate realistic traffic situation on roads. IEEE 802.11p, IEEE 1609.3, and IEEE 1609.4 

protocols are supported by EstiNet to simulate V2V/V2I networking and communication. 

These protocols are designed to support WAVE with lower transmission latency and 

higher transmission quality under high-speed movement situation.  

 

Figure 50: 3 x 3 grid simulation with 100 vehicles and one RSU (Node 110).  
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Figure 51: 4x4 grid... RSU (Node117) transmission range visible via green circle 

 

5.2 WAVE-Flow Components 

    WAVE-Flow spans across three tiers; the Edge node (Vehicle), Fog node (RSU) and 

Central node (Server), Figure 54. The central node may be in the Cloud or the city 

developer’s office. It is a device or group of devices with large processing and storage 

capabilities. Here, developers monitor large quantities of incoming data, allowing them to 

create and distribute new protocols and algorithms instantaneously.  

    The middle tier, implemented on the RSUs, also has processing and storage capabilities, 

although not as much as the central node. The RSU has bidirectional communication with 

the central node and other RSUs via Ethernet, and the Connected Vehicles via WAVE. 

The final tier of the architecture is situated on the vehicles. The FBP technology allows 

for immediate local processing on vehicle sensor data. The addition of a listening server 
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allows for incoming protocols and algorithms from higher tiers to be implemented 

immediately. WAVE-Flow primarily focuses on vertical communication between nodes 

as there is an existing large body of work that presents horizontal techniques such as data 

aggregation between clusters of vehicles. In essence, V2V can be seen as horizontal 

communication. Figure 52 provides a visual overview of WAVE-Flow and its 

components. 

 

Figure 52: Overview of WAVE-Flow 

5.2.1 Provider Service Context (PSC) 

Although V2V, V2I and WAVE mostly operate under a broadcasting system, adding extra 

information to the WSA allows us to overcome this issue. As previously stated, we aim to 

utilise the Provider Service Context (PSC) parameter. PSC is optional and can be used to 

provide additional information about a service. To date, there is no literature in academia 

or industry using the PSC parameter in a V2V/V2I scenario. As discussed, vehicles are 

configured to respond to specific PSIDs in a WSA. However, the PSC allows you to add 

more context to the WSA. We aim to utilize PSC to further filter out vehicles that will 

switch to the service channel. 
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5.3 Use-Case I: Multi-User Fleet Management System  

In this scenario, we focus on vehicular information for non-safety application usage. The 

vehicles collect and aggregate copies of frequently transmitted safety beacons, enriching 

them with parameters suited to vehicle telematics, and transmits when requested from the 

RSU. RSUs are connected to one another and also the central server via Ethernet. Each 

RSU transmits the incoming messages directly to the central database. However, as is the 

versatility of our architecture, the RSU also has the capacity to aggregate the messages 

received from all vehicles in its vicinity, giving a snapshot of current driver and traffic 

behaviour in the area. This information can be distributed to other RSUs, leading to overall 

improvement in mobility in the city.  

5.3.1 Advanced Message Set (AMS) 

In the previous chapter we looked at vehicle telemetry data and the valuable information 

it possesses in aiding fleet managers, and also city developers. With this in mind, we 

extend the WAVE standard with an Advanced Message Set (AMS) which consists of raw 

CAN data and newly created parameters, enriched with GPS information. AMS is 

designed to provide valuable information with regards to monitoring current driver and 

traffic behaviour. The AMS is transmitted from the vehicles to a nearby RSU, which 

transmits the messages to a centralized database. This gathered information may provide 

insight to city developers when monitoring and improving urban mobility.  

    Safety messages are beacons of information each vehicle transmits every 100ms in a 

V2V scenario. These small frames contain information such as direction of travel, GPS, 

speed, vehicle weight and length. They are highly advantageous for improving safety in 

urban areas. However, these small messages are simply discarded once transmitted. Our 
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goal is to store a copy of the messages locally, aggregate and enhance them with other 

parameters that may benefit non safety applications, such as fleet management. 

    Although beacons are transmitted every 100ms for safety reasons, our proposed AMS 

will be transmitted less frequently, between 1-20 seconds. This is in line with most current 

fleet management systems that only require their data in soft real-time. Two parameters 

that distinguish fleets and individual vehicles within the fleet are also added. A unique 

fleet ID is assigned to the vehicles during initial configuration. Each vehicle of the same 

fleet will have the same fleet ID, but different vehicle ID, the Vehicle Identification 

Number (VIN) that is accessible from the vehicle network. Other parameters relevant to 

fleet management are included, such as average fuel consumption in Litres per 100km 

(L/100km), average RPM, number of hard acceleration/braking, and engine idle time. 

These parameters add extra insight into driver behaviour and efficiency. As shown in 

Figure 53, some parameters are created by applying logic to multiple raw CAN 

parameters. Table 24 shows the message set of the AMS. 

Table 24: Proposed message set of the AMS 
Unique Fleet ID Current Acceleration 

Vehicle ID         (VIN) Calculated CO2 Emissions 

Start Timestamp Vehicle Size 

Stop Timestamp Avg. Fuel Consumption 

3D Position Start No. of Hard Accelerations 

3D Position Finish No. of Hard Braking 

 Average Speed Engine Idle Time 

Current Heading Avg. Revs Per Minute 

Current Steering Wheel Angle No. of Excessive Wheel Turns 
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Figure 53: Creation of AMS from CAN and GPS 

 

 

Figure 54: Three Tier Implementation Architecture 
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5.3.2 Unique Fleet ID 

Public and private fleets can avail of our proposed platform via a unique ID tagging 

system. For example, emergency services may be assigned a unique fleet ID; the vehicles 

within this fleet attach the unique fleet ID to their message before transmission to the 

RSU. The fleet manager can then access only their associated vehicle data from the central 

database via their unique fleet identification number. WAVE-Flow also allows fleet 

managers to communicate directly with their vehicles via RSUs; distributing new fleet 

IDs, modifying the subset of transmitted data, requesting diagnostic codes etc. In essence, 

RSUs can be seen as control information “hotspots” throughout a city, as represented in 

Figure 57. 

Figure 55 shows a snippet of a WSA with the PSC parameter configured with a unique 

fleet ID. Vehicles of this fleet will switch to service channel 172 and exchange information 

with this WSA, other vehicles will ignore. 

 

Figure 55: Example of PSC configured with Unique Fleet ID 

    Up to 15% of city traffic is freight (trucks and vans belonging to a fleet), add in public 

transport and emergency services, this number is close to 20%, which would be a large 

enough percentage of overall traffic to give city developers a good indication of current 

mobility and traffic congestion [137] . We utilize this percentage to test our architecture, 

for example, 300 vehicles communicating with an RSU represents 1500 vehicles in the 

area. This is often referred to as using probe vehicles, or floating car data (FCD) to collect 

traffic information [138]. As previously mentioned, individual fleets may access their data 

via a unique fleet ID, however, city authorities may request all fleets to respond to a 
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universal ID, “FFFF” (this will be the most common request). This acts similarly to a 

broadcast message, requesting all fleets in the area to transmit their information to the 

nearest RSU. However, to ensure privacy, a broadcast request from the city council will 

not include personal information such as fleet or vehicle IDs. Personal parameters are 

extracted before leaving the vehicle. This means only parameters such as vehicle speed 

etc. can be used by the city to aid in improving urban mobility. To further address issues 

surrounding privacy and security, which are major concerns in V2I, Apache Nifi has 

numerous processors for encrypting data. On receipt, dataflows on the RSU can 

immediately decrypt the incoming data with specific processors. However, as privacy and 

security are not in the scope of this body of work, such processors were not implemented. 

Figure 56 shows an overview of the algorithm on the vehicle when receiving a request 

from the RSU. All following scenarios represent the implementation of the broadcast fleet 

ID FFFF via the PSC parameter. Here, we are using the hypothetical scenario of 200, 400, 

600, 800, 1250, and 1500 vehicles. However, only 20% of the vehicles in the vicinity 

belong to fleets, hence, only those vehicles will communicate on the service channel 

provided by the WSA, which equates to 40, 80, 120, 160, 200, 250, and 300 vehicles 

respectively. 

 

Figure 56: Logic performed on vehicle when receiving a request from RSU 
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Figure 57: Multi-User Fleet Management use case 

 

5.4 Use-Case II: RSU Governance 

Previously we discussed adding a level of governance to the RSU, allowing the RSU to 

determine what lower layer parameters are configured in the vehicle to transmit messages. 

Utilizing the PSC parameter allows the RSU to pass extra control information to all 

vehicles in the area. We have created a format that allows us to pass multiple parameter 

changes which the vehicles are configured to adapt and modify the lower layers.   

 

Figure 58: Novel PSC Format for passing control info to vehicle 

Figure 58 shows the format of our novel PSC layout with each section separated by a 

colon. In our novel PSC format, the Fleet ID parameter is controlled by the Cloud, 
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however, all other parameters are added by the RSU and determined by current conditions. 

Below, we explain each section.  

Fleet_ID – This parameter can be used by individual fleet managers to pass information 

to their own vehicles. Fleet ID FFFF is a broadcast for all fleets in the area to return 

information.  

Data_Rate – Determines the preferred data rate for the vehicle to exchange information 

with the RSU. 

CW Size (Min Max) – Passes the preferred min and max contention window size to the 

vehicles  

Inter Arrival Time (Mean Max) – Modifies the transmit time that the vehicle sends 

information to the RSU. The mean and max parameter will be passed into an exponential 

distribution algorithm on the vehicle. 

Fading Model – Determines which fading model the vehicle will use to transmit 

information (Raleigh / Ricean) 

Figure 59 is an example of a WSA showing a configured PSC section using our format. 

The RSU may determine the parameters based on historical trends. Once the OBU 

receives this WSA, it extracts the PSC information and passes the parameters to the lower 

layers. In our example, we use a custom AWK script combined with FBP dataflows on 

the vehicle to filter out the parameters and pass them to lower layer configuration files via 

Apache MiNifi. 
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Figure 59: WSA with advanced PSC configuration 

 

5.5 W-V6 Mechanism 

WSMP is primarily used for one hop messages, whereas IPv6 can be used for multi-hop. 

When a higher layer application wants WSMs to be sent on its behalf, it sends a WSM-

WaveShortMessage.request to the Wave Management Entity (WME). On success, the 

message is packaged as WSM and passed to lower layers for transmission. The WME 

keeps a Management Information Base (MIB) of current system and network information 

such as WSM max length, mac addresses, and Provider/User roles of the node and so on.  

   W-V6 is a novel mechanism that polls the WME before each message transmission. This 

is achieved via Apache MiNifi and UDP ports. The default UDP port for higher layer 

applications to communicate with WSMP is port 5000, Figure 61. If wsm.request = fail, 

the AMS is passed to a FBP dataflow that transmits via UDP. WSM requests may fail for 

a number of reasons, most common being the message is larger than the maximum WSM 
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message size threshold in the MIB, Figure 61. In our scenario, wsm.request fails when the 

device role is 0 (not a provider or user). This effective mechanism means the OBU can 

continue to transmit its messages to the RSU via the RSUs IP address when it is out of 

range of the RSU. In our scenario, when WSM is not available, the message is transmitted 

using the vehicles 802.11n stack, which scans for open Wi-Fi hotspots. Figure 60 shows 

the W-V6 mechanism located in the application layer.  

 

Figure 60: W-V6 Mechanism Operating in the Application Layer of OBU 

 

Figure 61: Snippet of WME configuration file 

 

5.6 Evaluation Metrics 

To evaluate WAVE-Flow, we measure the number of packet collisions, throughput and 

packet loss ratio (PLR). Collisions occur when two nodes transmit at the same time 

without sensing each other. Throughput is the successful message delivery over a 

communication channel and is measured in bits per second. Packet loss refers to the 
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number of received packets versus that of sent packets. The packet loss ratio can be 

calculated by: 

(Total Packet Transmitted – Total Packet Delivered) / 

Total Packet Transmitted 
 

    Modelling driver behaviour is a complex but necessary responsibility within vehicle 

simulation since not all drivers behave and react the same way. In our simulations we 

defined a set of driver types and randomly distributed each type among the vehicles 

configuration files. The driver model determines the driver’s acceleration, deceleration, 

and response to warnings. For this purpose, a classification of driver’s characteristics was 

needed. As shown in Figure 62, drivers were grouped into three categories based on their 

desired speed [139]. Other behaviours such as lane changing, traffic light signals were 

also configured. Before simulations, a configuration file was created on the OBUs that 

utilized an STG (Source Traffic Generator) command that determines data granularity, 

packet size, communication protocol and destination address. On the RSU, a configuration 

file was implemented that utilizes a RTG command to ingest the incoming traffic, and 

where to log the results.  

 

Figure 62: Three groups of driver types 

5.7 WAVE-Flow Evaluation & Results 

The layout of this section is as follows: First we perform an in-depth comparison of UDP 

and WSM, involving the modification of multiple lower layer parameters. We then 
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demonstrate RSU governance over nearby vehicles. Finally, we perform simulations that 

implement WAVE-Flow and its mechanisms on the RSU and OBUs. 

5.7.1 WSM and UDP Comparison 

Here we perform a comparison of message types available in 802.11p. We also investigate 

changing lower layer parameters to improve both UDP and WSM in unicast scenarios, 

where the vehicle is transmitting to a RSU. Although it is widely known that WAVE 

supports WSMP and IPv6, to the best of this author’s knowledge, there is no previous 

literature that evaluates and compares both protocols side by side. With the expectation 

that WSM will be more suitable in one hop scenarios, the following section will evaluate 

WSM and UDP messages of equal payload and matching lower layer parameters. The 

goal is to provide valuable insight into the packet loss ratio, number of collisions and 

throughput when comparing both message types in similar scenarios, and if we can 

enhance performance.  

   Secondly, results from this section will provide insight into the relevance of parameter 

changing in V2I. In a real-world scenario, RSUs will be static and have historical insights 

in traffic behaviour, allowing them to provide the vehicles with the most efficient 

parameters to transmit at a given time. This section aims to show the reader the impact 

certain parameters can make in unicasting scenarios. 

    We begin with simulations using the default WAVE parameters as described in Table 

25. Then, we introduce the RTS/CTS mechanism and evaluate its inclusion. We also 

evaluate a range of available data rates for our messages. Finally, we evaluate different 

EDCA parameters and channel fading models. It must also be noted that we compare 

constant packet inter-arrival times with an exponential distribution inter-arrival time. 

Exponential distribution deals with the time between occurrences of successive events as 
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time flows by continuously. Instead of vehicles sending data to the RSU in a continuous 

uniform fashion, for example, every 1 second, this algorithm uses three variables; min, 

max and mean time. In this example min is 0.1 second, max is 5 seconds, with the mean 

being 1 second. The goal of using this algorithm is to distribute the network traffic 

between the min and max time period, which in turn, reduces packet loss and improves 

throughput at the RSU.  

    During testing, a strenuous amount of simulations evaluating the modification of default 

parameters took place as presented in Table 25. However, to prevent repetitiveness in our 

results, we present the best performing combinations. In total 196 different simulations 

were performed as shown in Table 26, each simulation was run 3 times, taking the average 

as the presented results. 

Table 25: Default Simulation Parameters 

Grid Size (4*4) 1km x1km 

Simulation Time 120 Seconds 

Nodes 40,80,120,160,200,250,300 

Data Rate 6Mbps 

Transmission Power 28.8 dBm 

Packet Size 100 Bytes 

Path Loss Model Two Ray Ground 

Fading Model None 

Vehicle Max Speed 23  m/sec 

Max Acceleration / Deceleration 1.5 m/sec2   /   4 m/sec2 

Packet Inter-Arrival Time 1 sec constant  
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Table 26: Breakdown of simulations evaluated for WSM and UDP 

Number of Simulations Performed for WSM and UDP Total 

2 Inter-Arrival Times * 7 (Different Numbers of Nodes) * 2 (UDP + WSM) 28 

5 Data Rates * 7  * 2  70 

Inclusion of RTS/CTS * 7 * 2 14 

4 EDCA Settings * 7 * 2 56 

Raleigh / Ricean Fading Models * 7 * 2 28 

 

5.7.2 Default Parameters of WSM and UDP 

 

Figure 63: WSM and UDP (UDP with constant and exponential inter-arrival times) 

As shown in Figure 63 UDP suffers greatly with the increase in nodes, with a packet loss 

as high as 0.81. However, the inclusion of an exponential distribution algorithm for inter-

arrival packets times improves UDP to 0.73. WSM performs much better with PLR as low 

as 0.44. From here on, we will exclude UDP constant as it performs very poorly. The 

following graphs are collisions and throughput in the same scenario. 
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Figure 64: Average No. of Collisions per second for WSM and UDP 

 

 

Figure 65: Average throughput in Kbps for WSM and UDP 

5.7.3 RTS/CTS and Data Rate 

In this section we introduce RTS/CTS.  As use of RTS/CTS can potentially reduce 

throughput because of acknowledgment packets etc., a threshold value is used. In most 

routers or devices, the default threshold is 2500 bytes. The default threshold was 3000 

bytes in the EstiNet simulator. This means that RTS/CTS won’t be activated unless a 
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packet size is greater than the threshold. However, for our testing, we lowered the 

threshold to 50 bytes, allowing our messages to activate RTS/CTS mechanism.  

We also present in our graphs the transmission of packets at the default 6Mbps and the 

highest available data rate 27Mbps. It must be noted, 3Mbps, 12Mbps, and 18Mbps were 

also tested but varied little when comparing to 6Mbps, so are excluded. Using the 27Mbps 

data rate requires a higher transmission power. As previously stated, this is not 

recommended in broadcast scenarios, as it brings a higher amount of interference from 

other vehicles. However, as we are unicasting to a specific node, this should not have a 

negative impact. In this section, WSM and UDP will be graphed separately. The three 

lines represent WSM with default parameters, WSM with RTS/CTS activated at the 

6Mbps data rate, and also the 27Mbps data rate. 

 

Figure 66: WSM PLR with Inclusion of RTS/CTS and Higher Data Rate 



 

127 
 

 

Figure 67: WSM Collisions with Inclusion of RTS/CTS and Higher Data Rate 

 

Figure 68: WSM Throughput with inclusion of RTS/CTS and Higher Data Rate 

   As can be seen, RTS/CTS adds a significant increase in performance for WSM. PLR 

drops from 0.44 to 0.17 with the inclusion of RTS/CTS. This is further improved when 

data rate is raised to 27Mbps. In total, the inclusion of higher data rate and RTS/CTS 

improves PLR from 0.44 to 0.08, a reduction of 0.36. This is also visible in throughput, 

with a total increase 16%. What is striking, is the amount of collisions that occur in WSM, 

and the improvement RTS/CTS make when implemented.  

    As will be shown in the next section, collisions in WSM are much higher than UDP, 

even though packet loss is lower in WSM. The high collisions may be due to the quick 



 

128 
 

packaging and retransmission attempts of WSM packets when compared to the slower IP 

protocol. The following section evaluates UDP in the same scenarios. Similarly, the three 

lines represent UDP with default parameters (now using the exponential distribution), 

UDP with RTS/CTS implemented at 6Mbps and also 27Mbps. 

 

Figure 69: UDP PLR with inclusion of RTS/CTS and Higher Data Rate 

 

Figure 70: UDP Collisions with Inclusion of RTS/CTS and Higher Data Rate 

It is visible that although RTS/CTS and a higher data rate improve UDP, the improvement 

is not as impressive as WSM. Packet loss improves from 0.73 to 0.59. A noticeable 

difference again is the reduction in collisions. 
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5.7.4 EDCA Settings & Fading Model 

Next we modify the EDCA parameters and channel fading models. Up to now, the default 

EDCA Access Category was used, which was Best Effort (BE). As shown in Table 2 in 

the literature review, the Contention Window for BE is 15, meaning a back-off time of up 

to 15ms occurs before a packet can retransmit. However, as results will show, it is not 

always the best performing CW. Finally, we apply the two most common fading models, 

Raleigh and Ricean, as the default settings for fading models are empty in EstiNet.  The 

following graphs show the PLR, throughput and collisions from our final combination of 

lower layer parameters, when compared to the initial default parameters, and results from 

the previous section.  

 

Figure 71: Default UDP Vs Final UDP Parameters. 

    As shown in Figure 71, for UDP, the CW of 15 performed best out of the four EDCA 

default parameters. Also, the Ricean fading model slightly outperformed the Raleigh 

model. Overall the modification of both parameters improve on our previous efforts from 

0.59 to 0.51. In the following graphs we see a similar trend with a further reduction on 

collisions and increase in throughput. For three hundred vehicles, collisions per second 

dropped from 184 to 53, whereas throughput increased from 15.6Kbps to 21.8Kbps. 
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Figure 72: Collisions for Default UDP Vs Final UDP Parameters 

 

Figure 73: Throughput for Default UDP Vs Final UDP Parameters 

    As visible in Figure 74, our final set of parameters make a significant reduction in 

packet loss for WSM, reducing initial PLR of 0.44 to a minimal 0.014. In terms of EDCA, 

CW of 31 performed best for WSM as opposed to CW 15 for UDP. The Ricean model 

also slightly outperformed the Raleigh model, while slightly improving overall 

performance. Figure 75 shows the collisions in WSM. The introduction RTS/CTS brought 

collisions close to zero and is hard to distinguish between the lines in the graph. As 

mentioned previously, WSM suffers from high collisions without RTS/CTS, with over 
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800 collisions per second with 300 vehicles. The final set of parameters reduced this 

number to below 1. Throughput, Figure 76, increased from 19.77Kbps to 36.2 Kbps. Table 

27 provides visual representation of the final lower parameters for both UDP and WSM. 

 

Figure 74: Packet Loss Default WSM Parameters Vs Final Parameters 

 

Figure 75: Collisions for Default WSM Vs Final WSM Parameters 
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Figure 76: Throughput for Default WSM Vs Final WSM Parameters 

Table 27: Final Lower Layer Parameters 

Data Rate 27Mbps 

Transmission Power  28.8dBm 

RTS/CTS Activated 

Contention Window Size 15 (UDP) 31 (WSM) 

Fading Model  Ricean 

Packet Inter-Arrival Time Exponential Distribution 

 

5.7.5 Summary 

Results show WSM to be a far superior message type in one-hop scenarios.  However, 

with modification of multiple parameters, we improved PLR in both packet types. WSM 

packet loss was decreased from 0.44 to 0.014 for 300 nodes. This is a significant decrease 

of 0.426. As packet delivery to the RSU is the inverse of this, it means packets received 

by the RSU increased by 42.6%. There were also performance increase in UDP, improving 

packet loss from 0.73 to 0.51, a decrease of 0.22 for 300 vehicles. Overall, IPv6 is still 
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important as it is relevant for internet purposes or its routing ability, so it is in our interest 

to continue to evaluate it in our use case.  

5.7.6 RSU Governance 

As a use case for WAVE-Flow we discussed RSU acting as governing bodies over 

Connected Vehicles. Here, the RSU determines the granularity at which messages are 

transmitted based on the number of nodes in the area. To do this, we need to perform 

multiple simulations consisting of different numbers of nodes transmitting at different 

granularity. This will allow us to build an algorithm to implement on the RSU.  The 

following graph represents a total of 28 different simulations, each run 3 times, using the 

average.  

 

Figure 77: PLR of different transmission times 

    For this example we use UDP packets. Using the information presented in the graph, 

the RSU can create an algorithm that will modify the granularity of the vehicles packet 

transmissions as the number of nodes grow. An example of the pseudocode to keep packet 

loss as low as possible while data granularity high as possible, would be as follows: 
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If Vn < 80 

TI = 1s 

If 80 < Vn > 120 

TI = 5S 

If 120 < Vn > 200 

TI = 10S 

Else TI =20s 

 

Where Vn is number of vehicles and TI is Transmission Interval. In a real world scenario, 

a more self-adapting algorithm may be created from historical data. However, in this 

example the aim is to demonstrate a proof of concept. With this algorithm implemented, 

the RSU can then govern the rate at which Connected Vehicles transmit their data. What 

this has shown, and building on the previous section, is through modification of lower 

layer parameters and reducing data granularity, the RSU can pass control information to 

the vehicles that reduces overall packet loss from 0.73 (default UDP parameters 

previously discussed) to 0.31( modified parameters transmitting at 20 seconds).  

5.7.7 WAVE-Flow Simulation 

This final set of simulations aims to implement the previously mentioned methods and 

logic. In the first scenario, only vehicles within range of the RSU can communicate as 

shown in Figure 79. In the second simulation, we add three 802.11n access points (Wi-Fi 

hotspots) in areas outside the range of the RSU. We also implement W-V6 on the vehicles 

with the following logic applied. 

If WSM. Request = Success 

Then, port 5000 (WSM) 

Else, FBP Flow to 802.11n 

Scan for open Wi-Fi 
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 To perform governance, the previously created data granularity algorithm is implemented 

on the RSU, which allows the RSU to determine the granularity of the vehicle transmission 

times. The earlier defined lower layer parameters for message transmission are 

implemented on the vehicles. Table 28 shows the simulation parameters. 

Table 28: Simulation Parameters 

Grid Size 2Km * 2KM 

Simulation Time  400 seconds 

Number of Nodes 300 

Communication Standard 802.11p / 802.11n 

Message Type WSM /UDP 

Mechanisms RSU: Data Granularity Algorithm 

OBU: W-V6 

 

 

Figure 78: Close Up of RSU and OBU Connectivity 
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Figure 79: Simulation 1 Showing RSU Transmission Range (Circle) 

 

Figure 80: Simulation 1. WSM Packets Received at RSU 
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Figure 80 shows that although there are 300 nodes in the simulation, on average, 123 are 

within transmission range of the RSU. Other nodes outside the RSU range have no way 

of communicating. For this reason, we introduce three Wi-Fi hotspots, and implement W-

V6 on the vehicles. As mentioned previously, once the WME denies the WSM request, 

the vehicles will send the packets to the 802.11n protocol stack. Which in turn, scans for 

an open Wi-Fi hotspot to transmit packets back to the RSU. 

 

Figure 81: Simulation 2 with added Wi-Fi Hotspots 
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Figure 82: Packets received at the RSU via WSM and IPv6 

As shown in Figure 82, vehicles that are out of range of the RSU, but in range of a Wi-Fi 

hotspot can still transmit packets to the RSU. The inclusion of W-V6 increased packet 

delivery at the RSU from 123 to 244 packets per second. Secondly, the RSU modified the 

packet transmission times of the RSU using the algorithm provided earlier. However, it is 

hard to distinguish its results when combined with incoming IPv6 packets. For this reason, 

Figure 83 shows the transmission of 1 vehicle of the course of the simulation. 

 In the following graph, we describe the 5 phases of transmission this vehicle goes through 

over the course of the simulation. The gaps between transmissions occur when the vehicle 

is outside the range of the RSU and Wi-Fi access points.  Phase 1 shows this vehicle 

starting in the range of the RSU and transmitting messages every 1 second via the 

exponential distribution algorithm. This tells us that were less than 80 vehicles in range of 

the RSU at this time. However, while still in range of the RSU, the vehicle starts 

transmitting every 5 seconds in Phase 2, meaning there was between 80 and 120 vehicles 

in the area. There is a gap between transmissions until the vehicle comes within range of 

a Wi-Fi hotspot (Phrase 3), transmitting back to the RSU, still using the 5 second 

exponential distribution as this was the last configuration received from the RSU. Phrase 
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4 sees the vehicle back within range of the RSU, however, at this time, the vehicle is 

transmitting every 10 seconds, as per request of the RSU. This tells us at this time there 

were between 120 and 200 vehicles within range of the RSU. There is a lengthy gap until 

phase 5, until the vehicle connects to another Wi-Fi signal. However, it is still transmitting 

every 10 seconds as this was the last configuration it received from the RSU. 

 

Figure 83: Phases of Single Vehicle Data Transmission over 400 Seconds 

 

5.8 Conclusion 

This section introduced WAVE-Flow and its mechanisms within WAVE nodes to enhance 

packet delivery and improve governance via the RSU. We also provided an in-depth 

comparison of WSM and UDP in one-hop scenarios, while paying special attention to the 

modification of lower layer parameters. This resulted in a combination of parameters that 

greatly improve packet loss and collisions for both protocol types. In our final simulation, 

we showed how W-V6 can enlarge the service area of an RSU by utilizing other medium 

in the area such as Wi-Fi hotspots. We also presented a case for RSU governance through 

utilizing the PSC parameter to pass control information to the Connected Vehicles. 
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6 Conclusion & Future Work  

With IoT well and truly upon us, handling the influx of generated data is of paramount 

importance. The introduction of Edge and Fog-Computing, coinciding with Real-Time 

Processing technologies will greatly enhance the success of IoT. For this reason, we 

introduced our reference architecture with the goal of addressing the following research 

question. 

Is it possible to design a data-centric architecture with the necessary performance to 

support bi-directional communication between Edge/Fog/Cloud nodes in an IoT 

paradigm? 

However, in defining a reference architecture for IoT, certain requirements must be 

addressed, such as evaluating a suitable programming platform, local processing potential, 

data capturing techniques, coordination and governance capability. For this reason the 

following research questions were first addressed. 

1) In terms of communication and collaboration between nodes, to what degree can Flow 

Based Programming address the heterogeneity of services and applications in 

Vehicle-to-Infrastructure scenarios (V2I)? 

To address this, a Flow Based Programming architecture called DAGLADS was proposed. 

Implementations of DAGLADS showed its capability in bi-directional communication 

abilities, which is paramount for developers in IoT scenarios. Testing DAGLADS against 

the current state of the art centralized approach, Hortonworks DataFlow, we successfully 

emulated the advanced processing capabilities of the Cloud onto our Edge devices, 

minimizing data transmission in the range of 87% - 99% while maintaining computational 

accuracy. Further implementations were made to show how DAGLADS could perform 

advanced analytics such as real-time prediction through learning models. However, our 
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overall goal was to introduce an architecture that spans across Edge/Fog/Cloud. For this, 

we needed a suitable use-case, Connected Vehicles in Smart Cities. However, this topic 

led to addressing the following questions. 

2) For vehicle telematics to be considered a key enabler in the development of Smart 

Cities, which in-vehicle data capturing technology provides the most accurate sensor 

data? 

Although future OBUs will ingest data directly from the CAN, currently most literature 

avails of CAN data through the OBDII port. A section of this thesis aimed to compare 

OBDII and FMS, a subset of CAN parameters for vehicle telematics. Results have shown 

OBDII to be unsatisfactory in a number of areas when compared to FMS. This body of 

work also gave us insight and the ability to create our own message set for vehicle 

telematics in a WAVE scenario. The goal of this work was to provide the research 

community with an evaluation and a comparative dataset showing OBDII may not be 

completely accurate when compared to FMS. 

3) Can a multi-tier Flow Based Programming architecture enhance the distribution and 

governance of vehicle sensor information in Smart Cities? 

Smart Cities and Connected Vehicles are prime examples of Edge/Fog/Cloud. For this 

reason, we developed an IoT application platform called WAVE-Flow, with the focus on 

V2I in Smart Cities. There is a wealth of literature discussing V2V and V2I, however, the 

majority of these works are communication based; i.e. improving routing protocols. With 

much mention of OBUs and RSUs, very little work exists in how these devices ingest, 

process and distribute vehicle information. Our goal was to evaluate how our FBP inspired 

architecture could compliment one of the more complicated areas of IoT. To do this, 

adjustments were made to our original DAGLADS architecture to allow for the 

incorporation of RSUs and 802.11p communication standard.  
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    Through the creation of novel concepts such as utilizing the Provider Service Context 

parameter as a way of governance for RSUs, W-V6 for medium switching, our AMS 

message and the novel fleet id system, we have shown WAVE-Flow to be a viable 

platform for V2I. In-depth testing of some of the common parameters associated with 

V2V/V2I also provided the authors, and readers, with valuable insight into the 

performance of WSM and UDP packets under similar circumstances. It is our firm belief, 

each of the above have contributed to this field, and more importantly, created new 

avenues of research. PSC for example is a relatively unknown parameter that if 

implemented correctly may be useful in multiple scenarios where communication to 

specific subset of vehicles is required.  

   With future vehicles expected to consist of multiple communication interfaces, WAVE, 

802.11, 4G, 5G, we evaluated a novel mechanism that switches between interfaces 

dependent on proximity to a RSU. Results have shown WSM to be a superior message 

format to distribute when close to a RSU, however, as WSM is a one hop technology, it 

does not scale well in terms of distance from RSUs. This requires a change in medium if 

the vehicle is still transmitting to the RSU. 

    RSUs will be static devices with access to much historical information of a specific area 

in a city. Self-adapting algorithms created from this information may be used to adjust 

lower layer parameters on vehicles, improving overall communication in V2I and V2V. 

In this body of work, we provided a novel concept in which the RSU controls the lower 

layers of the OBUs, along with a proof of concept use case. 

Through implementations of our reference architecture, we have shown how governance 

over processing data at source can be achieved by nodes throughout the Edge/Fog/Cloud. 

1) The Edge node via internal parameters such as CPU usage, network connectivity etc. 
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2) The Fog nodes (RSUs). 

3)  The Cloud via control information from the developer. 

 

6.1 Limitations  

This body of work spanned across a broad area, combining Edge/Fog processing, CAN 

signals, vehicle telematics before focusing on V2I. Although a thoroughly enjoyable 

experience, time was of the essence. V2V/V2I is a complicated field of study with multiple 

areas of research required. For example, modifying lower layer parameters to enhance 

packet delivery opens up a lot of new research questions and literature. QoE mechanisms, 

data rates, propagation and channel fading models were all mentioned and tested in this 

body of work. However, each in itself are a large area and out of scope of this work. The 

author would consider this a limitation of this work as to not solely focus on one or two 

of these areas for maximum performance of specific parameters. However, as the focus of 

this work was the architecture, and modifying these parameters were merely a use case to 

show how a RSU could adjust OBU parameters, it is our admission that more expertise is 

needed in each area for future work. 

   The choice of VANET simulators is not an easy one. Each simulation tools have pros 

and cons. Veins, the most widely used VANET simulation tool and with a wealth of online 

support, does not support unicast in 802.11p. For this reason, EstiNet was chosen. EstiNet 

provides a platform to get up and running quickly as it has a strong GUI base. This was 

very helpful as creating VANET scenarios are renowned to be a difficult achievement. 

However, EstiNet also has some cons. Lack of support being the main one. Its predecessor 

NCTUNs was open source with much more support in previous years. However, EstiNet 

is now a paid for service with priority code and minimum online support groups. This 
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made debugging of small issues very time consuming. Another negative aspect of EstiNet 

is the time it takes for a simulation. Running a simulation of 300 nodes can take up to 7 

hours. This could be due to the fact it uses your devices IP stack. Its lack of support for 

routing protocols is also problematic. Previous versions of Estinet supported AODV and 

DSR, however, that is no longer the case.  

 

6.2 Future Work 

As mentioned in the limitations section, this body of work spanned quite a large area, 

opening doors for future work in many areas. Fog-Computing has potential to impact a 

wide range of requirements in various applications including Smart Cities, healthcare, 

transportation, and large-scale industries. However, currently there are limitations in 

regards to platforms for developers to deploy and execute generic IoT applications on Fog 

devices. Connected vehicles are in a unique position in IoT as they have potential to act 

as Fog nodes due to their large processing and storage capability. Connected Vehicles 

collaborating as Fog devices is a research area that is gaining momentum. Further 

collaboration between vehicles and RSUs to perform advanced processing capabilities and 

storage is an area WAVE-Flow could expand to. 

    In the Fog-Computing paradigm, there are many unanswered questions. How to 

determine which task or services should be processed locally or offloaded, and where best 

to offload to, are ongoing research questions.  Offloading and distributing IoT applications 

will play an important role in IoT, however, the advantages of offloading regarding the 

delay, bandwidth, and energy consumption is still an open research issue. If the predicted 

performance does not gain any significant advantages, then offloading is not beneficial.   

Future work would aim to address the above issues with the following objectives.  
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Enhance the WAVE-Flow platform with self-adapting configuration capabilities, through 

the use of learning algorithms. This will allow for an evaluation of various parameters that 

have an impact on the offloading performance of an application, such as energy 

consumption, caching, bandwidth cost and latency.  

Create a distributed environment where that in the event of offloading a task is required, 

an evaluation can be provided on efficiently offloading applications to the most suitable 

nodes in the network.  

As discussed throughout this work, Fog-computing will play a significant role in two IoT 

scenarios in particular, Smart Cities and Connected Vehicles. Future work could consider 

a use case in which data generated from Connected Vehicles’ camera feeds can enhance 

urban surveillance in a Smart City. Tasks such as traffic surveillance, face detection and 

riot prediction may be collaborated and distributed between the Connected Vehicles and 

RSUs throughout the city. This would require a group of vehicles in close proximity to 

distribute the processing of live video feed among each other, with the capability of 

offloading the heavier work load to the RSU, or Cloud. 
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