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In data-poor situations, length-based indicators (LBIs) and reference points based on life history parameters have been proposed to classify
stocks according to conservation status and yield optimization. Given the variety of potential LBIs, life history traits, and fisheries, it is necessary
to evaluate the robustness of length-based advice to ensure that despite uncertainty that management objectives will still be met. Therefore,
a simulation procedure was employed where an Operating Model conditioned on life history parameters was used to generate pseudo data.
Receiver operator characteristics and the true skill score were then used to screen LBIs based on their ability to identify overfishing and recovery.
It was found that LBIs performed better for long-lived species with low individual growth rates, those aimed at ensuring the conservation of
mature fish performed better than those aimed at the conservation of immature fish, are better at indicating trends than at quantifying exploitation
level, and in general were robust to uncertainty about dynamic processes.
Keywords: data-poor, evaluation, length-based indicators, life history, receiver operator characteristic, screening, simulation, stock assessment, true skill score.

Introduction

The adoption of the voluntary Code of Conduct on Respon-
sible Fishing and the United Nations Fish Stocks Agreement
(PA, Garcia, 1996) requires that reference points and man-
agement plans are developed for all stocks—not just targeted
commercial stocks, but also by-caught, threatened, endan-
gered, and protected species (Sainsbury and Sumaila, 2003).
Reference points are used in management plans as targets to
maximize surplus production and as limits to minimize the
risk of depleting a resource to a level where productivity is
compromised. Reference points must integrate dynamic pro-
cesses such as growth, fecundity, recruitment, mortality, and
connectivity into indices for exploitation level and spawning
reproductive potential. An example of a target reference point
is the fishing mortality (F) that will produce the maximum sus-
tainable yield (FMSY), commonly defined as the fishing mor-
tality with a given fishing pattern and current environmental
conditions that gives the long-term maximum yield. To en-
sure sustainability requires preventing a stock from becoming
overfished, so that there is a low probability of compromising
productivity. Therefore, many fishery management bodies also
define a limit reference point, e.g. Blim, at a biomass at which
recruitment or productivity is impaired (Restrepo and Powers,
1999). When assessing stocks, it is also important to consider
trends as well as state since a stock at a target biomass may
be declining due to overfishing, while, a depleted stock may
be recovering due to management action (Hilborn, 2020).

However, half of the fisheries worldwide exploit re-
sources without formal stock assessments (Hilborn et al.,
2020). These are termed data-limited, data-poor, information-
poor, or capacity-limited (Dowling et al., 2015). For ex-
ample: although the United Nations’ Food and Agriculture

Organization (FAO) landings database includes over 20 000
individual catch histories by FAO region, country, and taxon,
the RAM Legacy Stock Assessment Database (www.ramleg
acy.org), which includes most of the publicly available stock
assessments contains only 1200 assessments (Ovando et al.,
2021). Therefore, status, productivity, and exploitation lev-
els of many stocks and species are largely unknown (Thor-
son et al., 2015). In addition to the risk of overexploitation,
the lack of formal assessments may hamper progress towards
the Ecosystem Approach to Fisheries Management (EAFM),
which requires as a first step the assessment of the impacts
on non-target species, trophic structure, and habitat (Hilborn,
2011).

In data-poor situations, life history parameters such as
maximum size and size at first maturity have been used as
proxies for productivity (Roff, 1984; Jensen, 1996; Caddy,
1998; Reynolds et al., 2001; Denney et al., 2002). For exam-
ple, ICES has implemented a framework for data-poor stocks
that uses length-based indicators (LBIs) and life history pa-
rameters to classify stocks according to conservation and sus-
tainability status, and yield optimization. Table 1 summarizes
the LBIs, reference points, and reference levels, proposed in
ICES (2015).

Some indicators aim to prevent growth overfishing, for ex-
ample a high proportion of fish should be allowed to spawn
at least once before they are caught. To ensure this, the ratio
between the 25th percentile of the length distribution (L25%)
and the length at 50% maturity (L50) should be greater than
1. To ensure the conservation of large individuals, the mean
length of the largest 5% of the length distribution (Lmax5%)
should be greater than 0.8 L∞. Miethe et al. (2019) further de-
veloped this approach by deriving reference points consistent
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Table 1. LBIs and reference levels.

Indicator Calculation Reference point Indicator ratio Expected value Property

Lc Length at 50% of modal abundance L50 Lc/L50 > 1 Conservation (immatures)
L25% 25th percentile of length distribution L50 L25%/L50 > 1 Conservation (immatures)
LmaxY Length class with maximum biomass in

catch
Lopt = 2/3 L∞ LmaxY/Lopt = 1 Optimal yield

Lbar Mean length L50 Lbar/L50 > 1 Optimal yield
Lmean Mean length of individuals LF = M = 0.75Lc +

0.25L∞
Lmean/LF = M = 1 Optimal yield

Lmax5% Mean length of largest 5% L∞ Lmax5%/L∞ > 0.8 Conservation (large
individuals)

L95% 95th percentile L∞ L95%/L∞ > 0.8 Conservation (large
individuals)

Pmega Proportion of individuals above Lopt +
10%, Lopt is estimated from L∞.

Pmega > 0.3 Conservation (large
individuals)

with a spawning potential ratio of 40%, which, if estimates of
natural mortality, maturity, and growth (M, L50, L∞, k, and
CVL∞ ) are available, can be tailored by stock.

Indicators can also be used to provide advice as part of em-
pirical rules, for example Fischer et al. (2020a) incorporated
the LBI Lc as a proxy for F: FMSY into a harvest control rule.
Where Lc is the first length class having at least 50% of the
mode in the observed catch–length frequency. The reference
point is the length at maximum sustainable yield (LF = M); as-
suming FMSY = M, as proposed by Beverton and Holt (1993),
using the simplification that M/k = 1.5, then LF = M = 0.75Lc

+ 0.25L∞.
To be an effective management tool, a LBI should be ro-

bust so that it still functions despite uncertainty (Radatz et al.,
1990; Zhou et al., 1996). Indicators should also be reliable
and stable. An indicator is reliable if it provides an accurate re-
sult despite uncertainty, and is stable if, despite random error,
similar results are produced across multiple trials. Therefore,
to evaluate the robustness of LBIs, a simulation procedure
was employed where an Operating Model conditioned on life
history parameters was used to generate pseudo data using
Monte Carlo simulation and an Observation Error Model.
LBIs, proxy reference points, and reference levels were then
compared to the actual (simulated) state of the resource and
screened for their ability to classify stock status relative to ref-
erence points.

Material and methods

Case study stocks considered represent a range of fisheries
and life history types to allow comparison across taxa, and
do not represent any specific stocks. Species selected were
sprat (Sprattus sprattus sprattus), brill (Scophthalmus rhom-
bus), turbot (Psetta maxima), pollack (Pollachius pollachius),
and thornback ray (Raja clavata).

An age-structured simulation model was conditioned using
life history theory to provide a theoretical basis for developing
hypotheses about population dynamics. The parameters were:
growth model parameters (k, L∞, and t0; Von Bertalanffy,
1957); a and b of the length–weight relationship; and the
length at which 50% were mature (L50). Natural mortality-
at-age was modelled as a function of length (Gislason et al.,
2010) and spawning stock biomass (SSB) was used as a proxy
for stock reproductive potential (SRP; Trippel, 1999). It was
assumed that fecundity is proportional to the weight-at-age
of the sexually mature portion of the population irrespective

of the demographic composition of adults (Murawski et al.,
2001), and that processes such as sexual maturity are sim-
ple functions of age and independent of sex (Matsuda et al.,
1996).

Life history parameters were extracted from FishBase (ww
w.fishbase.org), and Figure 1 summarizes L∞, k, L50, and b;
with species ordered by k. There are only a few observations
for pollack and brill, which implies high uncertainty, since
data in FishBase are often based on small sample sizes, have
limited coverage, and life history parameters (e.g. maturity
and growth) and generally come from different studies. There
are clear relationships, both between and within species, as
L∞ is inversely correlated with k, and L50 is correlated with
L∞. Brill has a value of k, similar to sprat, but its value of
L∞ is closer to that of turbot, while sprat has a large varia-
tion in the relationship between length and weight (i.e. b in
the length–weight relationship W = aLb).

To create an Operating Model, the FLR (Kell et al., 2007)
packages mydas and FLife were used, (see Supplementary Ma-
terials). First, an equilibrium per-recruit model was param-
eterized for growth, maturity, and natural mortality-at-age;
where the means of the available values for each parameter
by species were used. The per-recruit model then was com-
bined with a stock–recruit relationship (Beverton and Holt,
1993). To model uncertainty about parameters and relation-
ships, a number of scenarios were considered for each species
(see Table 2). Virgin biomass was set at a constant value across
all stocks and scenarios, as results are presented in terms of
exploitation level and relative stock size.

Historical exploitation was simulated for stocks that were
initially lightly exploited before fishing mortality (F) gradually
increased until the stock became over-fished, after which a re-
covery plan was implemented to bring fishing down to 70% of
FMSY (Figure 2). This exploitation history provides contrasting
periods of under-, over-, and maximally sustainable exploita-
tion. Inter-annual variability in yield and SSB depends largely
on k, e.g. sprat shows the largest and ray the lowest variations
in yield, and SSB.

Scenarios

Even for data-rich stock assessments there is often large un-
certainty about the dynamics (i.e. model uncertainty; Punt,
2008), for example estimates of stock status are highly sen-
sitive to assumptions about natural mortality-at-age (Jiao
et al., 2012), vulnerability of age classes to the fisheries
(Brooks et al., 2009), and the relationship between stock and
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Evaluation of the skill of length-based indicators to identify stock status and trends 3

Figure 1. Life history parameters extracted from FishBase for the case study species; the bottom right-hand panel shows the number of observations
available. Species are ordered from left to right in order of high to low k, i.e. sprat, brill, turbot, and pollack ray.

Table 2. Operating Model scenarios; base case values in bold; N is the number of levels per factor and � is the cumulative number of scenarios.

Factor N � Levels

Steepness 2 2 0.9, 0.7
Recruitment deviates 3 6 0.3, 0.5, 0.3+AR
Natural mortality (M) 2 12 Gislason, Constant
Length sample size 2 24 500, 250
Selectivity 2 48 Maturity, Dome

recruitment (e.g. Cury et al., 2014). Therefore, a base case
was defined and scenarios developed representing the main
sources of uncertainty (Table 2); namely the steepness of the
stock–recruitment relationship, recruitment variability, natu-
ral mortality, selection pattern, and sample size (Boorman and
Sefton,1997; Ono et al., 2015).

Selectivity depends on the vulnerability of individuals to
fishing, and is typically either asymptotic or dome-shaped. The
former indicates an initial increase with age or size followed
by a levelling off, while in the later case selectivity-at-age de-
clines. Selectivity will differ between fisheries depending on
gear characteristics, when and where the fishery operates, and
the biology of the species. For example, estimates for species
captured with gill nets or hooks will be biased if the model in-
correctly assumes logistic selectivity because the missing large
fish will be assumed to have been caught, whereas they could
just be missed by the gear. Fisheries selectivity was, therefore,
modelled as a double normal, as this allowed both asymptotic
and dome-shaped selectivity to be simulated. Logistic selectiv-
ity in the base case was based on the maturity ogive, so that
MSY reference points are comparable across case studies. The
consequences of shifting the selection patterns is well-known,
since if you fish below or above Lopt (the length at which a

cohort attains its maximum biomass) you reduce MSY, while if
you take fish before L50, FMSY is reduced and BMSY is increased
as older fish need to be conserved. Therefore, scenarios were
not case-specific

An additional scenario was modelled where the ages greater
than 0 were sampled equal to their abundance to provide a
benchmark against which the impact of the assumed selection
pattern could be assessed, this is referred to as the fishery in-
dependent survey. Although, even surveys have biases, due to
their design.

Observation error model

LBIs may be biased and have poor precision due to uncer-
tainty about life history parameters, lags between exploita-
tion levels and changes in fishery selection pattern, variabil-
ity in year–class strength, and biased sampling. Therefore,
length distributions were derived from the Operating Model
catch and stock-at-age by applying an inverse age–length key.
The inverse age–length key was based on the von Berta-
lanffy growth curve for each stock, and variation in length-
at-age was included by applying a normal distribution to the
expected length at age with a C.V. of 10%. Sampling was
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Figure 2. Base case Operating Models, showing fishing mortality, yield, recruitment, and SSB relative to MSY reference points (dashed line); fishing was
initially low then increased to 2.5 times FMSY, following which a recovery plan was implemented to reduce F to 70% of FMSY. The stocks are ordered by
k. The grey line is an individual Monte Carlo realization.

performed randomly across the catch and the stock propor-
tional to the frequency of an age class for a given sample size.
The inverse age–length key was then used to generate a ran-
dom length for each individual, which were then combined
into a length frequency distribution.

Indicators

Empirical indicators were calculated from the length fre-
quency distributions (Table 1). There are three elements in
making an indicator operational, the indicator itself, a refer-
ence point, and a reference level. For example, for an indicator
based on Lmax5% the reference level is L∞ and if the ratio is
less than 0.8 the stock is considered to be overfished.

For the conservation of immature fish; LBIs are based on the
left-hand limb, i.e. lower percentiles of the length distribution
and include: L25% (the 25th percentile of the length distribu-
tion); and Lc (the length at 50% of modal abundance). Indi-
cators based on central tendencies are proxies for FMSY and
include: Lmean (the mean length of individuals > Lc); LmaxY

(the length class with maximum biomass in catch); and Lbar
(the mean length). Those based on the right-hand limb and
the upper percentiles are for the conservation of larger indi-
viduals and include: Lmax5% (the mean length of largest 5%);
L95% (the 95th percentile); and Pmega (the proportion of indi-
viduals above Lopt + 10%) where Lopt is estimated as 2/3L∞
or L∞ 3

3+M/k as in this study, when the life history parameters
are known. A proxy for FMSY is the length at MSY (LF = M)
proposed by Beverton and Holt (1993), under the assumption
that F = M, and using the simplification that M/k = 1.5 cal-
culated as: LF = M = 0.75Lc + 0.25L∞.

Indicators are generally based on commercial catches
(fishery-dependent) as they represent how fishing mortality is
exerted. However, they can also be derived from surveys (e.g.

Karnauskas et al., 2011) to help monitor trends as part of the
EAFM. We, therefore, also simulated perfect survey data by
sampling the stock from ages 1 onwards with full selectiv-
ity in the middle of the year. However, even survey data are
likely to have a selection pattern, as samples are generally col-
lected with fishing gear at a particular time of year and place.
Therefore, the assumptions made in generating the fishery-
independent samples likely to be violated to some extent.

Receiver operating characteristics

There are two main questions to be asked when choosing LBIs,
namely can a combination of indicator, reference point, and
reference level correctly classify a stock, e.g. as being over-
fished; or can an indicator be used to rank stocks or iden-
tify trends in stock status, i.e. should some stocks be assigned
higher priority for management intervention in a risk assess-
ment or are things getting better or worse?

For a particular stock and LBI, the best discriminate thresh-
old, i.e. the ratio of the indicator to the reference level, for clas-
sifying overfishing, is unlikely to be the one listed in Table 1.
This is due to variations in stock and fishery characteristics
and uncertainty about the assumptions made. For example,
in the case of Lmax5% and L∞, the ratio with the best classifi-
cation skill may not be 0.8. High random, e.g. measurement,
error may also lead to poor classification skill. We, therefore,
calculate the true positive rate (TPR, i.e. sensitivity), and the
true negative rate (TNR, i.e. specificity). Sensitivity ( TP

TP+FN )
measures the ability of a test to identify positive cases, i.e.
the proportion of positives that are correctly identified, while
specificity ( TN

TN+FP ) measures the proportion of negatives that
are correctly identified. This allows the true skill score (TSS)
to be calculated, i.e. TSS = TPR + TNR - 1. A perfect predic-
tion would receive a score of 1, random predictions receive a
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Evaluation of the skill of length-based indicators to identify stock status and trends 5

Figure 3. Simulated length samples for three periods where fishing mortality first reached FMSY (year 80), was high at 2.5FMSY (year 100), and at 70% of
FMSY (year 120), the vertical lines show selected reference points; x-axis is length relative to L∞.

score of 0, and predictions inferior to random ones receive a
negative score.

Receiver operating characteristic (ROC) curves (Green
et al., 1966) can be used to estimate the ability of LBIs to as-
sess status. ROC curves were constructed by sorting the val-
ues of F/FMSY, with the highest values first, from the Operating
Model and then comparing these to each LBI. The cumulative
TPR and TNR are then calculated for the ordered observed
outcomes, and the TPR is plotted against the false positive
rate (FPR = 1 − TNR) for the different observed indicator
and reference ratios, i.e. the potential threshold settings. ROC
curves can be thought of as a plot of the power as a func-
tion of the Type I Error of the decision rule, and so provides
a tool to select the best candidate indicators. This also allows
tuning, i.e. calibration, by choosing a reference level that has
the best classification skill, and allows the bias in the standard
reference points and levels to be evaluated.

The ROC curve is a probability curve, and the area under
the curve (AUC) is an important metric for measuring perfor-
mance. For example, a coin toss would produce a curve that
fell along the y = x line and the AUC would be equal to 0.5.
The closer the AUC is to 1 the better an indicator is at ranking.
The ROC curve can also be used to graphically identify the
performance of a choice of indicator ratio (i.e. discriminant
threshold): since the best reference points have the shortest
euclidean distance between the top left-hand corner (TPR =
1, FPR = 0) and the corresponding point on the curve.

Risks are also asymmetric, i.e. the risk of indicating over-
fishing is occurring when the stock is sustainably exploited
is not the same as the risk of failing to identify overfishing. It
may be desirable, therefore, to adjust the threshold to increase
or decrease the sensitivity to false positives or false negatives.
While some indicators may perform better at identifying the
start of overfishing than recovery, and vice versa.

Results

Examples of length samples generated by the Observation Er-
ror Model are shown for the base case in Figure 3; these are

for three time periods corresponding to the initial period when
fishing mortality first reached the FMSY level, the overfishing
(2.5FMSY), and then the recovery (0.7FMSY) period. The accu-
mulation of length classes in the right-hand limb is affected
by growth and natural mortality, it is, therefore, expected that
the performance of LBIs, will vary on a case-specific basis. For
sprat and brill, both fast-growing species with high k, there
is less overlap between lengths at the early ages, and so bi-
modal distributions are seen. Exploitation history influences
the age and length structure, as there are less large length
classes in a recovering stock than a declining stock, although
fishing mortality is less. As F increases, the modes of the dis-
tributions shift to the left and the decline in the right-hand
limb of the length distributions becomes steeper. When F is
reduced, the opposite occurs, although the relative abundance
of larger individuals does not immediately recover to earlier
levels. More contrast is seen in the tails of the distribution than
the mode.

The LBIs for the base case (defined in Table 2) are summa-
rized in Figures 4 and 5 for fishery dependent (catch samples)
and independent (survey samples) length data. The indicators,
summarized by their medians and interquartile ranges, vary
with exploitation level. The trend in an indicator should be the
inverse of the trends in F/FMSY. Stocks are ordered by the von
Bertalanffy growth parameter k and the indicators by the per-
centile from which they are derived. Lc and L25% are based on
the lower percentiles, LmaxY, Lbar, and Lmean on the central ten-
dency; and Lmax5%, L95%, and Pmega on the upper percentiles.
Patterns are seen by stock and indicator. There are also differ-
ences between the fishey-dependent and independent indica-
tors, and between overfishing and recovery.

The indicators, Lc and L25% for the conservation of im-
mature, are primarily a check for the selection pattern and
whether growth overfishing is occurring. However, for turbot,
pollack, and ray they do show a relationship with F, suggest-
ing that they can indicate recruitment overfishing. If these in-
dicators are below L50, this shows that immature individuals
are being caught, which is not a problem if fishing mortality
is low.
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6 L. T. Kell et al.

Figure 4. LBIs derived from the fishery dependent length samples for the base case; the coloured regions indicate exploitation levels relative to FMSY,
F < FMSY (green), FMSY < F < 1.5FMSY (yellow), and F ≥ 1.5FMSY (red). The dashed lines indicate the reference levels in Table 1.

Figure 5. LBIs derived from the fishery independent length samples for the base case; the coloured regions indicate exploitation levels relative to FMSY,
F < FMSY (green), FMSY < F < 1.5FMSY (yellow), and F ≥ 1.5FMSY (red); The dashed lines indicate the reference levels in Table 1.

More contrast was seen for LmaxY, Lmean, and L95, partic-
ular for pollack and ray, with low k and high L∞ The dis-
crimination threshold also depends on k, and LmaxY showed
large inter-annual variation. Lmax5% and L95%, based on the
upper percentiles, showed good classification skill particularly
for stocks with low k, and hence low natural mortality and a
range of year–classes in the population. For LBIs based on

catch, more contrast was seen, and the reference levels per-
formed better. This is because fishing occurs mainly on mature
age classes, and so smaller individuals make less contribution
to the length indicators derived from the catch.

Indicators are summarized as ROC curves in Figures 6 and
7 for the overfishing and recovery periods, respectively. The
points on the ROC curves indicate the reference levels. The
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Evaluation of the skill of length-based indicators to identify stock status and trends 7

Figure 6. ROC curves for overfishing period, each line represents a scenario that was simulated using a Monte Carlo procedure to obtain the line. The
points correspond to the reference level, and the dashed line is the y = x line.

plots confirm the summary for the base case, i.e. the indica-
tors based on the upper percentiles perform well, as the AUC
is high, but classification skill is low as points tend to fall
at the ends of the curve, rather than being close to TPR =
1 and FPR = 0. Fishery-dependent indicators perform bet-
ter than those based on fishery-independent data. Additional
features are that some indicators are more robust to uncer-
tainty than others, as the curves (corresponding to the sce-
narios) show less variation. It is also easier to detect overfish-
ing than recovery, and performance can be improved if the
reference levels, the discrimination threshold, is varied on a
stock by stock basis, i.e. tuned. Patterns in bias of a reference
level (point on the curve) and precision (AUC) are seen across
the indicators and stocks related to k, which decreases from
sprat to ray. For example, as k decreases performance im-
proves, particularly for the LBIs based on upper percentiles,
e.g. those where the length distributions have many age
classes.

The true skill statistic is used to summarize the ability
to classify status in Figure 8. Results are presented for the
reference levels (recommended by ICES), and the best ob-
tainable by calibration, where the reference level or discrim-
inant threshold is optimized on a case-specific basis. The
fishery-dependent indicators perform better than the fishery-
independent ones, and performance varied depending on
stock and whether a stock was being overfished or recover-
ing. For example, for sprat Lmean performed best for detect-
ing recovery but Lmax5% for detecting overfishing, while for
turbot Lbar performed the best. Performance, therefore, can
be improved by developing case-specific indicators. Also, cali-
bration greatly improved skill, however, since calibration was
done by scenario this requires there to be no uncertainty about
the true value of natural mortality, steepness, and selection
pattern.

The areas under the curve are summarized in Figure 9, by
boxplots that combine the scenarios. For perfect ranking, skill
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8 L. T. Kell et al.

Figure 7. ROC curves for recovery period, each line represents a scenario that was simulated using a Monte Carlo procedure to obtain the line. The
points correspond to the reference level, and the dashed line is the y = x line.

values should be close to 1, values close to 0.5 show the in-
dicator is no better than a coin toss. The robustness of a LBI
to uncertainty can be inferred by the location and width of a
boxplot, since regardless of the assumed values of steepness,
natural mortality, or selection pattern if the AUC will be close
to 1. Indicators perform better for low-k stocks and for LBIs
based on upper quantiles.

TSS (TPR − FPR) for the reference levels and the areas
under the curve are compared for stocks and indicators by
scenario in Figures 10 and 11 for over-fishing and recovery,
respectively. A robust indicator should have high TSS for all
scenarios, for example, LMean and Pmega vary little by scenario
for sprat under recovery. If the TSS depends on the scenario,
indicator, and stock, and whether a stock is undergoing recov-
ery or being overfished, then it will be difficult to specify the
reference level required to classify status. However, it may still
be able to indicate trends if the AUC is high across scenarios.
For example, although the TSS varies for Lmean, Lbar, Lmax5%,

and L95 all have high areas under the curve. Pmega also has a
high AUC, apart from Brill.

It is relatively easier to increase sample size or to estimate
selection pattern than to estimate steepness or M. Therefore,
a robust indicator will be little affected by the assumed value
of steepness or M. For example, increasing sample size in-
creases skill for L95, while for Lbar if M is constant at age
then skill is increased for sprat, brill, and turbot (species with
high k), while skill is increased for pollack and ray if selectiv-
ity is dome-shaped. This shows that skill can be improved by
developing case specific indicators.

Discussion

The objective of this work was to evaluate the ability of LBIs
to identify overfishing and their robustness to uncertainty of
LBIs, rather than to develop stock-specific advice. Therefore,
scenarios were selected that provide contrasting hypotheses.
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Evaluation of the skill of length-based indicators to identify stock status and trends 9

Figure 8. TSS (TPR − FPR) for the reference levels in Table 2 (ICES) and the best reference level (tuned); the boxplot hinges correspond to the
interquartile range, while the whiskers extends from the hinges to the values that are within 1.5 times the interquartile.

Although this limited the number of scenarios considered, the
number (90) was comparable to other data-limited studies.
(e.g. Carruthers et al., 2016; Pons et al., 2019, 2020; Fischer
et al., 2020a; Mildenberger et al., 2021). Provision of case-
specific advice requires agreement on the plausibility of alter-
native hypotheses. A highly plausible scenario is one that fits
prior knowledge, with many sources of corroboration, with-
out the complexity of explanation, and with minimal conjec-
ture (Connell and Keane, 2006). Plausibility may be deter-
mined formally, based on a statistical approach to determine
whether a system equivalent to the model generated the data
or specified based on expert judgement. This was beyond the
scope of this study, but our approach could be developed to
allow case-specific applications to be developed.

LBIs based on the right-hand limb of the length frequency
distribution, i.e. Lbar, Lmax5%, L95, and Pmega, were able to
identify trends in fishing mortality and were also robust to
uncertainty about the dynamics, e.g. about natural mortality

or the steepness of the stock relationship. This is because the
main assumption of LBIs is that individuals accumulate into
the larger length classes, depending on the mortality (natu-
ral and fishing) and the growth rate (k). As long as natural
mortality and k do not vary over time, then changes in these
indicators will depend on fishing mortality, vulnerability to
fishing, and variability in recruitment. If variability in vulner-
ability and natural mortality is random, then indicators will
have skill to identify exploitation rate, while those with a long
generation time will show better ranking skill than short-lived
species. If changes in survival and recruitment have occurred
independently of fishing, then a change in the indicators would
be expected. For indicators based on the left-hand limb or cen-
tral tendency of the length–frequency distribution (Lc, L25%,
LmaxY, and Lmean), variability in recruitment has a large effect.

Skill to classify stocks as being over- or under-fished was
poor and depends on the chosen reference point and the cor-
responding reference level, and hence the assumed biology. In
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10 L. T. Kell et al.

Figure 9. Area under ROC curve, for the reference levels in Table 2 (ICES) and the best reference level (tuned). A LBI with a perfect skill will have a value
of 1. The boxplot hinges correspond to the inter-quartile range, while the whiskers extends from the hinges to the values that are within 1.5 times the
inter-quartile.

a data-limited situation, there is likely to be uncertainty about
the true natural mortality-at-age, the stock–recruitment rela-
tionship, and vulnerability, all of which determine target and
limit reference points. Therefore, managing stocks on trends
will be more robust than managing them relative to reference
points.

A possibility is to choose a reference period, when a stock
was agreed to be in good health, and compare current indi-
cator levels to this. However, indicators vary depending on
whether the stock is declining or recovering. In the former,
there will be more year–classes and larger individuals in the
population than in the latter. Therefore, choosing a histori-
cal period before a stock was overfished may mean that ap-
parent recovery, especially for a stock with low k and hence
low natural mortality, will take longer than if a biomass ref-
erence point was used that ignored the population structure.

This is not necessarily a weakness of LBIs, as the Marine Strat-
egy Framework Directive (MSFD), which has the overarch-
ing objective of achieving and maintaining Good Environ-
mental Status (GES), includes a legal requirement to consider
the impact of fishing on population demography (Kell et al.,
2015) and a healthy stock should have a range of year–classes
contributing to spawning reproductive potential (Kell et al.,
2015).

Risk is asymmetric, as allowing a stock to be overexploited
will eventually require a long-term recovery plan and loss of
yield in the medium-term, while underexploitation can be cor-
rected as soon as it is identified. Therefore, different LBIs and
reference points may be appropriate for triggering manage-
ment action and for use as targets. Identifying the best refer-
ence level for an indicator reference point combination can
be done by tuning to find the reference levels that can best
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Evaluation of the skill of length-based indicators to identify stock status and trends 11

Figure 10. Overfishing: TSS compared to area under the ROC curve, for stock and indicator.

meet management objectives (e.g. Shephard et al., 2018; Fis-
cher et al., 2020b). While receiver operator characteristics can
be used to develop generic reference levels, it is thought more
appropriate to develop stock-specific reference points (e.g. Mi-
ethe et al., 2019).

The area under the ROC curve is a performance measure
for machine learning algorithms, and exhibits a number of
desirable properties when compared to overall accuracy: in-
creased sensitivity in Analysis of Variance (ANOVA) tests; a
standard error that decreased as both AUC and the number of
test samples increased; decision threshold independent; and it
is invariant to a priori class probabilities (Bradley, 1997). The
use of ROC can, therefore, help in tuning, i.e. calibration, and
also for unsupervized learning applications to find patterns or
general rules.

Length-based assessment methods have also been used in
data and capacity limited situations (e.g. Pons et al., 2019,
2020). Length-based methods allow goodness of fit diagnos-
tics to be evaluated and estimates of uncertainty to be derived,
and reference points such as FMSY and those based on spawner

per recruit (SPR) to be derived. They can also potentially be
validated using observations (Kell et al., 2021).

There are several methods that use life history information
and length composition from the catch to estimate fishing in-
tensity and derive values of SPR that can be used as a proxy for
stock status. For example, length-based spawning potential ra-
tio (LBSPR; Hordyk et al., 2014). LBSPR uses the Beverton–
Holt life history ratios in an equilibrium-based population
model applying the shape of the length composition data com-
pared to the expected unfished length structure to estimate
the ratio of fishing mortality and natural mortality (F/M) and
derive SPR. Another method is the length-based integrated
mixed effects model (LIME; Rudd and Thorson, 2018), which
also requires biological information and length composition
data to derive SPR, but relaxes the equilibrium conditions by
treating recruitment as a random effect over time and esti-
mating annual F as fixed effects. The inputs are: M, k, L∞, the
CV for L∞, t0, selectivity parameters (L50 and L95), the steep-
ness of the stock–recruitment relationship, and the parameters
of the length–weight relationship a and b. However, if these
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Figure 11. Recovery: TSS compared to area under ROC curve, for stock and indicator.

parameters are uncertain, as seen in this study, the ability to
classify stocks will be poor.

The procedure used in this study could be used to compare
LBIs and estimates from length-based methods. To screen in-
dicators used in management procedures and compare them
to length-based methods before developing case-specific man-
agement strategy evaluation for verification that the pro-
cedures work as expected despite uncertainty. This can be
conducted by conditioning the Operating Models on a stock-
by-stock basis (e.g. Geromont and Butterworth, 2014; Fischer
et al., 2021).

LBIs can be used to set management advice, as part of an
empirical control rule (e.g. Fischer et al., 2020a) for a rela-
tively low cost of data collection, compared to data-rich stock
assessments, which typically rely on time series of survey and
catch data by age class. Also, in data-rich cases, there is often
considerable uncertainty about model structure and the val-
ues of parameters such as natural mortality and the steepness
of the stock–recruitment relationship. For example, although,
integrated models bring together all relevant information into
a single framework, problems remain due to missing data,

inadequate theory, latent state variables, and unpredictable
future elements (Gass, 1983). While, processes that impact
estimates of quantities of management interest may be mis-
specified (e.g. Lee et al., 2011, 2012; Jiao et al., 2012; Simon
et al., 2012). Therefore, different parameters values or mod-
els with quite different structures may provide equally good
fits (Kell et al., 2021). Both kinds of lack of identifiability
are common where the observations are incomplete, or latent
(Bartholomew et al., 2011). Therefore, LBIs when used as part
of empirical control rules may out-perform data-rich stock as-
sessment methods, if they can be selected to be robust to the
assumptions that may bias data-rich assessments.

The procedure can also be used to quantify the value of in-
formation, for example, what will be the increase in yield (i.e.
value) for a reduction in uncertainty, i.e. resolving a hypoth-
esis or for an improvement in data quality for control rules
based LBIs designed to achieve MSY. For example, if the per-
formance of an indicator used as part of a harvest control rule
depends on a hypothesis, and there has to be a high probabil-
ity of avoiding stock collapse, then this may result in lower
yields than if the correct hypothesis could be identified. The
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cost of the research required to identify the correct hypothesis
can be compared to the foregone yield.

LBIs as well as providing single species advice, are poten-
tially useful as part of EBFM (e.g. Blanchard et al., 2005; Bab-
cock et al., 2013). In this study, LBIs were shown to be sen-
sitive to fishing impacts and to respond to management ac-
tion, they, therefore, have potential to help managers to assess
whether changes in the fish community are a desirable or un-
desirable response to management (Nicholson and Jennings,
2004), and whether environmental effects are impacting the
fish community.

Conclusions

Various LBIs have been proposed, and there are many poten-
tial proxy reference points against which to assess them, (e.g.
M, L50, L∞, k, and CVL∞ ). To be effective and cost-efficient,
indicators should be minimized, complementary, and non-
redundant (Shin et al., 2010; Kershner et al., 2011). There-
fore, indicators should be screened to ensure that they are ro-
bust proxies for system attributes and pressures (Fulton et al.,
2005). This is true whether the purpose is to develop single
species management advice or to develop ecosystem indica-
tors based on groups of species by life history types or guilds.

We, therefore, developed a procedure based on receiver op-
erator characteristics to screen LBIs and to tune reference lev-
els to indicate overfishing. The procedure used an Operating
Model based on life history theory and an Observation Er-
ror Model to simulate length samples. It was found that LBIs
performed better for identifying trends than state. Reference
levels were also stock specific, and so LBIs are better at indi-
cating trends than at quantifying exploitation level. Therefore,
LBIs should be calibrated, i.e. tuned to meet agreed objectives,
if they are to be used for management.

It was shown by Fischer et al. (2020b) for data-limited
stocks that to reduce the risk of overexploitation and fore-
going yield management should be linked to life history traits.
Therefore, given the variety of LBIs, life history traits, fishery
types, and the associated uncertainty (Shephard et al., 2018), it
is necessary to ensure that advice is robust to uncertainty. This
requires calibration, verification, and validation. Calibration
is the establishment of a relation between an observed quan-
tity that will trigger management action, such as mean size and
fishing mortality. Verification is the provision of objective evi-
dence that a given procedure meets the specified requirements.
While validation is ensuring that management objectives are
met. In this study, we perform calibration to compare LBIs,
and reference points to exploitation level. Verification is best
performed using management strategy evaluation to identify
the best performing rules, and validation by reviewing the per-
formance of rules after implementation.

There are limitations to the approach, however, since pa-
rameterization of the Operating Model and Observation Er-
ror Model did not account for all the complexities of real
stocks. Therefore, the true uncertainties are likely to be un-
derestimated. However, the analysis did show clear patterns in
the performance of the different LBIs depending on life history
characteristics, whether data are based on surveys or catch,
and for stock undergoing over exploitation or recovery. The
procedure can also be used to compare LBIs to length-based
methods based on their ability to meet management objec-
tives. Future work should include case-specific management
plans where, for a particular stock, the most robust LBI and

the most appropriate reference point are identified. Addition-
ally, the approach can be used to explore the most-cost effec-
tive ways to collect length data (surveys or commercial catch)
and information about the life history of the stock, while en-
suring that these can be used to trigger and monitor manage-
ment action despite uncertainty.
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version of the manuscript.
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