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Abstract

The emergence of severe acute respiratory disease (SARS-
CoV-2) variants that cause coronavirus disease is of global
concern. Severe acute respiratory disease variants of concern
(VOC) exhibiting greater transmissibility, and potentially
increased risk of hospitalization, severity and mortality, are
attributed to molecular mutations in outer viral surface spike
proteins. Thus, there is a reliance on using appropriate
counter-disease measures, including non-pharmaceutical in-
terventions and vaccination. The best evidence suggests that
the use of frontline biocides effectively inactivate coronavirus
similarly, including VOC, such as 202012/01, 501Y.V2 and P.1
that have rapidly replaced the wild-type variant in the United
Kingdom, South Africa and Brazil, respectively. However, this
review highlights that efficacy of VOC-disinfection will depend
on the type of biocide and the parameters governing the ac-
tivity. VOC are likely to be similar in size to the wild-type strain,
thus implying that existing guidelines for use and re-use of face
masks post disinfection remain relevant. Monitoring to avoid
injudicious use of biocides during the coronavirus disease era
is required as prolonged and excessive biocide usage may
negatively impact our receiving environments; thus, high-
lighting the potential for alternative more environmental-
friendly sustainable biocide solutions. Traditional biocides may
promote cross-antimicrobial resistance to antibiotics in prob-
lematical bacteria. The existing filtration efficacy of face masks
is likely to perform similarly for VOC due to similar viral size;
however, advances in face mask manufacturing by way
incorporating new anti-viral materials will potentially enhance
their design and functionality for existing and potential future
pandemics.
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Introduction — coronavirus and its
implications for maintaining healthcare
provision
The coronavirus disease (COVID-19) pandemic, caused
by the severe acute respiratory coronavirus 2 (SARS-CoV-
2), has imposed tremendous challenges on healthcare
systems globally [1e3]. At the time of writing (30th
March, 2021), there have been 127,628,928 cases of
COVID-19 worldwide, including 2,791,055 deaths [4].

COVID-19 elicits a broad infection spectrum ranging
from very mild, non-respiratory symptoms to severe
acute respiratory illness, sepsis with organ dysfunction
and death; however, some infected people can be
asymptomatic [1]. Evidence highlighting the contribu-
tions of super-spreaders of infectious airborne viral par-
ticles, including the more transmissible SARS-CoV-2
variants of concern (VOC), has also contributed to the
occurrence of third and fourth waves of COVID-19 in-
fections [5e7]. Addressing the ongoing COVID-19
pandemic has created unprecedented logistical chal-

lenges to maintain critical supplies of single-use personal
and protective equipment (PPE) [8,9], where reuse and
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disinfection occurred under emergency use authoriza-
tion. At the outset of COVID-19, there was a void in
knowledge to effectively counter this disease; however,
there is an increasing understanding of the potential role
of different strategies to address COVID-19, including
adopting non-pharmaceutical interventions (NPIs, such
as correct wearing of face masks, hand hygiene, use PPE,
maintaining social distancing, detection testing, contact

tracing), along with delivering new vaccines [8,9]. Data
generated from predictive mathematical modelling of
multiple-contributing factors influencing the occurrence
of COVID-19, and commensurate efficacy of disease
counter-measures, is increasing, such information is
translated to calculating risk probability to monitor and
manage the basic reproduction number R0 in the
following [9]. It is challenging to appreciate the actual
efficacy of specific COVID-19 disease interventions in
real-time given the swiftly moving pace of this pandemic.
This current opinion focuses on understanding the effi-

cacy of frontline biocides and disinfection approaches
against SARS-CoV-2 variants of concern.
Coronaviruses and implications for meeting
personal and protective equipment supply
chain shortage and disinfection
reprocessing
SARS-CoV-2 is a large positive-stranded RNA virus with
an outer lipid envelope containing glycoprotein spikes
(Figure 1) [10]. In general, enveloped viruses, such as
coronaviruses, are more sensitive to environmental
deleterious stresses, such as chemical biocides, than
Figure 1

Structural components of SARS-COV-2 (left) and effective
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similarly-treated naked viruses, due to the presence of a
lipid membrane [9,11,12]. Coronaviruses range from 60
to 140 nm in size, which is below the 300 nm pore
diameter used in multiple layers of material used to
make face masks. However, the use of multiple layers in
single-use plastic face mask reduces the probable risk of
penetration and transmission by acting as a barrier to
respiratory droplets [13,14], which is likely to apply

similarly to mitigating against VOC transmission. The
effectiveness of single-use plastic filtering-face piece
respirators face masks varies based on type and certifi-
cation that is defined across three levels of protection
depending upon leakage of particles into the interior of
the mask that are 22% (FFP1, such as medical and
procedural masks), and 8% (FFP2, such as N95-type
respirators), and 2% for non-disposable FFP3-type res-
pirators [2]. Use of non-thermal biocidal and disinfection
approaches, such as vaporized hydrogen peroxide (30e
35% VH2O2) and moist heat (60e65 �C for 30 min), and

ultraviolet light at 254 nm (or fluence at 2000 mJ/cm2),
has been applied for reprocessing FFP1 and FFP2 type
respirators, such as under emergency use authorization
[2,25e27]. Non-thermal disinfection approaches of
FFPs have been selected to enable retention of filtration
performance, material compatibility, comfort fit, and
pressure drop. In addition, there has been increased
usage of alternative, cost-effective, home-made, cloth or
fabric face coverings by the general public, where par-
ticle penetration efficacy was improved by using more
than one layer of cotton-polypropylene and by intro-

ducing pleats when compared to testing using a fitted
biocidal agents known to deactivate the virus (right).
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Biocide disinfection of SARS-CoV-2 variants of concern Rowan et al. 3
N95 FFP2-type control [15e17]. Combining similar
mild heat conditions, along with the use of detergent, for
reuse of face coverings is theoretically plausible for
coronavirus-disinfection; however, there remains a lack
of information on disinfection and efficacy for informing
the frequency of reuse that maintains filtration func-
tionality [2,9]. Post COVID-19, it is likely that the
changes in medical practice will drive sustaining or

increasing high demand for PPE.
Understanding coronaviruses and the role
biocides in breaking cycle of COVID-19
infection
Coronaviruses are typically inactivated on different sur-
faces within 4e5 days at ambient room temperatures on
different surfaces, such as tissue, wood, glass, plastic,
stainless steel, surgical masks, and paper, that can be
influenced by humidity, viral load, presence of organic
Figure 2

Use of chemical biocides and other disinfecta

www.sciencedirect.com
matter [9,18]; for example, colder conditions, such as
refrigeration (4 �C), may extend SARS-COV-2 viability
on surfaces beyond 14 days [19,20]. It took 14 days at
20 �C to reduce SARS-CoV-2 on nitrile gloves by 5 log
orders using simulated typical infectious body fluids
from infective patients; however, viral persistence was
evident up to 21 days on plastic face shields, N100 FFPs,
and polyethylene overalls [21]. These observations

imply that the colder conditions associated with winter
may support longer survival of SARS-CoV-2 on contact
surfaces and when suspended in aerosols. There is a
pressing need to understand the role of different in-
terventions in breaking the cycle of SARS-CoV-2 infec-
tion (Figure 2) to protect frontline healthcare workers
and patients [9]. This includes generating data over a
longitudinal period to evaluate and harmonize deploy-
ment of these interventions (singly or combined) to
prevent or reduce the risk of COVID-19 with a focus on
nts to break cycle of COVID-19 disease.
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infections agent (SARS-CoV-2 and co-infections),
reservoir, portal of exit, mode of transmission, portal of
entry, and susceptible host (Figure 2). The efficacy of
such data will be informed by mathematical modelling
and randomized control studies [9]. The use of disin-
fectants or chemical biocides and disinfection ap-
proaches will feature strongly as key disease counter-
measures in breaking the cycle of infection (Figure 2).

Factors that influence the efficacy and performance of
different types of biocides are varied and complex
[22,23]; however, the parameters governing selection
and performance of different biocide types are generally
well-established, where the degree of application de-
pends upon categories of risk to patients aligned with a
commensurate level of treatment required to be
achieved on contact surfaces and in the environment
(Table 1). ‘COVID-19 fatigue’ of citizens is likely to play
a contributing role in meeting compliance with deploy-
ing disease counter-measures to effectively manage new

cases to protect frontline healthcare workers [24].
SARS-CoV-2 VOC
The World Health Organization monitors public health
events associated with SARS-CoV-2 VOC [3]. Key fea-

tures for these VOC are presented in Table 2. VOC
202012/01, 501Y.V2, and P.1 have commonly demon-
strated an increase in transmissibility compared to wild-
type (non-VOC) variants and have demonstrated a
propensity for rapidly replacing other circulating SARS-
CoV-2 strains. Variants 202012/01, 501Y.V2, and P.1
rapidly replaced the wild-type variant in the United
Kingdom, South Africa, and Brazil, respectively. How-
ever, it is highly likely that more transmissible and
pathogenic VOCs will emerge during this pandemic as
the virus has ample opportunity to mutate given the
high numbers of infected hosts globally. However, in

terms of existing VOC, the WHO deploys ‘a logistic
model of competitive growth that highlighted additive
increases in the effective reproduction number (Rt)
relative to the wild-type variant that was estimated at
41% (95% CI: 41e42%) for 202012/01, 36% (95% CI:
32e40%) for 501Y.V2, and 11% (95% CI: 7e16%) for P.1’
[3]. The transmissibility of P.1 is such that it is rapidly
replacing the wild-type variant at a local level. Recent
studies have shown VOC 202012/01 may be associated
with an increased risk of hospitalization, severity, and
mortality. There is a growing body of evidence on

vaccine-induced neutralizing antibody activity against
VOCs (Table 2). The findings support that neutralizing
activity is largely sustained against this variant. How-
ever, these findings highlight the importance of using
combinational approaches, including the use of biocides
for surface disinfection, as important to limit trans-
mission of VOCs. Key mutations affect viral non-
structural proteins that are unlikely to affect the effi-
cacy of frontline biocides described in Tables 3 and 4.
There is an increasing interest in the future proof design
Current Opinion in Environmental Science & Health 2021, 23:100290
of face masks by also incorporating potentially new anti-
viral materials with the provision for more environ-
mentally friendly non-metal nanomaterials [66].
Indication of biocide efficacy against
coronavirus
Biocides encompass chemicals with antiseptic, disin-
fectant, and/or preservative activity (Table 3). Biocides
are used for a broad range of purposes, ‘usually with
inanimate objectives (hard surface disinfectants),
externally on the skin (antiseptics and topical antimi-
crobials), to prevent or limit microbial infection for pre-
operative skin infection or incorporated (preservatives)

into pharmaceutical, cosmetic, or other types of products
to prevent microbial contamination’ [28]. Desirable
properties of biocides include virucidal within the time
that can allow for it to be in contact with materials to be
treated; effectiveness not diminished under conditions of
disinfection; does not damage material treated, has a
suitable spectrum of activity; low toxicity and resistance
to it has not emerged; inexpensive. Biocidal efficacy is
influenced by several, and sometimes, inter-related fac-
tors d notably concentration, period of contact, pH,
temperature, presence of organic or other interfering or

enhancing materials or compounds, nature, numbers
(dose), location (planktonic, biofilm), and condition of
microorganisms (recalcitrant endospores vs sensitive
enveloped viruses) (Table 3). For example, concentration
exponent (h) is particularly important as it measures the
effect of concentration of dilution based on the activity of
the biocide [22,23]. Biocides with high h-values (such as
alcohols, phenols) rapidly lose efficacy when diluted,
whereas those with low h-values (such as QACs, chlor-
hexidine, orthopthalaldehyde) retain considerable activ-
ity on dilution. This difference is highly relevant when
considering both lethal disinfection activity and potential

implications on receiving environment, where the
potentially deleterious impact of biocide residues must
be considered [28]. In addition, many frontline biocides
have optimal pH activity, such as hypochlorite and phe-
nolics are most effective at acid pH, whereas glutaralde-
hyde and cationic biocides (e.g.QACS)aremostpotent at
alkaline pH. Several researchers have reported that
biocide activity can be influenced by interaction with
organic matter (e.g. dirt, blood, serum, vomit, the pres-
ence of biofilm), and non-ionic surfaces, and adsorption
on containers and other contact surfaces (Table 3).

Coronaviruses are incapable of supporting independent
life; thus, biocide disinfection is determined by using
in vitro bioassays, where reduction of cytopathic effects in
tissue culture monolayers are observed that is attributed
to a reduction in viral infectivity compared with un-
treated controls. Surviving viral fractions are typically
expressed through Log10 reductions enumerated either
by determining the 50% titration reduction endpoint for
infectivity (known as tissue culture infectious dose 50%,
www.sciencedirect.com
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Table 1

Factors governing anti-viral efficacy of biocides.

Factorsa Comments Relevance and implication for usage in practice

Factors characteristic of biocide
Concentration Understand the effect of dilution upon activity — concentration must

be ‘cidal’ to viruses
Appropriate staff training

Contact time Length of exposure can often enhance biocidal efficacy Appropriate staff training
Organic load Diminish the activity of biocide and protect other contaminating

bacteria of concern
Understand physicochemical factors governing biocidal action

Formulation Influences inactivation performance against coronaviruses and
intended surface or application for treatment

Understand nation of active agent and impact on intended contact
material

Temperature Increased activity against viruses can be achieved with higher
temperatures and relevant for some devices (e.g. endoscopes)

Appropriate staff training

pH Affects biocide (stability and ionization) and affects growth of
co-infective microorganisms

Less relevant for healthcare environment

Biological and environmental factors
Presence of biofilm Provides protective menstrua or environment that can be found on

equipment and in certain surfaces
Combine physical cleaning along with chemical action

Viral load The greater the population number of viruses present the more
difficult it can be to disinfect

Biocides often used in excess at high level concentration —

SARS-CoV appear sensitive to low and moderate levels

Categories of risk as defined for patients and treatment of surfaces, equipment, environment

High risk Sterilization such as use of VH2O2
Intermediate risk Disinfection
Low risk Cleaning and drying usually sufficient; disinfection
Requirements of chemical biocides or disinfectants
Spectrum of activity ‘Cidal’ as opposed to ‘static’ activity as latter is not appropriate
Efficacy Rapid action, particularly on surfaces
Incompatibility Should not be neutralized or diminished easily
Toxicity Should be minimal
Damages to surfaces, or materials Corrosiveness should be minimal, especially at dilution of use. Should not damage contact

surface to be disinfected
Costs Should be affordable, particularly to ensure supply chain

a Factors listed in order of importance – adapted from the study by Michie, West, and Harvey [24].
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Table 2

Synopsis of key information on SARS-CoV-2 variants of concern, as reported by World Health Organization on 23rd March, 2021.

Emerging informationa Variant of concern (VOC)

Next strain clade 20I/501Y.V1 20H/501Y.V2 20J/501Y.V3
PANGO lineage B.1.1.7 B.1.351 B.1.1.28.1 (alias P.10
Alternate name VOC 20201/01 VOC 202012/02
First detected United Kingdom South Africa Brazil

First appearance 20 September, 2020 Early August, 2020 December 2020
Key spike mutations H69/V70 deletion; Y144 deletion; N501Y,

A5700, P681H
L242/A243/L244 deletion; K417N E484K, N501Y N417T, E484K; N501Y

Key mutation in common 5106/G107/F108 deletion in Non-Structural
Protein 6 (NSP6)

Transmissibility Increased (36–75%), increased secondary
attack rate (10–13%)

Increased (1.50 (95% CI: 1.20–2.13) times more
transmissible than previously circulating variant

Increased, more transmissible than
previous circulating variants

Severity Possible increased risk of hospitalization,
severity and mortality

Possible increased risk in hospital mortality by 20% Under investigation, limited impact

Neutralization capacity Slight reduction, but overall neutralising titres still
remained

above levels expected to confer protection

Decreased, suggesting potential increased risk of
infection.

Decreased reinfections reported

Potential Impacts on vaccines � No significant impact on post-vaccine neutralization
by Moderna, Pfizer-BioNTech, Oxford-AstraZeneca,
Novavax

� No significant change in prevention of disease by
Oxford-AstraZeneca, Novavax, and Pfizer-BioNTech

� Evidence for prevention of infection evidence
limited — reduced effect reported for
Oxford-AstraZeneca

� Post-vaccine neutralization reductions range from
minimal to moderate for Moderna and Pfizer; however,
there is also
some evidence of more substantial reductions

� Substantial reductions found for Oxford-AstraZeneca
products

� There is no evidence to inform vaccine impact
on asymptomatic infection by 501Y.V2

� Limited to modest reduction in
post-vaccine neutralization by
Oxford-Astrazeneca, Moderna,
and Pfizer-BioNTech vaccines.

� Preliminary suggestion of loss
of neutralization following
vaccination with Sinovac

Countries reporting new cases
(newly reported in last week)

125 (7) 73 (11) 41 (3)

a Adapted from WHO [ ]; note, consult this reference report for more detailed information on emerging information on key VOC.
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Table 3

General properties, strengths and limitations of frontline chemical biocides against coronaviruses.

Biocide type and active
igredient

Mechanism of virucidal Action General usage Limitations Strengths

Alcohols
Isopropyl alcohol

(isopropanol)
Ethyl Alcohol (Ethanol)

Disrupts cell envelope, coagulates
and denatures proteins.
Isopropyl alcohol is lipophilic
disrupting lipid membrane.

Skin antisepsis (ca 70% v/v) Small
equipment disinfection, for

example, thermometers, critical
tools, non-invasive probes

Not sporicidal
Prolonged and repeat usage

affects integrity of materials
such as plastics.

Flammable

No-staining, low toxicity, mild
pleasant odour

Cationic surfactants —

QAC such as BZK,
MBAT, DDA

Mostly disrupt by solvating or
disrupting cell envelope —

cationic ammonium groups with
hydrophilic heads

Fomites (200 ppm), Require warmer temperature and
longer periods for achieving

MEC
Low affinity against non-enveloped

viruses

Nontoxic, colourless and odourless
— retain activity in hard water,

high tolerance to organic matter

Oxidising agent — Sodium
hypochlorite

Oxidation of cell envelope Household bleach — dissolves in
water to form hypochlorous acid

— used in clinical area for
fomites, non-critical surfaces
where there is blood spillage or
vomit

Sensitive to presence of organic
matter and porous material —
can range from <1000 pm to
10,000 ppm depending on
organic material — cleaning
step and ventilation needed

Fast acting at low concentrations
—

inactivates envelope and
non-envelope viruses

Oxidising agent
Hydrogen peroxide

Hydroxyl free radicals cleave or
crosslink biomolecules including
proteins, nucleic acids, an lipids

Skin antisepsis (0.125% v/v);
contact surfaces (35% v/v)

Limited information. Concentration
of 0.5% effective against
enveloped and non-envelop
viruses.

Decomposes to form water and
oxygen — effective against
SARS-CoV-2 and surrogates —

can be used on stainless steel
Halogenated compounds

— Povidone iodine and
Povidone Iodone (PVP-1)

Possibly blocking receptor for viral
binding. Iodine can inhibit viral
enzymes (neuraminidase)
essential for viral release from
host

PVP-1 (0.23%) used for rapid skin,
oral cavity, nasal disinfection.

Povidone iodine used at 7.5–10%
pre-operative skin disinfection,
antiseptic hand washes, scrubs,
ointments

Can be cytotoxic and cause skin
irritancy — Is an iodophor is
mixture of iodine and carrier
polymerpolyvinl pyrrolidone —

not suitable for use with silicone
products

PVP-1 water soluble, stains can be
removed by washing. Substitute
or used in combination with for
alcohol-based disinfection
products.

Aldehydes
Glutaraldehyde.
Formaldehyde and OPA

Chemically alkylating the amino
and sulfhydryl groups of proteins
and amino groups of nucleic
acid bases

High level broad spectrum virucidal
disinfection — vaccine
production — decontaminates
of surgical equipment,
endoscopes, dialysers.

High reactivity, hazardous to health
—

irritant. Apart from OPE,
more reactive at alkaline
conditions. Pungent odour
<1 ppm, monitoring.

Rubber, plastics, lensed
instruments are tolerant. OPA
chemically stable over pH 3–9,
non-irritant, stains skin wear
PPE.

QAC – Quaternary ammonium compounds; BZK - benzalkonium chloride; mon; MBAT - biz(tri-methyl ammonium methylene chloride)-alkaly (C9-15) toluene; DDA – didecyldimethyl ammonium chloride; OPA –

Ortho-phthalaldehyde or 1,2-dicarboxybenzaldehyde.
MEC – lowest concentration of biocide that reduces virus titre by 99.9% or greater compared to control reactions. Adapted from Lin [ ], Dev Kumar [ ].
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Table 4

Use of different disinfection approaches for inactivating SARS-CoV-2 and its’ surrogate indicators.

Disinfectant Parameters SARS-CoV-2 & Surrogate species Reduction
Assay used

Chemical Ethanol 60–70%, 1 min, hard surfaces, ceramic and
porcelain tiles -carrier test.

hCoV (HCoV-229e) 3 - 4 log, TCID50 assay [53]

H2O2 0.5%, 15 min, surface carrier test
1–6%, 30 s, suspension testing of oral mouth

wash

SARS-CoV-2
SARS-CoV-2, USA–WA1/2020 strain

6 log plaque assay using Vero E6 cells [52]
1–1.8 log
TCID assay using Vero 76 cells [54]

QAC – BAC
QAC – DDAC

0.04% w/v, 1 min, steel surface. quantitative
carrier test

0.025%, 3 days, suspension test

Parainfluenzavirus type 3 (HPIV-3) and
human coronavirus 229-E (HOV-229E)

Canine Coronavirus

3 log
Plaque assay using MA-104 line of rhesus

monkey kidney cells
4 log
TCID assay using A72 fibroma cell line [55]

Sodium hypochlorite 0.1%, 1 min, suspension test.
6%, 30 s surface carrier test.

SARS-CoV-2 4 log [39]
TCID assay [40]

IPA 70–90%, 30 s
70–80%, 15 s, ceramic and porcelain tiles

-carrier test.

SARS-CoV-1
hCoV (HCoV-229e)

4 log,
TCID assay [53]

Acetic acid 6%, 5 min, aqueous suspension test. SARS-CoV-2 (Hu/DP/Kng/19–020 strain) 4 log
TCID50 assay using VeroE6-TMPRSS2 cells [43]

Glutaraldehyde 0.5%, 2 min, suspension test SARS-CoV
isolate FFM-1

3 log
TCID using human embryonic lung fibroblasts

[23]
Formaldehyde 0.7–1%, 2 min, suspension test

Povidone iodine 1–2.5%, 15 s, suspension testing of oral
mouth wash

SARS-CoV-2, USA-WA1/2020 strain 4 log
TCID assay using Vero 76 cells [54]

Technologies Steam sterilisation 121 �C, 5 min, medical masks, N95 respirators Avian coronavirus (H120) 2 log
inoculation of embryonated eggs, real-time

TaqMan RT-PCR assay [56]
Heat 56 �C, 30 min, 65 �C, 15 min, 98 �C 2 min,

suspension test.
SARS-CoV-2 5 log

TCID50 assay using Vero E6 cells [57],
Deep UV LED 265, 280, and 300 nm, 20 s, hard surfaces,

carrier test
SARS-CoV-2 3.3 log

Plaque assay using Vero E6 cells [58]
Simulated sunlight 60 min on hard surfaces, carrier test on

surface dried droplets.
SARS-CoV-2 USA-WA1/2020 4 log. TCID50 assay using Vero cells (ATCC CCL-

81) [60]
UVC 254 nm, 4–9 s, wet and dried droplets SARS-CoV-2 3 log

Plague assay [61]
Ozone 30 ppmv, 40 min

100 ppmv, 30 min, 1000 ppmv, 20 min on
surfaces, carrier test.

hCoV 229E (HuCoV-229E) 95% reduction (1 log) HEK-293 cells and imaging
using IncuCyte ZOOM system [36]

Vapourised H2O2 0.5%, 60 s, surface of stainless steel disks,
carrier test.

feline calicivirus, human adenovirus type 1,
avian and swine influenza virus

4 log
TCID50 assay using A-549 cells, MDCK cells [59]

Chlorine dioxide
gas (ClO2)

30–300 ppm, 25 �C to 30 �C, 1.5–3 h, in vivo. avian infectious bronchitis coronavirus infected chick embryos as models [62]

Gamma radiation
(cobalt-60)

1–5 MRads, suspension test. arenavirus, bunyavirus, coronavirus, filovirus,
flavivirus, orthomyxovirus, paramyxovirus

6 log
TCID50 assay Vero cells [63]

TCID50 assay - Tissue Culture Infectious Dose assay, QAC quaternary ammonia compound, BAC benzalkonium chloride, DDAC didecyl dimethyl ammonium chloride.
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or TCID50 assay) or by performing a viral plague assay;
however, reverse transcriptase - polymerase chain reac-
tion (RT-PCR) using threshold (Ct value) is also used to
determine viral load through detection of specific genes.
Determining factors influencing biocides efficacy has
traditionally been conducted to evaluate minimum
inhibitory concentrations or lethal effects such as Euro-
pean suspension test, rate-of-kill test, and in-use test

that are more suitable for anti-bacterial agents [29]. The
Sterilization industry relies upon 12 log10 reductions of
recalcitrant bacterial spores as biological indicators or
surrogates, such as Geobacillus stearothermophilus, Bacillus
atrophaeus, for determining sterility assurance levels for
different sterilants where there is significant overkill to
ensure validation of processes [25,30,31,32]. Thus,
existing disinfection processes are ultimately based upon
the probability of viral reduction where there is a pressing
need to elucidate robust real-time inactivation enumer-
ationmethods [such as 31], which is likely to be informed

by predictive modelling and may create opportunities for
machine learning and artificial intelligence.
Disinfection of SARS-CoV-2
As an enveloped virus, SARS-CoV-2 is susceptible to

commercial disinfectant chemicals, technologies, and
physical disinfection methods [33,34] (Table 4). Recent
studies have detected SARS-CoV-2 RNA on surfaces in
isolation wards 28-days following exposure via RT-PCR
methods [35], where the infectivity ability of viral RNA
is unknown. However, it is unlikely that undamaged
viral RNA realized on treated surfaces would remain a
significant risk because of its inability to enter human
lung cells as RNA only. Determination of biocidal effi-
cacy against SARS-CoV-2 is not always feasible as the
virus requires biosafety level 3 or higher; therefore,
fewer pathogenic viruses as surrogate indicators of

infectivity are frequently used [36]. Virucidal efficacy is
determined by quantitative suspension tests, namely
EN 14476 requiring 4 log reduction using surrogate
enveloped species such as polio, adenovirus and murine
norovirus, where efficacy against SARS-CoV-2 has yet to
be elucidated experimentally. The framework of the
European Committee for Standardization outlines sur-
rogate species suitable for disinfection studies for many
microorganisms. For virucidal activity against enveloped
viruses, including SARS-CoV-2, the vaccinia virus has
been specified as the relevant test organism according to

this framework [37]. In clinical settings, SARS-CoV-2
has been detected on surfaces in intensive care units
(4.4e5.2 log10), in isolation rooms, and on general wards
(2.8e4.0 log10) [38]. While the viral load of SARS-CoV-2
on fomites directly following contact with infected
persons is currently unknown, it is known that the virus
remains infectious on surfaces for up to 9 days [39,40]
depending on the surface material, pH, temperature,
and humidity [40]. The suitability of suspension tests to
determine efficacy on surfaces is unknown, particularly
www.sciencedirect.com
where the organic matter may be present such as in
healthcare settings. ISO 18184 is a surface carrier test for
virucidal activity; at present, no studies have demon-
strated biocidal efficacy against SARS-CoV-2 using this
method. The disinfection of surfaces and hand sanitation
is of paramount importance in controlling viral trans-
mission as recommended by the WHO. Disinfectant
efficacy is affected by viral type, organic matter, viral

titre, pH, viral clumping, biocide contact time and con-
centration. As such, cleaning is an essential prerequisite
for disinfection to remove contaminating organic matter.
In healthcare settings, disinfection agents in use include
high-pressure steam sterilization, dry heat, UV-light,
ethylene oxide (EtO) gas, hydrogen peroxide gas
plasma, and biocidal chemicals [41] (Table 4).

The environmental protection agency (EPA) has
approved various chemical biocide for use domestically
and clinically to reduce coronavirus transmission,

including quaternary ammonium (QACs), hydrogen
peroxide (H2O2), peroxyacetic acid, isopropanol (IPA),
ethanol, sodium hypochlorite, octanoic acid, phenolic,
among others [41]. Viral inactivation is resultant from
disruption of the cell structure, destruction of the lipid
envelope, protein coagulation, nucleic acid, and protein
denaturation [23] (Tables 3 and 4). Studies assessing
disinfection efficacy are difficult to compare because of
innate experimental variations and lack of standardized
procedures, including test material, varied exposure
times, viral load, test chemical or combinations and the

organic inhibitor used [40] (Table 4). Studies report
efficacy of 70e90% IPA with 30 s exposure against
SARS-CoV with 1e3% H2O2 demonstrating efficacy
after 1 min exposure [42], while 0.1% sodium hypo-
chlorite was effective in 1 min [39] (Table 4). A con-
centration of 6% acetic acid reduced human coronavirus
(hCo-V) viability by 3.5 log10 after 1 min contact time
[43] on surfaces. 60e70% ethanol reduced surface viral
load by >3 log10 after 1 min exposure in healthcare
settings [44]. For the inactivation of SARS-CoV-2, the
most common disinfectants used are 62e70% ethanol,
0.5% H2O2, and 0.1% sodium hypochlorite, which are

effective with 1 min exposure via oxidative reactions
[42]. Pulsed plasma gas discharge has also produced
biocidal water comprising short-lived oxygenated free
radicals that has potential contact surface disinfection
leaving no unwanted chemical residues [45]. For hand
disinfection, the WHO recommends the use of 75% IPA
or 80% ethanol hand rubs for 30 s to inactivate SARS-
CoV-2 [46]. However, there is increasing opportunities
to exploit advances in digitization and modelling to
inform the future efficacy of disinfectants, including
combining biocidal approaches and to hurdle limitations

for broad applications [9,47]. Material compatability and
functionality are important factors to consider when
using new eco-alternatives to conventional biocides that
includes combinational treatments [64].
Current Opinion in Environmental Science & Health 2021, 23:100290
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Conclusion
Variant strains of SARS-CoV-2 are constantly emerging

due to innate mutagenic changes in the viral genome,
primarily altering structural components such as spike
proteins. Although the efficacy of vaccinations
program against these variants is unknown, such struc-
tural changes are unlikely to confer disinfection resis-
tance as non-specific destruction of proteins and lipids
of the viral capsid occur. Frontline biocides appear to be
affective against VOC, but factors governing usage
needs careful consideration. Vigilance is needed to
protect our environment during the COVID-19 era,
particularly by avoiding injudicious use of biocide that

may negatively impact our agroecosystems [48].
Prolonged and excessive biocide use may give rise to
situations that potentially promote cross-antimicrobial
resistance in problematical bacteria to frontline antibi-
otics [49]. Adaptive resistance to frontline biocides has
been reported since the early 1990s such as against
bisphenol, triclosan, glutaraldehyde, and oxidising
agents [22]. Paul et al. [48] highlighted that extensive
application of biocides affects microbial flora that may
lead to a decrease in the number and diversity of
beneficial microbes that may directly affect the func-

tioning of nutrient cycles; thus, careful considerations
should be given to biocide neutralization, environmental
management and sustainability [50,51]. Understanding
these factors is important for the training of end-users,
(e.g. healthcare, industry and community), to ensure
the efficacy of biocidal product is maintained and
effectively neutralized, along with monitoring policy for
effective and responsible deployment of biocides. This
current opinion supports Article 18 of the European
Union’s biocidal products regulation that directs the
European Commission to issue a report on how the

biocidal products regulation contributes to the sustain-
able use of biocidal products to reduce the risks posed to
human health, animal health, and the environment by
biocidal products. The aforementioned also recom-
mends a series of actions to be completed by 2024,
including investing additional resources in enforcement
activities; developing the best available techniques
reference documents that can be relevant for biocidal
products used in industrial processes, and encouraging
the development and implementation of standards that
could contribute to the sustainable use of biocidal

products and alternatives to biocidal products.
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