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Abstract: The Shannon dolphins are a population of bottlenose dolphins resident year round within
the Lower River Shannon SAC, Ireland, which has been designated to protect this relatively small,
genetically discrete population. Although trends in habitat use and foraging have been studied within
the estuary, little is known about the movements of the Shannon dolphins outside the boundaries of
the SAC, and whether any other foraging hotspots exist for this population outside of the estuary.
The purpose of this study was to explore the presence and foraging behavior of these dolphins in
adjacent waters located 20-30 km to the southwest of the Lower River Shannon SAC. Static acoustic
monitoring was carried out with C-PODs deployed in Ballyheigue Bay, Brandon Bay, and around
the Maharees between May and November 2013. A GEE-GLM modelling approach was then used
to analyze potential significant environmental predictors of presence and foraging by bottlenose
dolphins at these sites. Brandon Bay was found to be a site of particular importance for the Shannon
population, where dolphins were present on 92% of days monitored and foraging occurring on 20%
of all monitored hours. The results of this study indicate that Brandon Bay is a potentially important
habitat for the Shannon dolphins and further support designation of this site as a candidate SAC.
However, long-term acoustic monitoring should be conducted at all sites to identify relative use of
the areas at year-round and inter-annual scales.

Keywords: acoustic monitoring; bottlenose dolphin; C-PODs; echolocation clicks; special area of
conservation; Lower River Shannon SAC

1. Introduction

The Shannon dolphins are a genetically distinct population of bottlenose dolphins
(Tursiops truncatus), consisting of approximately 145 individuals that are resident year
round in the Shannon Estuary [1-3]. These dolphins have been present in the Shannon
Estuary since at least 1835, and have been catalogued photographically by the Irish Whale
and Dolphin Group since 1993 [4-8]. They are one of three genetically distinct popula-
tions of bottlenose dolphins in Irish waters, the other two being the Connemara-Mayo-
Donegal (coastal) population and an offshore pelagic population [2—4]. The Connemara-
Mayo-Donegal population and pelagic offshore population are mobile, with large-scale
movements of up to 650 km reported [2,8]. In contrast, the Shannon population exhibits
long-term site fidelity, and photo-identification data of the Shannon population shows
no evidence of mixing with dolphins using other sites and almost exclusive use by the
Shannon population of bays adjacent to the Shannon Estuary [1,2,8].

Bottlenose dolphins are legally protected in Ireland under the Wildlife Act and its
Amendment (2000), and also listed under Annex IV and Annex II of the EU Habitats
Directive (92/43/EEC). Annex Il imposes an obligation to designate Special Areas of Con-
servation (SAC) to protect the habitats of listed species, and to date Ireland has designated
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two SACs to fulfill its obligation to protect bottlenose dolphin habitats: the Lower River
Shannon SAC and the West Connacht Coast SAC.

To protect the core habitat of the Shannon bottlenose dolphin population, the Lower
River Shannon was designated as a candidate SAC in 2000 and incorporated into the Natura
2000 network [1]. Although the dolphin population appears to be stable, the Shannon
Estuary is an area with significant economic and industrial activity [6]. Up to 1000 ships
use the estuary annually, and as a result, the Shannon dolphins are exposed to a number of
anthropogenic threats including acoustic disturbance, water contamination, entanglement
and habitat degradation within the Lower River Shannon SAC [6,8-10].

The first study describing year-round trends in the presence and foraging by Shannon
dolphins within the Lower River Shannon SAC was published by Carmen et al. [6] in 2021.
Tidal cycle, season, diel phase, and tidal phase were all found to be significant predictors of
dolphin presence and foraging within the Shannon Estuary [6,11]. Overall, the number of
days with detections within the Shannon Estuary varied by site, declining with increasing
distance from the mouth of the estuary. The highest number of detections (71.2% of days
monitored) were recorded at Moneypoint, in the middle part of the estuary, while dolphins
were only detected on 15.9% of days monitored at Shannon Airport, in the inner estuary,
which was the site with the least number of detections [6]. Boat-based surveys have
revealed seasonal decreases in the presence of the Shannon Estuary dolphins in the outer
estuary during winter, and the Lower River Shannon SAC is unlikely to represent the
population’s entire geographic range [3,6,12]. Dolphins have been sighted regularly in bays
adjacent to the Shannon Estuary, such as Kilkee Bay 25 km to the north of the boundary
of the SAC and Tralee and Brandon Bays located 20-30 km to the south [1,13]. During
boat-based visual surveys carried out by Levesque et al. [1] in Brandon Bay and Tralee Bay
between 2008 and 2016, bottlenose dolphins were observed on 90% of trips and 96% of the
dolphins observed were matched through photo-identification to the Shannon population.

Although boat-based and aerial visual surveys are still the primary methods of moni-
toring cetacean populations in Ireland, acoustic monitoring provides certain advantages
such as allowing data to be collected continuously over long periods of time, and during
darkness or during adverse weather conditions that would otherwise impair visual detec-
tions [14,15]. This is particularly relevant for small, fast-moving cetacean species such as
bottlenose dolphins, which may go visually undetected 87% of the time [11].

Acoustic monitoring can provide a level of detail on cetacean behavior and movements
that would not typically be captured by brief surface observations [11,15]. Because of the
extent of anthropogenic pressures that exist within the Lower River Shannon SAC and the
potential for fine-scale variation in habitat use by bottlenose dolphins, it is important to
understand whether there are additional sites near the Lower River Shannon SAC that
are important foraging grounds for the Shannon population. The purpose of this study
was therefore to expand upon the findings by Levesque et al. [1] who documented the
significant occurrence of Shannon bottlenose dolphins in bays adjacent to, and outside the
limits of, the Lower River Shannon SAC by using static acoustic monitoring to determine:

1. The presence of bottlenose dolphins in Ballyheigue Bay, Brandon Bay, and around
the Maharees;

2. Whether these sites represent potential foraging habitats for bottlenose dolphins;

3. What the environmental drivers of bottlenose dolphin presence and foraging are in
these locations.

The presence and feeding activity of bottlenose dolphins in these bays could warrant
expanding the Lower River Shannon SAC to include foraging grounds outside the estuary.

Based on the results of the Levesque et al. [1] surveys as well as previous research
showing fine-scale variation in habitat use by bottlenose dolphin populations within the
Cardigan Bay SAC in Wales and the Moray Firth SAC in Scotland, it was hypothesized
that bottlenose dolphins would be detected at the three study sites and that the drivers of
presence and foraging would be site specific [16,17].
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Trend analysis represents a useful tool in the environmental sciences for determin-
ing the environmental conditions that are associated with species presence and foraging
over time [18-20]. Environmental cycles such as the seasonal, diel and tidal cycles lead
to patterns in the behavior of prey species and marine top predators such as bottlenose
dolphins [16]. An understanding of these patterns can inform conservation and manage-
ment decisions about the appropriate boundaries for SACs and how these boundaries
should evolve over time in response to range shifts and changes in prey availability [16,21].
This study aims to complement previous trend analysis of Shannon dolphin presence and
foraging within the Lower River Shannon SAC by examining locations adjacent to the
boundaries of the SAC.

2. Materials and Methods
2.1. Data Collection

C-PODS were deployed at Ballyheigue Bay, Brandon Bay, and the Maharees between
May and November 2013. These locations are on the west coast of Ireland, at distances of
approximately 10-30 km from the mouth of the Shannon Estuary (Figure 1). At each site,
the C-PODs were suspended in the water column at mid-depth (5-10 m from the bottom).
The schedule of deployments is presented in Table 1.
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Figure 1. Map of the monitoring locations. C-PODs were deployed at Ballyheigue Bay, Brandon Bay and the Maharees,
indicated by the grey circles. The Shannon Estuary (and the associated Lower River Shannon SAC) are located to the north

of the study sites.
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Table 1. Summary of C-POD deployments in Ballyheigue Bay, Brandon Bay and the Maharees.

. Deployment Deployment Total Number
Study Location C-PODID Stl;rt}],Date Eﬁd %ate of Days
Ballyheigue Bay 173 19/05/2013 23/06/2013 36
Brandon Bay 1525 25/05/2013 22/07/2013 59
Brandon Bay 2020 22/07/2013 13/10/2013 84
Maharees 1524 18/05/2013 25/05/2013 8
Maharees 547 22/07/2013 13/11/2013 115

C-PODs (Chelonia Limited, Mousehole, Cornwall, United Kingdom) are static acoustic
monitoring devices that can detect cetacean clicks in the 20-160 kHz frequency range [22,23].
Bottlenose dolphins produce three categories of vocalization: (i) burst-pulse sounds,
(ii) whistles, and (iii) broadband (30-150 kHz) clicks [15,24,25]. Whistles and burst-pulse
sounds have a social function, while echolocation clicks are employed mainly in foraging
and navigation [15,25-27]. C-PODs do not record burst-pulse sounds or whistles, and
instead log only information about click trains [22,23]. Bottlenose dolphin feeding buzzes
are short, fast echolocation click trains with minimum inter-click intervals (ICI, the amount
of time between consecutive echolocation clicks) between 3.0 and 7.1 ms [15,28]. As a result,
click trains with a minimum ICI length of <10 ms have been used as a proxy for foraging
by bottlenose dolphins in various studies [15,28]. Because one of the click train parameters
logged by C-PODs is the ICI, it is possible to infer behavioral states such as foraging [6].

In contrast to bottlenose dolphins, harbor porpoise vocalizations consist only of click
trains where the clicks are concentrated over the narrow range of frequencies from 120
to 150 kHz [29-31]. The length of the ICI in harbor porpoise click trains can also be used
to infer behavioral state [32]. When harbor porpoises are navigating, the ICI tends to be
50-60 ms, whereas during predation, the ICI decreases and concludes with a terminal buzz
that has an ICI of 1.4-1.6 ms [15,33,34].

When clicks are detected by a C-POD, the start time, duration, frequency, sound
pressure level, bandwidth, envelope measures, maximum ICI, minimum ICI and number
of clicks are recorded [23]. These parameters are later be used by the KERNO automatic
click train detection classifier in the CPOD.exe software (version 2.041, Chelonia Limited,
Cornwall, UK) to determine whether a repetitive sequence of clicks (click train) corre-
sponds to a cetacean that produces narrowband high frequency clicks (“NBHF”) such as
harbor porpoises, a cetacean that produces broadband click trains (“Other cet”) such as
bottlenose dolphins, or whether the clicks originate from a non-cetacean source such as
a boat sonar [22,35]. At the locations used in this study, the NBHF class can be assumed
to represent harbor porpoises, and the “Other cet” class can be assumed to correspond to
bottlenose dolphin detections as other delphinids are relatively rare [1,11].

Prior to deployment, field calibration trials on all C-PODs were carried out between
November 2008 and March 2011 in Galway Bay and in the Shannon Estuary [11]. These
trials incorporated all C-PODs used in the study as well as additional units, and all units
were found to perform similarly, with less than 20% variation in the detection positive
minutes detected between the devices [11].

At the conclusion of the monitoring period, C-PODs were retrieved and the data
were extracted in the form of detection positive minutes (DPM) across hours, detection
positive hours (DPH) across days, and click train characteristics using the accompanying
CPOD.exe software version 2.041 [23,35]. The CPOD.exe species certainty filter was used
to discard click trains with a low measure of species certainty, and only click trains with
“high” inter-click interval assessment quality were retained in the analysis. Click trains
with outlier ICI values longer than 450 ms for bottlenose dolphins and 250 ms for harbor
porpoises were removed as per Nuuttila et al. [15]. Click trains were also visually inspected
for false positives by examining the coherence of the click trains (even profile of the sound
pressure level and appropriate frequency range) and the temporal association with other
click trains [35,36]. Only hours with a complete, uninterrupted recording period of 60 min
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were retained in the analysis. The data from POD 1524 were not incorporated into the final
analysis due to a recording malfunction which led to incomplete recording hours on six of
the eight days during which it was deployed. The data from the Brandon Bay deployments
were combined, as the deployments were consecutive.

2.2. Environmental Data

Each hour of the study period was categorized according to its phase of diel, tidal cycle,
tidal phase, and month. These variables were selected as previous research has shown
that diel phase, tidal cycle, tidal phase and season are significant, site-specific predictors
of bottlenose dolphin presence and foraging within the Lower River Shannon SAC [6,11].
Sunset and sunrise times were obtained from www.timeanddate.com/sun/ (accessed on
10 January 2020) for the nearest available location, which was Tralee, Ireland. All sunrise
and sunset times were rounded to the nearest hour and phases of the diel cycle (“Morning”,
“Day”, Evening”, “Night”) were specified by assigning “Evening” and “Morning” to
the three hour blocks consisting of the hour before, hour of and after sunrise (or sunset)
and assigning the remaining hours between into their respective categories of “Day” and
“Night”. Tidal data were extracted using WXTide32 version 2.4 (http:/ /www.wxtide32.com,
accessed on 1 January 2020) [37] for Fenit Pier in Tralee Bay. The blocks of time consisting
of the hour before, hour of, and hour after low and high slack tide were categorized
as ‘Low” and ‘High’ tidal cycles, respectively. ‘Ebb’ was defined as the period between
‘High’ and ‘Low’, and ‘Flood’ was defined as the period between ‘Low” and ‘High’. This
classification follows the methodology described by O’Brien et al. [11]. Tidal cycle measures
short-term variability in tidal height and current speed over the lunar day, whereas tidal
phase represents longer-term variation in tidal height over the course of the lunar month.
The tidal phases were classified using the method described by O’Brien et al. [11] and
O’Brien [38]. For each 24 h period, the high and low tides were subtracted from each
other to calculate tidal variation. “Spring” tidal phase consisted of the three day period
with the largest tidal variation (24 h on either side of the 24 h period where tidal variation
was maximal) and the “Neap” tidal phase consisted of the three day period with the
lowest tidal variation. All tidal phases between “Spring” and “Neap” were assigned into a
“Transitional” tidal phase category. In addition to the environmental variables, acoustic
detections of harbor porpoises were also recorded to examine the relationship between
harbor porpoise presence and dolphin presence at the study sites. Bottlenose dolphins are
known to interact aggressively with harbor porpoises and previous research has shown
temporal partitioning of habitat use by dolphin and harbor porpoises [17,31,39].

2.3. Statistical Modelling

The study period was divided into 1 h time windows. The detection positive minutes
per hour (DPM) were then used to create a binary presence/absence dataset, where dolphin
presence was defined by there being at least 1 DPM within that hour. A foraging dataset
was created following the methodology described by Wingfield et al. [40], by creating a
subset of the presence/absence data consisting of only the hours during which there were
detections and then categorizing each hour as “1” (foraging positive) if at least one click
train with a minICI < 10 ms was recorded during that hour and “0” if no click trains were
recorded with a minICI < 10 ms during that hour.

A binomial generalized linear model (GLM) with a logit link function was fitted in
R version 3.5.0 (R Foundation for Statistical Computing, Vienna, Austria) using the stats
package to model the probability of presence and probability of foraging [41]. Diel phase,
tidal cycle, tidal phase, month, and the presence of harbor porpoises were used as predictors
in the dolphin presence models, and the predictors in the foraging models were diel phase,
tidal cycle, tidal phase and month. Predictors were tested for collinearity by examining
variance inflation factor (VIF) values using the corvif function in R version 3.5.0 [41,42].
No collinearity was detected using a VIF cut-off value of 3 [42,43]. A hypothesis-testing
approach was then employed for model selection where each explanatory variable was
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dropped from the model in turn, the difference in deviance of the models was calculated
and compared to a Chi-square distribution, and the model was refitted without the non-
significant term [43]. This process was repeated until all of the remaining explanatory
variables were significant. Presence models were fitted separately for the Brandon Bay
and the Maharees sites to determine the relative importance of predictors at each location.
A foraging model was also fitted at the Brandon Bay location. There were insufficient
detections to model foraging at the Maharees, and presence or foraging at the Ballyheigue
Bay location.

Temporal autocorrelation may be present in timeseries data which would violate the
model assumption that residuals are independent [17,44]. The patterns in the residuals
were examined using an autocorrelation function (ACF) plot [17,44]. Nuuttila et al. [17]
used a correlation threshold of 0.2 in the ACF plot to determine whether there was tem-
poral autocorrelation in the presence and foraging models. In this study, the number of
lags crossing the 95% confidence bounds and a correlation threshold of 0.2 were used
to assess whether model residuals were temporally autocorrelated. For models where
no autocorrelation was found, the GLM where all explanatory variables were significant
was retained as the final model. However, when the ACF plot showed evidence of au-
tocorrelation, a binomial GEE-GLM with a logit link function was fitted instead using
the geepack package in R [41,45-47]. By adjusting for autocorrelation, GEE-GLMs yield
more conservative results and are a valuable tool for modelling datasets where there is
dependence between observations [43]. Julian date was selected as the blocking ID and
an autoregressive (AR-1) correlation structure was chosen since the correlation between
observations was time-dependent and decreased with increasing distance in time [43,44].

GEE-GLM model selection proceeded similarly to the GLM model selection, with
a hypothesis-testing procedure where a Wald test was used to identify non-significant
predictors and with each round of model selection, the non-significant predictors were re-
moved and the model was refitted until all of the remaining predictors were significant [40].
Models with lower QIC values were preferred over those with a higher QIC value (MESS
package in R) [39,48-50].

Model validation was carried out using confusion matrices, which compare the pre-
dicted values to the observed values and provide a measure of model sensitivity and
specificity. A Receiver Operating Characteristic (ROC) curve was used to select the proba-
bility cut-off value, where the point of furthest distance between the ROC curve and the 45°
diagonal line was treated as the optimal probability value [48,51]. AUC was calculated us-
ing the PresenceAbsence package and also examined as an indicator of model performance,
where the closer the value is to 1, the better the model [52-54]. Finally, model predictions
were plotted as boxplots on the scale of the response variable using the ggplot2 package in
R [41,55].

3. Results

A total of 6963 h of acoustic data were collected across the three sites. Brandon Bay
was the site with the highest cetacean activity, where dolphins were recorded on 92% of
days and harbor porpoises on 89% of days. Of the 3382 h recorded at Brandon Bay, there
were 1101 detection positive hours (DPH) for dolphins and 480 DPH for harbor porpoises.
At the Maharees, where 2741 h were recorded, there were 34 DPH for dolphins and 431
DPH for harbor porpoises. Ballyheigue Bay was the site with the least cetacean activity.
Of the 840 h recorded, there were only 2 h with dolphin detections and 25 h with harbor
porpoise detections.

3.1. Presence

The best model for dolphin presence in Brandon Bay was a binomial GEE-GLM which
retained month (p < 0.001), tidal cycle (p < 0.01) and the presence of harbor porpoises
(p < 0.001) as significant predictors (Table 2). Model validation indicated good performance
with an AUC of 0.71 (see Supplementary Materials).



J. Mar. Sci. Eng. 2021, 9, 650 7 of 14

Table 2. Binomial GEE-GLM output (Dolphin presence in Brandon Bay). The output shows the estimate, standard error,
Wald test statistic, and p-values for each predictor. Significant predictors are highlighted in bold.

Model Variable Estimate Standard Error Wald PG IWI) Significance Level
Intercept 0.0341 0.1736 0.04 0.8443
Tidal cycle (relative to Ebb)
Flood —0.3904 0.1227 10.12 0.0015 <0.01
High —0.0274 0.1043 0.07 0.7926
Low —0.0250 0.1168 0.05 0.8303
Month (relative to August)
May —2.3062 0.3723 38.37 5.8 x 10~10 <0.001
June —1.9648 0.2572 58.36 22 x 10714 <0.001
July —0.5116 0.1992 6.60 0.0102 <0.05
September —0.2076 0.2269 0.84 0.3603
October —0.3378 0.2474 1.86 0.1721
Harbor porpoise presence —0.5964 0.1080 30.52 33 x 1078 <0.001

Figure 2 shows that the probability of dolphin presence was lowest at the Brandon Bay
site in May and June, and increased steeply throughout the summer, with a peak probability
of 0.5 in August. The probability of dolphin presence then showed a gradual decreasing
trend during September and October. There was a lower probability of occurrence of
dolphins during flood tides (p < 0.01) compared to all other phases of the tidal cycle and the
presence of harbor porpoises significantly reduced the predicted occurrence of dolphins

(p < 0.001).
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Figure 2. The predicted probability of bottlenose dolphin presence at Brandon Bay according to: (A) tidal cycle, where
“E” = ebb tide, “L” = low tide, “F” = flood tide, and “H” = high tide; (B) month, from May to October; (C) harbor porpoise
(NBHF) presence, where “0” represents the absence of harbor porpoises, and “1” represents harbor porpoise presence.

In contrast to Brandon Bay, tidal cycle and the presence of harbor porpoises had no
significant effect on the probability of dolphin occurrence at the Maharees. The final model
for dolphin presence at the Maharees was a binomial GLM, which retained diel phase
(p < 0.001) and month (p < 0.05) as significant predictors (Table 3).
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Table 3. Binomial GLM output (dolphin presence at the Maharees). The output shows the estimate, standard error, z value
and p-values for each predictor. Significant predictors are highlighted in bold.

Model Variable Estimate Standard Error Z Value P>lzl) Significance Level
Intercept —6.5603 1.0175 —6.447 1.14 x 10710
Diel Phase (relative to Day)
Evening 2.5864 1.1207 2.308 0.021005 <0.05
Night 3.5974 1.0213 3.522 0.000428 <0.001
Morning —13.5065 942.3163 —0.014 0.988564
Month (relative to August)
July —1.1209 1.0496 —1.068 0.285539
September —0.9022 0.5074 —1.778 0.075397
October —0.2542 0.4032 —0.631 0.528335
November —2.1693 1.0464 —2.073 0.038160 <0.05
The AUC of this model was 0.83, indicating good performance. The model predicted
significantly higher dolphin presence at night (p < 0.001, Figure 3). The predicted probability
of dolphin presence at night was approximately 0.04, while the predicted probability
approached 0 during the morning and day, with an intermediate probability of dolphin
presence in the evening. There was also a significantly lower probability of dolphins
being present at the Maharees during the month of November relative to August (p < 0.05,
Figure 3).
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Figure 3. The predicted probability of bottlenose dolphin presence at the Maharees according to: (A) the time of day, where

VA7,

the four categories of diel phase are “Morning”, “Day”, “Evening”, and “Night”; (B) month, from July to November.

3.2. Foraging

Overall, 29% of dolphin click trains and 31% of harbor porpoise click trains were
positive for foraging activity. The site with the highest percentage of foraging positive hours
for both dolphins and harbor porpoises was Brandon Bay, where foraging by dolphins
occurred in 20% of all monitored hours and by harbor porpoises in 31% of all monitored
hours. In contrast, at the Maharees dolphins foraged on only 0.5% of hours monitored
and harbor porpoises on 5.7% of all hours. When dolphins, or harbor porpoises, were
present at either site, at least one third of their time was spent foraging. At Brandon Bay,
dolphins foraged during 64% of the time they were present and harbor porpoises 42% of
the time. At the Maharees, dolphins foraged 54% of the time they were present and harbor
porpoises 32% of the time. Cetacean presence at Ballyheigue Bay was too low to assess
foraging trends.

At the Brandon Bay site, there was no temporal autocorrelation in the foraging model
residuals. A binomial GLM with an AUC of 0.65 was retained as the best foraging model
for bottlenose dolphins (Table 4).
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Table 4. Binomial GLM output (Foraging Positive Hour (FPH)-based analysis of dolphin foraging in Brandon Bay). The
output shows the estimate, standard error, z value and p-values for each predictor. Significant predictors are highlighted

in bold.
Model Variable Estimate Standard Error z Value PG1zl) Significance Level
Intercept 1.0011 0.1368 7.318 2.51 X 10713
Diel Phase (relative to Day)
Evening —0.1682 0.2079 —0.809 0.418587
Night —0.6258 0.1646 -3.801 0.000144 <0.001
Morning —0.0197 0.2161 —0.091 0.927355
Month (relative to August)
May —0.9231 0.6478 —1.425 0.154189
June —1.0812 0.2554 —4.233 2.30 x 107° <0.001
July —0.8472 0.1782 —4.755 1.98 x 10—° <0.001
September 0.2384 0.1829 1.304 0.192357
October -0.1918 0.2460 —0.780 0.435391
The significant predictors of foraging during periods of dolphin presence in Brandon
Bay were diel phase (p < 0.01) and month (p < 0.001). Foraging probability was significantly
lower for the months of June and July relative to the August-September peak. Figure 4
shows that the probability of dolphin foraging was approximately 0.5 from May to July
and increased to a peak of approximately 0.7 in August to September, remaining high in
October. Foraging probability was also significantly lower for dolphins present in Brandon
Bay at night compared to all other times (Figure 4, p < 0.001). It was not possible to model
the trends in foraging probability at the Maharees site, since dolphins were only present
during 1% of monitored hours.
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Figure 4. FPH-based binomial GLM. The predicted probability of dolphin foraging at Brandon Bay according to: (A) the
time of day, where the four categories of diel phase are “Morning”, “Day”, “Evening”, and “Night”; (B) Month, from May
to October. Predicted foraging is measured by the proportion of foraging positive hours, which are hours containing at least
one click train with a minICI < 10 ms.

4. Discussion

This is the first acoustic monitoring study to explore the use of habitats beyond the
limits of the Lower River Shannon SAC by bottlenose dolphins from the Shannon Estuary
population. Although the boundaries of marine protected areas (and SACs) are typically
fixed, bottlenose dolphins are highly mobile, wide ranging, and can have seasonal shifts in
their distribution [16,21,56]. The Moray Firth is an example of a SAC that was established
to protect the core area of a resident population of bottlenose dolphins in Scotland [21].
Opver the years, the number of bottlenose dolphin sightings outside of the Moray Firth SAC
increased, and in 2019, Arso Civil et al. [21] published evidence of range expansion by these
dolphins and a marked change in distribution with sites of importance for the population up
to 300 km to the south of the Moray Firth SAC. Fernandez-Betelu et al. [16] recommended
a more dynamic approach to MPA management taking into account temporal variation in
cetacean movements. As a result, it is necessary not only to carry out long-term monitoring
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of populations within a SAC, but also to monitor sightings and trends in foraging at
adjacent locations beyond the boundaries of the SAC.

The results of this study show that there was consistent bottlenose dolphin presence
and foraging activity in Brandon Bay, where dolphins were present on 92% of days moni-
tored and with foraging occurring on 20% of all hours monitored. These levels of presence
and foraging are comparable to those reported by Carmen et al. [6] within the Shannon
Estuary, where the number of days with detections ranged from 15.9% at the site with
the least detections to 71.2% of days monitored at Moneypoint, with the highest number
of detections. The foraging rates within the Shannon Estuary increased with increasing
distance upriver from the mouth of the estuary in the Carmen et al. [6] study, with foraging
click trains making up 7.3% of all click trains at the Moneypoint location and 21.9% of click
trains at the upriver Shannon Airport location.

The Maharees location, between the Brandon Bay and Ballyheigue Bay sites, had
much lower dolphin presence than Brandon Bay, with dolphins occurring on 25% of days
monitored. Ballyheigue Bay, which was the site closest to the Lower River Shannon SAC
(Figure 1), had the lowest dolphin presence, with dolphins occurring on only 6% of days
monitored. However, the duration of the monitoring period was shorter at Ballyheigue Bay
(34 days) than at Brandon Bay (140 days) and the Maharees (113 days), and monitoring
at Ballyheigue Bay took place only during May and June, which were also the months
with the lowest dolphin presence at Brandon Bay. Therefore, to understand whether these
data truly reflect very little dolphin occurrence at Ballyheigue Bay or whether the low
occurrence is only a reflection of the time of the year during which the recording took place,
monitoring at Ballyheigue Bay should be repeated for a longer period of time and should
include the late summer and autumn months.

The environmental variables that predicted bottlenose dolphin presence and foraging
at Brandon Bay and at the Maharees were tidal cycle, month, diel phase and the presence
of harbor porpoises. The specific combination of predictors varied by site and depended on
whether foraging or presence was the outcome of interest. In Brandon Bay, tidal cycle and
month were significant predictors of presence. O’Brien et al. [11] also found tidal cycle to be
a significant predictor of presence within the Shannon Estuary, with a site-specific response
pattern at different sites within the estuary. Carmen et al. [6] found tidal cycle, tidal phase,
diel phase, and season were all significant predictors of foraging within the Shannon
Estuary, with the exception of the innermost site at Shannon Airport where foraging was
only influenced by tidal variables.

Our findings were consistent with previous research that has found marked, site-
specific variation in the contribution of tidal variables to dolphin presence and forag-
ing [16,18]. Fernandez-Betelu et al. [16] analyzed bottlenose dolphin responses to tidal
cycle at three sites within the Moray Firth SAC, Scotland and found that tidal cycle had
a significant effect on dolphin presence at the Chanonry site within the SAC, which is a
narrow channel with a strong tidal flow. However, there was no effect of tidal cycle at
the Spey Bay site, which is the most open location. The highly site-specific response to
tidal cycle may depend on the way tidal flow interacts with the specific hydrographic and
bathymetric features of each location at a fine scale [16,18]. At the Maharees site, tidal
cycle was dropped as a predictor of dolphin presence and instead month and diel phase
were significant predictors of dolphin presence, which were the variables that predicted
bottlenose dolphin foraging in Brandon Bay. However, there were so few detections of
dolphins at the Maharees that the significance of these predictors should be interpreted
with caution.

The months with the highest bottlenose dolphin presence in Brandon Bay were August
and September, with foraging peaking in September. At the Maharees, dolphin presence
was at its highest in August. Pirotta et al. [18] identified a peak in bottlenose foraging
during the summer and autumn months, and attributed this peak to the migratory return
of salmon (Salmo salar) to the Moray Firth SAC in Scotland. Salmonids in general are
known to be an important prey species of bottlenose dolphins, and in the Shannon Estuary,
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bottlenose dolphins have been observed tossing salmon out of the water during foraging
attempts [8,21,57]. Ingram and Rogan [8] proposed that the presence of salmon may explain
the use of the estuary by bottlenose dolphins. To understand the significance of season on
bottlenose dolphin presence and foraging and how this is influenced by prey dynamics
in locations beyond the boundaries of the Lower River Shannon SAC, it will be necessary
to carry out longer-term, year round acoustic monitoring similar to the work carried out
within the estuary by Carmen et al. [6].

Dolphin presence was significantly lower in Brandon Bay during periods of har-
bor porpoise presence. Previous research has shown that when bottlenose dolphins and
harbor porpoises utilize the same habitat, their occurrence tends to be temporally par-
titioned. For example, Todd et al. [39] found a negative temporal correlation between
harbor porpoise and bottlenose dolphin detections at Broadhaven Bay in Northern Ireland,
and Nuuttila et al. [17] demonstrated three types of temporal partitioning between bot-
tlenose dolphins and porpoises: seasonal, diel, and tidal. It is possible that partitioning
occurs to reduce competition for prey and minimize the risk of aggressive encounters.
The diet of harbor porpoises and bottlenose dolphins has considerable overlap, with fish
such as gadoids and Trisopterus species making up the majority of the diet for bottlenose
dolphins and harbor porpoises in Irish waters [57-59]. Aggression is known to occur
between dolphins and harbor porpoises, and post-mortem analyses of stranded porpoises
in Wales and Scotland have revealed that attack by bottlenose dolphin is a common cause
of death [31,60]. Competition for prey is a possible explanation for the aggression since
dolphins and porpoises share common resources. The finding that dolphin presence was
lower in Brandon Bay when harbor porpoises were present, or conversely that harbor
porpoises tended to be present when dolphins were absent, is in line with previous research
demonstrating temporal partitioning between bottlenose dolphins and harbor porpoises.

The fine-scale variation and high site specificity of environmental predictors observed
in this study and in previous studies within the Lower River Shannon SAC highlight
the importance of localized management actions [6,11]. For example, mitigating impact
on the Shannon bottlenose dolphin population within the Lower River Shannon SAC
could involve a reduction in evening-time industrial activity since Carmen et al. [6] found
that this was a particularly important period for foraging at Moneypoint and Foynes. In
contrast, the results of our study show that at Brandon Bay, foraging was higher in the
morning and during the day, so a different approach would be recommended there. The
long-term datasets obtained through static acoustic monitoring can be utilized to decide
whether certain activities should be allowed or prohibited in certain locations, and whether
scheduling activities during certain tidal cycles, tidal phases, times of day or times of the
year could minimize risk.

In 2016, Levesque et al. [1] proposed expanding the boundary of the Lower River
Shannon SAC to include Brandon Bay. Given that dolphins were observed on 90% of
Levesque et al.’s [1] surveys in Brandon and Tralee Bays and that 96% of these dolphins
were matched to the Shannon Estuary population, it is likely that the majority of dolphins
encountered in Brandon and Tralee Bays belong to the Shannon population. The results
of this study further support the importance of the Brandon Bay site, since dolphins were
detected there at comparable rates to within the Shannon Estuary. Acoustic detections
occurred on 92% of the days monitored at Brandon Bay and foraging occurred on 20% of
all hours monitored. Our study supports the recommendation that the boundaries of the
Lower River Shannon SAC should be adjusted to incorporate Brandon Bay. Because Bran-
don Bay is less impacted by anthropogenic activity than the Shannon Estuary, protecting
this foraging hotspot for Shannon dolphins could ensure that some relatively undisturbed
habitat remains available to the population.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/10
.3390/jmse9060650/s1, Figure S1: ROC plot for the final Brandon Bay Dolphin Presence GEE-GLM;
Figure S2: ROC plot for the final Maharees Dolphin Presence GLM; Figure S3: ROC plot for the final
Brandon Bay Dolphin Foraging GLM; Figure S4: ACF plot for the Brandon Bay Dolphin Presence
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GLM indicating autocorrelation and the need for a GEE-GLM modelling approach; Figure S5: ACF
plot for the Maharees Dolphin Presence GLM where no autocorrelation was detected, as few lags cross
the 95% confidence bounds and the magnitude of the correlation threshold is below 0.2; Figure Sé:
ACF plot for the Brandon Bay Dolphin Foraging GLM where no autocorrelation was detected, as few
lags cross the 95% confidence bounds and the magnitude of the correlation threshold is below 0.2.
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