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Abstract 

River fragmentation caused by instream barriers is a leading cause of biodiversity loss, 

particularly for freshwater migratory fish, the vertebrate group that has suffered the steepest 

decline. However, most studies have tended to focus on the impacts of large dams on only a 

few taxa. We estimated the cumulative impact of both large and small barriers on fish species 

richness and relative abundance along an altitudinal gradient in the main stem of the River 

Allier (France). Using eDNA metabarcoding, we identified 24 fish zero-radius operational 

taxonomic units (zOTUs), corresponding to 26 species distributed along the main stem of the 

river. Elevation explained the greatest amount of variation in fish distribution, together with 

average flow, barrier density and its interaction with cumulative barrier height. Based on 

eDNA, the largest discontinuity in species richness was not related to the location of Poutès, 

the largest dam in the system, but located downstream from it. Our results indicate that, in 

addition to the more obvious effects of large dams on migratory fish such as the Atlantic 

salmon, the cumulative effects of small barriers can have widespread impacts on fish species 

richness and relative abundance, which should not be overlooked. We suggest that, as for 

other fragmented rivers, acting on numerous small barriers might bring about greater benefits 

in fish species richness than focusing only on the largest dams.
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1. Introduction 

Dams, weirs, and other instream structures can cause widespread impacts on fish 

assemblages by modifying fish habitats, turning flowing waters into semi-lentic systems 

(McKay et al., 2017) and by blocking fish movements (Buisson et al., 2008; De Leeuw and 

Winter, 2008; Taylor et al., 2008).  Globally, freshwater migratory fish have declined by 96% 

over the last 50 years, the greatest decline of any vertebrate group (Deinet et al., 2020), in 

part due to increasing levels of river fragmentation (Belletti et al., 2020; Grill et al., 2019). 

Understanding changes in fish assemblage composition in rivers fragmented by barriers is 

key to developing corrective actions, like dam removal (Kornis et al., 2015). In this sense, the 

River Continuum Concept (Vannote et al., 1980) (RCC) can be used as a baseline to predict 

fish assemblage composition against which barrier impacts can be assessed. In addition, the 

Serial Discontinuity Concept can be used as a base line to make predictions on the recovery 

of regulated rivers, as a function of the downstream distance to the dam (Stanford and Ward, 

2001). River barriers are predicted to have different  impacts depending on species particular 

habitat use and tolerance (Welcomme et al., 2006). For example, barriers that cause 

impoundments might affect lentic and lotic fish species differently (Parasiewicz et al., 2018). 

Most of the attention on barrier impacts on freshwater fish has traditionally focused on the 

effects of medium to large dams (>5 m), particularly on migratory fish, ignoring the potential 

impacts of small barriers on fish habitat and species composition (Birnie‐ Gauvin et al., 

2017). However,  changes in habitat immediately upstream and downstream of small barriers 

can affect fish assemblages in a similar way to large dams (Alexandre and Almeida, 2010) 

and have potential selective effects, especially for the weakest swimmers (Jones et al., 

2020b).  

Here, we assessed the extent to which barriers affect the expected decrease in fish species 

richness with increasing elevation predicted by the River Continuum Concept in medium to 
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large rivers. Unlike many other studies that used species or size-selective sampling 

techniques, we used environmental DNA (eDNA) metabarcoding with universal PCR primers 

(Deiner et al., 2017) to examine the effects of barriers on fish assemblage composition. 

eDNA methods can be more cost-effecttive than traditional electrofishing sruveys (Evans et 

al., 2017), particularly considering the rapid decrease in the cost of genomic sequencing 

(Tillotson et al., 2018). We combined eDNA metabarcoding and information on habitat 

preference of fish guilds (Parasiewicz et al., 2018) to contextualise changes in species 

richness and relative abundance and evaluate the impact of instream barriers on fish 

assemblages in the River Allier, the main tributary of the River Loire, one of France‟s largest 

rivers. The River Allier is one of the wildest rivers in Southern Europe, but its main stem is 

fragmented by several small barriers and a single large (17.7 m) hydroelectric dam (the 

Poutes dam) on the steepest section of the river. The Poutes dam is responsible for the near 

extirpation of the local Atlantic salmon population (Dauphin and Prévost, 2013) and has been 

the focus of a protracted environmental campaign and technical modifications to reduce its 

impact (Tétard et al., 2021). 

 

2. Methods 

2.1 Sample collection, DNA extraction and amplification 

We sampled 20 sites along the main stem of the River Allier at altitudinal increments of ~50 

m (ranging from 164 to 1018m), covering over 400 km of river (Figure 1). There are 29 

artifical barriers in the main stem of the River Allier (Belletti et al., 2020), with a cumulative 

barrier height of ~64m (Figure 2a). The tallest barrier is the Poutès dam, 17.7 m high at the 

time of sampling and equipped with a pool and weir fish pass and a fish lift to allow upstream 

migration of adult Atlantic salmon, as well as an outflow for the downstream migration of 

smolts. Water temperature (C), pH, ammonium concentration (NH4-N, ml/L) and dissolved 
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oxygen (DO %) were measured using a YSI Professional Plus multiparameter meter (YSI 

Incorporated, OH) (Table S1). Unionized ammonia concentrations (NH3, mg/L) for each 

sampling site were estimated based on ammonium concentration, temperature and pH 

(http://home.eng.iastate.edu/~jea/w3-research/free-ammonia/nh3.html) and ranged between 

0.001 mg/L and 0.031 mg/L. Average velocity (m/s) was measured using a Global Water 

flow probe (Xylem Inc.). 

Triplicate water samples (1 L) were collected at ~20 cm below the water surface using 1 L 

Sterile bags (Whirl-Pak® stand -up Sample Bag), that were then refrigerated until filtration 

on the day of collection through 25 mm sterile 0.22 μm pore size polyethersulfone 

hydrophilic membranes (Millipore Express PLUS). Field blanks consisting of sterile water 

were processed in the same way.  

DNA was extracted directly from filters using the DNeasy PowerLyzer PowerSoil® DNA 

Isolation Kit (Qiagen GmbH, Hilden, Germany), following manufacturer‟s guidelines, in a 

bleached and ultraviolet irradiated hood within a contained laboratory area exclusively 

dedicated to eDNA analyses. Extraction blanks were processed in parallel. We used the 

vertebrate-specific 12S-V5 mtDNA primers (Riaz et al., 2011), targeting a 106 bp region of 

the 12S mitochondrial gene. PCR master-mix preparation, and addition of eDNA to the PCR 

master-mix was undertaken in an ultraviolet irradiated hood exclusively dedicated to eDNA. 

Reaction 1 contained 12.5 µl of 2xPhusion High-Fidelity PCR Master Mix (Thermo Fisher 

Scientific), 0.4 µM of primers with 5‟ Nextera® tags, and 2.5 μl template DNA. Final 

thermal cycling conditions consisted of 98 °C for 30 sec, then 35 cycles of 95 °C (10 sec), at 

52 °C (30 sec) and 65 °C (30 sec), followed by a final elongation step at 72 °C for 5 min. We 

performed three PCR replicates for each sample replicate to account for PCR stochasticity. A 

second round of PCR was used to append i5 and i7 tags: 25 µl of 2xPhusion High-Fidelity 

PCR Master Mix with HF Buffer, 0.2 µM of each Nextera XT Indexed primer (Illumina, San 
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Diego, CA, USA) with conditions similar to above with 8 cycles with annealing at 63 °C. 

PCR products were purified using AMPure XP beads (Beckman Coulter, Brea, CA, USA) 

with a ratio of 0.85:1.0 beads to product. The pooled DNA library was quantified using QPR 

(NEBNext® Library Quant Kit, NEB, Ipswich, MA) and sequenced by Illumina MiSeq 

(Illumina, San Diego, CA, USA) using the pair-end MiSeq Reagent Kit V3 (600 cycle) 

(Illumina, San Diego, CA, USA) following the manufacturer‟s instructions. 

Bioinformatic treatment of DNA sequence reads followed a standard pipeline using PEAR 

for alignment (Zhang et al., 2014), OBITools for file rearrangement (Boyer et al., 2016) and 

USEARCH (Edgar, 2010) for quality control and designation of zero-radius OTUs (zOTUs) 

(Edgar, 2016). To minimize the possibility of false positives, we only considered taxa that 

had 10 or more sequences. Taxonomy was assigned using the lowest common ancestor 

“weighted” algorithm in MEGAN (percent to cover = 80) (Huson et al., 2007) on locally 

BLASTed sequences (Altschul et al., 1990). We used the McNemar's symmetry test for 

paired binary outcomes ((P/A > Y/N) to test whether eDNA detected the same species than 

previous electrofishing samplings on three different sectors (T1- Haute Allier: corresponding 

to sampling sites 4-7, T2- Allier Moyen: corresponding to sites 8-16, T3- Allier Aval: 

corresponding to sites 17-18 (Federation Departamentale Peche, 2019). 

 

2.2 Statistical Analysis 

Analyses were conducted in R v4.0.4 (R Core Team, 2019) using the packages vegan 2.5-6 

(Oksanen et al., 2007) and mvabund (Wang et al., 2012). Scripts are available in 

supplementary material (Supplementary material Figure S1). To test whether fish species 

richness was inversely related to elevation, as expected from the RCC predictions, we carried 

out a breakpoint analysis using piecewise linear regression (Crawley, 2012) to detect abrupt 

discontinuities in species richness that might be caused by artificial instream barriers. To 
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iteratively determine best fit, the following model was evaluated for each value of x, where 

model 1 is the case for a single breakpoint c, and model 2 is the generalised model for any n 

breakpoints: 

(1) Si ~ xi*(xi <= c) + xi*(xi >c) 

(2) Si ~ xi*(xi <= c1) + xi*(c1 <xi <= c2) + . . . + xi*( cn-1 <xi <= cn) + xi*(xi > cn) 

Si is the species richness at elevation i and xi is the model evaluated at elevation i. The 

elevation of this „best‟ breakpoint was compared to the actual location of the Poutès 

hydroelectric dam to test whether this caused the greatest discontinuity. We then divided the 

data into rheophilic (i.e., lotic) and non-rheophilic (i.e., lentic) fish species to assess if 

barriers had a greater impact on rheophilic species richness. We used changes in Akaike 

Informatio Criteria (AIC) to assess model performance and calculated 95% confidence 

intervals by bootstrapping (999 resampling). A ΔAIC greater than 10 was considered to be an 

improvement in model fit (Burnham and Anderson, 2002). 

Multivariate models based on parallel univariate generalised linear models were constructed 

with the manyglm function in the mvabund package (Wang et al., 2012) based on fish 

presence and the number of eDNA reads per replicate. The best model was selected by 

subtraction of independent variables to minimise AIC using drop1. Species presence/absence 

was modelled as a function of the potential explanatory variables: elevation, pH, NH4 

concentration, average velocity, cumulative barrier density (cumulative number of barriers), 

cumulative barrier height and the interaction between the last two. Water temperature was 

removed as a predictor as it was correlated with elevation (Pearson‟s r = R -0.9761, P < 

0.00001). Sequence read counts were used as model offsets (McMurdie and Holmes, 2014) 

because read count impacts the mean-variance relationship and PCR stochasticity is highly 

correlated with sequence read count (Smith and Peay, 2014).  The volume of water filtered 

was also treated as an offset (we were unable to pass 1 L of water through all filters, with 
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only 0.9 L passing through three of them, and < 0.9 L passing through another three), because 

it might influence the probability of species occurrence. Significance was determined by 

permutation (4999 resamplings), with permutations constrained to triplicated replicates 

permuting only inside each biological sample. A similar multivariate manyglm test as well as 

parallel univariate models were run for sequence read counts as a proxy for relative 

abundance (biomass). 

3. Results 

There were 19,255  947 (SEM) reads returned per PCR replicate of each sample. Of these, 

9,368  610 were assigned to fish from the Allier. These were grouped into 24 zOTUs, which 

were assigned to species except for two zOTUs where the short 12S rRNA locus targeted 

could not distinguish between Alburnus alburnus and Alburnoides bipunctatus nor between 

Sander lucioperca and Perca fluviatilis (Supplementary material Table S1). Species of fish 

unlikely to occur in the Allier (killifish, lumpfish, wrasse and cod) were easily identified. 

They occurred randomly and only in one replicate PCR in one sample from a site, in very low 

concentrations (0.21% of all fish reads) and thus were removed from further analyses. This 

highlights the advantage of using PCR replicates. One site contained DNA from either 

herring or sprat (which are synonymous at the targeted locus) in all three PCR replicates of 

one sample replicate, albeit at very low concentrations (0.05% of fish reads), which suggests 

that this marine species was either a lab contaminant or derived from organic fertilisers from 

nearby farms. 

Only three fish species were detected in the upper reaches of the river, sections 1 and 2 

upstream of the Poutes dam (972-1018 m elevation): Phoxinus phoxinus, Salmo trutta, and 

Cottus gobio. Other species became progressively more common as one moved downstream 

(Figure 3). Eight species only occurred in the lower reaches (between 9 and 531 m elevation): 

Ameiurus melas, Silurus glanis, Oncorhynchus sp., Esox lucius, Alosa sp., Lampetra sp., 
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Rhodeus amarus and Gymnocephalus cernua. Three species previously identified with 

electrofishing sampling were not detected with eDNA (Anguilla anguilla, Lota lota and Tinca 

tinca) whereas four others were only identified with eDNA but not with electrofishing 

(Cyprinus carpio, Gymnocephalus cernua, Alosa sp. and Onchorynchus sp.) (Supplementary 

material Figure S2). The differences in species detection between electrofishing and eDNA 

were not significant in any of the sectors (T1: McNemar's chi-squared = 0.16667, df = 1, p-

value = 0.6831; T2: McNemar's chi-squared = 1.125, df = 1, p-value = 0.2888; T3: 

McNemar's chi-squared = 0, df = 1, p-value = 1), indicating a good eDNA representation of 

the distribution of the fish assemblages across the sampling sites. 

Piecewise linear models were used to determine if break discontinuities would reduce the 

MSE of species richness as a function of elevation for the response variables: richnesstotal, 

richnessrheophilic, richnessnon-rheophilic (Figure 2b-2e). A single breakpoint (two-piece model) 

improved the fit of all linear models, with break richnesstotal = 413.5 m the ΔAIC = 117.2, 

with break richnessrheophilic = 306.9 m the ΔAIC = 106.7 and break richnessnon-rheophilic = 413.5 

m, ΔAIC = 82.2. A three-piece linear model (with two breakpoints) also improved the fit, but 

the change in AIC was considerably lower with ΔAIC for richnesstotal = 11.0, only marginally 

greater than the threshold of 10, whereas the ΔAIC richnessrheophilic = 7.9 and ΔAIC 

richnessnon-rheophilic = 7.1. In addition, 95% confidence intervals indicate that the two-piece 

model is preferable (Figure 2c, 2e).   

For fish presence/absence (occupancy), the most parsimonious model included all predictors 

apart from pH. Elevation, the interaction between barrier density and cumulative height, 

barrier density and average flow were all significant predictors of fish presence/absence 

(Table 1). In contrast, only two univariate tests were significant, Rhodeus amarus was 

significantly affected by barrier density and Phoxinus phoxinus by the average velocity 

(Supplementary material Table S2). For read count data (i.e., semi-quantitative data) the most 
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parsimonious model included all variables apart from pH and NH4 and elevation, cumulative 

barrier density and average flow significantly affected read counts (Table 2). Univariate tests 

indicated that elevation affected the relative abundance (read counts) of all the species  apart 

from Esox lucius, Gobio gobio, Leuciscus leuciscus, Oncorhynchus sp., Rutilus rutilus, 

Salmon salar, Sander lucioperca and Thymallus thymallus. Cumulative barrier density 

significantly affected six species (Barbatula barbatula, Barbus barbus, Chondrostoma nasus, 

Cyprinus carpio, Leuciscus leuciscus,   Squalius cephalus) (Supplementary material Table 

S3).  

4. Discussion 

Contrary to expectations, the largest discontinuity in fish species richness along the River 

Allier was not related to the location of the large Poutès hydroelectric dam. Instead, the main 

two discontinuities in fish richness were identified at 413.5 m for all fish and 306.9 for 

rheophilic fish, downstream the Poutès dam which is located at 651.6 m. Our analyses 

indicate that the fish assemblage of the Allier is largely determined by river elevation, one of 

the most common factors in determining fish richness patterns (Van Looy et al., 2014). 

Together with elevation and water velocity, species presence/absence was also determined by 

barrier density and its interaction with cumulative barrier height. The relative abundance 

(read counts) of several fish species decreased near the Poutès dam (Figure 4) and 

multivariate models indicated that elevation, velocity and cumulative barrier density were 

sufficient to explain these changes. 

Our work demonstrates how eDNA metabarcoding can be used to examine fish assemblage 

composition along a large river where other forms of sampling such as electrofishing or 

netting might be unfeasible. Water samples are easy to collect and can be used to detect taxa 

across large areas (Civade et al., 2016). With 1 L samples, such as the ones we used, fish 

eDNA has been detected up to 9.1 km downstream from the source (Deiner and Altermatt, 
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2014), although there is considerable variability in detection distance (Civade et al., 2016; 

Pont et al., 2018). Abiotic conditions, such as flow rate, water temperature and transport 

dynamics also influence eDNA distribution in the river and therefore the ability to detect 

changes (Deiner et al., 2016; Takahara et al., 2012). In this case, this could be the reason for 

the influence of average water velocity on both presence/absence and read counts. However, 

although abundance of eDNA in water does not necessarily correlate exactly with abundance 

(or biomass) of fish in the river (Barnes and Turner, 2015), it represents well the dynamics of 

relative abundance and can be used to reliably  assess changes in fish assemblages (Muha et 

al., 2021; Ratcliffe et al., 2021). 

We found several species restricted to the lower reaches of the Allier, where there is a 

relatively high density of small barriers. These included the rheophilic shad (Alosa sp.) and 

lamprey (Lampetra sp.), whose distribution tends to be greatly affected by barriers (Lucas et 

al., 2009),. Conversely, other rheophilic species present upstream, such as Cottus gobio and 

Barbatula barbatula, were not detected in the lower reaches. Our data also suggest that 

cumulative barrier density is affecting the relative abundance of Barbatula barbatula. These 

species are good swimmers and could have drifted downstream, therefore their distribution 

may suggest that barrier impacts on rheophilic species at low altitude may not be caused 

simply by blockage of fish passage, but rather by habitat modification (i.e., ponding (Birnie‐

Gauvin et al., 2017)). Most rheophilic species are therefore good indicators for monitoring 

river discontinuities resulting from habitat alteration, with the most ubiquitous, such as 

Phoxinus phoxinus (its individual distribution being affected by average velocity) and S. 

trutta, being potentially indicative of extreme fragmentation should they disappear from a 

river reach. Finally, grayling (Thymallus thymallus) and Atlantic salmon (S. salar) were 

present both upstream and downstream Poutès, with their abundance declining around the 

dam. This may reflect strong fragmentation and the recolonization of the upper reaches of the 
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Allier after the dam conversion in the late 1980s (Dauphin and Prévost, 2013). Grayling 

could be a good indicator species of fragmentation. Although its detection in the lower 

reaches, below 500 m elevation, might have been affected by effluents from the 

Conservatoire National du Saumon Sauvage where it is currently cultured (CNSS, 2017), its 

presence in electrofishing samplings along the whole river suggests it reflects the grayling 

natural distribution. In the case of Atlantic salmon, its distribution in the Allier is affected by 

the artificial stocking of juvenile fish over the last six decades with fish from nearby 

catchments or, more recently, from local hatchery stocks (Dauphin et al., 2016).  

The relative abundance of Barbus barbus, Chondrostoma nasus and Cyprinus carpio was 

affected by cumulative barrier density with their distribution ending up immediately 

downstream Poutès. However, species richness decreased smoothly with increasing elevation 

over the length of river without barriers downstream Poutès (between 649 and 680 m of 

elevation approximately). Thus, while the dam has seriously affected some species like 

Atlantic salmon, driving its local population to near extinction (Dauphin and Prevost, 2013), 

and potentially acting as a bottleneck for other species, at the whole fish assemblage level we 

could not clearly identify a major effect. In contrast, we found that the density of small 

barriers and its interaction with cumulative height influenced species richness and were 

associated with the greatest discontinuities in the fish assemblage structure, even if they were 

fitted with fish passes and were passable for good swimmers like Atlantic salmon. In this 

sense, our results highlight the benefits of sampling the entire fish assemblage, rather than 

single charismatic species (Jones et al., 2020b; McLaughlin et al., 2013), across the entire 

river length to better understand how aquatic ecosystems respond to anthropogenic impacts 

(Jones et al., 2020a).  

An inverse association between barrier density and rheophilic species richness similar to the 

one we identified had previously been observed in the Loire basin (Van Looy et al., 2014). 
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Small barriers (<5 m) have traditionally been overlooked but are the main cause of river 

fragmentation because of their abundance and ubiquity in many parts of Europe (Jones et al., 

2019) and have potential to disrupt connectivity and fish passage (Leitão et al., 2018; Perkin 

and Gido, 2012), altering the structure of fish assemblages (Alexandre and Almeida, 2010). 

Our study shows that in the Allier, small barriers are also the main cause of discontinuity in 

fish species richness, most likely because of their cumulative impacts on fish passage (Lucas 

et al., 2009) and the selective pressures that this entail (Rahel and McLaughlin, 2018).  

Our results also indicate that while adaptive management, lowering of the crest height and 

retrofitting of the new Poutès dam may facilitate passage of Atlantic salmon and its 

recolonization of the headwaters, removing or acting on the smaller barriers in the lower part 

of the catchment would improve connectivity for more species. Removing small dams can 

greatly increase fish richness (Ding et al., 2019) and targeting small and obsolete structures, 

which represent the majority of barriers in Europe, can be a cheaper and more effective 

strategy for restoring river connectivity than focusing on larger, less abundant structures 

(Belletti et al., 2020).  

 

5. Conclusion 

Our study shows how eDNA metabarcoding can be used to determine the cumulative barrier 

impacts on the spatial distribution of riverine fish species against the background of 

altitudinal species richness change predicted by the River Continuum Concept. We observed 

discontinuities in fish species richness consistent with barrier impacts but, contrary to 

expectations, these were not associated with the highest dam. Instead, the best model of fish 

presence indicates that fish occurrence is most likely determined by elevation, barrier density 

and cumulative barrier height. Although elevation and slope have long been known to affect 

riverine fish assemblages, our study highlights the role that instream barriers play in shaping 
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fish species richness and relative abundance, as well as the dangers of focusing solely on the 

impacts of large dams and overlooking small barriers in river management. This study, which 

precedes a large reconfiguration of the Poutès dam, demonstrates the importance of having 

baseline data against which the benefits of barrier mitigating actions can be gauged, and the 

usefulness of eDNA metabarcoding for that purpose, particularly in large rivers that are 

difficult and costly to sample with more traditional methods.  
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Figure Legends 

Figure 1. Location of sampling sites for eDNA (grey circles), including altitude (m) and 

barriers (black rectangles) in the main stem of the River Allier.  

Figure 2. Cumulative barrier height as a function of elevation (a) and piecewise linear 

models for total richness of fish communities (b, c) and richness of rheophilic fish (d, e) as a 

function of elevation, based on a single break point (two piece model: b, d) or two break 

points (three piece linear model: c, e). The solid red line in (a) represents cumulative height 

and vertical lines coincide with barriers. The solid red line in (b-e) are fitted linear models 

that minimise mean square error (MSE). Breakpoints minimise the MSE of a two-segment 

three-segment models and shaded rectangles delimit 95% confidence intervals determined by 

bootstrapping. 

Figure 3. Heat map of the number of positive PCRs per sample per site for each species of 

fish detected at the Allier river. Rows are sites with downstream at the figure bottom (site 

20). Black squares indicate 9 out of 9 PCRs per site were positive, white indicates all were 

negative and the gradient corresponds to the fraction of 9 that were positive. Site 11 is 

immediately downstream of the Poutès and reflects the presence of species flowing from the 

impounded water and immediately below the dam.  

Figure 4. Change in species abundance estimates as counts of sequence reads for the 24 

zOTUs detected in the river Allier. Counts are log transformed. Curve is fitted by loess 

method. 
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Table 1. Analysis of deviance results of the manyglm multivariate analyses of fish species 

presence/absence eDNA data. Elevation represents height above sea level, barrier density is 

the cumulative number of barriers and cumulative barrier height is the ascending sum of 

barrier heights.  

  

 Variable Res.Df Df.diff Dev Pr(>Dev) 

Elevation 178 1 13981.29567 2E-04 

NH4 177 1 12725.57141 0.0886 

Average velocity  176 1 18223.1625 0.0044 

Barrier density 175 1 17995.4067 0.0072 

Cumulative barrier height 174 1 14019.27447 0.2836 

Barrier density: cum barrier height 173 1 19137.37928 6E-04 
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Table 2. Analysis of deviance results of the manyglm multivariate analyses of fish species 

reads count data. Elevation represents height above sea level, barrier density is the 

cumulative number of barriers and cumulative barrier height is the ascending sum of barrier 

heights.  

 Variable Res.Df Df.diff Dev Pr(>Dev) 

Elevation 178 1 604 <2e-16 

Average velocity 177 1 70.4 0.045 

Barrier density 176 1 237.6 0.023 

Cumulative barrier height 175 1 56.4 0.108 

Barrier density: cum barrier height 174 1 269.6 0.148 
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Graphical abstract 
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Highlights 

 Based on environmental DNA data, the Poutes dam (17.7 m high) does not 

cause the major discontinuity in the fish species richness of the River Allier, 

although it drove local salmon close to extirpation. 

 Instead, barrier density and cumulative height are the main drivers of fish 

species presence/absence along the main course of the river Allier. 

 Managing or removing small barriers can have a broader impact on fish 

species richness than just focusing on large dams. 

 eDNA-metabarcoding data represents the riverine fish species accurately and 

provides an alternative to the logistically more complex electrofishing 

sampling, particularly in large rivers. 
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