

AIT Research

Development of biphasic drug delivery PVA/propolis electrospun nanofibres

Bor Shin Chee¹, Viviane Seba Sampaio¹, Michael Nugent¹

¹ Materials Research Institute, Athlone Institute of Technology, Athlone, Co. Westmeath, Ireland.

Introduction

The integration of nanotechnology into biomedical applications is called "nanomedicine". Nanomedicine has the ability to change properties of materials at the molecular and atomic level [1]. Numerous methods have been employed to generate biomaterials in nanoscales. One such method is electrospinning which is regarded as a versatile, inexpensive and simple methodology to fabricate materials with sizes in the nanometre range [2]. Different drug release profiles: fast release, sustainable release, biphasic release (i.e. quick/slow system, slow/quick system), triphasic release can be tailored using electrospun nanofibres. This study aims to fabricate polyvinyl alcohol (PVA) hydrogel nanofibres encapsulated with propolis extract which can introduce a biphasic drug delivery system.

Methods

• Propolis extract is prepared by grounding the raw propolis to a fine powder and dissolved in 70% ethanol at 70 °C using an ultrasonic bath [3].

Figure 1: Ethanolic extraction of propolis

• The PVA/propolis nanofibres were prepared using electrospinning technique. The nanofibres membrane was collected after 8 hours of electrospinning.

Figure 2: Schematic diagram of the electrospinning

Discussion

- The PVA/propolis nanofibres were randomly aligned and the diameter of nanofibres were not uniform (**Figure 3**). A decrease in average diameter of nanofibres occurred with increased propolis concentration.
- The PVA/propolis nanofibres were very hydrophilic as seen in **Figure 4**. The reduced water contact angle, indicated an increase of hydrophilicity in the PVA/propolis nanofibres and good wettability.
- The amount of PVA crystallites decreased as the hydrophilicity increased (**Figure 4**). This resulted in a decrease of tensile strength with the increase of propolis concentration.
- A biphasic drug delivery profile was obtained (**Figure 5**). The nanofibre membranes have an initial burst release in 30 minutes and followed by a constant drug release up to 2-6 hours.
- The drug encapsulation efficacy was in the range of 80%-91%.

Results

Figure 3: SEM micrographs of (a) 5%, (b) 10%, (c) 15% propolis contained PVA nanofibres.

Figure 4: Water contact angle of PVA/propolis nanofibres.

Figure 5: Drug delivery profile of PVA/propolis nanofibres.

Conclusion

- The PVA/propolis nanofibres viability as a biphasic drug delivery system.
- These quick/slow release system is of potential to use in therapeutic applicationsn, providing the shortest time possible to delivery the drug to the target area.

References

- 1. Ramakrishna *et. al.*, An Introduction to Electrospinning and nanofibres. New Jersey: World Scientific, 2005.
- 2. Chee et al., Electrospun hydrogels composites for bone tissue engineering. Elsevier Inc., 2018.
- 3. De lima et al., J of Pharm. Sci., 105(3):pp. 1248-1257, 2016.