Quantification of Select Minerals in Animal Serum and Vitreous Humour by Inductively Coupled Plasma – Optical Emission Spectrometry (ICP-OES)

An Roinn Talmhaíochta, Bia agus Mara Department of Agriculture, Food and the Marine

May 2020 Review

Andrew Larkin

Student ID: A00103563

https://orcid.org/0000-0002-3687-5218

Supervisors: Dr Sean Reidy, Dr Celine Mannion (DAFM)

Acknowledgements

DAFM Funding of Academic Fees Scheme

• DAFM Laboratories, Backweston for providing facilities, equipment and materials

 Dr Sean Reidy (AIT), Dr Celine Mannion (Biochemistry / Toxicology Laboratory Senior Research Officer, DAFM)

Project Background

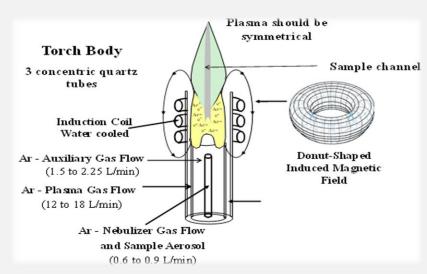
- Mineral intake and balances are essential in maintaining good animal health and wellbeing.
- Mineral deficiencies and toxicities can have a detrimental impact on animal health.
- Important to diagnose these occurrences quickly particularly in animals of agricultural significance.
- DAFMs strategic plan involves promotion and safeguarding of public health, plant health and animal health and welfare.

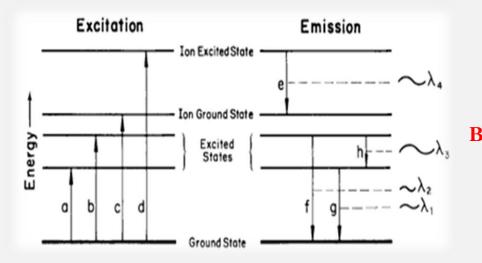
Project Background

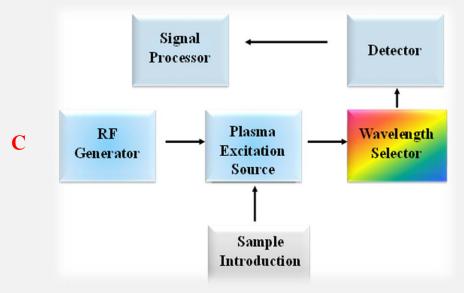
- The Biochemistry / Toxicology laboratory provides specialist diagnostic support assisting in the diagnosis of animal clinical diseases or conditions and exposures to environmental pollutants.
- Recent investment in new analytical technologies to enhance the laboratories analytical capabilities
- To provide:
 - faster analytical turnaround times
 - greater automation
 - → higher through-put
 - improved data quality and integrity

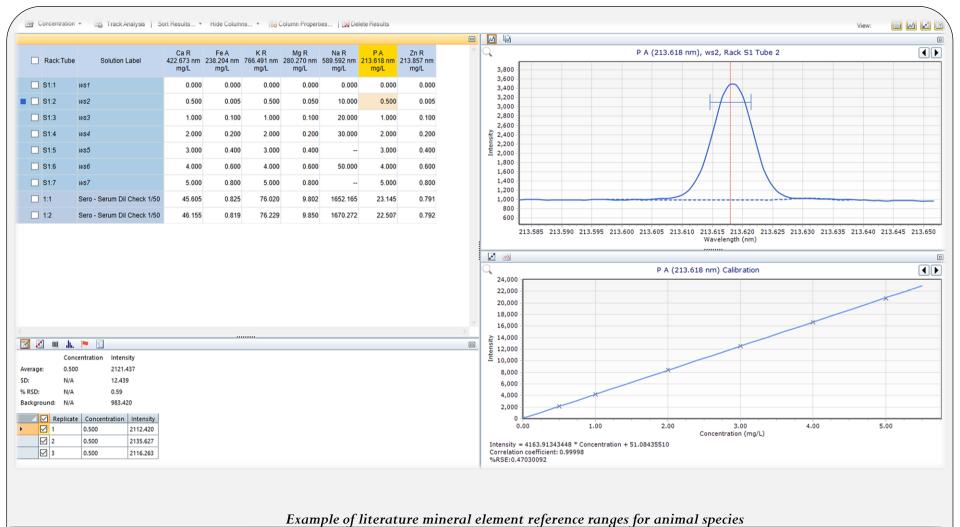
Project Aims

• To develop and optimise a robust multi-element method for the analysis of trace (Zn, Fe) and macro minerals (Mg, Ca, K, P, Na) in animal:




- Animal species include: bovine, ovine, porcine, avian and equine
- Perform a comparative field study on samples of serum Vs vitreous humour.
- Validate developed analytical methods for animal serum and vitreous humour according to ISO 17025.


Equipment Used – Agilent 5100 VDV ICP-OES


Vertical Dual View Optical Emission Spectrometer coupled with SPS4 Auto-sampling Unit

A

Elements (Wet Wgt) Cattle ppm Poultry ppm

Licincinto (wet was	cuttic ppin					1.8° pp						roundy ppin					
	Deficient	Marginal	Normal	High	Toxic	Deficient	Marginal	Normal	High	Toxic	Deficient	Marginal	Normal	High	Toxic		
	10-60,	70-90, 37-	80-110,														
Calcium	0.500-40	42	40-52	14个, 120-300		<70		90-130			160-200*		200-400*				
Iron	0.15-1.3		1.3-2.5	4-6	18-25	<0.8, 0.15-0.6**		1-15, 0.7-0.8^					1.6-3				
Magnesium	1-11	12-18	18-30	40-75		<14	14-16	18-39	>45		4-10	<16	15-36	31-44.4	30-50		
Phosphorus	5-46	40-46	45-60	80-120	>120	35-50	45-55	60-107			9-20	30-50, 9-30	45-60, 60-80	55-70	75-80		
Potassium	<98		160-215	>242		94-133***		137-207***	199-250***	>391***			211-356				
Sodium	2299-2851	2989-3219	3104-3449		3449-5748	2851-3104	3150-3219	3219-3449	3449-4138	4138-4598			2805-3747				
Zinc	0.2-0.4	0.5-0.6	0.8-1.4	1.3-16	3-15	0.18-0.25	0.4-0.8	0.7-1.5		1.4-3.3	<0.6	0.8-1.5	1.45-3.4				

Advantages

- Multi-element analysis capability
- Improved sensitivity, stability and precision
- Improved linear dynamic element ranges
- Reduced interferences
- Excellent screening abilities
- High sample throughput / productivity
- High tolerance to various sample matrix types

Methodology

- "Dilute and shoot" method:
 - → 1% Nitric Acid
 - → 0.01% Triton X-100
- No acid / microwave digestion
- No Standard Additions
- Benefits:
 - 1. quick & easy sample preparation step
 - 2. reduces likelihood of sample contamination
 - 3. increased sample through-put
 - 4. reduced reporting times
 - 5. cost effective

Research Challenges

- "Dilute & Shoot" sample preparation method biological interferences from samples.
- External standard curve calibration method several ranges to be investigated.
- Interferences physical, chemical & spectral.
- Environmental contamination Zn, Fe, Mg, P, K, Ca & Na are present in labs.

Work Completed to Date

- Review of various sample preparation methodologies in scientific literature
 - Diluent alkaline Vs acidic
 - Sample dilution Vs digestion

- Identify and procure materials and consumables required paying particular attention to trace metal-grade materials where appropriate.
- Selection of appropriate element wavelengths and measurement parameters.
- Establish the desired calibration range for each element from literature
- Develop robust standard preparation method
- Identification of appropriate internal standards options for use -Y, Sc and Eu

Future Work

Original Timeline 2019

Revised - Report 2020

	Months (m)												
Phase	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20	21-22	23-24	
Literature Review													
* Development of animal serum multi- element Method of Analysis for ICP-OES													
* Development of animal Vitreous Humour multi-element Method of Analysis for ICP-OES													
Comparative field study of animal serum Vs. vitreous humour multi- element composition & concs.													
⁺ Validation of serum multi-element method													
+ Validation of vitreous humour multi- element method													
Annual progress reporting - AIT													
# Communicate research - presentation, poster, drafting paper publications, etc.													
Researcher personal development													
Master's thesis write-up & submission													

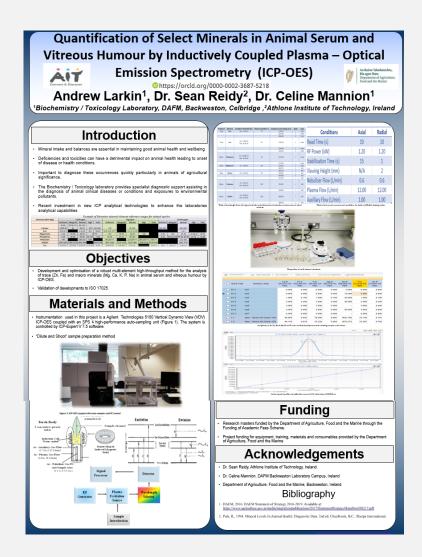
* Development includes:

- · Develop instrument sensitivity check.
- Calibration of instrument semiquantitative feature.
- · Calibration curve development.
- Refine instrument method conditions / wavelengths.
- Internal standard selection & testing.
- Animal serum and vitreous humour matrix investigation.

+ Validation includes:

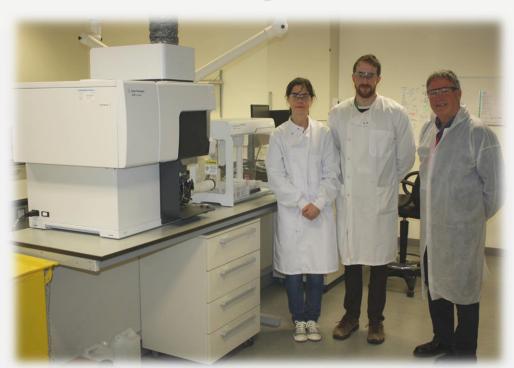
- Specificity
- Linearity
- · Limit of Detection
- Limit of Quantification
- Range
- Accuracy
- Precision
- Robustness
- Stability

Research Communication:


- 22nd World Congress on Analytical & Bioanalytical Chemistry Aug 2020 – E-Attendee / Poster submission
- 74th AVTRW Annual Conference Sep 2020 – Attendee / Poster submission
- Teagasc Knowledge Transfer Conference Sep 2020 – Attendee
- DAFM Backweston R&D Seminar 2020
 Presenter

~ Personal Development:

- · Agilent spectroscopy Training Webinars
- · DAFM Microsoft PowerPoint Training
- DAFM Presentation Skills Training
- DAFM Project Management Foundation Training
- AIT research training modules
- · Scientific conference attendance


Poster Presentation

- 22nd World Congress on Analytical & Bioanalytical Chemistry;
 UK, London / Aug 2020 – Online Attendee / E-Poster submission
- 74th Association of Veterinary Teachers and Research Workers (AVTRW) Annual Conference Glasgow University / Sep 2020 – Attendee / Poster submission

Email: a.larkin@research.ait.ie

