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Abstract—Recent developments in wearable technology 
have led to increased research interest in using peripheral 
physiological signals for emotion recognition. The non-invasive 
nature of peripheral physiological signal measurement via 
wearables enables ecologically valid long-term monitoring. 
These peripheral signal measurements can be used in real-time 
in many ways including health and emotion classification. This 
paper investigates the utility of peripheral physiological signals 
for emotion recognition using the publicly available DEAP 
database. Using this database (which contains 
electroencephalogram (EEG) signals and peripheral signals), 
this paper compares eight machine learning models in the 
classification of valence and arousal emotion dimensions. These 
were applied to the peripheral physiological signals only. These 
models operate on three groupings of the peripheral data: (i) the 
raw peripheral physiological signals; (ii) individual feature sets 
extracted from each peripheral signal; and (iii) a fusion data set 
made of the combined features from the individual peripheral 
signals. The results indicate that support vector machine, linear 
discriminant analysis and logistic regression give the best 
recognition results on all three data groups considered. The 
feature fusion data set, which is made up by fusing all the 
features from the peripheral signals, gives the best recognition 
accuracy on both valence and arousal dimensions. In addition, 
subject dependency for emotion classification from peripheral 
signals is examined and significant individual variability is 
observed. The recognition rate varies between each participant 
from 10% to 87.5%.   

Keywords—peripheral physiological signals, emotion 
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I. INTRODUCTION  

Emotion has a central role in human experiences 
associated with perception, the cognitive process, behaviour 
and decision-making. The last two decades have seen a 
significant increase in emotion recognition research within 
the field of affective computing. The human-computer 
interaction (HCI) community has adopted the concept of 
pleasurable experience. Systems should be designed such that 
they improve the emotional experience during human-system 
interactions. However, to achieve this, the challenge of 
recognising and synthesising the emotional responses [1] 
needs to be addressed.  

Emotions in humans produce physical and physiological 
changes. Physiological signals are widely studied in emotion 
recognition because they are involuntary and, unlike physical 
signals such as facial expressions, speech, and gesture, they 
cannot be easily controlled [1], [2], [3], [4]. 
Electroencephalogram (EEG) measurements derive 
physiological signals related to the brain activity directly 
from the central nervous system (CNS). Peripheral 

physiological signals such as electrocardiogram (ECG), 
electrooculogram (EOG), electromyogram (EMG), blood 
volume pressure (BVP), galvanic skin resistance (GSR), skin 
temperature and respiration are induced by the activities of 
the peripheral nervous system (PNS). Of course, these types 
of signals and responses are highly individualised. However, 
emotion recognition research has typically produced 
generalised recognition models using subject-independent 
approaches. Some authors report that the high inter-
participant variability inherent to emotions affects the 
classification results [1], [5], [6], [7].  

Emotion recognition using EEG signals, combined with 
machine learning, pattern recognition [8] and deep learning 
algorithms [4], [9], [10], [11] has emerged as a powerful 
approach to the recognition of emotions since it can extract 
the cognitive state of the user from the CNS. Studies have 
also employed multimodal approaches, fusing EEG with 
peripheral signals, which have improved the accuracy of 
emotion classification [1], [2], [12]. However, the invasive 
nature of the EEG measurement is an issue, particularly over 
long periods of time when it can lead to feelings of 
discomfort, which makes it unsuitable for real-time emotion 
recognition applications [13], [14]. On the other hand, the 
non-invasive nature of peripheral physiological signals 
enables comfortable long-term assessment through wearables 
in the form of activity trackers and health monitors as listed 
in [5]. These devices are becoming more and more integrated 
into human activities, providing better usability and hands-
free experiences.  Peripheral physiological signals are a good 
choice in applications such as automatic emotion recognition 
[4], healthcare systems [14], HCI [10] and Quality of 
Experience (QoE) [15], [16].  For example, closely related to 
emotion recognition, these signals are used in evaluating the 
user QoE in augmented reality (AR) and virtual reality (VR) 
technologies [15] measuring electrodermal activity (EDA), 
heart rate (HR) and skin temperature. Another study [16] 
measures these signals for QoE evaluation in VR 
applications. Hence, studies to understand the user are 
shifting their focus from EEG-based solutions to the use of 
peripheral signals in emotion recognition [3], [5]. The DEAP 
[1] database has been widely studied, but only a few of the 
studies have involved peripheral physiological signals only 
[13], [14], [17], [18]. 

    This research presents a detailed evaluation of the 
relevance of peripheral physiological signals for classifying 
emotions using the publicly available DEAP dataset. The 
recognition rate depends on the selected features, classifier 
and the target dataset [3]. Eight machine learning methods 
were compared in the classification of emotional arousal and 
valence. The methods used were support vector machine 



   

  

(SVM), K-nearest neighbours (KNN), random forest (RF), 
decision tree (DT) logistic regression (LR), Gaussian naïve 
Bayes (GNB), linear discriminant analysis (LDA) and 
multilayer perceptron (MLP) classifier. As part of the valence 
and arousal classification, features were extracted from the 
peripheral signals. Three different data combinations were 
used: fusion of raw dataset consisting of all the DEAP 
peripheral signals; the individual feature datasets extracted 
from the peripheral signals; a feature fusion set consisting of 
the combined features extracted from all the peripheral 
signals. The results presented serve as a baseline for 
comparison for future research into the use of peripheral 
physiological signals for emotion classification. In addition 
to emotion recognition performance, individual participant 
dependency on the classification accuracy from peripheral 
physiological signals is investigated by observing the 
variations in classification accuracy between individuals. 
Few studies have observed these differences in multi-subject 
emotion recognition [6], [7]. One of the approaches adopted 
to tackle this is group-dependent recognition study [7] where 
the subjects are clustered into groups based on the 
characteristics of the physiological signals and the results 
show improved performance in recognising four emotions. In 
the current study, the subjects are grouped based on their 
gender. The variations in the classification accuracies of 
valence and arousal recognition are observed between male 
and female groups. 

The rest of this paper is structured as follows. Section II 
gives a brief explanation on the pre-processing of the DEAP 
peripheral physiological signals, features extracted from 
these signals and the experimental setup of classification 
models. Section III presents the results from model 
comparison, performance evaluation and subject-dependent 
classification, then discussed in Section IV, and the paper 
conclusions are given in Section V. 

II. EXPERIMENTAL METHOD 

This section describes the DEAP dataset and extraction of 
statistical features, and the experimental setup for classifying 
emotions. 

A. DEAP Database 

The publicly available DEAP dataset is widely used in the 
research community in the study of emotion recognition. This 
dataset consists of 32 EEG channels and 8 channels from six 
peripheral physiological signals recorded from 32 
participants, aged between 19 and 37. The signals were 
recorded as participants watched 40 music videos designed to 
arouse emotions in all four quadrants of the valence/arousal 
space. The participants rated the videos in terms of valence, 
arousal, dominance and liking. Single-channel peripheral 
signals (GSR, skin temperature, respiration, and BVP) and 
dual-channel peripheral signals (EOG (horizontal and 
vertical) and EMG (zygomaticus major and trapezius 
muscles)) were recorded. The data is available in the raw and 
preprocessed format. 

For the experiments presented here, the preprocessed 
dataset in python-format is used. The data is downsampled to 
128Hz from 512Hz, filtered, segmented, and artefacts 
removed. Since the focus of this study is peripheral 
physiological signals, only 8 peripheral channels out of 40 
channels from the dataset are considered, while ignoring the 
remaining 32 EEG channels. Each channel has 8,064 
samples. The structure of the data array in the study is 32 

participants x 40 video/trial x 8 channel x 8,064 samples. The 
emotions are categorised in a multi-dimensional space. It 
includes an array of 40 video/trial x 4 label (valence, arousal, 
dominance and liking). Each label is rated on a continuous 
scale from 1 to 9. Only the valence and arousal labels are used 
here. Based on other classification studies [1], [12], [14], [17] 
each arousal and valence labels are divided into 2 classes, 
high if greater than 4.5 and low if less than or equal to 4.5.  

B. Feature Extraction 

In a recent review paper [3], the features adopted in 
related studies for emotion classification are studied. These 
include time, frequency and wavelet domain features. In [17], 
feature set attributes are used for feature extraction, while [3] 
suggest specific features for certain physiological signals. For 
the work presented here, features extracted are based on [1], 
[3], [13], [17] and are summarised as standard or non-linear 
as shown in TABLE I. 

The sample entropy measures the complexity based on 
approximate entropy. Lyapunov exponent measures total 
predictability, lyap_r and lyap_e estimates largest Lyapunov 
exponent and a whole spectrum of Lyapunov exponent 
respectively, whose positive exponents indicate chaos and 
unpredictability. The Hurst exponent is used to find out if the 
time series follows a similar pattern as in previous steps. The 
detrended fluctuation analysis (dfa) measures the Hurst 
parameter H, which is very similar to the Hurst exponent used 
for non-stationary processes [19].  

C. Peripheral Physiological Features 

For fusion data analysis, 16 standard statistical features 
are extracted from each channel. This resulted in a total of 
128 features, concatenated into a single feature space from 
the 8 channels (those without EEG in the DEAP database). In 
DEAP [1], 106 features are extracted from peripheral 
physiological signals. In addition, specific features have also 
been estimated for individual peripheral signals as listed in 
TABLE II. EOG measures eye blinking rate related to 
anxiety, while EMG measures muscle activity. Skin 
temperature and respiration signals vary with different 
emotional states [1]. The blood volume in the participant’s 
thumb is measured by plethysmograph from which heart rate 
and heart rate variability can also be measured. GSR also 
referred to as electrodermal activity (EDA) can be 
comfortably assessed for longer durations measuring skin’s 
electrical resistance connected to the sympathetic nervous 
system [17] related to the level of arousal [1].   

TABLE I. FEATURES EXTRACTED FROM PERIPHERAL 
PHYSIOLOGICAL SIGNALS 

Standard Features 

Mean, min, max, standard deviation, median, 
skewness, kurtosis, power spectral density, average 

of the derivative, mean of the normalised signal, min 
and max of the normalised signal, mean of the 

absolute values of first and second differences of raw 
and normalised signals. 

Non-linear Features 

Sample entropy, Hurst exponent, detrended 
fluctuation analysis (dfa), Lyapunov exponent 

(lyap_r and lyap_e) 



   

  

TABLE II. LIST OF FEATURES EXTRACTED FROM PERIPHERAL 
PHYSIOLOGICAL SIGNALS 

Modality No. of 
features 

extracted 

Features extracted 

EOG 16 Standard features 
EMG 16 Standard features 
GSR 18 16 standard features and 2 non-

linear features - Hurst component 
and sample entropy 

BVP 16 Standard features 
Respiration 17 14 standard (except skewness and 

kurtosis) and 3 non-linear features 
– dfa, lyap_r and lyap_e 

Temperature  16 Standard features 
ALL 128 Standard features 

 
Relaxed and aroused state is linked to the respiration rate 

[1]. Detrended fluctuation analysis (dfa) and Lyapunov 
exponent (lyap_r and lyap_e) are extracted for the respiration 
signal as they have shown improved recognition rate [3]. 
Skewness and kurtosis are not used as respiration features. 

D. Classification Models 

The studies on emotion recognition using EEG signals 
suggest several classification models. A GNB classifier is 
used in [1], along with F1-scores to deal with unbalanced 
classes, to evaluate recognition performance with a leave-
one-out cross-validation technique followed by decision 
fusion using a weighting scheme. A new peripheral feature 
space was created in [13] using canonical correlation analysis 
(CCA) and an SVM classifier was used. A minimum 
redundancy maximum relevance (mRMR) algorithm is 
adopted in [14] for feature selection from skin temperature, 
respiration and BVP signals; the feature data is then fed to 
RF, LR and SVM algorithms for classification. The RF 
classifier produced the best results; it was also used in [17] to 
classify emotions via GSR for its capability in handling high 
dimensional data. A list of classification models suitable for 
emotion recognition can be found in [3].  

The models employed in these experiments, informed by 
the referenced research, are SVM, KNN, RF, DT, LR, GNB, 
LDA and a single-layer neural network (NN) using a 
multilayer perceptron (MLP) classifier. Since the optimal 
classification algorithm depends on the target data and 
various conditions such as selected features and fusion 
techniques [3], the goal is to find the effective model to be 
used with the DEAP dataset to classify valence and arousal 
using peripheral physiological signals.  

E. Platforms 

The experimental setup includes implementation of 
machine learning algorithms in the Python programming 
language (v3.7) on the Spyder integrated development 
environment. The NVIDIA GeForce GTX 1080 graphics 
card was used. The imported packages are: scikit-learn for 
machine learning; numpy and pandas for fundamental 
operations and mathematical computations; scipy for signal 
processing; nolds [19] for extracting non-linear features; and 
matplotlib for plotting graphs. The parameter settings for the 
classifiers are: 5 nearest neighbours for KNN; radial bias 
function (RBF) kernel in SVM; and 100 estimators in RF. 
Other classifiers are implemented with their default settings 
in the scikit-learn package. The default settings for the MLP 
classifier are adam solver, relu activation, constant learning 
rate and alpha = 0.0001. 

III. RESULTS  

This section compares the results obtained by applying 
the classification models to the peripheral physiological 
signals. The performance evaluations of three data 
combinations are presented followed by the results of the 
subject-dependent classification. 

A. Comparison of Classification Models  

In this section, 8 machine learning algorithms applied to 
the peripheral physiological signals from the DEAP database 
are evaluated. The experiment is conducted on three data 
combinations: raw peripheral physiological signals; feature 
sets extracted from individual peripheral signals; feature 
fusion set obtained by fusing all the peripheral features 
extracted from the individual signals. In this study, the 
preprocessed data provided with the DEAP database is used 
as a raw signal for the experiments. The classification 
performance is validated by 10-fold cross-validation and the 
achieved accuracies are reported.  

For the raw data analysis, first, the peripheral 
physiological signals from eight channels were separated 
from EEG data and then integrated into a single dataset 
before classification. The data array has 8,064 data samples 
per channel and the total number of data points from 8 
peripheral channels, each with 32 users watching 40 videos, 
is significantly large. To simplify model training, the 
dimensionality of the data is reduced using principal 
component analysis (PCA) [3], [13] as a preprocessing step 
before being input to the classification algorithms. For feature 
fusion analysis, as mentioned in section II.C, 128 features 
from 8 channels were extracted and concatenated to form a 
peripheral feature space. PCA of 10 and 20 components was 
applied to the feature sets, however, the recognition 
accuracies were slightly better without PCA. 

The average accuracy and F1 score obtained by each 
classifier on two of the data set combinations (fusion of raw 
data and feature fusion) are shown in Fig. 1 and Fig. 2 
respectively.  Across these sets, the RF classifier achieved an 
accuracy of 64.45% for valence recognition, which is slightly 
higher than SVM with an accuracy of 63.12% (with 
configuration settings of 128 features without PCA as input 
to the classifier). Moreover, the results show that SVM 
outperforms other classifiers on arousal recognition for the 
same configuration on the feature fusion set. The best 
accuracies and F1 scores on the raw dataset are achieved by 
the LDA, LR, SVM and MLP classifiers for both valence and 
arousal classification.  KNN did not perform very well for the 
proposed features and classification settings while DT and 
GNB gave the poorest accuracy results for both data set 
combinations. 

For individual signal analysis, the classifiers were applied to 
the individual feature sets extracted from each peripheral 
signal. Prior to classification, for each modality and label 
(arousal or valence), three combinations of PCA were 
selected: no PCA, 5 and 10 components. The best 
configuration results from each signal are shown in Fig. 3, 
plotting the accuracy and F1 score while comparing the 8 
classification models used to recognise valence and arousal. 
Respiration and GSR yielded better results with PCA of 5 
components while all other modalities (EOG, EMG, BVP and 
skin temperature) performed well without any PCA reduction 
applied to the features. The multiple subplots showed in Fig. 
3 compares the classifiers for each of the peripheral features. 



   

  

Fig. 1: Comparison of ML models on raw data combination. 

The classifiers SVM, LDA and LR again outperform the 
other classifiers across all the individual signals. The MLP 
classifier achieves higher accuracies on EMG signal for 
valence classification and the BVP signal for arousal 
classification. The highest accuracy rate of 64.92% is 
achieved by the SVM classifier on the EOG signal for 
valence classification. Results show that for all 3 groups the 
SVM, LDA and LR classifiers perform equally well, giving 
better recognition results on both valence and arousal 
compared to the other classifiers, while MLP classifier 
showed comparable results on feature fused data and three 
individual modalities such as respiration, EMG and BVP 
signals.   

B. Performance Evaluation 

The F1 scores and recognition rates for the classification in 
different modalities are given in TABLE III. The results show 
that the raw signals without prior feature extraction achieved 
the best accuracy of 63.86% for arousal classification. The 
EOG signal achieved the highest valence classification rate 
of 64.92% followed by the feature fusion set with an accuracy 
of 64.45%. 
 

TABLE III. ACCURACY AND F1 SCORES OF AROUSAL AND 
VALENCE CLASSIFICATION FOR DIFFERENT DATA INPUT 

MODALITIES 

Modality Valence Arousal 

Accuracy F1 Accuracy F1 

All raw  
(PCA = 20) 

62.99 0.7709 63.86 0.7757 

All feature 
(PCA =10) 

63.59 0.7658 62.59 0.7638 

All feature 
(PCA =20) 

61.25 0.7439 61.56 0.7557 

All feature 
(no PCA) 

64.45 0.7588 63.20 0.7702 

GSR 
(PCA = 5) 

62.89 0.7698 63.52 0.7733 

EOG 
(no PCA) 

64.92 0.7661 63.05 0.7688 

EMG 
(no PCA) 

63.28 0.7709 63.67 0.7748 

Temperature  
(no PCA) 

63.13 0.7720 63.67 0.7748 

Respiration 
(PCA = 5) 

62.89 0.7698 63.75 0.7755 

BVP 
(no PCA) 

63.28 0.7704 63.52 0.7706 

 

  

 
Fig. 2: Comparison of ML models on feature fusion data. 

 
 

 
 
Fig. 3: Accuracy and F1 scores for 8 classifiers on individual peripheral 
signals, a) EMG (no PCA), b) EOG (no PCA), c) BVP (no PCA), d) GSR 
(PCA=5), e) Respiration (PCA=5), and f) Temperature (no PCA). 



   

  

  
Fig. 4: Scatterplot of 32 subjects and their valence accuracies and F1 scores 
grouped based on gender 

All the individual peripheral physiological signals 
considered, and fusion of these signals show the same level 
of significance in classifying arousal dimensions with 63% 
approximate accuracy. The PCA has found to give better 
results for GSR and respiration signals, while the remaining 
modalities performed well without PCA. 

C. Subject-dependent Classification  

The goal of subject-dependent classification is to 
investigate the individual variability between subjects on 
emotion recognition from their peripheral physiological 
signals. The results from the previous evaluations shown that 
SVM, LDA and LR give optimal accuracies for the DEAP 
peripheral physiological signals, therefore SVM is used here. 
The test is carried out on 6 peripheral physiological signals 
of each subject separately by running SVM classifier and 
evaluated using 10-fold cross-validation. This was repeated 
on all 32 subjects and the resulting accuracies and F1 scores 
for valence and arousal are plotted in Fig. 4 and Fig. 5 
respectively. The correlation between emotions and 
peripheral physiological signals differ from person to person 
reflecting on the high variance of accuracy on both valence 
and arousal. The classification accuracy rate on both valence 
and arousal vary between 10% and 87.5%.  

 The metadata of the participants in the DEAP dataset 
consists of age, gender, education, handedness and 
consumption of beverages, alcohol, tobacco and other drugs. 
The age group ranges from 19 and 37, which is too small to 
observe any variations. Of the 32 participants, there are 15 
female and 17 male subjects in the dataset. To explore the 
effect of gender on emotion recognition from peripheral 
physiological signals, the classification rate was investigated 
by grouping the subjects based on their gender. Fig. 4 on 
valence recognition shows that majority of the male subjects 
have high classification rates, while the female subjects are 
distributed across low and high accuracies. On average the 
male subjects exhibit higher valence classification rates, with 
an average accuracy of 65.29%, compared to female subjects, 
with a 49.83% classification rate. However, on arousal 
classification in Fig. 5, female subjects perform better than 
male subjects achieving average classification rate of 65.83% 
and 60.73% respectively. 

 

Fig. 5: Scatterplot of 32 subjects and their arousal accuracies and F1 scores 
grouped based on gender 

IV. DISCUSSION 

A comparison of the results obtained with previously 
published results is given in  TABLE IV. The results from 
this work are better than those obtained in [1], [13], [18]. The 
DEAP database single-trial classification results achieved a 
recognition accuracy rate of 62.7% for valence and 57% for 
arousal [1]. C. Godin et al. [18] achieved similar results as 
DEAP database study [1] with a few well-selected features. 
The results from the studies [14], [17] on individual signals 
show better recognition accuracy than those obtained here. 
One possible reason for this is the use of a sliding window 
approach for feature extraction in [14], [17]. This will be an 
avenue for future work. In [13], the peripheral feature space 
is constructed using EEG signals, the results are better than 
[1] for arousal and worse for valence.  

For the experiments in [13], it is noted that on the 9-point 
continuous rating scale the output label is divided into two 
classes with a threshold value of 5, above which is high, and 
below or equal is low. When the models were trained on our 
configuration of data with a threshold value of 5, the results 
show that the recognition performance decreased 
significantly by approximately 12.5 percentage points for 
feature fused data compared to a threshold value of 4.5 (see 
TABLE V). This was found to be similar for all the data 
modalities (i.e., raw, individual and feature fusion) in this 
study. These results show that the accuracy can be improved 
further by tuning parameters associated with both feature 
extraction and classification models. The results bear out the 
relevance of peripheral physiological signals in emotional 
arousal and valence recognition or classification. 

TABLE IV. COMPARISON OF RESULTS OBTAINED WITH 
PUBLISHED RESEARCH 

Modality (after 
feature extraction) 

Valence Arousal 

Accuracy F1 Accuracy F1 

All [1] 62.70 0.6080 57.00 0.5330 

All [13] 58.10 0.5750 62.70 0.5820 

All [This work] 64.45 0.7588 63.20 0.7702 

GSR [17] 71.04 - 71.53 - 

RSP, BVP,Temp[14] 72.18 - 73.08 - 

Temperature [14] 67.73 - 69.68 - 

BVP [14] 70.23 - 68.59 - 

RSP [14] 70.62 - 71.32 - 
 

 



   

  

TABLE V. CLASSIFICATION RESULTS OBTAINED ON FEATURE 
FUSION DATA WITH THRESHOLDS 4.5 AND 5.0 

Threshold 
 

Valence Arousal 

Accuracy F1 Accuracy F1 

5.0 56.01 0.6199 55.46 0.5159 

4.5 64.45 0.7588 63.20 0.7702 

 
The results overall show that emotions can be recognised 

from peripheral physiological signals. Tuning the 
hyperparameters of classification models can be investigated 
to further improve the recognition accuracy. Other factors to 
consider for future work on peripheral signals are 
investigating the following factors: output label (2-class vs 3- 
class or continuous label using regression techniques), 
feature extraction (window size, overlap vs non-overlap), 
feature selection methods, cross-validation(k-fold vs leave-
one-out), including many relevant features based on other 
studies, decision fusion techniques, various group-based 
study, and advanced classification models (Deep and 
Convolutional neural networks). The studies on EEG signals 
[11] have shown improved recognition rate with advanced 
models and optimised feature selection.  

V. CONCLUSION 

Studies on EEG-based emotion recognition have 
progressed in classifying emotions using advanced learning 
techniques, very little work has been done on peripheral 
signals, something that is addressed in this paper. A wide 
range of standard and non-linear statistical features were 
extracted from peripheral physiological signals of the DEAP 
dataset. A total of eight machine learning techniques were 
evaluated, and the results show that SVM, LR and LDA 
models give the best performance results for valence and 
arousal classification achieving better results on all data 
combinations used in the experiments. While RF achieved the 
highest valence classification rate of 64.45% on feature 
fusion set and MLP classifier stands out for valence 
classification from EMG and BVP signal.  The fusion of all 
the features extracted from peripheral signals is better than 
individual signals.  The results obtained demonstrate an 
improvement in the recognition accuracy of emotional 
valence and arousal compared with other published results 
that use the DEAP database. Subject-dependency was also 
investigated, and the results obtained showed that male 
subjects achieved an average valence recognition accuracy 
that is significantly greater than that obtained by female 
subjects. Overall, the results demonstrate that emotion 
recognition is possible from peripheral physiological signals. 
Future work will look at optimising the feature extraction 
methods used to improve recognition performance and 
explore advanced neural network configurations. 
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