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Abstract—The Introduction of the Internet of Things has made the 
vision of “Smart Cities” a very reachable goal. Aggregating data 
from a wealth of sensors throughout a city, with the aim of 
improving quality of life for its dwellers has become a major focus 
for city developers. The automotive sector is in prime position to 
play a pivotal role in the success of Smart Cities. Vehicle 
Telematics, the process of gathering and transmitting Geo-
Enriched vehicle data, is seen as a key enabler in improving 
mobility in urban areas. Modern vehicles generate up to 5GB an 
hour, with newer models generating far more. How this data is to 
be processed and transmitted is a hotly researched topic. This 
work focuses on raw vehicle data extraction and the valuable 
insights it holds in terms of fuel consumption and driver 
behaviour. Data is extracted and distributed from the vehicle 
using a novel architecture consisting of the FMS standard and a 
Flow Based Programming inspired approach. Road Side Units 
(RSUs) are set to play a key role in the area of vehicle 
communication in urban areas. This work will evaluate the level 
of governance the RSUs can achieve in Vehicle-to-Infrastructure 
(V2I) scenarios. 
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I. INTRODUCTION 

In time, connected vehicles may be seen as the success story of 
Internet of Things. Put simply, one vehicle is a moving cluster 
of sensors that can provide a wealth of information on its 
surroundings. If harvested correctly, thousands of vehicles 
moving throughout a city can provide insight into traffic flows, 
driving behaviour, road and weather conditions and much more. 
There has been much research on extracting vehicle data from 
the vehicle network (CAN-Bus), however, the majority has 
acquired the data via the OBDII interface.  In this work, a 
comparison is provided between OBDII and another standard 
called FMS. OBDII is widely used due to its ease of access and 
cheap devices, however, many experts in the field consider it 
unreliable and potentially harmful to the vehicle network. FMS 
on the other hand, was designed specifically for fleet 
management.  
    An efficient architecture is required to seamlessly transmit 
vehicle data. This work aims to show how Flow Based  
Programming (FBP) may be well suited to ingesting and 
processing this large vehicle data in real time, while gaining 
valuable insight that may improve traffic and mobility issues in 

urban areas. Through FBP, it may be possible to add compute 
power anywhere in the network from source to destination, 
enabling critical decisions to be made and appropriate actions 
be taken with minimum delay. Further processing can be 
achieved at a higher location in the FBP architecture. 

A. CAN-Bus Network 

Modern vehicles are equipped with a highly complex network 
of around 70 Electronic Control Units (ECUs). ECUs 
communicate with each other over a standard communication 
protocol known as Controller Area Network (CAN). First 
introduced by Bosch in 1991, the CAN aimed to simplify the 
communication between different ECUs within a vehicles using 
one single pair of twisted wires, known as CAN-High and 
CAN-Low. CAN provides a communication rate of up to 
1Mbps [1], and utilizes a broadcasting system. Many CAN 
signals are broadcasted at a rate of every 10ms. There are two 
well-known interfaces and standards that connect to the CAN-
Bus; OBDII and FMS. While the CAN-Bus can be regarded as 
the networking system, OBDII and FMS can be viewed as 
languages that interpret the CAN data.  
    OBDII (On-board Diagnostics) [2] was first introduced in the 
U.S in 1996, and 2001 in Europe. All OBDII compliant vehicles 
will have an OBDII port within two feet of the steering wheel. 
The OBDII standard specifies the connector and its pinout, the 
electrical signaling protocols available, and the messaging 
format. The goal of OBDII was to provide communication to 
the CAN-Bus, giving access to real-time data from different 
ECUs of the vehicle. However, the purpose was to aid in 
locating issues within the vehicle, not for tracking purposes as 
it has been used over the past decade. 
    There are over 200 available parameters (PIDS) available via 
OBDII. PIDs can be requested using an OBDII adapter, which 
can transmit the output to a smartphone using Bluetooth or Wi-
Fi. The recommended rate of requesting PIDs is 1Hz. Due to its 
ease of access, a large number of telematics companies 
identified the OBDII port as a way of obtaining vehicle data to 
support the delivery of new fleet telematics services and started 
to exploit it in their solutions [3]. However, OBDII works on a 
request basis, with many experts regarding it as an unsuitable, 
and intrusive way of gaining data.  
In 2002, the six major truck manufacturers (Volvo, Scania, 
Iveco, MAN, DAF, and Mercedes-Benz) created a standardized 
vehicle interface for GPS based tracking systems, called the 



 
 

FMS (Fleet Management System) standard [4]. FMS is a subset 
of CAN-Bus signals that is specifically created for fleet 
management. We are currently on FMS standard version 4, 
which includes over 30 parameters. FMS can read CAN signals 
at high frequency, with a data refresh rate of 10 milliseconds. 
Although FMS was initially only available in trucks and buses, 
the recent introduction of FMS gateways allow for the standard 
to be used in passenger cars and vans. Unlike its OBDII 
counterpart, FMS gateways have access to all CAN-bus 
parameters, which, in some vehicles is greater than 2500.  

B. Flow Based Programming 

Although Flow Based Programming has been around since the 
late 1960s, it has seen a recent surge in popularity. Projects such 
as NoFlo, NodeRed, Apache Nifi, and Cisco’s Kinetic have 
noticed and taken advantage of the strengths of FBP and the 
processing of data flows, which is a major requirement of the 
modern data-driven applications, thus making it a viable 
programming model for this oncoming paradigm shift to IoT. 
     FBP [5] can be viewed as a technology where an application 
is constructed as a network of asynchronous processes 
exchanging data chunks and applying transformations to them. 
FBP is a model ideally suited to IoT as its aim is to concentrate 
on the data and data streams first before deciding what 
processes are needed to convert between the different data 
streams. In object-orientated programming, you have to decide 
on the object classes, and then decide what messages each class 
should be able to respond to [6]. While it is possible to create 
real time interactive IoT applications using traditional 
programming tools, it can quite often be a difficult task.  
    One of the prime advantages of FBP is its modularity, 
meaning the degree to which a system's components may be 
separated and recombined. Nate Edwards of IBM [7] coined the 
term "configurable modularity" to denote an ability to reuse 
independent components just by changing their 
interconnections. A main characteristic of a system that exhibits 
“configurable modularity” is that you can build them out of 
"black box" reusable modules. While it is necessary to connect 
them together, they do not have to be modified to make this 
happen. The author of [8] discusses many of the inherent 
benefits with the data flow /flow-based programming 
paradigm, including implicit pipeline parallelism, exceptional 
composability, testability, inspectability and code re-use. 
 
Based on the identified research opportunity, answering the 
following research questions is the aim of this work: 

1) Can a multi-tier Flow Based Programming architecture 
enhance the distribution of vehicle sensor information in Smart 
cities? 

2) What criteria should be used to determine where in the 
network processing should be performed? 
The layout of this paper is as follows. Related work that 
informed and inspired this project is provided in Section II.  A 
description of the evaluation of OBDII and FMS is provided in 
section III, followed by an overview of our reference 
architecture and implementation in section IV and V. We finish 
with a conclusion and future work plan in Section VI. 

II. RELATED WORK 

Traditionally, IoT devices and wireless sensor networks 
(WSNs) were commonly designed to transfer data to remote 
servers and computing Clouds as discussed in [9], [10], and 
[11]. More recent work such as [12] propose a real-time job 
scheduler in Hadoop for Big Data. The scheduler aims to 
manage cluster resources in such a way that the real time jobs 
will not be affected by the long running (batch jobs), and vice-
versa. The case study is applied as support for Smart City 
applications, taxicabs in particular. Although efficient in its 
design, all data is transferred to a single location in a completely 
centralized scheduler. 
    The authors of [13] propose an architecture for streaming 
spatio-temporal event processing, analysis and near real-time 
visualization. It is comprised of fully open source software and 
focuses on a use case involving a fleet of snow ploughs. 
Information on the plows is published to the public, as well as 
road coverage data. Technologies such as LocationTech 
GeoMesa, GeoTools, and GeoServer are used to enable 
geospatially-aware complex event processing (CEP) solutions. 
There are some challenges when it comes to processing stream 
geospatial events, such as handling differences in event and 
processing time. However, the inclusion of software such as 
Apache Storm [14]and Apache Kafka [15] into this architecture 
by the authors addressed such problems.  
    Hortonworks [16] demonstrated the simulation of bi-
directional data communication between an on-vehicle 
platform and the cloud. This was achieved by loading Apache 
MiNiFi onto a custom Qualcomm modem located in a 
connected car, allowing the vehicles to transmit data to their 
HDF (Hortonworks Data Flow) platform [17]. The demo 
highlighted how to deliver critical capabilities for vehicle 
communication. The centralized HDF platform could process 
key data such as speed and geo-location in real-time. Minifi 
could manage how and when to transmit much larger but less 
time-relevant data, (system diagnostics, etc.) This data could be 
batched on the vehicle and sent in bursts over known Wi-Fi 
locations. This is an effective solution as bandwidth over LTE 
is expensive.  
    In [18] we propose a distributed data processing architecture 
for Edge devices in an IoT environment. Our approach focuses 
on a vehicular trucking use case. The traditionally centralized 
Storm processes such as calculating average speeds and 
aggregating driver errors are recreated on the Edge devices 
using a combination of Apache MiNiFi and the user’s custom-
built programs. This work focused on transmitting “un-normal” 
driving events such as speeding, lane departure etc, while 
storing all data on board which can be uploaded in bursts over 
known Wi-Fi spots. This was an effective use case that 
provided a solution in transmitting time dependent data in real-
time yet storing all data locally. However, communication was 
only one directional, as information was not sent from the 
central server to the Edge devices.  
    There are a number of distributed middleware platform 
implementations of Edge-Computing that provide in network 
processing capability that leverages computation resources of 



 
 

Edge devices [19], [20]. However, there are limitations in these 
works when it comes to scalability and mobility.  
    In recent years, several runtime environments such as [21], 
[22]and [23] have begun to implement FBP inspired 
approaches. UFlow is proposed in [24]. Uflow is a concept of 
data flow transformation closer to the source, on the devices 
with constrained resources. The authors analyzed two tier IoT 
architecture composed of devices and the Cloud.  The scientific 
contribution of the paper as well as the concept of the data flow 
transformation is that the UFlow framework can be executed on 
a variety of resource-constrained embedded devices, and can be 
implemented on a NodeRED platform. In [25], a novel 
architecture called FogFlow is proposed. The aim is to ease the 
service orchestration and scalability for geo-distributed smart 
cities. Through the implementation of the dataflow 
programming model, developers in FogFlow only define a 
service topology (DAG) and decompose the IoT service into 
multiple processing units (black boxes). 

Monitoring CAN-Bus signals has a wealth of literature over 
the past decade, focusing on driver behaviour, CO2 emissions 
and fuel economy in particular. Different variations of 
algorithms have been used for calculating fuel economy via 
OBDII [26], [27]. In [28], the authors performed a comparison 
between GPS and OBDII, reporting that GPS and smartphone 
sensor based techniques, combined with map and/or crowd-
sourced data, can achieve greater than 94% correlation to OBDII 
information with regards to vehicle speed, acceleration etc.     In 
[29] a methodology is developed to calculate, in real-time, the 
consumption and environmental impact of spark ignition and 
diesel vehicles from a set of OBDII parameters.  

 However, there are limitations in the literature regarding 
comparisons of vehicle data. A comparison of OBDII and FMS 
is presented in [30]. With a specific requirement in mind, the 
authors measure a limited number of parameters from both 
standards. Vehicle speed and RPM (Engine Revs per minute) are 
measured and compared, with only slight differences recorded. 
The only significant difference in FMS and OBDII was recorded 
when monitoring fuel economy. Testing shows the FMS fuel 
rate to be highly accurate compared to OBDII. However, only a 
basic algorithm using OBDII parameters was tested.  
    The same authors again stated in [31] that when comparing 
OBDII and FMS, differences in vehicle speed and RPM can 
only be noticed in short measuring time, up to 20 seconds. With 
regards to calculating fuel economy, corresponding calibration 
factors are required for OBDII. However, as previously 
mentioned, only one OBDII fuel algorithm was tested.  
    A system was proposed in [3] to log OBDII data and direct 
CAN data at the same time. This work primarily focused on the 
rates of data acquisition using a limited number of CAN and 
OBDII parameters for comparison. The OBDII adapter had a 
maximum request rate of 9HZ for one parameter, compared to 
25 HZ for CAN. Although the authors state that the quality of 
analysis can be improved by having more information, results 
on improved accuracy due to an increase in data granularity 
were not provided. 

III. OBDII & FMS COMPARITIVE EVALUATION 

A significant comparison of both standards was evaluated over 
a three month period in which devices were installed in a 
vehicle that monitored OBDII and FMS data over the same 
trips. In total, 11 FMS parameters, and 22 OBDII parameters 
(decreased to 8 to improve granularity to 2Hz), were tested 
simultaneously. Monitoring basic parameters such as speed and 
RPM provide little difference between standards, however, 
FMS proved more accurate in stop and go traffic, as shown in 
Figure 1. OBDII had a tendency to drop to zero during slow 
speeds, which can greatly skewer statistical analysis, as shown 
in Table 1. FMS also outperformed OBDII in fuel consumption 
monitoring, data granularity and overall accuracy. Additional 
FMS parameters such as Clutch and Brake usage, and 
accelerator pedal position also give FMS an edge in monitoring 
driver behaviour. Table 2 gives an overview of the better 
performing standard in a series of tested scenarios. 
 

 
Figure 1: Stop and Go Traffic over a 50 second period. OBDII drops to zero for 
long periods, even when vehicle is moving slowly 

Table 1: Statistical analysis on stop and go traffic as represented in Figure 1 
Description OBDII Speed FMS Speed 

Count 50 50 

Mean 0.9 1.76 

Std 2.06 1.92 

Min 0 0 

25% 0 0 

50% 0 1.5 

75% 1 3 

Max 8 8 

 
Table 2: Scenarios that were tested during comparison of OBDII and FMS 

Scenarios Preferred Standard 

Basic Parameters FMS OBDII 

Urban Traffic FMS  

Data Granularity FMS  

Data Accuracy FMS  

Fuel Monitoring FMS  

Security FMS  

Available Parameters FMS  

CO2 Emission Calculations FMS  

Cost of devices  OBDII 

User Friendly  OBDII 

  



 
 

 

 
Figure 2: Current Reference Architecture showing dataflow and communication between edge and central container

For these reasons, FMS is the chosen standard for the proposed 
work. Precision is key in terms of monitoring traffic and driver 
behaviour in urban areas. While OBDII can adequately provide 
valuable information, at a cost effective price, it performs 
poorly in too many areas to be considered on a wide scale. 

IV. ARCHITECTURE 

Previous publications [18], [32], and [33] were devoted to 
various implementations of our reference architecture. The 
architecture consists of three main components: 
IoT Sensors – The IoT sensors create the data. In most cases, 
these will have limited resources, and transmit data to an edge 
gateway device for processing. 
Edge Container – The edge container represents an edge 
device with local processing capability. This device acts as a 
gateway for IoT sensors. Custom programs of any language can 
be incorporated into the local processing unit. Data analysis can 
be influenced by internal factors such as network connectivity, 
CPU or RAM usage, external factors such as latency, or 
requests received from the central controller. The edge 
container can be viewed as an agent to the central container. In 
future work, the edge container is placed in the vehicles, and 
also RSUs, which allow for performing complex rules on data 
in motion to intelligently reduce, compress and process data 
throughout the network. 
Central Container. The central container (or controller) can be 
viewed as a cloud server with large processing and storage 
capacity. Figure 2 represents an illustration of the architecture 
to date. The service UI allows the user to interact with the 
dataflows between the edge and central container. Through the 
service UI, the user can pass new logic to be performed on the 
edge and central container. Incoming results can be viewed in 
real-time through the UI.  
The central container ingests data from the edge containers.  
Data is routed to a local database for storage, or the processing 
unit for analysis. The processing unit performs model building 
as it has access to a learning algorithm repository and the local 
database.  

The central container acts as a coordinator for the edge 
devices/agents. It has the ability to send requests and 
information to its agents. This control data may be influenced by 
external factors or user requests directly from the service UI. 

V. IMPLEMENTATION 

Acquiring CAN-Bus data in a non-intrusive way can be 
problematic. Cutting or soldering connections to the vehicle 
CAN has potential to cause damage. However, recently, the 
development of a ‘CAN-Bus clip’, Figure 3, a non-intrusive 
reading device that clips to the outside of the cables, has 
addressed this issue.  The clip is placed over the CAN-High and 
CAN-Low wires, and senses the data passing through the wires, 
directly from the CAN network. The CAN-Bus clip is safe, 
reliable and coded to understand each make & model. The clip 
is connected to a FMS gateway, which transforms the CAN 
signals into the FMS format. A Raspberry Pi, acting as the edge 
container, ingests the FMS data via Bluetooth, and performs 
local processing, Figure 4.  

The Raspberry Pi is equipped with FBP technology, 
allowing for the creation of data flows that perform computation 
on the FMS information in real time. Figure 5 shows a sample 
of the logic that is performed on the FMS parameters, creating 
new parameters that are important in monitoring driving 
behaviour. Engine idle time for example, can be calculated from 
raw parameters such a vehicle speed and RPM. When RPM is 
above zero, but vehicle speed is zero, the engine is running and 
considered idle. Hard acceleration and deceleration have been 

 

 
Figure 3: Contactless CAN clip. CAN-High and LOW wires pass 
through the clip, in which all CAN signals are sensed and transmitted 
to FMS Gateway 



 
 

defined as an increase/decrease of 2.598 m/s2 for the starting 
vehicles and 1.4705 m/s2 when driving [34]. Therefore, hard 
acceleration/deceleration could then be calculated using the 
following equation: 

 
𝐴 = (𝑚𝑠 − 𝑚𝑠. 𝑠ℎ𝑖𝑓𝑡 > 1.4705) 

 
Where A is aggressive driving behaviour, ms is the current 

value for m/s2 and ms.shift is the value of m/s2 one second 

previous. Fuel rate is a parameter made available on the CAN-
Bus, and is measured in litres per hour. However, fuel economy 
is commonly measured in volume of fuel over distance (Litres 
per 100km in Europe, or Miles per Gallon in the U.S). Fuel 
economy is calculated with the following equation: 

 

𝐹𝑢𝑒𝑙 𝐸𝑐𝑜𝑛𝑜𝑚𝑦 = 100
𝐹𝑅

𝑉𝑆
 

 
Where FR is Fuel Rate and VS is Vehicle Speed. 
All vehicle parameters are then transmitted to the nearest RSU 
via whatever communication protocol is in use (WIFI, 802.11P, 
also known as WAVE [35] , 4G or 5G).                                                

In our proposed architecture, the RSU is also equipped with 
FBP technology that can further process incoming vehicle data. 
Multiple vehicle data may be aggregated by the RSU, as shown 
in Figure 6. The RSU will have bi-directional communication 
with nearby vehicles, giving it the capacity to change the 
computation that occurs on the vehicles if necessary. (For 
example, if network latency passes a certain threshold due to too 
many connected vehicles). 

 

 
Figure 4: CAN-Bus signals intercepted by clamp and transmitted to FMS 
gateway.  Edge Container performs local processing before transmission to 
RSU. 

 
Figure 5: Sample of Dataflow on Edge Container. Ingesting raw                          
data and performing logic locally before transmitting to RSU 

 

 
Figure 6: Dataflow and Logic performed on RSU. Tasks may be passed to 
vehicles from RSU or Central Controller 

VI. CONCLUSIONS AND FUTURE WORK 

The contributions of this work thus far are as follows: 
1) A comparative evaluation of OBDII and FMS standard, 

making available an open-source dataset to the research 
community [36]  .  

2) A standard-based programming model for vehicle 
telematics in smart cities. We extend a dataflow programming 
model across heterogeneous network nodes. 

3) An efficient bi-directional vehicle telematics 
architecture capable of advanced local processing of sensor 
data. 
To date, the focus has been on Edge to Central Container 
communication. The inclusion of RSUs into this scenario aims 
to further enhance the architectures role in the handling of 
vehicle telematics in a smart city.  The future work plan is to 
test the scalability, and efficiency of the architecture. This will 
be achieved via simulation tools. Simulations will utilize the 
WAVE protocol, as it is likely to be implemeted in future 
Vehicle-to-Infrastructure scenarios. The aim will be to 
determine the role of the RSU. What level of Governance can 



 
 

the RSU achieve over connected vehicles? In busy traffic 
scenarios, where latency becomes an issue, can the RSU change 
the level of local processing that occurs on the vehicle?  
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