
This work was sponsored by Irish Research Council & Tech-Auto Ltd
Grant no. EBPPG/2018/206

A Flow Based Architecture for Efficient Distribution of
Vehicular Information in Smart Cities

Roger Young
Department of Computer & Software Engineering

Athlone Institute of Technology
Athlone, Ireland

r.young@research.ait.ie

 Dr. Paul Jacob
Department of Computer& Software Engineering

Athlone Institute of Technology
Athlone, Ireland
pjacob@ait.ie

Dr. Sheila Fallon,
Department of Computer & Software Engineering

Athlone Institute of Technology
Athlone, Ireland

sheilafallon@ait.ie

Dr. Denis O Dwyer
Tech-Auto Ltd

Tullamore, Ireland
dodwyer@tech-auto.ie

Abstract—The Introduction of the Internet of Things has made the
vision of “Smart Cities” a very reachable goal. Aggregating data
from a wealth of sensors throughout a city, with the aim of
improving quality of life for its dwellers has become a major focus
for city developers. The automotive sector is in prime position to
play a pivotal role in the success of Smart Cities. Vehicle
Telematics, the process of gathering and transmitting Geo-
Enriched vehicle data, is seen as a key enabler in improving
mobility in urban areas. Modern vehicles generate up to 5GB an
hour, with newer models generating far more. How this data is to
be processed and transmitted is a hotly researched topic. This
work focuses on raw vehicle data extraction and the valuable
insights it holds in terms of fuel consumption and driver
behaviour. Data is extracted and distributed from the vehicle
using a novel architecture consisting of the FMS standard and a
Flow Based Programming inspired approach. Road Side Units
(RSUs) are set to play a key role in the area of vehicle
communication in urban areas. This work will evaluate the level
of governance the RSUs can achieve in Vehicle-to-Infrastructure
(V2I) scenarios.

Keywords—Smart Cities, Connected Vehicles, RSUs, Vehicle
Telematics, Flow Based Programming, FMS, OBDII, Apache
Minifi, Apache Nifi

I. INTRODUCTION

In time, connected vehicles may be seen as the success story of
Internet of Things. Put simply, one vehicle is a moving cluster
of sensors that can provide a wealth of information on its
surroundings. If harvested correctly, thousands of vehicles
moving throughout a city can provide insight into traffic flows,
driving behaviour, road and weather conditions and much more.
There has been much research on extracting vehicle data from
the vehicle network (CAN-Bus), however, the majority has
acquired the data via the OBDII interface. In this work, a
comparison is provided between OBDII and another standard
called FMS. OBDII is widely used due to its ease of access and
cheap devices, however, many experts in the field consider it
unreliable and potentially harmful to the vehicle network. FMS
on the other hand, was designed specifically for fleet
management.
 An efficient architecture is required to seamlessly transmit
vehicle data. This work aims to show how Flow Based
Programming (FBP) may be well suited to ingesting and
processing this large vehicle data in real time, while gaining
valuable insight that may improve traffic and mobility issues in

urban areas. Through FBP, it may be possible to add compute
power anywhere in the network from source to destination,
enabling critical decisions to be made and appropriate actions
be taken with minimum delay. Further processing can be
achieved at a higher location in the FBP architecture.

A. CAN-Bus Network

Modern vehicles are equipped with a highly complex network
of around 70 Electronic Control Units (ECUs). ECUs
communicate with each other over a standard communication
protocol known as Controller Area Network (CAN). First
introduced by Bosch in 1991, the CAN aimed to simplify the
communication between different ECUs within a vehicles using
one single pair of twisted wires, known as CAN-High and
CAN-Low. CAN provides a communication rate of up to
1Mbps [1], and utilizes a broadcasting system. Many CAN
signals are broadcasted at a rate of every 10ms. There are two
well-known interfaces and standards that connect to the CAN-
Bus; OBDII and FMS. While the CAN-Bus can be regarded as
the networking system, OBDII and FMS can be viewed as
languages that interpret the CAN data.
 OBDII (On-board Diagnostics) [2] was first introduced in the
U.S in 1996, and 2001 in Europe. All OBDII compliant vehicles
will have an OBDII port within two feet of the steering wheel.
The OBDII standard specifies the connector and its pinout, the
electrical signaling protocols available, and the messaging
format. The goal of OBDII was to provide communication to
the CAN-Bus, giving access to real-time data from different
ECUs of the vehicle. However, the purpose was to aid in
locating issues within the vehicle, not for tracking purposes as
it has been used over the past decade.
 There are over 200 available parameters (PIDS) available via
OBDII. PIDs can be requested using an OBDII adapter, which
can transmit the output to a smartphone using Bluetooth or Wi-
Fi. The recommended rate of requesting PIDs is 1Hz. Due to its
ease of access, a large number of telematics companies
identified the OBDII port as a way of obtaining vehicle data to
support the delivery of new fleet telematics services and started
to exploit it in their solutions [3]. However, OBDII works on a
request basis, with many experts regarding it as an unsuitable,
and intrusive way of gaining data.
In 2002, the six major truck manufacturers (Volvo, Scania,
Iveco, MAN, DAF, and Mercedes-Benz) created a standardized
vehicle interface for GPS based tracking systems, called the

FMS (Fleet Management System) standard [4]. FMS is a subset
of CAN-Bus signals that is specifically created for fleet
management. We are currently on FMS standard version 4,
which includes over 30 parameters. FMS can read CAN signals
at high frequency, with a data refresh rate of 10 milliseconds.
Although FMS was initially only available in trucks and buses,
the recent introduction of FMS gateways allow for the standard
to be used in passenger cars and vans. Unlike its OBDII
counterpart, FMS gateways have access to all CAN-bus
parameters, which, in some vehicles is greater than 2500.

B. Flow Based Programming

Although Flow Based Programming has been around since the
late 1960s, it has seen a recent surge in popularity. Projects such
as NoFlo, NodeRed, Apache Nifi, and Cisco’s Kinetic have
noticed and taken advantage of the strengths of FBP and the
processing of data flows, which is a major requirement of the
modern data-driven applications, thus making it a viable
programming model for this oncoming paradigm shift to IoT.
 FBP [5] can be viewed as a technology where an application
is constructed as a network of asynchronous processes
exchanging data chunks and applying transformations to them.
FBP is a model ideally suited to IoT as its aim is to concentrate
on the data and data streams first before deciding what
processes are needed to convert between the different data
streams. In object-orientated programming, you have to decide
on the object classes, and then decide what messages each class
should be able to respond to [6]. While it is possible to create
real time interactive IoT applications using traditional
programming tools, it can quite often be a difficult task.
 One of the prime advantages of FBP is its modularity,
meaning the degree to which a system's components may be
separated and recombined. Nate Edwards of IBM [7] coined the
term "configurable modularity" to denote an ability to reuse
independent components just by changing their
interconnections. A main characteristic of a system that exhibits
“configurable modularity” is that you can build them out of
"black box" reusable modules. While it is necessary to connect
them together, they do not have to be modified to make this
happen. The author of [8] discusses many of the inherent
benefits with the data flow /flow-based programming
paradigm, including implicit pipeline parallelism, exceptional
composability, testability, inspectability and code re-use.

Based on the identified research opportunity, answering the
following research questions is the aim of this work:

1) Can a multi-tier Flow Based Programming architecture
enhance the distribution of vehicle sensor information in Smart
cities?

2) What criteria should be used to determine where in the
network processing should be performed?
The layout of this paper is as follows. Related work that
informed and inspired this project is provided in Section II. A
description of the evaluation of OBDII and FMS is provided in
section III, followed by an overview of our reference
architecture and implementation in section IV and V. We finish
with a conclusion and future work plan in Section VI.

II. RELATED WORK

Traditionally, IoT devices and wireless sensor networks
(WSNs) were commonly designed to transfer data to remote
servers and computing Clouds as discussed in [9], [10], and
[11]. More recent work such as [12] propose a real-time job
scheduler in Hadoop for Big Data. The scheduler aims to
manage cluster resources in such a way that the real time jobs
will not be affected by the long running (batch jobs), and vice-
versa. The case study is applied as support for Smart City
applications, taxicabs in particular. Although efficient in its
design, all data is transferred to a single location in a completely
centralized scheduler.
 The authors of [13] propose an architecture for streaming
spatio-temporal event processing, analysis and near real-time
visualization. It is comprised of fully open source software and
focuses on a use case involving a fleet of snow ploughs.
Information on the plows is published to the public, as well as
road coverage data. Technologies such as LocationTech
GeoMesa, GeoTools, and GeoServer are used to enable
geospatially-aware complex event processing (CEP) solutions.
There are some challenges when it comes to processing stream
geospatial events, such as handling differences in event and
processing time. However, the inclusion of software such as
Apache Storm [14]and Apache Kafka [15] into this architecture
by the authors addressed such problems.
 Hortonworks [16] demonstrated the simulation of bi-
directional data communication between an on-vehicle
platform and the cloud. This was achieved by loading Apache
MiNiFi onto a custom Qualcomm modem located in a
connected car, allowing the vehicles to transmit data to their
HDF (Hortonworks Data Flow) platform [17]. The demo
highlighted how to deliver critical capabilities for vehicle
communication. The centralized HDF platform could process
key data such as speed and geo-location in real-time. Minifi
could manage how and when to transmit much larger but less
time-relevant data, (system diagnostics, etc.) This data could be
batched on the vehicle and sent in bursts over known Wi-Fi
locations. This is an effective solution as bandwidth over LTE
is expensive.
 In [18] we propose a distributed data processing architecture
for Edge devices in an IoT environment. Our approach focuses
on a vehicular trucking use case. The traditionally centralized
Storm processes such as calculating average speeds and
aggregating driver errors are recreated on the Edge devices
using a combination of Apache MiNiFi and the user’s custom-
built programs. This work focused on transmitting “un-normal”
driving events such as speeding, lane departure etc, while
storing all data on board which can be uploaded in bursts over
known Wi-Fi spots. This was an effective use case that
provided a solution in transmitting time dependent data in real-
time yet storing all data locally. However, communication was
only one directional, as information was not sent from the
central server to the Edge devices.
 There are a number of distributed middleware platform
implementations of Edge-Computing that provide in network
processing capability that leverages computation resources of

Edge devices [19], [20]. However, there are limitations in these
works when it comes to scalability and mobility.
 In recent years, several runtime environments such as [21],
[22]and [23] have begun to implement FBP inspired
approaches. UFlow is proposed in [24]. Uflow is a concept of
data flow transformation closer to the source, on the devices
with constrained resources. The authors analyzed two tier IoT
architecture composed of devices and the Cloud. The scientific
contribution of the paper as well as the concept of the data flow
transformation is that the UFlow framework can be executed on
a variety of resource-constrained embedded devices, and can be
implemented on a NodeRED platform. In [25], a novel
architecture called FogFlow is proposed. The aim is to ease the
service orchestration and scalability for geo-distributed smart
cities. Through the implementation of the dataflow
programming model, developers in FogFlow only define a
service topology (DAG) and decompose the IoT service into
multiple processing units (black boxes).

Monitoring CAN-Bus signals has a wealth of literature over
the past decade, focusing on driver behaviour, CO2 emissions
and fuel economy in particular. Different variations of
algorithms have been used for calculating fuel economy via
OBDII [26], [27]. In [28], the authors performed a comparison
between GPS and OBDII, reporting that GPS and smartphone
sensor based techniques, combined with map and/or crowd-
sourced data, can achieve greater than 94% correlation to OBDII
information with regards to vehicle speed, acceleration etc. In
[29] a methodology is developed to calculate, in real-time, the
consumption and environmental impact of spark ignition and
diesel vehicles from a set of OBDII parameters.

 However, there are limitations in the literature regarding
comparisons of vehicle data. A comparison of OBDII and FMS
is presented in [30]. With a specific requirement in mind, the
authors measure a limited number of parameters from both
standards. Vehicle speed and RPM (Engine Revs per minute) are
measured and compared, with only slight differences recorded.
The only significant difference in FMS and OBDII was recorded
when monitoring fuel economy. Testing shows the FMS fuel
rate to be highly accurate compared to OBDII. However, only a
basic algorithm using OBDII parameters was tested.
 The same authors again stated in [31] that when comparing
OBDII and FMS, differences in vehicle speed and RPM can
only be noticed in short measuring time, up to 20 seconds. With
regards to calculating fuel economy, corresponding calibration
factors are required for OBDII. However, as previously
mentioned, only one OBDII fuel algorithm was tested.
 A system was proposed in [3] to log OBDII data and direct
CAN data at the same time. This work primarily focused on the
rates of data acquisition using a limited number of CAN and
OBDII parameters for comparison. The OBDII adapter had a
maximum request rate of 9HZ for one parameter, compared to
25 HZ for CAN. Although the authors state that the quality of
analysis can be improved by having more information, results
on improved accuracy due to an increase in data granularity
were not provided.

III. OBDII & FMS COMPARITIVE EVALUATION

A significant comparison of both standards was evaluated over
a three month period in which devices were installed in a
vehicle that monitored OBDII and FMS data over the same
trips. In total, 11 FMS parameters, and 22 OBDII parameters
(decreased to 8 to improve granularity to 2Hz), were tested
simultaneously. Monitoring basic parameters such as speed and
RPM provide little difference between standards, however,
FMS proved more accurate in stop and go traffic, as shown in
Figure 1. OBDII had a tendency to drop to zero during slow
speeds, which can greatly skewer statistical analysis, as shown
in Table 1. FMS also outperformed OBDII in fuel consumption
monitoring, data granularity and overall accuracy. Additional
FMS parameters such as Clutch and Brake usage, and
accelerator pedal position also give FMS an edge in monitoring
driver behaviour. Table 2 gives an overview of the better
performing standard in a series of tested scenarios.

Figure 1: Stop and Go Traffic over a 50 second period. OBDII drops to zero for
long periods, even when vehicle is moving slowly

Table 1: Statistical analysis on stop and go traffic as represented in Figure 1
Description OBDII Speed FMS Speed

Count 50 50

Mean 0.9 1.76

Std 2.06 1.92

Min 0 0

25% 0 0

50% 0 1.5

75% 1 3

Max 8 8

Table 2: Scenarios that were tested during comparison of OBDII and FMS

Scenarios Preferred Standard

Basic Parameters FMS OBDII

Urban Traffic FMS

Data Granularity FMS

Data Accuracy FMS

Fuel Monitoring FMS

Security FMS

Available Parameters FMS

CO2 Emission Calculations FMS

Cost of devices OBDII

User Friendly OBDII

Figure 2: Current Reference Architecture showing dataflow and communication between edge and central container

For these reasons, FMS is the chosen standard for the proposed
work. Precision is key in terms of monitoring traffic and driver
behaviour in urban areas. While OBDII can adequately provide
valuable information, at a cost effective price, it performs
poorly in too many areas to be considered on a wide scale.

IV. ARCHITECTURE

Previous publications [18], [32], and [33] were devoted to
various implementations of our reference architecture. The
architecture consists of three main components:
IoT Sensors – The IoT sensors create the data. In most cases,
these will have limited resources, and transmit data to an edge
gateway device for processing.
Edge Container – The edge container represents an edge
device with local processing capability. This device acts as a
gateway for IoT sensors. Custom programs of any language can
be incorporated into the local processing unit. Data analysis can
be influenced by internal factors such as network connectivity,
CPU or RAM usage, external factors such as latency, or
requests received from the central controller. The edge
container can be viewed as an agent to the central container. In
future work, the edge container is placed in the vehicles, and
also RSUs, which allow for performing complex rules on data
in motion to intelligently reduce, compress and process data
throughout the network.
Central Container. The central container (or controller) can be
viewed as a cloud server with large processing and storage
capacity. Figure 2 represents an illustration of the architecture
to date. The service UI allows the user to interact with the
dataflows between the edge and central container. Through the
service UI, the user can pass new logic to be performed on the
edge and central container. Incoming results can be viewed in
real-time through the UI.
The central container ingests data from the edge containers.
Data is routed to a local database for storage, or the processing
unit for analysis. The processing unit performs model building
as it has access to a learning algorithm repository and the local
database.

The central container acts as a coordinator for the edge
devices/agents. It has the ability to send requests and
information to its agents. This control data may be influenced by
external factors or user requests directly from the service UI.

V. IMPLEMENTATION

Acquiring CAN-Bus data in a non-intrusive way can be
problematic. Cutting or soldering connections to the vehicle
CAN has potential to cause damage. However, recently, the
development of a ‘CAN-Bus clip’, Figure 3, a non-intrusive
reading device that clips to the outside of the cables, has
addressed this issue. The clip is placed over the CAN-High and
CAN-Low wires, and senses the data passing through the wires,
directly from the CAN network. The CAN-Bus clip is safe,
reliable and coded to understand each make & model. The clip
is connected to a FMS gateway, which transforms the CAN
signals into the FMS format. A Raspberry Pi, acting as the edge
container, ingests the FMS data via Bluetooth, and performs
local processing, Figure 4.

The Raspberry Pi is equipped with FBP technology,
allowing for the creation of data flows that perform computation
on the FMS information in real time. Figure 5 shows a sample
of the logic that is performed on the FMS parameters, creating
new parameters that are important in monitoring driving
behaviour. Engine idle time for example, can be calculated from
raw parameters such a vehicle speed and RPM. When RPM is
above zero, but vehicle speed is zero, the engine is running and
considered idle. Hard acceleration and deceleration have been

Figure 3: Contactless CAN clip. CAN-High and LOW wires pass
through the clip, in which all CAN signals are sensed and transmitted
to FMS Gateway

defined as an increase/decrease of 2.598 m/s2 for the starting
vehicles and 1.4705 m/s2 when driving [34]. Therefore, hard
acceleration/deceleration could then be calculated using the
following equation:

𝐴 = (𝑚𝑠 − 𝑚𝑠. 𝑠ℎ𝑖𝑓𝑡 > 1.4705)

Where A is aggressive driving behaviour, ms is the current

value for m/s2 and ms.shift is the value of m/s2 one second

previous. Fuel rate is a parameter made available on the CAN-
Bus, and is measured in litres per hour. However, fuel economy
is commonly measured in volume of fuel over distance (Litres
per 100km in Europe, or Miles per Gallon in the U.S). Fuel
economy is calculated with the following equation:

𝐹𝑢𝑒𝑙 𝐸𝑐𝑜𝑛𝑜𝑚𝑦 = 100
𝐹𝑅

𝑉𝑆

Where FR is Fuel Rate and VS is Vehicle Speed.
All vehicle parameters are then transmitted to the nearest RSU
via whatever communication protocol is in use (WIFI, 802.11P,
also known as WAVE [35] , 4G or 5G).

In our proposed architecture, the RSU is also equipped with
FBP technology that can further process incoming vehicle data.
Multiple vehicle data may be aggregated by the RSU, as shown
in Figure 6. The RSU will have bi-directional communication
with nearby vehicles, giving it the capacity to change the
computation that occurs on the vehicles if necessary. (For
example, if network latency passes a certain threshold due to too
many connected vehicles).

Figure 4: CAN-Bus signals intercepted by clamp and transmitted to FMS
gateway. Edge Container performs local processing before transmission to
RSU.

Figure 5: Sample of Dataflow on Edge Container. Ingesting raw
data and performing logic locally before transmitting to RSU

Figure 6: Dataflow and Logic performed on RSU. Tasks may be passed to
vehicles from RSU or Central Controller

VI. CONCLUSIONS AND FUTURE WORK

The contributions of this work thus far are as follows:
1) A comparative evaluation of OBDII and FMS standard,

making available an open-source dataset to the research
community [36] .

2) A standard-based programming model for vehicle
telematics in smart cities. We extend a dataflow programming
model across heterogeneous network nodes.

3) An efficient bi-directional vehicle telematics
architecture capable of advanced local processing of sensor
data.
To date, the focus has been on Edge to Central Container
communication. The inclusion of RSUs into this scenario aims
to further enhance the architectures role in the handling of
vehicle telematics in a smart city. The future work plan is to
test the scalability, and efficiency of the architecture. This will
be achieved via simulation tools. Simulations will utilize the
WAVE protocol, as it is likely to be implemeted in future
Vehicle-to-Infrastructure scenarios. The aim will be to
determine the role of the RSU. What level of Governance can

the RSU achieve over connected vehicles? In busy traffic
scenarios, where latency becomes an issue, can the RSU change
the level of local processing that occurs on the vehicle?

VII. REFERENCES

[1] O. Avatefipour and H. Malik, "State-Of-The-Art Survey on In-Vehicle
Communication "Can-Bus" Security and Vulnerabilities," ArXiv Prepr,
Michigan, 2018.

[2] "wikipedia.org/wiki/OBD-II_PIDs," [Online]. Available:
https://en.wikipedia.org/wiki/OBD-II_PIDs. [Accessed 2 June 2018].

[3] K. Khosravinia, M. Hassan, R. Raman and S. Al-Haddad, "Improved
Latency of CAN Vehicle Data Extraction Method," International
Conference on Internet of Vehicles, 2018.

[4] "fms-standard.com/," [Online]. Available: http://www.fms-
standard.com/. [Accessed 1 August 2018].

[5] J. P. Morrison, "Flow-Based Programming: A new approach to
application development," CreateSpace, 2010.

[6] J. Morrison, "Comparison between FBP and Object-Oriented
Programming," jpaulmorrison.com, [Online]. Available:
http://www.jpaulmorrison.com/fbp/oops.htm. [Accessed 29 09 2017].

[7] N. Edwards, "The Effect of Certain Modular Design Principles on
Testability," IBM Research Report, NY, 1974.

[8] "FBP inspired data flow syntax," bionics.i, 16 July 2016. [Online].
Available: http://bionics.it/posts/fbp-data-flow-syntax. [Accessed 20
September 2017].

[9] W. Kurschl and W. Beer, "Combining cloud computing and wireless
Sensor Networks," Proceedings of the 11th International Conference on
Information Integration and Web-based Applications & Services.
ACM, Hagenburg, 2009.

[10] S. K. Dash, S. Mohapatra and P. K. Pattnaik, "A survey on applications
of wireless sensor network using cloud computing," International
Journal of Computer Science & Emerging Technologies 1, no.4, 2010.

[11] M. Yuriyama and T. Kushida, "Sensor-cloud infrastructure-physical
sensor management with virtualized sensors on cloud computing,"
IEEE 13th International Conference on Network-Based Information
Systems (NBiS), Tokyo, 2010.

[12] C. Barbieru and F. Pop, "Soft Real-Time Hadoop Scheduler for Big
Data Processing in Smart Cities," IEEE, Bucharest, 2016.

[13] J. N. Hughes, M. D. Zimmerman, C. N. Eichelberger and A. D. Fox, "A
Survey of Techniques and Open-Source Tools for Processing Streams
of Spatio-Temporal Events," ACM, Charlottesville, 2016.

[14] R. Evans, "Apache Storm a Hands on Tutorial," IEEE, Urbana, 2015.

[15] HTC Global Services, "Apache Kafka – Your Event Stream Processing
Solution," htcinc.com.

[16] Guest Author, "Hortonworks.com," Hortonworks, 8 June 2016.
[Online]. Available: https://hortonworks.com/blog/qualcomm-
hortonworks-showcase-connected-car-platform-tu-automotive-detroit/.
[Accessed 11 February 2017].

[17] "HortonWorks DataFlow," Hortonworks, 2016.

[18] R. Young, S. Fallon and P. Jacob, "An Architecture for Intelligent Data
Processing on IoT Devices," IEEE, Athlone, 2017.

[19] S. Cherrier and e. al, "D-LITe : Distributed Logic for Internet of Things
sErvices," EEE International Conferences on Internet of Things, and
Cyber, Physical and Social Computing, 2011.

[20] D. Alessandrelli, M. Petraccay and P. Pagano, "T-Res: enabling
reconfigurable in-network processing in IoT-based WSNs," IEEE
International Conference on Distributed Computing in Sensor Systems,
Pisa, 2013.

[21] M. Blackstock and R. Lea, "Iot mashups with the wotkit," 3rd
International Conference on the Internet of Things, Vancouver, 2012.

[22] H. Burgius, "Noflo–flow-based programming for javascript," 2015.
[Online]. Available: http://noflojs. org.

[23] Node-RED, "nodered.org," nodered.org, October 2016. [Online].
Available:
https://flows.nodered.org/flow/6fe183c197b3464a1fe4d89744e068ff.
[Accessed 3 September 2017].

[24] T. Szydlo, R. Brzoza-Woch and G. C, "Flow-based programming for
IoT leveraging fog computing," IEEE 26th International Conference on
Enabling Technologies: Infrastructure for Collaborative Enterprises,
Krakow, 2017.

[25] B. e. a. Cheng, "Cheng, Bin, et al. "FogFlow: Easy Programming of IoT
Services Over Cloud and Edges for Smart Cities," IEEE Internet of
Things Journal, 2017.

[26] R. Malekian, N. Moloisane, L. Nair, B. Maharaj and U. Chude-
Okonkwo, "Design and Implementation of a Wireless OBD II Fleet
Management System," IEEE Sensors Journal, 2017.

[27] J. Meseguer, C. Toh, C. Calafate, J. Cano and P. Manzoni,
"DrivingStyles: A Mobile Platform for Driving Styles and Fuel
Consumption Characterization," Journal of Communications and
NEtworks, Vol. 19, NO. 2, 2017.

[28] R. Meng, C. Mao and R. Choudhury, "Driving analytics: Will it be
OBDs or smartphones?," Zendrive Whitepaper, 2014.

[29] J. Meseguer, C. Calafate, J. Cano and P. Manzoni, "Assessing the
Impact of Driving Behavior on Instantaneous Fuel Consumption," 12th
IEEE Consumer Communications and Networking Conference
(CCNC), Valencia, 2015.

[30] Z. Szalay et al, "ICT in Road Vehicles - Reliable vehicle sensor
information from OBD versus CAN," Models and Technologies for
Intelligent Transportation Systems, Budapest, 2015.

[31] D. Sik, T. Balogh, P. Ekler and L. Lengyel, "Comparing OBD and CAN
Sampling on the go with the SensorHUB Framework," Procedia
Engineering, Budapest, 2016.

[32] R. Young, S. Fallon and P. Jacob, "A Governance Architecture for Self-
Adaption & control in IoT Applications," Codit, 2018.

[33] R. Young, S. Fallon and P. Jacob, "Dynamic Collaboration of
Centralized & Edge Processing for Coordinated Data Management in
an IoT Paradigm," AINA, 2018.

[34] E. Choi and E. Kim, "Critical Aggressive Acceleration Values and
Models for Fuel Consumption When Starting and Driving a Passenger
Car Running on LPG," International Journal of Sustainable
Transportation, 2017.

[35] I.-S. S. Board, "Draft Guide for Wireless Access in Vehicular
Environments (WAVE) Architecture," The Institute of Electrical and
Electronics Engineers, Inc., 2016.

[36] R. Young, S. Fallon, P. Jacob and D. O'Dwyer, "Vehicle Telematics as
a Key Enabler in the Development of Smart Cities," Unpublished, 2019.

[37] "A Survey of Techniques and Open-Source Tools for Processing
Streams of Spatio-Temporal Events".

[38] A. Zavalko, "Applying energy approach in the evaluation of eco-driving
skill and eco-driving training of truck drivers," Transportation Research
Part D, 2018.

View publication statsView publication stats

