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Abstract— Mobile devices are widely used today for speech 

communication. The environments in which these devices are 

used are widely varied and often the level of background noise in 

the speaker’s environment can be significant. The purpose of 

speech enhancement is to reduce the level of background noise, 

ideally to such a level that it is not noticed by the listener. While 

speech enhancement algorithms can significantly reduce the noise 

level in a speech signal, improving speech quality, it is widely 

recognized that enhancement algorithms can have a negative 

impact on speech intelligibility. This paper compares the effect of 

three different speech enhancement algorithms on the 

intelligibility and the quality of speech. This work is the initial 

phase of an investigation into mitigating the impact of speech 

enhancement algorithms on speech intelligibility. The speech 

enhancement algorithms evaluated each use different approaches 

for noise reduction, namely, a statistical model-based algorithm, 

a noise estimation algorithm and a wavelet packet decomposition-

based algorithm. Two objective speech intelligibility 

measurements and three objective speech quality measurements 

are used to assess the performance of the enhancement 

algorithms. The results of the experiments show that all the 

speech enhancement algorithms in this study have a negative 

impact on speech intelligibility to varying degrees. 

Keywords—speech enhancement; speech quality; speech 

intelligibility 

I. INTRODUCTION 

Speech communication using some form of mobile device 
is an essential part of life today. With increased mobility, the 
users of mobile devices are to be found having conversations in 
many different environments, with different types and levels of 
background noise. This background noise when added to the 
speech can be uncomfortable for a listener, making it difficult 
to partake in the conversation. The speech quality is used to 
describe how comfortable it is for someone to listen to the 
speech. The noise, classed as additive noise, can also affect the 
speech intelligibility, a measure of how well the content of the 
speech conversation can be understood. In order to improve the 
intelligibility and the quality of speech that originates in a 
noisy background the speech needs to be processed in some 
way before transmission to a listener. 

The aim of speech enhancement algorithms is to remove, or 
reduce the level of, noise from a noisy speech utterance. 
Speech enhancement algorithms are to be found in human-to-
human communication systems as well as human-to-machine 

communication systems. Automatic speech recognition (ASR) 
is an example of an application where an application is 
designed to recognise words or commands and respond 
appropriately when interacting with a human. In ASR, speech 
quality is not as important as in human-to-human 
communication. For both ASR and human-to-human 
communication, speech intelligibility, correctly interpreting the 
meaning or intent of the speech content, is important. Specific 
speech enhancement algorithms are therefore more suited for 
use in particular circumstances. For human-to-human 
communication systems enhancing the noisy speech should not 
compromise the speech intelligibility and should improve the 
speech quality. 

Speech enhancement algorithms can be classed under 
different headings, for example, statistical model-based[1], 
noise-estimation-based [2], subspace algorithms [3] and 
spectral subtraction algorithms [4]. More recently wavelet 
packet decomposition [5], machine learning and information 
theory [6] have been applied by researchers to the area of 
speech enhancement. Enhancement algorithms can also be 
categorised based on which domain they operate in. The three 
domains are the time domain, the frequency domain, and the 
time-frequency domain. Subspace enhancement algorithms are 
implemented in the time domain. The principle of subspace 
enhancement algorithms is to decompose the noisy speech’s 
vector space into two subspaces, one with the noisy signal and 
the other with the clean speech signal. Statistical model-based, 
spectral subtraction and noise estimation algorithms operate in 
the frequency domain. Statistical model-based algorithms 
estimate the distribution of speech Fourier transform 
coefficients in order to fit the statistical model in question. 
Spectral subtraction algorithms subtract the estimated noise 
power spectrum from the noisy speech power spectrum. 
Spectral subtraction is based on the concept that the noise and 
the speech signal are independent of each other so that the 
clean speech spectrum can be obtained. The conventional way 
to do noise estimation is to use voice activity detection (VAD) 
[7], which is used to estimate and update the noise spectrum 
during periods in which there is considered to be no speech 
signal. Wavelet-based enhancement algorithms operate in the 
time-frequency domain. These algorithms typically use 
threshold techniques applied to wavelet coefficients generated 
from the noisy speech signal in order to remove the noise from 
the noisy speech. 



Speech enhancement algorithms can significantly improve 
the speech quality of a noisy speech signal. However, it is 
recognised that speech enhancement has a negative impact on 
speech intelligibility [8]. Speech quality and speech 
intelligibility can be measured using both subjective and 
objective methods. However, subjective measurements have 
the disadvantage that the reliability of the listener evaluating 
the speech intelligibility or quality can be a problem. The 
decision on intelligibility and quality can be affected by the 
listener’s background, accent, and hearing ability. It can take a 
long period of time to do subjective evaluations. However, the 
advantage of subjective testing is that the results are 
determined by humans as opposed to machines. Objective 
assessment of speech quality and intelligibility removes any 
bias that might be introduced using human evaluators. 
Objective speech quality measurement methods include 
perceptual evaluation of speech quality (PESQ) [9], segmental 
signal-to-noise (SNR) ratio [10] and HASQI [11]. Objective 
speech intelligibility measurement methods include SNR loss 
[12] and HASPI [11]. 

The purpose of the work presented here is to compare three 
different speech enhancement algorithms and to evaluate the 
intelligibility and the quality of the enhanced speech. The three 
enhancement algorithms each use different methods to enhance 
noisy speech, which was taken from the NOIZEUS speech 
database [13]. The enhancement algorithms are a minimum-
mean-square-error short-time spectral amplitude (MMSE 
STSA) estimator algorithm [1], a noise estimation algorithm 
[2] and a wavelet packet decomposition algorithm [5]. The 
MMSE-STSA algorithm [1] was chosen because it is well 
recognized and is often used as a benchmark for comparison. 
The noise estimation algorithm [2] was chosen because it was 
designed for enhancing signal with highly non-stationary noise. 
The wavelet packet decomposition-based algorithm [5] was 
chosen because it is an example of a new approach applied to 
the speech enhancement domain. The intelligibility and quality 
of the enhanced noisy speech produced by the three 
enhancement algorithms were evaluated using the objective 
methods highlighted previously. The motivation for doing this 
comparative study of speech enhancement algorithms and how 
they affect speech intelligibility is to inform future work. Of 
interest to the authors is the impact of enhancement on 
intelligibility in particular. The results of the work presented 
will be used to develop a speech enhancement method that has 
minimal impact on speech intelligibility. 

This paper is organized as follows. Section II provides a 
brief overview of the enhancement algorithms used in this 
work. The objective intelligibility and quality measurements 
are discussed in Section III. Section IV presents the results of 
the experiments with the discussion. Finally, conclusions and 
plans for future work are given in section V. 

II. SPEECH ENHANCEMENT ALGORITHMS 

This section provides an overview of the three speech 

enhancement algorithms used in this comparative study. Each 

algorithm is different in its approach to speech enhancement. 

The algorithms include the well-established minimum mean-

square error short-time spectral amplitude (MMSE STSA) 

estimator of Ephraim & Malah [1], the noise-estimation 

algorithm of Rangachari & Loizou [2] and the very-recent 

wavelet-based algorithm of Ben messaoud et al. [5]. 

A. Minimum-Mean-Square-Error Short-Time Spectral 

Amplitude (MMSE STSA) Estimator 

The minimum-mean-square-error short-time spectral 
amplitude (MMSE STSA) estimator of Ephraim & Malah [1] is 
well known in the field of speech enhancement. This algorithm 
operates in the frequency domain. A spectral gain value is 
determined for each frequency bin and applied to the noisy 
speech. The process is illustrated in Fig. 1.  

 
Figure 1: Block diagram illustrating the steps for speech enhancement using 

the MMSE STSA algorithm [14] 

The input speech signal xn(t), where n is the frame index, is 
converted to the frequency domain Xn(k), where k is the 
frequency index. The spectral gain function Gn(k) is dependent 

on the a posteriori and the a priori SNRs, )(ˆ k
n  and )(k

n  

respectively, of the kth spectral components. The noise power 
estimate λn(k) in the noisy speech signal is constantly updated 
on a frame-by-frame basis. Noise estimation is determined 
based on non-speech periods of the utterances. The enhanced 
speech yn(t) is recovered using the original phase from the 
noisy speech signal and the updated spectral amplitude |Yn(k)|,   

B. Noise Estimation combined with Wiener-type Spectral 

Gain 

The noise estimation algorithm proposed by Rangachari & 
Loizou [2] calculates the speech-presence probability instead of 
using voice activity detection (VAD). The noise estimation 
algorithm steps are detailed in Fig. 2, in which k is the 
frequency bin index and λ is the frame index. A fast Fourier 
transform is used to convert the time domain speech signal to 
the frequency domain. 

The estimated clean speech spectrum is evaluated as 

 ),(),,(|),(|max),( 2 kvDkDkYkC    (1) 

where Y(λ, k) is the noisy speech signal, D(λ, k) is the noise 
power spectrum estimate according to Fig. 2 and v is a small 
positive constant. The noise-estimation algorithm in [2] is 
combined with a Wiener-type speech-enhancement algorithm 



 

Figure 2: Noise estimation proposed by Rangachari & Loizou [2] 

 
that has the spectral gain function with over subtraction factor 
μk in equation (2). 
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C. Wavelet packet-based Speech Enhancement 

Wavelet-based speech enhancement algorithms [15], [16] 
have been the focus of some research effort in recent years. 
The noisy speech that undergoes wavelet decomposition 
produces a coefficient matrix which some form of threshold 
technique is applied to. Therefore, the threshold method chosen 
will have an impact on the speech enhancement performance of 
a wavelet-based enhancement algorithm. For the work 
presented here, the very recently proposed wavelet packet 
decomposition algorithm [5] is chosen. A block diagram 
showing the algorithm steps is given in Fig. 3. 

 

 
 

Figure 3: Wavelet packet transform-based speech enhancement algorithm [5] 

 
Noisy speech is divided into frames that are decomposed 

into wavelet packet (WP) coefficient matrices, WE,2
E

-1, where E 
indicates the decomposition level. A best tree function applied 
to these matrices yields a new set of WP coefficient matrices, 
YE,2

E
-1. Principal component analysis is applied to these 

matrices, generating score matrices, Y’E,2
E

-1. Corresponding 

column vectors from WE,2
E

-1 are combined to obtain W’E,2
E

-1. 
For denoising, the minimum description length (MDL) 
criterion [17] is used as the thresholding method on matrix 
W’E,2

E
-1. Reconstruction is achieved by overlap-adding 

operation the enhanced speech frames using a WP rebuild 
(WPR) method. The final step in the generation of the 
enhamced speech signal is an improved PCA (IPCA), which is 
discussed in detail in [5]. 

III. OBJECTIVE INTELLIGIBILITY AND QUALITY MEASUREMENTS 

This section describes the objective measurements that 
were used to evaluate the speech intelligibility and speech 
quality of the enhanced speech produced by the three 
enhancement methods presented in Section II. The objective 
speech intelligibility measurements used in the evaluation are 
HASPI [11] and SNR loss [12]. The objective speech quality 
measurements used are Segmental SNR [10], PESQ [9] and 
HASQI [11].  

A. Objective measurements for speech intelligibility 

1) SNR loss 
SNR loss [12] is defined as 

              ),(),(),( ˆ knSNRknSNRknL
XX   (3) 

 where ),( knSNRX  is the input signal-to-noise ratio, 

),(ˆ knSNR
X

is signal-to-noise ratio of the enhanced signal, k is 

the frequency band index of the nth frame. A mapping function 
is used to limit the SNR loss values to a range between 0 and 1 
as described in [12]. The overall SNR loss for a speech 
utterance is calculated by averaging the limited values across 
all frequency bands and over all frames in the utterance. A 
lower SNR loss value indicates higher speech intelligibility. 
Ideally, the enhanced speech spectrum should equal the 
spectrum of the clean speech resulting in an SNR loss of zero. 

2) Hearing aid speech intelligibility index 
The hearing aid speech intelligibility index (HASPI) [11] 

was created to predict the speech intelligibility performance for 
speech enhancement algorithms used with assistive listening 
devices. HASPI defines two measurements of signal distortion. 
The first distortion measurement compares the change in 
spectral shape over time between the original speech signal and 
the processed, or enhanced, speech signal. The second is a 
cross-correlation measurement, which focuses on the high-
level portions of the signal in each frequency band. The score 
range for this method is between 0 and 1. The higher the value 
means the better the intelligibility level. The Matlab code for 
the implementation of HASPI was obtained directly from the 
authors of [11]. 

B. Objective measurements of speech quality 

1) Segmental SNR 
The signal-to-noise ratio (SNR) is a basic objective method to 
measure the quality of a noisy speech signal. However, this can 
be extended to give an improved measure of speech quality, 
namely the segmental SNR [10], which is defined as 
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where x(n) is the original speech signal, )(ˆ nx  is the enhanced 

speech, N is the speech frame length, n is the sample index in a 
frame, M is the total number of frames in the speech utterance, 
and m is the frame index. A disadvantage of this method is that 
during silent periods, the signal energy might be very small and 
this can produce a negative segmental SNR value [18]. 

2) Perceptual Evaluation of Speech Quality 
The method used for the Perceptual Evaluation of Speech 

Quality (PESQ) [9] is detailed in Fig. 4.  

 

Figure 4: PESQ measurement [9] 

PESQ requires the original clean speech and the degraded 
(noisy) speech as inputs. The score of a PESQ measurement 
ranges from 1 to 5, indicating a speech quality from bad to 
excellent.  

3) Hearing aid speech quality indexI 
The hearing aid speech quality indices (HASQI) are 

objective quality measurements recently proposed in [11]. 
Similar to HASPI, it was proposed for use originally with 
assistive listening devices. The quality measurement method 
requires the original speech signal and the degraded speech 
signal. The score range for the measurement is from 0 to 1, the 
higher the better. The HASQI method uses two measurements.  
The first measurement is a comparison of the time-frequency 
envelope between the original and degraded speech. The 
second is a cross-correlation measurement. The Matlab code 
for the implementation of HASQI was obtained directly from 
the authors of [11]. 

IV. RESULTS AND DISCUSSION 

Speech with four types of noise (street, train, babble and 
car) at different SNRs was taken from the Noizeus database 
[13]. The noisy speech was processed by each of the three 
speech enhancement algorithms described in Section II. The 
objective intelligibility and quality measurements described in 
Section III were used to evaluate the performance of the 
enhancement algorithms. 

A. Result of Objective intelligibility measurements 

Speech intelligibility as measured by SNR loss is shown in 
Fig. 5. The lower SNR loss figures indicate a higher speech 
intelligibility. Across all noise types and noise levels, 
intelligibility evaluation using SNR loss indicates that speech 

enhanced by the MMSE STSA algorithm [1] has the poorest 
intelligibility compared to the other two enhancement 
algorithms used in this study. The results in Fig. 5 also show 
that speech enhanced using the noise estimation algorithm of 
Rangachari & Loizou [2], referred to as MCRA2 [18] in Figs. 
6-10, has the highest intelligibility (lowest SNR loss) for 
stationary noise (train and car). For non-stationary noise (street 
and babble) the wavelet-based [5] enhancement algorithm 
results in speech with the highest intelligibility. The results 
from Fig. 6 suggest that for speech intelligibility, the noise type 
(stationary or non-stationary) should be considered when 
selecting a speech enhancement algorithm.  

For speech intelligibility as measured by HASPI, Fig. 6 
indicates that all three speech enhancement algorithms are 
very similar for SNRs of 15 dB, 10 dB and 5 dB across all 
noise types. For an SNR of 0 dB, intelligibility as measured by 
HASPI shows that speech enhanced using the MMSE STSA 
algorithm [1] is poor across all noise types except bubble 
noise, compared to the other two enhancement algorithms. For 
speech with an SNR of 0 dB enhanced using the noise 
estimation algorithm of Rangachari & Loizou [2], the speech 
intelligibility is marginally higher than the wavelet-based 
algorithm [5] for street, train and car noise.  

The results in Fig. 5 and Fig. 6 suggest that speech 
enhancement using the noise estimation method of [2] or the 
wavelet-based speech enhancement [5] should be considered if 
intelligibility of the enhanced speech is important.  

 

Figure 5: SNR loss objective intelligibility evaluation of enhanced speech  

 
Figure 6: HASPI objective intelligibility evaluation of enhanced speech 

 



B. Result of objective quality measurements 

Figs. 7-9 present objective speech quality measurements 
using Segmental SNR, PESQ and HASQI respectively.  

When using Segmental SNR to evaluate speech quality, 
Fig. 7 shows that speech enhanced using wavelet packet 
decomposition algorithm [5] has highest quality across all 
noise types and SNR values. Speech enhanced by the MMSE 
STSA algorithm [1] has the poorest quality according to the 
Segmental SNR measurements.  

When using PESQ to evaluate speech quality Fig. 8 
indicates that speech enhanced by the wavelet packet-based 
enhancement algorithm has the highest quality overall. This is 
in agreement with that suggested by the Segmental SNR scores 
in Fig. 8.  

From the HASQI measurements in Fig. 9 the MMSE-STSA 
enhancement algorithm produces speech with the lowest 
quality scores for street, train and car noise at SNRs of 0 dB 
and 5 dB. For the same three noise types at SNRs of 10 dB and 
15 dB, overall the wavelet-based enhancement method [5] is 
outperforms the noise estimation-based enhancement method 
[2]. All three enhancement algorithms produce speech of a 
similar quality for babble noise across all four SNR levels. 

The results in Figs. 7-9 demonstrate that speech enhanced 
by the wavelet packet-based algorithm [5] has a higher speech 
quality compared to speech enhanced by the MMSE-STSA [1] 
and noise estimation-based [2] algorithms. 

  

Figure 7: Segmental SNR objective quality evaluation of enhanced speech 

 

Figure 8: PESQ objective quality evaluation of enhanced speech 

 

Figure 9: HASQI objective quality evaluation of enhanced speech 

V. CONCLUSION AND FUTURE WORK 

This paper compared the speech intelligibility and speech 
quality of noisy speech that was processed by three different 
speech enhancement algorithms, for a range of noise types and 
SNR levels. The objective intelligibility assessment of the 
enhanced speech indicates that the noise type should be 
considered when selecting an enhancement algorithm so that 
the intelligibility of the enhanced speech is maximized. When 
assessing the quality of the speech produced by the three 
enhancement algorithms, the three objective quality 
measurements used show that, overall, the wavelet packet-
based enhancement algorithm results in speech with the best 
quality. These results will inform future work that will seek to 
mitigate the effects of speech enhancement algorithms on 
speech intelligibility and speech quality. 
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