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Abstract— Mobile devices are widely used today for speech
communication. The environments in which these devices are
used are widely varied and often the level of background noise in
the speaker’s environment can be significant. The purpose of
speech enhancement is to reduce the level of background noise,
ideally to such a level that it is not noticed by the listener. While
speech enhancement algorithms can significantly reduce the noise
level in a speech signal, improving speech quality, it is widely
recognized that enhancement algorithms can have a negative
impact on speech intelligibility. This paper compares the effect of
three different speech enhancement algorithms on the
intelligibility and the quality of speech. This work is the initial
phase of an investigation into mitigating the impact of speech
enhancement algorithms on speech intelligibility. The speech
enhancement algorithms evaluated each use different approaches
for noise reduction, namely, a statistical model-based algorithm,
a noise estimation algorithm and a wavelet packet decomposition-
based algorithm. Two objective speech intelligibility
measurements and three objective speech quality measurements
are used to assess the performance of the enhancement
algorithms. The results of the experiments show that all the
speech enhancement algorithms in this study have a negative
impact on speech intelligibility to varying degrees.
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I. INTRODUCTION

Speech communication using some form of mobile device
is an essential part of life today. With increased mobility, the
users of mobile devices are to be found having conversations in
many different environments, with different types and levels of
background noise. This background noise when added to the
speech can be uncomfortable for a listener, making it difficult
to partake in the conversation. The speech quality is used to
describe how comfortable it is for someone to listen to the
speech. The noise, classed as additive noise, can also affect the
speech intelligibility, a measure of how well the content of the
speech conversation can be understood. In order to improve the
intelligibility and the quality of speech that originates in a
noisy background the speech needs to be processed in some
way before transmission to a listener.

The aim of speech enhancement algorithms is to remove, or
reduce the level of, noise from a noisy speech utterance.
Speech enhancement algorithms are to be found in human-to-
human communication systems as well as human-to-machine
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communication systems. Automatic speech recognition (ASR)
is an example of an application where an application is
designed to recognise words or commands and respond
appropriately when interacting with a human. In ASR, speech
quality is not as important as in human-to-human
communication. For both ASR and human-to-human
communication, speech intelligibility, correctly interpreting the
meaning or intent of the speech content, is important. Specific
speech enhancement algorithms are therefore more suited for
use in particular circumstances. For human-to-human
communication systems enhancing the noisy speech should not
compromise the speech intelligibility and should improve the
speech quality.

Speech enhancement algorithms can be classed under
different headings, for example, statistical model-based[1],
noise-estimation-based [2], subspace algorithms [3] and
spectral subtraction algorithms [4]. More recently wavelet
packet decomposition [5], machine learning and information
theory [6] have been applied by researchers to the area of
speech enhancement. Enhancement algorithms can also be
categorised based on which domain they operate in. The three
domains are the time domain, the frequency domain, and the
time-frequency domain. Subspace enhancement algorithms are
implemented in the time domain. The principle of subspace
enhancement algorithms is to decompose the noisy speech’s
vector space into two subspaces, one with the noisy signal and
the other with the clean speech signal. Statistical model-based,
spectral subtraction and noise estimation algorithms operate in
the frequency domain. Statistical model-based algorithms
estimate the distribution of speech Fourier transform
coefficients in order to fit the statistical model in question.
Spectral subtraction algorithms subtract the estimated noise
power spectrum from the noisy speech power spectrum.
Spectral subtraction is based on the concept that the noise and
the speech signal are independent of each other so that the
clean speech spectrum can be obtained. The conventional way
to do noise estimation is to use voice activity detection (VAD)
[7], which is used to estimate and update the noise spectrum
during periods in which there is considered to be no speech
signal. Wavelet-based enhancement algorithms operate in the
time-frequency domain. These algorithms typically use
threshold techniques applied to wavelet coefficients generated
from the noisy speech signal in order to remove the noise from
the noisy speech.



Speech enhancement algorithms can significantly improve
the speech quality of a noisy speech signal. However, it is
recognised that speech enhancement has a negative impact on
speech intelligibility [8]. Speech quality and speech
intelligibility can be measured using both subjective and
objective methods. However, subjective measurements have
the disadvantage that the reliability of the listener evaluating
the speech intelligibility or quality can be a problem. The
decision on intelligibility and quality can be affected by the
listener’s background, accent, and hearing ability. It can take a
long period of time to do subjective evaluations. However, the
advantage of subjective testing is that the results are
determined by humans as opposed to machines. Objective
assessment of speech quality and intelligibility removes any
bias that might be introduced using human evaluators.
Objective speech quality measurement methods include
perceptual evaluation of speech quality (PESQ) [9], segmental
signal-to-noise (SNR) ratio [10] and HASQI [11]. Objective
speech intelligibility measurement methods include SNR loss
[12] and HASPI [11].

The purpose of the work presented here is to compare three
different speech enhancement algorithms and to evaluate the
intelligibility and the quality of the enhanced speech. The three
enhancement algorithms each use different methods to enhance
noisy speech, which was taken from the NOIZEUS speech
database [13]. The enhancement algorithms are a minimum-
mean-square-error  short-time spectral amplitude (MMSE
STSA) estimator algorithm [1], a noise estimation algorithm
[2] and a wavelet packet decomposition algorithm [5]. The
MMSE-STSA algorithm [1] was chosen because it is well
recognized and is often used as a benchmark for comparison.
The noise estimation algorithm [2] was chosen because it was
designed for enhancing signal with highly non-stationary noise.
The wavelet packet decomposition-based algorithm [5] was
chosen because it is an example of a new approach applied to
the speech enhancement domain. The intelligibility and quality
of the enhanced noisy speech produced by the three
enhancement algorithms were evaluated using the objective
methods highlighted previously. The motivation for doing this
comparative study of speech enhancement algorithms and how
they affect speech intelligibility is to inform future work. Of
interest to the authors is the impact of enhancement on
intelligibility in particular. The results of the work presented
will be used to develop a speech enhancement method that has
minimal impact on speech intelligibility.

This paper is organized as follows. Section Il provides a
brief overview of the enhancement algorithms used in this
work. The objective intelligibility and quality measurements
are discussed in Section Ill. Section IV presents the results of
the experiments with the discussion. Finally, conclusions and
plans for future work are given in section V.

Il. SPEECH ENHANCEMENT ALGORITHMS

This section provides an overview of the three speech
enhancement algorithms used in this comparative study. Each
algorithm is different in its approach to speech enhancement.
The algorithms include the well-established minimum mean-
square error short-time spectral amplitude (MMSE STSA)

estimator of Ephraim & Malah [1], the noise-estimation
algorithm of Rangachari & Loizou [2] and the very-recent
wavelet-based algorithm of Ben messaoud et al. [5].

A. Minimum-Mean-Square-Error Short-Time Spectral
Amplitude (MMSE STSA) Estimator

The minimum-mean-square-error ~ short-time  spectral
amplitude (MMSE STSA) estimator of Ephraim & Malah [1] is
well known in the field of speech enhancement. This algorithm
operates in the frequency domain. A spectral gain value is
determined for each frequency bin and applied to the noisy
speech. The process is illustrated in Fig. 1.
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Figure 1: Block diagram illustrating the steps for speech enhancement using
the MMSE STSA algorithm [14]

The input speech signal xn(t), where n is the frame index, is
converted to the frequency domain Xa(k), where k is the
frequency index. The spectral gain function Gn(k) is dependent
on the a posteriori and the a priori SNRs, 7, (k) and & (k)

respectively, of the k™ spectral components. The noise power
estimate (k) in the noisy speech signal is constantly updated
on a frame-by-frame basis. Noise estimation is determined
based on non-speech periods of the utterances. The enhanced
speech yn(t) is recovered using the original phase from the
noisy speech signal and the updated spectral amplitude |Yn(K)|,

B. Noise Estimation combined with Wiener-type Spectral

Gain

The noise estimation algorithm proposed by Rangachari &
Loizou [2] calculates the speech-presence probability instead of
using voice activity detection (VAD). The noise estimation
algorithm steps are detailed in Fig. 2, in which k is the
frequency bin index and A is the frame index. A fast Fourier
transform is used to convert the time domain speech signal to
the frequency domain.

The estimated clean speech spectrum is evaluated as
cA, k) = maxﬂ YA, k) 2 =D, k), vD(A, k)} )

where Y(4, k) is the noisy speech signal, D(4, k) is the noise
power spectrum estimate according to Fig. 2 and v is a small
positive constant. The noise-estimation algorithm in [2] is
combined with a Wiener-type speech-enhancement algorithm
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Figure 2: Noise estimation proposed by Rangachari & Loizou [2]

that has the spectral gain function with over subtraction factor
L in equation (2).
C(4,k)

Gtk = C(A,K) + s D(2,K)

)

C. Wavelet packet-based Speech Enhancement

Wavelet-based speech enhancement algorithms [15], [16]
have been the focus of some research effort in recent years.
The noisy speech that undergoes wavelet decomposition
produces a coefficient matrix which some form of threshold
technique is applied to. Therefore, the threshold method chosen
will have an impact on the speech enhancement performance of
a wavelet-based enhancement algorithm. For the work
presented here, the very recently proposed wavelet packet
decomposition algorithm [5] is chosen. A block diagram
showing the algorithm steps is given in Fig. 3.

Figure 3: Wavelet packet transform-based speech enhancement algorithm [5]

Noisy speech is divided into frames that are decomposed
into wavelet packet (WP) coefficient matrices, We2F.1, where E
indicates the decomposition level. A best tree function applied
to these matrices yields a new set of WP coefficient matrices,
YeoFa. Principal component analysis is applied to these
matrices, generating score matrices, Y ’g2F.1. Corresponding

column vectors from We,5; are combined to obtain W g 5.1.
For denoising, the minimum description length (MDL)
criterion [17] is used as the thresholding method on matrix
W e251  Reconstruction is achieved by overlap-adding
operation the enhanced speech frames using a WP rebuild
(WPR) method. The final step in the generation of the
enhamced speech signal is an improved PCA (IPCA), which is
discussed in detail in [5].

I11. OBJECTIVE INTELLIGIBILITY AND QUALITY MEASUREMENTS

This section describes the objective measurements that
were used to evaluate the speech intelligibility and speech
quality of the enhanced speech produced by the three
enhancement methods presented in Section Il. The objective
speech intelligibility measurements used in the evaluation are
HASPI [11] and SNR loss [12]. The objective speech quality
measurements used are Segmental SNR [10], PESQ [9] and
HASQI [11].

A. Obijective measurements for speech intelligibility

1) SNR loss
SNR loss [12] is defined as

L(n,k) = SNR, (n,k) — SNR, (n,k) ®3)

where  SNR, (n,k) is the input signal-to-noise ratio,
SNRy, (n, k) is signal-to-noise ratio of the enhanced signal, k is

the frequency band index of the n™ frame. A mapping function
is used to limit the SNR loss values to a range between 0 and 1
as described in [12]. The overall SNR loss for a speech
utterance is calculated by averaging the limited values across
all frequency bands and over all frames in the utterance. A
lower SNR loss value indicates higher speech intelligibility.
Ideally, the enhanced speech spectrum should equal the
spectrum of the clean speech resulting in an SNR loss of zero.

2) Hearing aid speech intelligibility index

The hearing aid speech intelligibility index (HASPI) [11]
was created to predict the speech intelligibility performance for
speech enhancement algorithms used with assistive listening
devices. HASPI defines two measurements of signal distortion.
The first distortion measurement compares the change in
spectral shape over time between the original speech signal and
the processed, or enhanced, speech signal. The second is a
cross-correlation measurement, which focuses on the high-
level portions of the signal in each frequency band. The score
range for this method is between 0 and 1. The higher the value
means the better the intelligibility level. The Matlab code for
the implementation of HASPI was obtained directly from the
authors of [11].

B. Objective measurements of speech quality

1) Segmental SNR
The signal-to-noise ratio (SNR) is a basic objective method to
measure the quality of a noisy speech signal. However, this can
be extended to give an improved measure of speech quality,
namely the segmental SNR [10], which is defined as
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where x(n) is the original speech signal, X(n) is the enhanced

speech, N is the speech frame length, n is the sample index in a
frame, M is the total number of frames in the speech utterance,
and m is the frame index. A disadvantage of this method is that
during silent periods, the signal energy might be very small and
this can produce a negative segmental SNR value [18].

2) Perceptual Evaluation of Speech Quality
The method used for the Perceptual Evaluation of Speech
Quality (PESQ) [9] is detailed in Fig. 4.
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Figure 4: PESQ measurement [9]

PESQ requires the original clean speech and the degraded
(noisy) speech as inputs. The score of a PESQ measurement
ranges from 1 to 5, indicating a speech quality from bad to
excellent.

3) Hearing aid speech quality indexlI

The hearing aid speech quality indices (HASQI) are
objective quality measurements recently proposed in [11].
Similar to HASPI, it was proposed for use originally with
assistive listening devices. The quality measurement method
requires the original speech signal and the degraded speech
signal. The score range for the measurement is from 0 to 1, the
higher the better. The HASQI method uses two measurements.
The first measurement is a comparison of the time-frequency
envelope between the original and degraded speech. The
second is a cross-correlation measurement. The Matlab code
for the implementation of HASQI was obtained directly from
the authors of [11].

IV. RESULTS AND DISCUSSION

Speech with four types of noise (street, train, babble and
car) at different SNRs was taken from the Noizeus database
[13]. The noisy speech was processed by each of the three
speech enhancement algorithms described in Section Il. The
objective intelligibility and quality measurements described in
Section 111 were used to evaluate the performance of the
enhancement algorithms.

A. Result of Objective intelligibility measurements

Speech intelligibility as measured by SNR loss is shown in
Fig. 5. The lower SNR loss figures indicate a higher speech
intelligibility. Across all noise types and noise levels,
intelligibility evaluation using SNR loss indicates that speech

enhanced by the MMSE STSA algorithm [1] has the poorest
intelligibility compared to the other two enhancement
algorithms used in this study. The results in Fig. 5 also show
that speech enhanced using the noise estimation algorithm of
Rangachari & Loizou [2], referred to as MCRA2 [18] in Figs.
6-10, has the highest intelligibility (lowest SNR loss) for
stationary noise (train and car). For non-stationary noise (street
and babble) the wavelet-based [5] enhancement algorithm
results in speech with the highest intelligibility. The results
from Fig. 6 suggest that for speech intelligibility, the noise type
(stationary or non-stationary) should be considered when
selecting a speech enhancement algorithm.

For speech intelligibility as measured by HASPI, Fig. 6
indicates that all three speech enhancement algorithms are
very similar for SNRs of 15 dB, 10 dB and 5 dB across all
noise types. For an SNR of 0 dB, intelligibility as measured by
HASPI shows that speech enhanced using the MMSE STSA
algorithm [1] is poor across all noise types except bubble
noise, compared to the other two enhancement algorithms. For
speech with an SNR of 0 dB enhanced using the noise
estimation algorithm of Rangachari & Loizou [2], the speech
intelligibility is marginally higher than the wavelet-based
algorithm [5] for street, train and car noise.

The results in Fig. 5 and Fig. 6 suggest that speech
enhancement using the noise estimation method of [2] or the
wavelet-based speech enhancement [5] should be considered if
intelligibility of the enhanced speech is important.
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Figure 5: SNR loss objective intelligibility evaluation of enhanced speech

HASPI scores

MMSE MCRAZ | Wavelet = MMSE MCRAZ  Wavelet = MMSE MCRA2 | Wavelet | MMSE MCRA2  Wavelet
Street Train Babbie car
WSNR=0 08572 0.9785 09631 09544 09863 09748 0.9802 09743 0.9786 0579 09928 0982
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Figure 6: HASPI objective intelligibility evaluation of enhanced speech




B. Result of objective quality measurements

Figs. 7-9 present objective speech quality measurements
using Segmental SNR, PESQ and HASQI respectively.

When using Segmental SNR to evaluate speech quality,
Fig. 7 shows that speech enhanced using wavelet packet
decomposition algorithm [5] has highest quality across all
noise types and SNR values. Speech enhanced by the MMSE
STSA algorithm [1] has the poorest quality according to the
Segmental SNR measurements.

When using PESQ to evaluate speech quality Fig. 8
indicates that speech enhanced by the wavelet packet-based
enhancement algorithm has the highest quality overall. This is
in agreement with that suggested by the Segmental SNR scores
in Fig. 8.

From the HASQI measurements in Fig. 9 the MMSE-STSA
enhancement algorithm produces speech with the lowest
quality scores for street, train and car noise at SNRs of 0 dB
and 5 dB. For the same three noise types at SNRs of 10 dB and
15 dB, overall the wavelet-based enhancement method [5] is
outperforms the noise estimation-based enhancement method
[2]. All three enhancement algorithms produce speech of a
similar quality for babble noise across all four SNR levels.

The results in Figs. 7-9 demonstrate that speech enhanced
by the wavelet packet-based algorithm [5] has a higher speech
quality compared to speech enhanced by the MMSE-STSA [1]
and noise estimation-based [2] algorithms.
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Figure 7: Segmental SNR objective quality evaluation of enhanced speech
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Figure 8: PESQ objective quality evaluation of enhanced speech
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Figure 9: HASQI objective quality evaluation of enhanced speech

V. CONCLUSION AND FUTURE WORK

This paper compared the speech intelligibility and speech
quality of noisy speech that was processed by three different
speech enhancement algorithms, for a range of noise types and
SNR levels. The objective intelligibility assessment of the
enhanced speech indicates that the noise type should be
considered when selecting an enhancement algorithm so that
the intelligibility of the enhanced speech is maximized. When
assessing the quality of the speech produced by the three
enhancement algorithms, the three objective quality
measurements used show that, overall, the wavelet packet-
based enhancement algorithm results in speech with the best
quality. These results will inform future work that will seek to
mitigate the effects of speech enhancement algorithms on
speech intelligibility and speech quality.
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