
978-1-5386-6046-1/18/$31.00©2018 European Union

Access Control Policy Enforcement for Zero-Trust-

Networking
 Romans Vanickis

Software Research institute

Athlone Institute of Technology

Athlone, ireland

rvanickis@research.ait.ie

Paul Jacob

Software Research institute

Athlone Institute of Technology

Athlone, ireland

pjacob@ait.ie

Brian Lee

Software Research institute

Athlone Institute of Technology

Athlone, ireland

blee@ait.ie

Sohelia Dehghanzadeh

Software Research institute

Athlone Institute of Technology

Athlone, ireland

sdeghanzadeh@ait.ie

Abstract—The evolution of the enterprise computing landscape

towards emerging trends such as fog/edge computing and the

Industrial Internet of Things (IIoT) are leading to a change of

approach to securing computer networks to deal with challenges

such as mobility, virtualized infrastructures, dynamic and

heterogeneous user contexts and transaction-based interactions.

The uncertainty introduced by such dynamicity introduces greater

uncertainty into the access control process and motivates the need

for risk-based access control decision making. Thus, the

traditional perimeter-based security paradigm is increasingly

being abandoned in favour of a so called “zero trust networking”

(ZTN). In ZTN networks are partitioned into zones with different

levels of trust required to access the zone resources depending on

the assets protected by the zone. All accesses to sensitive

information is subject to rigorous access control based on user and

device profile and context. In this paper we outline a policy

enforcement framework to address many of open challenges for

risk-based access control for ZTN. We specify the design of

required policy languages including a generic firewall policy

language to express firewall rules. We design a mechanism to map

these rules to specific firewall syntax and to install the rules on the

firewall. We show the viability of our design with a small proof-of-

concept.

Keywords—zero trust networking, risk-based access control,

trust, policy enforcement, firewall, network zone, micro-segment

I. INTRODUCTION

There has been much change in enterprise computing in the
last two decades with the appearance of new approaches such as
cloud and edge computing, the (industrial) Internet of Things
(IIoT) etc. [1]. These environments will be characterised by
distributed interactions on a scale not seen heretofore with
attendant high levels of complexity and dynamicity - including
mobility -heterogeneity and uncertainty. We consider that the
nature of these interactions will move to a combination of the
current dominant stateless, or session-less, REST model and a
stateful/session-based interaction, [2] [3].

The dramatic escalation in both the number and
sophistication of security-attacks on business in recent years, [4],

will continue to grow in coming years– a factor that merely adds
to the computing environment complexity.

Access control (AC) systems will therefore need to adapt
dynamically to incorporate risk assessment into the access
control process. AC decisions will be include many factors such
as the degree of trust in the user and the device, user and device
situational context i.e. location, time-of-day, type of task as well
as the current security threat level in the user’s immediate
environment, [5] . Furthermore the level of access assigned to a
device or user can change over time and the AC system must be
able to infer the current trust level by consulting various data
sources and making decisions accordingly [6]. Researchers are
therefore exploring the use of risk-based access control in many
domains, [7] [8].

A main result of these trends is a move away from the
traditional perimeter based security model toward the
application of so called zero trust networking (ZTN) security
models that treat the enterprise intranet with the same degree, i.e.
lack, of trust as the Internet, [9]. The key element of the ZTN
approach is to treat the internal network as untrusted to the same
degree as the Internet. The internal network is divided into a
number of network segments or zones each of which contains
different functions and information. Each zone will have a
different trust level that indicates the importance of the assets
housed within the zone, [10]. In order to access an asset, a
subject’s trust level assignment must be equal to or greater than
the zone’s minimum trust level, [11].

Traffic between zones is restricted by firewalls in accordance
with with the overall access control policy. Access control is
also dynamic and transaction based i.e. a decision is made for
each access request and rules are updated on the inter-zone
firewalls as needed for each transaction. ZTN is becoming
widely deployed in the commercial world cross many domains.

This paper has received funding from the European Union’s

Horizon 2020 research and innovation programme under grant

agreement 700071

Existing examples of deployments include enterprise
security e.g. Google’s BeyondCorp [11] as well as campus [7],
and cloud computing security [8], [12].

While these deployments show the viability of ZTN and the
associated risk-based access control they do not describe in
sufficient detail how to carry out policy enforcement to
implement risk-based access control in ZTN. We have addressed
this deficit in a previous paper [5], where we describe a policy
management framework, FURZE (Fuzzy Risk Framework for
ZTN), to facilitate fuzzy risk evaluation. In this paper we
elaborate further on this ongoing work. In particular we define
the specification of two policy languages to capture and express
required authorisations, obligations and constraints to enable
risk based AC for ZTN. We also demonstrate the feasibility of
our approach through the implementation of a proof of concept
for a particular component of the FURZE system to allow the
dynamic update of firewalls in a ZTN system.

The rest of the paper is structured as follows: In Section 2 we
give an overview of the FURZE system. Section 3 defines policy
languages for ZTN AC. Section 4 describes the development of
the FURZE firewall provisioning module (FPM). We give
conclusions of the research in section 5 and outline future
research challenges.

II. FURZE SYSTEM OVERVIEW

FURZE is a policy enforcement framework for risk adaptive
access control (RAdAC) based on the policy modelling
approach of Kandala, [13]. FURZE is specifically aimed at
RAdAc for the ZTN domain. The key concept of RAdAC is the
requirement to make a trade-off made between operational need
and security risk when making access control decisions.
Operational need can be seen as the reason for the users access
request. It can be represented as a person’s membership in some
community of interest or an organization. In some cases
operational needs will override security risk and access to
otherwise restricted resources will be granted.

Kandala defines a RAdAC policy model based on the UCON
(Usage Control) model of Sandhu [3]. The key innovation of
UCON is the notion of “decision continuity” which means that
a policy authorisation or related obligations and conditions can
be transacted before, during or after the AC session/transaction.
This insight is a significant addition to RAdAC as it allows
adaptation to changing environment conditions as well as
session based interactions. While Kandala has provided a sound
abstract model for “UCON-ised” RAdAC a number of
significant research questions remain open around the practical
deployment of RAdAC.

Specific issues we seek to explore through the development
of FURZE include i) the definition of a policy management
architecture to include on-going monitoring to enable decision
continuity in ZTN AC, ii) the design of an access control policy
language to specify and manage decision continuity updates, iii)
the design a risk evaluation function based on fuzzy logic to
enable probabilistic access control decisions to be taken iv) the
development of a policy language to express firewall access
control list (ACL) and the design of an accompanying firewall
provisioning mechanism.

The proposed FURZE policy enforcement architecture is

shown in Figure 1. This contains a number of elements that form
the functional, logical and linguistic basis for a policy
framework for ZTN. The architecture is broadly based on the
XACML policy framework, [14]. Access requests are received
via a Policy Enforcement Point (PEP) such as e.g. a WiFi base
station. The Context Handler (CH) coordinates the access
control process including decision continuity handling. The
Environment Evaluation (EE) contains plug-in components that
convert session and other relevant factors into attributes that can
be used as input ot risk evaluation. Examples shown include a
plug-in to determine security situational awareness (see [5]),
operational need and locations - for a simple access control case
these components could simply default to session attributes. The
Risk Evaluation Function (REF) and Access Decision Function
(ADF) jointly act as a Policy Decision Point (PDP) to control
access while the subject and object attributes are stored in a
management database. The Topology Awareness Module
(TAM) accesses the network topology map to determine the list
of firewalls on the route between the point of access and the
requested service. The Firewall Provisioning Module (FPM)
then provisions the appropriate firewalls. These two modules
play a key role in ZTN AC enforcement.

 In FURZE the application of decision continuity
imposes a requirement on the control function to maintain
session state information so that access control can adapt to
reflect situational or other influencing factors that change the
balance between operational need and security risk and trigger
policy re-evaluation. Risk assessment is made as part of the
initial authorisation predicate evaluation and, possibly,
subsequently as part of either an authorisation or condition
predicate evaluation that in turn has been triggered by some
event during the session, [13]. Dynamic firewall provisioning is
part of this ongoing session management. Firewall rules are
removed from the relevant gateways when the session ends or if
the risk situation changes during the course of the session for
some reason.

Figure 1 FURZE policy enforcement framework

III. FURZE POLICY LANGUAGES

Two policy languages are defined as part of the FURZE
framework. The first, PAROLE, is a language to express general
AC policies while the second language FACL (FURZE Firewall
Access Control List) defines generic firewall rules.

A. PAROLE

PAROLE fulfils a role similar to XACML in providing
access control to network resources. However, it contains a
number of enhancements to improve on shortcomings in current
access control approaches, identified above. The primary
additions are to enable decision continuity and access control
risk assessment. PAROLE draws from a number of existing
policy management approaches including XACML, [14], Fuzzy
Control Language (FCL, [15] and RAdAC, [16]. PAROLE
contains three main elements required to provide a complete

UCON-RAdAC solution- see Listing 1.These are:

• A Session construct that enables ongoing control (decision
continuity) for relatively long lived accesses. This notion of
session differs from the more usual access control notion of
session which defines a set of access permissions [14] but
which does not have the notion of continuity

• An AuthRule construct that specifies the access control
policies. This is similar to the XACML policy and rules.

• A RiskFB construct to determine estimation of access control
risk to enable risk based access control. This construct is
based on the use of the FCL and contains a set of fuzzy rules.

PAROLE is an attribute based access control (ABAC)
approach to policy management and draws on XACML to define
and manage attributes and other identifiers. In particular,
PAROLE borrows the XACML namespace approach. As
described in [17] a “namespace is used to declare a scope that
contains a set of related objects” where, the case of XACML,
objects may be attributes, subjects etc. A PAROLE specification
may contain multiple namespaces, some of which may be
nested. It must contain at least one root level namespace.

Identifiers may be imported from one name space to another and
elements of a nested namespace can be accessed via ‘.’ notation
as in Java and other languages e.g. parentns.childns.identifier_x.
A namespace may be either artefact-based or domain-based.
The artefact approach uses namespaces to organise the PAROLE
structure based on language elements e.g. an “Attributes”
namespace may be used to collect all attributes or a “Policy”
namespace may be similarly used to collect policy definitions.
In the domain-based approach the namespaces are used to collect
artefacts according to the entities or application for which the
policies are being defined e.g. a “User” namespace may be used
to collect all attributes and any other identifiers for the policy
subject. The PAROLE language is currently being specified and
language tool development is part of ongoing FURZE research
work.

B. FACL

FACL is a Domain Specific Language (DSL) for expressing
firewall rules and from which firewall-specific filtering rules can

be generated.

The FACL language definition contains four main
productions (in bold in Listing 2), which are used to define the
firewall entries i.e.:

• A service production that defines a mnemonic for a

service and associates a port, or ports to the service.

An example is:

service http tcp port from 8080 to 8088

• A zone production that defines a mnemonic for a

network zone and associates a range of IP addresses

with the zone. An example is:

zone zonABC from 192.168.0.1 to 192.168.0.5

• A firewall rule production which defines the actual

firewall rule based in part on the previous

productions

namespace someName{

 namespace Attributes {

 attribute att-1 { }

 attribute att-2 { }

 }

 namespace Events {

 event ev-1 { }

 event ev-2 { }

 }

Session mySession { ..}

 AuthRule auth1 { .. }

 AuthRule auth2 { .. }

 . . .

 RiskFB someFB1 { .. }

 RiskFB someFB2 { .. }

} // end namespace someName

Listing 1: PAROLE document

service_def::= “service” sname

prot port_range

 port-range ::= “port” ({portid }+

 | “from” portid “to” portid)

zone::= “zone” zone_name ip_address

 zone_addr ::= zone_name

 | ip_address | “any”

 ip_address ::= ip_addr+ | ip_range

fwRule::= “fwRule” fwName “{“

[“incoming:” service_rule]

[“outgoing:” service_rule] “}”

 service-rule::=

sname (“allow” | “deny”)

(“to” | “from”) zone_addr

[“to” | “from” zone_addr]

 zone_action::= = (“add”|“remove)

fwRule+ zone

Listing 2: FACL BNF subset

fwRule fwAcl1{

 incoming:http allow to 173.41.1.2 from any

 outgoing:ssh deny to any}

• A zone action production to add or remove firewall

rules to/from a zone firewall. An example is

add fwAcl1 to zoneABC

 Listing 2 is a subset of the BNF for the language.

IV. FIREWALL PROVISIONING

Firewall provision is realized by a combination of the TAM
and FPM components of the FURZE framework. The TAM
maintains a network topology map including zone topology and
firewall information. A module such as the TAM can be
constructed in various ways such as by using SNMP or LLDP.

 When a request for access to a service or resource has been
granted the CH queries the TAM for a list of the firewalls on the
path to the host or server hosting the requested resource. It then
passes origin and destination information to the FPM to generate
and install the required firewall rules.

A. Firewall Provisioning Module

The purpose of the FPM is to generate FACL firewall rules
and to then convert these rules to firewall specific rules. It
consists of four main components

• An interface module to the Context handler. This is designed

to isolate the main FPM functions from the interfacing

mechanism in order to enable flexible module distribution so

that for example the interface could be a direct method call

on a Java object or alternatively a REST implementation.

• The FACL rule generator (FRG). This module creates the

FACL ruleset in response to the CH call. The design of this

module is described below.

• The FACL language processor (FLP). This module take the

generated FACL rules and translates them to the specific

firewall rule language(s) that are to be used. The FLP is

extensible to support a range of firewall implementations.

• The Firewall Interfacing plug-in. This module interfaces the

FPM to the individual firewall. It retrieves the firewall

address from the FRG.

In the literature we observe two approaches to firewall
interfacing , one based on the use of a generalised interface and
one based on the language approach we have taken here. An
example of the first approach is described in the Dynfire
framework [7], which uses the Simple Middlebox Configuration
(SIMCO) Protocol Version 3.0 – defined in RFC 4540. SIMCO
define a general interface to add policy rules to any type of
middle box. The authors used their own SIMCO
implementation. An example of the second approach is that of
AL_SAFE [8]. We have adopted the language based approach
because we believe to be more portable and more easily
implemented.

1) FRG

The Firewall Rule Generator creates FACL rules. The CH
transfers the relevant production parameters to the FPM in a
single interface invocation. These parameters are passed to the
FRG which converts them to the required set of FACL
production rules. The FRG is implemented in Java. The FRG
includes the use of a templating engine as the key mechanism to
generate the FACL rule text.. A templating language enables a
developer/designer to define a document/template containing
generic text and to substitute tagged item-specific text parts
through a callout to a templating engine. At runtime,
the template engine replaces variables in a template file with
actual values, and transforms the template into an the final file
version.

The Apache Velocity templating engine is used within the

FRG, [18]. The templating engine is invoked from the main FRG

code component. A FACL template contains a set of statements

in the Velocity templating language (VTL) that collectively

define the FACL firewall rule generation. The key VTL

constructs are references and directives. As the VTL user guides

puts it “References begin with $ and are used to get something.

Directives begin with # and are used to do something”.

Variables are assigned a value either internally from within the

template or externally from the calling FRG Java wrapper.

Directives include program control constructs as can be seen in

Listing 3, which show part of the FACL VTL file, used to

generate the service production.

FACL Rule
Generator

FACL
Language
Processor

Firewall
interfacing

Plug-in
Firewall

interfacing
Plug-in

Firewall
interfacing

Plug-in

FACL Interface

From
Context handler

To Firewall

Firewall Provisioning Module

Figure 2 FURZE policy enforcement framework

#set ($sp=" ")

Define service name e.g. “service http

tcp port 8080”

 ##if ($sname ne "")

 #if ($port-type==”range”)

 #set ($ports =from $low_port to $hi_port)

 #else

 #set ($ports = $port_list)

 #end

 service $sname $protocol port $ports

#end

Listing 3: VTL service rule generation

Listing 4: PAROLE document

2) FLP

The rules generated by the FRG are next passed to the
language processor. For the processor a parser has been
developed using the PyParsing library, itself an internal DSL for
developing parsers in Python. The library provides predefined
functionalities and classes to create and combine parser
elements. It has many predefined elements that can match
common constructs, such as Literal(), Word(), Optional(), Or(),
ZeroOrMore(), OneOrMore() etc. PyParsing generates a
recursive-descent-like parser from a set of rules and semantic
actions. Rules are defined in a syntax similar to BNF, for
example – see Listing 4.

Semantic actions are called when an input line is recognised
as an instance of a BNF rule. They are associated with a rule
using the method setParseAction(). When a semantic action is
called by the PyParsing runtime, three arguments are passed, the
string being recognised, the start location of the matched text and
the list of tokens recognised. Semantic actions generate an in-
memory representation of the input known as a semantic model.
In the example in Listing 5 a service object has been created and
inserted into a Python dictionary (unordered key-value pairs),
with key equal to the service name and value equal to the service
object. The service object stores all information about the
service. Corresponding zone, firewallRule and zoneAction
objects are created and inserted into dictionaries. Finally all
references between objects in the dictionaries are resolved to
create a semantic model. In the language processor a backend
module to generate Uncomplicated Firewall (UFW) rules has
been implemented. It traverses the semantic model and generates
appropriate UFW rules. Other modules, to generate rules in other

firewall languages such as IPChains, NetFilter, IPFilter, Cisco
ACL, can easily be implemented

We have implemented a proof of concept – see Fig. 3 - to

demonstrate the correction functioning of firewall provisioning

(as FURZE is a work in progress only some parts are

implemented and the proof of concept is consequently limited).

The scenario demonstrated is basic internet access. The FURZE

CH module is emulated by a python script to invoke the FPM

REST interface. Initially the UFW is configured by command line

to disallow outgoing http requests. The CH is then executed to

invoke the FPM to, in turn, to generate the FACL and UFW

commands to install and revoke permissions. Successful

operation is verified.

V. RELATED WORK

Google has adopted a ZTN approach for access control that,
as described, seems partly similar to the work defined here [6],
[11]. However they have not described the policy language, risk
management or decision continuity implementation in detail.
Vensmer, [7], describes Dynfire, an AC policy management
framework for ZTN applied to a university campus that
encompasses a number of the ideas described in our work.
However it does not include either risk management nor decision
continuity. Giannoku, [8], describe AL-SAFE, a ZTN AC
implementation for cloud computing –however they also do not
include policy language, risk management or decision continuity
aspects. Approaches to network segmentation and zoning in
general has been described by [10] and for virtual networking in
data centres by VMware [19] and in the emerging 5G network
by [20]. The underlying firewall policy management is a mature
research field and a number of authors have described efforts in
this direction [21],[22],[23]. However none of these authors have
described access control risk management as part of their
contributions

AC policy language design is also a mature area. XACML
is one of the most widely deployed policy enforcement
approaches [14]. However neither XACML nor it’s competitors
support the notion of decision continuity in a session construct.
In designing FACL we have incorporated a number of ideas
from these sources. FACL is designed however to be simple to
use and avoids overly complex language constructs e.g. such as
inherited zones ,[22].

Chen [24], developed a fuzzy logic approach to AC risk
assessment that proposed the gradation of security risk as
services of levels between “allow” and “deny” where each level
has an associated risk mitigation countermeasure. Ni [25],
investigated the applicability of fuzzy inference for risk based
access control and concluded that the approach was flexible and
scalable. Our work most closely matches that of Ni as we also

serviceRule = service + serviceName +

 sProtocol + servicePortRange

def serviceRuleAction(s,loc,toks):

 service = Service(toks[1], toks[2],toks[3])

 self.ast.servicesDictionary[toks[1]]= service

serviceRule.setParseAction(serviceRuleAction)

Listing 5 FACL semantic actions

serviceRule = service + serviceName +

 sProtocol + servicePortRange

service = Literal(("service(")

serviceName = Word(alphanums)

port = Literal(("port(")

servicePortRange = port + Or(portIds |

 portRange)

portRange = frm + portId + to + portId

frm = Literal("from")
to = Literal("to")

Listing 4: FACL PyParsing grammar

Listing 4: PAROLE document

Internet

Firewall
Provisioning

CH Emulation script

UFW

Figure 3 FPM proof of concept

propose the use of fuzzy inference for risk calculation – however
our scope of research is somewhat wider.

VI. CONCLUSIONS

Computer networking is evolving rapidly on many fronts.
Security and trust models are likewise evolving to meet these
challenges. In this paper we have described a risk-based access
control enforcement framework to support future security needs,
in particular ZTN. We have defined the policy languages needed
to support the framework and have described the design and
implementation of a component to support firewall provisioning.

Future work includes the development of language tools and
runtime mechanism for the PAROLE language and its
integration into an existing PDP system such as Keycloak [26],
to demonstrate its viability. Furthermore, the PAROLE session
construct is a form of context aware access control and the
concept is easily extended to IoT and edge computing
application areas such as smart manufacturing.

VII. BIBLIOGRAPHY

[1] M. Chiang and T. Zhang, "Fog and IoT: An Overview of Research
Opportunities," IEEE INTERNET OF THINGS JOURNAL, vol. 3,
no. 6, 2016.

[2] S. Berger, S. Vensmeer and A. Kiesel, "An ABAC-based Policy
Framework for Dynamic Firewalling," in ICSNC 2012 : The
Seventh International Conference on Systems and Networks
Communications An, Lisbon, 2012.

[3] J. Park and R. Sandhu, "The UCON(ABC) Usage Control Model,"
Transactions on Information and System Security, vol. 7, no. 1, pp.
128-174, Feb 2004.

[4] R. Broadhurst, P. Grabosky, M. Alazab, B. Bouhours and S. Chon,
"An Analysis of the Nature of Groups engaged in Cyber Crime,"
International Journal of Cyber Criminology, vol. 8, no. 1, pp. 1-20,
2014.

[5] B. Lee, R. Vanickis, F. Rogelios and P. Jacob, "Situation Awarness
based Risk Adaptable Access Control in Enterprise Netowrks," in
2nd International Conference on Internet of Things, Big Data and
Security (IoTBS), Porto, 2017.

[6] R. Ward and B. Beyer, "BeyondCorp A New Approach to Enterprise
Security," ;login:, vol. 39, no. 6, Dec 2014.

[7] A. Vensmer and S. Kiesel, "DynFire: dynamic firewalling in
heterogeneous networks," in Proceedings World Congress on
Internet Security (WorldCIS), 2012.

[8] A. Giannakou, L. Rilling, C. Morin and J-L. Pasage, "ALSAFE: A
Secure Self-Adaptable Application-Level Firewall for IaaS," in
SEC2 - Second workshop on Security in Clouds, Lorient, 2016.

[9]

Forrester Research,, "Developing a Framework to Improve Critical
Infrastructure Cybersecurity," 2013. [Online]. Available:
http://csrc.nist.gov/cyberframework/rfi_comments/04
0813_forrester_research.pdf>.. [Accessed 19 February 2018].

[10] A. Gontarczyk, P. McMillan and C. Pavlovski, "Blueprint for
Cybersecurity Zone Modelling," IT in Industry, vol. 3, no. 2, 2015.

[11] B. Osborn, J. McWilliams, B. Beyer and M. Saltonstall,
"BeyondCorp; Design to Deployment at Google," ;login:, vol. 41,
no. 1, 2016.

[12] S. Jeuk, G. Salgueiro, F. Baker and S. Zhou, "Network
Segmentation in the Cloud A Novel Architecture Based on UCC and
IID," in IEEE 4th International Conference on Cloud Networking
(CloudNet), 2015.

[13] S. Kandala, R. Sandhu and V. Bhamidipati, "An Attribute Based
Framework for Risk-Adaptive Access Control Models," in RES '11
Proceedings of the 2011 Sixth International Conference on
Availability, Reliability and Security, Washington, 2011.

[14] OASIS, "eXtensible Access Control Markup Language (XACML)
Version 3.0," 2013. [Online]. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html. [Accessed 7
May 2017].

[15] International Electrotechnical Commission., "IEC 61131-7:2000
Programmable Controllers – Fuzzy Control Programming," 2000.
[Online]. Available: <https://webstore.iec.ch/publication/4556?.

[16] R. McGraw, "Risk Adaptable Access Control,," 2009. [Online].
Available: http://csrc.nist.gov/news_events/privilege- management-
workshop/radac-Paper0001.pdf. [Accessed 11 May 2017].

[17] OASIS, "Abbreviated Langauge for Authorisation , Version 1.0," 12
March 2015. [Online]. Available: https://www.oasis-
open.org/committees/download.php/55228/alfa-for-xacml-v1.0-
wd01.doc. [Accessed 27 February 2018].

[18] Apache, "Apache Velocity," August 2017. [Online]. Available:
http://velocity.apache.org/. [Accessed Feb. 2018].

[19] Vmware, "Data Center Micro-Segmentation: A Software Defined
Data Center Approach for a Zero Trust Security Strategy,"
VmWare, 2104.

[20] O. Mammel, J. Hiltunen, J. Suomalainen, K. Ahola, P. Mannersalo
and J. Vehkaper, "Towards micro-segmentation in 5G network
security," in European Conference on Networks and
Communications (EuCNC), Athens, 2016.

[21] B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely and C. Pitcher,
"Specifications of A high-level conflict-free firewall policy
language for multi-domain networks," in ACM Symposium on
Access Control Models and Technologies, Monterey, 2007.

[22] J. Lobo, M. Marchi and A. Provetti, "Firewall Configuration
Policies for the Specification and Implementation of Private Zones,"
in Proceedings IEEE International Workshop on Policies for
Distributed Systems and Networks, 2012.

[23] Cisco Corpporation, "Zone-Based Policy Firewall Design and
Application Guide," Mar 2010. [Online]. Available:
http://www.cisco.com/c/en/us/support/docs/security/i os-
firewall/98628-zone-design-guide.html#topic6. [Accessed 26 Feb
2018].

[24] P.C. Chen, P. Rohatgi, C. Keser, P.A. Kargr. "Fuzzy Multi–Level
Security : An Experiment on Quantified Risk–Adaptive Access
Control," IEEE Access, vol. 2, pp. 514-525, 2014.

[25] Q. Ni, E. Bertino and J. Lobo, "Risk-based Access Control Systems
Built on Fuzzy Inferences," in ASIACCS’10 5th ACM Symposium
on Information, Computer and Communications Security, Beijing,
2010.

[26] Keycloak, "Open Souce Identity Management," 2018. [Online].
Available: http://www.keycloak.org/. [Accessed March 2018].

View publication statsView publication stats

