
978-1-5386-6046-1/18/$31.00©2018 European Union 
 

Access Control Policy Enforcement for Zero-Trust-

Networking  
 Romans Vanickis  

Software Research institute 

Athlone Institute of Technology 

Athlone, ireland 

rvanickis@research.ait.ie 

Paul Jacob  

Software Research institute 

Athlone Institute of Technology 

Athlone, ireland 

pjacob@ait.ie 

Brian Lee  

Software Research institute 

Athlone Institute of Technology 

Athlone, ireland 

blee@ait.ie 

Sohelia Dehghanzadeh  

Software Research institute 

Athlone Institute of Technology 

Athlone, ireland 

sdeghanzadeh@ait.ie 

 

 

Abstract—The evolution of the enterprise computing landscape 

towards emerging trends such as fog/edge computing and the 

Industrial Internet of Things (IIoT) are leading to a change of 

approach to securing computer networks to deal with challenges 

such as mobility, virtualized infrastructures, dynamic and 

heterogeneous user contexts and transaction-based interactions. 

The uncertainty introduced by such dynamicity introduces greater 

uncertainty into the access control process and motivates the need 

for risk-based access control decision making. Thus, the 

traditional perimeter-based security paradigm is increasingly 

being abandoned in favour of a so called “zero trust networking” 

(ZTN). In ZTN networks are partitioned into zones with different 

levels of trust required to access the zone resources depending on 

the assets protected by the zone. All accesses to sensitive 

information is subject to rigorous access control based on user and 

device profile and context. In this paper we outline a policy 

enforcement framework to address many of open challenges for 

risk-based access control for ZTN. We specify the design of 

required policy languages including a generic firewall policy 

language to express firewall rules. We design a mechanism to map 

these rules to specific firewall syntax and to install the rules on the 

firewall. We show the viability of our design with a small proof-of-

concept. 

Keywords—zero trust networking, risk-based access control, 

trust, policy enforcement, firewall, network zone, micro-segment 

I. INTRODUCTION  

There has been much change in enterprise computing in the 
last two decades with the appearance of new approaches such as 
cloud and edge computing, the (industrial) Internet of Things 
(IIoT) etc. [1].  These environments will be characterised by 
distributed interactions on a scale not seen heretofore with 
attendant high levels of complexity and dynamicity - including 
mobility -heterogeneity and uncertainty. We consider that the 
nature of these  interactions will move to a combination of the 
current dominant stateless, or session-less, REST model and a 
stateful/session-based interaction, [2] [3].  

The dramatic escalation in both the number and 
sophistication of security-attacks on business in recent years, [4], 

will continue to grow in coming years– a factor that merely adds 
to the computing environment complexity.  

Access control (AC) systems  will therefore need to adapt 
dynamically to incorporate risk assessment into the access 
control process. AC decisions will be include many factors such 
as the degree of trust in the user and the device, user and device 
situational context i.e. location, time-of-day, type of task as well 
as the current security threat level in the user’s immediate 
environment, [5] . Furthermore the level of access assigned to a 
device or user can change over time and the AC system must be 
able to infer the current trust level by consulting various data 
sources and making decisions accordingly [6]. Researchers are 
therefore exploring the use of risk-based access control in many 
domains, [7]  [8]. 

A main result of these trends is  a move away from the 
traditional perimeter based security model toward the 
application of so called zero trust networking (ZTN) security 
models that treat the enterprise intranet with the same degree, i.e. 
lack, of trust as the Internet, [9]. The key element of the ZTN 
approach is to treat the internal network as untrusted to the same 
degree as the Internet. The internal network is divided into a 
number of network segments or zones each of which contains 
different functions and information. Each zone will have a 
different trust level that indicates the importance of the assets 
housed within the zone, [10]. In order to access an asset, a 
subject’s trust level assignment must be equal to or greater than 
the zone’s minimum trust level, [11].  

Traffic between zones is restricted by firewalls in accordance 
with   with the overall access control policy.  Access control is 
also  dynamic and transaction based i.e. a decision is made for 
each access request and rules are updated on the inter-zone 
firewalls as needed for each transaction. ZTN is becoming 
widely deployed in the commercial world cross many domains.  
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Existing examples of deployments include enterprise 
security e.g. Google’s BeyondCorp [11] as well as campus [7], 
and cloud computing security [8], [12].  

While these deployments show the viability of ZTN and the 
associated risk-based access control they do not describe in 
sufficient detail how to carry out policy enforcement to 
implement risk-based access control in ZTN. We have addressed 
this deficit in a previous paper [5], where we describe a policy 
management framework, FURZE (Fuzzy Risk Framework for 
ZTN), to facilitate fuzzy risk evaluation. In this paper we 
elaborate further on this ongoing work. In particular we define 
the specification of two policy languages to capture and express 
required authorisations, obligations and constraints to enable 
risk based AC for ZTN. We also demonstrate the feasibility of 
our approach through the implementation of a proof of concept 
for  a particular component of the FURZE system to allow the 
dynamic update of firewalls in a ZTN system.  

The rest of the paper is structured as follows: In Section 2 we 
give an overview of the FURZE system. Section 3 defines policy 
languages for ZTN AC. Section 4 describes the development of 
the FURZE firewall provisioning module (FPM). We give 
conclusions of the research in section 5 and outline future 
research challenges. 

II. FURZE SYSTEM OVERVIEW 

FURZE is a policy enforcement framework for risk adaptive 
access control  (RAdAC) based on the policy modelling 
approach of Kandala, [13]. FURZE is specifically aimed at 
RAdAc for the ZTN domain. The key concept of RAdAC is the 
requirement to make a trade-off made between operational need 
and security risk when making access control decisions.  
Operational need can be seen as the reason for the users access 
request. It can be represented as a person’s membership in some 
community of interest or an organization.   In some cases 
operational needs will override security risk and access to 
otherwise restricted resources will be granted. 

Kandala defines a RAdAC policy model based on the UCON 
(Usage Control) model  of Sandhu [3]. The key innovation of 
UCON is the notion of  “decision continuity” which means that 
a policy authorisation or related obligations and conditions can 
be transacted before, during or after the AC session/transaction. 
This insight is a significant addition to RAdAC as it allows 
adaptation to changing environment conditions as well as 
session based interactions. While Kandala has provided a sound 
abstract model for “UCON-ised” RAdAC a number of 
significant research questions remain open around the practical 
deployment of RAdAC. 

Specific issues we seek to  explore through the development 
of FURZE include i) the definition of a policy management 
architecture to include on-going monitoring to enable decision 
continuity in ZTN AC, ii) the design of an access control policy 
language to specify and manage decision continuity updates, iii) 
the design a risk evaluation function based on fuzzy logic to 
enable probabilistic access control decisions to be taken iv) the 
development of a policy language to express firewall access 
control list (ACL) and the design of an accompanying firewall 
provisioning mechanism. 

The proposed FURZE policy enforcement architecture is 

shown in Figure 1. This contains a number of elements that form 
the functional, logical and linguistic basis for a policy 
framework for ZTN. The architecture is broadly based on the 
XACML policy framework, [14]. Access requests are received 
via a Policy Enforcement Point (PEP) such as e.g. a WiFi base 
station. The Context Handler (CH) coordinates the access 
control process including decision continuity handling. The 
Environment Evaluation (EE) contains plug-in components that 
convert session and other relevant factors into attributes that can 
be used as input ot risk evaluation. Examples shown include a 
plug-in to determine  security situational awareness  (see [5]), 
operational need and locations - for a simple access control case 
these components could simply default to session attributes. The 
Risk Evaluation Function  (REF) and Access Decision Function 
(ADF) jointly act as a Policy Decision Point (PDP) to control 
access while the subject and object attributes are stored in a 
management database. The Topology Awareness Module 
(TAM) accesses the network topology map to determine the list 
of firewalls on the route between the point of access and the 
requested service. The Firewall Provisioning Module (FPM) 
then provisions the appropriate firewalls. These two modules 
play a key role in ZTN AC enforcement. 

  In FURZE the application of decision continuity 
imposes a requirement on the control function to maintain 
session state information so that access control can adapt to 
reflect situational or other influencing factors that change the 
balance between operational need and security risk and trigger 
policy re-evaluation. Risk assessment is made as part of the 
initial authorisation predicate evaluation and, possibly, 
subsequently as part of either an authorisation or condition 
predicate evaluation that in turn has been triggered by some 
event during the session, [13]. Dynamic firewall provisioning is 
part of this ongoing session management. Firewall rules are 
removed from the relevant gateways when the session ends or if 
the risk situation changes during the course of the session for 
some reason. 

 

 

Figure 1 FURZE policy enforcement framework 



III. FURZE POLICY LANGUAGES  

Two policy languages are defined as part of the FURZE 
framework. The first,  PAROLE,  is a language to express general 
AC policies while the second language  FACL (FURZE Firewall 
Access Control List ) defines generic firewall rules.  

A. PAROLE 

PAROLE  fulfils a role similar to XACML in providing 
access control to network resources. However, it contains a 
number of enhancements to improve on shortcomings in current 
access control approaches, identified above. The primary 
additions are to enable decision continuity and access control 
risk assessment. PAROLE draws from a number of existing 
policy management approaches including XACML, [14], Fuzzy 
Control Language (FCL, [15] and RAdAC, [16].  PAROLE 
contains three main elements required to provide a complete 

UCON-RAdAC solution- see Listing 1.These are: 

• A Session construct that enables ongoing control (decision 
continuity) for relatively long lived accesses. This notion of 
session differs from the more usual access control notion of 
session which defines a set of access permissions [14] but 
which does not have the notion of continuity 

• An AuthRule construct that specifies the access control 
policies. This is similar to the XACML policy and rules. 

• A RiskFB construct to determine estimation of access control 
risk to enable risk based access control. This construct is 
based on the use of the FCL and contains a set of fuzzy rules. 

PAROLE is an attribute based access control (ABAC) 
approach to policy management and draws on XACML to define 
and manage attributes and other identifiers. In particular,  
PAROLE borrows the XACML namespace approach. As 
described in [17] a “namespace is used to declare a scope that 
contains a set of related objects” where, the case of XACML, 
objects may be attributes, subjects etc. A PAROLE specification 
may contain multiple namespaces, some of which may be 
nested. It must contain at least one root level namespace. 

Identifiers may be imported from one name space to another and 
elements of a nested namespace can be accessed via ‘.’ notation 
as in Java and other languages e.g. parentns.childns.identifier_x. 
A namespace may be either artefact-based or domain-based. 
The artefact approach uses namespaces to organise the PAROLE 
structure based on language elements e.g. an “Attributes” 
namespace may be used to collect all attributes or a “Policy” 
namespace may be similarly used to collect policy definitions. 
In the domain-based approach the namespaces are used to collect 
artefacts according to the entities or application for which the 
policies are being defined e.g. a “User” namespace may be used 
to collect all attributes and any other identifiers for the policy 
subject. The PAROLE language is currently being specified and 
language  tool development is part of ongoing FURZE research 
work.  

B. FACL 

FACL is a Domain Specific Language (DSL) for expressing 
firewall rules and from which firewall-specific filtering rules can 

be generated.  

The FACL language definition contains four main 
productions (in bold in Listing 2), which are used to define the 
firewall entries i.e.: 

• A service production that defines a mnemonic for a 

service and associates a port, or ports to the service. 

An example is:   

service http tcp port from 8080 to 8088  

• A zone production that defines a mnemonic for a 

network zone and associates a range of IP addresses 

with the zone. An example is: 
 

zone zonABC from 192.168.0.1 to 192.168.0.5 

• A firewall rule production which defines the actual 

firewall rule based in part on the previous 

productions 

namespace someName{ 

 namespace Attributes { 

   attribute att-1 { } 

   attribute att-2 { } 

 } 

 namespace Events { 

   event ev-1 { } 

   event ev-2 { } 

 } 

Session mySession { ..} 

 AuthRule auth1 { .. }  

 AuthRule auth2 { .. } 

  . . .  

 RiskFB someFB1 { .. } 

 RiskFB someFB2 { .. } 

 

} // end namespace someName 

Listing 1: PAROLE document 

service_def::= “service” sname  

prot port_range 

 port-range ::= “port” ({portid }+   

 |  “from” portid  “to” portid ) 

zone::= “zone” zone_name ip_address 

 zone_addr ::=  zone_name  

   | ip_address | “any” 

 ip_address ::= ip_addr+ | ip_range 

fwRule::= “fwRule” fwName “{“  

[“incoming:” service_rule]  

[“outgoing:” service_rule] “}” 

 service-rule::=   

sname (“allow” | “deny”) 

(“to” | “from”) zone_addr  

[“to” | “from” zone_addr]  

 zone_action::= = (“add”|“remove)  

fwRule+ zone  

 
Listing 2: FACL BNF subset 

     



 

fwRule fwAcl1{  

 incoming:http allow to 173.41.1.2 from any 

  outgoing:ssh deny to any} 

• A zone action production to add or remove firewall 

rules to/from a zone firewall. An example is 

  
add fwAcl1 to zoneABC 

 Listing 2 is  a subset of the BNF for the language.  

 

IV. FIREWALL PROVISIONING  

Firewall provision is realized by a combination of the TAM 
and FPM components of the FURZE framework. The TAM 
maintains a network topology map including zone topology and 
firewall information. A module such as the TAM can be 
constructed in various ways such as by using SNMP or LLDP.  

 When a request for access to a service or resource has been 
granted the CH queries the TAM for a list of the firewalls on the 
path to the host or server hosting the requested resource. It then 
passes origin and destination information to the FPM to generate 
and install the required firewall rules.   

A. Firewall Provisioning Module 

The purpose of the FPM is to generate FACL firewall rules 
and to then convert these rules to firewall specific rules. It 
consists of four main components 

• An interface module to the Context handler. This is designed 

to isolate the main FPM functions from the interfacing 

mechanism in order to enable flexible module distribution so 

that for example the interface could be a direct method call 

on a Java object or alternatively a REST implementation. 

• The FACL rule generator (FRG). This module creates the 

FACL ruleset in response to the CH call. The design of this 

module is described below. 

• The FACL language processor (FLP). This module take the 

generated FACL rules and translates them to the specific 

firewall rule language(s) that are to be used. The FLP is 

extensible to support a range of firewall implementations. 

• The Firewall Interfacing plug-in. This module interfaces the 

FPM to the individual firewall. It retrieves the firewall 

address from the FRG. 

In the literature we observe two approaches to firewall 
interfacing , one based on the use of a generalised interface and 
one based on the language approach we have taken here. An 
example of the first approach is described in the Dynfire 
framework [7], which uses the Simple Middlebox Configuration 
(SIMCO) Protocol Version 3.0 – defined in RFC 4540. SIMCO 
define a general interface to add policy rules to any  type of 
middle box. The authors used their own SIMCO 
implementation. An example of the second approach is that of 
AL_SAFE [8]. We have adopted the language based approach 
because we believe to be more portable and more easily 
implemented. 

1) FRG 

The Firewall Rule Generator creates FACL rules. The CH 
transfers the relevant production  parameters to the FPM in a 
single interface invocation. These parameters are passed to the 
FRG which converts them to the required set of FACL 
production rules. The FRG is implemented in Java. The FRG 
includes the use of a templating engine as the key mechanism to 
generate the  FACL rule text.. A templating language enables a 
developer/designer to define a document/template containing 
generic text and to substitute tagged item-specific text parts 
through a callout to a templating engine. At runtime, 
the template engine replaces variables in a template file with 
actual values, and transforms the template into an the final file 
version.  

The Apache Velocity templating engine is used within the 

FRG, [18]. The templating engine is invoked from the main FRG 

code component. A FACL template contains a set  of statements 

in the Velocity templating language (VTL) that collectively 

define the FACL firewall rule generation. The key VTL 

constructs are references and directives.  As the VTL user guides 

puts it “References begin with $ and are used to get something. 

Directives begin with # and are used to do something”. 

Variables are assigned a value either internally from within the 

template or externally from the calling FRG Java wrapper. 

Directives include program control constructs as can be seen in 

Listing 3, which show part of the FACL VTL file, used  to 

generate the service production. 
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Figure 2 FURZE policy enforcement framework 

#set ($sp=" ") 

##  Define service name e.g. “service http 

tcp port 8080” 

  ##if ($sname ne "")  

  #if ($port-type==”range”) 

   #set ($ports =from $low_port to $hi_port) 

  #else 

   #set ($ports = $port_list) 

  #end 

  service $sname $protocol port $ports 

#end 

Listing 3: VTL service rule generation 

 

 

 
 

 

 

 

 

 

Listing 4: PAROLE document 



2) FLP 

The rules generated by the FRG are next passed to the 
language processor. For the processor a parser has been 
developed using the PyParsing library, itself an internal DSL for 
developing parsers in Python. The library provides predefined 
functionalities and classes to create and combine parser 
elements. It has many predefined elements that can match 
common constructs, such as Literal(), Word(), Optional(), Or(), 
ZeroOrMore(), OneOrMore() etc.  PyParsing generates a 
recursive-descent-like parser from a set of rules and semantic 
actions.  Rules are defined in a syntax similar to BNF, for 
example – see Listing 4.  

Semantic actions are called when an input line is recognised 
as an instance of a BNF rule. They are associated with a rule 
using the method setParseAction(). When a semantic action is 
called by the PyParsing runtime, three arguments are passed, the 
string being recognised, the start location of the matched text and 
the list of tokens recognised. Semantic actions generate an in-
memory representation of the input known as a semantic model.   
In the example in Listing 5 a service object has been created and 
inserted into a Python dictionary (unordered key-value pairs), 
with key equal to the service name and value equal to the service 
object. The service object stores all information about the 
service. Corresponding zone, firewallRule and zoneAction 
objects are created and inserted into dictionaries. Finally all 
references between objects in the dictionaries are resolved to 
create a semantic model. In the language processor a backend 
module to generate Uncomplicated Firewall (UFW) rules has 
been implemented. It traverses the semantic model and generates 
appropriate UFW rules. Other modules, to generate rules in other 

firewall languages such as IPChains, NetFilter, IPFilter, Cisco 
ACL,  can easily be implemented 

We have implemented a proof of concept – see Fig. 3 - to 

demonstrate the correction functioning of firewall provisioning 

(as FURZE is a work in progress only some parts are  

 

implemented and the proof of concept is consequently limited). 

The scenario demonstrated is basic internet access. The FURZE 

CH module is emulated by a python script to invoke the FPM 

REST interface. Initially the UFW is configured by command line 

to disallow outgoing http requests. The CH is then executed to 

invoke the FPM to, in turn, to generate the FACL and UFW 

commands to install and revoke permissions. Successful 

operation is verified. 

V. RELATED WORK  

Google has adopted a ZTN approach for access control that, 
as described, seems partly similar to the work defined here [6], 
[11]. However they have not described the policy language, risk 
management or decision continuity implementation in detail. 
Vensmer, [7], describes Dynfire, an AC policy management 
framework for ZTN applied to a university campus that 
encompasses a number of the ideas described in our work. 
However it does not include either risk management nor decision 
continuity. Giannoku, [8], describe AL-SAFE, a ZTN AC 
implementation for cloud computing –however they also do not 
include policy language, risk management or decision continuity 
aspects. Approaches to network segmentation and zoning in 
general has been described by [10] and for virtual networking in 
data centres by VMware [19] and in the emerging 5G network 
by [20]. The underlying firewall policy management is a mature 
research field and a number of authors have described efforts in 
this direction [21],[22],[23]. However none of these authors have 
described access control risk management as part of their 
contributions 

AC policy  language design is also a mature area. XACML 
is one of the most widely deployed policy enforcement 
approaches [14].  However neither XACML nor it’s competitors 
support the notion of decision continuity in a session construct.  
In designing FACL we have incorporated a number of ideas 
from these sources. FACL is designed however to be simple to 
use and avoids overly complex language constructs e.g. such as 
inherited zones ,[ 22]. 

Chen [24], developed a fuzzy logic approach to AC risk 
assessment that proposed the gradation of security risk as 
services of levels between “allow” and “deny” where each level 
has an associated risk mitigation countermeasure. Ni [25], 
investigated the applicability of fuzzy inference for risk based 
access control and concluded that the approach was flexible and 
scalable. Our work most closely matches that of Ni as we also 

serviceRule = service + serviceName + 

               sProtocol + servicePortRange 
 

def serviceRuleAction(s,loc,toks): 

 service = Service(toks[1], toks[2],toks[3]) 

 self.ast.servicesDictionary[toks[1]]= service 

 

serviceRule.setParseAction(serviceRuleAction) 

 

Listing 5 FACL semantic actions 

     

serviceRule = service + serviceName +          

               sProtocol + servicePortRange 

service = Literal(("service(") 

serviceName = Word(alphanums) 

port = Literal(("port(") 

servicePortRange = port + Or(portIds |  

    portRange) 

portRange = frm + portId + to + portId 

frm = Literal("from") 
to = Literal("to") 

 

Listing 4: FACL PyParsing grammar 

 

 

 
 

 

 

 

 

 

Listing 4: PAROLE document 
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Figure 3 FPM proof of concept 

 

 

 



propose the use of fuzzy inference for risk calculation – however 
our scope of research is somewhat wider. 

VI. CONCLUSIONS   

Computer networking is evolving rapidly on many fronts. 
Security and trust models are likewise evolving to meet these 
challenges. In this paper we have described a risk-based access 
control enforcement framework to support future security needs, 
in particular ZTN. We have defined the policy languages needed 
to support the framework and have described the design and 
implementation of a component to support firewall provisioning. 

Future work includes the development of language tools and 
runtime mechanism for the PAROLE language and its 
integration into an existing PDP system such as Keycloak [26],  
to demonstrate its viability. Furthermore, the PAROLE session 
construct is a form of context aware access control and the 
concept is easily extended to IoT and edge computing 
application areas such as smart manufacturing. 

VII. BIBLIOGRAPHY 

[1]  M. Chiang and T. Zhang, "Fog and IoT: An Overview of Research 
Opportunities," IEEE INTERNET OF THINGS JOURNAL, vol. 3, 
no. 6, 2016.  

[2]  S. Berger, S. Vensmeer and A. Kiesel, "An ABAC-based Policy 
Framework for Dynamic Firewalling," in ICSNC 2012 : The 
Seventh International Conference on Systems and Networks 
Communications An, Lisbon, 2012.  

[3]  J. Park and R. Sandhu, "The UCON(ABC) Usage Control Model," 
Transactions on Information and System Security, vol. 7, no. 1, pp. 
128-174, Feb 2004.  

[4]  R. Broadhurst, P. Grabosky, M. Alazab, B. Bouhours and S. Chon, 
"An Analysis of the Nature of Groups engaged in Cyber Crime," 
International Journal of Cyber Criminology, vol. 8, no. 1, pp. 1-20, 
2014.  

[5]  B. Lee, R. Vanickis, F. Rogelios and P. Jacob, "Situation Awarness 
based Risk Adaptable Access Control in Enterprise Netowrks," in 
2nd International Conference on Internet of Things, Big Data and 
Security (IoTBS), Porto, 2017.  

[6]  R. Ward and B. Beyer, "BeyondCorp A New Approach to Enterprise 
Security," ;login:, vol. 39, no. 6, Dec 2014.  

[7]  A. Vensmer and S. Kiesel, "DynFire: dynamic firewalling in 
heterogeneous networks," in Proceedings World Congress on 
Internet Security (WorldCIS), 2012.  

[8]  A. Giannakou, L. Rilling, C. Morin and J-L. Pasage, "ALSAFE: A 
Secure Self-Adaptable Application-Level Firewall for IaaS," in 
SEC2 - Second workshop on Security in Clouds, Lorient, 2016.  

[9] 

  

Forrester Research,, "Developing a Framework to Improve Critical 
Infrastructure Cybersecurity," 2013. [Online]. Available: 
http://csrc.nist.gov/cyberframework/rfi_comments/04 
0813_forrester_research.pdf>.. [Accessed 19 February 2018]. 

[10]  A. Gontarczyk, P. McMillan and C. Pavlovski, "Blueprint for 
Cybersecurity Zone Modelling," IT in Industry, vol. 3, no. 2, 2015.  

[11]  B. Osborn, J. McWilliams, B. Beyer and M. Saltonstall, 
"BeyondCorp; Design to Deployment at Google," ;login:, vol. 41, 
no. 1, 2016.  

[12]  S. Jeuk, G. Salgueiro, F. Baker and S. Zhou, "Network 
Segmentation in the Cloud A Novel Architecture Based on UCC and 
IID," in IEEE 4th International Conference on Cloud Networking 
(CloudNet), 2015.  

[13]  S. Kandala, R. Sandhu and V. Bhamidipati, "An Attribute Based 
Framework for Risk-Adaptive Access Control Models," in RES '11 
Proceedings of the 2011 Sixth International Conference on 
Availability, Reliability and Security, Washington, 2011.  

[14]  OASIS, "eXtensible Access Control Markup Language (XACML) 
Version 3.0," 2013. [Online]. Available: http://docs.oasis-
open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html. [Accessed 7 
May 2017]. 

[15]  International Electrotechnical Commission., "IEC 61131-7:2000 
Programmable Controllers – Fuzzy Control Programming," 2000. 
[Online]. Available: <https://webstore.iec.ch/publication/4556?. 

[16]  R. McGraw, "Risk Adaptable Access Control,," 2009. [Online]. 
Available: http://csrc.nist.gov/news_events/privilege- management-
workshop/radac-Paper0001.pdf. [Accessed 11 May 2017]. 

[17]  OASIS, "Abbreviated Langauge for Authorisation , Version 1.0," 12 
March 2015. [Online]. Available: https://www.oasis-
open.org/committees/download.php/55228/alfa-for-xacml-v1.0-
wd01.doc. [Accessed 27 February 2018]. 

[18]  Apache, "Apache Velocity," August 2017. [Online]. Available: 
http://velocity.apache.org/. [Accessed Feb. 2018]. 

[19]  Vmware, "Data Center Micro-Segmentation: A Software Defined 
Data Center Approach for a Zero Trust Security Strategy," 
VmWare, 2104. 

[20]  O. Mammel, J. Hiltunen, J. Suomalainen, K. Ahola, P. Mannersalo 
and J. Vehkaper, "Towards micro-segmentation in 5G network 
security," in European Conference on Networks and 
Communications (EuCNC), Athens, 2016.  

[21]  B. Zhang, E. Al-Shaer, R. Jagadeesan, J. Riely and C. Pitcher, 
"Specifications of A high-level conflict-free firewall policy 
language for multi-domain networks," in ACM Symposium on 
Access Control Models and Technologies, Monterey, 2007.  

[22]  J. Lobo, M. Marchi and A. Provetti, "Firewall Configuration 
Policies for the Specification and Implementation of Private Zones," 
in Proceedings IEEE International Workshop on Policies for 
Distributed Systems and Networks, 2012.  

[23]  Cisco Corpporation, "Zone-Based Policy Firewall Design and 
Application Guide," Mar 2010. [Online]. Available: 
http://www.cisco.com/c/en/us/support/docs/security/i os-
firewall/98628-zone-design-guide.html#topic6. [Accessed 26 Feb 
2018]. 

[24]  P.C. Chen,  P. Rohatgi, C.  Keser,  P.A. Kargr. "Fuzzy Multi–Level 
Security : An Experiment on Quantified Risk–Adaptive Access 
Control," IEEE Access, vol. 2, pp. 514-525, 2014.  

[25]  Q. Ni, E. Bertino and J. Lobo, "Risk-based Access Control Systems 
Built on Fuzzy Inferences," in ASIACCS’10 5th ACM Symposium 
on Information, Computer and Communications Security, Beijing, 
2010.  

[26]  Keycloak, "Open Souce Identity Management," 2018. [Online]. 
Available: http://www.keycloak.org/. [Accessed March 2018]. 

 

View publication statsView publication stats


