Comparing User QoE via Physiological and Interaction Measurements of Immersive AR and VR Speech and Language Therapy Applications

Department of Electronics & Informatics, Faculty of Engineering & Informatics, Athlone Institute of Technology

Conor Keighrey c.keighrey@research.ait.ie

Ronan Flynn rflynn@ait.ie

Sean Brennan s.brennan@research.ait.ie Siobhan Murray siobhan.murray1@hse.ie Niall Murray nmurray@research.ait.ie

Introduction

- Speech & language therapy (SLT) is the practice of assisting people speech, language, communication, and swallowing difficulties.
- 12% of people internationally experience a speech and language difficulty.
- Speech language difficulties can occur early or later in life as a result of traumatic brain injury or stroke.
- Traditionally, paper based assessments such as The Comprehensive Aphasia test are used in a clinical setting to evaluate speech and language difficulties.
- Interactive and immersive multimedia technologies have the potential to enhance paper based assessments.
- Augmented Reality and Virtual Reality technologies provide unique multimedia experiences.
- Quality of Experience (QoE) evaluations are key to the success of any application or service
- System, Human/User, and Content factors impact user perception of QoE.
- Traditionally QoE is measured through subjective methods such as post-test questionnaire.
- Objective metrics in the form of physiological measures provide unbiased insight into user perception of a multimedia experiences.
- Digitally enhanced assessments allow the capturing of more precise measures of interaction for this type of test.

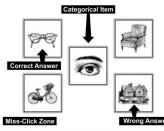
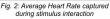



Fig. 1: Semantic Memory Assessment

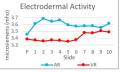


Fig. 3: Average Electrodermal Activity captured during stimulus interaction

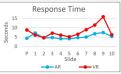


Fig. 4: Average Response Time captured during stimulus interaction

Methodology

- Information & Screening Phase -Participants were provided information on the test and screened for visual defects.
- Resting Phase Baseline physiological metrics were captured for over 5 minutes using aPIP Biosensor and FitBit Charge.
- Training Phase The training phase consisted of a series of training videos. Participants were asked to complete a training exercise using the HMD.
- Testing Phase Participants completed the virtual SLT assessment which was followed by a subjective questionnaire.

Fig. 5: Factors Impacting Quality of Experience

Results

- Performance of both groups fall within one standard deviation of the normative data for the paper based assessment.
- Both AR and VR groups experience a similar reaction in terms of HR elevation.
- EDA for the AR group indicates that they become accustomed to the virtual environment over time.
- The VR group experience a rise in EDA which coincides with increased cognitive load as reflected through increased response time.
- Higher rates of error are experienced in the VR group.
- User response times are favorable towards the AR group.

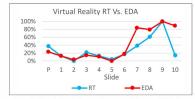


Fig. 6: Correlation between Response Time and EDA for Virtual Reality group

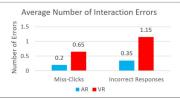


Fig. 7: Average number of Interaction Errors experienced

Conclusion

- Test performance indicates that both technologies are applicable for semantic memory analysis as part of a speech and language assessment.
- Physiological (EDA) and interaction measures (Response time, Miss-Clicks, and Incorrect answers) are favourable towards the AR group.
- Future work will involve further analysis of the physiological measures, specifically with respect to the SD of HR and EDA.
- This work will also be extended to the development and evaluation of SLT diagnostics and interventions based on AR technologies.

Acknowledgements

This research was supported by the Irish Research Council (GOIPG/2016/1493).

