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ABSTRACT 

The1 key aim of various assistive technology (AT) systems is to 

augment an individual’s functioning whilst supporting an enhanced 

quality of life (QoL). In recent times, we have seen the emergence 

of Virtual Reality (VR) based assistive technology systems made 

possible by the availability of commercially available Head 

Mounted Displays (HMDs). The use of VR for AT aims to support 

levels of interaction and immersion not previously possibly with 

more traditional AT solutions. Crucial to the success of these 

technologies is understanding, from the user perspective, the 

influencing factors that affect the user Quality of Experience 

(QoE). In addition to the typical QoE metrics, other factors to 

consider are human behavior like mental and emotional state, 

posture and gestures. In terms of trying to objectively quantify such 

factors, there are wide ranges of wearable sensors that are able to 

monitor physiological signals and provide reliable data. In this 

demo, we will capture and present the users EEG, heart Rate, EDA 

and head motion during the use of AT VR application. The 
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prototype is composed of the sensor and presentation systems: for 

acquisition of biological signals constituted by wearable sensors 

and the virtual wheelchair simulator that interfaces to a typical LCD 

display. 

CCS CONCEPTS 

• Human-centered computing → Human computer interaction 

(HCI); • Human-centered computing → Virtual Reality 

KEYWORDS 

QoE, Virtual Reality, Assistive Technology, Physiological Metrics  

ACM Reference format: 

D.P. Salgado, F.R. Martins, T.B. Martins, C. Keighrey, R. Flynn, E.L.M. 

Naves, and N. Murray. 2018. SIG Proceedings Paper in word Format. In 

Proceedings of ACM Multimedia System conference, Amsterdam, 

Netherlands, June 2018 (MMSys’18), 4 pages 

  

 

 

 

 

 

 

 



MMSys’18, June 12-15, 2018, Amsterdam, Netherlands D.P.  Salgado et al. 

 

2 

 

1 INTRODUCTION 

In recent years, new metrics and methodologies have been 

proposed with the purpose of developing QoE models that best suit 

the evaluation of new multimedia systems. The literature, for 

example in [1], reports categories of influencing factors (IFs) such 

as Human IFs (HIFs), System IFs (SIFs) and Context IFs (CIFs). 

As outline in [1], IFs frequently overlap and together have a mutual 

impact on QoE. Such IFs are complex and strongly interrelated, and 

due this fact, still needs continuous studies to establish which 

factors influence QoE given the context. Traditionally, the SIFs and 

CIFs were considered most important for QoE, but the HIF have 

gained significant interest and importance in more recent years. 

In this context, the proposed demo presents a framework which 

captures a number of implicit metrics from the user continuously as 

they experience an immersive multimedia training application. 

Traditionally, the user’s assessment in this context was via self 

reporting post the experience (e.g. questionnaires, which do 

provide valuable insight into the user perceived QoE). Such 

methods of evaluation are used to determine an overall mean 

opinion score (MOS). However, these types of evaluations are not 

without their flaws. They are often limited to the specific 

application scenarios [2-3]; they are often considered expensive; 

time consuming; inflexible and sometimes the number of subjects 

is not enough to represent the aim population of the study [3]. 

 As a result, the QoE community has begun to explore 

alternative methods of evaluation [4-7]. More specifically in terms 

of implicit metrics, a body of work is emerging which aims to 

monitor and evaluate physiological signals as parameters to 

evaluate the user behavior [8]. This is now possible due to the 

availability of a new generation of wearable devices. Smart watches 

and activity trackers observe heart rate (HR), GPS position, and 

step count to provide feedback on the wearers fitness levels. More 

advanced devices are also available which provide the opportunity 

for users to monitor electrocardiographic signal (ECG), blood 

volume pressure (BVP), galvanic skin response (GSR, also known 

as electrodermal activity or EDA), body surface temperature, 

accelerometer, respiration rate, encephalography signals (EEG) 

and other physiological signals [9]. Even within the traditionally 

expensive EEG equipment companies such as Muse®, Emotiv®, 

OpenBCI® and Neurosky® offers options of low-cost EEG 

devices.  

Recent advances in display technology are changing how we 

experience multimedia. The entertainment (gaming and movie) 

industry now focuses on the development of 360 degree immersive 

multimedia content which can be viewed on head mounded 

displays (HMD). This virtual reality (VR) experiences can be 

displayed on consumer available devices such as the Oculus Rift ® 

and HTC Vive®. These VR systems allow human-machine 

interaction (HMI) where the user can interact, navigate and 

reproduce real situations without risk [10]. In other words, it 

becomes accessible to simulate and visualize actions that would be 

impossible to be perceived in the real word. Hence, VR systems are 

applicable not only to gaming, being feasible for training, 

rehabilitation and education [11]. One such area where VR systems 

can be applied is in Assistive Technology. 

According to the World Health Organization (WHO), assistive 

devices and technologies are "those whose primary purpose is to 

maintain or improve an individual’s functioning and independence 

to facilitate participation and to enhance overall well-being. They 

can also help prevent impairments and secondary health 

conditions." [12].Within this scenario, this paper presents a 

prototype of an Assistive Technology system in VR; a wheelchair 

simulator. The assessment task was implemented in VR 

environment and a number of physiological metrics: EEG signal, 

GSR/EDA, body surface temperature, accelerometer, HR and BVP 

were captured to provide an objective analysis while the individual 

is operating the wheelchair simulator. 

2 RELATED WORK 

There are many studies related to the Autonomic Nervous 

System (ANS) to observe the human behavior [13]. The ANS is 

divided into the sympathetic nervous system (SNS) and 

parasympathetic nervous system (PNS) [14]. When a person 

experiences excitement or anticipation of an important event, the 

SNS is activated. This means the body is under stressful conditions, 

as result, it increases heart rate, respiration activity and sweat gland 

activity, etc. After the stress has passed the PNS is activated, when 

the body needs to relax and slow down. Hence, the PNS reverses 

the stress response. Since the ANS controls the heart, measuring 

the heart activity is an alternative for evaluating the state of the 

ANS. If we want to analyze the sympathetic activation separately, 

the GSR/EDA must be monitored, and to evaluate the 

parasympathetic activation the alternative is extracting the high 

frequency component of this heart rate variability [9]. 

 The electroencephalogram measurement is widely used to 

investigate mental states, which is most certainly a difficult task 

considering the complexity of the human brain. The work of 

Duncan et Al. [1], [15], mentions that while recording relevant 

information about the brain activity, significant noise or unwanted 

information can also be captured, e.g.  motion artifacts (e.g. eye and 

facials movements), and also effects of electromagnetic 

interference. There are standard guidelines used in a clinical setting 

to appropriately collect and analyse EEG signals. However, some 

of the practices used to measure the EEG may affect critical IFs on 

the user’s QoE. For example, to use a wet/gel electrode, the 

participant’s scalp needs to be properly prepared. As a result, the 

time consumed in the process of preparation can exhaust the user 

before a test or experiment. In addition, the freedom of movement 

of the user is reduced because they need to avoid the moving their 

body. To address these issues as outlined in  [1], [16], low-cost EEG 

devices, e.g. Emotiv-EPOC and NeuroSky Mindewave headset, are 

capable to retrieve useful information in the context of QoE 

research. In [10], the features provided by Emotiv-EPOC device 

were used and the authors have applied the system to draw the 

inference of frustration from human observer caused by the quality 

of the played audiovisual excerpt.  This demo will employ the low 

cost NeuroSky MindWave EEG headset which is minimally 

invasive.   

 Our approach captures and presents EDA and Heart rate, blood 

volume pressure, the hand surface temperature, xyz-acceleration  
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Figure 1: Prototype System Framework. I. Physiological 

wearable sensors used to capture data. (a) Neurosky 

mindwave® device. (b) Empatica E4® wristband. II. 

Representation of user interaction with the wheelchair 

simulator. III. The compatibles displays. (a) Common screen. 

(b) Oculus Rift® HMD device. (c) HTC Vive® HMD device. 

and EEG. The ultimate aim is to understand any correlations or 

inference between these metrics and the user’s QoE.  Although 

recently literature, Keighrey et al. [4], used the wearable sensors, 

PIP® and Fitbit®, to capture heart rate variability and GSR/EDA 

activity in order to assess a user’s QoE objective data; very few 

works are as exhaustive as the proposed system. The motivation is 

that analyzing these physiological metrics can give a good 

indication of the ANS activation.   

3  EXPERIMENTAL SETUP  

This section provides details of the technologies employed in 

the prototype system framework as shown in Figure 1. 

3.1  Virtual Reality Display Technologies 

The simulator can operate with two types of HMD, the Oculus 

Rift Development Kit 2 (DK2) and HTC Vive. These two HMD 

options were added to the simulator for future comparative 

experiments between these models. Each of these respective 

devices has proprietary controller systems. In this demo, users 

control movement in the virtual environment using a USB joystick 

or keyboard. However, the simulator can support different forms of 

control of the wheelchair such as using electromyographic signals 

from facial muscles and eye tracking. As such, users with severe 

motor disabilities can still operate the wheelchair. However, for the 

purposes of the current research, only the default joystick controller 

is used. The objective of this is to provide a similarity with the 

controls of a real electronic wheelchair. 

3.2 Wheelchair Simulator – The Assistive   

Technology application   

The virtual environment used in this research was developed using 

the Unity 3D game engine [17-20]version 2017.2.0f3 (64-bit). The 

simulation was developed as a training tool, providing 

inexperienced users of electric wheelchairs a method to learn 

operation skills in a safe environment. In the current version, three  

 

Figure 2: Current training courses included in the Wheelchair 

Simulator. (a) Obstacle course for training basic maneuvers. 

(b) Navigation in accessibility ramp. (c) Navigating the 

wheelchair in elevators. 

different training scenarios are available for users (Figure 2). These 

were designed to reproduce situations that are commonly found by 

wheelchair users during a normal navigation routine: (A) an 

obstacle course (to introduce the user to basic maneuvers); (B) 

navigation of ramps; (C) the complex task of maneuvering within 

elevators. 

      3.3 Objective Metrics – Physiological Data 

To capture the physiological metrics such as EDA/GSR, HR, 

BVP, temperature, accelerometer and EEG, two non-invasive and 

dry wearable devices were used. The sensors selected for the demo 

are the Wristband E4 from the company Empatica, and Mindwave 

Mobile from Neurosky, as shown in Figure 1 (I). The Mindwave is 

one channel EEG device, the electrodes are dry type, its bandwidth 

is between 3 to 100 Hertz (Hz), with 12 bits of resolution, sample 

rate is 512 Hz and the transmission is made via Bluetooth.  The 

Neurosky device already includes factory data processing of the 

EEG signals, to provide an indicative of the user’s level of attention 

and meditation. However, these algorithms are private and are still 

not scientifically validated. As an alternative, it is possible to access 

the raw EEG signal that can then be processed. In the EEG module, 

the demo focuses not only on the acquisition of brain signals, but 

also on the signal processing to identify and quantify cognitive 

states such as stress, sleepiness, and attention. EEG signals are 

composed by a range of different frequencies (1-100Hz) that can 

be related to the beginning of a mental state. For example, delta 

waves (1-4Hz) can be related with the relaxed, unconscious state, 

while theta waves (4 – 7 Hz) are related to REM sleep, cognitive 

tasks, intuition, creativity, and dream. Alpha waves (8-12 Hz) refer 

to a relaxed but awake state. Beta waves (13 – 40 Hz) represent 

alertness, agitation and emotional influence, and gamma waves (40 

– 100 Hz) are related to motor functions and higher mental activity 

[21]. Different methods need to be used to acquire the brain signals, 

which are commonly classified into groups depending on the  
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equipment used. 

The E4 has four sensors: photoplethysmography, electrodermal 

activity, 3-axis accelerometer and optical thermometer. These 

sensors are used to determine the blood volume pressure with a 

sample rate of 64 Hz, inter beat interval (IBI), electrodermal 

activity in a sample rate of 4 Hz, xyz raw acceleration with a sample 

rate of 32 Hz and the skin temperature with a sample rate of 4 Hz. 

The commonly analyzed components of the EDA signal are the 

rapid change skin conductance response, which corresponds to 

short-term external stimuli, and the conductance of the skin 

changing more slowly (after several seconds or longer), which 

reflects long-term emotional changes regardless of external stimuli 

[22-23]. Exposure to stress also results in changes in skin 

temperature in various parts of the body. In the distal region the 

temperature decreases, for example, in the surface of the hands, and 

the temperature of the skin remains in proximal regions, such as the 

core area [24]. The Heart Rate variability refers to the beat-to-beat 

variation. This analysis can be categorized into time-domain and 

spectral-domain analysis, when the HR increases may relate that 

the user is under stressful conditions. 

3.4 Demonstration 

For the demo, participants can experience all user scenarios and 

the physiological data will be presented. In the meantime, if it is in 

the interest of the user the system can monitor the EDA, HR, EEG 

and temperature values in real time.  After the completion of the 

demo, the performance results (e.g. time of the experiment, number 

of commands and collisions) and the physiologic data will be 

presented. Demonstration setup for the attendees will be using a 

conventional PC monitor, and the simulator with the VR Headset 

will be shown in video format.  

4 CONCLUSIONS 

This demo will solicit an experimental and theoretical 

discussion on the use of physiological data as indicators of QoE. 

Our system allows the user to experience immersive multimedia 

training in a safe environment. The system allows us to conduct 

many experiments and can provide enough data for deep analysis 

of the obtained results. To correlate the measurements and 

experience regular statistics will be applied facilitating the future 

development of an informative model of QoE.  
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