
Population structure and management 

of Albacore tuna (Thunnus alalunga) in 

the North Atlantic Ocean 

 

 

 

 

 

Roxanne Duncan 

Submitted in fulfilment of the requirements of the degree of 

Doctor of Philosophy 

 

Supervised by: Dr. Deirdre Brophy 

                               Dr. Haritz Arrizabalaga  

                   Dr. Fausto Tinti 

 

Submitted to the Galway-Mayo Institute of Technology & 

Alma Mater Studiorum - Universita di Bologna 

December 2017



 

i 
 

Population structure and management 

of Albacore tuna (Thunnus alalunga) in 

the North Atlantic Ocean 

 

 

 

 

 

Roxanne Duncan 

 

A thesis submitted to the School of Science, Galway-Mayo Institute of Technology and 

the Universita di Bologna in the fulfilment for the degree of Doctor of Philosophy 

 

Department of Natural Sciences 

December 2017 

 

Supervised by: Dr. Deirdre Brophy 

                               Dr. Haritz Arrizabalaga  

                   Dr. Fausto Tinti 

 

 

 

Galway-Mayo Institute of Technology 

Dublin Road, 

Galway, 

Ireland 

 

 

 



 

ii 
 

Declaration of PhD Thesis 

 

I hereby declare that the work contained in this thesis is my own except where explicitly 

stated otherwise in the text and that it has not been submitted, in whole or in part for 

another degree. 

 

 

 

 

 

 

 

 

 

Candidate Name 

 

 

 

 

 

 

Date 

Supervisor Name 

 

 

 

 

 

 

Date 

Supervisor Name 

 

 

 

 

 

 

Date 

Supervisor Name 

 

 

 

 

Date 



 

iii 
 

Acknowledgements 

These past four years have been an intense period of learning for me, not only 

academically but also on a personal level. Now that my PhD is coming to an end, I would 

like to thank the people who helped and supported me through this journey. 

First, I would like to express my sincere gratitude to my supervisors, Dr. Deirdre Brophy, 

Dr. Haritz Arrizabalaga and Dr. Fausto Tinti for their guidance, patience and for sharing 

their immense knowledge with me. Thank you for giving me the time and space to explore 

my ideas but also for being available when I needed a listening ear or help finding my 

way while I considered different ideas and perspectives. 

I am indebted to the MARES Erasmus Mundus Joint Doctorate programme for giving me 

my fellowship; without their financial support, I would never have been able to pursue 

my studies. I would also like to thank the MARES advisors who made my tenure at GMIT 

possible. 

I am grateful to AZTI-Tecnalia, particularly Igaratza Fraile, Xiker Salaberria and Nicolas 

Goñi for collecting my samples and for helping me to retrieve the otoliths for my projects. 

I would like to thank the Marine Institute for granting me use of the Irish mid-water pair 

trawl VMS and observer data. Special thanks to Dr. Hans Gerritsen and Graham Johnston 

for meeting with me and answering all my questions, regardless of how trivial they 

appeared. I also would like to thank Dr. Cóilín Minto for his R programming help and 

advice.  

I want to thank my friends and colleagues at GMIT, especially Claire, Heidi, Isabel, 

Michael, Griffin, Kevin, Mar, Colin and Simon. I am grateful for each and every one of 

them for their company and support during high and low times as well as for our tea 

breaks which were always fun.  

I would like to thank Marius Schudel for being such a great partner. His support 

throughout this journey has been invaluable to me. I would also like to thank the Schudel 

family for their encouragement and kind words through many challenging times. Thank 

you also to Dr. Candice Johnson for her wise counsel and motivational words throughout 

my studies. 



 

iv 
 

Last, but by no means least, I would like to thank my mother and sister for their steadfast 

support, even from far away. Thank you for always believing in me. 

Above all, I thank Almighty God for His guidance throughout my studies and for the 

remarkable things He continues to do in my life. 

 

 

  



 

v 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

vi 
 

Table of Contents 

1.1 Definition of a Stock .......................................................................................... 2 

1.2 Importance of Proper Stock Management .......................................................... 2 

1.3 Methods for Stock Identification ........................................................................ 3 

1.4 Stock Assessments ............................................................................................. 6 

1.5 Fleet Behaviour Dynamics ................................................................................. 6 

1.6 Species of Interest .............................................................................................. 7 

1.7 Albacore tuna Management ................................................................................ 7 

1.8 Summary of Objectives ...................................................................................... 9 

2.1 Abstract ............................................................................................................ 11 

2.2 Introduction ...................................................................................................... 11 

2.3 Methods and Materials ..................................................................................... 13 

2.3.1 Fishery data .................................................................................................. 13 

2.3.2 Shape analysis .............................................................................................. 14 

2.3.3 Elliptical Fourier analysis ............................................................................ 14 

2.3.4 Statistical analysis ........................................................................................ 15 

2.4 Results .............................................................................................................. 16 

2.5 Discussion ........................................................................................................ 17 

3.1 Abstract ............................................................................................................ 31 

3.2 Introduction ...................................................................................................... 31 

3.3 Methods and Materials ..................................................................................... 34 

3.3.1 Otolith microchemistry analysis .................................................................. 35 

3.3.2 Statistical analysis ........................................................................................ 36 

3.3.3 Comparison of core and post-core otolith microchemistry .......................... 37 

3.3.4 Otolith microstructure analysis .................................................................... 37 

3.4 Results .............................................................................................................. 38 

3.4.1 Otolith microchemical analysis .................................................................... 38 

3.4.2 Comparison of core and post-core otolith microchemistry .......................... 38 

3.4.3 Otolith microstructure analysis .................................................................... 39 

3.5 Discussion ........................................................................................................ 39 

4.1 Abstract ............................................................................................................ 59 

4.2 Introduction ...................................................................................................... 59 

4.3 Methods and Materials ..................................................................................... 61 

4.3.1 Markovian models ........................................................................................ 61 



 

vii 
 

4.3.2 Data collection ............................................................................................. 62 

4.3.3 Observer data ............................................................................................... 62 

4.3.4 VMS data ..................................................................................................... 63 

4.3.5 Finite mixture models .................................................................................. 65 

4.4 Results .............................................................................................................. 66 

4.4.1 Observer data ............................................................................................... 66 

4.4.2 VMS data ..................................................................................................... 66 

4.4.3 Finite Mixture model analysis ...................................................................... 66 

4.5 Discussion ........................................................................................................ 67 

5.1 Overview of study findings .............................................................................. 81 

5.2 Incorporating population structure into the management of albacore tuna ...... 82 

5.3 Standardisation of CPUE indices ..................................................................... 84 

5.4 Future studies and endeavours.......................................................................... 84 

5.4.1 Population structure ..................................................................................... 84 

5.4.2 Fleet dynamics ............................................................................................. 85 

References ....................................................................................................................... 87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

viii 
 

List of Figures 

Figure 2. 1  Catch locations of juvenile albacore in and outside the Bay of Biscay. Map 

source: WGS84, 200 m (light grey) and 4000 m (grey) depth contour 

shown, Scale: 1 cm = 148 km. The symbols,  and  represent the catch 

locations west and east of the 10°W meridian respectively....................... 25 

Figure 2. 2  Albacore tuna left otolith before and after image processing. (A) The 

original image before intensity thresholding, (B) The modified binary 

image before a selection is created. ........................................................... 26 

Figure 2. 3 Parallel boxplots of the Canonical scores for albacore caught in each catch 

location. ...................................................................................................... 27 

Figure 2. 4 Mean shapes of albacore tuna by catch location for all samples and for 

2014 samples. ............................................................................................. 28 

Figure 2. 5 Fork length frequency distribution categorised by catch location. ............ 29 

 

Figure 3. 1 Map displaying putative life-stage specific migration routes of albacore 

tuna ............................................................................................................. 50 

Figure 3. 2 Map of the capture locations of albacore tuna used in this study .............. 51 

Figure 3. 3 The approximate position of the laser spots. The lines show the distance 

between the core and the post-core as well as the diameter of the ablation 

spots which was 55µm. .............................................................................. 52 

Figure 3. 4 Mean larval increment width per growth ring for each location ............... 53 

Figure 3. 5 Canonical scores plot using the core natural logged data of samples taken 

from three capture locations. The ellipses represent 95% confidence levels 

around the mean for each location. ............................................................ 54 

Figure 3. 6 Plot of the canonical scores using post-core natural logged data of samples 

taken from three capture locations. The ellipses represent 95% confidence 

levels around the mean for each location. .................................................. 55 

Figure 3. 7 Plot of the mean and standard error for each trace element for each capture 

location ....................................................................................................... 56 

Figure 3. 8 Plot of the mean sum of the increment widths of larval growth rings 7-12 

for the three capture locations .................................................................... 57 

 



 

ix 
 

Figure 4. 1 Plot of the Bayesian Information Criterion (BIC) for the three scenario 

models ........................................................................................................ 75 

Figure 4. 2 The natural logged catch by year for the paired and unpaired data. For the 

paired data, each point represents the combined catch of a pair. ............... 76 

Figure 4. 3 Deviance residual histograms and Q-Q plots of the PFE one-component 

(top row) and the UTE two-component (bottom row) models. ................. 77 

Figure 4. 4 The standardised CPUE indices predicted from the PFE (blue) and the 

UTE models (component 1: orange, component 2: green. The error bars 

represent the with 95% confidence intervals for each indice in the time 

period. ........................................................................................................ 78 

Figure 4. 5 The Standardised index trends of surface fisheries targeting albacore tuna 

in the North-east Atlantic region (acquired from ICCAT 2016 North and 

South stock assessment report) .................................................................. 79 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

x 
 

List of Tables 

Table 2. 1   Juvenile albacore sampled per year, including average length (cm) and 

capture location ............................................................................................ 21 

Table 2. 2 Results from the structure matrix of the standardized canonical coefficients, 

ordered by size of correlation within the function. ...................................... 22 

Table 2. 3 Jack-knifed cross-validation matrix showing the percentage of correct 

classifications derived from discriminant analysis....................................... 23 

Table 2. 4 The results from the test for interannual variability using samples collected 

in the east over the three-year period (2012-2014) and samples collected 

from both locations in 2014. ........................................................................ 24 

 

Table 3. 1 Number of samples obtained for the study separated by Cohort, Capture         

location and Capture year. Values in brackets represent the number of 

samples used in the microstructure analysis ................................................ 44 

Table 3. 2 Estimates of precision, accuracy and limits of detection for standards NIST 

612 and MACS 3 .......................................................................................... 45 

Table 3. 3 The results of the jack-knife classification of the core data ......................... 46 

Table 3. 4 The trace elements standardized canonical coefficients used in the core data 

analysis ......................................................................................................... 47 

Table 3. 5 Results of the jack-knife classification function on the post-core data ........ 48 

Table 3. 6 Standardized canonical coefficients for the trace elements used in the post-

core data analysis ......................................................................................... 49 

 

Table 4. 1 The calculations used for the indicators of model performance .................. 72 

Table 4. 2 The performance of the HSMM on the observer data .................................. 73 

Table 4. 3 The correlation value of CPUE and fishing proportion for each year with   

significant correlations in bold ..................................................................... 74 

 

 

 

 



 

xi 
 

Abstract 
 

Population structure and management of Albacore tuna 

(Thunnus alalunga) in the North Atlantic Ocean 

Roxanne Duncan 

 

Albacore tuna (Thunnus alalunga) is a globally important species found in the tropical 

and temperate zones of every ocean including the Mediterranean Sea. The aim of this 

research is to advance the current knowledge concerning the population structure of 

albacore tuna in the North Atlantic Ocean as well as to improve fishery-dependent 

estimates of its relative abundance using vessel monitoring data from the Irish mid-water 

pair trawl fleet. The population structure was investigated at both a local and regional 

scale. At the local scale, otoliths from juveniles caught within the Bay of Biscay and off 

its western shelf were examined in order to determine their stock structure using otolith 

shape analysis. Results from the study revealed significant differences in otolith shape 

between the two areas. At the regional scale, otolith microchemistry and microstructure 

analyses were conducted on otoliths from juveniles, caught in and around the Bay of 

Biscay, and from adults collected in the offshore fisheries of Canada and Venezuela to 

determine if they shared similar larval or pre-juvenile habitats. The study revealed, based 

on the microchemistry analysis of the larval core, that there may be more than one 

spawning location in the North Atlantic for albacore tuna. The final study investigated 

the use of fishery-dependent data to derive indices of abundance. Vessel monitoring 

systems (VMS) data from the Irish pair trawl fishery were used to identify fishing pairs 

targeting albacore tuna from 2006-2016. A hidden semi-Markov model was used to infer 

fishing effort from VMS data. The impact of using fishing effort instead of days at sea 

was also compared using CPUE standardisation models. The results showed that hidden 

semi-Markov models are efficient at inferring fishing effort and that using VMS data to 

describe fleet behaviour can improve catch rate standardisation for albacore tuna.
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1.1 Definition of a Stock  

A stock can be simply defined as a discrete group of fish whose internal dynamics are 

monitored in order to detect changes in response to an external force such as fishing 

(Secor, 2013). There are numerous ways to define a stock, with each definition depending 

on the primary reason for the maintenance of the group. Biologically, a stock is a 

population of fish that is large enough to be self-reproducing, and whose members exhibit 

similar life history characteristics, that may not be genetically distinct from another 

population (Hilborn and Walters, 1992). A population is defined as a group of individuals 

of the same species that is genetically and spatially separated from other groups 

(Fonteneau, 2010; Wells and Richmond, 1995). From a management standpoint, a stock 

is a unit of management created to ensure the sustainable utilisation of a resource, for 

biological, social, recreational and economic reasons (Begg and Waldman, 1999; 

Cochrane and Garcia, 2009). Using this definition enables species to be properly assessed 

and minimises fishing impacts on the environment and on non-target species (Cochrane 

and Garcia, 2009). To ensure that a stock is sustainably exploited and not in an overfished 

state, stock assessments are carried out by fisheries scientists. Stock assessments, which 

can be carried out on both single and multiple species, are used to determine the past and 

present state of the stock as well as try to predict how the stock would respond to changes 

in management, e.g. changes in quotas and lengths of fishing seasons (Cooper, 2006; 

Methot and Wetzel, 2013).   

1.2 Importance of Proper Stock Management 

Information from stock assessments is crucial to ensure that a stock is not overexploited 

or worse, reaches such low levels that it is not able to replenish itself, and eventually 

collapses. One infamous example of stock mismanagement is the Newfoundland cod, 

Gadus morhua, fishery. According to Atkinson et al. (1997), the cod fishery had existed 

since the 1500s, first targeting cod in the inshore waters then moving offshore with the 

introduction of otter trawling into the area in the 1950s. Annual catches quickly increased 

from approximately 150 000 tonnes to 810 000 tonnes by 1968. As a result of the rapid 

increase in catches, the stock declined and only increased in 1988 due to the extension of 

the Canadian Exclusive Economic zone in 1978. By 1991, fishery independent surveys 

and studies reported a decrease in cod both in the inshore and offshore waters. In 1992, 
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the moratorium to close the fishery was implemented based on the recommendation of 

the Canadian Atlantic Fisheries Scientific Advisory Committee (CAFSAC) and the 

Northwest Atlantic Fisheries Organisation (Atkinson et al., 1997). The impact of this 

decision to close the fishery drastically affected the region, especially Newfoundland 

which had relied on the cod fishery for centuries (Gien, 2000). To this day, the fishery 

still remains closed.  

1.3 Methods for Stock Identification 

In many instances, the boundaries of a stock may not be consistent with the spatial extent 

of the species’ population. From a biological point of view, a stock should take into 

consideration the population structure of the species to ensure its proper management 

(Carvalho and Hauser, 1994). Understanding the population structure equips scientists 

with information relating to the genetic framework of the species, its life cycles and 

internal dynamics in terms of stability and resilience to natural and anthropogenic effects 

(Kerr et al., 2010a; Ruzzante et al., 2006). This information will in turn help managers 

make more informed decisions on the management of the stock. The characteristics 

present within a population can be due to genetic, demographic and environmental 

differences (Heino, 2013; Waldman, 2005).  

The investigation into the genetic differences between stocks has allowed scientists to 

assign individuals or subpopulations to a specific stock, to outline stock boundaries, and 

to estimate population size (Mariani and Bekkevold, 2013). In many highly migratory 

species, the genetic differentiation required to characterise the stock and to establish its 

boundaries is very low (Hauser and Carvalho, 2008; Palstra and Ruzzante, 2008). This 

could be due to small numbers of individuals moving between populations every 

generation. This may increase the genetic similarity between stocks, but if one stock is 

heavily fished or severely mismanaged, these movements will not be enough to replace 

it. Even though the stocks may be considered genetically similar, there may exist 

phenotypic differences which would enable individuals within the stock to adapt to 

differences in the environment e.g. temperature, salinity and oxygen content (Mariani and 

Bekkevold, 2013; Nielsen et al., 2009; Wright et al., 2002). 

Phenotypic traits such as body size and shape, colouration, even the numbers of scales or 

fin rays on the fish can result from not only genetic differences but also from differences 
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in life history and environment (Heino, 2013). Differences in life histories are recorded 

in growth marks which are proportional and independent of somatic growth (Wright et 

al., 2002). These marks are used in age determination and stock identification studies; 

they are used to calculate the age and growth rate of fish, detect differences in growth 

histories of sub-populations and identify the stage when they separated from each other 

(Brophy, 2013; Campana and Thorrold, 2001; Pepin et al., 2001). Otoliths, scales and fin 

spines are hard structures frequently used in the analysis of growth marks which are 

deposited at different timescales (annual, seasonal, daily) (Brophy, 2013; Panfili et al., 

2002). 

Of the three structures, otoliths are the most extensively used to understand the population 

structure of teleost species, from marine to freshwater environments. Otoliths are widely 

used because it is metabolic stability and continual growth throughout the fish’s life. 

These characteristics are not always observed in scales and fin spines, especially in older 

fish and fish that have experienced poor growth during their lives, therefore their use has 

been limited (Campana and Thorrold, 2001). Otoliths begin forming in the embryonic life 

stage and record the growth marks of the fish’s development in a chronological manner 

(Campana and Thorrold, 2001). The growth marks, termed microstructure, can also be 

used to identify development stages, such as hatch time and metamorphosis in order to 

reconstruct life histories and understand population structure (Baumann et al., 2015; 

Morales-Nin and Geffen, 2015; Toole et al., 1993). 

Fish that inhabit different environmental conditions for portions of their lives can be 

discerned using the microchemical composition of otoliths. Microchemistry analyses 

involve measuring the concentrations of stable isotope ratios and trace metals in otoliths 

using various techniques, for example, gas-ratio spectrometry (Fraile et al., 2016; 

Niklitschek et al., 2010), inductively coupled plasma mass spectroscopy of whole or 

sections of otoliths (Campana et al., 2000), electron probe microanalysis and micro-

proton induced X-ray emission analysis (Proctor et al., 1996; Thresher, 1999). 

Preliminary studies in the 1960s showcased otolith microchemistry as a method that could 

delineate a population’s structure and its migration history based on the premise that there 

was a direct relationship between the chemistry of the otolith and the chemistry of the 

environment (Thresher, 1999). However, by the late 1990s, it became apparent that otolith 

microchemistry was not only influenced by the seawater’s chemical composition but also 

by environmental and physiological factors, such as diet and temperature (Sturrock et al., 
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2012; Thresher, 1999). This realisation caused scientists to re-evaluate their approach to 

using otolith microchemistry and to investigate how these factors influenced the 

composition of otoliths. Otolith microchemistry has been used to reveal information about 

the movement patterns (Elsdon et al., 2008), metabolism (Sherwood and Rose, 2003), 

spawning sites (Rooker et al., 2014) and population structure (Campana et al., 2000) of a 

stock. 

The shape of otoliths and scales has been found to be an effective tool in detecting inter- 

and intra-specific differences originating from genetic and environmental influences 

(Richards and Esteves, 1997; Schulz-Mirbach et al., 2008; Vignon and Morat, 2010). 

Otolith shape is species specific and is influenced by genetics, ontogeny and the 

environment; and in previous studies, it has been shown to be affected by differences in 

temperature, salinity, substrate type and water depth (Keating et al., 2014). This type of 

analysis utilises different techniques to describe and compare the otolith shape such as 

wavelet analysis, biorthogonal grids, thin plate splines, Euclidean distance matrices and 

variations of the Fourier series (polar and elliptical) (Cadrin and Friedland, 1999; Tracey 

et al., 2006). These techniques quantify boundary shapes so that variations in the otolith 

shape can be evaluated. The most widely used technique is Elliptical Fourier series which 

fits harmonics to the shape of the otolith or other hard structure (Beyer and Szedlmayer, 

2010; Burke et al., 2008; Chen et al., 2000) and is capable of discerning subtle shape 

variations among groups (Benzinou et al., 2013; Stransky et al., 2008a). 

Both otolith microchemistry and otolith shape have been essential tools for understanding 

population structure and identifying stock boundaries in both marine and freshwater 

species; however, the way otoliths are used, and the information gathered from either tool 

is different. Otolith microchemistry can be used to discriminate between individuals who 

have resided in different environmental conditions for some part of their lives. The 

chemical composition of specific life history stages can be isolated and compared 

between and among groups of fish (Campana et al., 2000). Otolith shape, on the other 

hand, can be used to reveal the combined effect of genetic, migration and environmental 

factors on the fish throughout its life (Keating et al., 2014; Vignon and Morat, 2010).  
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1.4 Stock Assessments 

In stock assessments, fisheries scientists attempt to estimate the size of the fish stock and 

the fishing mortality rate using catch and effort data from the fishery in assessment 

models to determine biological reference points, for example, maximum sustainable yield 

(MSY) (Berger et al., 2009; Cooper, 2006). To calculate the reference points, data on the 

fishery, in terms of catch, effort, fishing mortality, relative abundance and the species’ 

life history are needed. These data can be derived from both fishery dependent (e.g. 

portside sampling, logbook data, observer data) and independent (research surveys, 

tagging programmes, mark-and-recapture studies) sources (Berger et al., 2009; Cooper, 

2006; Cosgrove et al., 2014c). Fishery independent data are difficult to collect because of 

the financial obligation required to conduct these surveys and studies. Also for species 

that are highly migratory or reside over large areas, accumulating independent data may 

not be feasible (Cosgrove et al., 2014; Maunder et al., 2006). In such cases, fishery 

dependent data are frequently used; however, the complexity of the data (e.g. differences 

in fleet behaviour, gear types and vessel size) is an issue. Catch and effort data are 

standardised to remove the effect of these varying factors so that the data reflects the 

abundance of the stock (Cosgrove et al., 2014c). Previous studies have identified 

instances where catch-per-unit-effort (CPUE) estimates from fishery dependent data are 

not suitable as abundance indices for stock assessments, for example, changes in the 

environment, fish population dynamics and the behaviour of the fishing fleet (Maunder 

et al., 2006). To ensure the continued and reliable use of fishery dependent data, as a 

viable data source for stock assessments, the assumed relationship between catch and 

effort data and indices of abundance must continue to be examined and improved. 

1.5 Fleet Behaviour Dynamics 

Understanding how the behaviour of the fleet influences catch and effort data has been 

an emerging topic in recent years. Using tools from the field of animal movement 

ecology, such as state-space models and Markovian models, have allowed fishery 

scientists to infer behavioural states from movement patterns in order to properly define 

fishing effort (Langrock et al., 2012; Walker and Bez, 2010). For example, authors (Joo 

et al., 2013), used Markovian models to infer the behavioural states (searching, fishing 

and cruising) of Peruvian purse-seiners fishing for anchovy, using observer and Vessel 
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Monitoring Systems (VMS) data. The time periods associated with the vessels’ activities 

can be quantified, which can be used to give more accurate effort estimates when 

standardising CPUE data. To date, only one study has related VMS adjusted estimates of 

fishing to catch rates (Charles et al., 2014), therefore, further development is required in 

this emerging area of study. 

A clear understanding of fish species’ population structure, especially those that are of 

high economic importance is critical to its long-term sustainable management. 

Sustainable management also necessitates the use of appropriate data and tools to carry 

out stock assessments to ensure management can make informed decisions. The 

collection of work in this thesis was focused on elucidating the population structure of 

albacore tuna (Thunnus alalunga) in the North Atlantic, as well as modelling fleet 

behaviour to improve effort estimates used to standardise CPUE. 

1.6 Species of Interest 

Albacore tuna is one of the most economically important tuna species, and it can be found 

in tropical and temperate zones of every ocean basin as well as the Mediterranean Sea 

(Collette and Nauen, 1983; FAO, 2010). It is a highly migratory species that can be 

distinguished from other tunas by its long pectoral fin. It can reach a maximum length 

and weight of 127 cm and 40 kg respectively (Collette and Nauen, 1983). The migration 

patterns undertaken by albacore differ based on age. Juveniles (ages1-4) migrate to 

temperate regions to feed in the surface waters during the summer. Meanwhile, adults 

(ages 5-12) travel to deep subtropical waters (250-300 m) to feed and spawn. During the 

winter, both age groups come together to feed in sub-tropical to tropical waters (Chen et 

al., 2005; Dufour et al., 2010; Jones, 1991). Albacore tuna are batch spawners with 

spawning events, releasing over 2 million eggs in an episode (Luckhurst and Arocha, 

2015).  

1.7 Albacore tuna Management 

Due to its economic importance and widespread distribution, stocks of albacore tuna, 

along with other tunas and tuna-like species, are managed globally by four regional 

fisheries management organisations (RFMOs). The five organisations consist of countries 

who have fishing interests in the region. They are: The International Commission for the 
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Conservation of Tunas (ICCAT); The Inter American Tropical Tuna Commission 

(IATTC), responsible for stocks in the Eastern Pacific; the Indian Ocean Tuna 

Commission (IOTC) and Western and Central Pacific Fisheries Commission (WCPFC).  

In the Atlantic, ICCAT assumes the existence of three stocks, the North Atlantic, South 

Atlantic and the Mediterranean Sea. The separation of these stocks is based on 

inconsistent biological information, in the areas of its genetic framework, migration and 

spawning locations (Arrizabalaga et al., 2002; Luckhurst and Arocha, 2015; Montes et 

al., 2012). In the North Atlantic, albacore’s population structure is not fully understood 

(Nikolic et al., 2016), leaving the species susceptible to overexploitation and possible 

collapse. Various techniques have been used to investigate albacore’s structure, such as 

microsatellites (Davies et al., 2011), otolith microchemistry (Fraile et al., 2016), tagging 

studies and body morphometrics (Fonteneau, 2010). These studies have indicated that the 

stock may comprise of multiple subpopulations, but the evidence is not conclusive. 

For the management of these stocks, scientists use fishery dependent catch and effort data 

to carry out stock assessments (ICCAT, 2016). The fishery dependent data are derived 

from surface and longline fisheries targeting albacore tuna juveniles and adults. The sub-

adults and adults are caught mainly by Chinese-Taipei and Japanese longline fleets year-

round (ICCAT, 2016; Lehodey et al., 2014). From June to October, Spanish baitboats and 

trolls, Portuguese baitboats, French and Irish mid-water pair trawls exploit albacore 

juveniles as they undergo their trophic migration to the waters off the coast of the Azores, 

in and around the Bay of Biscay and the southwestern waters of Ireland (Bard, 2001; Ortiz 

de Zárate and Cort, 1998). Irish fishers began targeting albacore tuna in 1990 using drift 

nets. With the ban on drift nets by the European Commission in 2002, the Irish fishery 

transitioned to mid-water pair trawling and trolling. Mid-water pair trawling is the 

predominant method currently used to fish for albacore in Ireland (Cosgrove et al., 

2014b). In 2016, the Irish fishery landed approximately 2,300 tonnes valued at 10 million 

euros (Bord Iascaigh Mhara, 2016). 

The albacore stock in the North Atlantic is considered to be marginally overfished but is 

not presently undergoing overfishing (ICCAT 2016). Therefore, more detailed 

information concerning albacore’s population structure, and data to estimate indices of 

abundance used in its assessment models are necessary to provide managers with the 
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knowledge they need to make informed decisions about the welfare of the stock and to 

prevent the loss the species’ genetic and behavioural variability. 

1.8 Summary of Objectives 

The overall objective of this research was to advance the present understanding of 

albacore tuna’s population structure and to improve fishery-dependent estimates of 

relative abundance. To address this objective, three studies were conducted using otolith 

shape analysis, otolith microstructure and microchemistry analyses and hidden semi-

Markov models to model fleet behaviour, covered in Chapters 2,3, and 4 respectively.  

The aim of the first study (Chapter 2) was to examine spatial variation in otolith shape 

from catch locations in the North-east Atlantic and to establish if contingents with distinct 

otolith shapes can be identified and if these attributes can be used to elucidate stock 

structure. The shape of the otolith was described using Elliptical Fourier harmonics as 

well as shape and size indices. The variables were analysed using analysis of covariance 

(ANCOVA) and a generalised canonical discriminant model in order to determine if there 

were any differences in shape between catch locations.  

The second study (Chapter 3) investigated the otolith microstructure and microchemistry 

of juveniles caught in the Bay of Biscay and adults caught around Canada and Venezuela. 

The aim of this study was to determine whether or not albacore juveniles and adults share 

a common environment during their larval or pre-juvenile life stages. For the 

microchemical analysis, element:Ca ratios were extracted using the laser ablation-

inductively coupled plasma mass spectroscopy (LA-ICPMS) technique.   

The aim of the third study (Chapter 4) was to investigate the influence of fleet behaviour 

on catch-per-unit-effort estimates using hidden semi-Markov models and finite mixture 

models. In the study, hidden semi-Markov models were used to model fleet behaviour 

from observer and VMS data using vessel speed as the observed variable. Finite mixture 

models were used to standardise CPUE data and to compare the effect of behavioural 

variables quantified in the Markovian model. Data from the Irish mid-water pair trawl 

fishery were used in the study.  

An overall discussion chapter (Chapter 5), discussing the key findings of the thesis and 

suggestions for future studies is also presented.  
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Chapter 2: Otolith shape analysis as a 

tool for stock separation of albacore 

tuna feeding in the North-east Atlantic 
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2.1 Abstract 

For management purposes, albacore tuna (Thunnus alalunga) in the North Atlantic is 

considered to be from one homogenous stock. However, multiple lines of evidence 

suggest that there is some degree of stock complexity. In this study, the stock structure of 

North Atlantic albacore tuna is investigated using otolith shape analysis. Juvenile 

albacore tunas were collected from the commercial fishery in the Bay of Biscay region 

over a three-year period (2012-2014). Catches were concentrated in two main areas: 

within the Bay of Biscay (East) and off the western shelf edge (West). Otolith shape was 

defined using Elliptical Fourier analysis and was compared between albacore from these 

two catch locations using generalised canonical discriminant analysis. The results show 

significant differences in otolith shape between albacore from the Eastern and Western 

locations using Elliptical Fourier descriptors. The discriminant analysis and jack-knifed 

cross-validation classification correctly classified East and West samples with a success 

rate of 72% and 75% respectively. The results suggest that two components with distinct 

environmental life histories contribute to the fishery in the North-east Atlantic. It also 

implies that albacore juveniles display some degree of fidelity to their feeding areas. 

2.2 Introduction 

Albacore tuna (Thunnus alalunga) is a highly migratory fish found in the tropical and 

temperate waters of every ocean basin (Arrizabalaga et al., 2015; Collette and Nauen, 

1983). For management purposes, albacore tuna in the Atlantic Ocean are divided into 

three stocks: North Atlantic, South Atlantic, and the Mediterranean. The separation is 

based on limited knowledge of spawning locations, spatial distribution of different life 

stages, movements of tagged fish, and observed morphometric variations (Arrizabalaga 

et al., 2004; Cosgrove et al., 2014a; ICCAT, 2011; Montes et al., 2012). 

The life cycle of North Atlantic albacore tuna is not well understood; however, it is 

assumed that adults and juveniles spend winter in the central Atlantic (Santiago and 

Arrizabalaga, 2005). At the beginning of summer, both adults and juveniles begin their 

separate migrations. The adults migrate to the warm waters of the southern Sargasso Sea 

to spawn from about 5 years old (Luckhurst and Arocha, 2015). Juveniles (Ages 1-4) 

migrate to their feeding grounds in the Azores, south-west Ireland and the coastal and 

offshore waters of the Bay of Biscay (Sagarminaga and Arrizabalaga, 2014; Santiago and 
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Arrizabalaga, 2005). It has been proposed that they follow two potential routes to this 

area: the Azorian - from the Azores to the offshore waters of the Bay of Biscay and the 

Celtic Sea, and the Cantabrian - from the coastal waters of the Iberian Peninsula to the 

inner Bay of Biscay (Hue, 1980).  

These different migration routes might correspond to different subpopulations. In fact, 

the subpopulation structure of albacore tuna in the North Atlantic is not fully understood 

(Nikolic et al., 2016). Various approaches have been used to investigate its structure, such 

as microsatellites (Davies et al., 2011), otolith microchemistry (Fraile et al., 2016), 

tagging studies and body morphometrics (Fonteneau, 2010). These studies have indicated 

that the stock may comprise multiple subpopulations, but the evidence is not conclusive. 

For example, in the Bay of Biscay and Celtic Sea, differences have been found in the 

juveniles’ spatial distribution. There is evidence of distinct groups feeding in the offshore 

and inshore waters of the bay (Fraile et al., 2016; Sagarminaga and Arrizabalaga, 2010). 

It has also been suggested that stock composition in the Bay of Biscay may vary 

throughout the season as juvenile albacore from different areas migrate to feed (Davies 

et al., 2011).  

Fisheries have been able to target this species at their feeding grounds because of their 

predictable migration pattern and the propensity of juveniles to feed in surface waters 

(Goñi et al., 2011; Goñi and Arrizabalaga, 2010). The fishing season is from June to 

October and it consists of Irish, Spanish, French and Portuguese surface and mid-water 

fishing boats. For the period 2010 to 2014, surface fisheries (baitboat and trolling) 

accounted for approximately 65% of the total catch in this area (ICCAT, 2016). If 

population structure is not accounted for in stock assessment and management initiatives, 

less productive components could be overfished and the genetic and/or behavioural 

variability of the stock could be lost (Benzinou et al., 2013). These subpopulations may 

have different spawning origins or may inhabit environments with different physical 

oceanographic characteristics e.g. temperature or salinity (Fraile et al., 2016; Wright et 

al., 2002). Such differences could produce variations in phenotypic traits such as otolith 

shape.  

Otolith shape analysis has been found to be an effective tool in detecting inter- and intra-

specific differences originating from genetic and environmental influences (Schulz-

Mirbach et al., 2008; Stransky, 2013; Vignon and Morat, 2010). Otolith shape has been 
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used to discriminate between stocks of various species (Leguá et al., 2013; Petursdottir et 

al., 2006; Stransky et al., 2008b; Tuset et al., 2003). Several techniques are available to 

describe the otolith shape such as biorthogonal grids, Euclidean distance matrix analysis 

and various types of Fourier functions (Tracey et al., 2006). Elliptical Fourier functions 

use harmonics to describe the shape of the otolith. The amplitude of each harmonic 

represents a shape characteristic e.g. elongation and triangularity (Bird, 1986). This 

method has been used substantially in recent studies and has shown to be proficient at 

distinguishing groups with subtle otolith shape differences (Benzinou et al., 2013; Galley 

et al., 2006; Stransky et al., 2008a). 

The classic approach to characterise a stock is to acquire samples during a spawning event 

and use those attributes to determine the composition of a mixed assemblage. But, in the 

case of albacore, fisheries do not target spawning aggregations, making it difficult to 

sample spawning adults (Luckhurst and Arocha, 2015). Therefore, in this study, a top-

down approach was applied to a potentially diverse aggregation in an attempt to identify 

components within it. The aim of this study was to examine spatial variation in otolith 

shape from catch locations in the North-east Atlantic and to establish if contingents with 

distinct otolith shapes can be identified and if these attributes can be used to elucidate 

stock structure. The otolith shape was described using Elliptical Fourier functions along 

with shape and size indices.  

2.3 Methods and Materials 

2.3.1 Fishery data 

Geographic location of albacore catches in the Bay of Biscay region were extracted from 

logbooks for the fishing seasons of 2012 to 2014. The catch locations of fishing vessels 

from which albacore tuna heads were collected were mapped using ArcGIS ArcMap 10.2. 

Catch locations were separated into two groups. Following Fraile et al. (2016) and 

Sagarminaga and Arrizabalaga (2010), albacore catches from west of the 10°W meridian 

were classified as “West” and catches from east of the 10°W meridian were classified as 

“East” (hereafter called West and East respectively) (Fig. 1). For each sample, the total 

length (cm), weight (kg), date of catch and the fishing vessel was also recorded. The 

sagittal otoliths were removed, cleaned, air dried and stored in individually labelled 

plastic tubes. For this study, only otoliths from fish whose total fish length was between 
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50 cm and 87 cm were used to ensure all samples were restricted to the juvenile stage. 

This length range corresponds to albacore aged between 1-4 years old (Ortiz de Zárate et 

al., 2013; Santiago and Arrizabalaga, 2005). After the visual inspection, 67 samples were 

used in total, 43 samples caught in the East and 24 in the West (Table 1).  

2.3.2 Shape analysis  

Otoliths were photographed using a stereomicroscope (Olympus SZX10) connected to a 

digital camera (Q Imaging Retiga 2000R) with a PC interface. No broken otoliths were 

not used in the analysis. Both left and right otoliths were photographed, and their images 

were rotated to an assigned position. Images were converted to 8 bit and the otolith outline 

was selected by intensity thresholding in Image J (Version 1.48) (Fig. 2). The selection 

was used to measure 8 size (area, perimeter, major and minor Feret’s diameter, height and 

width of the bounding rectangle and major and minor axes of an ellipse) and 4 shape 

indices (circularity, aspect ratio, roundness, solidity). Three additional shape variables 

were calculated for each otolith, form factor, (4π*area/ (perimeter) 2), ellipticity, ((Feret 

length – Feret width) – (Feret length + Feret width)) and squareness, (area / (Feret length 

x Feret width)). Otolith outlines were saved as XY coordinates for subsequent extraction 

of Elliptical Fourier coefficients.  

2.3.3 Elliptical Fourier analysis 

Elliptical Fourier analysis was conducted using the R statistical program (Version 3.2.3). 

Using the Momocs package (Version 0.9.63), the coordinates of each otolith were scaled 

and smoothed. A Fourier power test was performed, and the first twelve harmonics were 

shown to describe 99% of the cumulative variability of the otolith shape. Each harmonic 

consists of four coefficients; thus 48 coefficients were produced for each otolith. Three 

coefficients in the first harmonic were used to standardise for orientation, rotation, and 

size, leaving 45 coefficients. Combining the Elliptical Fourier coefficients and the otolith 

morphometric variables produced 60 variables (8 size and 7 shape parameters, 45 Fourier 

descriptors) including fish length.  
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2.3.4 Statistical analysis 

Using the growth curve from Santiago and Arrizabalaga (2005), the age of the fish 

samples was estimated. The mean fork length value for the catch locations was calculated 

and their frequency distributions were plotted. All the variables were tested for normality 

and homogeneity of variance using the Shapiro and Levene’s test respectively and were 

transformed when necessary. Correlations between fish length and each variable were 

tested using Pearson’s correlation statistic. Variables significantly correlated with fish 

length were standardised using the common within-group slope from an analysis of 

covariance (ANCOVA) with location included as a factor and fish length as a covariate 

(Tracey et al., 2006). A significant interaction term indicated that the relationship between 

fish length and the variable was not consistent across locations and the common within-

group slope could not be used to standardise for the effect of length; these variables were 

thus omitted. After the standardisation of 22 variables (9 size and shape indices, 13 

Fourier coefficients), the ANCOVA was rerun. Variables that differed significantly by 

location were considered potentially useful and were chosen for further analysis.  

A correlation plot was produced to determine if any of the selected variables were 

correlated with each other. If two variables were correlated (r2 >0.5), one of the variables 

was randomly chosen for omission. Based on the results of the tests, five Fourier 

descriptors (C5, C11, D3, D7 and D12) were selected. Descriptors D3 and D7 were 

corrected through a Box-Cox power transformation for normality and homogeneity of 

variance respectively. Descriptor D12 was correlated with fish length and was corrected 

with the common within-group slope. Because of the nature of the fishery, an uneven 

number of samples were collected for each year and from each area (Table 1). Ideally, an 

equal number of samples should be collected from each area for each year to ensure the 

differences observed in the data are not skewed by other effects such as interannual 

variability. However, this was not possible in our study which relied on samples from the 

commercial fishery.  

To ensure the variation observed in otolith shape was not a result of interannual 

variability, the data were separated into two groups and univariate analyses of variance 

(ANOVAs) were carried out on the descriptors in each group. The first group contained 

the samples caught in the East during the three-year period and was used to assess the 

strength of the year effect. The second comprised of the samples caught in both areas in 
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2014 and was used to determine the strength of the location effect. The coefficient of 

determination (or r2) and the p-value were recorded for each descriptor in both groups. If 

the r2 values of the first group were greater, then the significance of the descriptors was a 

result of a year effect. If the second group had larger r2 values, then the significance of 

the descriptors was due to a location effect. A generalised canonical discriminant analysis 

was performed using the selected variables to identify differences in otolith shape 

between albacore caught in the two areas. Jack-knifed cross-validation procedures were 

conducted to calculate an unbiased evaluation of classification success. The Meanshapes 

function in Momocs was used to recreate the shape of the otolith for both locations using 

all the samples and only the otoliths collected in 2014.  

2.4 Results 

Based on the five Fourier descriptors, the mean and variance of the East otoliths were 

significantly different to the West otoliths. The descriptors were from the low and middle-

level harmonics suggesting that the dissimilarities were in both the gross shape and the 

finer details of the otolith. Of the five descriptors, D12 was the most important in 

discriminating between fish from the two areas followed by C5, D3, C11 and D7 (Table 

2). All five descriptors, except D7 and C11, were strongly correlated to the first canonical 

discriminant and were considered important in discriminating between fish from the two 

areas (Table 2). 

The canonical discriminant analysis revealed a separation between the two groups along 

the first discriminant (p-value = 0.002). The two groups showed significant differences 

in their canonical scores but with a region of overlap (Fig.3). The dissimilarities between 

the two groups are captured in the plots of the mean otolith shape for all the samples and 

the 2014 samples (Fig.4). The East otoliths possess a narrower rostrum and the West has 

a slightly broader post-rostrum. Also, despite the small East sample size, the 2014 mean 

otolith shape showed some shape differences between the two locations. Using all five 

descriptors, the classification score for the discriminant analysis was 72.1% in the East 

and 75% in the West (Table 3). 

The ages of the juvenile albacore used in this study ranged from 1 to 4 and all ages were 

detected at both locations. The fork length frequency distributions were found to be 

similar with Eastern samples having a slightly larger range than the Western samples (X-
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squared = 11.92, p-value = 0.06) (Fig. 5). There was a small difference in mean fork 

length between the two areas, (West = 73.8 cm, East = 70.2 cm) which was not significant. 

The assessment for interannual variability of the East samples showed that none of the 

descriptors were different between the years. The location effect observed in the samples 

collected in 2014 was difficult to detect because of the small sample size (Table 1). Only 

the C11 descriptor (p-value =0.035) was found to be significantly different between the 

samples caught at the two locations in 2014 (Table 4).  

2.5 Discussion 

The aim of this study was to examine the spatial variation in otolith shape between 

albacore tuna caught at two separate locations. Despite our small sample size, the results 

from the Fourier and discriminant analyses clearly show that the average otolith shape 

changes based on catch location (Fig. 4). The selected variables were also able to 

discriminate between the East and West locations with a classification success of 72% 

and 75% respectively to a priori grouping. This can occur if the distributions of two stock 

subpopulations at the feeding area overlap partially, as suggested by tagging data 

(Arrizabalaga et al., 2002), but not completely. Alternatively, misclassification may 

reflect a degree of similarity in the otolith shape of fish from two entirely distinct stock 

components.  

Our results have identified differences between albacore caught in and around the Bay of 

Biscay. We propose that they have most likely accumulated over the life of the fish and 

may represent different life histories. Although these dissimilarities cannot be used to 

discriminate between the two locations completely, the observed variation in shape 

indicates that albacore caught in the East has a different environmental life history to the 

fish caught in the West. Also, our conclusions add validity to the hypothesis that different 

contingents migrate to feed in the North-east Atlantic (Aloncle and Delaporte, 1974; 

Bard, 2001; Fonteneau, 2010; Fraile et al., 2016). Altogether, these results add to a 

growing body of evidence that supports stock complexity in this region (Nikolic et al., 

2016).  

It must be noted that in the West there were a small number of samples with fork lengths 

between 50 – 60 cm. Juveniles in this length range would have undergone fewer 

migrations than larger individuals, resulting in a difference in their migration histories. 
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This difference could have played a role in the otolith shape dissimilarities observed 

between the two locations; however, any differences in size or length would have been 

dealt with by standardising for size effects in the creation of the Fourier descriptors and 

by using the common within-group slope to remove any correlations with length. 

Due to restrictions on the collection of samples from the commercial fishery, the sampling 

was not balanced; samples from the East were collected in 2012, 2013 and 2014 while in 

the West only samples from 2014 were available. Therefore, the possibility that the shape 

differences observed may be confounded by interannual variability was investigated. It 

must be noted that after dividing the data, the sample size of both groups was small and 

therefore the results should be interpreted with caution. The univariate ANOVAs showed 

that in the samples from the East, none of the shape variables varied between years. With 

the samples collected in 2014, it was difficult to detect the location effect using the small 

sample size available; however, a small effect was observed with descriptor C11. This 

indicates that the observed variation in otolith shape is unlikely to be an artefact of the 

sampling design. 

Population structure in the North-east Atlantic has been studied for many years using 

various genetic, otolith microchemical and microstructural techniques. The genetic 

investigation into the separation of albacore tuna in the North Atlantic is inconsistent at 

best. According to Davies et al. 2011, genetic heterogeneity and spatial structuring were 

observed within the North Atlantic stock using microsatellite analysis. The authors stated 

that divergence was seen between the Bay of Biscay and the Celtic and western Ireland 

samples. The spatial variation observed was separated by the 10°W meridian, similar to 

our study. However, a recent  multiannual genetic study, using larger samples sizes and 

single nucleotide polymorphisms (SNP), showed that the North Atlantic was a 

homogeneous stock (Albaina et al., 2013; Laconcha et al., 2015). Using the laser ablation 

inductively coupled plasma mass spectrometry (LA/ICP-MS) technique, Fraile et al. 

(2016) analysed albacore tuna otoliths collected from in and around the Bay of Biscay, 

separating the samples based on capture location east and west of the 10° W meridian. 

The authors found no evidence that the juvenile albacore tunas had different larval 

origins. They did, however, find that the Sr:Ca concentrations in the post-core region of 

the otolith were significantly different between the two groups implying that the 

individuals occupied different areas during their early years. They also suggested that 
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albacore collected in the East began migrating to the North-east Atlantic feeding area at 

an earlier age (age 1) while individuals caught in the West began at a later age.  

Currently, albacore tuna in the North Atlantic is managed as one homogenous stock. Our 

study shows that there is some complexity within the mixed aggregation of albacore 

feeding in the North-east Atlantic. To produce the difference in otolith shape observed in 

this study, albacore juveniles caught at the two catch locations could be from the same 

spawning area but have different migration routes or they could be from two distinct 

spawning areas that make similar migrations during the summer to feed. If they are of 

separate spawning origins, this will have serious implications for the assessment and 

management of the stock. If they are from the same spawning area but with significantly 

different life histories, then depending on fishing effort, which varies from year to year, 

one group may be targeted more than the other. This can have a large impact on within-

stock diversity (e.g. variability in life-histories, behaviours, migration patterns), with 

potential consequences for stock resilience and stability (Kerr et al., 2010a). 

In our study, a top-down approach was utilised, that instead of collecting samples during 

a spawning episode, they were gathered from mixed feeding aggregations. The top-down 

approach has been used in studies on various marine species such as hawksbill (Monzón-

argüello et al., 2010) and loggerhead turtles (Monzón-argüello et al., 2009) and blue 

whiting (Giedz, 1982). This approach can be used to gather initial insights into an 

organism’s genetic composition (Monzón-argüello et al., 2010), to assess spatial variation 

in juvenile mixed aggregations (Monzón-argüello et al., 2009) or to determine a 

population’s structure based on morphometric and meristic measurements (Giedz, 1982). 

The results of our study, as well as, the ones mentioned above, demonstrate that this 

approach is worthwhile especially if insufficient information is known about the species’ 

population in an area or if spawning sites are unknown or undefined. 

Future work should focus on characterising the source of variation in shape observed in 

albacore juveniles feeding in and outside the Bay of Biscay. They should incorporate 

genetic, microchemical and microstructural techniques to ensure a holistic approach is 

utilised to effectively characterise the stock. Markers of larval origin (otolith core 

chemistry, microstructure, genetics) could be used to determine if the fish are from 

different spawning areas, while analysis of chemical composition or growth marks along 

the otolith transect could help to establish if they have occupied different environments 
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later in life. Spatial and temporal control is an important aspect of sampling. While the 

use of the commercial fishery allows for the cost-effective collection of samples, spatial 

and temporal parameters are less controlled. To reduce the dependence on the commercial 

fishery, a targeted sampling program is needed, especially in and around the Bay of 

Biscay, where differences in otolith shape and microchemistry are being observed (Fraile 

et al., 2016). Tagging studies of juveniles feeding in the two locations may prove to be 

vital in improving our understanding of albacore tuna life history outside of the Bay of 

Biscay region (Childers et al., 2011; Prince et al., 1995).  

In conclusion, otolith shape analysis has been demonstrated to be an effective tool at 

distinguishing juvenile albacore tuna feeding in and outside the Bay of Biscay. Otolith 

shape analysis is a cost-effective and quick method which can be used as an additional 

method to complement other discriminating methods in the pursuit of understanding the 

population structure of the North Atlantic albacore tuna stock.  
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Table 2. 1 Juvenile albacore sampled per year, including average length (cm) and 

capture location 

 

Location Year Quantity 
Mean Length ± SD 

(cm) 
Total 

East 2012 18 66.1 ± 11.9 -- 

 2013 16 75.4 ± 11.2 -- 

 2014 9 70.1 ± 11.9 43 

West 2014 24 72.0 ± 10.4 24 
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Table 2. 2 Results from the structure matrix of the standardized canonical coefficients, 

ordered by size of correlation within the function. 

Fourier descriptors FDA 1 

D12 0.563 

C5 0.483 

D3 -0.338 

C11 -0.318 

D7 -0.286 
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Table 2. 3 Jack-knifed cross-validation matrix showing the percentage of correct 

classifications derived from discriminant analysis 

 East West Percentage 

East 31 12 72.1 

West 6 18 75.0 
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Table 2. 4 The results from the test for interannual variability using samples collected 

in the east over the three-year period (2012-2014) and samples collected 

from both locations in 2014. 

 

Year effect R2 

value 

p-value 

C5 0 0.998 

C11 0 0.782 

D3 0.006 0.337 

D7 0 0.411 

D12 0.014 0.286 

Location 

effect 

R2 

value 

p-value 

C5 0.034 0.154 

C11 0.107 0.035 

D3 0 0.799 

D7 0 0.599 

D12 0.006 0.284 
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Figure 2. 1  Catch locations of juvenile albacore in and outside the Bay of Biscay. Map 

source: WGS84, 200 m (light grey) and 4000 m (grey) depth contour 

shown, Scale: 1 cm = 148 km. The symbols,  and  represent the catch 

locations west and east of the 10°W meridian respectively. 
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Figure 2. 2 Albacore tuna left otolith before and after image processing. (A) The 

original image before intensity thresholding, (B) The modified binary image 

before a selection is created.  
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Figure 2. 3 Parallel boxplots of the Canonical scores for albacore caught in each catch 

location. 
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Figure 2. 4 Mean shapes of albacore tuna by catch location for all samples and for 2014 

samples. 
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Figure 2. 5 Fork length frequency distribution categorised by catch location. 
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Chapter 3: Investigation into North 

Atlantic albacore tuna, (Thunnus 

alalunga) larval life history using otolith 

microstructure and microchemistry 

analyses 
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3.1 Abstract 

Little is known about the early life history of albacore tuna in the North Atlantic. In this 

study, the pre-juvenile life stage was investigated indirectly using otolith microchemistry 

and microstructure analyses. Juvenile albacore tuna was caught from surface fisheries 

located in the Bay of Biscay and adults were collected from recreational and longline 

fisheries operating offshore of Canada and Venezuela. All fish used in the study were 

from the 2007 or 2008-year classes. For the microstructure analysis, the larval increment 

widths of the first 12 growth rings were measured and increment widths were compared 

between locations. Element:Ca otolith ratios, extracted from two areas (the core and post-

core) on the growth axis, were quantified for ten elements, Li, Mg, Mn, Fe, Co, Cu, Ni, 

Zn, Sr and Ba. Both analyses were conducted to discern whether or not the juveniles and 

adults shared a common larval or pre-juvenile environment. The microstructure analysis 

showed that albacore from the three locations did not display significantly different larval 

growth rates. However, differences in the microchemistry of the larval core were evident. 

It was possible to separate the samples into two groups indicating that there may be more 

than one spawning location present in the North Atlantic.  There was a high degree of 

overlap in the post-core concentrations indicating a convergence of life-histories during 

the early juvenile phase. 

3.2 Introduction 

Otoliths are calcium carbonate and protein structures located in the inner ear of all teleost 

fish (Morales-Nin, 2000). They accrete throughout the life of the fish and are never 

reabsorbed (Campana et al., 2000). The chemical composition of otoliths reflect the 

physicochemical characteristics of the surrounding environment, even though they are 

regulated by biological processes (Campana et al., 2000; Geffen and de Pontual, 2002). 

The information stored in otoliths can be used to reconstruct early life histories of widely 

distributed species; especially those that are difficult to sample. Otolith microstructure 

analysis has generally focused on assessing fish age and growth rate (Chen et al., 2012; 

Pepin et al., 2001; Wells et al., 2013). It is also used to identify development stages, such 

as hatch time and metamorphosis (Baumann et al., 2015; Toole et al., 1993). Otolith 

microchemistry can be used to reconstruct fish movement patterns (Elsdon et al., 2008), 
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identify spawning areas (Rooker et al., 2014) and discriminate fish populations (Campana 

et al., 2000). 

Albacore tuna is a temperate pelagic species and an important food source globally (FAO, 

2010). It is one of the most economically important tuna species and is found in every 

ocean basin (Collette and Nauen, 1983; FAO, 2010). In the Atlantic, ICCAT assumes the 

existence of three stocks (the North, South and Mediterranean), based on knowledge 

about spawning areas, distribution of fisheries, tagging and genetic studies (Arrizabalaga 

et al., 2004; Bard, 1981; Fraile et al., 2016; Montes et al., 2012; Nikolic et al., 2016).  

Little is known about the early life stages of albacore tuna in the North Atlantic; larval 

distributions are not well described and the general life cycle is uncertain (ICCAT, 2011; 

Ortiz de Zárate et al., 2004), but it is assumed that they spawn in the southwestern corner 

of the North Atlantic (Figure 3.1). Albacore tuna are batch spawners with spawning 

events occurring from April to September with a peak in the month of July (Luckhurst 

and Arocha, 2015). The larval stage is short in duration and the juvenile stage begins at 

approximately 2 cm (Bard, 1981). After 40 cm (age 1), juveniles are exploited by surface 

fisheries in the North-east Atlantic. Below 40 cm, albacore tunas are rarely caught by 

commercial or recreational means. In the Caribbean, artisanal fisheries have been known 

to catch albacore below 40 cm; however, because of a lack of knowledge or interest in 

the fishery in this area, many albacore samples are either misidentified or under-reported 

(F. Arocha, personal communication, September 8, 2017). Overall, there is very little 

verifiable information available about this life stage period (ICCAT, 2011) (Figure 3.1).  

During the month of May, juvenile tunas begin their trophic migration to the Bay of 

Biscay and the south-west of Ireland to feed on anchovy (Engraulis encrasicolus) and 

various crustaceans until October when they return to the central Atlantic to winter (Goñi 

et al., 2011; Sagarminaga and Arrizabalaga, 2014) (Figure 3.1). Because of their 

predictable movements, fisheries from different countries have been able to exploit this 

pelagic resource. Juvenile albacore migrating to the North-east Atlantic are targeted by 

surface fishing vessels from Spain, Portugal, France and Ireland (Cosgrove et al., 2014c; 

Goñi et al., 2011). In the summer, adults begin their reproductive migration to different 

areas in the western Atlantic. The spawning sites in the North Atlantic are not clearly 

defined (Le Gall, 1974). Previous studies have identified different potential spawning 

areas based on several lines of evidence. These are in the offshore waters of Venezuela 
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(where larvae have been recorded) (Ueyanagi, 1971), the southern Sargasso Sea (where 

temperatures are within the optimum range for spawning) (Luckhurst and Arocha, 2015) 

and the eastern Atlantic (where adults at late stages of gonadal development have been 

caught) (Ortiz de Zárate et al., 2004).  

Adults are targeted by longline fisheries operating in the central and north-western 

Atlantic (ICCAT, 2016) and occur as bycatch in the Venezuelan pelagic longline fishery 

for yellowfin tuna (Arocha et al., 2017). In the western Atlantic, during the summer, 

albacore migrate into Canadian waters to feed on anchovy, (Engraulis spp.), mackerel 

(Scomber spp., Trachurus spp.), sardine (Sardina pilchardus, Sardinops sagax) and 

squid. Georges Bank, in particular, is an important foraging area for albacore tuna 

(Fisheries & Oceans Canada 2011) (Figure 3.1). Earlier studies, using catch locations 

(Sagarminaga and Arrizabalaga, 2010), microsatellites (Davies et al., 2011), otolith 

microchemistry (Fraile et al., 2016) and shape analysis (Duncan et al., 2018) have 

provided evidence to suggest that there may be sub populations present in the North 

Atlantic stock, particularly in the Bay of Biscay. It is not known if these juvenile sub-

populations originated from different spawning sites and if as adults, they return to natal 

areas to spawn. 

From 2012 to 2016, surface fisheries, which target juvenile and subadult fish (50-90cm) 

account for approximately 80% of the total catch of albacore tuna. The remaining 20% is 

caught by longline fisheries, which target adult fish (ICCAT, 2016). Although the North 

Atlantic stock is considered to be marginally overfished but not undergoing overfishing, 

there are important uncertainties around the present stock status (ICCAT, 2016).  With 

such a strong fishing pressure being exerted on the juvenile and sub-adult life stages and 

with virtually no knowledge concerning the larval and early juvenile life stages, the 

probability of overexploiting this stock is high. 

There are currently no directed scientific surveys for larval albacore tuna. Most of the 

commercial fishery is concentrated outside of the spawning season making it very 

difficult to collect information about the distribution of spawning adults or the location 

of spawning grounds. However, information stored in the larval core of tuna from the 

main fishing areas may offer some insight into the early life history and stock structure 

of the species. In this study, otolith microstructure measurements and otolith 

microchemistry concentrations from the larval core of juvenile and adult fish were used 
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to determine whether or not albacore from three fishing areas (Bay of Biscay, Canada and 

Venezuela) have originated from a common larval and pre-juvenile environment. The 

results are interpreted in relation to current understanding of albacore stock structure and 

migrations between spawning and feeding areas.  

3.3 Methods and Materials 

Otoliths from juvenile albacore were collected from Spanish surface fishing vessels 

operating in the Bay of Biscay. Adult otolith samples were obtained from two areas fished 

by the Venezuelan pelagic longline fleet, the southeastern Caribbean Sea and the Guyana-

Amazon Atlantic. The Canadian samples were acquired from fishing vessels participating 

in the annual Wedgeport tuna tournament in Nova Scotia Canada (Figure 3.2). Ages of 

the samples were estimated from fork length using the growth curve created by Santiago 

and Arrizabalaga (2005). All of the samples used in the study were from cohorts 2007 

and 2008, with a similar number of samples from both cohorts (Table 3.1). The sagittal 

otoliths were removed, cleaned with deionised water, dried under a laminar flow clean 

air hood and stored in individually labelled plastic tubes.  

Moulds were then coated with Buehler release agent (Buehler Ltd, Lake Bluff, IL, USA) 

and allowed to dry before the resin solution (EpoThin 2, Buehler Ltd) was added. The 

otoliths were added to the mould when the solution was firm to ensure the otoliths didn’t 

sink to the bottom of the mould. More solution was added to the mould to ensure the 

otolith was fully embedded in resin. The moulds were then placed in an oven to cure for 

2 hours. After curing, the otoliths were cut transversely using a Buehler Isomet Low speed 

saw with Buehler IsoCut fluid as a blade lubricant. After cutting, each otolith section was 

stored in an acid-washed plastic tube. Transverse sections were glued, using Crystal 

Bond, to a sanding platform. The section was polished with sandpaper of different grit 

sizes (1200µm, 1500µm, 2000µm, 2500 µm and 4000µm) and distilled water until the 

primordium was visible under a light microscope (Olympus BX51TF). The section was 

then removed from the platform, washed with deionised water and stored in a plastic tube. 

Altogether, 127 sectioned otoliths were prepared for otolith microchemical and 

microstructural analyses. 
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3.3.1 Otolith microchemistry analysis 

In preparation for the trace element analysis, microscope slides were marked with a glass 

scriber, broken to a length of 50 mm and covered with double-sided tape. Between 25 - 

30 randomly chosen sections were attached to each slide. The analysis was conducted at 

the Geochronology and Isotope Geochemistry Research Facility (SGIker) of the 

University of the Basque Country (UPV-EHU) using a laser-ablation inductively coupled 

plasma mass-spectrometer (LA-CP-MS).  The system consisted of a Thermo Fisher iCAP 

Qc quadrupole mass spectrometer, coupled to a New Wave Nd:Yag 213 nm laser system 

with an additional vacuum pump to increase the system’s sensitivity. Two spots of 55µm 

diameter were laser ablated on each otolith. The spot size was chosen to ensure adequate 

resolution and stability of the signals.  

The first ablation spot position was set at the primordium, which will be referred to as the 

core, followed by another spot position at 200µm from the primordium, referred to as the 

post-core (Figure 3.3). The approximate age of the tuna larvae at each ablation point was 

estimated using the otolith radius-age relationship, created by Garcia et al. (2006), for 

larvae spawned in the Mediterranean since there isn’t an otolith radius-age relationship 

for albacore spawned in the North Atlantic. The approximate age at the time the material 

at the core was deposited was calculated to be between 0-8 days and between 20-36 days 

for the post-core position. Concentrations were recorded for ten elements: Lithium (7Li), 

Magnesium (25Mg), Manganese (55Mn), Iron (56Fe), Cobalt (59Co), Nickel (59Ni), Copper 

(64Cu), Zinc (65Zn), Strontium (88Sr) and Barium (138Ba). Elemental concentrations were 

recorded in parts-per-million (ppm) and were expressed as ratios relative to 44Ca by using 

the below equation adapted from Baumann et al. 2015. Element:Ca ratio (µmol mol-1) =  

(𝑀𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑜𝑓 𝑡ℎ𝑒 𝐸𝑙𝑒𝑚𝑒𝑛𝑡 (𝑝𝑝𝑚) ∗  
0.40

𝑀𝑜𝑙𝑎𝑟 𝑚𝑎𝑠𝑠 𝑜𝑓 𝐶𝑎𝑙𝑐𝑖𝑢𝑚 
 ) 

For each spot, only stable sample signals were utilised in the data treatment process, 

signals from surface contamination and fractures were omitted. The glass standard, NIST 

612 SRM (US Department of Commerce) was used to account for the system’s sensitivity 

and precision as well as instrumental drift. It was measured, in triplicate, after every three 

otolith sections. Triplicate measurements of a carbonate standard, MACS-3 (pressed 

powder pellet), provided by the US Geological Survey, was used as a quality control for 

the results and was measured at the beginning and end of each analytical session or if the 
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microscope slide was changed during a session. Data were processed using the data 

reduction software Iolite (Version 3.32). Since Calcium was assumed to be distributed 

throughout the whole otolith at a concentration of 40%, it was used as an internal standard 

to correct variations in ablation yield and counting efficiencies. The limit of detection 

(LOD) for each element was calculated using the mean of the blank signal and three times 

the standard deviation. The mean values of the Relative Standard Deviation (or RSD) for 

the NIST 612 and MACS 3 were based on 44 and 5 triple replicate measurements 

respectively and was used to demonstrate the precision level of the machine. The 

analytical accuracy was calculated as the observed value∕ theoretical reference value in 

percentage (Table 3.2).  

3.3.2 Statistical analysis 

Statistical analysis of the trace element data was conducted using R (Version 3.3.3). Prior 

to analysis, the trace element variables were separated by spot position and natural log-

transformed to ensure they met the normality assumptions. Concentrations greater than 

three times the interquartile range from the median of each trace element were considered 

outliers and were omitted from further analysis. A correlation plot was created to identify 

multicollinearity between the variables. If two variables were strongly correlated (r2 > 

0.8), one was omitted. Discriminant function analysis was used to classify individuals to 

each collection site. Two separate analyses were conducted-one using the otolith core 

data and one using the post-core data. In each case, a stepwise forward selection model, 

using the Wilk’s lambda criterion and an F-test decision criterion of 0.1, was performed 

to select variables for inclusion in the discriminant function. Four variables (Li, Mg, Cu 

and Zn) and (Li, Mg, Ni, Cu) were selected from the core and post-core data respectively. 

Prior to running the discriminant function analysis, a Box’s M test was performed to 

determine if the data met the assumption of equal covariance. Before this test, any 

samples with missing values in the four variables were omitted; this reduced the core’s 

original dataset from 127 to 108 and the post-core from 127 to 121 samples. In the core 

dataset, all four variables were missing data. In the post-core dataset, Li was the only 

variable with a complete dataset. If the assumption of equal covariance was met (p-value 

> 0.05), a linear discriminant function was performed. If the assumption was violated, a 

quadratic discriminant function was chosen. A jack-knifed cross-validation was 

conducted to estimate the proportion of correctly classified samples for each location. To 
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visualise the trace element differences between the locations, the canonical scores of the 

first two discriminant functions were plotted for both datasets. 

3.3.3 Comparison of core and post-core otolith microchemistry 

A mean and standard error plot was created to compare the core and post-core 

concentrations of each element within each otolith. The plot was also used to visualise 

the changes in element concentration for the three locations to determine which trace 

elements showed an ontogenetic or environmental effect. Paired student’s t-tests were 

also performed on each trace element for each capture location. The difference between 

the positions was calculated for each otolith and was tested for normality and the validity 

of any outliers was tested using the Grubbs’ test. Variables that failed the Grubbs’ test 

were log transformed to bring any outlying variables closer to the mean. If after log 

transformation, the variable still contained outliers, a Wilcox sign rank test was 

performed. Because the statistical procedure was conducted for each capture location, the 

p-value was lowered to 0.017 to account for the multiple comparisons.  

3.3.4 Otolith microstructure analysis 

Larval otolith microstructure was examined in a subsample of transverse sections that 

were used in the microchemistry analysis. The primordium of 85 otoliths was viewed 

using a light microscope (Olympus BX51TF) connected to a digital camera (Q Imaging 

Retiga 2000R) with a PC interface. To improve clarity, the sections were viewed at a 

magnification of 2000X with oil immersion. Each primordium was photographed with 

the Image Pro Analyzer program (Version 6.2) and, using the calliper function within the 

program, the larval increment widths of the first 12 growth rings were measured and 

recorded. Multiple readings were taken from 15 otoliths to evaluate precision. Each 

otolith was counted on three separate occasions by the same reader. The reader counted 

the larval increments from the hatch line to at least the eleventh growth ring. The final 

mean coefficient of variation (𝐶𝑉𝑚) was calculated as  

𝐶𝑉𝑚 =
1

15
∑ 𝐶𝑉𝑗

15

𝑗=1

= 100 ×
𝑆𝐷

𝑀𝑒𝑎𝑛
 

where 𝐶𝑉𝑗 is the coefficient of variation for the three readings. The mean increment width 

per growth ring was calculated and plotted (Figure 3.4). The plot of mean increment 
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widths revealed some differences between areas at rings 7- 12 which warranted further 

investigation. The cumulative increment width of rings 7 -12 for each otolith was 

calculated, checked for normality and equal variance and an analysis of variance was 

performed to compare mean increment widths between capture locations.  

3.4 Results 

3.4.1 Otolith microchemical analysis 

Core 

The quadratic discriminant function separated the samples from the Bay of Biscay, 

Canada and Venezuela with a classification success of 70%, 15% and 79% respectively 

(Table 3.3). The canonical discriminant function plot revealed a separation between the 

Bay of Biscay and Venezuela samples along the first canonical axis (Figure 3.5). There 

was little separation of the Canadian samples from the other two capture locations along 

the second axis. These results are also shown in the trace elements standardized canonical 

coefficients (Table 3.4).  

Post-core 

The linear discriminant function classified the Bay of Biscay, Canada and Venezuela 

samples with a success rate of 36%, 26% and 77% respectively (Table 3.5). The canonical 

discriminant plot showed a high degree of overlap in the elemental concentrations of each 

group at this life stage (Figure 3.6). Mg made the largest contribution to the first canonical 

function while the second canonical function was driven mainly by Li, Cu and Ni (Table 

3.6).  

3.4.2 Comparison of core and post-core otolith microchemistry 

The mean and standard error plot showed the trace element concentration differences 

between core and post-core at each capture location. According to the plot, the change 

between core and post-core for Venezuela’s Mg and Co are different from Canada and 

Bay of Biscay. These changes; however, were not significantly different (p-value: Mg = 

0.07, Co = 0.23). For the Canadian and Bay of Biscay samples, there were no differences 

in trace element concentrations between the core and post-core. The changes between the 

two positions for the other elements, for example, Strontium and Barium, were similar 

for the three locations indicating a consistent ontogenetic effect for all three locations 
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(Figure 3.7). For both Strontium and Barium, the changes between the spot positions for 

the three capture locations were significantly different (p-value: Sr = < 0.001, Ba = < 

0.01).  

3.4.3 Otolith microstructure analysis 

The results of the CV test showed that there was a reader error rate of 11.8% on average 

with a range from 0.8 to 45.7%. There was no significant difference between the three 

locations in the cumulative width of larval increments 7-12 (ANOVA, p-value = 0.932) 

(Figure 3.8). Due to the small number of individuals in the sample from Canada, the 

standard error was large.  

3.5 Discussion 

The aim of this study was to use otolith trace element concentrations and larval increment 

widths to determine if albacore caught as juveniles in the Bay of Biscay and as adults 

offshore of Canada and Venezuela, had shared a common larval and pre-juvenile 

environment. Differences in larval otolith microchemistry were detected that may reflect 

the existence of multiple larval populations in the North Atlantic. Trace elemental 

concentrations at the otolith core were used to discriminate albacore caught as juveniles 

(ages 1 to 3) in the Bay of Biscay from adult albacore of the same year classes caught off 

the coast of Venezuela as 6-8-year-olds with a classification success of 70% and 79% 

respectively. This suggests that there are differences in early life history between the 

albacore which feed in the Bay of Biscay as juveniles and the albacore that occur off the 

coast of Venezuela as adults. Those differences may occur due to variation in the internal 

environment of the fish or the external surroundings in which they live. The trace 

elemental concentrations of the adult albacore from Canada overlapped with those of the 

two other groups suggesting that individuals with both types of early life history occur in 

that area. The results of the otolith microstructure analysis showed no evidence of 

differences in larval growth between albacore caught in the three areas. This suggests that 

as larvae the albacore from the three areas encountered similar growing conditions 

(temperature and food availability) and that the elemental differences were caused by 

other exogenous factors.  
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Many studies have examined the role of trace elements in fish’s biological processes and 

their relationship with the ambient environment (Chang and Geffen, 2012; Sturrock et al., 

2012). The influence of various endogenous and exogenous factors on otolith 

composition varies across studies and appears to be species-specific (Stanley et al., 2015). 

In our study, we observed both ontogenetic and geographic variation in elemental 

concentrations. Strontium and Barium varied between the core and post-core in all 

locations but showed no variation within each life stage that might indicate environmental 

differences in the larval environment. In contrast, concentrations of Magnesium, Lithium, 

Zinc and Copper at the larval core varied between fish from the three capture locations 

(suggesting different larval origins) but did not differ between the core and post-core 

regions of the otolith. This suggests that for this species, these four elements are more 

influenced by external conditions rather than by ontogenetic development.  

Identifying the exact cause of the observed differences in elemental concentrations is 

difficult and beyond the scope of the current study. Evidence from previous experimental 

studies can help to identify possible underlying mechanisms but is often contradictory 

and direct links between concentrations in the environment and those in the otolith are 

difficult to establish.  The incorporation of Magnesium into the otolith has been linked to 

temperature with studies reporting positive and negative correlations as well as no 

significant effect. Fowler et al. (1995) found that Magnesium otolith concentration ratios 

decreased when the temperature was increased while Stanley et al. (2015) found a weak 

positive relationship between the element and temperature. The reported lack of 

correlation between Magnesium concentrations in the otolith and those in the water or 

food suggest that the element is physiologically regulated and may not be a reliable 

indicator of the availability of the element in the environment (Buckel et al., 2004; 

Woodcock et al., 2012).  

Otolith concentrations of Lithium are higher in saltwater than in freshwater (Hicks et al. 

2010), due to corresponding changes in Lithium concentrations in the water along a 

salinity gradient (Milton and Chenery, 2001). While Arai et al. (2007) found a significant 

relationship between concentrations of Zinc in the otolith and the surrounding water, 

Ranaldi and Gagnon (2008) found that otolith concentrations of Zinc were correlated with 

concentrations in the diet but not the water. Milton and Chenery (2001) found a significant 

correlation between concentrations of Copper in the otolith and the ambient water but not 

the diet. In short, elemental concentrations reflect the combined influence of the 
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availability of the element in the water and the diet as well as ambient temperature and 

salinity overlaid by physiological regulation.  

Although differences in core elemental concentrations were evident between the three 

capture locations, the otolith microstructure analysis showed no difference in larval 

otolith growth rates. In the microstructure study, the incremental widths of the first 12 

growth rings were measured. The mean widths of the first six rings were similar between 

the three locations. If albacore larvae are still reliant on the yolk sac for nourishment when 

the first six increments are formed, this could in part explain why larval growth rates were 

similar across locations during that time period. It is not known when the first increment 

is formed in North Atlantic albacore tuna and whether this occurs before or after the onset 

of exogenous feeding. However, evidence from other tuna species suggests that 

increments are not formed before the yolk sac is absorbed; in bluefin tuna (Thunnus 

thynnus), increment formation begins approximately four days after hatching which 

coincides with the start of exogenous feeding (Itoh et al., 2000). Laboratory investigation 

of increment formation in albacore embryos and early larvae is needed to establish 

whether the widths of the first six increments reflect external feeding conditions or 

internal reserves. Interestingly, there were small differences between the three locations 

in the widths of increments 7 – 12. Although these changes were not found to be 

significantly different between the capture locations, it would be interesting to investigate 

whether or not significant differences in otolith growth occur beyond the 12th increment. 

Another factor to consider is the level of precision associated with the microstructure 

measurements (mean CV of repeated readings 11%), which could have decreased the 

sensitivity of the method. Further work on using more discerning statistical methods and 

expanding the study period could reveal similar differences as those observed in the 

microchemistry study.  

While we can only speculate as to the exact cause of the observed variation in the 

concentrations of Magnesium, Lithium, Zinc and Copper at the larval core of albacore 

tuna otoliths, the fact that concentrations differ between fish from different capture 

locations indicates that these fish are from distinct larval sources. The post-core analysis 

showed a high degree of overlap in the post-larval elemental concentrations, particularly 

between Bay of Biscay and Canada. There was also more variability in the elemental 

concentrations within each group. It was still possible to distinguish fish captured in 

Venezuela from the other two sites with an accuracy of 77%. The results suggest that as 
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larvae disperse from the spawning areas, their environments or endogenous conditions 

become less distinct (with the exception of some of the fish that were collected as adults 

in Venezuela). Overall, we observe that the three groups are more distinct at the larval 

stage than at the post-larval stage. This is consistent with the hypothesis that the larvae 

were spawned in different areas and later dispersed to inhabit a broader range of 

environmental concentrations. 

Currently, albacore in the North Atlantic is managed as one homogenous stock and 

individuals from different geographical areas are assumed to share similar life history 

characteristics. Previous studies, using microsatellites (Davies et al., 2011), otolith shape 

analysis (Duncan et al., 2018), growth differences (Ortiz De Zarate et al., 1996) and 

otolith microchemistry (Fraile et al., 2016) have indicated that subunits with different life 

history characteristics may exist in the North Atlantic. The existence of geographic 

differences in otolith core microchemistry supports this hypothesis. We have shown that 

albacore caught as adults around Venezuela are not from the same group as juveniles 

caught in the Bay of Biscay (Figure 3.5). Although there was some overlap in the 

elemental concentrations, the observed differences between the groups indicate that they 

are not from a single homogenous larval pool. The results suggest that after wintering in 

the Central Atlantic, adults migrate to the western Atlantic and spawn in at least two 

distinct locations. After the first month, pre-juveniles dispersed to areas which share 

similar environmental characteristics producing more overlap in the otolith elemental 

concentrations. By using information stored in otoliths to indirectly study the early life 

stages, this study has provided insight into the first year of life of albacore tuna in the 

Atlantic. 

In 2016, the ICCAT’s Standing Committee on Research and Statistics recommended a 

research programme be initiated to improve the knowledge of biology, ecology, stock 

status and management of North Atlantic albacore (ICCAT, 2016). Dedicated sampling 

of spawning adults and larvae, which has not been conducted since 1969 (Richards, 1969; 

Ueyanagi, 1971), would help to address the uncertainties surrounding stock structure, 

migration routes and early life history but would require considerable resources. In the 

absence of such a sampling program, otoliths from juveniles and adults from the 

commercial fishery can provide information concerning albacore’s early life stages as 

demonstrated in this study. The samples used in this study were obtained through 

opportunistic sampling. A targeted biological sampling program of the commercial 
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fisheries could facilitate a more comprehensive investigation of albacore tuna population 

structure in the North Atlantic. Such a program could also provide material for genetic, 

stable isotope and otolith microchemistry analyses to support a holistic approach to 

elucidating stock structure.  

In conclusion, otolith microchemistry analysis has shown that there are albacore groups 

within the North Atlantic stock which display significant differences in otolith core trace 

element concentrations suggesting distinct larval origins adding to the growing body of 

evidence of stock complexity.  
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Table 3. 1  Number of samples obtained for the study separated by Cohort, Capture         

location and Capture year. Values in brackets represent the number of 

samples used in the microstructure analysis 
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Table 3. 2 Estimates of precision, accuracy and limits of detection for standards NIST 

612 and MACS 3 

 NIST 612 SRM MACS 3 

Element  Mean 

Value 

(ppm) 

RSD 

(%) 

Accuracy 

(%) 

Mean 

LOD 

Mean 

Value 

(ppm) 

RSD 

(%) 

Accuracy 

(%) 

Mean 

LOD 

Li 42.06 1.10 104.62 0.132 62.2 5.61 108.35 0.143 

Mg 77.05 0.81 100.1 0.125 1756 5.08 122.06 0.695 

Mn 38.02 1.46 98.25 0.106 536 4.57 99.10 0.205 

Fe  51.00 1.00 99.99 1.214 11200 5.34 90.11 2.019 

Co 35.02 0.75 98.64 0.053 57.1 5.54 93.66 0.063 

Ni 37.04 0.91 100 0.084 120 5.34 105.12 0.092 

Cu 38.82 1.02 97.98 0.093 57.4 5.61 91.08 0.103 

Zn 38.10 1.76 97.44 0.161 111 9.08 100.59 0.144 

Sr 78.42 1.00 100 0.656 6760 4.78 91.87 1.672 

Ba 39.74 0.94 100.1 0.050 58.7 5.16 109.59 0.065 
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Table 3. 3 The results of the jack-knife classification of the core data 

 Biscay Canada Venezuela Percentage 

Biscay 26 3 8 70.3 

Canada 7 2 4 15.4 

Venezuela 10 2 46 79.3 
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Table 3. 4 The trace elements standardized canonical coefficients used in the core data 

analysis  

Trace element Canonical axis 1 Canonical axis 2 

Mg 1.47 0.32 

Li -0.39 0.58 

Cu -0.58 0.65 

Zn -0.86 -0.21 
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Table 3. 5 Results of the jack-knife classification function on the post-core data 

 Biscay Canada Venezuela Percentage 

Biscay 13 2 21 36.1 

Canada 4 4 7 26.7 

Venezuela 14 2 54 77.1 
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Table 3. 6 Standardized canonical coefficients for the trace elements used in the post-

core data analysis  

Trace element Canonical axis 1 Canonical axis 2 

Li 0.74 0.02 

Mg -1.16 -0.25 

Ni 0.01 0.74 

Cu -0.34 -0.68 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 3                                                        Otolith microstructure and microchemistry analyses 

50 
 

 

 

 

Figure 3. 1 Map displaying putative life-stage specific migration routes of albacore tuna 
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Figure 3. 2 Map of the capture locations of albacore tuna used in this study  
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Figure 3. 3 The approximate position of the laser spots. The lines show the distance 

between the core and the post-core as well as the diameter of the ablation 

spots which was 55µm.  
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Figure 3. 4 Mean larval increment width per growth ring for each location 
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Figure 3. 5 Canonical scores plot using the core natural logged data of samples taken 

from three capture locations. The ellipses represent 95% confidence levels 

around the mean for each location.  
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Figure 3. 6 Plot of the canonical scores using post-core natural logged data of samples 

taken from three capture locations. The ellipses represent 95% confidence 

levels around the mean for each location.  
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Figure 3. 7 Plot of the mean and standard error for each trace element for each capture 

location 
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Figure 3. 8 Plot of the mean sum of the increment widths of larval growth rings 7-12 for 

the three capture locations 

 

 

 

 

 

 

 

 



Chapter 4                                                                                              Vessel behaviour modelling 

58 
 

Chapter 4: Hidden semi-Markov 

modelling of vessel monitoring system 

(VMS) data accurately quantifies fishing 

activity and improves catch 

standardisation for albacore tuna 

(Thunnus alalunga) 
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4.1 Abstract 

The use of fishery-dependent sources to derive indices of abundance relies on the 

assumption that catchability is constant; however, the behaviour of the fishing fleet can 

affect the catchability of the species. Vessel monitoring systems (VMS) capture high 

resolution data describing spatial and temporal variability in fleet behaviour which can 

inform the interpretation of catch-effort data. This study uses VMS and observer data 

from the Irish mid-water pair trawl fishery in the North-east Atlantic to identify pairs of 

vessels which operate as a fishing unit and to quantify fishing effort. Hidden semi-Markov 

models (HSMMs) distinguished between fishing and non-fishing activity with an 

accuracy of 87%. CPUE standardisation models were improved by combining catches 

across vessel pairs and by including model-derived estimates of fishing effort instead of 

days at sea. Low and high components in the catch data were explained by the unequal 

sharing of catches between paired vessels. The results show that using VMS data to 

describe fleet behaviour can improve catch rate standardisation for albacore tuna.  

4.2 Introduction 

Stock assessments are used to evaluate the status of a stock in relation to reference points, 

appropriate for the proper management of the target species (Hare and Richardson, 2013; 

Hilborn and Walters, 1992). The input to a stock assessment depends on the data available 

and the type of model being used. Generally, estimates of natural mortality and relative 

abundance are required (Maunder and Punt, 2004). Such data are often obtained from 

fishery dependent sources due to the prohibitive costs of dedicated scientific surveys, 

especially for highly migratory species, such as tunas (Cosgrove et al., 2014c; Maunder 

et al., 2006). The use of catch per unit effort (CPUE) from the commercial fishery as an 

index of abundance assumes that CPUE is proportional to the abundance of the stock. 

The caveat to this assumption is that catchability is not always constant (Maunder et al., 

2006). Changes in the distribution of the population and the behaviour of the fishing fleet 

can affect the catchability of a target stock; particularly in shoaling species. As abundance 

decreases, a decrease in catch may be observed, but the proportional catchability may 

increase, especially if there is no change in the size of the shoals (Maunder et al., 2006). 

Misinterpretation of high CPUE estimates can lead to overestimated stock size, inflated 

quotas, untenable fishing pressure and the subsequent overfishing of the stock (Rose and 



Chapter 4                                                                                              Vessel behaviour modelling 

60 
 

Kulka, 1999). One way to prevent this is to standardize CPUE estimates to account for 

changes in catch rate that are not related to changes in abundance.  

Modelling of fleet behaviour can improve estimates of the pressure that is exercised by 

fishing vessels (Vermard et al., 2010) and could help to develop appropriate catch-effort 

standardizations. Hidden Markov (HMMs) and hidden semi-Markov models (HSMMs) 

can be used to spatially and temporally characterise fishing trips and to discriminate 

between different types of behaviours (e.g. fishing and steaming) (Vermard et al., 2010; 

Walker and Bez, 2010). These models use in situ observed data, for example, step lengths, 

vessel speed and turning angles, to predict via probabilistic inference, the behavioural 

states of the vessel during the trip. Joo et al. (2013) used HSMMs to characterise the 

movement of Peruvian anchovy purse-seiners into states of cruising, searching and 

fishing using data from Vessel Monitoring Systems and from on-board observers, 

demonstrating the application of the modelling approach to this type of movement data.  

Satellite-based Vessel Monitoring Systems (VMS) were introduced in 1998 by the 

European Commission (EC) with the objective of monitoring European fishing vessels 

for security control and enforcement functions (European Commission, 1997). Since 

2005, it has been mandatory for all vessels over a length of 15 m to transmit their position 

and information regarding their speed, course or heading at two-hour intervals, or less 

(European Commission, 2003). This creates a data set of fine-scale spatial and temporal 

vessel movement data which may be used to better understand the behaviour of vessels 

at sea. VMS records do not indicate the activity of a vessel, therefore, insight into their 

activities is provided by on-board observers. Although, it is not economically feasible to 

get observer data from every vessel within a fleet, models which are able to predict the 

activity of the vessels can be used to improve the measure of effort used in the estimation 

of CPUE. 

Albacore tuna, (Thunnus alalunga) is a highly migratory temperate species and is one of 

the most economically important tuna species globally. In the Atlantic Ocean, albacore 

tuna is separated into three stocks for management purposes: North, South and 

Mediterranean. Within the North Atlantic, albacore tuna is exploited by longline and 

surface fisheries (Cosgrove et al., 2014a; ICCAT, 2016; Lehodey et al., 2014). The 

longline fleet consists of mainly Chinese-Taiwanese, Japanese and South Korean fishing 

vessels that target sub-adult and adult (60-130 cm fork length) albacore all year-round in 
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the central and western regions of North Atlantic (5°N - 35°N, 30°W - 75°W) (ICCAT, 

2016; Lehodey et al., 2014). Surface fishing vessels, composed of baitboat, trolls and 

mid-water pair trawls from France, Ireland, Spain and Portugal target immature (50-90 

cm FL) albacore during their feeding migration (June-October) to the productive waters 

around the Azores and Canary Islands, in the Bay of Biscay and to the southwest of 

Ireland (Dufour et al., 2010; ICCAT, 2011). From 2012-2015, the highest catches of 

Atlantic albacore were in the North-east Atlantic with surface fisheries making up 80% 

of the northern catch (ICCAT, 2016).  

The Irish mid-water pair trawl (MWPT) fishery commenced fishing for albacore tuna in 

1998 and it accounts for approximately 15% of the surface fishery(Cosgrove et al., 2014b; 

ICCAT, 2016). Albacore is one of the country’s top-value species for export, largely to 

Spain and France and is a commodity worth approximately 17 million euros (Bord 

Iascaigh Mhara, 2016). Presently, Irish catch and effort time series data are not used in 

ICCAT albacore stock assessments because the data contains large inter-annual 

variabilities, creating highly variable standardised abundance indices, which if used, 

could result in unreliable stock assessments (Cosgrove et al., 2014c). Using finite mixture 

models, Cosgrove et al. (2014c) identified two components in the catches; it was 

hypothesised that the low catch component represented trips where the majority of the 

time at sea was spent searching for the shoal, while the high catch component represented 

trips where the shoals were located and the majority of the trip was spent fishing. The 

authors also suggested that HSMMs and VMS data could be used to test this hypothesis 

and could potentially improve the Irish standardised CPUE indices. Therefore, the aim of 

this study was to investigate the influence of fleet behaviour on catch per unit effort 

estimates by analysing observer and VMS-logbook data from the Irish mid-water pair 

trawl fishery using hidden semi-Markov models. The potential to improve CPUE 

standardisation by incorporating VMS-based estimates of fishing activity was also 

examined using finite mixture models. 

4.3 Methods and Materials 

4.3.1 Markovian models 

Markovian models have been applied in various fields, for example, speech recognition, 

MRI brain mapping, econometrics and animal movement (Langrock et al., 2012; Peel et 
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al., 2011; Yu, 2010). They require information on the number of states to be determined 

in the data, the probability of being in a behavioural state at the beginning of a trip (initial 

distribution), the probability of transiting from one state to another (transmission 

distribution) and the conditional distributions of the observation data for each state in the 

model (emission distribution). The models use an expectation-maximization (EM) 

algorithm to estimate the distribution parameters of the states and to assign trip data to 

each state (Natale et al., 2015). The distinction between HMMs and HSMMs lies in the 

distribution of duration time, the amount of time spent in a given state. Duration time in 

HMMs follows a geometric distribution. In some real-life situations, the transition from 

one state to another depends on the amount of time spent in the current state, therefore, a 

geometric distribution is not realistic (Joo et al., 2013; O’Connell and Højsgaard, 2011; 

van de Kerk et al., 2015). HSMMs are able to characterise state transition over the period 

of time spent in a specific state which is key when modelling fishing vessel behaviour.  

4.3.2 Data collection 

On-board observer and VMS data from the Irish MWPT fishery were obtained from the 

Irish Marine Institute. The observer data consisted of the day, month, geographic position, 

vessel speed and course, haul number and activity type for thirteen trips. To preserve 

anonymity, the year of each trip and names of the vessels were removed from the dataset. 

The VMS data, with corresponding logbook information, contained information 

pertaining to trips where at least 80% of the landings were reported as albacore from 2006 

to 2016. Also, to anonymise the actual tracks of the vessels, the positional information in 

the VMS data were transformed so they did not relate to a known position but the distance 

between individual points remained unchanged.  

4.3.3 Observer data 

The types of activity included in the observer data were steaming, searching, shooting the 

net, fishing, hauling the net, knocked out (engine is off) and dodging (avoiding inclement 

weather). Since shooting and hauling the net was an active process, it was considered a 

part of the overall fishing event (Graham Johnston, personal communication, June 8, 

2017). The time periods of remaining activities (steaming, searching, knocked out and 

dodging) were not recorded, therefore they were pooled together and considered as non-

fishing phases. The observer data were split into two, a training dataset (eight trips) and 
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a testing (five trips) dataset. The states to be determined in the test data were Fishing and 

Non-fishing. Prior to analysis, records with a speed of zero or missing speed values were 

omitted from both datasets. 

Using the training data, the mean speed and variance were calculated for the fishing 

events and the non-fishing phases for the emission distribution. The duration of each 

fishing event was calculated by summing the time it took to complete a fishing event, 

from shooting to hauling in the net. The observer data did not contain sufficient 

information to calculate the duration of each non-fishing phase, therefore, a uniform 

distribution was assumed, and the minimum and maximum duration recorded across all 

non-fishing phases were used to estimate an appropriate range of values. After the 

removal of missing and zero speed records, the test data consisted of 151 records for five 

trips. Using the initial, transmission, emission and duration distributions, the starting 

values for the model were generated using the hsmmspec function from the mhsmm 

package in R (Version 0.4.16). Using the speed values from the test dataset and the 

generated starting values, the parameters of the HSMM was created using the EM 

algorithm. The predicted state of each test data record was stored and cross-validated with 

the test data’s recorded activity. Model indicators of accuracy, recall, precision and F-

measure were calculated to evaluate the model’s performance (Table 4.1).  

4.3.4 VMS data 

The data were cleaned to remove discrepancies arising from minor changes (1-6 minute) 

in the time interval, inaccurate port entry and exit records, time gaps in vessel records, 

erroneous time entries, vessels and individual trips with no consistent time interval, trips 

with no clear beginning or end and changes in the time interval during a trip. Once 

cleaned, the data was separated by year and each individual trip for each vessel was 

labelled with an ID number (Vessel number_trip number). Altogether, the data comprised 

of 561 trips from 51vessels with over 56,000 records. Each record consisted of the ID 

number for each trip, a 2-hour timestamp, the vessel speed, a “Port” or “At Sea” label, 

and the catch of the trip. All entries labelled as “Port” were removed from each dataset 

and the vessel speed values, along with the starting values from the observer training 

dataset were included in the HSMM.   
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For each year, a table was created to include the start and end date, the length of each trip 

in hours, the catch, the CPUE estimate (the quotient of catch and trip time), the predicted 

fishing hours (number of hours of fishing activity predicted by the HSMM), the estimated 

catch per unit effort in hours of fishing (CPUF) (the quotient of catch divided by number 

of hours fishing estimated by the HSMM) and the fishing proportion (the quotient of 

fishing hours divided by total trip time). The correlation between the CPUE estimate and 

the fishing proportion was calculated for each year to determine if CPUE estimates were 

influenced by fleet behaviour. If CPUE was influenced by the proportion of time spent 

fishing, positive and strong correlations were expected. The majority of the correlations 

were found to be weak and negative with non-significant p-values (two years had a p-

value < 0.05; however, the correlation was negative). It was also noted that some trips, 

for which very low catches were reported, had a high proportion of fishing activity (part 

of the low catch component identified by Cosgrove et al. (2014c). At this point, the 

approach of the study was reviewed.  

The second phase of the analysis involved the identification of paired vessels. Mid-water 

pair trawls operate in the open ocean’s midwater layers and require two boats to tow the 

net (Vijayan, 2009). During the trip, either boat can shoot and haul in the net (FAO, 2001), 

therefore the total catch from the trip is divided, often unequally, between the two vessels 

and is reported in the logbooks as separate catches. To identify fishing pairs in each year, 

trips with similar start and end dates were grouped and plotted together to determine 

which trips had similar tracks. If both the shape of the tracks and the trip duration were 

similar, the two boats were considered a working pair and their catches were summed.  

Data for the fishing pairs (180 pairs), were separated by year and the HSMM model was 

rerun. Each year table was recalculated to include the paired data and two additional 

columns: the steaming time (in hours) to and from the fishing grounds (estimated from 

the plot of each individual trip) and the hours on the fishing grounds (difference between 

the trip duration and the steaming time). Therefore, for each trip, the table included the 

start and end date, the duration of each trip, the steaming time, the hours on fishing 

grounds, the catch, the CPUE estimate (using hours on fishing grounds as the effort), the 

predicted fishing hours from the HSMM, the estimated catch per unit effort in hours of 

fishing (CPUF) and the fishing proportion (the quotient of fishing hours and the hours on 

fishing grounds). The correlation between CPUE and fishing proportion was tested using 

the Pearson’s correlation coefficient.  



Chapter 4                                                                                              Vessel behaviour modelling 

65 
 

4.3.5 Finite mixture models 

The finite mixture models developed by Cosgrove et al. (2014c) to standardise CPUE 

estimates while accounting for multiple components in the catch data were fitted to the 

fishing pair data using the R package, flexmix (Version 2.3-14). The full methodology is 

described in Cosgrove et al. (2014c). Positive catches were modelled as a function of 

effort, year and quarter in a base-case single component lognormal model as shown below 

(information on fishing zone and vessel size category were not available due to data 

anonymity restrictions). Three different scenarios were modelled using paired and 

unpaired data with different methods of quantifying effort: total duration of each trip (in 

hours) and time spent fishing (as estimated by the HSMM). 

Unpaired total effort (UTE) 

ln(𝑈𝑛𝑝𝑎𝑖𝑟𝑒𝑑 𝐶𝑎𝑡𝑐ℎ) = ln  (𝑇𝑟𝑖𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ℎ𝑜𝑢𝑟𝑠) + 𝑌𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 

Paired total effort (PTE) 

ln(𝑃𝑎𝑖𝑟𝑒𝑑 𝐶𝑎𝑡𝑐ℎ) = ln  (𝑇𝑟𝑖𝑝 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 ℎ𝑜𝑢𝑟𝑠) + 𝑌𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 

Paired fishing effort (PFE) 

ln (𝑃𝑎𝑖𝑟𝑒𝑑 𝐶𝑎𝑡𝑐ℎ) = ln (𝐹𝑖𝑠ℎ𝑖𝑛𝑔 ℎ𝑜𝑢𝑟𝑠) + 𝑌𝑒𝑎𝑟 + 𝑄𝑢𝑎𝑟𝑡𝑒𝑟 

The finite mixture models allowed for the modelling of the mixture of distributions 

underlying the catch data in the three scenarios. For each scenario, the most likely number 

of distributions was determined using all the covariates and the finite mixture model that 

assumed between 1 – 4 components was compared using the Bayesian Information 

Criterion (BIC). After the best fitting number of components was determined, the effect 

of the covariates was investigated using log-likelihood ratio tests (based on 20 model 

iterations). The UTE model represents the two-component model developed by Cosgrove 

et al. (2014c). This was compared to the PFE model in terms of normality, skewness and 

deviance residuals. A generalised linear model was used to calculate the standardised 

indices for the two models.  
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4.4 Results 

4.4.1 Observer data 

The performance indicators for the HSMM showed that the model was able to identify 

the two behaviour states efficiently, with an accuracy of 86.7%. The values for the other 

indicators of model performance for both behaviour modes can be found in Table 4.2. 

The majority of the misclassified fishing events were records of weather dodging and 

engine knock out. Only one fishing event was misclassified as a non-fishing phase. Also, 

two net shooting records were misclassified as non-fishing; however, the speeds of the 

records were not within the fishing speed range.                                      

4.4.2 VMS data 

For the paired fishing data, the correlations between fishing proportion and CPUE ranged 

from -0.33 to 0.58. Although a strong correlation was detected in 2008 the available 

sample size was small, and the relationship was not significant. Significant correlations 

were detected in 2011 and 2013 (Table 4.3). The positive correlations suggested that in 

some years low catch rates were associated with trips which involved a relatively high 

proportion of searching activity. However, the absence of any correlation in other years 

indicates that other factors such as seasonal changes in distribution, abundance or fish 

behaviour are driving most of the variability in catch rates.  

4.4.3 Finite Mixture model analysis 

For both the PFE and the PTE models the one-component model had the lowest BIC score 

(Figure 4.1), whereas the best fitting UTE model had two components (as previously 

observed by Cosgrove et al 2014c). The log-likelihood ratio tests showed that including 

year and quarter as covariates in the PFE and PTE models improved the model fit (test 

statistic 17.05 and 16.39 respectively, df = 2, p-value < 0.001). For the UTE model, only 

year significantly improved the model (test statistic = 3.7, df = 4, p-value with quarter = 

0.45).  

Comparison of BIC values between the PFE and PTE models showed that expressing 

effort as time spent fishing instead of total trip duration improved the model fit (Figure 

4.1). Even though pairing the vessel data reduced the sample size, a clear reduction was 
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observed in the variability of the catch data except for the year 2010 (Figure 4.2). The 

deviance residual histogram and quantile-quantile (Q-Q) plot of the PFE (one-

component) and UTE (two-component) models showed that the two shared similar 

characteristics (Figure 4.3). The PFE model conformed to a normal distribution 

(Anderson Darling test, A = 0.641 p-value = 0.093) and even though its residuals had a 

slight negative skew, it was not found to be significant (skewness = -0.346, D’Agostino 

test, p-value = 0.055). The standardised index plot showed that the PFE model exhibited 

similar temporal trends as the second component of the UTE model. The trend in the 

catches from the PFE model appeared stable throughout the time series except in the year 

2010 (Figure 4.4).  This confirmed that the multiple components that were previously 

observed in the CPUE data by Cosgrove et al (2014c) could be largely explained by the 

unequal sharing of catches across paired vessels, with the exception perhaps of 2010. 

4.5 Discussion  

The aim of this study was to investigate the influence of vessel behaviour on CPUE 

estimates using data from the Irish mid-water pair trawl fishery. When applied to observer 

data, the HSMM model was able to differentiate fishing events from non-fishing phases 

with a high degree of accuracy (86.7%). When this model was used to categorise VMS 

records as fishing and non-fishing activity, it was found that the relative amount of time 

spent fishing was not strongly correlated with CPUE in most years, indicating that other 

factors were driving most of the variability in catch rates. Nonetheless, using fishing 

activity instead of total trip duration to quantify effort reduce the variability in the CPUE 

standardization model. The finite mixture analysis showed that the two components 

previously observed in the CPUE data by Cosgrove et al. (2014c) can be explained by the 

unequal sharing of catches between paired vessels and can be addressed by considering a 

vessel pair as the fishing unit. Therefore, using VMS data to identify fishing pairs and to 

quantify actual fishing effort can reduce the variability in CPUE standardisation.  

The analysis of the observer data confirmed that the HSMM was efficient at 

distinguishing between fishing and non-fishing activity (Table 4.2). The accuracy of the 

model was similar to that achieved in previous studies. For example, Chang and Yuan 

(2014) used classification and regression tree analysis of observer and VMS data from 

the Taiwanese longline fleet in the Pacific Ocean to distinguish fishing and non-fishing 

activity with an average recall of 89.5% and a mean accuracy of 85.5%. Bertrand et al. 
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(2008) achieved an 83% success rate when using an artificial neural network model to 

identify fishing sets in VMS data from Peruvian anchovy purse-seiners. In the present 

study, misclassification of observer records largely reflected the model’s inability to 

differentiate activities such as dodging inclement weather from fishing events. The model 

also misclassified some searching entries as fishing, probably because the speed of these 

activities overlapped with the fishing speed distribution. Also, these misclassifications 

occurred either right before or between genuine fishing events which might have made it 

difficult for the model to correctly identify them. This type of misclassification was also 

observed by Gerritsen and Lordan, (2011) when they used VMS data to model the fishing 

activity of vessels targeting monkfish in the west of Ireland.  

To improve the accuracy of the HSMM, other in-situ variables such as turning angles and 

step lengths could be included in the analysis. In previous studies, turning angles have 

been used to distinguish vessel behaviour modes. For example, Walker and Bez, (2010), 

used both speed and turning angles to characterise vessel behaviour of purse seiners 

targeting tropical tuna in the Indian Ocean. Joo et al. (2013) also used speed and turning 

angle, among other variables, in their analyses. However, if vessel speed is the only 

variable available for use in the model, it can be used to efficiently distinguish fishing 

events from non-fishing phases.  

The lack of any correlation between fishing proportion and CPUE in most years indicates 

high within-year variability in catch rates, possibly due to seasonal and spatial 

fluctuations in fish abundance or shoal density. Variability in the abundance and 

distribution of albacore has been linked to changes in oceanic parameters and food 

availability. Goñi et al. (2015) observed that albacore tuna preferred to feed and reside in 

cool waters with high plankton concentrations and found that the vertical distribution of 

the shoals increased with the depth of the mixed layer. Lezama-Ochoa et al. (2010) also 

suggested that the availability of anchovy, a primary prey item for albacore, could be 

altered by changes in sea surface temperature, thus affecting albacore CPUE estimates. 

Changes in these conditions, both short- and long-term, could alter the vertical and 

horizontal distribution and the concentration of the stock thereby affecting the catch rates 

of vessels targeting albacore tuna.  

The multiple components in the CPUE data, which were previously reported by Cosgrove 

et al. (2014c), were no longer detectable when catches from paired vessels were summed 
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prior to analysis. The standardised index plot showed that the second component, which 

represented small catches in the data were, in effect, catches taken by one side of the 

fishing pair (Figure 4.4). This highlights the importance of identifying fishing pairs when 

estimating the catch per unit effort for mid-water trawl data. The plots of paired catches 

by year (Figure 4.2) and the standardised CPUE indices (Figure 4.4) showed little 

variability in the catch rates except in 2010. The high degree of variability and low CPUE 

index observed for this year was driven by eight very small catches, the majority of which 

occurred in August. The low CPUE index in 2010 might be a result of catch misreporting 

or may reflect a real change in the distribution or abundance of the shoals. Fishermen 

targeting albacore reported a reduction in catches in 2010 compared to previous years as 

well as a change in the spatial distribution of the schools (McCarthy et al., 2011). The 

discrepancy does warrant further investigation especially since this decrease in CPUE 

was also evident in other surface fisheries in the region (Figure 4.5). 

The issues identified in the distribution of residuals of the single component model by 

Cosgrove et al. (2014c) were satisfied by applying a two-component finite mixture model. 

In this study, these issues can also be addressed by treating vessel pairs as a unit of 

measurement for calculating effort and CPUE. With the reason for the large interannual 

variability explained, the paired fishing standardised indices appeared stable over the 

eleven-year time series except for the year 2010.  

Incorporating the HSMM estimates of actual fishing effort in place of total effort 

succeeded in reducing the variability in the standardisation of the CPUE estimates. The 

best fitting model (lowest BIC value) explaining variability in albacore catches included 

predicted fishing time from the HSMM, along with year and quarter (PFE) (Figure 4.1). 

The model could be further improved by including other relevant variables such as vessel 

size which was found to be significant in the Cosgrove et al. (2014c) study but was not 

included in our study due to anonymity restrictions. CPUE is influenced by many 

variables, for example, fish abundance, spatial and temporal distribution of vessels and 

gear type. This study; however, demonstrated that vessel behaviour, in terms of time spent 

fishing, is an important variable that should be included in the catch-effort standardisation 

process. One precaution to using fishing effort in CPUE standardisation is the increased 

possibility of hyperstabilising the CPUE estimate (Erisman et al., 2011). Relying on catch 

data and fishing effort may mask decreases in population abundance, especially for 

shoaling species where the density of the shoal may stay the same, but the distribution of 
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the population has decreased. In such situations, VMS data could also be used to monitor 

changes in fishing proportion over time to alert fisheries management to signs of 

hyperstability in the CPUE estimates. 

The task of identifying fishing pairs was labour intensive because the information on pairs 

was simply not recorded by management agencies. In a bycatch observer study carried 

out in 2011-2012, the fishing pairs of pelagic trawling vessels were recorded as they 

fished for albacore and mackerel, but such recordings are not a customary practice in the 

management of the fishery (Boyd et al., 2012). Agencies conducting observer trips and 

reporting albacore landings at ports should begin recording which vessels were partnered 

for individual trips since this information has been shown to be important for CPUE 

standardisation. For past datasets where this information was not recorded, one way to 

reduce the time required to identify fishing pairs, and possibly avoid reductions in sample 

size due to difficulties associated with manually identifying pairs, is the use of programs, 

such as VMSbase and VMStools, to visualize fishing vessels using VMS data (Hintzen 

et al., 2012; Russo et al., 2014). The use of these programs was not possible in this study 

because the geographic positions of the vessels were transformed to protect the identity 

and fishing patterns of the vessels. 

The classification of fishing activity inferred from the hidden semi-Markov model could 

be improved with the use of more detailed observer data. In the study, we used a uniform 

distribution for the non-fishing phases of the data because only the fishing events were 

closely monitored. To get a better idea of non-fishing duration, fishing trips should be 

fully monitored; however, it may not be financially feasible to increase the number of 

observers on vessels. The use of video cameras on board might be a possible tool to assist 

in the monitoring of fishing vessels (Joo et al., 2013). With the improved detail of fully 

monitored observer trips, especially in the duration of non-fishing phases, the number of 

states examined by the model could be increased. This might enhance the model's 

efficiency in identifying the fishing proportion of trips, for example, the separation of 

non-fishing activities such as dodging and searching.  

In conclusion, the results show that hidden semi-Markov models have the ability to 

efficiently distinguish behavioural modes from fisheries observer data. Using VMS data, 

the correlation between fishing proportion and CPUE was not positive and significant for 

every year which indicates that there is a lot of variability present in the catch data. 
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Nonetheless, the results show that incorporating vessel behaviour into catch rate 

standardisation models can reduce the variability in CPUE estimation which is crucial for 

the proper management and sustainable use of this important species. 
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Table 4. 1 The calculations used for the indicators of model performance 

Accuracy 𝐸𝑣𝑒𝑛𝑡𝑠 (𝑝ℎ𝑎𝑠𝑒𝑠)𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑

𝑇𝑜𝑡𝑎𝑙
× 100 

Precision 𝐸𝑣𝑒𝑛𝑡𝑠(𝑝ℎ𝑎𝑠𝑒𝑠)𝑐𝑜𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑

𝑆𝑢𝑚 𝑜𝑓 𝑒𝑣𝑒𝑛𝑡𝑠 (𝑝ℎ𝑎𝑠𝑒𝑠) 𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑 𝑏𝑦 𝑚𝑜𝑑𝑒𝑙
× 100 

Recall 𝐸𝑣𝑒𝑛𝑡𝑠 (𝑝ℎ𝑎𝑠𝑒𝑠)𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑖𝑛𝑓𝑒𝑟𝑟𝑒𝑑

𝑆𝑢𝑚 𝑜𝑓 𝑟𝑒𝑎𝑙 𝑒𝑣𝑒𝑛𝑡𝑠 (𝑝ℎ𝑎𝑠𝑒𝑠)
× 100 

F-measure 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
× 100 
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Table 4. 2 The performance of the HSMM on the observer data 

Accuracy 86.7 % 

 Non-fishing Fishing 

Precision 91.6% 80.8% 

Recall 85.4% 88.7% 

F-measure 88.3% 84.5% 
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Table 4. 3 The correlation value of CPUE and fishing proportion for each year with 

significant correlations in bold 

Year Number of paired trips Correlation p-value 

2006 4 0.30 0.69 

2007 5 0.39 0.52 

2008 7 0.65 0.12 

2009 22 0.04 0.85 

2010 26 0.33 0.10 

2011 21 0.48 0.03 

2012 30 0.20 0.30 

2013 13 0.58 0.04 

2014 18 0.10 0.68 

2015 23 0.06 0.79 

2016 11 -0.33 0.32 
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Figure 4. 1 Plot of the Bayesian Information Criterion (BIC) for the three scenario 

models 
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Figure 4. 2 The natural logged catch by year for the paired and unpaired data. For the 

paired data, each point represents the combined catch of a pair. 
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Figure 4. 3 Deviance residual histograms and Q-Q plots of the PFE one-component (top 

row) and the UTE two-component (bottom row) models.  

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4                                                                                              Vessel behaviour modelling 

78 
 

 

 

 

Figure 4. 4 The standardised CPUE indices predicted from the PFE (blue) and the UTE 

models (component 1: orange, component 2: green. The error bars represent 

the with 95% confidence intervals for each indice in the time period. 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4                                                                                              Vessel behaviour modelling 

79 
 

 

 

 

Figure 4. 5 The Standardised index trends of surface fisheries targeting albacore tuna in 

the North-east Atlantic region (acquired from ICCAT 2016 North and South 

stock assessment report) 
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Chapter 5: Overall Discussion 
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The overall aims of this research were to use otolith characteristics to improve 

understanding of the population structure of albacore tuna in the North Atlantic and to 

refine fisheries dependent estimates of abundance by incorporating vessel dynamics into 

the standardisation of catch per unit effort (CPUE) estimates.  

5.1 Overview of study findings 

In Chapter two, spatial variation in otolith shape was examined in juvenile albacore tuna 

captured in the eastern and western Bay of Biscay. Despite sample size limitations, the 

results showed that the mean otolith shape varied between catch locations. The findings 

indicated that juveniles feeding in the eastern and western Bay of Biscay differed in their 

environmental life histories. A canonical discriminant analysis based on Elliptical Fourier 

shape descriptors separated fish from the two areas with an accuracy of 72% for the 

eastern group and 75% for the western group. The results of this study support the 

hypothesis that juvenile albacore follow two alternative migration routes to the North-

east Atlantic region to feed (Hue, 1980). The study also demonstrated the value of using 

a top-down approach to identify components within a stock, when the spawning locations 

of the stock are not known, as is the case for albacore tuna in the North Atlantic. 

The main objective of Chapter three was to determine if albacore tuna caught in three 

different areas shared similar larval and pre-juvenile conditions using otolith 

microstructure and microchemical analyses. Results from the microchemical analyses 

supported the existence of multiple larval populations within the North Atlantic. Adult 

albacore captured near Venezuela could be distinguished from adults captured off the 

coast of Canada and juveniles captured in the Bay of Biscay using the composition of 

both the core and the post-core regions of the otolith. This suggests that these fish 

occupied a distinct larval environment. The results of the microstructure analysis showed 

that larval growth rates were similar across the three areas, indicating that even though 

the larvae may have been spawned in different areas, they experienced similar growing 

conditions and that the elemental differences observed between Bay of Biscay and 

Venezuela at the otolith core were caused by other exogenous factors, for example diet.   

The aim of Chapter four was to evaluate the influence of vessel behaviour on CPUE 

estimates using hidden semi-Markov models and finite mixture models. Using observer 

data from the Irish mid-water pair trawl fishery, the hidden semi-Markov model was able 
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to distinguish fishing events from non-fishing phases with an accuracy of 87%. The model 

was used to categorise VMS-logbook records and to estimate the proportion of each trip 

spent fishing. In some years, predicted fishing proportion and CPUE were positively 

correlated indicating that catch rates were high during trips when a relatively high 

proportion of the time was spent fishing. However, in other years there was no correlation, 

possibly due to seasonal or spatial variability in distribution patterns and catchability. The 

two components that were previously identified in the data using finite mixture models 

were no longer present when fishing boat pairs were identified, and their catch combined. 

This proved to be the main reason for the two-component structure observed in the 

Cosgrove et al. (2014b) study highlighting the importance of accounting for the behaviour 

of the mid-water pair trawlers in the estimation of CPUE.  When effort was expressed as 

total fishing time this reduced the variability in the catch rate standardisation compared 

to the model in which effort was expressed as total trip time.  

5.2 Incorporating population structure into the management of 

albacore tuna  

Chapters two and three provided insight into the population structure of albacore tuna. 

The observed variation in otolith chemistry suggests that during the spawning season 

(April – September), adults spawn in at least two distinct locations. The observed 

homogeneity in otolith growth rates at the larval core indicates that these locations share 

similar growing conditions (e.g. temperature and food availability). Although there is 

little to no information concerning albacore’s life history between the lengths 2 cm and 

38 cm, it is known that at length 40 cm, albacore juveniles begin migrating to feed in the 

productive waters of the North-east Atlantic (ICCAT, 2011). The variation in otolith 

shape observed between juveniles feeding in the inshore and offshore waters of the Bay 

of Biscay is as a result of the different environmental histories they experience during 

their lives.  

At present, albacore tuna in the North Atlantic is managed as a single homogenous stock, 

and it is assumed that population dynamics and life history characteristics are uniform 

across the entire stock. The results from this thesis indicate that there is stock complexity 

in the North Atlantic albacore stock. Previous studies that compared otolith composition 

between juveniles caught in different locations in the Bay of Biscay also found evidence 

of stock complexity (Fraile et al., 2016; Sagarminaga and Arrizabalaga, 2010). In spite of 
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this, the assessment and management of the stock still conform to the unit stock 

assumption. This reflects the fact that there is no general consensus among fisheries 

scientists regarding the population structure of the species. For there to be a change in the 

assessment and management of the stock, additional evidence confirming the number of 

subpopulations present in the population is needed. Also, estimates of relative size, 

natural mortality, growth and productivity rates are necessary to characterise the 

subpopulations (Kerr et al., 2010b). This information can be obtained by first identifying 

the spawning locations and migration routes of the population and then sampling the 

subpopulations when they are on their spawning grounds in spawning condition or from 

mixed aggregations of the subgroups. The collection of this data is paramount to the 

progression of our present understanding of albacore’s population structure and the 

improvement of its assessment and management which will be aligned with its biological 

structure. 

Even though this information is not currently available, insight into the possible 

consequences of disregarding population structure can be investigated using management 

evaluation strategy (MSE) models (Kerr et al., 2017). The technique can be used to test 

hypotheses regarding connectivity, the spatial structure of the components and the overall 

stock composition using the biological and demographic information known about the 

subpopulations. For example, Kerr et al. (2010a) used an age-structured model with a 

substock component to model the spatial structure and connectivity of Atlantic cod 

(Gadus morhua) within the Gulf of Maine area and compared the results of the model to 

a single-stock management model. They also applied different fishing mortality levels to 

both models to examine the influence that spatial heterogeneity had on the productivity 

and yield of the stock. The authors found that the substock model had higher productivity 

and sustainable yield estimates than the single-stock model. They credited the higher 

productivity of the substock model to the incorporation of each subpopulation’s 

demographic vital rates and recruitment dynamics and to the fishing mortality rate (FMSY) 

being based on the productivity of each subpopulation and not one estimate for the entire 

stock which is the general assumption for the single-stock model. A similar approach 

could be performed on albacore to alert managers and stakeholders to the importance of 

aligning the management of the stock with its innate biological structure. To be able to 

generate this model for albacore tuna, knowledge on the subgroups’ population dynamics, 

e.g. fishing mortality, recruitment, degrees of connectivity and mixing are needed. 
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Acquiring these parameters is crucial to ensuring that the biological structure of albacore 

tuna is properly reflected in its assessment and management. If the stock complexity is 

continued to be ignored, it may result in the over-exploitation of weaker components in 

the population and the reduced productivity, stability and resilience of the overall 

population which could lead to the collapse of the stock (Kerr et al., 2010b; Ying et al., 

2011).  

5.3 Standardisation of CPUE indices  

Currently, many stock assessments are carried out on fishery dependent data. To account 

for the issues associated with this data source, standardisation of the catch data is a crucial 

step in ensuring the data reflects the abundance of the stock. At present, in the 

standardisation process and in stock assessments for most species, the variability in 

fishing effort is unaccounted for and instead the total length of the trip is used to represent 

the effort required to land the catch. The results from Chapter four highlight the 

importance of identifying vessel behaviour modes, specifically fishing, in vessel 

monitoring data using movement models and incorporating these modes into CPUE 

standardisation. VMS data (with logbook data included) utilised in movement models can 

improve the accuracy of fishery-dependent data and reduce the variability in CPUE 

standardisation. Charles et al. (2014) used VMS data in a hidden Markov model to 

develop effort estimates, based on behavioural states (retrieving, setting and steaming) in 

order to standardise the catch rates of the Gulf of St. Lawrence snow crab fishery. The 

authors found the standardised catch with fishing behaviour included agreed with fishery-

independent estimates of snow crab abundance better than commercial CPUE estimates. 

This indicates that incorporating fishing patterns is important when using fishery-

dependent data in CPUE standardisation.  

5.4 Future studies and endeavours 

5.4.1 Population structure 

To enhance our understanding of albacore stock complexity in the North Atlantic, future 

work should attempt to collect samples from the Caribbean, where pre-juvenile albacore 

(≤ 38 cm) have been caught (F. Arocha, personal communication, September 8, 2017). 

Otolith microchemistry analysis of the otolith core can be used to determine if the pre-
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juveniles shared a common spawning site with fish caught later in life around Venezuela 

or the Bay of Biscay. Tagging studies of juveniles feeding in the inshore and offshore 

waters of the Bay of Biscay may provide vital information which can redefine the present 

understanding of albacore life history outside of the region (Childers et al., 2011; Prince 

et al., 1995). Also tagging of adults throughout the spawning period could help in 

identifying potential spawning sites in the North Atlantic. Conventional tags have been 

used for many years to elucidate the distribution of albacore tuna as well as to gather data 

on its total mortality and growth parameters, but their return rate has been shown to be 

low (Arrizabalaga et al., 2002). The use of miniaturised pop-up archival tags could be 

used to record and store information about albacore’s movements and the ambient water 

temperature and then transmit this information via satellite at a predetermined time (Block 

et al., 1998). Pop-up tags have been shown to work well on albacore juveniles and 

subadults (Cosgrove et al. 2014a). The collection of sex-specific gonad samples 

throughout the fishing region has been outlined by ICCAT as a viable option to help 

identify potential spawning areas (ICCAT, 2016). Once potential spawning sites have 

been identified, larval surveys could be conducted to confirm the importance of the sites 

and to further our knowledge about this early larval stage. To collect tuna larvae samples, 

surveys are usually conducted using 333µm mesh Bongo nets with a 60 cm mouth 

opening (Reglero et al., 2012). 

5.4.2 Fleet dynamics 

Using VMS-logbook data to infer vessel behaviour and to quantify fishing effort from 

fishery-dependent data has been shown to be important in CPUE standardisation (Charles 

et al., 2014). One improvement to VMS data could be the collection of higher temporal 

resolution data. Both Charles et al. (2014) and Joo et al. (2013) showed that using VMS 

data with a shorter time interval can improve model accuracy. However, data storage 

would need to be large enough to adequately store these higher temporal resolution data. 

In future observer surveys, on-board camera systems could be used to improve the detail 

and quality of the observer data in the Irish mid-water pair trawl fishery. Electronic 

monitoring systems have been used to monitor different multispecies longline fisheries 

(Ames, 2005; Ames et al., 2007), crustacean fisheries (Hold et al., 2015) as well as 

bycatch incidents (Pasco et al., 2009). These systems are mostly used to identify various 

species and to collect measurement data on the catch; however, in the case of the Irish 
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mid-water pair trawl fishery, it could be used to increase monitoring efficiency on fishing 

vessels, especially in cases, where there aren’t enough observers to monitor the trip for 

its entire duration.  

In conclusion, this body of work has provided insight into the areas of population structure 

and fleet dynamics of the North Atlantic albacore tuna as well as in the standardisation 

process of CPUE estimates. This thesis reveals the work that needs to be done to continue 

learning about this invaluable species and to ensure its sustainable use and management.  
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