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Abstract

Sexually dimorphic growth models are typically estimated by fitting growth curves

to individuals of known sex. Yet, macrospically ascribing sex can be difficult, par-

ticularly for immature animals. As a result, sex-specific growth curves are often

fit to known-sex individuals only, omitting unclassified immature individuals oc-

cupying an important region of the age-length space. We propose an alternative

whereby the sex of the unclassified individuals is treated as a missing data problem

to be estimated simultaneously with the sex-specific growth models. The mixture

model we develop includes the biological processes of growth and sexual dimor-

phism. Simulations show that where the assumed growth model holds, the method

improves precision and bias of all parameters relative to the data ommission case.

Ability to chose the correct combination of sex-specific and sex-generic parame-

ters is also improved. Application of the method to two shark species -where sex

can be ascribed from birth- indicates improvements in the fit but also highlights the

importance of the assumed model forms. The proposed method avoids discarding

unclassified observations thus improving our understanding of dimorphic growth.

Key words: Dimorphism; EM algorithm; missing data; non-linear clustering; partial classifi-

cation.
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Introduction

Growth is a central process in the life history of an organsim (Beverton and Holt 1957; Werner

1986; Starck and Ricklefs 1998; Nentwig 2012) and describing growth is a regular task across

many taxa (Lacointe 2000; Krebs and Cowan 1962; Starck and Ricklefs 1998; Jones et al.

2011). Reflecting the importance of understanding growth, modelling growth has a long and

productive history in ecology (Robertson 1923; Brody 1926; von Bertalanffy 1938). A com-

monly applied parametric functional form for the relationship between length and age of given

life history stages is the von Bertalanffy model (von Bertalanffy 1938; Chen et al. 1992). Early

methods to fit this non-linear model used the linear differenced relationship between mean

lengths separated by a unit of age (Ford 1933; Walford 1946). Maximum likelihood fitting

under the assumption of normally distributed errors was introduced by Kimura (1980). A so-

phisticated range of fitting methods now exists, including: non-normal error distributions, more

stable re-parameterizations (Gallucci and Quinn 1979; Schnute 1981; Francis 1988), hierarchi-

cal methods (Helser and Lai 2004; Brunel and Dickey-Collas 2010; Weisberg et al. 2010), and

error-in-variables approaches (Cope and Punt 2007).

Sexually dimorphic growth occurs in many taxa (Fairbairn et al. 2007). Differential selection

pressures, mortality schedules and the degree of reproductive investment affect the ultimate

differences in size (Roff 1982; Parker 2006). Where it occurs, sexually dimorphic growth has

important implications for management. Natural mortality can be size-dependent (Pauly 1980).

Harvesting methods are also often size-based, such that the probability of removal changes with

size, e.g., small fish might escape through the mesh whereas larger fish are too big to escape

(Myers and Hoenig 1997). Where differences exist in the growth of the sexes, selective size-

based removal will enact differential mortality between the sexes (Kendall and Quinn 2012).

To understand and mitigate for size-selective removals, it is essential that sex-specific growth

characteristics are well described.

On first inspection, fitting sex-specific growth models to length-at-age data requires that the sex

of an individual is known. For maturing and mature animals, sex can often be assigned visually

from primary or secondary sexual characteristics, but immature fish, amphibians, insects and

reptiles often require histological methods to distinguish between the sexes (e.g., Vitale et al.
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2006). Histological methods are often not feasible for large-scale continuous sampling pro-

grams. As a result, many sex-specific growth datasets contains the sex-designations: Female,

Male and Unclassified (FMU).

Extant approaches to fitting sex-specific growth curves to FMU data proceed by first removing

unsexed (immature or otherwise unclassified) individuals and then fitting sex-specific curves to

the remaining known-sex individuals (e.g., using the methods of Kimura (1980)). Sex-specific

growth models of this type are thus fit to a subset of the observed age-length data; we term

these FMU fits. FMU fits introduce an extrapolation of the model over an omitted space (typ-

ically young immature animals) that may be very informative for certain parameters of the

model, particularly the growth rate and intercept. As an extreme illustration, consider a species

with determinate growth (somatic growth ceases post-maturation) with all individuals under-

going maturation at a given age (when the sex can be determined). Known-sex lengths will

be constant over age and therefore only informative for sex-specific asymptotic size. Without

additional assumptions, sex-specific growth rates and intercepts will be confounded. In real-

ity, many species such as many molluscs, fish and reptiles have indeterminate growth (growth

continues post-maturation) but we contend that fitting sex-specific growth curves to FMU data

in the extant fashion amounts to extrapolation, the severity of which will depend on: ability

to determine sex; duration of the immature stage; degree of post-maturation growth; and how

protracted the maturation process is across individuals.

Instead of omitting unclassified individuals when fitting sex-specific growth models to FMU

data, we propose that the sex of the unclassified individuals be treated as a missing data prob-

lem to be estimated simultaneously with the growth curves. We develop a mixture model

for this purpose where few restrictions are made on the form of the growth curves or on the

between- or within-individual variability but we do focus on the von Bertalanffy model, as a

commonly applied functional form (Pardo et al. 2013).

Our objectives are to: (1) develop a mixture model for including unclassified individuals in

sex-specific growth curves; (2) develop an accompanying expectation-maximisation (EM) fit-

ting algorithm (Dempster et al. 1977); (3) test the performance of the method relative to the

extant FMU approach via simulation; and (4) fit to two species of shark where known sexes of

4



immature and mature individuals provide a useful real data test of performance.

Materials and Methods

We first motivate the unsexed individuals as a missing data problem, then propose a mixture

model solution with an accompanying EM-algorithm estimation routine; simulation tests and

real data applications follow.

A partially classified two-component mixture model

The observed data consist of a sample of i = 1, . . . n individuals with recorded variables: length

li, age ai, and observed sex sobs,i where sobs,i ∈ {F,M,U} (Female, Male, Unclassified). For

the overall population, following the notation of McLachlan and Peel (2000), we define a two-

component (female F and male M ) mixture model with a length probability density function

of:

f(l|a,Ψ) = πFfF (l|a,θF ) + πMfM(l|a,θM ), (1)

where: Ψ = {πF ,θF ,θM} is a vector of all free parameters; πF is the mixing proportion,

which is the overall probability that the sex is female, πF = P (S = F ), and the complement

πM = 1 − πF is the overall probability that the sex is male; fS is the sex-specific (female

or male) component density, e.g., lognormal for a single observation (presented without bias

correction):

fS(li|ai,θS) =
1

liσS
√
2π

exp

(
−(ln(li)− ln(g(ai,ΩS)))

2

2σ2
S

)
, (2)

where θS = {σS,ΩS} is the sex-specific density parameter vector; g(ai,ΩS) is the sex-specific

growth function, e.g., von Bertalanffy

g(ai,ΩS) = L∞,S

(
1− e−KS(ai−t0,S)

)
, (3)
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where ΩS = {L∞,S, KS, t0,S} is the sex-specific growth curve parameter vector consisting here

of the mean asymptotic length, Brody growth rate (rate at which asymptote is approached) and

age at length zero, respectively. Alternative forms for g include other asymptotic, segmented,

and additive curves.

To estimate the parameters of the mixture model, we introduce the partially observed indicator

variable Z that denotes the true sex of observation i

zi =


1, if observation i is female, si = F,

0, if observation i is male, si =M.

(4)

Letting i = 1, . . . ,m index the classified individuals for which the sex is known, we propose

that for the remaining j = m + 1, . . . , n individuals, zj can be treated as missing data to be

imputed from the posterior probability of an unclassified observation being female. Next, we

introduce how classified and unclassified individuals are treated within the estimation.

Classified individuals

For each i, the true value of zi ∈ {0, 1} and is known. The conditional density of the classified

observation can therefore be written

f(li|ai, zi,Ψ) = fF (li|ai,θF )zifM(li|ai,θM )1−zi , (5)

and the density of the group (female or male) membership

f(zi|Ψ) = πzi
F π

1−zi
M . (6)

Assuming independence, the joint density of the classified observation and the group member-

ship can thus be written

f(li, zi|ai,Ψ) = [πFfF (li|ai,θF )]zi [πMfM(li|ai,θM )]1−zi (7)
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The joint density of all the classified observations is

f(l, z|a,Ψ) =
m∏
i=1

[πFfF (li|ai,θF )]zi [πMfM(li|ai,θM )]1−zi , (8)

the right-hand side of which is the likelihood of the classified data for a given set of growth

model parameters.

Unclassified individuals: Expectation step

Unclassified individuals are typically immature but could also consist of a sample of unsexed

mature animals. The density of the unclassified observations is a mixture and written, as in

Equation (1), as:

f(lj|aj,Ψ) = πFfF (lj|aj,θF ) + πMfM(lj|aj,θM ). (9)

For each j, the true value of zj ∈ {0, 1} but is now unknown. Similar to Dean et al. (2006) and

McLachlan and Krishnan (2008), a key quantity is the expected value of the group membership

indicator for unclassified individuals given the observed data and a given set of parameters

(denoted by an asterisk)

E(Zj|aj, lj,Ψ∗) = Pr(Zj = 1|aj, lj,Ψ∗). (10)

This pivotal probability is available via Bayes’ theorem (Bayes 1764), as:

Pr(Zj = 1|aj, lj,Ψ∗) =
Pr(Zj = 1)Pr(lj|zj = 1, aj,Ψ

∗)

Pr(lj|aj,Ψ∗)
, (11)

=
π∗FfF (lj|aj,θ∗F )

π∗FfF (lj|aj,θ∗F ) + π∗MfM(lj|aj,θ∗M )
. (12)

The estimated component membership probabilities are denoted by z∗j . Equation (12) thus

provides a means for assigning the probability of group (i.e., female or male) membership to

unclassified individuals for a given growth model and set of parameters. We can thus proceed,

as for classified individuals, to an expected value for the log-likelihood, conditional on the
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expected values of the group membership (termed the “complete data log-likelihood”)

E[lnL(Ψ|lj , z∗j ,aj)] =
n∑

j=m+1

z∗j ln(πFfF (lj|aj,θF )) + (1− z∗j ) ln(πMfM(lj|aj,θM )). (13)

As an aside, the simplicity here is due to the log-likelihood based on a representation, as in

Equation (8), that is linear in z∗j . Combining the classified and unclassified individuals, the

expected complete data log-likelihood of all observations is then given by

E[lnL(Ψ|l, z,a)] =
m∑
i=1

[zi ln(πFfF (li|ai,θF )) + (1− zi) ln(πMfM(li|ai,θM ))] +

n∑
j=m+1

[z∗j ln(πFfF (lj|aj,θF )) + (1− z∗j ) ln(πMfM(lj|aj,θM ))] (14)

EM algorithm

Estimation of the expected log-likelihood (Equation 14) is carried out by the following steps:

1. E-step

Starting with a given set of parameters Ψ(0) = {θ(0), π(0)
F }, calculate the expected value

of the log-likelihood (Equation 14), which amounts to finding z∗j in Equation (12).

2. M-step

a. Maximise the expected value of the complete data log-likelihood with respect to the

growth parameters

θ(1) = argmax
θ

E[lnL(θ|l, z(0),a, π(0)
F )]. (15)

Non-linear growth models require numerical optimisation for this step.

b. Update the unconditional probability of being female (sex ratio), if not assumed

fixed, via

π1
F =

∑m
i=1 zi +

∑n
j=m+1 z

∗(0)
j

n
, (16)
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which assumes the same overall sex ratio for the unclassified and classified; but this

can be relaxed to classified or unclassified only, fixed at a given value, or modelled

with covariates where data allow.

3. Replace Ψ(0) with Ψ(1) = {θ(1), π(1)
F } and repeat steps 1 and 2 until convergence, as

assessed by a stopping criteria based on a relative change in the observed log-likelihood.

The observed log-likelihood is given by

lnL(Ψ∗|l, z,a) =
m∑
i=1

(zi ln(π
∗
FfF (li|ai,θ∗F )) + (1− zi) ln(π∗MfM(li|ai,θ∗M )))+

n∑
j=m+1

ln (π∗FfF (lj|aj,θ∗F ) + π∗MfM(lj|aj,θ∗M )) .

(17)

Note that it may be possible to maximise this partially classified observed likelihood

directly without the EM algorithm, but direct maximisation does not in general perform

well, except in the vicinity of the maximum or via a grid search.

Parameter inference and standard errors

In the same manner as Kimura (1980), parameters may be bound or free across the sexes.

We fit all combinations of bound and free parameters and choose the best fitting model by

Bayesian Information Criterion (BIC using the: observed data log-likelihood (Equation 17); log

of the number of observations; and number of parameters of the component distribution and the

mixing proportion). A preliminary investigation of the performance of the Akaike Information

Criterion showed it to select overly complex models compared to BIC. Various options are

available to approximate the standard errors of the parameter estimates from an EM algorithm

(McLachlan and Peel 2000). A key difficulty is obtaining the observed information matrix. The

method we implement is to fit the model to convergence via the EM algorithm as above and

then optimise the partially-classified mixture log-likelihood (Equation 17) directly, including

the mixing proportion. The EM algorithm finds the maximum likelihood which would be

difficult to do via direct optimisation. Once at the maximum, direct optimisation is relatively

straightforward and can be used to estimate the curvature of the observed log-likelihood and

9



hence provide standard errors.

Method testing

Simulations

Our simulation framework study focusses on some of the primary factors influencing the es-

timation of sex-specific von Bertalanffy growth models for non-hermaphroditic species. Two

overall functional types were tested: asymptotic (L∞,F = 40cm; kF = 0.3year−1 t0,F =

−1years; and σF = 0.1 lognormal error standard deviation); and a more ‘linear’ form (L∞,F =

40cm; kF = 0.1year−1 t0,F = −1years) (Figure 1). The distribution of ages (50 female and

50 male per simulation) was drawn from a negative binomial distribution with a mean age of

5 and a shape parameter of one giving an age distribution with 5th and 95th quantiles at 0 and

16 years, respectively. Dimorphic differences (20%) for males were included by parameter

settings with: L∞,M = 0.8L∞,F ; kM = 0.8kF and t0,M = 0.8t0,M . Early and late maturation

were included by setting the age at which 50% of the population are mature to ages two and

five, respectively; a maturation range between 25% and 75% mature was set to one year. To

emulate the scenario where immature animals cannot be sexed, we set all immature animals to

unclassified sex (see Discussion). These values provided a realistic but pragmatically limited

set of sexually-dimorphic differences (Figure 1) to illustrate the main aspects of performance

without over-loading with simulation output. All combinations of sex-specific and sex-generic

parameters (16 models in total) were fit to each simulation dataset and the best fit for each

method chosen on the basis of the lowest BIC. Simulation fits were started at the true value

for all methods. Each simulation scenario was run 1,000 times with different random draws to

provide stable sampling distributions.

[Figure 1 about here.]

The performance of the methods on the simulated data was appraised using: 1) parameter root-

median-square error (RMSE); 2) classification rates (based on maximum a posteriori / binary

classification); 3) ability to chose the correct model form via BIC; and 4) visually via boxplots

of the relative error ((θ̂ − θtrue)/θtrue) of the parameter estimates.
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Real data

Elasmobranchs (sharks and rays), represent a useful taxon to test the performance of the method

given that the sex can be distinguished from birth, owing to two extensions of the pelvic fins

(claspers) on the males. We use two datasets on deepwater lantern shark species: velvet belly,

Etmopterus spinax, and smooth lanternshark, Etmopterus pusillus, which are found off the

south and southwestern coasts of Portugal (Coelho et al. 2005). The datasets consist of 733 (E.

spinax) and 518 (E. spinax) age-length readings. The data are cross-sectional in that there is a

single data point per individual. Females represented approximately 60% (E. spinax) and 43%

(E. pusillus) of the samples, respectively. High proportions of the individuals were classified

as immature (E. spinax: 60%; E. spinax: 77%) based on macroscopic investigation of the

reproductive organs (Coelho and Erzini 2007, 2008).

To test the performance of the method, we compare sex-specific von Bertalanffy fits from: (1)

all individuals, using mature and immature sex determinations; (2) only the mature animals -

to mimic the FMU situation where sex cannot be distinguished prior to the onset of maturation;

and (3) all individuals with the sex of the immature animals treated as an unknown classification

problem and fit via the mixture model developed here. A grid of plausible starting values was

used to initialise fitting for each method.

Software

We developed the R package lhmixr (life history mixture models in R: available on CRAN or at

https://github.com/mintoc/lhmixr/) to fit sex-specific growth models with missing classifica-

tions. von Bertalanffy models are implemented with analytical gradients for all parameters in

the complete-data log-likelihood and a generic binding formulation to allow parameters to be

bound equal or free between the sexes. Normal and log-normal error distribution assumptions

are included. Both real datasets are included and documented in the lhmixr package.
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Results

Simulation performance

Example simulation fits show that, where fish can be classified early (Figure 2(A)), the FMU

approach can perform well in recovering the full data curve, though with decreased precision

(Table 1, Figure 3). In contrast, for late maturing animals the example FMU fit performed

poorly for males and females (Figure 2(B)) and in general had increased bias and decreased

precision for the growth rate and intercept terms, particularly for strongly asymptotic growth

curves (Table 1, Figure 3 (C, E)).

[Table 1 about here.]

Overall, as judged by RMSE, the MIX model (mixture model developed here) outperforms

the FMU approach for all parameters and both curve typologies (Table 1). The differences in

RMSE are most pronounced in the asymptotic fits where the MIX-estimated intercept t0 often

displays an order of magnititude difference in RMSE over the FMU fits (Table 1). For early ma-

turing animals with linear growth, the RMSE is reduced by half or more using the MIX method

relative to the FMU approach (Table 1). The MIX method consistently had RMSE slightly

larger than the full knowledge fit, reflecting the additional uncertainty when classification is

needed (Table 1).

[Figure 2 about here.]

All methods had similar ability to detect sex-specific difference in the asymptotic size, irre-

spective of curve typology or maturation timing (Table 2, L∞,s scenarios). Ability to detect

differences in the growth rate is considerably reduced in the FMU fits compared to the full

data fits, particularly for late maturing animals with more asymptotic growth where the correct

model was identified in only 14% of simulations (Table 2, asymptotic growth form and late

maturing FMU Ks scenario). This was improved to 46% chosen correct using the MIX model.

The performance is not as poor for the more linear growth form (33% FMU chosen correctly),

though the MIX model still improved the performance (69% chosen correctly). When t0 dif-

fers by sex and the growth curve typology is asymptotic, the FMU approach performed poorly

12



in choosing the correct model (7% and 2% for early and late maturing animals, respectively)

(Table 2, FMU t0,s scenarios); this is somewhat improved for early maturing animals using the

MIX model (36%) but is low for the late maturing animals (24%) (Table 2, MIX t0,s scenar-

ios). With asymptotic growth and where t0 or K differ by sex and the FMU approach is used,

the chosen model is often that of no difference between the sexes (Table 2, FMU None row).

Ommitted models from Table (2) often included the correct model but with residual standard

deviation differing by sex (e.g., where only L∞ differs by sex, a model with L∞,s and σs is the

most commonly chosen model of those not shown).

[Table 2 about here.]

Working with the best fitting model per simulation, the classification rates where typically

lower when using the FMU model; whereas the MIX model recovered similar but consistently

lower classification rates to the FULL data scenario (Table 3). Relative to the FMU approach,

large gains in the classification rates are seen where growth is asymptotic (Table 3, third row).

As expected, classification rates are poor across all methods where no true differences exist

among the sexes (Table 3, “None” columns).

[Table 3 about here.]

Reflecting the RMSE results, differences in the relative error across methods are least for the

L∞ parameter, reflecting the predominant importance of mature animals for estimating that

parameter (Figure 3). In many cases the relative error of the MIX model is comparable to that

of the full data scenario for these simulations (Figure 3).

[Figure 3 about here.]

Real data performance

The two elasmobranch species investigated spend a relatively long period of their observed

lifespan in the immature phase in addition to a relatively large size at maturation (Figure 4).

As a result the best fitting FMU t0 estimates for female and male E. spinax and E. pusil-

lus are considerably more negative than when the full data are used (Table 4, sixth column).
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FMU-estimated intercepts also had considerably decreased precision with no evidence of a

sex-specific difference. These biases and lack of precision simply reflect that the FMU model

excludes those immature animals and thus only fits to the mature animals. In contrast, the MIX

approach results in more comparable estimates to the full data scenario.

Estimates of L∞ are similar across methods and both sexes for E. pusillus. The FMU and mix-

ture models estimate a lower asymptotic size for female E. spinax (Figure 4(C,E)) most likely

because they are more influenced by the larger known sex females, which are fit poorly in the

full data scenario (Figure 4(A)). The E. spinax male asymptotic size is estimated as lower in

the FMU fit compared to the full data fit; whereas the mixture model estimated a larger and

more uncertain male asymptotic size (Table 4, row 6).

The female E. pusillus mixture model estimated growth rate is faster than the full data scenario

and results in a higher curve (Figure 4(F)). As a result many of the smaller fish for a given age

are classified as male, whereas this is not true from the full data, where there is a mixture of

males and females. This may arise from the choice of functional form in that there appears to be

a broadly similar growth pattern for until older ages where the male growth slows considerably

for both spacies(see Discussion). As the FMU approach has smaller males and the immature

animals fall under both curves, the predicted classification is unity for males but very poor for

females (Table 4). The mixture model improves on this but goes to a solution that separates

the sexes more than is apparent in the true data (Figure 4). Overall the classification rates from

all models, including the full data scenario, are poor across both sexes owing to a lack of clear

separation.

[Figure 4 about here.]

[Table 4 about here.]

Discussion

Discarding unclassified data degrades the precision and accuracy of fitted sex-specific growth

models. Here, we have proposed a redress that simultaneously attempts to classify unclassified

individuals while estimating parameters of a growth curve of interest. To our knowledge this
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is the first recognition of the potential to couple classification and life history model parameter

estimation in this manner.

Performance

Where the fitting assumptions match the data-generating assumptions, as in our simulations,

the mixture model offers general improvements on the estimation of sex-specific growth curves

from partially-classified data (Table 1, Figure 3). Since a lognormal distribution and the von

Bertalanffy model are the most common assumptions for these data we think that the method

should also improve fits to real datasets.

Where animals can be classified at early ages, the FMU approach may provide good estimates

of the parameters of the growth curve (Figure 2). This does have the cost of reduced precision

(Table 1, Figure 3), which will decrease the ability to correctly choose differences between

the sexes (Table 2). In reality, the impact of the ommission of unclassified individuals will

vary by population depending on how early immature animals can be classified. Even where

classification can occur at a relatively young age, maturity is often dependent on reaching a

threshold size (Stearns and Koella 1986). Within an early age-group, larger fish may mature

first and hence be distinguished earlier, which may further bias estimates of FMU-derived sex-

specific growth compared to when all individuals are included, as proposed here.

Other solutions in the FMU case may include fixing the intercept at a certain value. Though this

may seem a simpler solution, it is not recommended given the resulting bias in the growth rate

for single fits (Pardo et al. 2013). In addition, for sex-specific fits, it is difficult to envisage how

fixing the intercept term would not bias the other sex-specific parameters where differences

exist.

Lantern shark datasets investigated demonstrated some extreme challenges to fitting with the

FMU approach (Figures 4). In reality, it may be possible to ascribe sex for some individuals

prior to maturity but these fits serve to emphasise some of the issues, as discussed below.
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Caveats

A primary concern with the von Bertalanffy model is that the functional form of the growth

curve differs between the immature and mature phases. Such valid concerns have given rise to

alternative mechanistic growth models such as the biphasic growth model of Roff (1983) where

somatic growth is linear to the onset of maturity and thereafter a decreasing function of the go-

nadosomatic index. The von Bertalanffy model theoretically describes only post-maturation

growth (Ricker 1975; Lester et al. 2004). We stress, however, that the form of the growth

model (g in Equation 3) we use for our derivation or implementation of the algorithm is not

restricted and our use of the von Bertalanffy form only reflects its common application. How-

ever, hockey-stick implementations of sex-specific Roff biphasic growth models could be very

difficult to fit to asymptotic datasets containing unclassified immature animals. The mixture

model developed here may contribute in this regard. Overall, it is important to recognise that

the method classifies on the basis of the assumed model, so a functional form mis-match may

result in poor classification (e.g., E. pusillus, Figure 4). It is difficult to guard against this, other

than by comparing with more local functional forms.

The error distribution assumption will affect the classification - we therefore recommend care-

ful consideration of the error-distribution and the mean-variance relationship thus implied. In

the lhmixr package we provide two error distributions (normal and lognormal) but envisage

other density forms could be useful in particular applications (e.g., gamma, heteroscedastic

formulations). We envisage many ways of improving and highlight the E. pusillus fits (Fig-

ure 4) as a caution of how the performance may be critiqued in given applications.

Of additional concern is the assumption that the sex of the individual is fixed. Fish and other

taxon display a great diversity of sexual life histories (Warner 2012), including sequential

hermaphroditism, where the sex of the animal can change. On first inspection, classifications

to such families as Labrids or gobies, for what may be a non-constant trait, could be a less than

sensible approach but again we propose a possible development via the inclusion of relevant

covariates for the mixing proportions (Equation 16).

In terms of model choice and parameter inference, it is known that the regularity conditions of

the asymptotic distribution of the deviance break down when comparing mixture models with
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differing numbers of components (McLachlan and Peel 2000). The same is true of AIC and

BIC, though BIC has been shown to perform well in some situations for identifying the number

of components (Wang et al. 1996). We recommend first using BIC to compare a fully saturated

two component model (all parameters sex-specific) with a single component model, where all

parameters are the same across sexes. Once the number of components is decided, and in-

terest lies in parameter significance, nested models within that number of components can be

tested using likelihood ratio tests with a chi-squared distribution. Overall, we propose that

the asymptotic distribution of the deviance in this partially classified mixture model requires

further work.

Management implications

Given that yields and mortality schedules are directly impacted by growth parameters, having

reliable estimates of sex-specific growth parameters is paramount for management of dimorphic

species. While the mixture model offers general improvements over the unclassified ommis-

sion case (Figure 3), we envisage the method assisting most where growth is more strongly

asymptotic after maturation (Figure 2). Where faster growing individuals mature earlier and

are therefore classifiable earlier, positive biases may exist in previously estimated sex-specific

growth curves. This would imply faster growth than when all the data are used. In this setting

the method could contribute to management by using all the data to estimate the relevant growth

parameters and quantify uncertainty around the sex-specific growth curves. These curves can

then be used, for example, in age-length based population assessment models (e.g., Methot

2000; Frøysa et al. 2002).

Future developments

While the approach developed here focusses on partially classified datasets, the mixture model

could also be applied to datasets where no sexed animals are recorded, as in common applica-

tions to fully unclassified datasets (McLachlan and Peel 2000).

Extending the method longitudinally would allow for the life histories of unclassified individ-
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uals to be understood in the context of sex-specific differences. Longitudinal features could

be built in by modelling the correlation structure of the errors (e.g., using generalized least

squares, estimating equations or random effects (Diggle et al. 2003)).

Other sex-specific life history relationships may also be amenable to the methods developed

here. We are currently developing a similar approach for the treatment of maturity. Perceivably

these could be coupled into a multivariate partially classified mixture model, where it is explic-

itly recognised that animals develop along multiple coupled processes.

The estimation time is short (seconds) and lhmixr von Bertalanffy complete data log-likelihoods

are also accompanied by their analytical gradients to provide more stable fitting. The EM al-

gorithm can, however, be comparatively slow in terms of the number of iterations taken to

convergance. This could be improved by implementing the loops in a compiled language (e.g.,

C++). It would also be of particular interest to start the model at the M-step (e.g., assuming an

equal probability of 0.5 for unclassified individuals) and test performance compared to start-

ing at the E-step with a grid of starting values (as done here) or starting at the FMU solution.

Bayesian estimation of finite mixture models is an active area of development (Frühwirth-

Schnatter 2006), which would assist straightforward estimation of parameter uncertainty using

MCMC, for example, but with associated chain convergence and runtime overheads.

Despite the long history of application of mixture models to ecological problems (Pearson

1895; Bhattacharya 1967; Macdonald and Pitcher 1979) and recent applications (Thorson et al.

2011; Cosgrove et al. 2014), we note in closing that the EM algorithm is at present a con-

siderably under-recognised algorithm in ecological modelling. The EM algorithm contributes

to areas as diverse as state space modelling (Shumway and Stoffer 1982), structural equa-

tions (Ullman and Bentler 2003), hidden Markov systems (McLachlan and Krishnan 2008),

all of which are important topics in modern ecological modelling, yet other routines (MCMC,

Laplace, quadrature approximations to the marginal likelihood) are more commonly used when

estimating complex ecological models (e.g., Bolker et al. 2013; Kristensen et al. 2015). While

recognising the central importance of these methods, we contend that for many users there is a

lack of understanding as to how the methods work. In contrast, the steps of the EM algorithm

are transparent when estimating unobserved constructs. We believe that the EM algorithm de-
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veloped here demonstrates a small amount of the potential of this family of algorithms, which

deserve more recognition in modern ecological modelling.
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Table 1: Root-median-square error by: parameter, method and whether maturation occurred

early or late in the lifespan of the simulated species. Asymptotic and linear refer to the form

of the simuated curves. Full, FMU and MIX refer to the complete knowledge, mature animals

only and mixture model, respectively.

L∞ K t0 σ
Early Late Early Late Early Late Early Late

Asymptotic
FULL 0.899 0.901 0.019 0.020 0.060 0.061 0.007 0.007
FMU 1.107 1.547 0.045 0.094 0.377 0.999 0.010 0.014
MIX 0.912 0.987 0.022 0.028 0.076 0.092 0.009 0.011

Linear
FULL 2.013 2.067 0.008 0.008 0.045 0.045 0.007 0.007
FMU 2.689 3.759 0.014 0.026 0.235 0.997 0.009 0.013
MIX 2.090 2.348 0.008 0.010 0.055 0.063 0.008 0.010
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Table 3: Median maximum a posteriori classification rate across iterations. Asymptotic and

linear refer to the form of the simuated curves. FULL, FMU and MIX refer to the complete

knowledge, mature animals only and mixture model, respectively.

L∞,s Ks t0,s None
Early Late Early Late Early Late Early Late

Asymptotic
FULL 0.88 0.87 0.82 0.78 0.73 0.66 0.53 0.53
FMU 0.77 0.64 0.69 0.52 0.48 0.48 0.47 0.48
MIX 0.86 0.85 0.79 0.72 0.60 0.52 0.47 0.48

Linear
FULL 0.87 0.87 0.85 0.84 0.76 0.68 0.54 0.53
FMU 0.79 0.66 0.77 0.64 0.51 0.48 0.48 0.48
MIX 0.85 0.86 0.84 0.82 0.69 0.58 0.47 0.48
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Table 4: Best fitting (lowest AIC) von Bertalanffy parameter estimates by method for two

deepwater lantern shark species Etmopterus spinax and Etmopterus pusillus. Full, FMU and

MIX refer to the complete knowledge, mature animals only and mixture model, respectively.

Standard errors are provided in parentheses.

Species Sex Method lnL∞ lnK ln−t0 lnσ Class rate
E. spinax Female FULL 4.03 (0.04) -2.16 (0.07) 0.7 (0.05) 0.65 (0.03) 0.65

FMU 3.94 (0.17) -2.41 (0.55) 1.89 (0.44) 0.2 (0.04) 0.08
MIX 3.85 (0.03) -1.74 (0.07) 0.42 (0.08) 0.41 (0.03) 0.35

Male FULL 4.03 (0.04) -2.34 (0.06) 0.92 (0.04) 0.44 (0.04) 0.46
FMU 3.82 (0.17) -2.41 (0.55) 1.89 (0.44) 0.2 (0.04) 1.00
MIX 4.43 (0.2) -2.97 (0.27) 1.14 (0.08) 0.41 (0.03) 0.80

E. pusillus Female FULL 3.96 (0.01) -1.92 (0.05) 0.92 (0.06) 0.42 (0.03) 0.33
FMU 4.07 (0.08) -2.65 (0.29) 2.35 (0.23) 0 (0.06) 0.12
MIX 3.94 (0.01) -1.77 (0.04) 0.88 (0.05) -0.19 (0.11) 0.21

Male FULL 3.94 (0.02) -1.92 (0.05) 0.92 (0.06) 0.42 (0.03) 0.84
FMU 4.07 (0.08) -2.77 (0.27) 2.35 (0.23) 0 (0.06) 0.98
MIX 3.94 (0.01) -1.91 (0.03) 0.88 (0.05) 0.34 (0.04) 0.91
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Figure 1: Simulation framework illustration. Asymptotic and linear (weakly asymptotic) refer

to the form of the simulated curves. Rows denote parameter differences between females and

males. Female and male mean curves are shown in black and grey, respectively. Dashed vertical

lines denote early and late maturation ages.
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Figure 2: Example simulations for an early maturing (left column) and late maturing (right

column) population. FMU and MIX refer to the mature animals only and mixture models,

respectively. Full data curves are displayed as solid lines (females black, males grey). Esti-

mated FMU and MIX curves are shown as short-dashed and long-dashed curves, respectively.

Known-sex individuals are shown as circles and unknown-sex individuals as squares. The fill

colour of the points denotes the probability of the individual being female (from the MIX model

for unknowns).
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Figure 3: Boxplots displaying the distribution of the relative error by: parameter, method, and

whether maturation occurred early (white) or late (grey) in the lifespan of the simulated species.

Boxes correspond to the 25th and 75th percentiles, whiskers extend to the closest points to one

and a half times the interquartile range. Full, FMU and MIX refer to the complete knowledge,

mature animals only and mixture model, respectively. Asymptotic and linear refer to the form

of the simuated curves (Figure 1). Y-axis range is restricted to facilitate comparison of most

distributions. 31



●●

●
●

●
●

●

●

●

●

●
●

●

●●

●

●
●

●●

●

●
●

● ●

● ●

●

●
●●●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●
●

●

●●

●

●

●●
●
●

●●

●

●
●

●

●
●

●

●

● ●

●

●●
●

●

●

●
●●

●●

●
●

●
●

●

●●

●
●

●
●

●

●

●

●
●

●
●

●

●

●●●
● ●
●●●●

●
●

●
●●
●

●●

●

●

●

●●

●●
●
●

●
●

●●
●

●
●

●

●

●

●

● ●●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●
●

●
●●
●

●●●
●●
●●
●●●●●●●●

●●
●

● ●● ●

●
●

● ●

●

●

●●

●

●

●
●

●

●
●

●

●

●●

●

●●

●
●●

●

●

●

●
●

●

●●

●

●
●

●

●●●
●●

●

●

●●

●

●
●

●

●
●●

● ●●
●

●●

●
●●

●

●

●
●

●
●

●

● ●●●
●
●

●

●●
●
●

●●
●
●

●●

●
●

●

●

●●

●
●
●

●
●

●

●●
●●

●●●
●
●

●

●

●● ●●

●
●

●

●

●
●

●

●

●

●
●

●
●

●
●●●

●

●

●

● ●●

●

●

●

●●

●
●

●

●
●

●

●●
● ●

●
●
●● ●

●

●

●●
●

●
●

●●●
●●

●
●

●

●

●●

●

●

●
●
● ●

●
●●●
●

●

●

●

●

●

●
●

●●

●
●●

●
●●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●●

●
●●
●

●
●
●
●

●●●
● ●

●
●

●

●●●

●●●●●●

●●

●●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●●●
●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●
●

●

●●
●

●
●

●
●●

●

●●●

●

● ●

●
●●

●●●

●
●●

●
●
●

●

●
●

●● ●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

● ●

●●
●
●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●
●

●

●
●

●
●●
●

●

●●
●●

●●
●

●

●

●
●

●

●

●
●●
●●

●● ●●●
●
●

●

●

●

●
●

●
● ●●

● ●

●●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●
●

●
● ●
●

●●

●
●●

●
● ●

●
●

●
●

●

●
●
●

● ●●

●

●
● ●

●
●

●

●

●

●●
●●

●

●

●
●

●
●

●

●

●●●
● ●

● ●

●
●

●●
●

AA

●●

●●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●●●
●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●
●
●

●●
●

●
●

●
●●

●

●●●

●

● ●

●
●●

●●●

●
●●

●
●

●

●

●
●

●● ●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

● ●

●●
●
●

●

●
●

●
●●

●

●
●

●
●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●
●

●

●
●

●
●●
●

●

●●
●●

●●
●

●

●

●
●

●

●

●
●●
●●

●● ●●●
●
●

●

●

●

●
●

●
● ●●

● ●

●●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●
●

●
● ●
●

●●

●
●●

●
● ●

●
●

●
●

●

●
●
●

● ●●

●

●
● ●

●
●

●

●

●

●●
●●

●

●

●
●

●
●

●

●

●●●
● ●
● ●

●
●

●●
●

CC

●●

●●

●

●

●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●●●
●

●

●●

●●
●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●
●

●

●●

●

●

●●

●

●

●
●

●●

●

● ●

●

●

●

●

●

●
●●

●
●

●

●
●

●
●

●

●
●
●

●●
●

●
●

●
●●

●

●●●

●

● ●

●
●●

●●●

●
●●

●
●
●

●

●
●

●● ●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

● ●

●●
●
●

●

●
●

●
●●

●

●
●

●
●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●
●

●
●

●
●●
●

●

●●
●●

●●
●

●

●

●
●

●

●

●
●●
●●

●● ●●●
●

●

●

●

●

●
●

●
● ●●

● ●

●●●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●
●

●
● ●
●

●●

●
●●

●
● ●

●
●

●
●

●

●
●
●

● ●●

●

●
● ●

●
●

●

●

●

●●
●●

●

●

●
●

●
●

●

●

●●●
● ●
● ●

●
●

●●
●

EE

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●●

●

●●

●

●
●●●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●
●

●

●
●

●

● ● ●●●●

●●●

●

●

●
●

●

●

●

●
●

●
●

●
●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●

●● ●●
●

●●

●

●

●
●

●

● ●

●●
●●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●

●
●

●

●

●
●●●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●
●
●

● ●●● ●

●●●

● ●● ●

●

●
●

●

●
●

●

●

●

●

●

●
●

●●

●
● ● ●

●

●

●
●●

●

●

●

●

●
●●●

●

●

●

●
●●

●

●
● ●

●
●

●●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●
●

●

●
●●
●
●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●

●
●

●●●
●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●
●

●●

●
●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●●●●

●● ●

●

●
● ●●

●

●●●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

● ●
●

●
●

●

●

● ●
●

●

●
●●

●

●

●
●

●

●

●
●● ●

●
●
●●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

● ●● ● ●●

●

●

●

●

●●

●

BB

●

●

●●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●●●●

●● ●

●

●
● ●●

●

●●●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

● ●
●

●
●

●

●

● ●
●

●

●
●●

●

●

●
●

●

●

●
●● ●

●
●
●●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

● ●● ● ●●

●

●

●

●

●●

●

DD

●

●

●●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●●●●

●● ●

●

●
● ●●

●

●●●

●
●

●●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

● ●
●

●
●

●

●

● ●
●

●

●
●●

●

●

●
●

●

●

●
●● ●

●
●
●●

●
●

●

●
●

●

●

●

●●

●
●

●

●

●

● ●● ● ●●

●

●

●

●

●●

●

FF

Etmopterus spinax Etmopterus pusillus
F

U
LL

F
M

U
M

IX

0 3 6 9 0 5 10 15

0

10

20

30

40

50

0

10

20

30

40

50

0

10

20

30

40

50

Age (years)

Le
ng

th
 (

cm
)

0.00 0.25 0.50 0.75 1.00
P(Sex = Female)

Figure 4: Best fitting (lowest BIC) von Bertalanffy fits to age-length data from two deepwater

lantern sharks species Etmopterus spinax and Etmopterus pusillus. Full, FMU and MIX refer

to the complete knowledge, mature animals only and mixture model, respectively. Estimated

curves for females and males are shown as solid and dashed lines, respectively. Known-sex

individuals are shown as circles and unknown-sex individuals as squares. The fill colour of the

triangles in the MIX model case denote the probability of the individual being female. Age

values are jittered for visualization. 32


