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Abstract

Rheumatoid arthritis (RA) is a chronic, progressive inflammatory disease that affects nearly 1 %
of the world’s population. RA is characterized by inflammation of the synovial joints leading to
joint damage which can result in deformities and loss of function. Activation of the transcription
factor NF-kB is pivotal in the pathogenesis of RA, switching on multiple proinflammatory genes.
The zinc finger protein A20 inhibits induction of NF-kB activation by a variety of stimuli
including the proinflammatory cytokine TNF-a in a variety of cell types, dampening the immune
response. The A20-related genes ABIN-1, ABIN-2 and Cezanne have also been shown to
attenuate TNF-a-induced NF-kB activation. The NR4A subfamily of orphan nuclear receptors
comprising of NURR1, NUR77 and NOR-1 are ligand-independent transcription factors and
evidence suggests that they may have a proinflammatory role in the RA synovium. Previous
studies have demonstrated that overexpression of the NR4A subfamily members led to the
induction of A20 gene expression, indicating the potential role of this subfamily in the regulation
of A20 and A20-interacting proteins. This study investigated the potential interaction between
A20 and the NR4A member NURR1 in the context of RA. Bioinformatic analysis of A20,
ABIN-1, ABIN-2 and Cezanne identified the NR4A oinding site (NBRE site) in the promoter
region of all four genes, indicating that A20 and these A20-interacting genes may be induced by
the NR4A subfamily of nuclear receptors. Transient co-transfection experiments and luciferase
assays were carried out on cellular models of inflammatory arthritis (fibroblast-like synoviocytes
and chondrocytes). The results indicated that A20 overexpression attenuates the induction of
NBRE-luciferase activity by endogenous and overexpressed NURRL1 in both synoviocyte and
chondrocyte cells. Results in synoviocytes revealed a dose-dependent inhibitory effect of A20 on
the transcriptional activity of NURR1. Further experiments demonstrate that in synoviocytes,
A20 overexpression led to suppression of NR4A driven transactivation of the interleukin (IL)-8
promoter. In chondrocytes, A20 increased NURR1 induction of the IL-8 promoter. These results
indicate that A20 may play a role in modulating the transcriptional activity of NURR1. Reverse
transcription (RT)-PCR analysis of synoviocytes and chondrocytes stimulated with the
proinflammatory cytokine TNF-a indicated that transcripts from A20, ABIN-1 and ABIN-2 are
differentially expressed, while Cezanne is not affected by TNF-a treatment in these cellular
contexts. gPCR analysis of A20 and ABIN-1 mRNA expression in chondrocytes in response to

TNF-a treatment confirmed the end-point PCR results obtained for this cell type.
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1. Introduction
1.1 Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic, autoimmune disease that results in progressive joint
destruction. It affects approximately 1% of the global population and is more prevalent in
females than males, by a ratio of around 3 to 1 (Deng and Lenardo 2006; Walsh 2002).
Approximately 40,000 people in Ireland suffer with the disease (Arthritis Ireland 2006). The
clinical symptoms are red, swollen, painful joints which become increasingly deformed, leading
to loss of function. RA is characterized by chronic synovial inflammation, resulting in the
destruction of cartilage and bone in the joint (Deng and Lenardo 2006). RA has a profound
impact on the lives of patients. A survey carried out by Arthritis Ireland indicated that 70 % of
patients with RA in Ireland are unable to work outside the home as a result of their illness. Of

those who are employed, 43% are only able to work part-time (Arthritis Ireland 2006).

The etiology of RA remains unknown. RA may be defined as a complex genetic disease in
which certain genes, environmental factors and random events come together, causing the disease
(Lkareskog et al. 2009). Suggestions for environmental triggering factors include viral gene
products, degraded bacterial cell wall peptidoglycans and bacterial or viral antigens (Walsh
2002). Sex hormones may be involved in the development and/or the pathogenesis of RA as it
has been observed that disease activity is often reduced during pregnancy and the highest

incidence of RA in women occurs at the time of menopause (Islander et al. 2010).

In normal joints, the fibrous joint capsule is surrounded by a thin lining of synovial tissue (the
synovium), consisting of fibroblast-like and macrophage-like synoviocytes. These cells produce
synovial fluid that lubricates the joint and provides nutrients to the cartilage (Davis 2003).
However in RA, immune cells such as lymphocytes and macrophages infiltrate the synovium,
leading to inflammation of the joint (Firestein 2003). Increased angiogenesis (growth of new
blood vessels), which enables proliferation of synoviocytes, results in the delicate joint lining
being transformed into a thick invasive tissue, called pannus (Firestein 2003). RA is a systemic
disease and the patient may experience several major extra-articular features such as anaemia,
weight loss, fatigue and fever (Walsh 2002). Rheumatoid nodules develop in approximately
25 % of RA patients, most commonly occurring at pressure points such as extensor surfaces of

the forearm, but also within internal tissues such as in the lungs. Rheumatoid nodules have a



central area of necrosis surrounded by epithelioid and chronic inflammatory cells (Thinda and
Tomlinson 2009). There is an increased rate of mortality in the RA population compared with
the general population. This is mainly due to the development of cardiovascular disease and
accelerated atherosclerosis (driven by inflammation) in many RA patients (Buch and Emery
2002). In addition, patients with RA are at a higher risk of developing lymphoma, which may be

due to longstanding B-cell stimulation (Lkareskog et al. 2009).

Criteria for the diagnosis of RA were originally developed in the 1980s by American
rheumatologists. However, new criteria for the classification of this disease, based on a greater
understanding of Lhe pathogenesis of RA, were published in September 2010 by an American
College of Rheumatology (ACR) and European League Against Rheumatism (EULAR) joint

working group. These criteria are given in Table 1.1 (Aletaha et al. 2010).



Table 1.1 The 2010 American College of Rheumatology/European League Against Rheumatism

classification criteria for rheumatoid arthritis (Aletaha et al. 2010).

Patients should be tested who:
1) have at least 1joint with definite clinical synovitis (swelling) Score
2) with the synovitis not better explained by another disease

Classification criteria for RA (score-based algorithm: add score of categories
A-D; ascore of £6/10 is needed for classification of a patient as having
definite RA)

A. Joint involvement

1 large joint (shoulder, elbow, hip, knee or ankle) 0

2-10 large joints 1

1-3 small joints (with or without involvement of large joints) 2

4-10 small joints (with or without involvement of large joints) 3

>10 joints (at least 1 small joint) 5
B. Serology (at least 1test result is needed for classification)

Negative RF and negative ACPA 0

Low-positive RF or low-positive ACPA 2

High-positive RF or high-positive ACPA 3
C. Acute-phase reactants (at least 1 test result is needed for classification)

Normal CRP and normal ESR 0

Abnormal CRP or abnormal ESR 1
D. Duration of symptoms

<6 weeks 0

>6 weeks 1

RF = rheumatoid factor; ACPA = anti-citrullinated protein antibody; CRP = C-reactive protein;

ESR = erythrocyte sedimentation rate.

Along with the physical symptoms, RA sufferers often experience psychological problems

including depression, due to loss of their role in society and social isolation (Walsh 2002).

RA was first identified as an autoimmune disease when “rheumatoid factor”, a self-reactive IgM
antibody, was identified and characterized in the blood of affected patients (Firestein 2003;
Corper et al. 1997). Rheumatoid factor is present in approximately 80 % of RA patients,
although a person may test positive for this antibody and not develop RA (Firestein 2003). These



antibodies are specific for antigens within connective tissues, but are mainly found in the
synovium (Walsh 2002). Recently, the disease has been divided into subsets on the basis of
either the presence or absence of rheumatoid factor, with different causes and severity.
Increasingly however, subsets based on the presence or absence of antibodies to citrullinated
protein antigen (ACPA), also known as anti-CCP (cyclic citrullinated peptide), have been used to
distinguish subsets of RA (Lkareskog et al. 2009). This antigen is a peptide which contains the
amino acid citrulline (Chou et al. 2007). Patients who are positive for both rheumatoid factor and
ACPA display more prominent joint destruction and extra-articular manifestations than those

who are negative for these factors (Lkareskog et al. 2009).

The first genetic susceptibility genes identified for RA were the human leukocyte antigen (HLA)-
DR genes, which are located in the major histocompatibility complex (MHC). The MHC’s role
is to present antigens to T cells, activating an immune response. Most HLA-DR alleles have a
common amino acid motif, termed the shared epitope, in the p chain of the HLA-DR molecule
(Firestein 2003). The shared epitope consists of the amino acids glutamine-leucine-arginine-
alanine-alanine. The fact that it resides in the MHC molecule indicates that the shared epitope
may play a role in the ability of HLA-DR to bind and present certain peptides, not yet identified,
that may cause the disease (Firestein 2003)." In 2005, another genetic susceptibility gene was
identified, PTPN22. This gene encodes Lyp, a tyrosine phosphatase that regulates signal
transduction from the T-cell receptor. Additional risk alleles for the disease have recently been
identified in regions containing the genes TRAF1 (C5 locus), STAT4 and OLIG3-AIP3
(Lkareskog et al. 2009). The gene that codes for PD-1, a molecule that regulates T cell
homeostasis through apoptosis, has also been found to confer genetic susceptibility to RA.
Aberrant PD-1 activity may lead to the failure of autoreactive T cells to undergo apoptosis
(Lundy et al. 2007). It is thought that a series of variations together make up the genetic risk for

RA (Lkareskog et al. 2009).

Cigarette smoking has been verified as an important environmental risk factor for RA. However,
this is only the case with regard to the rheumatoid factor-positive or ACPA-positive subsets.
Descriptive epidemiological studies have identified silica dust, mineral oils and charcoal as other
potential risk factors. Moderate alcohol consumption is reported to reduce the risk and severity

of the disease (Lkareskog et al. 2009).



The interaction between the cells and molecules involved in the pathogenesis of RA are
illustrated schematically in Figure 1.1. Many cell types infiltrate the inflamed RA joint. Antigen
presenting cells, such as B cells and macrophages, activate T cells, and therefore the immune
response, via the MHC-T cell receptor (TCR) complex. T cell activation requires co-stimulatory
signals mediated via CD28-CD80/86 receptor (Klareskog et al. 2009)s. B cells also produce
autoantibodies which form immune complexes. Macrophages are activated by T cells and
immune complexes to secrete proinflammatory cytokines. These cytokines induce the production
of matrix metalloproteinases (MMPs) which break down joint cartilage. In the presence of
certain cytokines, T cells develop distinct phenotypes such as T-helper 17 (Thl7) which release
interleukin (IL)-17, another proinflammatory cytokine, thus contributing to the inflammatory
response (Klareskog et al. 2009). Both cell surface-bound and soluble forms of receptor activator
of NF-kB ligand (RANKL) are produced by fibroblasts, osteoblasts and T cells in response to
proinflammatory cytokines. RANKL in turn activates receptor activator of NF-kB (RANK)
which is expressed on the surface of osteoclast precursors. Stimulation of RANK leads to the

activation of osteoclasts which resorb bone (Klareskog et al. 2009).
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Fig. 1.1 Schematic illustration of inflammatory responses in the RA joint. The upper section
illustrates joint inflammation and the lower section illustrates joint destruction (Adapted from

Klareskog et al. 2009).



1.1.1 Key cells involved in RA

1.1.1.1 Macrophages

Macrophages are important cells in the inflamed joint of RA patients. They infiltrate the joint and
accumulate in the synovial membrane and at the cartilage-pannus junction. They are antigen-
presenting cells which activate T cells and, therefore, the immune response (Deng and Lenardo
2006). Macrophages themselves are activated by several factors such as interferon (IFN)-y,
produced by a subgroup of T cells known as Type 1 helper T (Thl) cells, and by direct cell-cell
interaction with T cells. Activated macrophages produce a variety of proinflammatory cytokines
and chemokines such as tumour necrosis factor-alpha (TNF-a), interleukin (IL)-1 @ IL-6, IL-8
and macrophage inflammatory protein-la (MIP-la). These cytokines initiate and perpetuate the
inflammatory response in the joint. Macrophages also exhibit a resistance to apoptosis which

may contribute to chronic inflammation (Deng and Lenardo 2006).

1.1.1.2T cells

Helper T cells (Th), also known as CD4+T cells, are one of the principal cell types found in the
inflamed synovium of RA patients. These cells become activated through binding to the
corresponding antigen-MHC complex on antigen presenting cells, initiating the immune
response. This response involves helping B cells to divide and produce antibodies and activating
phagocytes (Deng and Lenardo 2006). Effector cells such as macrophages, which are activated
by Th cells, produce numerous proinflammatory cytokines and chemokines. In addition, Th cells
produce RANKL (receptor activator of nuclear factor kappa B ligand) which causes considerable
destruction of bone in the joint due to the activation of osteoclasts (bone resorbing cells) (Deng
and Lenardo 2006; Buch and Emery 2002). Moreover, studies have demonstrated an imbalance
between Thl and Th2 cell activity within the joints of RA sufferers. The Thl subset is
characterised by the activation of cell-mediated immunity and by the synthesis of the
proinflammatory factors INF-y and IL-2. In contrast, Th2 cells stimulate humoral immunity and

synthesize the anti-inflammatory cytokine IL-4 (Islander et al. 2010).

1.1.1.3 B cells
B cells, as key elements of the immune system, are also involved in the aberrant inflammatory
response in RA. Activated B cells produce the autoantibody rheumatoid factor and antibodies to

citrullinated protein antigen (ACPA), which may be initiators of RA by forming immune



complexes. Immune complexes activate complement in the innate immune response and recruit
inflammatory cells to the joint (Deng and Lenardo 2006). B cells can also act as antigen-
presenting cells, activating T cells (Klareskog et al 2009). In addition, B cells can produce
cytokines and chemokines, promoting angiogenesis, synovial proliferation and the infiltration of

leukocytes into the inflamed joint (Silverman and Carson 2003).

1.1.1.4 Endothelial cells

Endothelial cells (ECs) are crucial cells in the pathogenesis of RA. These cells line the inner
surface of blood vessels, forming the endothelium. It is through the endothelium that leukocytes
and proinflammatory mediators migrate into the synovial tissue of inflamed joints. ECs become
activated by these inflammatory stimuli and are themselves stimulated to produce several
proinflammatory mediators such as cytokines and cellular adhesion molecules (CAMS),
contributing to the inflammatory response (Szekanecz and Koch 2000). Indeed, the first sign of
abnormality within synovial tissues of RA patients is thought to be endothelial cell activation or
injury. This is detected by the increased expression of activation markers such as class Il MHC
antigens, leukocyte adhesion molecules and metalloproteinases by ECs (Wilder et al. 1990).
Angiogenesis within the synovium begins in the very early stages of RA and this facilitates the
growth of invasive pannus tissue. ECs, along with fibroblast-like synoviocytes, produce vascular
endothelial growth factor (VEGF) and angiopoietin-2, which promote angiogenesis and the

proliferation of ECs (Pratt et al. 2009).

Several CAMs mediate the migration of leukocytes through the endothelium, into the inflamed
synovium. These primarily belong to three families of CAMs - the integrin, selectin and
immunoglobulin families (Szekanecz and Koch 2000. There are four steps involved in the
adhesion of leukocytes to endothelial cells and migration through the endothelium. Firstly, E-, P-
and L-selectins and their receptors mediate relatively weak adhesion (termed rolling) between
leukocytes and ECs. This is followed by leukocyte activation through the interaction of
chemokine receptors on leukocytes and proteoglycans on ECs. Firm adhesion then occurs mainly
due to a4Pi integrin-vascular cell adhesion molecule (VCAM)-I and <xP. integrin-intercellular
adhesion molecule (ICAM)-I interactions (Szekanecz and Koch 2000). The final step of
transendothelial migration (known as diapedesis) occurs when the firmly-attached leukocytes
edge across the endothelial surface due to cyclic alteration of integrin receptor avidity and then

pass through the vascular endothelium at an intercellular junction, between the endothelial cells



(Carlos and Harlan 1994). This results in the infiltration of inflammatory cells into the synovium,

leading to joint degradation in RA (Szekanecz and Koch 2000).

E- and P-selectin CAMs are found on ECs and their expression is also induced by inflammatory
cytokines. E-selectin is highly expressed in RA synovial tissue and is responsible for the
adhesion of neutrophils, along with eosinophils and monocytes, to the endothelium. P-selectin
mediates rapid adhesion of neutrophils and monocytes to endothelial cells and is also expressed
on ECs from RA synovial tissue (Szekanecz and Koch 2000). ECs express the integrins Pi and
p3, which allow endothelial adhesion to extracellular matrix (ECM) components, such as various
types of collagen, fibronectin and fibrinogen, and can also mediate cell-cell interactions by
binding to the immunoglobulin family of CAMSs, such as during firm adhesion of leukocytes to
endothelial cells (Szekanecz and Koch 2000). ICAM-1 and VCAM-1 are expressed
constitutively by ECs at basal levels but their expression is distinctly increased by stimulation
with cytokines such as TNFa. ICAM-1 is a ligand for p2integrins, while VCAM-1 is a ligand for
the a4Pi and c™p? integrins. ICAM-1 and VCAM-1 are both expressed by ECs from the inflamed
synovium of RA patients. The endothelial adhesion molecules mentioned here are among the
most important CAMs involved in endothelial-leukocyte adhesion and leukocyte migration into

the RA synovium (Szekanecz and Koch 2000).

1.1.1.5 Fibroblast-like synoviocytes

Fibroblast-like synoviocytes (also called synovial fibroblasts) are crucial cells in the pathology of
RA (Karouzakis et al. 2006). These cells form part of the synovium, the thin lining of the joint,
and produce synovial fluid (Davis 2003). Proliferation of fibroblast-like synoviocytes, which
also exhibit resistance to apoptosis, leads to synovial hyperplasia, a major hallmark of RA
(Muller-Ladner et al. 2000). Synoviocytes exhibit increased expression of transcription factors
and growth factors which are markers of proliferation. Activated synoviocytes in the RA joint
become aggressive and invasive and are likened to metastatic cancer cells (Karouzakis et al.

2006).

Synoviocytes express toll-like receptors (TLRs) on their surface and, along with responding to
pathogenic stimuli, these receptors may also be activated by endogenous ligands, including
hyaluronan fragments and high-mobility-group box 1 protein (HMGB-1), which may be found in

healthy synovial tissue (Pratt et al. 2009). These cells are also activated by numerous
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proinflammatory cytokines such as TNF-a, IL-1 and IL-6 (Karouzakis et al. 2006). As a result,
synoviocytes produce chemokines including granulocyte chemotactic protein (GCP)-2, which are
important for the recruitment and retention of leukocytes in the inflamed synovium (Pratt et al.
2009). They also express cytokines themselves, heightening the inflammatory response.
Synoviocytes secrete various types of matrix metalloproteinases (MMPs), including MMP-1,
MMP-3 and MMP-13, along with cathepsins B, K and L, all of which degrade ECM and cartilage
in the joint. The destructive properties of synoviocytes are partly due to their ability to adhere to
cartilage through the production of adhesion molecules. Synoviocytes, along with T cells,
produce RANKL which regulates the differentiation of osteoclasts. They also secrete high levels
of prostaglandin E2 (PGE2), another important mediator of inflammation (Karouzakis et al.
2006).

The aggressive behaviour of fibroblast-like synoviocytes in the RA synovium may be due, in
part, to dysregulation of the transcription factors activator protein (AP)-1 and nuclear factor-
kappa binding protein (NF-kB), along with the tumour suppressor gene, p53. Chronic
inflammation induces expression of p53, which is a cell-cycle regulatory gene. However,
mutations in this gene have been found in synoviocytes from patients with established RA (Davis
2003). Synoviocytes exhibit resistance to both Fas- and TNF-a-induced apoptosis, the main cell
death pathways. This may be due to the downregulation of apoptotic signaling molecules such as
the tumour suppressor genes pl6 and PTEN (phosphatase and tensin homolog) in RA

synoviocytes (Davis 2003).

As aresult of these features, activated synoviocytes play a central role in the complex network of
cell interactions which maintain chronic inflammation and joint erosion in RA (Karouzakis et al.
2006).

1.1.1.6 Chondrocytes

Cartilage covers the two opposing bone surfaces in the joint and acts as a shock absorber, as well
as allowing the bones to move with minimum friction. Chondrocytes make up the cells within
cartilage, synthesising cartilage matrix components such as collagen and proteoglycans. The
cartilage matrix is an avascular environment and chondrocytes depend on diffusion of nutrients
and metabolites from the cartilage surface or nearby bone. These cells have the ability to survive

due to the intracellular expression of survival factors such as hypoxia-inducible factor (HIF)-la.
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These stimulate the production of glucose transporter proteins (GLUTS), angiogenic factors

including VEGF and genes related to cartilage anabolism (Otero and Goldring 2007).

Proinflammatory cytokines and degraded matrix components activate chondrocytes, inducing the
production of MMPs such as MMP-1, MMP-2 and MMP-13. These proteolytic enzymes break
down collagen and proteoglycans which make up cartilage and these degraded components are
then released into the joint where they maintain and heighten inflammation by contributing to
cellular activation (Rannou et al. 2006). Chondrocytes can produce proinflammatory cytokines
themselves, including TNF-a, IL-1 and IL-6, driving the immune response. In addition, they may
express toll-like receptor-1 (TLR-1), TLR-2 and TLR-4. Toll-like receptors are important in
innate immunity and inflammation. When activated, TLR-2 increases the synthesis of MMPs and
other proinflammatory factors such as nitric oxide and VEGF which drive the inflammatory

responses in the RA joint (Otero and Goldring 2007).

Activated chondrocytes also produce several chemokines including monocyte chemoattractant
protein (MCP)-I, MCP-4, macrophage inflammatory protein (MIP)-la and MIP-1@
Furthermore, chondrocytes can secrete receptors for a number of these chemokines. Many
adhesion molecules which are necessary for the binding and interaction of cells in the inflamed
synovium are also produced in cartilage. These include ICAM-1 and VCAM-1 (Otero and
Goldring 2007).

Some studies have found that antibodies against particular cartilage antigens, for example
collagen type I, may be present in RA joints and these antigen-antibody complexes may initiate

the inflammatory response in this disease (Rannou et al. 2006).

1.1.1.7 Osteoblasts and Osteoclasts

Osteoblasts are the cells responsible for the formation and maintenance of bone architecture.
They synthesize type | collagen and numerous non-collagen proteins including osteocalcin,
osteopontin and bone sialoprotein. These proteins regulate bone turnover and bone mineral
deposition (Neve et al. 2010). Bone remodelling constantly takes place, which is a process
requiring osteoclasts, as well as, osteoblasts. Osteoclasts are cells derived from mononuclear
monocyte/macrophages that co-ordinate with osteoblasts in bone remodelling. Osteoclasts

normally become activated and resorb bone, before undergoing apoptosis (Neve et al 2010).
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Osteoblasts migrate to the site and secrete bone matrix proteins, filling the cavity left by the
osteoclasts. The ECM then becomes mineralized. In RA, there is an increase in bone resorption
by osteoclasts. RANKL binds to its receptor RANK on the surface of osteoclast precursors,
inducing differentiation, activation and survival of osteoclasts (Neve et al. 2010). RANKL is
produced by activated T cells, macrophages, synoviocytes and osteoblasts (Deng and Lenardo
2006; Neve et al. 2010). High levels of RANK, RANKL and mature osteoclasts are found in the
diseased joints of patients with inflammatory arthritis (Deng and Lenardo 2006). Furthermore, it
is thought that TNF-a inhibits the differentiation and function of osteoblast cells in the RA joint
(Neve et al. 2010). Therefore, there is an increase in osteoclast activity and a reduced level of

osteoblast activity contributing to RA.

1.1.2 Key cytokines involved in RA

1.1.2.1 TNF-a

TNF-a is one of the main cytokines found in the joint of RA patients and is a key inflammatory
mediator. It stimulates the activation of NF-kB, a transcription factor which is a crucial driver of
the inflammatory response, inducing the expression of numerous proinflammatory mediators
(Deng and Lenardo 2006). NF-kB induce? TNF-a itself, among many other inflammatory
cytokines (Kast 2005). TNF-a is synthesized by most cells of the body, macrophages being one
of the primary sources. It initiates the signal transduction cascade leading to NF-kB activation
through binding to one of its receptors, TNF-receptor 1 (TNF-R1) or TNF-receptor 2 (TNFR-2).
Studies have shown that injection of TNF-a into the joint can directly induce arthritis and TNF-a
knockout mice are resistant to developing arthritis. This cytokine, along with RANKL,
stimulates the differentiation of osteoclasts which resorb bone, leading to bone erosion. Anti-
TNF-a agents such as Etanercept and Infliximab are now widely used for the treatment of RA
(Deng and Lenardo 2006). However, while 50-70 % of patients treated respond positively, the

remaining patients do not demonstrate any improvement (Atzeni et al. 2009).

1.1.221L-1

IL-1 is another important cytokine involved in chronic inflammation and RA. It is produced
mainly by macrophages (Deng and Lenardo 2006). Different genes encode IL-la and IL-1 3 but
both cytokines bind to the same receptors. IL-1 3has been identified in the serum of patients with

active RA and this cytokine plays a central role in joint damage, activating synovial fibroblasts
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and chondrocytes to express metalloproteinases and PGE.. IL-1 causes a decline in the synthesis
of cartilage components and an increase in bone resorption (Piecyk and Anderson 2001). It also
induces the activation of T cells and enhances infiltration of lymphocytes, neutrophils and

monocytes into inflamed tissues (Deng and Lenardo 2006).

1.1.2.3 IL-6

Elevated levels of IL-6 are found in the serum and synovial fluid of RA patients and this cytokine
plays an important role in both systemic and local RA symptoms. IL-6 is involved in inducing
the acute-phase inflammatory response. Acute-phase proteins stimulate the immune system by
complement activation and cytokine induction (Cronstein 2007). C-reactive protein (CRP) and
serum amyloid A are acute-phase proteins which have been implicated in RA. Other systemic
symptoms involving IL-6 include fever and anaemia due to expression of the iron regulatory
peptide, hepcidin, which interferes with iron absorption. IL-6 contributes to local RA symptoms
through stimulating synoviocyte proliferation and activating endothelial cells, leading to the
production of adhesion molecules and the recruitment of leukocytes to inflamed areas. IL-6 also

leads to the expression of MMPs, resulting in joint destruction (Cronstein 2007).

1.1.2.4 1L-17

IL-17, produced by a subset of T cells named Thl7 cells, is a potent inflammatory cytokine,
inducing a milieu of effector molecules produced by cells in the inflamed joint. These include
TNF-a and IL-1 (with which it can work in synergy), RANKL, VEGF, PGEz2 and MMPs. IL-17
induces the degradation of cartilage by chondrocytes. The cytokines induced by IL-17 can
upregulate the production of IL-17 itself, forming a positive feedback loop that perpetuates the
disease (Lundy et al. 2007).

1.1.2.6 IL-8

IL-8 is a chemokine which is found in higher levels in the synovial fluid and serum of RA
patients. It acts as a neutrophil chemoattractant, drawing polymorphonuclear neutrophils into the
inflamed joint, contributing to pain and inflammation. IL-8 is also a pro-angiogenic factor,
inducing the formation of new blood vessels within the synovium and thus facilitating the further
infiltration of proinflamatory mediators and cells into the joint. IL-8 is produced by
synoviocytes, chondrocytes, synovial stromal cells and subchondral bone marrow stromal cells.

TNF-a and IL-1 both induce the synthesis of IL-8 (Slavic et al. 2005).
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1.2 NF-kB Activation

The transcription factor NF-kB is a key regulator of the inflammatory response in many diseases,
including RA. In total, more than 150 genes have been identified as being induced by activated
NF-kB (Makarov 2001). This transcription factor controls the expression of genes required for
normal cell processes such as cell growth, differentiation and survival. However, uncontrolled
NF-kB activity is associated with chronic inflammation, inducing the transcription of at least 27
different proinflammatory factors including cytokines, chemokines, proteins involved in antigen
presentation and adhesion molecules. These factors form a self-perpetuating cycle of chronic
inflammation and joint destruction (Yamamoto and Gaynor 2001). NF-kB is also responsible for
inducing the expression of antiapoptotic genes such as members of the IAP (inhibitor of
apoptosis) family, TNF-receptor associated factor (TRAF)I and TRAF2 which would contribute
to hyperplasia within the joint (Makarov 2001; Schoemaker et al. 2002).

Five different NF-kB (or Rel family) subunits have been identified: NF-kB 1 (p50 derived from
its inactive precursor, pl05), NF-kB2 (p52 derived from plOO), RelA (p65), RelB and c-Rel.
These subunits form homodimers or heterodimers and are sequestered in the cytoplasm by the
inhibitory protein, IkB. When this inhibitory protein is phosphorylated, the active NF-kB dimer
moves to the nucleus, where it binds to the kB binding sequence, 5’-GGRNYYYCC-3’ (R is an
unspecified purine; Y is an unspecified pyrimidine; N is any nucleotide). Studies have found a
correlation between high levels of the NF-kB 1 subunit in synovial tissue and joints with the

greatest amount of destruction (Srivastava and Ramana 2008).

The activation of NF-kB may be stimulated by numerous extracellular stimuli, including TNF-a,
IL-1, lipopolysaccharide (LPS), platelet-derived growth factor (PDGF), oxidative stress and viral
products (Miagkov et al. 1998). There are three types of NF-kB activation pathways. The first is
activated by proinflammatory cytokines or infection and is termed the classical or canonical
pathway category. The classical signal transduction cascade leads to activation of the IkB kinase
(IKK) complex and degradation of the NF-kB inhibitory protein, IkB. This pathway depends
primarily on the IKK|3 subunit of the IKK complex and principally targets p50:RelA and p50:c-
Rel heterodimers. The classical pathway is necessary for the innate immune response and for
control of apoptosis. The alternative or non-canonical NF-kB pathway plays an important role in

adaptive immunity and in the development of secondary lymphoid organs (Lee et al. 2007). This
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pathway is stimulated by specific members of the TNF cytokine family, such as lymphotoxin P or
CD40 ligand, via activation of the IKKa subunit of the IKK complex. This leads to the
processing of plOO precursor proteins and activation of p52:RelB hetcrodimers. The third type of
pathway is known as atypical since it induces IkB degradation independently of the IKK

complex. It is stimulated by UV which causes damage to DNA (Lee et al. 2007).

The TNF-a-induced NF-kB pathway is perhaps the most widely studied NF-kB activation
pathway, followed by IL-1- and LPS-induced activation (see Fig. 1.2). These are termed classical
NF-kB activation pathways. TNF-a binds to its receptor, TNF receptor 1 (TNF-R1 or p55) or
TNF-R2 (p75) and initiates the signaling cascade. TRAF2 and receptor interacting protein (RIP)-
1 are recruited to the receptor by binding to an adaptor protein, TRADD (TNF-receptor-
associated death domain) (Beyaert et al. 2000). The anti-apoptotic proteins clAPI and clAP2
also bind, forming a receptor-associated complex (Harhaj and Dixit 2011). Fas-associated death
domain (FADD) may be recruited to TRADD, leading to activation of the caspase cascade and
apoptosis (Beyaert et al. 2000). It is thought that baculoviral AP repeat containing (clAP)I and
clAP2 act as direct ubiquitin ligases for the polyubiquitination (the addition of ubiquitin chains)
of RIPI. This leads to recruitment of the transforming growth factor receptor-P-activated kinase
(TAK)1 complex, made up of TAKI and the regulatory subunits TAKI binding protein (TAB)I
and TAB2. Activation of TAKI results in phosphorylation of the IKKp subunit of the IKK
complex and activation of this complex (Harhaj and Dixit 2011). The IKK complex consists of
two catalytic subunits, IKKa and IKKp, and a regulatory subunit, IKKy, also known as NEMO
(NF-kB essential modulator). The NF-kB inhibitory protein, IkB, binds the nuclear localization
sequence of NF-kB, retaining it in the cytoplasm (Hayden and Ghosh 2004). However, when
activated, the IKK complex phosphorylates IkB, leading to its ubiquitination and its subsequent
proteolytic degradation by the proteasome. This leaves NF-kB free to translocate into the nucleus

and induce the expression of target genes (Srivastava and Ramana 2008).

IL-1 and bacterial LPS bind to their receptors, the IL-1 receptor/ILI-RAcP complex and TLR4
respectively, followed by the recruitment of MyD88, an adapter protein, IL-1 receptor associated
kinase (IRAK)I, IRAK4 and TRAF6, forming a receptor-associated complex. TRAF6 is then
activated and polyubiquitinated, resulting in the recruitment of the TAB1-TAB2-TAK1 complex
where the pathway converges with the TNF-a activation pathway (Beyaert et al. 2000; Harhaj
and Dixit 2011).
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Fig.1.2 Schematic representation of activation of the NF-kB pathways by the inflammatory

mediators TNF, IL-1 and LPS (Adapted from Beyaert et al. 2000; Harhaj and Dixit 2011).
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NF-kB is a crucial element in the body’s response to pathogens and stress. It initiates the
transcription of receptors for immune recognition of invaders, antigen presentation proteins,
cytokines, chemokines, receptors for neutrophil adhesion and migration, as well as apoptotic and
cell cycle control genes (Yamamoto and Gaynor 2001). Consequently, inhibition of NF-kB
activation as a means of therapy for inflammatory diseases can lead to serious implications,
primarily infection, however malignancy and congestive heart failure have also been linked to
NF-kB inhibition (Lin et al. 2008). Maintenance of appropriate levels of NF-kB activity is
therefore necessary for normal cellular processes but suppression of prolonged NF-kB activation
or inhibition by certain stimuli may be beneficial in treating autoimmune diseases (Yamamoto

and Gaynor 2001).

1.3 A20

A20 (also known as tumour necrosis factor alpha-induced protein 3, TNFAIP3) was first
discovered as a TNF-a-induced early response gene in primary human umbilical vein endothelial
cells (Dixit et al. 1990). This gene is induced in many cell types and by a wide variety of stimuli,
including TNF-a, IL-1, CD40 (a B cell surface receptor), LPS and the Epstein-Barr virus
oncoprotein latent membrane protein (LMP)I, a member of the TNF receptor superfamily (Fries
et al. 1996). These factors stimulate the activation of NF-kB and it is through this transcription
factor that A20 gene expression is induced (Beyaert et al. 2000). A20 is a cytoplasmic protein
that consists of 790 amino acids and is 90kDa in size. The structure of A20 is shown in Fig. 1.3.
The C-terminal end contains seven zinc fingers, six of which consist of a Cys-X4-Cys-XI 1-Cys-
X2-Cys motif and one consisting of a Cys-X2-Cys-XII-Cys-X2-Cys motif. The N-terminal
region of A20 consists of an ovarian tumour (OTU) domain (Beyaert et al 2000; Heyninck and
Beyaert 2005). It is thought that A20 may be an important protein in several cell types. A20

expression has essential roles in the function of the lymphoid system and may be involved in the
development of skin epidermis and hair follicles, although not in the maintenance of normal skin

architecture (Beyaert et al. 2000).
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Several studies have shown that A20 is a potent inhibitor of NF-kB activation, through a negative
feedback mechanism, in some cell types. NF-kB induces the expression of A20, which then has
the ability to suppress the activation of this transcription factor (Jaattela et al. 1996). Studies
suggest that A20 may down-regulate the activation of NF-kB by diverse stimuli (Song et al.
1996). Inhibition of NF-kB often renders cells sensitive to TNF-a-induced apoptosis. However,
A20 has also been shown to prevent TNF-a-mediated apoptosis in certain cell types, such as
primary endothelial cells (Zetoune et al. 2001). A20-deficient mice, generated by gene targeting,
developed severe multi-organ inflammation and died prematurely. Severe inflammation and
tissue damage were present in the liver, kidneys, intestines, joints and bone marrow of these 3- to
6-week old mice. Thickened epidermal and dermal layers of skin were observed. In addition,
higher numbers of activated lymphocytes, granulocytes and macrophages were found in the
spleens and livers of these mice. Furthermore, mice injected with low doses of TNF-a died
within 2 hours (Lee et al. 2000). Cells without A20 cannot regulate TNF-a-induced NF-kB
activation and are more susceptible to TNF-a-induced apoptosis (Lee et al. 2000). It has been
suggested that A20 plays a protective role since its expression by endothelial cells enhances the
survival of transplanted organs and prevents the development of transplant arteriosclerosis
(Hancock et al. 1998).

N terminal C termi.nal
domain domain
A20(ZF-) A20(ZF+) 775
my
OTU Ubiquitin Ubiquitin
protease ligase

Fig. 1.3 Structure of A20 showing the N terminal ovarian tumour (OTU) domain with ubiquitin
protease activity and the C terminal zinc finger domain with ubiquitin ligase activity for the

regulation of NF-kB activation (adapted from Beyaert et al. 2000; Evans 2005).
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Constitutive expression of A20 has been observed in thymocytes, resting peripheral T cells, the
endothelial cell line EaHy and in the differentiated monocyte cell line THP-1. In most cells
however, A20 expression is induced, that is, only expressed in stimulated cells (Beyaert et al.

2000; Ning and Pagano 2010).

Studies have shown that A20 can interact with different components within NF-kB activation
pathways (such as TRAF2 and IKKYy) and also with proteins termed A20-binding inhibitor of NF-
kB activation (ABIN)-I and ABIN-2. A study by Song et al in 1996 demonstrated that A20
interacts with the TRAF1/TRAF2 complex which associates with the cytoplasmic domain of
TNF receptors. This interaction is through binding of the N-terminal region of A20 with the C-
terminal TRAF domain of TRAF1 and TRAF2. They also demonstrated that inhibition of NF-kB
is mediated through the C-terminal zinc finger domain of A20. They proposed that A20 consists
of two functionally distinct domains; the N-terminal domain which functions to recruit A20 to the
TRAF1/TRAF2 complex and the C-terminal domain which displays the NF-kB inhibitory
activity (Song et al. 1996). The N-terminal region of A20 has also been shown to bind to
TRAF6, which is involved in both IL-1 and LPS activation of NF-kB (Heyninck and Beyaert
1999). The C-terminal zinc finger domain of A20 has been shown to bind to IKKy which is
thought to transfer the upstream activator signal to the catalytic subunits, IKKa and IKKp. This
may be significant in the inhibitory effects of A20 on NF-kB activation by halting activation of
the IKK complex, thereby terminating the NF-kB activation pathway (Beyaert et al. 2000).
However, while a study by Zetoune et al. (2001) also demonstrated that A20 binds and interacts
with the IKK complex, in their experiments they found that A20 bound to the IKKa component
rather than IKKYy, but actually inhibits the IKKp component of the complex, thus disabling the
NF-kB pathway. They suggested that the studies showing A20 bound to IKKy were, in fact,
showing A20 hybridized to endogenous IKKa, which was still bound to IKKy (Zetoune et al.
2001).

Recently, studies have illustrated that A20 exhibits dual ubiquitin-editing functions in the
inhibition of NF-kB. Ubiquitin is a small conserved polypeptide that can be attached covalently
to a lysine residue of the target protein by ubiquitin ligase. Several ubiquitin molecules may
attach to the initial ubiquitin on the substrate, forming polyubiquitin chains (Heyninck and
Beyaert 2005). Ubiquitin contains seven lysine residues and polyubiquitin chains are primarily

linked through Lys48 or Lys63  Lys48linked polyubiquitination (sometimes termed K48
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polyubiquitination) usually targets proteins for degradation by proteasomal enzymes. Whereas
Lys63-linked polyubiquitination (sometimes termed K& polyubiquitination) regulates protein
kinase activity and protein trafficking.  De-ubiquitinating enzymes, which are cysteine
hydrolases, have the ability to reverse ubiquitination by cleaving polyubiquitin chains.
Ubiquitination plays an integral part of the TNF-a-induced NF-kB activation pathway. The NF-
KB-inhibitory protein, IkB, is targeted for degradation by the ligation of ubiquitin, enabling the
active NF-kB to translocate to the nucleus. In addition, when the TNF-a receptor is activated,
TNF-R1, TRAF2, RIPI, IKKA, and IKKp are also ubiquitinated (Heyninck and Beyaert 2005). A
ubiquitinated form of RIPI is recruited to the TNF-R1 complex following activation by TNF-a.
A20 has been shown to modify the ubiquitination profile of RIPI, as shown in Fig. 1.4. This
occurs in two steps: firstly, de-ubiquitation of its Lys -linked ubiquitin chains mediated by
A20’s N-terminal domain, followed by Lys48-linked polyubiquitination of RIP, mediated by
A20’s C-terminal domain. This marks RIPI for degradation, preventing IKK activation and
halting the NF-kB activation cascade (Heyninck and Beyaert 2005; Harhaj and Dixit 2011). A20
has also been shown to de-ubiquitinate TRAF6 in LPS-induced NF-kB activation in the same
manner in which it acts on RIPI, in addition to de-ubiquitinating IKKy, suggesting that the
ubiquitin-modifying properties of A20 may act at different levels within the NF-kB activation

pathway (Willaert et al. 2006; Harhaj and Dixit 2011).
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Fig 1.4 Schematic representation of the ubiquitin-editing functions of A20 which alters RIPI.

Recent studies have revealed that A20 is regulated by Taxi-binding protein 1 (TAX1BP1). This
protein is necessary for A20 de-ubiquitination of RIPI and inhibition of TNF-a-, IL-1- and LPS-
induced activation of NF-kB. In addition, it has been discovered that A20 forms a complex with
TAX1BP1 (Shembade et al. 2007). This complex, termed the A20 ubiquitin-editing complex,
also contains the proteins ring finger protein (RNF)I 1 and the E3 ligase Itch, both of which have
been shown to be essential for A20 to down-regulate NF-kB signaling pathways in mouse
fibroblasts (Shembade et al. 2009).

proteins including ABIN-1 (Harhaj and Dixit 2011). It is thought that TAX1BP1 may act as an

This ubiquitin-editing complex may also contain other



adaptor protein, bringing A20 into contact with RIPI and TRAF6 (Harhaj and Dixit 2011).
However, the function of TAXIBP1 in aiding A20 in the inhibition of inflammation may be
tissue specific since TAXIBP 1-knocked down mice only developed inflammatory cardiac
valvulitis (lha et al. 2008) compared to AZ20-deficient mice which suffered widespread

inflammation (Lee et al. 2000).

TNF-a has been shown to induce apoptosis by binding to TNFR1, followed by recruitment of the
death domain signaling adapters TRADD and RIPI to the TNF receptor. TRADD and RIPI then
associate with TRAF2 and FADD (FAS-associated death domain protein), leading to the
activation of caspase 8 and apoptosis. However, in lurkat T cells, it has been found that A20
inhibits TNF-a-induced apoptosis by preventing the recruitment of TRADD and RIPI to TNFR1,
thereby blocking the TNF-a-induced apoptosis signaling pathway. In addition, this would impair
the NF-kB activation pathway since these molecules form an essential part of the NF-kB
signaling cascade also, although this has not been proven (He and Ting 2002). This could
explain how A20 has the ability to inhibit NF-kB activation, whilst not rendering the cell

susceptible to TNF-a-induced apoptosis.

Furthermore, it has been observed that overexpression of the IKK-activating kinase, NF-kB-
inducing kinase (NIK), overrides the inhibition properties of A20, indicating that A20 may
restrict the accessibility of the IKK complex to its activating kinases. Studies involving the
overexpression of A20 have also shown that it can inhibit the phosphorylation of IkB in response
to TNF-a (Beyaert et al. 2000). These may represent additional mechanisms by which A20
exerts its inhibitory functions. A20 is also able to inhibit the activation of proinflammatory
transcription factors activator protein (AP)-I, interferon regulatory factor (IRF)3 and IRF7
(O’Reilly and Moynagh 2003; Ning and Pagano 2010). A20 has been shown to regulate IRF7

ubiquitination and, therefore, its activation (Ning and Pagano 2010).

Genome-wide association studies of RA have led to a hypothesis that polymorphisms in the A20
gene and in the 623 chromosome region may be associated with an increased risk of developing
the disease. Indeed, initial studies appear to be consistent with this hypothesis (Dieguez-
Gonzalez et al. 2009). In addition, polymorphisms in A20 and the 6q23 region have previously
been demonstrated to be associated with systemic lupus erythematosus. These studies indicate

that A20 has arole in autoimmune diseases and may be critical in regulating such diseases, since
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a defective A20 gene may not have the ability to suppress the activation of NF-kB and API,

leading to uncontrolled inflammatory signals (Dieguez-Gonzalez et al. 2009).

1.4 ABIN-1

Yeast-two hybrid screening with A20 demonstrated binding of the C terminal domain of A20
with two novel proteins, termed A20-binding inhibitor of NF-kB activation (ABIN)-I, also
known as human immunodeficiency virus Nef-associated factor 1 (Naf-1), and ABIN-2. Upon
overexpression, these proteins have the ability to inhibit the activation of NF-kB and it is thought
that the inhibitory effects of A20 may be mediated by these proteins. ABIN-1 can down-regulate
NF-kB activation in response to TNF-a and IL-1 (Heyninck et al. 2003). ABIN-1 has been
shown to be a TNF-a responsive gene in primary synoviocytes and elevated levels of ABIN-1

have been found in tissue from patients with inflammatory arthritis (Gallagher et al. 2003).

The ABIN-1 gene has two alternatively spliced isoforms, Naf-la and Naf-1P, differing only in
their C-terminal amino acids. Naf-la is approximately 2800 nucleotides in length with an open
reading frame consisting of 1941 nucleotides, which encodes a 72kDa protein. Naf-I|3 is
approximately 2600 base pairs (bp) long and has an open reading frame of 1781 bp, encoding a
68kDa protein. Both proteins contain a leucine zipper structure consisting of an amphipathic
helix with four consecutive repeats of a leucine, followed by six random amino acid residues

(Beyaert et al. 2000).

A study showing that A20 carries out de-ubiquitination of IKKy as a means of inhibiting NF-kB,
also provided evidence that ABIN-1 and A20 co-operate at the level of IKKy to hinder the
activation of this transcription factor. They demonstrated that there was a reduction in A20’s
ability to de-ubiquitinate IKKy when the ABIN-1 gene was silenced. Conversely, there was a
reduction in ABIN-1’s ability to modulate NF-kB when A20 was silenced. They proposed that
ABIN-1 functionally connects A20 and IKKy, where A20 can then alter the ubiquitination profile
of IKKy, negatively regulating the activation of NF-kB (Mauro et al. 2006; Harhaj and Dixit
2011). Further evidence in support of this hypothesis was provided when a ubiquitin-binding
domain (UBD) was identified within ABIN-1 with which it can then interact with IKKy. In

addition, TAX1BP1 also contains a UBD and was shown to recruit A20 to RIPI, where it can

24



carry out its ubiquitin-editing functions (Verstrepen et al. 2009). Figure 1.5A illustrates this
model of NF-kB inhibition. ABIN-1 may form part of the A20 ubiquitin-editing complex, along
with TAX1BP1 and others (Harhaj and Dixit 2011). There may be some functional redundancy
exhibited by these A20-adaptor proteins and their functions may be cell-specific (Verstrepen et
al. 2009).

ABIN-1 and ABIN-2 have been shown to contain a short homologous region termed the ABIN
homology domain 2 (AHD2) in the C-terminal domain. This region is also present in the
regulatory subunit IKKy. Furthermore, the UBD of ABIN-1 was found to overlap with this
AHD?2 region. Studies on AHD2 in ABIN-1 have suggested that ABIN-1 could compete with
IKKy for an upstream activator or compete with another ubiquitin-binding protein for binding to
polyubiquitinated IKKy, thereby disrupting the NF-kB activation cascade (Fig. 1.5B). Site-
specific mutagenesis of the AHD2 domain illustrated its importance in the inhibition of NF-kB,
since without this region, ABIN-1 could no longer impede its activation. However, attenuation of
NF-kB by A20 was unaffected by the mutagenesis of ABIN-1, indicating that A20 may not
require binding to ABIN-1 for its inhibiting function. This may be due to functional redundancy
of ABIN-1 with other proteins such as ABIN-2 (Heyninck et al. 2003; Verstrepen et al. 2009).
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Fig 1.5 Proposed models for the mechanism by which ABIN-1 inhibits NF-kB activation.

(A) Adaptor model: ABIN-1 and TAX1BP1 recruit A20 to K63polyubiquitinated RIPI or IKKy
where A20 can alter the ubiquitin profile of these proteins. (B) Competition model: ABIN-1
competes with another ubiquitin-binding protein for binding to IKKy, preventing its activation

(Adapted from Verstrepen et al. 2009).
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It has been demonstrated that A20 inhibits the immune response to viral infection. A recent study
has revealed that ABIN-1 forms a complex with A20 and TAX1BP1 via its UBD to inhibit
antiviral signaling. Recruitment of ABIN-1 was necessary for inhibition of IFN-P by A20 and

TAXIBP1 in response to viral infection (Gao et al. 2011).

Overexpression of ABIN-1 in epidermal growth factor (EGF) receptor overexpressing tumour
cell lines inhibits constitutive and EGF-induced NF-kB activation, resulting in a decrease in
tumour cell proliferation (Verstrepen et al. 2009). Furthermore, studies have shown that ABIN-1
can bind to the plOO and pl05 NF-kB subunits. However, the significance of this binding has not
yet been established (Verstrepen et al. 2009).

ABIN-1, in addition to A20, has anti-apoptotic properties. ABIN-1 deficient mice die during
embryogenesis due to fetal liver apoptosis and anemia. The fact that A20 deficient mice do not
appear to have any defects during embryonic development, but die after birth with cachexia and
severe inflammation (Lee et al. 2000), reveals an important A20-independent role of ABIN-1
during fetal development. ABIN-1 suppresses TNF-a-induced apoptosis by preventing the

recruitment of caspase-8 to FADD and halting the signaling cascade (Verstrepen et al. 2009).

1.5 ABIN-2

ABIN-2 (also known as FLIP1 or TNIP2, TNFAIP3-interacting protein 2) is a cytosolic protein
which has been found to inhibit TNF-a-, IL-1- and tetradecanoylphorbol acetate (TPA)-induced
NF-kB activation. Murine ABIN-2 mRNA is ubiquitously expressed in all tissues, with
maximum expression in the kidneys. This mMRNA translates into a 50kDa protein, displaying

76 % homology with the human ABIN-2 protein. Complete murine ABIN-2 cDNA consists of
1967 nucleotides, with an open reading frame of 1290 bp (Van Huffel et al. 2001). The human
ABIN-2 gene is found on chromosome 4pl6.3 and has six exons (Verstrepen et al. 2009). The
human protein is made up of 429 amino acids and has a molecular weight of 47 kDa (Liu et al.
2003). Chien et al. (2003) discovered that, in both yeast and mammalian cells, ABIN-2 has the
ability to enter the nucleus and may act as a transcriptional co-activator. In mammalian cells, this
transactivating activity is only carried out by the C-terminal fragment. The N-terminal region of

ABIN-2 acts as a regulatory domain, retaining it in the cytoplasm (Chein et al. 2003). A study by
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Papoutsopoulou et al. (2006) demonstrated that ABIN-2 is necessary for the positive regulation
of the Erk MAP kinase pathway in the innate immune response by stabilizing the TPL-2 MEK

kinase, which activates this pathway.

Liu et al. (2004) proposed a mechanism by which ABIN-2 regulates NF-kB activation and
apoptosis, similar to that described for ABIN-1 (see Fig. 1.6). In a previous study, they
demonstrated that ABIN-2 binds to IKKA, specifically, and forms a stable complex. They went
on to show that ABIN-2 and RIPI share a similar region of approximately 50 amino acids and
termed this region the core motif for binding (CMB). RIPI is a vital element involved in the
TNF-a-induced NF-kB activation cascade, as described previously, and it has been shown that
RIPI associates with IKKA, in RIPI-induced NF-kB activation. In the absence of ABIN-2, RIPI
binds to IKKA,, activating NF-kB which induces the expression of anti-apoptotic genes. Liu et al.
(2004) demonstrated that ABIN-2 competes with RIPI for binding with IKKA,, thus preventing
activation of the IKK complex which is required for the phosphorylation of IkB, leading to
termination of the NF-kB pathway. Furthermore, they illustrated that the cells in which ABIN-2
down-regulated NF-kB underwent apoptosis in response to RIPI (Liu et al. 2004).
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Fig. 1.6 Proposed mechanism for ABIN-2 inhibition of NF-kB, which then sensitizes the cell to
RIPI-induced apoptosis (Adapted from Liu et al. 2004).

ABIN-2 deficient mice do not exhibit any differences in NF-kB signaling, but ABIN-1 may be
compensating for the loss of ABIN-2 activity (Verstrepen et al. 2009).

An additional A20-binding protein with the capacity to inhibit NF-kB was discovered in 2007
and was termed ABIN-3 (also known as LIND, Listeria INDuced, since it was found to be
induced by Listeria infection in human mononuclear phagocytes). ABIN-3 shares sequence
homology to ABIN-1 and ABIN-2, although it relates more closely to ABIN-1. Experiments
demonstrated that ABIN-3 attenuates the LPS-induced NF-kB activation pathway at a level
downstream of TRAF6 but upstream of IKKp. Furthermore, it was also established that ABEN-3
does not compete with ABIN-1 or ABIN-2 for A20-binding (Wullaert et al. 2007).
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1.6 Cezanne

Cezanne (cellular zinc finger anti-NF-KB) was first discovered in 2004 and exhibits sequence
similarity with the N-terminal region of A20. The structure of Cezanne is given in Fig. 1.7
below. Amino acids 160-416 of Cezanne display 39 % homology with A20. This region was
termed TRAFB (TRAF binding), since it corresponds to the TRAF binding domain of A20. A
putative nuclear localization signal is located within amino acids 497-513. Cezanne also has one
A20-like zinc finger in the C-terminal end. Sequence alignment of A20 and Cezanne identified

conserved hydrophobic and basic residues which indicate that both have similar structural

features (Evans et al. 2001).
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Fig. 1.7 Structures of A20 and Cezanne depicting TRAFB domains, ZF A20 (A20-like zinc

finger) and NUC (putative nuclear localization sequence) (adapted from Evans et al. 2001).

Cezanne transcripts are expressed in a wide variety of murine and human tissues, particularly in
the kidney, heart and fetal liver of both species (Evans et al. 2001). A study in 2008
demonstrated that in human embryonic kidney epithelial (HEK 293) cells, Cezanne is induced in
response to TNF-a, suggesting that Cezanne may be involved in regulating cellular responses to

inflammatory signals (Enesa et al. 2008).

Studies using green fluorescent protein (GFP) fusion proteins in live cells revealed that A20 was
positioned in the cytoplasm of HEK 293 and fibroblast (NIH3T3) cell lines. In endothelial
(EaHy) cells, A20 was observed in the nucleus in addition to the cytoplasm. Cezanne was found

scattered throughout the cytoplasm of epithelial and fibroblast cells and not detected within the
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nucleus of these cells. In a proportion of cases, Cezanne was detected in the nucleus of
endothelial cells, suggesting that the putative nuclear localization sequence within Cezanne is

functional but under stringent control (Evans et al. 2001).

The similarity of Cezanne to A20 prompted the analysis of Cezanne’s ability to inhibit NF-kB
activation. This was tested in HEK 293 and EaHy cells. The EaHy cells produce low constant
levels of A20 and Cezanne, whereas in HEK 293 cells, these proteins are induced. In both cell
types, Cezanne was able to down-regulate TNF-a-induced NF-kB activation in a dose-dependant
manner. However, compared to A20, Cezanne was less efficient in inhibiting this transcription
factor. Expression of the C-terminal, zinc-finger domain of Cezanne, unlike A20, was unable to
inhibit NF-kB on its own. The full length protein was required. IL-la-induced NF-kB activation
was also shown to be down-regulated by Cezanne, with similar efficiency as the inhibition of
TNF-a stimulated NF-kB activation (Evans et al. 2001).

A more recent study has demonstrated that Cezanne inhibits TNF-a-induced NF-kB activation at
the level of the IKK complex or upstream from it. This study also found that Cezanne possesses
de-ubiquitinating activity and that this activity is necessary for the suppression of NF-kB (Enesa
et al. 2008). Furthermore, it has been demonstrated that Cezanne is recruited to the TNFR and it
suppresses RIPI ubiquitination, thus down-regulating activation of the IKK complex and

inhibiting NF-kB (Enesa et al. 2008; Harhaj and Dixit 2011).

A20 has been shown to interact with a TRAF1/TRAF2 complex and with TRAF6 in NF-kB
activation pathways induced by TNF-a and IL-1, respectively. Tests were carried out on
Cezanne to determine whether it could bind to TRAF6, since it contains the same TRAF binding
domain (TRAFB) as A20. Indeed, it was found that Cezanne co-immunoprecipitated with
TRAF6 in HEK 293 cells and was not immunoprecipitated without TRAF6. This indicates that
Cezanne binds specifically to TRAF6, although this binding is weaker in comparison to A20. It
is thought that binding to TRAF molecules recruits A20 and Cezanne to the NF-kB signaling
cascade where they can inhibit the process. This would explain why the C-terminal domains of
A20 and Cezanne, without TRAFB, is not sufficient to control NF-kB activation (Evans et al.
2001; Song et al. 1996).
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It has recently been found that the cell survival gene, DJ-1 (also known as Park7), which plays a
role in chemotherapy resistance and is associated with poor prognosis, binds to Cezanne and
inhibits its de-ubiquitinating activity, leading to increased NF-kB activation and cell survival.
This indicates that Cezanne may be an important regulator of tumour progression and metastasis
(McNally et al. 2011). It may be that DJ-1 plays a similar role in suppressing the activity of
Cezanne in RA, thus leading to enhanced NF-kB activation and the expression of

proinflammatory and anti-apoptotic genes.

A20, ABIN-1, ABIN-2 and Cezanne have all been shown to inhibit the activation of NF-kB in
response to inflammatory stimuli (summarised in Fig. 1.8) and thus are potential targets as
therapeutic agents in the resolution of RA. Indeed, adenovirus expression of ABIN-1 in the lungs
of mice with allergen-induced asthma led to a substantial decrease in allergen-induced NF-kB
activation (Verstepen et al. 2009). Furthermore, lentiviral-mediated overexpression of A20 in
endothelial progenitor cells (EPCs) led to the generation of'bells that are less sensitive to
inflammatory stimuli (Liu et al. 2010). Therefore, a means to regulate these proteins at a cellular

level may prove beneficial in the control of inflammatory diseases such as RA.
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Fig. 1.8 Proposed mechanisms by which A20, ABIN-1, ABIN-2 and Cezanne inhibit TNF-a-
induced NF-kB activation (Beyaert et al. 2000; Enesa et al. 2008; Evans et al. 2001; Harhaj and
Dixit 2011; Heyninck and Beyaert 2005; Liu et al. 2004; Mauro et al. 2006; Song et al. 1996;
Verstrepen et al. 2009; Zetoune et al. 2001).
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1.7 NR4A subfamily of nuclear orphan receptors

The nuclear receptor-4A (NR4A) or nerve growth factor-induced B factor (NGFI-B) subfamily is
part of a large superfamily of nuclear receptors which consists of structurally related, ligand-
activated transcription factors, involved in many biological processes. Lipophyllic hormones can
cross the cell membrane and activate these nuclear receptors to regulate gene expression (Ohkura
et al. 1998). There are three classes of nuclear receptors: a) the classic group of steroid- and
thyroid-hormone receptors which includes glucocorticoid receptors; b) the orphan nuclear
receptors, including the NR4A subfamily, for which ligands have not yet been identified;

and c) the adopted orphan receptors for which ligands have recently been found (Wang and Wan
2008). The NR4A subfamily includes three members, NR4Al1 (NUR77), NR4A2 (nuclear
receptor related 1, NURRI) and NR4A3 (neuron derived orphan receptor-1, NOR-1). These
receptors exhibit extraordinary evolutionary conservation, having counterparts in Caenorhabditis

elegans and Drosophila, illustrating their biological significance (Ohkura et al. 1998).

The structure of NR4A nuclear receptors is shown in Fig. 1.9. It consists of an N-terminal
transactivation domain, containing activation function-1 (AF-1) which binds co-activators, a
central DNA-binding domain (DBD) and a C-terminal domain containing activation function-2
(AF-2). The DBD is highly conserved among the subfamily members. It consists of two zinc
fingers that bind as a monomer to the DNA consensus sequence, AAAGGTCA, known as the
NGFT-B responsive element (NBRE) (Bonta et al. 2007). The DBDs within NURRI, NUR77
and NOR-1 are over 90 % homologous and are more closely related to each other than to other
nuclear receptors (Ohkura el al. 1998). The NR4A subfamily may also form homodimers or
heterodimers and bind to the palindromic  Nur-responsive element (NurRE),
TGATATTTXfIAAAGTCCA. In addition, both NURRI and NUR77 can form heterodimers with
the 9-cis retinoic acid receptor (RXR) and bind to a motif termed DR5, a retinoic acid response
element made up of direct repeats separated by five nucleotides. Heterodimerization of RXR
with NURRI or NUR77 leads to efficient activation in response to RXR ligands (Perlmann and
Jansson 1995; Maxwell and Muscat 2005). The ligand-binding domain (LBD) of NR4A
members differs from other nuclear receptors in that it contains hydrophobic and aromatic amino
acid side chains, meaning these receptors may not have functional ligands. Instead, their primary
mode of regulation may be via expression regulation, post-translational modification,

transrepression or co-activator and co-repressor recruitment (Bonta et al. 2007). The C-terminal
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domain of the NR4A receptors shares 20-30 % homology with the LBD of nuclear receptors with
known ligands and therefore contain the structural features of ligand-activated transcription
factors and are classed as such (Ohkura et al. 1998). Activators of NR4A members have been
identified which augment their activity: 6-mercaptopurine which is a metabolite of azathioprine,
an immunosuppressive drug; prostaglandin A2 (PGA2); and benzimidazole derivatives (Bonta el
al. 2007). It is thought that the agonist 6-mercaptopurine may activate NURRI through its AF-1

domain, suggesting that it acts as a co-activator of this nuclear receptor (Ordentlich et al 2003).

NGFI-B Response Element (NBRE)

Fig 1.9 The structure of NR4A nuclear receptors binding to the NBRE sequence as a monomer.
DBD: DNA binding domain; LBD: ligand binding domain; AF-1: activation function-1; AF-2:

activation function-2 (Bonta et al. 2007).

NR4A receptors, unlike most nuclear receptors, are products of immediate early genes and are
differentially induced by a wide variety of stimuli, including hormones, growth factors,
membrane depolarisation, magnetic fields and apoptotic and inflammatory signals (Pei et al.
2005; Maxwell and Muscat 2005). NR4A subfamily members have roles in regulating the
differentiation, proliferation, apoptosis and survival of many types of cells (Wang and Wan

2008). NUR77 was the first member of this subfamily to be identified and was found to be an
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immediate response gene expressed by rat pheochromocytoma PC 12 cells when stimulated by
nerve growth factors. The other members, NURRI and NOR-1, were subsequently identified
(Wang and Wan 2008).

1.7.1 Functions of NR4A receptors

Several studies have been carried out to elucidate the importance of the NR4A subfamily of
orphan nuclear receptors. The NR4A receptors were found to be ubiquitously expressed in adult
rat tissue, with the majority of expression in the central nervous system. During rat fetal
development, the three subfamily members were found to be expressed in the brain at different
stages. NURRI is more highly expressed at the earlier stages, while NOR-1 expression is
strongest at later stages of fetal development. The highest levels of NUR77 are in the adult rat
brain. NURRI is thought to be essential for the differentiation of midbrain dopaminergic neurons
which are involved in the control of involuntary movement (Ohkura et al. 1998). Furthermore,
mutations in the NURRI gene have been associated with the development of Parkinson’s disease
(Le et al. 2003). NOR-1 is also thought to play arole in the development of neurons in the foetus

(Okhura et al. 1998).

Studies indicate that the NR4A subfamily is involved in the apoptosis of self-reactive T cells, a
process known as clonal deletion or negative selection. Expression of a dominant negative
NUR77 mutant in T cell hybridoma cells suppresses T cell receptor-mediated apoptosis and
prevents antigen-induced apoptosis of T cells in vivo. In addition, a lesser number of T cells
(thymocytes and peripheral T cells) are present in transgenic mice overexpressing NUR77
(Ohkura et al. 1998).

Studies have illustrated that NR4A subfamily members may be important regulators of lipid and
glucose metabolism. NOR-1, in particular, is induced in high levels in skeletal muscle during
recovery from endurance exercise (Maxwell and Muscat 2005). Knock-down of NUR77 in
C2C12 cells (a mouse myoblast cell line) led to a reduction in the expression of genes associated
with energy expenditure and lipid homeostasis. Induction of adipocyte differentiation results in
the upregulation of the NR4A subfamily members (Maxwell and Muscat 2005). Furthermore, a

study in 2009 found that common polymorphisms within the NOR-1 locus determine insulin
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secretion by (3-cells suggesting that NOR-1 may be involved in the development of diabetes

(Weyrich et al. 2009).

NR4A nuclear receptors are important in the regulation of genes involved in steroidogenesis,
including POMC (proopiomelanocortin) and hydroxylase enzymes (Maxwell and Muscat 2005;
Murphy and Conneely 1997).

Transcripts made up of NOR-1 fused with EWS (Ewing’s sarcoma gene) resulting from a
chromosomal translocation have been identified in myxoid chondrosarcomas (Ohkura et al.
1998). According to Zhang (2007), the location of NUR77 within the cell controls its effects on
cancer cells. NUR77 acts as an oncogenic survival factor, inducing the expression of genes
promoting proliferation, when present in the nucleus of the cell. When NUR77 migrates from the
nucleus to the mitochondria however, it triggers the release of cytochrome c¢ and apoptosis. It
was found that the synthetic retinoid 6-[3-(I-adamantyl)-4-hydroxyphenyl]-2-naphthalene
carboxylic acid (AHPN/CD437), which induces apoptosis in human cancer cells, acts via
NUR77. AHPN promotes the translocation of NUR77 to the mitochondria, a process thought to
be controlled by the RXR. This demonstrates that NUR77 expression is vital for the induction of
apoptosis by AHPN (Zhang 2007).

1.7.2 Evidence of a proinflammatory role for NR4A receptors

Studies have found that the NR4A nuclear orphan receptors play a role in inflammation.
McEvoy et al. (2002) demonstrated that increased levels of NURRI are found in the synovial
lining layer, subsynovial synoviocytes and vascular endothelial cells of RA synovial tissue
compared to normal synovial tissue. This study also found that NURRI expression in RA
synovial cells is induced by the inflammatory mediators, TNF-a, IL-1@3 and prostaglandin E2
(PGE2). This expression is due to TNF-a- and IL-I(3-induced activation of NF-kB binding to the
NURRZ21promoter. The NF-kB heterodimer, p65-p50, and homodimer, p50, are the main NF-kB
subunits responsible for binding of the NURRI promoter. Furthermore, McEvoy et al. (2002)
demonstrated that stimulation by PGE2 resulted in the binding of cyclic adenosine 5’-
monophosphate response element-binding protein (CREB) to the NURRI promoter, leading to its

induction. This study indicates that members of the NR4A receptor subfamily may be potential
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mediators of cytokine signaling and illustrates the involvement of NURRI in inflammatory

pathways that are pivotal in the pathogenesis of RA.

Davies et al. (2005) demonstrated that overexpression of NURRI in immortalized fibroblast-like
synoviocytes (K4 IM cells) led to induction of the proinflammatory genes IL-8, amphiregulin and
kit ligand. The proinflammatory cytokine IL-8 plays an important role in neutrophil recruitment
during the inflammatory response. Amphiregulin is thought to be involved in early-onset
synovial inflammation and severe skin inflammation and may have a role in psoriasis and
psoriatic arthritis.  Kit ligand (or stem cell factor) is involved in mast cell activation and
activation of its receptor leads to the phosphorylation of Akt in the IL-1-dependent NF-kB
activation pathway (Davies et al. 2005). A further study by Aherne et al. (2009) found that
NURRI co-operates with NF-kB to upregulate transcription of IL-8 in a mechanism which is
independent of NURRI binding to its DNA binding site or heterodimerization with other nuclear

receptors.

Ralph et al. (2005) found that treatment with the disease-modifying anti-rheumatic drug,
methotrexate, significantly reduces NURRI expression in patients with inflammatory joint
disease and this reduction correlates with improvements in disease activity. = Methotrexate
selectively and directly down-regulates NURRI expression in synovial tissue in response to
inflammatory stimuli and growth factors, including TNF-a, PGE:. and VEGF (Ralph et al. 2005).
Immunostaining of NURRI revealed that, during methotrexate treatment, the NURRI present is
predominantly confined to the cytoplasm compared with the nuclear localization of NURRI prior
to treatment. It was also found that methotrexate suppresses endogenous and PGE:-induced
NURRI expression in a dose-dependent manner. This suppression is mediated through the
release of adenine and activation of its A2A receptor (Ralph et al. 2005). If NURRI is retained

in the cytoplasm of cells, it therefore cannot induce the expression of pro-inflammatory genes.

Increased NURRI expression and nuclear localization has been detected in psoriasis skin.
Psoriasis is an autoimmune inflammatory skin disease and approximately 15 % of patients
develop inflammatory seronegative arthritis, termed psoriatic arthritis. Anti-TNF-a therapies
reduce NURRI levels in psoriasis skin and reinstate its cytoplasmic distribution, indicating that
the clinical improvements of this therapy may be mediated through down-regulation of NURR1

and inhibition of its transcriptional activities (O’Kane et al. 2008).
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A study by Zeng et al. (2006) reported that the angiogenic factor, VEGF-A, induces angiogenesis
through the up-regulation of NUR77. Overexpression of NUR77 stimulates angiogenesis and
leads to the proliferation and survival of human umbilical vein endothelial cells (HUVECS).
NURT77 requires its transactivation domain and its DNA binding domain in order to do this,
illustrating that this NUR77 mediates angiogenesis and proliferation of HUVECs via its
transcriptional activity (Zeng et al. 2006). VEGF induces the expression of all three NR4A
receptors in HUVECs. Therefore, NR4A receptors are candidate mediators of VEGF-induced
functions, including the survival, proliferation and migration of ECs and the synthesis of nitric

oxide and prostaglandin 12which are involved in the inflammatory response (Liu et al. 2003).

In the human monocytic cell line THP-1, stimulation with LPS rapidly induces the expression of
all three NR4A subfamily members. LPS-induced expression of NUR77 requires the binding of
NF-kB to its promoter. The NR4A receptors were also found to be strongly induced by 25-
hydroxycholexterol and 7p*cholesterol in THP-1 cells. These oxidized lipids have been
implicated in atherosclerosis. Furthermore, NUR77 and NOR-1 expression have been identified
in macrophage and smooth muscle cells from human coronary artery atherosclerotic lesions (Pei
et al. 2005; Nomiyama et al. 2006). Many patients with RA develop atherosclerosis due to

inflammation within the arteries (Buch and Emery 2002).

Smooth muscle cells (SMCs) that have been stimulated by the mitogenic factor PDGF have been
shown to rapidly induce NOR-1 expression through an ERK-MAPK dependent signaling
pathway. This is mediated via CREB binding to the NOR-1 promoter and initiating transcription
(just as PGE: stimulation led to CREB binding of the NURRI promoter in synovial cells). It was
also demonstrated that PDGF stimulates NOR-1 transcriptional activity. Furthermore, NOR-1-
deficient SMCs exhibit reduced cell proliferation and the cell cycle control genes cyclin D1 and
D2 have been identified as target genes for NOR-1 in SMCs. This illustrates that NOR-1 acts as
an important transcriptional regulator of SMC proliferation. Activated SMCs are involved in the

pathogenesis of atherosclerosis (Nomiyama et al. 2006).

A study by Pei et al. (2006) found that in murine macrophage cells, overexpression of the NR4A
subfamily, and NUR77 in particular, leads to the induction of numerous genes involved in
inflammation, apoptosis and cell cycle control. These upregulated genes include cyclin D2,

which is involved in cell cycle control, and TNF-a and A20, whose roles in inflammation have
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been described earlier. Stimulation of cells expressing NUR77 with LPS enhanced the induction
of proinflammatory genes compared to cells which did not express NUR77. This illustrates that
the NR4A receptors play a role in the regulation of macrophage gene expression during
inflammation (Pei et al. 2006). The induction of A20 by the NR4A nuclear receptors in murine
macrophage cells indicates that, whilst these transcription factors promote the expression of pro-
inflammatory genes, they may also trigger the expression of anti-inflammatory genes as a means
of protection against an excessive inflammatory response. This warrants further investigation

and the interaction between A20 and the NR4A receptors is the focus of this study.

1.7.3 Anti-inflammatory actions of NR4A receptors

Further studies have discovered that the NR4A subfamily members display anti-inflammatory
actions. A study by Mix et al. (2007) demonstrated that NURRI selectively inhibits expression
of MMP-1, -3 and -9 and suppression of MMP-1 by NURRI occurs through an NBRE-
independent mechanism. This mechanism may involve the interaction of NURRI with E26
transformation-specific sequence (ETS) transcription factors. This indicates that NURRI may
play a protective role in cartilage homeostasis by controlling the synthesis of MMPs which break

down cartilage.

During the development of atherosclerosis, macrophages ingest modified lipids, forming lipid-
laden foam cells. In human monocytic leukemia THP-1 cells overexpressing NR4A receptors,
the uptake of oxidized low-density lipoprotein was reduced. Furthermore, overexpression of
each of the three NR4A subfamily members in human THP-1 and U937 macrophages led to a 2-
to 10-fold reduction of the proinflammatory factors IL-ip, IL-8 and MIP-la after stimulation
with TNF-a and LPS. However, it should be noted that overexpression of NOR-1 in these cells,
when stimulated with TNF-a, led to a 2.5-fold increase in MCP-1 (monocyte chemotactic
protein-1) expression and no significant difference was observed in MCP-1 expression when

NURRI was overexpressed (Bonta et al. 2006).

Harant and Lindley (2004) discovered that overexpression of NUR77 in the human T cell
leukemia Jurkat cell line results in repression of IL-2 promoter activation. Suppression of IL-2
requires the N-terminal domain of NUR77. Alterations of the NF-kB binding sites on the IL-2

promoter abolish this repression, indicating that it is mediated via the inhibition of NF-kB. IL-2
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induces the proliferation of T and B cells in the inflammatory response (Harant and Lindley

2004).

You et al. (2009) revealed that overexpression of NUR77 in HUVECs controls TNF-a- and IL-
ip-induced NF-kB activation through the induction of hcBa expression, which binds NF-kB,
preventing it from translocating into the nucleus. Suppression of NF-kB activation impairs EC
activation, blocking expression of the adhesion molecules ICAM-1 and VCAM-1 and
suppressing the adherence of monocytes to ECs. This inhibits the infiltration of monocytes to the
inflamed area. LcBa is induced via binding of NUR77 to an NBRE site on its promoter (You et

al. 2009).

A study by de Waard et al. (2006) established that overexpression of NUR77 leads to a decrease

in the proliferation of venous SMCs and may help to prevent vein-graft disease.

Overall, evidence suggests that the positive and negative transcriptional regulation carried out by
the NR4A subfamily of nuclear receptors is most likely to be dependent on a complex interplay

between the receptor, promoter and cellular context (Aherne et al. 2009).

1.7.4 Nuclear receptors as targets for therapeutics

The importance of nuclear receptor signaling is demonstrated when it becomes dysregulated,
resulting in the development of proliferative, reproductive and metabolic diseases, including
cancer, infertility and diabetes. Therefore, nuclear receptors have become key targets for drug
discovery and nuclear receptor agonists/antagonists have been developed to treat these diseases

(Gronemeyer et al. 2004).

One such example is tamoxifen, which is a hormone used for the treatment of breast cancer and
also for its prevention in women with a high risk of developing breast cancer. Tamoxifen binds
to the oestrogen receptor, preventing the binding of oestrogen (Gronemeyer et al 2004) and
therefore, is known as an antioestrogen. It acts as a partial agonist, exhibiting mixed agonist and
antagonist activities. Oestrogen-regulated gene transcription is mediated by the two activation
functions, AF-1 and AF-2, of the oestrogen receptor. The AFs recruit co-activators or co-

repressors to the general transcription complex. However, the binding of tamoxifen to the
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oestrogen receptor leads to a conformational change in the receptor, resulting in a non-functional
AF-2, while AF-1 retains its function (Wakeling 2000). Therefore, tamoxifen may act as an
agonist or as an antagonist, depending on the cell and promoter context, on the structure of the
hormone response element to which the receptor binds and on the additional transcription factors

recruited (Gronemeyer et al. 2004).

Another example of drugs which target nuclear receptors for the treatment of disease is
corticosteroids. These act as ligands for glucocorticoid receptors and are used to treat
inflammatory diseases, including RA (Gronemeyer et al. 2004). Corticosteroids are described in

more detail in section 1.8.1 below.

While treatment of diseases by targeting nuclear receptors usually involves the use of alternative
ligands, it may be possible to modulate the activity of orphan receptors through harnessing the
crosstalk between nuclear receptor-mediated signal transduction pathways and other signal
transduction pathways. These other pathways can result in post-transcriptional modification of
nuclear receptors via phosphorylation, ubiquitylation or acetylation, altering their function. For
example, in response to stimuli such as growth factors or cytokines, mitogen-activated protein
kinases (MAPKS) have the ability to phosphorylate certain nuclear receptors which can affect
their function (Gronemeyer et al. 2004). In addition, a ligand for the glucocorticoid receptor has
been identified that has the ability to repress and activate only a subset of genes usually
controlled by corticosteroids. This ligand, termed AL-438, still maintains the anti-inflammatory
properties of steroids but exhibits a reduction in the adverse effects on bone metabolism and
glucose control associated with conventional corticosteroids. This mechanism is thought to
involve differential co-factor recruitment in response to ligand (Coghlan et al. 2003). Therefore,
it may be possible to harness the anti-inflammatory actions of the NR4A receptors whilst
preventing the proinflammatory effects of these receptors. The identification of agonists of
NR4A receptors (such as 6-mercaptopurine) aids the potential for development of drugs for the
selective therapeutic regulation of these receptors in the treatment of diseases (Ordentlich et al.
2003).
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1.8 Current Treatment for Rheumatoid Arthritis

Traditionally, RA treatment was focused on managing the pain and inflammation associated with
the disease. Now however, the aim of treatment is to suppress inflammation, reduce the
progression of RA, and even to establish remission, with the use of new drugs along with more
conventional therapies (Combe 2009). Until the mid-1980s, treatment for RA began with a non-
steroidal anti-inflammatory drug (NSAID), sometimes along with a corticosteroid. This was then
followed by a disease-modifying anti-rheumatic drug (DMARD). If this DMARD failed, another
one was prescribed in its place. This is known as sequential monotherapy (Nurmohamed and
Dijkmans 2008). A low dose of the DMARD methotrexate was increasingly used from the 1980s
onwards and, during this time, DMARDSs started to be prescribed much earlier (Nurmohamed and
Dijkmans 2008). An important development in the treatment of RA came with the introduction
of biological therapies in the late 1990s. These are agents which target molecules involved in
inflammatory pathways and came about from an increased understanding of the pathogenesis of
RA (Klareskog et al. 2009). Biological therapies are much more expensive than DMARDs, but
can be an effective treatment for RA and offer an alternative for patients who fail to respond to
existing DMARDs. It has become apparent that intensive and early intervention with treatment
such as combination DMARDs and/or biological therapies can be highly beneficial in the control

of joint damage and may induce high rates of remission (Combe 2009; Smolen et al. 2010).

1.8.1 Corticosteroids

Corticosteroids (or glucocorticoids/adrenal steroids) are extremely effective in suppressing the
inflammatory response and the immune system. They are synthesized and secreted by the
adrenal cortex in the brain and are important for normal metabolism and resistance to stress
(Mycek et al. 2000). Corticosteroids act as ligands, binding to glucocorticoid receptors which
belong to the same superfamily of nuclear receptor transcription factors that include the NR4A
subfamily. When the steroid binds, the receptor becomes activated and the steroid-receptor
complex translocates into the nucleus, where it can repress or induce target gene transcription
(Rang et al. 2007). Apart from the enzymes involved in metabolism, the corticosteroids induce
the synthesis of IkB, which retains NF-kB in the cytoplasm, inhibiting its action. They also
induce the synthesis of anti-inflammatory proteins such as annexin-1.  Treatment with

corticosteroids results in a decline in the production of inflammatory cytokines and cell adhesion
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molecules, a reduction in the concentration and actions of leucocytes and a decrease in

angiogenesis (Rang et al. 2007).

The adverse effects of long-term usage of corticosteroids include the redistribution of body fat,
poor wound healing and osteoporosis. Another important adverse effect is suppression of the

protective immune response to infection (Rang et al. 2007).

1.8.2 Non-steroidal anti-inflammatory drugs (NSAIDs)

Non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin, ibuprofen and indometacin,
have anti-inflammatory effects and also reduce pain and fever. They comprise a group of
chemically diverse agents, many of which act by reducing the production of prostaglandins in
inflammatory cells through the inhibition of cyclooxygenase enzymes. Prostaglandins are among
the chemical mediators which are released in inflammatory processes (Mycek et al. 2000). Some
prostaglandins act as vasodilators, allowing increased blood flow to the inflamed area and leading
to the influx of proinflammatory cells and mediators (Rang et al. 2007). Prostaglandins sensitize
nerve endings to the action of chemical mediators such as bradykinin and histamine, causing pain
(Mycek et al. 2000). In addition, E-type prostaglandins (PGEs) in the hypothalamus cause a rise
in the hypothalamic set-point for temperature control in the body and this results in fever. COX-
1 and COX-2 are two cyclooxygenase enzymes which have been identified and NSAIDs inhibit
both of these by hydrogen bonding to an arginine residue on the enzymes (Rang et al. 2007).

A side effect of NSAIDs is gastrointestinal disturbances and this is attributed to their inhibition of
COX-1. This enzyme leads to the synthesis of prostaglandins that protect the mucosa and inhibit
acid secretion. COX-2 is induced by the inflammatory response, producing mediators of
inflammation (Rang et al 2007). The COX-2 selective inhibitor celecoxib is available which has
less of an effect on the gastrointestinal tract (Mycek et al. 2000). However, other COX-2
inhibitors have been taken off the market due to safety concerns (European Medicines Agency
2005). Along with diarrhoea, indigestion, vomiting and possible gastric damage, other side
effects of NSAIDs are skin reactions, renal problems and, less commonly, liver disorders (Rang
et al 2007). NSAIDs reduce the symptoms of RA but they do not halt disease progression or

induce remission (Mycek et al. 2000).
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1.8.3 Disease-modifying anti-rheumatic drugs (DMARDS)

Disease-modifying anti-rheumatic drugs (DMARDS) improve symptoms, reduce disease activity
and can induce remission of RA. These include sulphasalazine, cyclosporin, gold, antimalarial
drugs, methotrexate and biological therapies, as discussed below (Smolen et al. 2010). DMARDs
are slow-acting, in contrast to NSAIDs, and may take several months to take effect (Rang et al.

2007).

1.8.3.1 Sulphasalazine

Sulphasalazine is widely used for RA and chronic inflammatory bowel disease. It is composed of
sulfapyridine and 5-aminosalicylate (5-ASA). Bacteria in the colon split the bond between these
molecules, releasing them. The active metabolite in sulfasalazine is 5-ASA, which is thought to
scavenge the toxic oxygen metabolites produced by neutrophils. The adverse effects of this drug
include gastrointestinal problems, headache and skin reactions. Folic acid absorption may be

inhibited and, therefore, folic acid supplements are sometimes required (Rang et al. 2007).

1.8.3.2 Methotrexate

Methotrexate is a commonly used, effective treatment for RA (Smolen et al. 2010). It is an
immunosuppressant and acts faster than other DMARDs (Mycek et al. 2000). It inhibits T-cell
activation (Klareskog et al. 2009) and enhances the release of adenosine at inflamed sites.
Activation of the adenosine receptor A2A reduces inflammation and tissue damage (Gomez and
Sitkovsky 2003). Methotrexate also acts as a folate antagonist and, at higher doses, is widely
used as a chemotherapeutic agent (Rang et al. 2007). Folates are required for purine and
thymidylate production which are necessary for the synthesis of DNA, RNA and proteins.
Methotrexate inhibits the enzyme dihydrofolate reductase. This enzyme catalyses the reduction
of folate to tetrahydrofolate (FH4). FH4 acts as a co-factor in the formation of thymidylate and
purines (Rang et al. 2007). Thus, methotrexate suppresses the synthesis of DNA, RNA and
proteins, eventually causing the death of proliferating cells. The side effects of using
methotrexate include nausea, vomiting, diarrhoea and myelosuppression (decrease in the
production of blood cells by bone marrow). Many of these effects can be avoided with use of the

drug leucovorin (Mycek et al. 2000).
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Methotrexate is most commonly administered orally as it is readily absorbed from the
gastrointestinal tract. It may also be given by intramuscular, intravenous or intrathecal (under the
arachnoid membrane of the brain or spinal cord) routes (Mycek et al. 2000). It is often used as an
initial treatment for RA. If this does not result in sufficient amelioration, additional or alternative
DMARDs may be introduced, followed by biological therapies (Klareskog et al. 2009; Smolen et
al. 2010).

1.8.4 Biological Therapies

Several biological therapies for RA are now available. The first of these were anti-TNF-a agents
which were approved for clinical use in 1998 (Wong et al. 2008). There are now several TNF-a
inhibitors available for inflammatory arthritis, including etanercept, infliximab and adalimumab

(Rubbert-Roth and Finckh 2009; Tak and Kalden 2011).

1.8.4.1 Etanercept

Etanercept (brand name Enbrel) is a soluble TNF-a receptor joined to the Fc fragment of a human
immunoglobulin (IgGl) which binds to TNF-a and sequesters it. The TNF-a, therefore, cannot
bind to its membrane-bound receptors on target cells and initiate its proinflammatory pathways.
There are two isomers of the TNF receptor, a p55 (TNFR1) and a p75 receptor (TNFR 11), which
may be membrane-bound or soluble, circulating in the serum. Etanercept consists of two
extracellular regions of the human soluble p75 TNF receptor (STNFRII) which captures and
binds TNF-a at two of its three receptor-binding sites, thereby preventing TNF-a-induced
signaling. Subcutaneous injections of etanercept are given either twice weekly at a concentration
of 25 mg or once a week at a concentration of 50 mg. It is indicated for treatment of RA, juvenile

chronic arthritis, psoriatic arthritis, ankylosing spondylitis and psoriasis (Wong et al. 2008).

1.8.4.2 Infliximab

Infliximab (brand name Remicade) is a monoclonal antibody consisting of human constant
regions of the IgGlic antibody with murine variable regions. It can bind to soluble and
transmembrane TNF-a, and has a high affinity and specificity for the cytokine. It has been
reported that the murine variable fragment induces synthesis of human anti-mouse antibodies
which would limit the efficacy of this treatment. The mode of administration is by intravenous

infusion every 8 weeks at a concentration of 3 - 10 mg/kg. Along with RA, infliximab is also
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indicated for use in ulcerative arthritis, psoriatic arthritis, chronic severe plague psoriasis and

Crohn’s disease (Wong et al. 2008).

1.8.4.3 Adalimumab

Adalimumab (brand name Humira) is a complete human IgGl monoclonal antibody. Like
infliximab, it binds to both soluble and transmembrane TNF-a and prevents it from binding to its
receptors. Adalimumab is given subcutaneously every two weeks at a concentration of 40 mg or
once a week at a higher concentration. Adalimumab is indicated for RA and also moderate to

severe Crohn’s disease, psoriatic arthritis and ankylosing spondylitis (Wong et al. 2008).

1.8.4.4 Modes of Action of Anti-TNF-a Agents

Despite the frequent use of anti-TNF-a agents, much remains to be discovered about their modes
of action. Studies suggest that the binding of anti-TNF-a agents to TNF-a receptors may result in
several effects (Wong et al. 2008). It may elicit complement-dependant lysis of the cell and
antibody-dependant cytotoxicity. This binding could also induce apoptosis mediated by reverse
intracellular signaling (outside to inside signaling), a reduction in cytokine production or a halt in
cell growth (Wong et al. 2008). Studies show that reverse intracellular signaling, initiated by
infliximab, can also lead to the inhibition of NF-kB activation in RA patients (Meusch et al.

2009).

Treatment with TNF-a antagonists can result in a reduction of other proinflammatory cytokines,
such as IL-1 and IL-6, both in serum and in the synovium of RA patients, in addition to a
decrease in TNF-a levels. Infiltration of inflammatory cells including T and B cells,
macrophages and synoviocytes into the inflamed joint is suppressed by anti-TNF-a agents. This
is due to the control of cell migration and the induction of apoptosis of these cells. It has been
demonstrated that in the synovial membrane, the level of VEGF, which induces angiogenesis, is
diminished following anti-TNF-a treatment. The expression of endothelial adhesion molecules is
also reduced. An increase in the number of regulatory T (Treg) cells in circulation was found
after treatment with anti-TNF-a agents in one study. Treg cells inhibit the synthesis of
proinflammatory mediators by activated T cells. TNF-a inhibition also results in a reduction in
levels of RANKL. Overall, treatment with TNF-a antagonists can result in reduced inflammation
and joint destruction and has a clear, beneficial effect in some patients (Wong et al. 2008). It has

been demonstrated that the use of methotrexate along with TNF-a antagonists enhances their
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effectiveness and, as a result, these drugs are commonly used in combination (Klareskog et al.

2009).

1.8.4.5 Other Biological Therapies

The success of anti-TNF-a agents in some patients has led to the development of drugs which
target other mediators of inflammation, such as IL-1, and those which target T and B
lymphocytes (Tak and Kalden 2011).

Abatacept (brand name Orencia) has been approved for the treatment of RA in adults who did not
have an adequate response to DMARDs or TNF-a inhibitors. Abatacept inhibits the activation of
T-cells through the suppression of essential co-stimulatory signals. It is made up of an
extracellular CTLA4 domain along with the Fc domain of an IgG molecule. Rituximab (brand
name Rituxan) is approved for use by adult RA patients who failed to respond to at least one
TNF-a inhibitor. Rituximab consists of a monoclonal antibody for the CD20 molecule on the
surface of mature and immature B cells. The binding of this antibody reduces the concentration
of B cells in circulation, leading to reduced T cell activation and less antibody and immune
complex formation (Klareskog et al. 2009; Tak and Kalden 2011). Anakinra (brand name
Kineret) is an IL-1 receptor antagonist which inhibits IL-1 signaling by binding to the IL-1
receptor. Studies have illustrated that it improves disease activity in some patients (den Broeder
et al. 2006). Tocilizumab (brand name RoActemra or Actemra) is an antibody developed as an
IL-6 receptor antagonist and is used for patients who have not responded to, or are unsuitable for,
anti-TNF-a treatment. It may be used in conjunction with methotrexate and has shown
effectiveness in controlling disease activity (Oldfield et al. 2009). Denosumab is a newly
developed monoclonal antibody against RANKL and it has been shown to inhibit bone damage

and joint destruction in RA patients when combined with methotrexate (Cohen et al. 2008).
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(Adapted from Klareskog et al. 2009; Rang et al. 2007).
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1.8.4.6 Adverse Effects of Biological Therapies

There are serious adverse effects associated with the use of biological therapies, but these are
infrequent. It is strongly recommended that patients are screened for latent tuberculosis (TB)
prior to receiving anti-TNF-a treatment. This is due to a concern that this therapy may induce
reactivation of TB. If detected, patients should be treated for this before commencing anti-TNF-a
therapy. The most frequent side effect of TNF-a inhibition is injection or infusion reactions,
although these are not usually serious. There is an increased risk of developing infections when
receiving anti-TNF-a treatment because of the role TNF-a naturally plays in the immune system.
It is uncertain whether TNF-a inhibition increases the risk of lymphoma or solid malignancies in
RA patients and this is because RA patients are at a higher risk of developing these conditions
initially. Further studies are required to establish definitively if there is an increased risk of
lymphoma and solid malignancies associated with anti-TNF-a therapy. Patients who have
advanced congestive heart failure are not suitable for treatment with TNF-a inhibitors (Lin et al
2008). Other adverse reactions associated with TNF-a inhibition include neutrapenia and

hepatoxicity (Gartehner et al. 2005).

Common adverse effects associated with the use of other biological therapies, such as abatacept,
rituximab and tocilizumab, include injection/infusion site reactions, nausea, abnormal results of
liver function tests, neutrapenia, gastrointestinal complaints and musculoskeletal disorders. In
addition, patients receiving these treatments have a higher risk of developing serious infections.
Furthermore, the long-term safety profiles of these drugs have yet to be established (Nogid and

Pham 2006; Kimby 2005; Plushner 2008).

Whilst the use of TNF-a antagonists can be a very effective treatment for RA, between 20 % and
40 % of patients administered with one of these agents do not gain a 20 % improvement in
American College of Rheumatology criteria (ACR20 response). Over 50 % of RA patients
treated with a TNF-a inhibitor fail to obtain a 50 % improvement in ACR criteria (ACR50
response). Furthermore, during treatment, additional patients lose efficacy or develop side
effects. In these situations, often an alternative TNF-a inhibitor is then used, which may be
beneficial, due to differences in the bioavailability and stability of anti-TNF-a agents. However,
most patients still fail to improve adequately (that is, attain an ACR50 response) after changing to
a different TNF-a antagonist. Biological agents which target other cytokines or immune cells,

such as those describe above, offer an alternative to TNF-a inhibition, having different modes of
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action. However, studies have yet to be carried out comparing the efficacy of these therapies in
patients who have not responded to treatment with TNF-a antagonists (Rubbert-Roth and Finckh
2009). Information thus far relating to combination biological therapy indicates that there is an
increased risk of serious infections (Wong et al. 2008). Therefore, further research into finding
other targets for the treatment of RA is necessary, in order to develop additional/alternative forms

of therapy.

1.9 Project Objectives

A20, ABIN-1, ABIN-2 and Cezanne have all been shown to inhibit the activation of NF-kB in
response to inflammatory stimuli. The NR4A subfamily of nuclear receptors may be potential
targets for the control of inflammation, through controlling their proinflammatory activities
and/or enhancing their anti-inflammatory properties.  The study by Pei et al. (2006)
demonstrating that overexpression of the NR4A members in macrophages leads to the induction
of A20 gene expression indicates that this subfamily of nuclear receptors may have a role in
regulating A20 and A20-interacting genes. This also suggests that NR4A receptors may, in turn,
be regulated by A20.

The objectives of this project were to:

Examine the promoter regions of A20 and the A20-interacting genes ABIN-1, ABIN-2
and Cezanne for the presence of the NR4A transcription factor binding site (NBRE site)
using bioinformatic analysis, potentially linking the NR4A receptors to expression of
these genes.

Determine the effects of the inflammatory cytokine TNF-a on the expression of A20,
ABIN-1, ABIN-2 and Cezanne in the multicellular environment of RA, elucidating the
expression of these genes in human synoviocyte and chondrocyte cells in an inflammatory
environment. This was achieved by performing reverse transcription (RT)-PCR and
guantitative (q)PCR analyses of RNA extracted from cells stimulated with TNF-a.
Examine the potential of A20 as a means of modulating the transcriptional activity of the
NR4A subfamily of nuclear receptors in cell culture models of inflammatory arthritis.

This was achieved by performing transient transfection experiments in which an NB RE-
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luciferase reporter construct and a constitutively active NURRI expression vector were
co-transfected into synoviocyte and chondrocyte cells. An A20 expression plasmid was
also co-transfected into these cells. The luciferase activity was measured and compared
to controls transfected in a similar manner without A20. In addition, further transfection
experiments were carried out to investigate the effect of A20 on the transcriptional
activation of the NR4A target gene IL-8 by NURRI. It has previously been established
that NURRI induces expression of the proinflammatory chemokine IL-8 and that NURRI
also enhances NF-kB p65 induction of IL-8 independently of the NBRE binding site
(Aherne et al. 2009). Therefore, cells were co-transfected with an IL-8 human promoter
luciferase reporter construct, a NURRI expression vector and an A20 expression
construct with and without a p65 expression vector. The luciferase assay results were
compared to those obtained without the presence of A20 overexpression. In this manner,

the effects of A20 on the transcriptional activity of NURRI were elucidated.
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Chapter 2

Materials and Methods



2. Materials and Methods

2.1 Biological Materials

2.1.1 Cell Lines
The human synoviocyte cell line K4 IM was established by C. Haas at the Clinical Research Unit
for Rheumatology, University Hospital, Freiburg, Germany from a healthy donor and

immortalized using a SV40 T antigen (TAQ) (Haas et al. 1997).

The human chondrocyte cell line SW 1353 (HTB-94) was initiated by A. Leibovitz at the Scott
and White Clinic, Temple, Texas in 1977 from a primary grade Il chondrosarcoma of the right

humerus obtained from a 72 year old Caucasian female (Gebauer et al. 2005)

2.1.2 Plasmids

The pCAGGS-GFP/A20 plasmid was constructed by inserting the blunted Bsp HI-Bam HI
fragment, containing the mutated Aequorea Victoria green-fluorescent protein (GFP) coding
sequence fused to the mouse zinc finger protein A20 coding sequence, into the blunted Xho I site
of pPCAGGS. This plasmid was a gift to Dr. Joanne Gallagher by Prof. R. Beyaert, Unit of

Molecular Signal Transduction in Inflammation, Ghent University, Belgium.

The pCMX-NURRI expression plasmid contains the full-length mouse NURRI coding cDNA
cloned into a pCMX plasmid. This plasmid was kindly provided to Dr. Evelyn Murphy by

Professor T. Perlmann, Karolinska Institute, Stockholm.

The pNBREs-tk-luciferase reporter construct contains three copies of the NGFI-B binding
response element (NBRE) cloned upstream of the herpes simplex virus thymidine Kkinase
promoter linked to the coding region of the luciferase gene. This plasmid was kindly donated to

Dr. Evelyn Murphy by Professor T. Perlmann, Karolinska Institute, Stockholm.
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The pcDNA6/myc-His C empty expression vector from Invitrogen contains a human
cytomegalovirus immediate-early (CMV) promoter, a reading frame to facilitate in-frame cloning
with a C-terminal peptide encoding the myc (c-myc) epitope and a polyhistidine (6xHis) metal
binding tag for detection and purification of a recombinant protein. The plasmid was used in this

study to ensure that the concentration of transfected DNA was equal in all samples.

Renilla luciferase pRL-SV40 vector from Promega was used as an internal control reporter and
contains cDNA encoding Renilla luciferase cloned from the marine organism Renilla reniformis

(sea pansy).

The IL-8 human promoter luciferase reporter construct contains the human IL-8 gene cloned into
the pGL3 basic vector and was a gift to Dr. Evelyn Murphy from Dr. Xiaolan Zhang, The

Dorothy M. Davis Heart and Lung Research Institute, Columbus.

The p65-RFP expression vector encodes the p65 subunit of NF-kB cloned upstream of the
DsRed-Express gene (Discosoma sp. red fluorescent protein) in the pIREs2-DSRed Express
expression vector. This plasmid was kindly provided to Dr. Evelyn Murphy by Prof. Paul
Moynagh, National University of Ireland, Maynooth.

The pmaxGFP is a positive control vector from Amaxa Biosystems encoding the green

fluorescent protein from the marine organism Pontellina sp.

2.1.3 Standard End-Point PCR Primers

Sigma-Aldrich

B-actin 5’ 3’
Forward Primer GGACTTCGAGCAAGAGATGG
Reverse Primer AGCACTGTGTTGGCGTACAG
ICAM-1

Forward Primer TAAGCCAAGAGGAAGGAGCA

Reverse Primer CATATCATCAAGGGTTGGGG



VCAM-1
Forward Primer

Reverse Primer

A20
Forward Primer

Reverse Primer

ABIN-1
Forward Primer

Reverse Primer

ABIN-2
Forward Primer

Reverse Primer

Cezanne
Forward Primer

Reverse Primer

5’ 3’
CTGTTCCAGCGAGGGTCTAC
CGCTCAGAGGGCTGTCTATC

ATGCACCGATACACACTGGA
CACAAGCTTCCGGACTTCTC

TGAGCAATGGCAACAAAGAG
GCTCCAGCATCTTCACCTTC

GAACACACAGATGGGCACAC
CCACTTGGCATTGAGGTCTT

CACGTCTTTGTCCTTGCTCA
GCAAGGGCAGCAGCTTATAC

2.1.4 Quantitative PCR Oligonucleotides

Thermo Scientific

Solaris Human gPCR Gene Expression Assays

GAPDH
Forward Primer
Reverse Primer
Probe

A20
Forward Primer
Reverse Primer

Probe

5’ 3’
GCCTCAAGATCATCAGCAATG
CTTCCACGATACCAAAGTTGTC
GCCAAGGTCATCCATGA

ATTTTCGGGAGATCATCCAC
AATTGCCGTCACCGTTC
CTTGTGGCGCTGAAAACG
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ABIN-1 5’ 3’

Forward Primer CCTGTCAAATGCCCAGCTAA
Reverse Primer ATGGTAACGCTCTCCTGAG
Probe AAGAGGAAAGCAAAGGCC

2.1.5 Other Biological Materials
Competent E. coli cells IM109, genotype: endA 1, recA 1,
gyrA96, thi, hsdR 17 (rK, m /), relA\, supE44,

A(lac-proAB), [F’, //«D36, proAB, /adgZAM 15] Promega

Eco RI1, Bam HI and Hind IlI restriction enzymes

and 10X restriction enzyme buffers Sigma Aldrich
GeneJuice HMD Chemical
Go Tag DNA Polymerase Promega
M-MLV Reverse Transcriptase Promega
Recombinant human TNF-a R & D Systems
RQ1 RNase-free DNase Promega
Turbofect Fermentas

Fok

2.2 Chemical Materials

Acetic acid Fluka
Ampicillin Molekula
Chloroform Fluka

Ethanol Merck
Isopropanol Merck

LB agar Oxoid

LB broth Oxoid
Formaldehyde Fisher Scientific
Phosphate buffered saline tablets Oxoid
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Promega
1 kb DNA ladder, 100 bp DNA ladder, RNA marker, loading dye, 5X Green Go Taq buffer,
dNTPs, RNasin inhibitor, Agarose analytical grade, Ethidium Bromide (molecular biology

grade), Random Primers, Formamide (molecular biology grade).

Riedel-de Haen
Sodium hydroxide pellets, Glycerol, Sodium Dodecyl Sulphate (SDS), Potassium Acetate,

Trizma base, Ethylenediaminetetraacetic acid (EDTA).

Sigma Aldrich

10X MOPS running buffer, Chloroform (molecular biology grade), TRI Reagent, RPMI1-1640
medium (HEPES modification, with 25 mM HEPES, without L-glutamine, sterile-Il'iltered, cell
culture tested), 0.25 % Trypsin-EDTA solution (sterile-filtered, cell culture tested), 200 mM L-
glutamine (sterile-filtered, cell culture tested), Fetal Bovine Serum (sterile-filtered, cell culture
tested), Penicillin-Streptomycin (10,000 units penicillin and 10 mg streptomycin per ml in 0.9 %
NaCl, sterile-filtered, cell culture tested), Diethylpyrocarbonate (DEPC), Dimethyl Sulfoxide
(DMSO), Trypan blue solution (0.4 %).

2.2.1 Commercial Kits

QIAGEN Plasmid Midi Kit QIAGEN

Dual Luciferase Reporter Assay System Promega

Go Script Reverse Transcription System Promega

Solaris qPCR Gene Expression Master Mix Thermo Scientific

Venor GeM Mycoplasma Detection Kit Minerva Biolabs
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2.3 DNA Manipulation

The preparation of solutions used in Chapter 2 is described in Appendix A.

2.3.1 Bacterial Transformation

Transformation is based on the natural ability of some bacteria to take up ‘naked’ DNA. DNA of
interest is introduced into bacterial cells by ligating it to a vector such as a plasmid which can
replicate autonomously inside the cells. The transformed bacterial cells are then allowed to grow
and divide, during which time the recombinant plasmid DNA replicates many times within the
cells. Plasmids contain one or more antibiotic resistance genes and, after transformation, the
bacteria which were formerly sensitive to the antibiotic become resistant, allowing for the
selection of transformants (Hames and Hooper 2000). Bacterial cells were transformed with the

desired plasmid for storage and amplification purposes.

Two hundred and fifty nanograms of QIAGEN-purified plasmid DNA were added to 50 jj1 of
commercially obtained competent E. Coli cells in a 1.5 ml eppendorf. The contents were mixed
and the eppendorf was centrifuged briefly to collect the contents at the bottom of the tube. The
eppendorf was stored on ice for 10 min. It was then placed in a waterbath at 42°C for 50 s to heat
shock the cells. The eppendorf was returned to ice for 2 min. Four hundred and fifty microlitres
of sterile LB broth at 4°C were added and the eppendorf was placed in a shaking incubator at
37°C for 1 hr to allow amplification of the cells. One hundred microlitres of the amplified cells
were spread onto an LB with selective antibiotic agar plate. A 10'1dilution was also plated. The
plates were incubated at 37°C overnight. Controls were carried out by plating competent cells
which were not transformed on both LB agar and LB plus selective antibiotic agar to determine
the viability of the competent cells and to verify that the untransformed cells were sensitive to the

selective antibiotic.

2.3.2 Plasmid DNA Miniprep

A plasmid DNA miniprep is a rapid method of isolating small quantities of plasmid DNA from
bacterial cells. The method involves separating the plasmid DNA from the chromosomal DNA,

which may be achieved using alkaline lysis. This method takes advantage of the fact that, at an
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alkaline pH, plasmid DNA (being supercoiled) remains relatively intact, while chromosomal
DNA separates completely into two strands. The plasmids revert back into their original form
upon lowering the pH, while the chromosomal DNA cannot reanneal and forms an insoluble
complex which can then be removed by centrifugation, along with other cell debris (Dale and von

Schantz 2002).

Plasmid DNA minipreps were carried out to ascertain whether the bacterial transformations were
successful and restriction enzyme digestions were subsequently conducted on the isolated DNA
to establish that the correct plasmids were present. One transformed colony was selected and
inoculated into 5 ml of sterile LB broth containing the selective antibiotic in a 50 ml sterile
container. The container lid was loosely capped and the container was incubated overnight at
37°C in a shaking incubator. One millilitre of the overnight culture of transformed cells was
transferred to a 1.5 ml eppendorf and centrifuged at maximum speed for 30 min at 4°C. The
supernatant was removed and the pellet was resuspended in 100 pl of ice cold alkaline lysis
solution | by vigorous vortexing. Two hundred microlitres of freshly prepared solution Il were
then added. The tube contents were mixed by inverting the tube rapidly five times, not vortexing.
One hundred and fifty microlitres of solution 111 were added and the contents mixed by inverting
several times. The lysate became viscous at this point and the eppendorf was stored on ice for 3-
5 min. The eppendorf was centrifuged at maximum speed for 5 min at 4°C. The supernatant was
transferred to a fresh 1.5 ml eppendorf. The nucleic acids were precipitated by adding 1 ml of
100 % ethanol at room temperature. The eppendorf was vortexed and allowed to stand for 2 min
followed by centrifugation at maximum speed for 5 min at 4°C. The supernatant was removed
and the DNA pellet was dried by inverting the tube and allowing it to stand on a clean paper
towel. Fluid adhering to the tube wall was removed using a pipette. The DNA pellet was washed
with the addition of 1 ml of 70 % ethanol and inverted several times. The eppendorf was
centrifuged at maximum speed for 2 min at 4°C. The supernatant was removed and the
remaining ethanol was allowed to evaporate at room temperature for 5-10 min. The nucleic acids
were dissolved in 50 jil1 of sterile ultrapure H20. The eppendorf was vortexed gently and the

DNA plasmid solution was stored at -20°C.
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2.3.3 Plasmid Glycerol Stocks

Plasmid glycerol stocks of transformed bacterial cells were prepared to obtain a stock of the
desired plasmids. An isolated colony of transformed cells was selected and inoculated into 5 ml
of LB broth containing the selective antibiotic. The inoculated broth was incubated overnight at
37°C in a shaking incubator. Plasmid minipreps were performed on all overnight cultures to
ensure the plasmid was present. Zero point five millilitres of the overnight culture were added to
0.5 ml of 50 % sterile glycerol solution and mixed. The plasmid glycerol stock solution was

placed in a -20°C freezer overnight and then stored at -80°C.

2.3.4 QIAGEN Plasmid Purification

A QIAGEN Plasmid Midi Kit was used to obtain ultrapure, transfection grade plasmid DNA. A
single colony was selected from a freshly streaked glycerol plasmid stock LB agar plate
containing the selective antibiotic. In a 50 ml tube, a starter culture of 5 ml sterile LB broth with
selective antibiotic was inoculated. The tube was loosely capped and incubated for
approximately 8 hr at 37 °C in a shaking incubator (approximately 250 rpm). The starter culture
was then diluted 1/500. This was carried out by inoculating 25 ml LB broth with selective
antibiotic in a 50 ml tube with 50 ffl of starter culture. The diluted culture tube was loosely
capped and incubated overnight at 37 °C in a shaking incubator. The bacterial cells were
harvested by centrifugation at 4500 rpm for 15 min at 4 °C. The cell pellet was resuspended in

4 ml of Buffer Pl and pipetted up and down until no cell clumps remained. Four millilitres of
Buffer P2 were added to the tube and the contents were mixed thoroughly by inverting the sealed
tube 4-6 times (not vortexing). The tube was then incubated at room temperature (15-25 °C) for
5 min. Four millilitres of chilled Buffer P3 were added and mixed thoroughly by inverting 4-6
times. The tube was incubated on ice for 15 min. It was then centrifuged at 4500 rpm for 30 min
at 4 °C. The supernatant containing the plasmid was removed promptly and placed in a fresh

10 ml centrifuge tube. This was centrifuged again at 4500 rpm for 15 min at4 °C. Meanwhile, a
QIAGEN-tip 100 was equilibrated by applying 4 ml of Buffer QBT and the column was allowed
to empty completely by gravity flow. The supernatant containing the plasmid was removed
promptly and loaded onto the QIAGEN-tip where it was allowed to enter the resin by gravity
flow. The QIAGEN-tip was washed with 2 x 10 ml of Buffer QC. The plasmid DNA was eluted
from the resin by applying 5 ml Buffer QF. The eluate was collected in a 15 ml tube. The
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plasmid DNA was precipitated by adding 3.5 ml room-temperature isopropanol to the eluted
DNA. The tube contents were mixed and centrifuged at 4500 rpm for 60 min. The supernatant
was carefully decanted and the plasmid DNA pellet was washed with 2 ml of room-temperature
70 % ethanol. The tube was centrifuged at 4500 rpm for 60 min at 4 °C. The supernatant was
carefully decanted without disturbing the pellet. The pellet was air-dried for 5 min and the
plasmid DNA was dissolved in 100 jd of sterile ultrapure H2. The purified plasmid DNA was
stored at -20 °C.

2.3.5 Spectrophotometric Analysis of Nucleic Acids

DNA and RNA were quantified by measuring its absorbance at 260 nm (A260). This is the
wavelength at which nucleic acids absorb maximally. One microlitre of DNA/RNA was
dissolved in 19 piof sterile ultrapure H2 ina 20 |il quartz cuvette. The absorbance was
measured using a Perkin EImer Lambda Bio UV spectrometer and the concentration of DNA was

calculated using the formula:

AX%0 * Dilution Factor (i.e. 20) x 50 (50(xg of pure DNA has A20 of 1)
= Concentration of DNA ([xg/ml)

The concentration of RNA was calculated using the formula:

A2 x Dilution factor (i.e. 20) x 40 (40[xg of pure DNA has A2 of 1)
= Concentration of RNA (_ig/ml)

The purity of the extracted RNA was determined by calculating the ratio of its absorbance at
260 nm versus its absorbance at 280 nm (A260/280). Pure RNA has an A260/A280 ratio of 2.

2.3.6 Restriction Enzyme Digestion of DNA

Restriction enzymes are isolated from certain bacteria and allow DNA to be cut at specific sites.

They are used to determine the length of DNA sequences by using gel electrophoresis, containing

DNA markers, following restriction digests. In this way, DNA vectors or fragments may be
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identified (Hames and Hooper 2000). A DNA digest was carried out by adding the following

components into a 0.5 ml sterile eppendorf:

1 p.gDNA XAl
Restriction Enzyme (10U) 1l
RE Buffer (10X) 2 ul
Sterile Ultrapure H20 X ul
Final Volume 20 ul

The tube was placed in a Techne TC-3000 thermocycler and incubated at 37°C for 2 hr. The
digested DNA was electrophoresed on a 0.8 % agarose gel, along with a | kb DNA ladder and a
100 bp DNA ladder.

2.3.7 DNA Gel Electrophoresis

Agarose gel electrophoreses is used for separating DNA fragments greater than 500 bp in length.
The DNA is separated into a series of bands, with the smaller bands migrating through the gel
further. The size of each fragment may be determined by comparison to standard DNA
fragments of known size in commercial DNA ladders The DNA may be located on the gel by
staining with ethidium bromide which intercalates with the DNA and can be visualised using a

UV transilluminator (Hames and Hooper 2000).

Undigested plasmid DNA was electrophoresed on a 1.2 % agarose gel. Restriction enzyme
digested DNA plasmids were electrophoresed on 0.8 % agarose gel, while PCR products were
electrophoresed on a 1.5 % agarose gel. The appropriate amount of agarose was measured out
and added to 50 ml of IX TAE buffer in a conical flask. The agarose was melted using a
microwave. The gel was gently poured into the pre-assembled gel tray and the comb was added.
The gel was allowed to set for 30 min. The two temporary sides for the gel tray were removed
and the tray with the agarose gel was placed in the gel electrophoresis chamber. The gel was
immersed in IX TAE buffer and the comb was removed from the gel. The samples were
prepared by adding loading dye to a 1X final concentration to the DNA samples in a 0.5 ml
eppendorf which was then centrifuged briefly to gather the contents at the bottom of the tube. A

1 kb DNA ladder (0.5 (j.g9) and a 100 bp DNA ladder (1 (ig) were also prepared to determine the
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size of the DNA samples run on the gel. The samples were loaded and the power source was
switched on and set at 75 V. The gel was allowed to run for 45 min. The power was switched
off. The gel was removed from the gel tray and immersed in 400 ml of ultrapure H20 containing
0.03 mg ethidium bromide. The gel was stained for 15 min. It was then destained for 10 min in
ultrapure H2Q The DNA in the gel was viewed using an Alpha Innotech Alphalmager HP gel

imaging system.

2.4 RNA Analysis

2.4.1 RNase-free Environment

RNA, unlike DNA, is easily degraded by hydrolysis, due to the extra -OH group. RNase
enzymes degrade RNA and are ubiquitous and resistant to degradation. It is extremely difficult
to prevent them from contaminating the RNA in a sample. Precautions must be carried out to
prevent or minimize this, such as wearing clean gloves at all times, using aseptic technique and
working in a laminar flow cabinet. RNases are resistant to autoclaving and sterile RNase-free
plastic pipettes, tips and containers must be used. To ensure solutions are free of RNase
contamination, they can be treated with diethylpyrocarbonate (DEPC) and then autoclaved. This
is a hazardous chemical and, along with other chemicals used, must be treated with caution

(Sambrook and Russell 2001).

2.4.2 RNA Extraction from Cultured Cells

The medium was firstly removed from the culture vessel and 1 ml of TriReagent was added per
10 cm3of culture vessel surface area. The TriReagent was pipetted up and down several times to
mix and the lysate was transferred to a 1.5 ml sterile eppendorf. The eppendorf was left to stand
at room temperature for 5 min to allow complete dissociation of nucleoprotein complexes. Two
hundred microlitres of chloroform were then added per 1 ml of TriReagent to the eppendorf, the
lid closed tightly and vigorously shaken by hand for 15 s. The eppendorf was allowed to stand at
room temperature for 5 min. The eppendorf was centrifuged at 12,000 rpm for 15 min at 4°C.
The mixture separated into a lower pink phenol-chloroform phase containing protein, a white
interphase containing DNA and an upper aqueous phase containing RNA. The upper aqueous

phase was transferred to a fresh 1.5 ml sterile eppendorf and the RNA was precipitated by adding
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0.5 ml isopropyl alcohol per 1 ml TriReagent used in sample preparation. The contents were
mixed by pipetting up and down and the eppendorf was then allowed to stand at room
temperature for 10 min. The eppendorf was then centrifuged at 12,000 rpm for 10 min at 4°C.
The supernatant was carefully removed after centrifugation and the RNA pellet was washed with
the addition of 1 ml 70 % ice-cold ethanol per 1 ml of TriReagent used. The tube was inverted
several times (not vortexed) and centrifuged at 7,500 rpm at 4°C for 5 min. The supernatant was
removed and the RNA pellet was allowed to air-dry for 5 min. The RNA pellet was then
dissolved in 40 (d of DEPC-treated H20 and pipetted up and down gently to ease dissolution.
The eppendorf was incubated at 60°C for 10 min and then stored at -20°C.

2.4.3 RNA Gel Electrophoresis

The extracted RNA was quantified as described above. The quality of the RNA extracted from
the cells was then determined using denaturing gel electrophoresis. In order to remove any
RNases from the RNA gel electrophoresis apparatus, the RNA gel electrophoresis tank, gel tray,
comb and lid were washed in detergent and rinsed with DEPC-treated H20. The apparatus was
then rinsed with 100 % ethanol and allowed to air dry. It was then rinsed thoroughly with DEPC-

treated H2 and again allowed to air dry.

A 1% formaldehyde denaturing gel was made up by mixing the following:

Agarose 05¢
DEPC-treated H20 43.5 ml

The agarose was dissolved using a microwave. The agarose gel solution was cooled to 60 °C and

the following were added in the fume hood, forming a 50 ml gel:

10X MOPS running buffer 5.0 ml
Formaldehyde 37 % 15 ml
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The gel was poured in the fume hood, the comb was added and the gel was allowed to set for
30 min. The gel was immersed in IX MOPS running buffer and pre-run for 5 min at 75 V. Each

RNA sample was prepared by mixing the following in an eppendorf:

RNA 6.0 pl
10X MOPS Running Buffer 1.0\l
Formaldehyde 104
Formamide 3.0 |il
Loading dye oM

The eppendorf was briefly centrifuged to collect the contents at the bottom of the tube. The
samples were loaded into the wells and the gel was electrophoresed for 45 min at 75 V. The gel
was stained in 400 ml of ultrapure H20 containing 0.03 mg ethidium bromide for 1 hr. The gel
was destained in DEPC-treated H:Ofor 10 min. The RNA samples were then visualized on the

gel using an Alpha Innotech Alphalmager HP gel imaging system.

2.4.4 Reverse-Transcription (RT)

Reverse-transcription is the conversion of messenger RNA (mRNA) to its complementary DNA
(cDNA) using a reverse transcriptase enzyme. This enzyme uses the mRNA strand as a template
while directing deoxyribonucleotides into the growing chain. Thus, when an A,G,C or U
nucleotide of the template RNA strand is encountered, the complementary deoxyribonucleotide
(i.e., T, C, G or A) is encorporated into the growing DNA strand. This strand is called the first
strand cDNA (Glick and Pasternak 2003). Reverse transcriptase produced by the Moloney
Murine Leukemia Virus (M-MLV) was used in this study.

2.4.4.1 Reverse Transcription for Standard End-Point PCR

In a sterile 0.5 ml eppendorf, 2 [ig of RNA were added to 1 fj.g of random primers. To this,
nuclease-free H.O was added to a final volume of 15 jd. The eppendorf was placed in a Techne
TC-3000 thermocycler and heated to 70°C for 5 min to melt secondary structures within the
template RNA. The eppendorf was then immediately placed on ice to prevent secondary

structures from reforming. The following components were then added to the tube:
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M-MLV 5X Reaction Buffer 5.00 |xI

dNTP mixture (Final concentration

10 mM each dNTP) 5.00 [xI
RNasin® Ribonuclease Inhibitor (25 units) 0.63 M
M-MLV RT (200 units) 1.00 ul
Sterile Ultrapure H20 13.37 ul
Final Volume 25.00 ™

The eppendorf was centrifuged briefly to collect the contents at the bottom. It was then placed in
the thermocycler at 37°C for 60 min. Afterwards, the eppendorf containing the first strand cDNA

produced was stored at -20°C.

2.4.4.2 Reverse Transcription for gPCR using the GoScript Reverse Transcription System
The RNA samples were treated with DNase prior to reverse transcription for g°PCR analysis to
remove any contaminating genomic DNA. This was carried out by placing the following in a

sterile eppendorf:

RNA (3 (ig) A Xfxl
RQ1 RNase-free DNase 10X Reaction Buffer 1il
RQ1 RNase-free DNase (1 u/|lig RNA) 3 il
Nuclease-free H20 X m
Final Volume 10 [«

The eppendorf was incubated at 37°C for 30 min.One microlitre of RQ1DNase StopSolution
was then added to terminate the reaction. The eppendorfwas incubated at 65°C forl0 min to

inactivate the DNase.

In a 0.5 ml sterile eppendorf, 1 (xgof DNase-treated RNA was added to 0.5 |xg of random primers
and nuclease-free H2 to give a total final volume of 5 [X. The eppendorf was placed in a
thermocycler and heated to 70°C for 5 min to melt secondary structures within the template
RNA. The tube was then immediately placed on ice to prevent secondary structures from

reforming. The following components were then added to the eppendorf in the order listed:
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GoScript 5X Reaction Buffer 4.0 pi

MgCI2 (Final concentration 1.5 mM) 1.2 pi
PCR Nucleotide Mix (Final concentration

0.5 mM each dNTP) 1.0 pi
Recombinant RNasin Ribonuclease Inhibitor (20 units) 0.5 pi
Go Script Reverse Transcriptase 1.0 pi
Nuclease-Free H20 7.3 ul
Final Volume 15 pi

The tube was centrifuged briefly to collect the contents at the bottom. It was then placed in the
thermocycler at 25°C for 5 min to anneal. The eppendorf was then incubated in the thermocycler
at 42°C for 1 hr. The resulting cDNA was stored at -20°C. Prior to gPCR, the reverse

transcriptase was inactivated by heating to 70°C for 5 min.

2.4.5 Polymerase Chain Reaction (PCR) Primer Design

Primers for end-point PCR analysis were designed using the Primer3 online program

(http://primer3.sourceforge.net/) with the default settings.

Real-time PCR primers and probes were designed by the manufacturers (Thermo Scientific

Dharmacon) on submission of the accession numbers of the genes of interest.

2.4.6 End-Point PCR Analysis

Polymerase chain reaction (PCR) is an extremely simple yet powerful technique. It allows
enormous amplification of any specific sequence of DNA provided that short sequences either
side of it are known. A PCR reaction contains the target DNA, two primers that hybridise to
flanking sequences on opposing strands of the target, all four deoxyribonucleotide triphosphates
and a DNA polymerase. PCR consists of three steps: denaturation, primer annealing and
elongation, which take place at different temperatures. Automated thermocyclers are used to

cycle the reaction many times, taking only a few hours (Hames and Hooper 2000).
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Per 50j.il reaction: Hi
5X Green Go Taq Buffer 10.00
dNTP mix (Final concentration

10 mM each dNTP) 1.00
Go Taq DNA polymerase (5 U/[1i)  0.25

Forward primer 10pM 1.00
Reverse primer IQjiM 100
Template cDNA 2.00
Sterile Ultrapure 11:0 34.75
Total volume 50.00

The reaction tubes were briefly centrifuged and placed in a Techne TC-3000 thermocycler. The

corresponding PCR program was run (with a heated lid at 105°C).

B-actin, ICAM-1 and VCAM-1 PCR Program:

Initial Dcnaturation 95°C for 3 min cycle

Dcnaturation 95°C for45s 7 P-actin: 18 cycles
Annealing 61°C for45 s ICAM-1, VC.AM-1: 30 cycles
Extension 72°C for 45 s

Final Extension 72°C for 7 min I cycle

A20, ABIN-1, ABIN-2 and Cezanne PCR Program:

Initial Denaturation 95°C for 3 min lcycle

Denaturation 95°C for45s "

Annealing 60°C ford5s > A20, ABIN-1: 23 cycles
Extension 79°C for 45 s ABIN-2, Cezanne: 25 cycles
Final Extension 72°C for 7 min lcycle
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The PCR products were visualised on agarose gels (without the addition of loading dye, due to

the use of Green Go Tag buffer in the PCR reaction mixture) as described in section 2.3.7 above.

2.4.7 Quantitative PCR (qPCR)

Quantitative or real-time PCR is a technique which amplifies specific DNA sequences and
measures their concentration simultaneously using fluorescence-detecting thermocyclers. The
rate of accumulation of amplified DNA is plotted over the course of an entire PCR. Therefore,
gPCR has the ability to quantify the DNA product during the exponential phase of the PCR,
yielding improved precision in quantifying the DNA. It is also less sensitive to differences in the

efficiency of amplification (Sambrook and Russell 2001).

The fluorescent reporter probe method was used to detect amplified DNA. This method uses an
oligonucleotide probe that binds to an internal sequence with the target DNA sequence. The
probe has a fluorescent group attached at the 5’ end and a fluorescent quencher at the 3’ end
(Sambrook and Russell 2001). Eclipse probes were used which, in the unhybridised form, are
quenched due to their coil formation, where the reporter and quencher are close together. When
hybridised to a sequence within the target with the aid of minor groove binders, however, the
probe is linearised and the reporter is separated from the quencher, resulting in fluorescence. The
amount of target DNA produced is directly proportional to the intensity of the fluorescence (Bio-

Rad Laboratories Inc. 2011).

The reagents were thawed on ice, mixed and briefly centrifuged before use. The Solaris Master
Mix was not vortexed. The reaction mix was prepared for a Thermo-Fast non-skirted 96-well

PCR plate (Abgene) as follows:

Per well
Solaris gPCR Master Mix (2X) 12.50 \i\
Solaris Primer/Probe Set (20X) 1.25\il
cDNA Template 2.00 \i\
PCR grade H:0 4.25 ul
Final Volume 25.00 pil
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The plate was sealed with SealPlate (Excel Scientific) optically clear film and the wells were
checked for bubbles. Any bubbles, if present, were removed. Each sample was analysed in
triplicate and a no template control (containing PCR grade H20) was included to assess any
potential reagent contamination. The plate was placed into a Bio-Rad iCycler iQ Optical Module

gPCR instrument and the following thermal cycle was run:
Enzyme Activation 95°C for 10 min 1cycle

Denaturation

) ) 40 cycles
Annealing/Extension

The fluorescent data was collected at the annealing/extension step at each cycle. This program
was run for each of the genes of interest (A20, ABIN-1, ABIN-2, Cezanne) and for the control
gene, GAPDH). The 2'AACT (Livak) method (Livak and Schmittgen 2001) was used to calculate
the change in gene expression levels using the cycle threshold (Cx) values obtained (the cycle

number at which the fluorescence produced crosses the threshold) as described below.

1 The Ct of the target gene was normalized to that of the reference gene, for both the test sample

and the calibrator sample as follows:

ACx(test) - C t(A20 TNF4h) —C t(GAPDH TNF 4 h)
ACx(calibrator) = C t(A20 TNF Oh) - Cx(GAPDH TNF 0 h)
2. The ACT of the test sample was normalized to the ACx of the calibrator:
AAC-x —ACx(test) ” ACx(calibrator)
3. The expression ratio was then calculated:
2-aact _ Normalised expression ratio

The data obtained was statistically analysed using Student’s t tests in Microsoft Excel.
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2.5 Cell Culture Techniques

Cell culture involves the growth of cells in the laboratory where the appropriate conditions for
survival and proliferation of the cells are provided. Cell culture techniques are widely used for
research and diagnostic purposes and in the pharmaceutical industry. Strict adherence to aseptic
technique and the use of sterile solutions and equipment are necessary to avoid bacterial, viral

and/or fungal contamination of cells in culture (Phelan 1998).

Cell culture techniques were carried out aseptically, in a sterile environment using a Faster
Ultrasafe Grade Il Biohazard laminar flow cabinet. The cells were visualised using an Olympus

CKX41 inverted microscope.

2.5.1 Cell Culture

Human immortalised synovial fibroblasts (K4 IM cell line) and human immortalised
chondrocytes (SW 1353 cell line) were grown in RPMI-1640 medium supplemented with 10 %
(v/v) heat-inactivated fetal bovine serum (FBS), 100 U/ml penicillin, 100 fig/ml streptomycin and
10 mM/ml L-glutamine in Sarstedt 75 cm3 culture flasks which were incubated in a humid
environment at 37°C with 5 % CO2 in a Binder cell culture incubator. Cells were fed when
required by removing the used medium which was discarded into disinfectant and replacing it
with an appropriate volume of fresh supplemented media (pre-heated to 37°C). If feeding for the
first time since thawing and seeding cells, only half of the used medium was removed and
replaced with fresh medium. Prior to feeding, the cells were viewed under the microscope to
determine % confluency and checked for the presence of contamination. The cells were
subcultured when approximately 80 % confluent. The medium was removed from the flask and
the cells were washed with approximately 2 ml sterile phosphate-buffered saline (PBS) which
was then removed. The cells were trypsinized by adding the appropriate volume of trypsin-
EDTA (enough to cover the bottom surface of the flask) and placed back in the incubator (at
37°C) for 5 min or until the cells were observed to detach from the surface of the flask. An equal
volume of supplemented medium was then added to the flask to neutralise the trypsin-EDTA
solution. The cell suspension was transferred into a sterile centrifuge tube and centrifuged at 400
rpm for 5 min. The supernatant was removed and discarded into disinfectant. The cell pellet was

resuspended in the appropriate volume of supplemented medium and transferred into a new cell
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culture flask. Approximately 15 ml of supplemented medium were added to the flask. The

passage number of the cells was recored. The flask was then placed in the CO2incubator.

2.5.2 Cryopreservation of Cells

Early passage number cells were grown up and then cryopreserved in a mixture of dimethyl
sulfoxide (DMSO), FBS and supplemented medium and stored at -80°C in order to build up cell
stocks. The cells were grown to approximately 70 % confluency. The cells were trypsinized as
described above. The cell suspension was centrifuged at 800 rpm for 5 min. The supernatant
was removed and discarded. One millilitre of FBS and 3.5 ml of supplemented media were
placed in a fresh sterile 15 ml tube. The cell pellet was transferred into the FBS/supplemented
medium mixture and mixed by pipetting up and down once or twice. The mixture was aliquotted
into five 1 ml sterile cryotubes which were pre-labelled with the cell type, date and passage
number. One hundred microlitres of DMSO were then added to each cryotube.  The cryotubes

were stored in a New Brunswick Scientific Ultra-Low Temperature Freezer at -80°C.

2.5.3 Heat Inactivation of Serum

Fetal bovine serum (FBS) at room temperature was placed in a clean waterbath at 56°C for 30

min. The serum was aseptically aliquotted into 50 ml sterile containers, labelled and stored at

-20°C.

2.5.4 Supplementation of Media

Supplemented RPMI (500 ml) was prepared as follows:

RPMI culture medium 440 ml
Inactivated FBS 50 ml
Penicillin 10,000 U/ml Streptomycin 10mg/ml 5ml
L-glutaminc 2 mM/ml 5 ml

73



The bottle of media was labelled “supplemented” and dated and placed in the cell incubator at
37°C for 24 hr to check for the presence of contamination. The supplemented medium was then

stored at 4°C.

2.5.5 Counting Cells

Cell counts were obtained using an Improved Neubauer hacmocytometer. The cell monolayer
was trypsinized and the trypsin was neutralised with the addition of supplemented medium. The
cell suspension was mixed thoroughly to disperse any clumps and 90 fd were transferred into a
sterile eppendorf. Ten microlitres of Trypan blue solution were added to the eppendorf and
mixed. Trypan blue is a viability stain which dyes dead cells blue. Viable cells are not stained
and remain clear. The haemocytometer and a coverslip were cleaned with lens tissue dipped in
70 % ethanol. The coverslip was then placed over the grooves and semi-silvered counting area of
the haemocytometer. Twenty microlitres of the cell suspension/Trypan blue mixture were
transferred to the haemocytometer counting chamber. The viable cells were visualised and
counted using a light microscope and 10X objective fens. The number of viable cells/ml was

determined using the following formula:

Average cell count X Dilution factor X Volume of Haemocytometer

2.5.6 TNF-a Stimulation of Cells

Cells were grown in Sarstedt 25 cm2 culture flasks to approximately 80 % confluence and then
serum-starved by replacing the supplemented medium with serum-free RPMI-1640 medium
containing 100U/ml penicillin, 100jj,g/ml streptomycin and 2mM/ml L-glutamine for 24 hr. The
cells were then stimulated with 10ng/ml recombinant human TNF-a which had been resuspended
in PBS with 0.1 % BSA (+TNF). The medium in control wells/flasks was replaced with either
fresh serum-free medium (-TNF) or serum-free medium containing I|il/ml vehicle (containing
only PBS with 0.1 % BSA) (Veh). The flasks were then incubated until the appropriate time
period had elapsed.
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2.5.7 Transfection of Cells using Turbofect Transfection Reagent

Cells were grown in Sarstedt 75 cm3cell culture flasks to 70-80 % confluency. The cells were
then trypsinized and counted using a haemocytometer. Cells were seeded into Thermo Scientific
Nunc Nunclon Delta Surface 24-well culture plates at a concentration of 1.4 x 104 cells per well.
Twenty-four hours later, the cells were serum-starved by replacing the supplemented medium
with serum-free medium, as described above. Transfections using Turbofect were carried out

24 hr later in triplicate, according to the manufacturer’s instructions (Turbofect, Fermentas). A
total of 900 ng of Qiagen-purified plasmid DNA were added to 50 |i.I of serum-free medium
(SFM) in a sterile eppendorf, followed by the addition of 1 (il of the transfection reagent,
Turbofect, for each well. The contents were mixed and briefly centrifuged, before incubating at
room temperature for 15 min. The medium in each well was removed. The DNA/SFM/Turbofect
mixture was added to 0.5 ml of SFM, mixed and then added to the well. The plate was incubated
at 37°C in a C02incubator for 24 hours.

2.5.8 Transfection of Cells using Genejuice Transfection Reagent

Cells were grown in 75 cm3 Greiner Bio-one bellstar cell culture flasks to 70-80 % confluency.
The cells were then trypsinized and counted using a haemocytometer. Cells were seeded into a
24-well culture plate at a concentration of 0.5 x 105 cells per well. Twenty-four hours later the
cells were transfected using Geneluice as follows: Working solutions of Qiagen-purified plasmid
DNA were prepared at a concentration of 100 (ig/JJ.I using TE buffer. Using the plasmid working
solutions, a total of 325 ng of DNA were diluted to a volume of 25 jal with SFM for each well to
be transfected. In a separate eppendorf, 0.75 ul of Genejuice were diluted to a volume of 25 (jl
with SFM for each well to be transfected. This was incubated at room temperature for 5 min and
then added to the diluted plasmid DNA and mixed. The DNA/GeneJuice/SFM mixture was
incubated at room temperature for 10 min. The medium in each well was removed. The
DNA/GenelJuice/SFM mixture was added to 450 (il of supplemented medium, mixed and then

added to the well. The plate was incubated at 37°C in a CO: incubator for 24 hours.
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2.5.9 Luciferase Assays

The luciferase assays were carried out 24 hours post transfection, as per the manufacturer’s
instructions (Promega). The medium was removed from the wells of the 24-well plate and each
well was rinsed with 0.5 ml sterile PBS. The cells in each well were lysed with the addition of
100 |il of IX Passive Lysis Buffer and the plate was placed in a shaking incubator for 15 min at
room temperature. The lysates were assayed for firefly (Photinus pyralis) luciferase and Renilla
(Renilla reniformis) luciferase activities using the Dual Luciferase® Reporter (DLR™) Assay
System and a manual single-sample Modulus luminometer. For each sample to be assayed,

100 [il of Luciferase Assay Reagent Il (LARII) were predispensed into a 1.5 ml eppendorf.
Twenty microlitres of cell lysate were transferred into the eppendorf and pipetted up and down
five times to mix (not vortexed). The eppendorf was placed into a Turner Biosystems Modulus
single sample luminometer and the firefly luciferase activity was measured. To the same
eppendorf, 100 ul of Stop & Glo® Reagent were added and the contents were vortexed briefly to
mix. The eppendorf was placed back in the luminometer and the Renilla luciferase activity was
measured. Firefly luciferase values were normalised to Renilla luciferase activity and the results
were presented in terms of the mean fold change plus the standard error of the mean (SEM)
compared to the NBRE reporter construct alone. The data obtained was statistically analysed

using Student’s t tests in Microsoft Excel.

2.5.10Green Fluorescent Protein (GFP) Assay

In order to ascertain the transfection efficiency of the transfection reagent Turbofect for each of
the two cell lines, K4 IM synoviocytes and SW 1353 chondrocytes, GFP assays were carried out
on both cell lines and the results compared. Both cell types were seeded into 24-well culture
plates at densities of 1.4 x 104 cells/well and 2.5 x 104 cells/well. The pmaxGFP expression
vector was transfected into each cell line at concentrations of 100, 250 and 500 ng/well using
Turbofect, as described in section 2.5.7 above, and 24 hr later both cell types were viewed and
photographed using the Olympus 1X51 inverted fluorescent microscope with a mercury lamp and
Olympus DP70 digital camera system. The percentage transfection efficiency was determined by

calculating the ratio of the number of cells expressing GFP to the total number of cells present.
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2.5.11 Test for Mycoplasma

Mycoplasmas are one of the smallest free-living forms of bacteria and lack a bacterial cell wall.
They are found widely in nature, the majority being host-specific commensals colonizing many
species including plants, insects, mammals and humans. Mycoplasmas are a major cause of cell
culture contamination resulting in a substantial change in the biological characteristics of cells
(Volokhov et al. 2011). The Venor® GeM Mycoplasma Detection Kit for conventional PCR was
used to test cell cultures for the presence of Mycoplasma contamination. The kit allows for the
detection of Mycoplasma (M.) orale, M. hyorhinis, M. arginini, M. fermentans, M. salivarium, M.
hominis, M. pneumoniae, M. synoviae, Acholeplasma laidlawii and Ureaplasma species.
Mycoplasmas are identified by amplifying the 16S rRNA coding region of the mycoplasma
genome. The test was carried out according to the manufacturer’s instructions (Minerva
Biolabs). All reagents used in the test (including 10 X Reaction buffer) were provided in the kit
except for the DNA polymerase.

One hundred microlitres of cell culture supernatant from cultures at 90 - 100 % confluence were
transferred into a sterile 0.5 ml eppendorf. The sample was incubated at 95°C for 5 min and
briefly centrifuged to pellet cellular debris. Two microlitres of this sample were used in the PCR
reaction. Samples were tested in duplicate. An internal control was included in all samples.

PCR grade water was used for the negative control.

Per 25 plreaction:

PCR grade water 15.3
10X Reaction buffer 2.5
Primer/Nucleotide mix 2.5
Internal Control DNA 2.5

Go Tag DNA Polymerase (5 U/ jil) 0.2
Sample/Positive/Negative Control 2.0

Total volume 25.0

The reaction tubes were briefly centrifuged and placed in a Techne TC-3000 thermocycler. The

following PCR program was run (with a heated lid at 105°C).
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Initial Denaturation 94°C lor 2 min 1cycle

Denaturation 94°C for 30 s i
Annealing 55°C for30s L 39 cycles
Extension 72°C for 30 s 3

Cooled to 4° C

The PCR products, along with DNA markers, were electrophoresed on a 1.5 % agarose gel at 100
V for 40 min. The gel was stained in approximately 400 ml of ultrapure H?0 containing 0.03 mg
ethidium bromide. The gel was stained for 15 min. It was then destained for 10 min in ultrapure
H20. The DNA in the gel was viewed using an Alpha Innotech Alphalmager® HP gel imaging

system.

An internal control DNA band at 191 bp in all samples indicated that the PCR was successful. A
band at approximately 267 bp (other than in positive control) would have indicated the presence

o Nooe-v
of mycoplasma contamination.
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Chapter 3

Bioinformatic Analysis
of A20, ABIN-1, ABIN-2 and Cezanne
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3. Bioinformatic Analysis of A20, ABIN-1, ABIN-2 and Cezanne

3.1 Introduction

The objectives of the study were to investigate the potential role of the NR4A subfamily of
nuclear receptors in the regulation of A20 and AZ20-interacting proteins and to examine the
potential of A20 as a means of modulating the NR4A subfamily in the pathogenesis of
rheumatoid arthritis. The three members of the NR4A subfamily bind to the same cis-acting
consensus sequence (AAAGGTCA), known as NBRE or NGFI-beta (nerve growth factor-
induced clone B) response element, in order to regulate target gene expression (Wilson et al.
1991). Bioinformatic analysis of A20 and the A20-interacting genes was carried out to determine
whether the transcription factor binding site for the NR4A subfamily (the NBRE site) is present
in these genes. If the NBRE binding site is identified in these genes, this would give an
indication that the NR4A subfamily of nuclear receptors may directly lead to the induction of
A20, ABIN-1, ABIN-2 and Cezanne gene expression, potentially adding to the few known target

genes of this subfamily of orphan nuclear receptors.

3.2 Bioinformatic Analysis

The Genomatix software package (http://www.genomatix.de) was used for all bioinformatic
analyses. The promoter regions of the genes of interest were identified using Gene2Promoter, a
Genomatix software tool. Gene2Promoter permits the extraction and analysis of the promoter
sequences of genes. The Gene IDs of the genes of interest were obtained from the National
Center for Biotechnology Information (NCBI) and entered into the Gene2Promoter input page.
The resulting promoter regions were analysed from 1000 bp upstream of the transcription start
site to 100 bp downstream. Matlnspector, another Genomatix software tool, was used for the

identification of transcription factor binding sites (TFBSs) within these promoter regions.

Potential consensus NBRE sequences were identified in the promoter regions of A20, ABIN-1,
ABIN-2 and in two Cezanne promoters identified by Gene2Promoter (see Table 3.1 and Fig. 3.1).
However, this transcription factor binding site was located in the promoter of what Genomatix

termed a “less relevant transcript” of ABIN-2. Genomatix defines a less relevant transcript as
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being one that is most likely not relevant in creating the main product of a gene, based on

evaluation of the exon/intron structure of all alternative transcripts within a locus.

Genomatix provides the DNA sequences identified within DNA sequences with core similarity
and matrix similarity scores (given in Table 3.1). Core similarity is the score given for the
similarity between the highest conserved bases or “core sequence” (usually four bases written in
capital letters) within the defined TFBS and the putative binding site identified in the promoter of
interest. The maximum core similarity score is 1.0 and is given when the core sequence of the
identified binding site matches the predefined TFBS exactly. The matrix similarity is the value
given for the complete sequence of the binding site. Genomatix describes a “good” match as

having a matrix similarity of > 0.80.

The NR4A binding site (NBRE) sequence is AAAGGTCA (Wilson et al. 1991).

Table 3.1 Potential NBRE sequences identified within A20 and A20-interacting Genes

using Genomatix Software

Gene Potential NBRE Position  Strand Core Matrix
sequence from - Similarity Similarity
A20 cca aGAGGtca tgtg 379t-0393 (+) 0.763 0.862
ABIN-1 caa aAAGGtta gatg  214-228 ¢) 1.000 0.869
ABIN-2 gga aAAGGtcg cctc 536-550 (+) 1.000 0.871
Cezanne tag aAAGGtga gaga  184-198 ) 1.000 0.860
Cezanne gtc cAAGGtca catg 102-116 ) 1.000 0.929
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Fig. 3.1 Schematic representation of potential consensus NBRE sites (in blue) in the promoter
regions of A20 (TNFAIP3), ABIN-1 (TNIP1), ABIN-2 (TNIP2) and in two Cezanne (OTUD7B)

promoters generated using Genomatix. The black and grey patterned lines represent the sequence

of the promoters. __ 100 bp = Transcription Start Site

The promoters identified were analyzed for the NF-kB transcriptional binding site using

MatInspector. The results are shown in Fig. 3.2 below.

ABIN-1
A20

Cezanne

ABIN-2

Fig. 3.2 Potential consensus NBRE sites (blue) and NF-kB binding sites (pink) identified in the
promoter regions of A20, ABIN-1, ABIN-2 and Cezanne using Genomatix software. The black

and grey patterned lines represent the promoter sequences. Transcription Start Site.
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Genomatix extracts several promoters for each gene of interest from the information available in
the databases. The promoter of A20 in which the NBRE site was detected does not contain any
NF-kB binding sites. NF-kB is known to bind to the promoter of A20 and induce its
transcription. A study by Krikos et al. (1992) found that TNF-a induction of A20 required two
NF-kB elements located 54 and 66 bp upstream of the transcription start site. These two NF-kB
binding sites appear to be present in the A20 promoter above, however. The NBRE TFBS was
identified in the promoters of Cezanne and ABIN-1 which also contain NF-kB binding site(s).
ABIN-1 has been identified as an NF-kB target gene in the Hodgkin’s disease derived cell lines
L428 and HDLM2 and in keratinocytes (Hinz et al. 2002; Hinata et al. 2003). Therefore, the NF-
kB transcriptional binding sites identified within the ABIN-1 promoter may mediate induction of
this gene. Furthermore, the NBRE site found within this promoter may be involved in the

induction of ABIN-1.

In order to elucidate whether the potential NBRE TFBSs identified may be functional, the A20
and the A20-related gene promoters were analysed to determine if a common promoter model
containing the NBRE site is present. According to Genomatix, functionality may be determined
by the context of the promoter sequence. If a TFBS is located within a framework of two or
more binding sites, this provides evidence that the individual sites in the framework may be
functional. Therefore, identification of a promoter model representing a framework of two or
more TFBSs within a defined distance and strand orientation can provide an indication that the

matching sites are functional because it is more specific (Genomatix 2009).

In order to search for a promoter model containing the NBRE site, Frameworker was used which
is a Genomatix software tool designed for the comparative analysis of promoter sequences and
allows the extraction of a common framework of TFBSs from a set of DNA sequences
(Genomatix 2009).

The promoters containing the NBRE site were selected for Frameworker analysis and the default
parameters were used. It should be noted that Frameworker uses strand-specific TFBSs for
constructing promoter models, meaning that Frameworker only compares TF sites with the same
strand orientation. Several promoter models containing the NBRE site were found that were
common to both ABIN-1 and Cezanne genes (see Fig.3.2), indicating that this binding site may

be functional in these A20-interacting genes. These models included the TF matrix families
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E2FF, MOKF, MYT1, NR2F, RXRF and SORY. The definition of these TF matrix families are

given in Table 3.2.

00 | Strttd Hrttnh.
1 ViNEff Optimized (min. 0.87)
2 VINRF . Optmized (min. 0.76)
3 VIRRF - Optimized (min. 0.81)
I VISORY + Optmized (mil. 0.87)
5 VIMOKF + Optimized (mil. 0.98)
Gahicd ouput
B it Sin Hatmsk.
1 ViHYTI + Optimized (wi. 0.80)
2 W\BRE . Optirmized(min. 0.86)
3 VIRXRf m  Optimized (min. 0.81)
4 VIEXFF W Optimized (min. 0.76)
Graphical output
Big
SKP.12373B
TWPI-
0XP.182153
OTu97J-
HifffiflU f
00bp

Dot* oiorti Com to
3-3bp

2-2p
134-137 bp 2 matchesin 2 seq. (40 %), 2 non-overtapping

149-151 bp

CoretolMifeleMt Grato
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2 matches in 2 seq. (50 %), 2 non-overiappin
141-144bp =4 5% 3PP

ABIN-1

Cezanne

mrche

7.98562e-07

NEE
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Fig. 3.3 Examples of promoter TF models containing the NBRE site which were identified by

Frameworker as being common to the promoters of ABIN-1 and Cezanne. The coloured semi-

circles represent the matrix families of TFBSs. The black and grey patterned lines represent the

sequence of the promoters.

present on the positive or negative strand, respectively.

Symbols above or below the sequence line represent the TFBSs
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Table 3.2 Definitions of TF matrix families that have been identified in promoter models which
are common to the promoters of ABIN-1 and Cezanne and which also contain the NBRE site.

TF matrix Definition (Genomatix 2009)

family

E2FF E2F-myc activator/cell cycle regulator

MOKF Mouse Krueppel-like factor

MYT1 Myelin transcription factor 1 neuronal C2HC zinc finger protein
NR2F Nuclear receptor subfamily 2 factors

RXRF Retinoid X receptor heterodimer binding sites

SORY SOX/SRY -sex/testis determining and related HMG box factors

Another Genomatix software tool, Modellnspector, was also used to analyse the promoter
sequences. Modellnspector uses a library of predefined promoter modules to examine DNA
sequences for matches to these models. This library contains models for functional subunits of
promoters. All promoter modules in the library are experimentally verified. The promoters were
searched for promoter modules containing the NBRE binding site. The NBRE AP1F 01 module
(from the Module Library Version 5.4) was identified within the ABIN-1 promoter. Genomatix
states that NUR77 and c-Jun have additive effects on the StAR (mouse steroidogenic acute
regulatory protein) promoter. The fact that the NBRE site detected is part of a promoter module

provides further evidence that this site may be functional in ABIN-1.

In addition, Modellnspector also found several NF-kB-containing promoter modules within the
NBRE-containing ABIN-1 promoter. These were ETSF NF-kB 02, NF-kB NF-kB NF-kB 01,
NF-kB RBPF 01 and NF-kB SP1F 04. As the NF-kB sites identified within ABIN-1 form part of
several promoter modules, this supports the theory that they may mediate transcriptional

activation of this gene.

The NBRE site, being present in the promoter of a less relevant transcript of ABIN-2, indicates
that this TF site is not likely to be functionally significant in this gene. The NBRE site is present
in a promoter of A20 in which no NF-kB TFBSs were detected and NF-kB is known to induce
A20 expression (Krikos et al. 1992). This also indicates that the NBRE site identified in this
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gene may not be functionally significant. However, the Frameworker and Modellnspector results
point to the NBRE binding site being functional in ABIN-1 and Cezanne.

The promoter regions of the A20-related genes were examined further in order to ascertain if they
have a similar promoter organizational structure. If a common promoter model is found in all
four genes, it could then be used to search the human genome for potential co-regulated genes not

previously identified as being functionally related.

Modellnspector was again used for this analysis. The promoters identified by Gene2Promoter
can be assigned to several alternative transcripts within a locus. Genomatix assigns the alternative
transcripts with three possible quality levels. Gold transcripts are experimentally verified 5’
complete transcripts. Silver transcripts are those with a 5’ end confirmed by Promoterlnspector
prediction and bronze transcripts are annotated with no confirmation for 5° completeness. Using
Modellnspector, the Genomatix-defined gold transcript promoters of A20, ABIN-1, ABIN-2 and
Cezanne genes were searched for common promoter modules from Promoter Module Library
Version 5.0 and default parameters were used. Two common promoter modules were identified
as being present in the gold transcript promoters of the four genes of interest.and these are given
in Table 3.3. The first was SP1F SP1F 04. According to Genomatix (2009) two SP1 binding
sites are essential for podoplanin promoter activity. Podoplanin promotes the formation of
elongated cell extensions and increases endothelial cell adhesion, migration and tube formation
(Hartz 2009). The second was EGRF SP1F 01. Egr-1 and Sp family proteins play a reciprocal
role in the control of expression from the PTPIB (protein tyrosine phosphatase) and the ABCA2
(adenosine 5’triphosphate-binding cassette, subfamily A, member 2) promoters (Genomatix

2009).
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Table 3.3 Promoter modules identified using Modellnspector as being common to
A20, ABIN-1, ABIN-2 and Cezanne promoters
Module Function

SP1F SP1F04 Two SP1 binding sites are
essential for podoplanin
promoter activity

EGRFSP1FOI Egr-1 and Sp family proteins
play a reciprocal role in the
control of expression from the
PTPIB (protein tyrosine
phosphatase) and the ABCA2
(adenosine 5’triphosphate-
binding cassette, subfamily A,

member 2) promoters

Several other promoter modules were identified using Modellnspector in three out of the four

genes analyzed and these are given in Table 3.4, along with their functions.
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Table 3.4 Promoter modules and their functions identified within A20

Module

ETSF SP1F02

IKRS AP2F
01

SP1F ETSF 02

SP1F SP1F 05

Frameworker was used to

and A20-interacting genes using Modellnspector (Genomatix 2009)

Function

Mannose receptor C type 1 (MRC1) gene expression is
regulated in part by co-operative interaction between the
ubiquitously expressed transcription factor SP1 and the
lymphoid/myeloid factor PU 1

Ap-2 is the main activator and Ikaros functions cooperatively
with it for maximal expression of the human P-LAP (placental
leucine aminopeptidase) gene. lkaros family members
function as activators of the CD8A gene and that their
associated activities are critical for appropriate chromatin
remodeling transitions during thymocyte differentiation and
lineage commitment.

Essential for transcriptional activation of the leukocyte surface

antigen CD53 gene in different cell lines.

Specificity protein (Sp) 1 and Sp3 can cooperatively regulate

survivin (apoptosis inhibitor 4) promoter activity.

Genes
Identified
A20,
ABIN-1,
ABIN-2

A20,
ABIN-1,
ABIN-2

ABIN-1,
ABIN-2,
Cezanne
A20,

ABIN-2,

Cezanne

identify other common promoter models not present in the

Modellnspector library (and therefore not verified experimentally) within the Genomatix-defined

gold transcript promoters of A20, ABIN-1, ABIN-2 and Cezanne. The parameter settings were

as default except for the minimum distance between elements parameter, which was set as lIbp.

The promoter models identified in all four genes in this manner are given in Table 3.5, along with

the model p values assigned by Genomatix. The p value is the probability of obtaining an equal

or greater number of sequences containing the model in a set of randomly drawn human

promoters. The lower the p value, the higher the specificity of the model.
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Table 3.5 Promoter models identified by Frameworker as being common to A20, ABIN-1,

ABIN-2 and Cezanne promoters and their p values indicating their specificity

Promoter Model p value
HESF SP1F 1.4 x 107
SP1FZBPF 6.6 x 10'4
EGRF EGRF 0.0021
ZBPFEKLF 0.0034
ZBPFSP1F 0.0073
ZBPF ZBPF 0.0115
NRF1 NRF1 0.0238

A definition of the transcription factor matrix families within these promoter models are given in

Table 3.6.

Table 3.6 Definition of TF matrix families within promoter models identified by Frameworker as

being common to A20, ABIN-1, ABIN-2 and Cezanne (Genomatix 2009)

TF matrix Function
family
EGRF Early growth response/nerve growth factor induced protein C & related
factors
EKLF Erythroid Kruppel-like factor
HESF Vertebrate homologues of enhancer of split complex
NRF1 Nuclear respiratory factor 1 bZIP transcription factor that acts on nuclear

genes encoding mitochondrial proteins

SP1F GC-Box factors SP1/GC

The Genomatix Promoter Database “Promoters of annotated genes” was searched for both the
modules identified using Modellnspector and the models found using Frameworker. This
database contains a subset of all human promoters. Promoters of hypothetical proteins or genes
that are annotated as “similar to” are excluded from this database. Numerous genes were

identified which contain each of the promoter module/model (~ 1500 genes). The search was
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then restricted to search only the sense (+) strand. The number of genes containing the model
HESF SP1F for example, was found to be approximately 650. Among these 650 genes were
regulatory factor X, 2 (involved in HLA class Il expression), serpin peptidase inhibitor clade B
(ovalbumin) member 9 (a serine protease inhibitor involved in many cellular processes), ephrin-
A3 (receptor protein-tyrosine kinase), and proteasome subunit, alpha type, 2. Some of these
genes may be co-regulated with the A20-related genes. However, the models would need to be

further refined in order to identify them. Future work may elucidate these genes.

3.3 Discussion

The NR4A subfamily of nuclear orphan receptors bind to the NBRE (nerve growth factor-
induced clone B response element) transcription factor binding site in the promoter of target
genes to control their expression. The NBRE site consists of the sequence AAAGGTCA (Wilson
et al. 1991). A20, ABIN-1, ABIN-2 and Cezanne were analysed using bioinformatic software
(Genomatix) to determine whether the NBRE site is present in these genes, potentially linking the

expression of these genes to the NR4A subfamily of nuclear receptors.

The Genomatix tool Gene2Promoter was uti“sfed to identify and extract the promoter regions of
A20, ABIN-1, ABIN-2 and Cezanne from the EIDorado human genome database for analysis.
Gene2Promoter extracts more than one promoter sequence for a given gene. These include
promoter sequences for alternative transcripts of a gene. The promoter regions analysed for each
gene consisted of 1000 bp upstream of the transcription start site and 100 bp downstream. The
Genomatix tool Matlnspector was used to analyse these regions for the presence of the NBRE
site. The NBRE binding site was indeed located within the promoters of each of the genes of
interest (Fig. 3.1), including two Cezanne promoters identified by Gene2Promoter. The NR4A
binding site was found to be present on the sense strand of A20 and ABIN-2 promoters and on
the antisense strand of ABIN-1 and both Cezanne promoters. The NBRE site was detected
within ABIN-1 and Cezanne promoters and Genomatix describes these promoters as
corresponding to gold ABIN-1 and Cezanne transcripts. When promoters are identified by
Gene2Promoter, it also provides a quality assessment for their corresponding transcripts - gold,
silver or bronze. Gold transcripts are experimentally verified and derived from mapping of full
length cDNAs. Silver transcripts are supported by Promoterinspector prediction at the 5° end.

Bronze transcripts are without additional evidence of their completeness.
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However, the ABIN-2 promoter on which the NBRE site was found was, according to
Genomatix, the promoter of a “less relevant transcript” of ABIN-2 - one which is not thought to
be relevant in creating the main gene product. In addition, the A20 promoter in which the NBRE
site was identified does not contain NF-kB binding sites. NF-kB is a known inducer of A20 and
this indicates that the NBRE site found within A20 may not be functional and that the NR4A
binding site found within ABIN-2 may not be relevant. NF-kB binding elements were identified
in the promoters of experimentally verified 5” complete transcripts of each of the genes of interest
(Fig. 3.3), including two NF-kB sites at approximately 50 bp upstream of the A20 promoter
transcription start site. TNF-a induction of A20 requires two NF-kB elements located 54 and 66
bp upstream of the transcription start site (Krikos et al. 1992) and the sites identified, among
others, appear to correspond with these. This means that the NBRE site found in an alternative
promoter may not be functional in controlling A20 expression. However, it may be that this A20

transcript is regulated by an alternative TF to NF-kB.

The sequences of the NBRE sites found within the promoters of the genes of interest are given in
Table 3.1, along with their locations. Genomatix provides the DNA sequences identified within
DNA sequences with core similarity and matrix similarity scores (also given in Table 3.1). Core
similarity is the score given for the similarity between the highest conserved bases or “core
sequence” (usually four bases written in capital letters) within the defined TFBS and the putative
binding site identified in the promoter of interest. The maximum core similarity score is 1.0 and
is given when the core sequence of the identified binding site matches the predefined TFBS
exactly, as is the case for the NBRE sites found within ABIN-1, ABIN-2 and Cezanne. The
matrix similarity is the value given for the complete sequence of the binding site. Genomatix
describes a “good” match as having a matrix similarity of >0.80. All NBRE sites identified
within A20, ABIN-1, ABIN-2 and Cezanne have a score of between 0.860 and 0.929.

While none of the TFBSs identified in the genes of interest match the NBRE sequence exactly, a
perfect match is not necessarily required for the site to be functional. Murphy et al. (1996)
discovered three civ-acting sequences which bind specifically to NURRI and NUR77 and are
similar, but not identical, to the original NBRE site. The sequences of these binding sites are:
GAAGGTCA, GAAGGTCG and AAAGGTCG. The latter sequence is identical to the sequence
of the NBRE site identified within ABIN-2. Furthermore, a study by You et al. (2009) found that
an NBRE site with one-point mutation (consisting of the sequence AAAGATCA) is present in
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the human licBa promoter and that NUR77 binds specifically to this site. Mutation of this
sequence halted induction of the licBa promoter by NUR77. Therefore, while the sequences of
the NBRE sites identified by Genomatix within A20, ABIN-1, ABIN-2 and Cezanne are not

identical to the original NBRE site, they may still be functional.

It should be noted that the palindromic Nur-responsive element (NurRE),
TGATATTTX6AAAGTCCA, to which the NR4A subfamily bind as homodimers or
heterodimers, was not available as an option to search for within the promoters of interest in

Genomatix, thus limiting the results obtained.

Further analysis of the promoter sequence of genes can provide evidence whether or not the
TFBS(s) identified may be functional. The context within which the TFBS is found can offer
clues to the site’s functionality. If the TFBS forms part of a framework (or model) consisting of
two or more binding sites, this indicates that the individual sites within the framework may be
functional (Genomatix). The Genomatix tool Frameworker was used to construct promoter
models which contained the NBRE site and which were common to the genes of interest.
Frameworker is used for the comparative analysis of promoter sequences and allows the
extraction of a common framework of TFBSs from a set of DNA sequences. The promoters
identified as containing the NBRE site were selected and analysed. Several common models
containing this site were found within the promoters of ABIN-1 and Cezanne. The two most
complex models are given in Fig. 3.2. (The other models identified were subsets of these two
models and therefore are not shown.) The most complex common promoter model consisted of
the binding sites: RXRF, NR2F, MOKF, SORY and NBRE. The second model consisted of the
sites: RXRF, MYT1, E2FF and NBRE. The definitions of these TFBSs are given in Table 3.2.
Both models contain the retinoid X receptor heterodimer binding site (RXRF). NURRI and
NURT77 can both bind to the 9-cis retinoic acid receptor to form heterodimers. These NR4A
subfamily members then enhance transcriptional activation of the RXR in response to RXR
ligands (Perlmann and Jansson 1995). The identification of promoter models containing NBRE
binding sites within the promoters of ABIN-1 and Cezanne provides stronger evidence that these

sites may be functionally significant in these genes.

The Genomatix software tool Modellnspector was used to search the A20-related gene promoters

for experimentally-verified promoter modules containing the NBRE binding site. One such
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module was detected within the ABIN-1 promoter - NBRE AP1F 01. Since the NBRE binding
site is part of an experimentally-verified promoter module, this supports the idea that the NBRE
site identified within ABIN-1 may be functional and that the NR4A subfamily members may be

involved in the regulation of this gene.

Genes containing TFBSs that are conserved in distance and orientation within their promoter
regions can be involved in the same biological processes due to the necessity of the interaction of
their gene products (Cohen et al. 2006). Therefore, the promoter regions of A20, ABIN-1,
ABIN-2 and Cezanne were analyzed further to ascertain if they have a similar promoter
organizational structure. Modellnspector was used to examine these promoters for common, pre-
defined, experimentally-verified promoter modules from the Promoter Module Library Version
5.0. Promoters of Genomatix-defined gold transcripts of A20, ABIN-1, ABIN-2 and Cezanne
were used for this analysis. The promoter modules SP1F SP1F 04 and EGRF SP1F 01 were
found to be common to all four genes of interest (Table 3.3). Two SP1 binding sites are essential
for podoplanin promoter activity (Genomatix 2009). Podoplanin promotes the formation of
elongated cell extensions and increases endothelial cell adhesion, migration and tube formation
(Hartz 2009). Perhaps the A20-related genes are induced by some of the same activators as the
podoplanin gene which has a role in cell adhesion, aiding in the recruitment of inflammatory
cells. Further work may elucidate this. The second module common to all A20-related genes
analysed was EGRF SP1F 01. Egr-1 and Sp family proteins play a reciprocal role in the control
of expression from the PTP1B (protein tyrosine phosphatase IB) and the ABCA2 (adenosine
5°triphosphate-binding cassette, subfamily A, member 2) promoters (Genomatix 2009). PTP1B
has been implicated in the negative regulation of insulin (Olefsky 2004). ABCAZ2 is a transporter
protein involved in lipid homeostasis (Torres 2007). Several other promoter modules were found

to be common to three of the four genes of interest and these are given in Table 3.4.

In order to find other promoter frameworks which may be common to the four genes of interest
and important in their regulation, Frameworker was used to analyse gold transcript-promoters for
common promoter models not necessarily containing the NBRE site. In contrast to the promoter
modules found by Modellnspector, these models are not experimentally verified. Seven such
models were identified by Frameworker using default parameters apart from the minimum

distance between elements parameter, which was set at 1 bp. The p values of these models
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increased from 1.4 x 10"7 for the first model (HESF SP1F) to 0.02 for the last model identified
(NRF1 NRF1).

Modellnspector was used to search the human genome for other genes containing these promoter
modules or models in order to find other potential co-regulated genes. The Genomatix Promoter
Database Promoter of annotated genes was searched. However, approximately 1500 genes were
identified that contain each of the promoter modules/models. When the search was restricted to
only the sense (+) strand, approximately 650 genes were identified for model HESF SP1F for
example. Further work on refining the promoter models found in the A20-related genes may lead
to the identification of co-regulated genes, followed by verification through experimental work

on the promoters of these genes.

A study by Sacchetti et al. (2001) found that NURRI activates transcription of one of its target
genes, the human dopamine transporter gene (hDAT), through an NBRE-independent
mechanism, although a canonical NBRE sequence was identified in the promoter of this gene,
along with several NBRE-like sequences. A NURRI mutant without the canonical DNA-binding
domain retained the ability to induce transcription of the hDAT gene in a dose-dependant
manner. They suggested that NURRI may act as a transcriptional co-activator of an unidentified
protein, or that NURRI may act indirectly by sequestering co-repressor complexes. This means
that even if an NBRE binding site is identified using bioinformatic analysis, experimentation in

the laboratory is required to establish whether the site is functionally significant.

An electrophoretic mobility shift assay (EMSA) is a procedure which is used to characterise
protein-DNA interactions and could be used in future studies to ascertain if the NR4A subfamily
of nuclear receptors actually bind to the promoters of A20, ABIN-1, ABIN-2 and Cezanne,
providing evidence that the NBRE sites identified are functional. However, such analysis is

beyond the scope of this study.
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3.4 Conclusions

Using bioinformatic analysis, the NR4A transcription factor binding site, the NBRE site, was
identified within the promoters of A20, ABIN-1, ABIN-2 and Cezanne. The NBRE site was
detected in the promoter of a less relevant transcript of ABIN-2, indicating that this TF site may
not be functionally significant in this gene. The NBRE site is present in a promoter of A20 in
which NF-kB TFBSs were not detected and NF-kB is known to induce A20 expression. This
also indicates that the NBRE site identified in the A20 gene may not be functionally significant.
However, the Modellnspector and Frameworker results, along with the fact that NF-kB sites were
found in the NBRE-containing ABIN-1 promoter, strongly support the hypothesis that the NBRE
binding site is functional in ABIN-1 and Cezanne and that the NR4A subfamily is involved in the
regulation of these genes. Further studies would elucidate these findings. However, they were

beyond the scope of the current investigation.
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Chapter 4
Analysis of Changes in Expression of Genes

which are Functionally Related to A20
in Response to TNF-a

96



4. Analysis of Changes in Expression of Genes which are Functionally Related to A20
in Response to TNF-a
4.1 Cell Lines

In these studies, in vitro cell culture models of inflammatory arthritis were employed to
investigate the roles of TNF-a on the expression of A20 and related gene transcripts. The K4 IM
human immortalized synoviocyte cell line was utilized. This cell line was established to
investigate the factors leading to synovial fibroblast activation in inflammatory arthritis. They
have fibroblast-like morphology and analyses have demonstrated that they retain the fibroblast-
like phenotype. These cells express the cell surface markers ICAM-1 and CD44 at comparable
levels to primary synovial fibroblasts, although expression of VCAM-1 and the receptors for IL-1
and PDGF are lower. K4 IM cells, like their primary counterparts, are activated by growth
factors, synovial fluid and serum, resulting in the induction of immediate early genes such as Egr-
1 (Haas et al. 1997). Therefore, K4 IM cells are useful as a model to study gene expression in

activated synoviocytes which are key cells in the pathogenesis of RA.

The human chondrocyte SW 1353 cell line was also used in this study. These cells have been
found to be an appropriate model for primary chondrocytes when treated with inflammatory
cytokines. These cells express aggrecan, type Il collagen, Cart-1 and TGF-p, which are among
the genes expressed in the chondrogenic phenotype (Vincenti and Brinckerhoff 2001; Ah-Kim et
al. 2000). This cell line also conserves several Sox9 signaling pathways identified in murine
chondrocytes (Schaefer et al. 2003). Activated chondrocytes play an important role in
maintaining the inflammatory environment within the RA joint, producing many
proinflammatory cytokines, chemokines and MMPs, contributing to joint damage (Otero and
Goldring 2007; Rannou et al. 2006).

4.1.1 Mycoplasma Testing of Cells

Mycoplasmas are one of the smallest free-living forms of bacteria and lack a bacterial cell wall.
They are a major cause of cell culture contamination resulting in a substantial change in the
biological characteristics of cells (Volokhov et al. 2011). The Venor® GeM Mycoplasma
Detection Kit for conventional PCR was used to test the cultured cells for the presence of

Mycoplasma contamination and the test was carried out as described in section 2.5.11.
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4.1.1.1 Mycoplasma Test Results for K4 IM and SW 1353 Cells

lkb  Negative SW SW K4EVT K4 IM Positive 100bp
marker control sample sample sample sample control marker

1 2 3 4 5 6 7 8

300 bp
200 bp

Fig. 4.1 RT-PCR analysis for the detection of mycoplasma in K4 IM and SW 1353 cells.
Products were electrophoresed on a 1.5 % agarose gel and visualised by staining with ethidium
bromide solution. All samples contained an internal control (191 bp). Test samples are negative
(lanes 3-6). A PCR product of the expected size of 267 bp was detected in the positive control

sample.

Lane Sample

1 1kb DNA ladder
2 Negative control
3 SW 1353 sample
4 SW 1353 sample
5 K4 IM sample

6 K4 IM sample

7 Positive control

8 100 bp DNA ladder
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The test for the presence of mycoplasma contamination utilised end-point PCR. All samples
contained an internal control which is clearly visible, demonstrating that the RT-PCR reaction
was carried out successfully in each of the samples. The positive control band at 267 bp in lane 7
is also evident, demonstrating that a valid test was carried out. Mycoplasma contamination was
not detected in the K4 IM or SW 1353 cells. Primer dimers are visible at the bottom of the

image.

4.2 Analysis of Differential Gene Expression in Response to TNF-a

In order to ascertain the effect of the inflammatory cytokine TNF-a on the expression of A20 and
the A20-interacting genes, ABIN-1, ABIN-2 and Cezanne in the multicellular environment of
RA, two cell models of inflammatory arthritis were stimulated with the cytokine, followed by

reverse transcription-PCR (RT-PCR) of the resulting RNA.

Human immortalized K4 synovial fibroblasts and human immortalized SW chondrocytes were
grown in 25cm2 culture flasks to approximately 80 % confluence and then serum-starved for

24 hr. The cells were then stimulated with 10 ng/ml recombinant human TNF-a (+TNF). The
medium in control flasks was replaced with either fresh serum-free medium (-TNF) or serum-free
medium containing 1 (il/ml vehicle (containing PBS with 0.1 % BSA) (Veh). Following
stimulation, the cells were incubated for the appropriate time period (4 hr or 24 hr). Total RNA
was then extracted from the cells using TRI Reagent. The integrity of the isolated RNA was
determined by gel electrophoresis and total RNA concentrations were determined by UV
spectrophotometric analysis, as described in section 2.3.5. Two micrograms of total RNA was
reverse transcribed into cDNA using random primers and Moloney murine leukemia virus
reverse transcriptase. Following first strand cDNA synthesis, end-point PCR of the genes of
interest was carried out using Go Taq DNA polymerase. PCR products were run out on a 1.5 %
TAE agarose gel and then visualised by staining with ethidium bromide and viewed using an

Alpha Innotech Alphalmager® HP gel imaging system.

The induction of differential gene expression by TNF-a in K4 IM synovial fibroblasts and SW
1353 chondrocytes was confirmed by RT-PCR analysis of intercellular adhesion molecule-1
(ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), as these genes have previously

been shown to be upregulated in response to TNF-a stimulation (Tessier et al. 1993; Marlor et al.
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1992). The housekeeping gene [i-actin was used as a positive control which displayed equal

levels of gene expression across all samples.

A lime-course stimulation of SW 1353 cells with TNF-a was also carried out to determine the
time at which maximal A20 and ABIN-1 expression is induced by this cytokine in these cells.
Cells were stimulated over a 24 hr period and total RNA was extracted. The RNA was treated
with DNase to remove any contaminating genomic DNA. Reverse-transcription was carried out
using the Go Script Reverse Transcription System. Quantitative PCR (gqPCR) analysis was

carried out on the resulting cDNA.
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4.3 K4 EM Synoviocyte Results
4.3.1 Determination of the Integrity of Extracted RNA

+TNF 4hr +TNF 24hr -TNF 4hr -TNF 24hr Veh 4hr Veh 24hr

1 2 3 4 5 6

28S rRNA

18S rRNA

5SS rRNA

Fig. 4.2 Total intact RNA isolated from K4 IM cells which were untreated, treated with vehicle
or treated with TNF-a for the times indicated. The RNA was electrophoresed on a denaturing gel

and visualized by staining with ethidium bromide.

Lane RNA Sample
1 + TNF-a 4 hr

+ TNF-a 24 hr
-TNF-a 4 hr

-TNF-a 24 In-
Vehicle 4 hr
Vehicle 24 hr

o o1 B~ oW DN
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4.3.2 Reverse Transcription-Polymerase Chain Reaction (RT-PCR) Results

Ikb Veh Veh -TNF -TNF +TNF +TNF [0Obp
marker 4hr  24hr 4hr 24hr  4hr 24hr marker

250 bp 200 bp

Fig. 4.3 RT-PCR analysis of the housekeeping gene P-actin (234 bp) performed on RNA isolated
from K4 IM cells which were untreated, treated with vehicle or treated with TNF-a for the times
indicated. The PCR products were electrophoresed on a 1.5 % agarose gel and visualised by

staining with ethidium bromide.

Lane Sample

1 1kb DNA ladder
Vehicle 4 hr P-actin
Vehicle 24 hr p-actin
- TNF-a 4 hr p-actin
- TNF-a 24 hr P-actin
+ TNF-a 4 hr p-actin
+ TNF-a 24 hr p-actin

100 bp DNA ladder

o N oo o0 B~ w DN
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Ikb Veh -TNF +TNF Veh -TNF +TNF 100bp
“4hr  24hr' 4hr  24hr ' 4hr  24hr 4hr 24hr  4hr  24hr* 4hr  24hr

1 2 3 4 5 6 7 8 9 10 11 12 13 14

400 bp
250 bp

ICAM-1 VCAM-1

Fig. 4.4 RT-PCR analysis of ICAM-1 (295 bp) and VCAM-1 (350 bp) performed on RNA
isolated from K4 IM cells which were untreated, treated with vehicle or treated with TNF-a for
the times indicated. The PCR products were electrophoresed on a 1.5 % agarose gel and

visualised by staining with ethidium bromide solution.

Lane Sample

1 1kb DNA ladder

2 Vehicle 4 hr ICAM-1
3 Vehicle 24 hr ICAM-1
4 -TNF-a 4 hr ICAM-1
5 - TNF-a 24 hr ICAM-1
6 + TNF-a 4 hr ICAM-1
7 + TNF-a 24 hr ICAM-1
8 Vehicle 4 hr VCAM-1
9 Vehicle 24 hr VCAM-1
10 - TNF-a 4 hr VCAM-1
1 - TNF-a 24 hr VCAM-1
12 + TNF-a 4 hr VCAM-1
13 + TNF-a 24 hr VCAM-1
14 100 bp DNA ladder
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kb Veh TNF +TNF Veh -TNF +TNF  100bp
A A X

X
(nr™ 240y (ahr—"24hr\ /ahr  24hr~Y4hr—Z3hr Y 4hr— Z4hrA /Shr 24hr A

1 2 3 4 5 6 7 8 9 100 11 12 13 14

250 bp 200 bp

A20 ABIN-1

Fig. 4.5 RT-PCR analysis of A20 (153 bp) and ABIN-1 (168 bp) performed on RNA isolated
from K4 IM cells which were untreated, treated with vehicle or treated with TNF-a for the times
indicated. The PCR products were electrophoresed on a 1.5 % agarose gel and visualised by

staining with ethidium bromide.

Lane Sample
1 1kb DNA ladder
2 Vehicle 4 hr A20
<E Vehicle 24 hr A20

4 - TNF-a 4 hr A20
) - TNF-a 24 hr A20
6 + TNF-a 4 hr A20
7 + TNF-a 24 hr A20
8 Vehicle 4 hr ABIN-1
9 Vehicle 24 hr ABIN-1

10 - TNF-a 4 hr ABIN-1
1 - TNF-a 24 hr ABIN-1
12 + TNF-a 4 hr ABIN-1
13 + TNF-a 24 hr ABIN-1
14 100 bp DNA ladder
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Ikb Veh -TNF +TNF Veh -TNF +TNF 10Chbp

X X X
(ahr—zahry 4hr  24nhir /4hr - 24hi\ /4hr  24hr\ fahr  24hr Y 4hr  24lii\

1 2 3 4 ) 6 7 8 9 100 IX 12 13 14

250 bp - H 300 bp

ABIN-2 Cezanne

Fig. 4.6 RT-PCR analysis of ABIN-2 (114 bp) and Cezanne (293 bp) performed on RNA isolated
from K4 IM cells which were untreated, treated with vehicle or treated with TNF-a for the times
indicated. The PCR products were electrophoresed on a 1.5 % agarose gel and visualised by

staining with ethidium bromide.

Lane Sample
1 1 kb DNA ladder
2 Vehicle 4 hr ABIN-2

Vehicle 24 hr ABIN-2

4 - TNF-a 4 hr ABIN-2

5 - TNF-a 24 hr ABIN-2
6 + TNF-a 4 hr ABIN-2
7 + TNF-a 24 hr ABIN-2
8 Vehicle 4 hr Cezanne

9 Vehicle 24 hr Cezanne
10 - TNF-a 4 hr Cezanne
u - TNF-a 24 hr Cezanne
12 + TNF-a 4 hr Cezanne
13 + TNF-a 24 hr Cezanne
14 100 bp DNA ladder
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4.4 SW 1353 Chondrocyte Results

4.4.1 Determination of the Integrity of RNA Extracted

+TNF 4hr +TNF 24hr -TNF 4hr -TNF 24hr Veh 4hr Veh 24hr  marker

1 2 3 4 5 6 7

Bases

6,583
4,981
3,638
28S rRNA - > 2,604
1,908
18S rRNA --—--- > 1,383
955
623

5S IRNA - > 28l

Fig. 4.7 Total intact RNA isolated from SW 1353 cells which were untreated, treated with
vehicle or treated with TNF-a for the times indicated. The RNA was electrophoresed on a

denaturing gel and visualized by staining with ethidium bromide solution.

Lane RNA Sample
1 + TNF-a 4 hr
2 + TNF-a 24 hr
3 -TNF-a 4 hr
4 - TNF-a 24 hr
5 Vehicle 4 hr
6 Vehicle 24 hr
7 RNA marker
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4.4.2 RT-PCR Results

kb Veh Veh -TNF -TNF +TNF +TNF IO0bp
marker dhr  24hr 4hr 24hr  4hr 24hr  marker

250 bp 200 bp

Fig. 4.8 RT-PCR analysis of the housekeeping gene P-actin (234 bp) performed on RNA isolated
from SW 1353 cells which were untreated, treated with vehicle or treated with TNF-a for the
times indicated. The PCR products were electrophoresed on a 1.5 % agarose gel and visualised

by staining with ethidium bromide.

Lane Sample
1 1kb DNA ladder

Vehicle 4 hr P-actin
Vehicle 24 hr p-actin
- TNF-a 4 hr P-actin
- TNF-a 24 hr P-actin
+ TNF-a 4 hr P-actin
+ TNF-a 24 hr P-actin

100 bp DNA ladder

o N oo o B~ o w DN
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Ikb Veh -TNF +TNF Veh -TNF +TNF I00bp

‘4hr  24hr 1 ~h7 24hrMhr  24h/ 4hr 24hr' Mhr  241ir'l Mhr  24hr
1 2 3 4 ) 6 7 8 9 10 11 12 13 14

400 bp
250 bp

ICAM-1 VCAM-1

Fig. 4.9 RT-PCR analysis of ICAM-1 (295 bp) and VCAM-1 (350 bp) performed on RNA
isolated from SW 1353 cells which were untreated, treated with vehicle or treated with TNF-a for
the times indicated. The PCR products were electrophoresed on a 1.5 % agarose gel and

visualised by staining with ethidium bromide.

Lane Sample
1 1kb DNA ladder
2 Vehicle 4 hr ICAM-1
3 Vehicle 24 hr ICAM-1
4 - TNF-a 4 hr ICAM-1
5 - TNF-a 24 hr ICAM-1
6 + TNF-a 4 hr ICAM-1
7 + TNF-a 24 hr ICAM-1
8 Vehicle 4 hr VCAM-1
9 Vehicle 24 hr VCAM-1
10 - TNF-a 4 hr VCAM-1
1 - TNF-a 24 hr VCAM-1
12 + TNF-a 4 hr VCAM-1
13 + TNF-a 24 hr VCAM-1
14 100 bp DNA ladder

108



Ikb Veh -TNF +TNF Veh -TNF +TNF I00bp
_A_ A A
Ahr 24hr A Mhr 24hr Mhr24hr' Mhr 24hrM dhr 24hM4hr o 24hr

2 3 4 5 6 7 8 9 10 11 12 13

250 bp
200 bp

A20 ABIN-1

Fig. 4.10 RT-PCR analysis of A20 (153 bp) and ABIN-1 (168 bp) performed on RNA isolated
from SW 1353 cells which were untreated, treated with vehicle or treated with TNF-a for the
times indicated. The PCR products were electrophoresed on a 1.5 % agarose gel and visualised
by staining with ethidium bromide.

Lane Sample

1 1kb DNA ladder

2 Vehicle 4 hr A20
3 Vehicle 24 hr A20
4 - TNF-a 4 hr A20
5 - TNF-a 24 hr A20
6 + TNF-a 4 hr A20
7 + TNF-a 24 hr A20
8 Vehicle 4 hr ABIN-1
9 Vehicle 24 hr ABIN-1

10 -TNF-a 4 hr ABIN-1
1 -TNF-a 24 hr ABIN-1
12 + TNF-a 4 hr ABIN-1
13 + TNF-a 24 hr ABIN-1
14 100 bp DNA ladder
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Ikb Veh -TNF +TNF Veh -TNF +TNF I00bp

X _A A A
4hr  24h7 Uhr  24hr" (“4h7 24hr' ~ 4hr  24hr™ M4hr o 24hr '4hr 24hr 1

2 3 4 5 6 7 8 9 10 11 12 13

250 bp 300 bp

114 bp

ABIN-2 Cezanne

Fig. 4.11 RT-PCR analysis of ABIN-2 (114 bp) and Cezanne (293 bp) performed on RNA
isolated from SW 1353 cells which were untreated, treated with vehicle or treated with TNF-a for
the times indicated. The PCR products were electrophoresed on a 1.5 % agarose gel and

visualised by staining with ethidium bromide.

Lane Sample
1 1kb DNA ladder

~2< Vehicle 4 hr ABIN-2
3 Vehicle 24 hr ABIN-2
4 - TNF-a 4 hr ABIN-2
5 - TNF-a 24 hr ABIN-2
6 + TNF-a 4 hr ABIN-2
7 + TNF-a 24 hr ABIN-2
8 Vehicle 4 hr Cezanne
9 Vehicle 24 hr Cezanne
10 - TNF-a 4 hr Cezanne
u - TNF-a 24 hr Cezanne
12 + TNF-a 4 hr Cezanne
13 + TNF-a 24 h Cezanne
14 100 bp DNA ladder
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4.4.3 Determination of the Integrity of Extracted RNA for gPCR

Veh24hr TNFOhr TNF 1hr TNF4hr TNF 24 hr marker

1 2 3 4 5 6

6,583

28S rRNA  -——-- > 4,981
3,638

2,604
18S rRNA --——- | 2 1,908

1,383
955
623

. s 281

SSTIRNA -—-- >

Fig. 4.12 Total intact RNA isolated from SW 1353 cells which were untreated or treated with
TNF-a for the times indicated. The RNA was electrophoresed on a denaturing gel and visualised

by staining with ethidium bromide.

Lane RNA Sample
1 Vehicle 24 hr
TNF O hr
TNF 1hr
TNF 4 hr
TNF 24 hr
RNA marker
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4.4.4 Quantitative (Q)PCR Results

Quantitative (q)PCR analysis of changes in gene expression in response to the inflammatory
stimulus TNF-a was carried out in chondrocytes. The expression of A20 and ABEN-1 were
analysed. RNA isolated from SW 1353 cells grown in the presence or absence of TNF-a for
defined periods of time was reverse transcribed into cDNA and amplified by g°PCR. Results were
normalised to expression of the housekeeping gene GAPDH. Experiments were performed in

triplicate.

Cycle

Fig. 4.13 gPCR amplification curves for A20 gene expression. RNA isolated from SW 1353
cells grown in the presence or absence of TNF-a was reverse-transcribed into cDNA and
amplified by qPCR in triplicate, along with the reference gene GAPDH. Purple = vehicle, orange
=TNF 0 hr, red = TNF 1hr, blue = TNF 4 hr, green = TNF 24 hr, pink = no template control.
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Veh TNF O hr TNF 1hr TNF 4 hr TNF 24 hr

Fig. 4.14 qPCR analysis of A20 mRNA levels in response to TNF-a stimulation in SW 1353
chondrocyte cells. Cells were serum-starved for 24 hr prior to treatment with vehicle for 24 hr or
TNF-a (10 ng/ml) for the times indicated and the RNA extracted. The RNA was reverse
transcribed into cDNA. A20 mRNA expression levels were assessed by gPCR analysis and
levels were normalized to GAPDH. The results are expressed as fold change compared to
untreated cells and represent mean plus SEM of three qPCR experiments performed in triplicate.

*p < 0.05 compared to TNF 0 hr for cumulative data from three gPCR experiments.
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Fig. 4.15 gPCR amplification curves for ABIN-1 gene expression. RNA isolated from SW 1353
cells grown in the presence or absence of TNF-a was reverse-transcribed into cDNA and
amplified by gPCR in triplicate, along with the reference gene GAPDH. Purple = vehicle, orange
=TNF 0 hr, red = TNF 1 hr, blue = TNF 4 hr, green = TNF 24 hr, pink = no template control.
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Veh TNF O hr TNF 1hr TNF 4 hr TNF 24 hr

Fig. 4.16 gPCR analysis of ABIN-1 mRNA levels in response to TNF-a stimulation in SW 1353
chondrocyte cells. Cells were serum-starved for 24 hr prior to treatment with either vehicle for
24 hr or TNF-a (10 ng/ml) for the times indicated and the total RNA extracted. The RNA was
reverse transcribed into cDNA. ABIN-1 mRNA expression levels were assessed by gPCR
analysis and levels were normalized to GAPDH. The results are expressed as fold change
compared to untreated cells and represent mean plus SEM of three qPCR experiments performed

in triplicate. ** p < 0.01 compared to TNF 0 hr for cumulative data from three gqPCR

experiments.
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4.5 Discussion

TNF-a, as stated previously, is a key cytokine in the pathogenesis of RA. It is found in elevated
levels in the RA joint. TNF-a stimulates the activation of NF-kB, which in turn, induces a
cascade of proinflammatory cytokines, chemokines and adhesion molecules, including TNF-a
itself. This cytokine also stimulates the differentiation of osteoblasts into osteoclasts which
resorb bone (Deng and Lenardo 2006; Kast 2005; Yamamoto and Gaynor 2001). The effects of
TNF-a stimulation on A20 and the A20-related genes ABIN-1, ABIN-2 and Cezanne in human
immortalised synoviocyte and chondrocyte cells was investigated using conventional end-point
RT-PCR analysis. End-point RT-PCR is a semi-quantitative method of determining variations in
the expression of RNA transcripts (Marone et al. 2001). K4 IM synoviocytes and SW 1353
chondrocytes were grown in the presence or absence of TNF-a. The RNA was isolated and
reverse transcribed into cDNA. Gene expression was then examined using end-point PCR

analysis.

Optimization of the end-point PCR reaction components and cycling parameters was carried out
initially to obtain optimum results. Primer and template cDNA concentrations were varied,

followed by varying the PCR cycle number to determine the optimum combination.

For end-point PCR analysis, P-actin was used as the housekeeping gene. It encodes a
cytoskeletal protein which is important in cell migration, motility, structure and integrity and is
one of the main components wf contractile apparatus in the cell (NCBI 2011). B-actin was
amplified for a lower number of PCR cycles (18) compared to the genes of interest (23-30) to
ensure that it was not overcycled and that the actual expression levels of this housekeeping gene
were even between the samples in each experiment. RT-PCR analysis of P-actin expression
resulted in bands of equal intensity for each of the samples (+TNF-a, -TNF-a, vehicle) as

expected (Fig. 4.3 and 4.8).

In order to confirm the induction of differential gene expression by TNF-a in K4 IM
synoviocytes and SW 1353 chondrocytes, RT-PCR of ICAM-1 (CD54) and VCAM-1 (CD 106)
was carried out on the cDNA prior to the genes of interest. Treatment of both cell types by TNF-
a resulted in a strong induction of ICAM-1 and VCAM-1 after 4 and 24 hr (Fig. 4.4 and 4.9).
TNF-a-induced upregulation of ICAM-1 and VCAM-1 in fibroblast-like synoviocytes has
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previously been demonstrated (Tessier et al. 1993; Marlor et al. 1992). It has also been shown
that ICAM-1 and VCAM-1 are expressed at basal levels in SW 1353 cells and upregulated in
response to TNF-a (d’Abusco et al. 2010; Ju et al. 2002) corresponding to the results obtained in
this study.

It was ascertained during establishment and characterization of the immortalised K4 IM cell line
that expression of ICAM-1 was maintained from the parental primary synovial fibroblasts, whilst
VCAM-1 expression was downregulated (Haas et al. 1997). In this study however, basal MRNA
levels of ICAM-1 and VCAM-1 were detected in unstimulated K4 IM cells (Fig 4.4).

Results obtained illustrate that treatment of K4 IM synoviocytes with TNF-a resulted in
upregulation of A20 mRNA expression after 4 hr, with a diminishing effect after 24 hr (Fig. 4.5).
Basal expression of A20 was detected in untreated synoviocytes. TNF-a stimulation of SW 1353
cells led to induction of A20 mRNA after 4 and 24 hr (Fig. 4.10). A20 was first discovered as a
TNF-a-induced early response gene in primary human umbilical vein endothelial cells (HUVEC)
in which A20 induction was strongest after 1 hr and barely detectable after 2 hr (Dixit et al.
1990). It has also been demonstrated that A20 is upregulated by TNF-a in HelLa cells, with
maximum induction after 30 min, and in lurkat T cells (Zhou et al. 2003; Krikos et al. 1992).
The A20 promoter contains two NF-kB transcription factor binding sites and induction of A20
transciption by TNF-a is mediated via these binding elements (Krikos et al. 1992). It has been
established that NF-kB activation of primary human epidermal keratinocytes and dermal
fibroblasts using p50 and p65 retrovectors led to induction of A20 expression (Hinata et al.
2003). Furthermore, it is known that A20 functions as a negative feedback inhibitor of NF-kB
(Jaattela et al. 1996). Therefore, it is likely that TNF-a induces A20 expression in synoviocytes

and chondrocytes via the transcription factor NF-kB.

TNF-a stimulaton of synoviocytes and chondrocytes resulted in an induction of ABIN-1 mRNA
expression after 4 and 24 hr (Fig. 4.4 and 4.10). From these end-point PCR results, the induction
appears to be highest after 4 hr in K4 IM cells, with the effect lessening after 24 hr. In the SW
1353 cells however, ABIN-1 transcripts appear to be more abundant after 24 hr. The ABIN-1
gene has two alternatively spliced isoforms, Naf-la and Naf-1fi Naf-la is approximately 2800
nucleotides in length with an open reading frame consisting of 1941 nucleotides, whereas Naf-ip

is approximately 2600 bp long and has an open reading frame of 1781 bp (Beyaert et al. 2000).
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The ABIN-1 primer set was designed so that both a and p isoforms of the gene would be
amplified. The primers anneal upstream of the coding sequence for the shorter Naf-ip isoform,
and therefore, were able to amplify both alternatively spliced isoforms of ABIN-1. The results in
the K4 IM synoviocytes correlate with a study carried out by Gallagher et al. (2003) which used
oligonucleotide microarrays and real-time PCR to establish that ABIN-1 is upregulated by TNF-a
in primary human synoviocytes. ABIN-1 was maximally expressed after 8 hr, with higher
expression levels after 4 hr than 24 hr. It has been established that ABIN-1 is upregulated in
HelLa cells 4 hr after stimulation with TNF-a (Zhou el al. 2003). Furthermore, ABIN-1 has been
identified as an NF-kB target gene in the Hodgkin’s disease derived cell lines L428 and HDLM2
and in keratinocytes (Hinz et al. 2002; Hinata et al. 2003) indicating that TNF-a induces ABIN-1
expression via the transcription factor NF-kB and possibly via the NF-kB binding sites identified

within the ABIN-1 promoter in Chapter 3.

RT-PCR analysis indicate that ABIN-2 mRNA expression levels appear to be upregulated with
TNF-a treatment after 4 hr in K4 IM cells and after 24 hr in SW 1353 cells (Fig. 4.6 and 4.11).
Previous northern blot analysis of mouse fibrosarcoma L929r2 and mouse macrophage Mf4/4
cells stimulated with TNF-a, LPS or IFN-y revealed no change in ABIN-2 expression levels and
because of this, it was thought that ABIN-2 expression is independant of NF-kB transcriptional
activity (Van Huffel et al. 2001; Verstrepen et al. 2009). However, these cells were only
stimulated with the cytokine for 1 hr (Van Huffel et al. 2001). Longer stimulation times may be
necessary for detecting the upregulation of ABIN-2 expression levels, as demonstrated in this
study with the K4 IM and SW 1353 cells. Results from this chapter and chapter 3 indicate that
ABIN-2 may be regulated by NF-kB. Further experiments, for example, transfecting cells with
an NF-kB expression plasmid and analysing ABIN-2 expression levels or carrying out an EMSA,

may elucidate this.

RT-PCR analysis results indicate that stimulation of K4 IM synoviocytes and SW 1353
chondrocytes with TNF-a did not alter Cezanne mMRNA expression levels after 4 or 24 hr (Fig.
4.6 and 4.11). However, low constitutive levels of Cezanne were detected in both cell types.
RT-PCR analysis by Evans et al. (2001) found that levels of Cezanne in HUVEC were similarly
not affected by TNF-a treatment (time-points not given). They also state that in EaHy
endothelial cells Cezanne exhibited low constitutive expression, whereas this was not the case in

the human epithelial cell line HEK-293 (Evans el al. 2001). However, comparative real-time
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PCR carried out by Enesa et al. (2008) revealed that transcription of Cezanne is, in fact,
upregulated by TNF-a in both HUVEC and HEK 293 cells after 2 hr. Perhaps the induction of
Cezanne expression by TNF-a in these cells is mediated by the NF-kB transcriptional site

identified in Chapter 3.

RT-PCR analysis of ABIN-2 in both cell types consistently resulted in an additional band at
approximately 600 bp (ABIN-2 product was 114 bp) (Fig. 4.6 and 4.11) which indicates non-
specific priming by one or both of the primers (Sambrook and Russell 2001). Attempts were
made to eliminate the extra band by reamplifying a 1:100 dilution of the PCR products in fresh
PCR buffer and primers for 30 cycles at an annealing temperature of 55°C. Separately, the
annealing time of the PCR reaction was reduced from 45 s to 30 s. However, this was
unsuccessful. Further investigation is required but is beyond the scope of this project. The RT-
PCR results obtained indicate that ABIN-2 transcripts are upregulated in response to TNF-a

stimulation in both human synoviocyte and chondrocyte cells.

Conventional PCR measures the amount of amplified DNA at the end of the PCR reaction. PCR
is extremely sensitive to small differences in reaction conditions because these variations in
efficiency at every cycle can accumulate into large differences in resulting product vyield.
Quantitative PCR (qPCR), also known as real-time PCR, takes measurements of the amplified
DNA during the exponential phase of the reaction and is a much more reliable and sensitive
method of analysing changes in gene expression (Sambrook and Russell 2001). Therefore, qPCR
analysis was carried out on RNA extracted from TNF-a treated SW 1353 cells after 0, 1, 4 or 24
hr to more accurately determine the time at which maximal expression of A20 and ABIN-1 was

observed in response to TNF-a stimulation in these cells.

GAPDH was used as the exogenous standard and quantification was determined by comparing
the amount of GAPDH and the genes of interest. The 2'AACT (Livak) method was used to
calculate the mRNA expression levels. The results obtained illustrate that maximum expression
of A20 mRNA in chondrocytes in response to TNF-a for the times investigated was at 1 hr, with
less expression at 4 hr and the mRNA levels increasing again at 24 hr (Fig. 4.14). As stated
earlier, maximum induction of A20 by TNF-a in HeLa cells has previously been found to be after
30 min using qPCR analysis. However, the only times investigated in the study were 30 min and

4 hr after TNF-a treatment (Zhou et al. 2003). The gPCR results obtained in this study correlate
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with end-point PCR results attained for the chondrocytes cells, in which a stronger A20 product
was observed after treatment with TNF-a for 24 hr compared to after 4 hr. The RT-gPCR results
in this study suggest that A20 may have a similar effect in chondrocytes in response to TNF-a
stimulation.  Using co-transfection experiments in Jurkat T cells, Krikos et al. (1992)
demonstrated that overexpression of A20 inhibited activation of an A20 promoter CAT construct
following TNF-a treatment for 12 hr, indicating that A20 exerted an inhibitory effect on its own
promoter. The pattern of A20 expression observed in this study indicates that it may be

negatively regulating its own expression after 4 hr TNF-a stimulation in SW 1353 cells.

According to the gPCR analysis, maximum ABIN-1 mRNA induction by TNF-a treatment in
chondrocytes for the times investigated was found to be after 24 hr (Fig. 4.16). ABIN-1
expression levels were unchanged after 1 hr, but increased significantly (p < 0.01) after 4 hr.
These gPCR results again correlate with end-point PCR results obtained for these cells in which
ABIN-1 mRNA expression appeared to be slightly higher after TNF-a stimulation for 24 hr
compared to 4 hr. ABIN-1 mRNA has been detected in high levels in the synovium of patients
suffering from inflammatory arthritis compared to those with non-inflammatory arthritis
(Gallagher et al. 2003). The analysis of ABIN-1 or A20 expression levels in response to TNF-a
in human chondrocyte cells has not previously been determined and these results will add to the

knowledge already gained in the pathogenesis of inflammatory arthritis.

In the chondrocyte cells, the induction of A20 mRNA levels in response to TNF-a stimulation
appear to be much higher compared to ABIN-1 mRNA expression levels (Fig. 5.14 and 5.16).
A20 expression may be induced more strongly than ABIN-1 expression after treatment with
TNF-a in the SW 1353 cells. The gPCR results suggest a different temporal expression response
for A20 and ABIN-1 in chondrocyte cells.

The Thermo Scientific Solaris qPCR gene expression assays used detect all known splice variants
of the gene of interest by designing the primers and probes to anneal within a region common to
all of them. Therefore, only one primer/probe set (assay) is required for each gene of interest.
Furthermore, the Solaris qPCR assays and master mixes are designed so that every assay
performs optimally under the same cycling conditions, meaning that little optimization was
required. The volume of template cDNA was varied (1, 15 and 2 pi) in order to obtain

acceptable Ct values. Two microlitres of cDNA was found to be optimal for the gPCR assays.
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The RT-PCR and gPCR results obtained in this study indicate that A20, ABIN-1 and ABIN-2 are
upregulated in human synoviocyte and chondrocyte cells in the inflammatory environment of the
RA joint, where high levels of the inflammatory cytokine TNF-a are found. Therefore, these
results suggest that A20, ABIN-1 and ABIN-2 have important roles in inflammatory disease.
Results indicate that Cezanne mRNA expression levels were not altered by TNF-a stimulation in

K4IM or SW 1353 cells.

While RT-(q)PCR analyses demonstrate a change in mRNA expression levels, western blotting
or enzyme-linked immunosorbent assays (ELIZAs) would reveal whether the upregulated mRNA

detected was paralleled by increases in protein levels.

4.6 Conclusions

Differential gene expression was observed in both K4 IM and SW 1353 cell types in response to
stimulation with the inflammatory cytokine TNF-a. RT-PCR analyses indicate that A20, ABIN-1
and ABIN-2 mRNA levels were upregulated after TNF-a treatment in both cell types. The
changes in gene expression observed appear to be displayed in a cell specific temporal pattern,
while Cezanne mRNA expression levels were unchanged following stimulation with TNF-a in

these cells in the time period examined.
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Chapter 5

Investigating A20 as a means of modulating

the NR4A subfamily of nuclear receptors
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5. Investigating A20 as a means of modulating the NR4A subfamily of nuclear receptors

5.1 Introduction

In macrophage cells, it has been demonstrated that NR4A subfamily overexpression upregulates
the expression of A20, among several other genes associated with inflammation, indicating the
potential role of this subfamily inthe regulation of A20 and A20-interacting proteins (Pei et al.
2006). One of the aims of this study was to examine the potential of A20 as a means of
modulating the NR4A subfamily in the pathogenesis of RA. In order to elucidate this, transient
transfection experiments were carried out in which an NBRE-luciferase reporter construct was
co-transfected into cellular models of inflammatory arthritis, with and without a constitutively
active NURRI expression vector. In addition, an A20 expression plasmid was co-transfected into
these cells. The luciferase activity was then measured in these cells using the Dual Luciferase
Reporter (DLR) Assay System (Promega) and compared to controls transfected in a similar
manner without the presence of A20. Further transfection experiments were carried out to
investigate the effects of A20 on the transcriptional activation of the NR4A target gene IL-8 by
NURRI. It has previously been established that NURRI induces expression of the
proinflammatory chemokine IL-8, and in addition, NURRI enhances NF-kB p65 induction of IL-
8 independently of the NBRE binding site (Aherne et al. 2009). Cells were co-transfected with
an IL-8 human promoter luciferase reporter construct, a NURRI expression vector and an A20
expression construct with and without a p65 expression vector. The luciferase assay results were
compared to those obtained without the presence of A20 overexpression. In this manner, the

effects of A20 on the transcriptional activity of NURR1 were elucidated.

122



5.2 Verification of Plasmids used for Transfection Experiments

Prior to use, the quality and composition of the plasmids were verified by digesting with
restriction enzymes and gel electrophoresis as described in sections 2.3.6 and 2.3.7. Expected

banding patterns were obtained following digestion, thus confirming the composition of the

plasmids.
Ikb  Renilla Eco R1 Bam HI Hind Il 100bp
uncut
1 2 3 4 5 6
10,000 bp
4.000 bp
2.000 bp

Fig. 5.1 Restriction enzyme digests of Qiagen purified Renilla luciferase pRL-SV40 vector

(3,705 bp) electrophoresed on 0.8 % agarose gel and visualised by staining with ethidium

bromide.
Lane Sample

1 1kb DNA ladder

2 Renilla luciferase vector
undigested

3 Renilla luciferase vector digested
with Eco R1

4 Renilla luciferase vector digested
with Bam HI

5 Renilla luciferase vector digested
with Hind 11l

6 100 bp DNA ladder
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Ikb  pcDNA Eco R1 Bam HI Hind IIl 100bp
uncut
1 2 3 4 5 6

6,000 bp

1,500 bp

Fig. 5.2 Restriction enzyme digests of Qiagen purified pcDNA6/myc-His C plasmid (5,100 bp)

electrophoresed on 0.8 % agarose gel and visualised by staining with ethidium bromide.

Lane Sample

1 1kb DNA ladder
pcDNA plasmid undigested
pcDNA digested with Eco R1
pcDNA digested with Bam HI
pcDNA digested with Hind 111
100 bp DNA ladder

o o0 A~ W DN
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1kb  NBRE
uncut

10,000 bp
4.000 bp

2.000 bp

750 bp

Eco R1 Bam HI Hind 111 A20 Hind HI 100bp

uncut
3 4 5 6 7 8

-5,000 bp

1,000 bp

Fig. 5.3 Restriction enzyme digests of Qiagen purified pNBRE3-tk-luciferase reporter construct
(~ 5,600 bp) and pCAGGS-GFP/A20 (8,372 bp) electrophoresed on 0.8 % agarose gel and

visualised by staining with ethidium bromide.

Lane

Sample
1kb DNA ladder
pNBREs-tk-luciferase reporter
construct undigested
pNBREs-tk-luciferase construct
digested with Eco R1
PNBRE:-tk-luciferase construct
digested with Bam HI
pNBREs-tk-luciferase construct
digested with Hind 11
A20 expression vector undigested
A20 vector digested with Hind 111
100 bp DNA ladder
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lkb CMX- EcoR1 Bam HI Hind HI
NURRI

uncut
| 2 3 4 S

10,000 bp
5,000 bp

Fig. 5.4 Restriction enzyme digests of Qiagen purified CMX-NURR1 plasmid (7,200 bp)

electrophoresed on 0.8 % agarose gel and visualised by staining with ethidium bromide.

Lane Sample

1 1kb DNA ladder

2 CMX-NURR1 expression plasmid
undigested

3 CMX-NURRL1 plasmid digested
with Eco R1

4 CMX-NURR1 plasmid digested
with Bam HI

5 CMX-NURR1 plasmid digested
with Hind 111

6 100 bp DNA ladder
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Ikb  1L-8 EcoR\ BamHI Hind Ill p65 EcoRI BamRI Hind 111 IOObp
uncut uncut

10

Fig. 5.5 Restriction enzyme digests of Qiagen purified IL-8-luciferase reporter construct (11508
bp) and p65 expression vector electrophoresed on 0.8 % agarose gel and visualised by staining

with ethidium bromide.

Lane Sample

1 1kb DNA ladder

2 IL-8-luciferase construct
undigested

3 IL-8-luciferase construct digested
with Eco R1

4 IL-8-luciferase construct digested
with Bam HI

5 IL-8-luciferase construct digested
with Hind 111

6 p65 expression vector undigested

7 p65 digested with Eco R1

8 p65 digested with Bam HI

9 p65 digested with Hind Il

10 100 bp DNA ladder
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5.3 Transfection Efficiencies

Green Fluorescent Protein (GFP) assays were carried out as described in section 2.5.9 in order to
determine the transfection efficiency of the transfection reagent Turbofect for each of the two cell
lines used in this study - K4 EM synoviocytes and SW 1353 chondrocytes. From these assays, the
transfection efficiency of Turbofect for the synoviocytes was an average of approximately 40 %

and for the chondrocytes was an average of approximately approximately 70 %.

Fig. 5.6 K4 IM synoviocytes transfected with a GFP expression vector viewed using the
Olympus 1X51 inverted fluorescent microscope with mercury lamp under 100X magnification.
A: normal view of cells transfected with GFP, B: cells transfected with GFP viewed under
mercury lamp showing expression of GFP, C: normal view of cells not transfected with GFP

(control), D: control cells viewed under mercury lamp.
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Fig. 5.7 SW 1353 chondrocytes transfected with a GFP expression vector viewed using the
Olympus 1X51 inverted fluorescent microscope with mercury lamp under 100X magnification.
A: normal view of cells transfected with GFP, B: cells transfected with GFP viewed under
mercury lamp showing expression of GFP, C: normal view of cells not transfected with GFP

(control), D: control cells viewed under mercury lamp.
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5.4 NBRE-luciferase Assays

Human immortalized K4 IM synovial fibroblasts and human immortalized SW 1353
chondrocytes were grown in 75 cm3 cell culture flasks to 70-80 % confluency. The cells were
then trypsinized, counted and seeded into 24-well culture plates at a concentration of 1.4 x 104
cells/well as described in section 2.5.5. Twenty-four hours later, the cells were serum-starved
and transfected as described in section 2.5.7. Luciferase assays were performed 24 hr after

transfection, as described in section 2.5.9. The results obtained are illustrated below.

5.4.1 NBRE- Luciferase Assay Results - K4 IM Synoviocytes

35

d.0

15! vV

o-s 4 1 a

Negative +NBRE +NBRE +NBRE +NBRE +NBRE +NBRE

Fo™ Co

Control +A20 75ng +NURR1 +NURRI  +NURR1  +NURR1
+A20 75ng +A20 +A20
I00ng 150ng

Fig. 5.8 NBRE-luciferase assay results for K4 IM cells demonstrating a dose-dependant
inhibitory effect of A20 on the activation of the pNBRE3-tk-luciferase reporter construct by
NURRI. The cells were not serum-starved in this experiment and transfected in triplicate in
supplemented medium using Geneluice. Cells were assayed 24 hr post-transfection. Results
represent the mean fold change plus standard error of the mean (SEM) compared to the NBRE
reporter construct alone. *p < 0.01, ** p < 0.001 compared with NBRE-luciferase construct +

CMX-NURR1 vector.

130



Table 5.1 Composition of DNA Transfected into K4 IM cells using Genejuice for

Sample
Negative control
+NBRE
+NBRE

+A20 (75nQ)
+NBRE+NURRI
+NBRE
+NURR1

+A20 (75 ng)
+NBRE
+NURRI

+A20 (100 ng)
+NBRE
+NURR1

+A20 (150 ng)

NBRE-Luciferase Assay
Contents
puB6 empty vector (325 ng)
puB6 (250 ng), NBRE reporter construct (75 ng)
puB6 (175 ng), NBRE (75 ng), A20 expression plasmid (75 ng)

puB6 (150 ng), NBRE (75 ng), CMX-NURR1 expression plasmid (100 ng)

puB6 (75 ng), NBRE (75 ng), CMX-NURRL (100 ng), A20 (75 ng)

puB6 (50 ng), NBRE (75 ng), CMX-NURR1 (100 ng), A20 (100 ng)

NBRE (75 ng), CMX-NURR1 (100 ng), A20 (150 ng)
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5.4.1 NBRE- Luciferase Assay Results - K4 IM Synoviocytes continued

w
w U

g B
N

15
05 1 1 * I
1 1
Negative Control +NBRE +NBRE +A20 +NBRE +NBRE
+NURR1 +NURRI +A20

Fig. 5.9 NBRE-luciferase assay results for K4 IM cell line illustrating an inhibitory effect of A20
on the activation of the pPNBRE3-tk-luciferase reporter construct. Cells were serum-starved 24 hr
prior to transfection and transfected in triplicate using the transfection reagent Turbofect. Cells
were assayed 24 hr post-transfection. NBRE-luciferase values obtained were normalized to
Renilla luciferase activity. These results represent the mean fold change plus SEM compared to
the NBRE reporter construct alone. Identical trends were obtained in at least two further
independent experiments. * p < 0.05 compared to NBRE-luciferase construct in each of three

separate experiments.

Table 5.2 Composition of DNA Transfected into K4 IM cells using Turbofect
for NBRE-Luciferase Assays
Sample Contents

Negative control  Renilla luciferase construct (0.362 ng), pcDNA empty vector (900 ng)

+NBRE Renilla (0.362 ng), pcDNA (650 ng), NBRE reporter construct(250 ng)
+NBRE Renilla (0.362 ng), pcDNA (400 ng), (250 ng), A20 expression plasmid
+A20 (250 ng)

+NBRE Renilla (0.362 ng), pcDNA (250 ng), NBRE (250 ng), CMX-NURR1
+NURR1 expression plasmid (400 ng)

+NBRE Renilla (0.362 ng), NBRE (250 ng), CMX-NURR1 (400 ng), A20 (250 ng)
+NURRI+A20
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5.4.2 NBRE-Luciferase Assay Results - SW 1353 Chondrocytes

Negative control +NBRE +NBRE +A20 +NBRE +NBRE
+NURR1 +NURR1 +A20

Fig. 5.10 NBRE-luciferase assay results for SW 1353 cell line illustrating the inhibitory effect of
A20 on the activation of the pPNBRE3-tk-luciferase reporter construct. Cells were serum-starved
24 hr prior to transfection and transfected in triplicate using the transfection reagent Turbofect.
Cells were assayed 24 hr post-transfection. NBRE-luciferase values obtained were normalized to
Renilla luciferase activity. These results represent the mean fold change plus SEM compared to
the NBRE reporter construct alone. Whilst p values were not always significant at the 5 % level,

identical trends were obtained in at least two further independent experiments.

Table 5.3 Composition of DNA transfected into SW 1353 cells using Turbofect
for NBRE-Luciferase Assays
Sample Contents

Negative control  Renilla luciferase construct (0.362 ng), pcDNA empty vector (900 ng)

+NBRE Renilla (0.362 ng), pcDNA (650 ng), NBRE reporter construct(250 ng)
+NBRE Renilla (0.362 ng), pcDNA (400 ng), (250 ng), A20 expression plasmid
+A20 (250 ng)

+NBRE Renilla (0.362 ng), pcDNA (250 ng), NBRE (250 ng), CMX-NURR1
+NURR1 expression plasmid (400 ng)

+NBRE Renilla (0.362 ng), NBRE (250 ng), CMX-NURRL1 (400 ng), A20 (250 ng)

+NURR1 +A20
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5.5 IL-8 Luciferase Assays

Previous studies have demonstrated that NURRI induces transcription of the proinflammatory
chemokine IL-8 in K4 IM cells. Furthermore, co-expression of the NF-kB subunit p65 and
NURRI led to a synergistic increase in IL-8 transcription (Davies et al. 2005, Aherne et al.
2009). Therefore, transient transfection experiments were carried out in which an IL-8 human
promoter luciferase reporter construct was co-transfected into cells along with CMX-NURR1, a
p65 expression vector and the A20 expression plasmid. The luciferase activity measured was
compared to that obtained without the A20 plasmid. Hence, the effect of A20 on the
transcriptional activity of NURRI on a known target gene was determined in order to establish

the relationship between A20 and an inflammatory gene.

Synoviocytes and chondrocytes were seeded into 24-well culture plates at a concentration of
2.5 x 104 cells/well as described in section 2.5.5. The cells were transfected 24 hr later as
described in section 2.5.7. Luciferase assays were carried out 24 hr post-transfection, as

described in section 2.5.9.

134



5.5.1 IL-8 Luciferase Assay Results - K4 IM Synoviocytes

a O o Q

+1T -8 +IL-8 +I1L-8 +1L-8 +1L-8 +IL-8 +IL-8 +IL-8

+A20 +NURR1 +NURR1 +p65+p6ENURR1 +NURR1
+A20 +A20 + p65 +p65
+A20

Fig. 5.11 IL-8-luciferase assay results for the K4 IM cell line illustrating an inhibitory effect by
A20 on the transactivation of the IL-8 reporter construct by endogenous NURRI, overexpressed
NURRI and overexpressed NURRI in combination with the NF-kB subunit p65. Cells were
seeded in 24 well plates and transfected 24 hr later in triplicate. Cells were assayed 24 hr post-
transfection. IL-8-luciferase values obtained were normalized to Renilla luciferase activity.

Results represent the mean fold change plus SEM compared to the IL-8 reporter construct alone.

Similar trends were obtained for the effects of A20 on the transactivation of the IL-8 reporter
construct by endogenous and overexpressed NURRI in at least two further independent
experiments. However, variable trends were obtained for the effects of A20 overexpression on

the transcriptional activity of p65 and p65 in combination with NURRI.

The composition of DNA which was transfected into K4 IM cells for this experiment is given in

Table 5.4.
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Table 5.4 Composition of DNA transfected into cells using Turbofect

Sample

+IL-8

+IL-8

+A20

+IL-8

+NURR1

+IL-8

+NURR1 +A20
+IL-8 +p65

+IL-8 +p65
+A20

+1L-8 +NURR1
+p65

+1L-8 +NURR1
+p65 +A20

for IL-8-Luciferase Assays
Contents
Renilla luciferase reporter construct (0.362 ng), pcDNA empty vector
(310 ng), IL-8 reporter construct (100 ng)
Renilla (0.362 ng), pcDNA (210 ng), IL-8 (100 ng), A20 expression plasmid
(100 ng)
Renilla (0.362 ng), pcDNA (110 ng), IL-8 (100 ng), CMX-NURR1 expression
plasmid (200 ng)
Renilla (0.362 ng), IL-8 (100 ng), CMX-NURR1 (200 ng), A20 (100 ng)

Renilla (0.362 ng), pcDNA (300 ng), IL-8 (100 ng), p65 expression vector
(10 ng)
Renilla (0.362 ng), pcDNA (200 ng), IL-8 (100 ng), p65 (10 ng), A20 (100 ng)

Renilla (0.362 ng), pcDNA (100 ng), IL-8 (100 ng), CMX-NURR1 (200 ng),
p65 (10 ng)

Renilla (0.362 ng), IL-8 (100 ng), CMX-NURR1 (200 ng), p65 (10 ng), A20
(100 ng)
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5.5.2 IL-8 Luciferase Assay Results - SW 1353 Chondrocytes

+IL-8  +IL-8 +IL-8 +IL-8  +IL-8 +IL-8 +IL-8 +IL-8
+A20 +NURR1 +NURRL  +p65 +p65 +NURR1 +NURRL1

+A20 +A20  +p65 +p65

+A20

Fig. 5.12 IL-8-luciferase assay results for SW 1353 cells showing an enhancing effect by A20 on
the transcriptional activity of endogenous NURR1, overexpressed NURR1 and overexpressed
p65 on the IL-8-luciferase reporter construct. Cells were transfected using the transfection
reagent Turbofect in triplicate and assayed 24 hr post-transfection. IL-8-luciferase values
obtained were normalized to Renilla luciferase activity. These results represent the mean fold
change plus SEM compared to the NBRE reporter construct alone. While p values were not

always significant, similar trends were obtained for at least two further independent experiments.

The composition of DNA which was transfected into SW 1353 cells for each of the samples in

this experiment is given in Table 5.4.

5.6 Discussion

Many studies have demonstrated the anti-inflammatory effects of the zinc-finger protein A20. It
is a potent NF-kB inhibitory protein and also has the ability to down-regulate AP-1, another pro-
inflammatory transcription factor (O’Reilly and Moynagh 2003). AZ20-deficient mice develop
severe multi-organ inflammation and die prematurely (Lee et al. 2000). Overexpression of the
NR4A subfamily member NURRL1 leads to the induction of inflammatory genes including IL-8

and increasing levels of NURRL1 are found in synovial tissue of RA patients compared to normal
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synovial tissue (Aherne et al. 2009; Davies et al. 2005; McEvoy et al. 2002; Pei et al. 2006).
Therefore, the potential modulation of NURRI by A20 was investigated in this study. NR4A
subfamily members bind to the NBRE DNA binding site in order to regulate target gene
expression (Wilson et al. 1991). The effect of A20 on the transcriptional activity of NURRI was
determined by carrying out co-transfection experiments of an NBRE-luciferase reporter construct
and an A20 expression plasmid, with and without a NURRI expression vector. Luciferase assays
were then carried out to determine the amount of luciferase expressed in these cells, and

therefore, the ability of NURRI to transactivate the NBRE binding site.

NURRI is the most upregulated member of the NR4A family in response to PGE:, IL-ip and
TNF-a in primary RA and normal synoviocytes and NURRI expression is notably higher in
synovial tissue of RA patients compared to healthy subjects. Furthermore, NURRI is the major
subfamily member expressed in K4 IM and SW 1353 cells (McEvoy et al. 2002; Murphy et al.
2001). Therefore, studies focused on this NR4A subfamily member for analysis of modulation
by A20 in the context of human inflammatory arthritis.

&
NBRE-luciferase transfection experiments illustrated a dose-dependent inhibitory effect of A20
on the transcriptional activity of NURRI (Fig. 5.8). Increasing concentrations of A20 (75 - 150
ng) led to decreasing levels of NBRE-luciferase activation by NURRI (from 3.2 - 0.99 fold
induction). At 150 ng, A20 sufficiently suppressed CMX-NURR1 activation of the NBRE-
luciferase construct to a level equal to the transcriptional activity of endogenous NURRI. Each
concentration of A20 investigated resulted in a significant (p < 0.01) or highly significant
(p < 0.001) reduction in the ability of NURRI to transactivate the NBRE-Iuciferase construct.
Further K4 IM synoviocyte transfection data (Fig. 5.9) predominantly demonstrated a similar
inhibitory effect by A20 on the transactivation activity of both endogenous and overexpressed
NURRI. A20 significantly (p < 0.05) suppressed endogenous NURRI-induced NBRE-luciferase
activation and markedly diminished CMX-NURR1 activation of the NBRE-luciferase reporter

construct in each of three independent experiments.

The SW 1353 chondrocyte results (Fig. 5.10) demonstrate that A20 had a consistent inhibitory
effect on endogenous NURRI, with diminished activation of the NBRE-luciferase reporter
construct in the presence of A20 overexpression compared to the NBRE-luciferase construct

alone. The addition of CMX-NURR1 to the NBRE-luciferase reporter construct in chondrocyte
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cells resulted in a marked (30 fold average) induction of NBRE-luciferase activation.
Overexpression of A20 consistently attenuated this induction of NBRE-luciferase activity by
CMX-NURRL1 in these cells, demonstrating a novel inhibitory effect of A20 on this NR4A
subfamily member. While identical trends were observed in all experiments, not all resulted in a

significant (p < 0.05) reduction of NURRL1 transcriptional activity by AZ20.

The NBRE-luciferase assays in the K4 IM synoviocytes did produce some variable results (data
not shown). This may be due to the lower transfection efficiency of the transfection reagent
Turbofect for the K4 IM cells (approximately 40 %) compared to the SW 1353 cells
(approximately 70 %) as demonstrated by the GFP assay results (Fig. 5.6 and 5.7). The variable
results obtained may, however, be due to differences in the stages of the cell cycle between

experiments, although both cell types were serum-starved to synchronise the cells.

Transfection of equal concentrations of CMX-NURR1 into both cell types resulted in less NBRE-
luciferase activation in K4 IM cells compared to SW 1353 cells (an average of 3 fold for K4 cells
compared to 30 fold for SW cells). This may due to the variable transfection efficiency as
described above. However, since the NBRE-luciferase activity was normalised to Renilla
luciferase activity in both cell types, it may oe that NURRI’s ability to activate the NBRE

transcriptional site depends on the cell context.

Cells which had not been serum-starved and transfected in supplemented medium produced
similar values and trends to those which had been serum-starved and transfected in SFM (data not
shown). This was the case for both cell types used in this study. This demonstrated that the

presence of serum in the supplemented medium did not affect the results obtained.

The results in this study indicate a novel function of A20 in its ability to suppress activity of the
transcription factor NURR1. To date, few inhibitors of the NR4A nuclear receptor subfamily
have been identified. Ralph et al. (2005) demonstrated that the disease-modifying anti-rheumatic
drug methotrexate can directly attenuate NURR1 expression in response to inflammatory stimuli
and growth factors. Dexamethasone, a glucocorticosteroid, has been found to inhibit cytokine-
induced NURR1 expression levels in primary synoviocytes (Murphy et al. 2001). In addition, a
study by Ohkura et al. (1999) indicated that a C-terminal truncated isoform of NURR1, termed
NURR2, negatively regulates each of the NR4A2 subfamily members. The NR3B subfamily of
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estrogen-related receptors has also been shown to repress the transcriptional activity of NR4A
subfamily members (Lammi et al. 2007). Further studies may confirm A20 as being among these
repressors of NURRI activity and, if so, reveal the mechanism by which NURRI is inhibited. In
addition, the effect of A20 on the other members of the NR4A subfamily, NUR77 and NOR-1,

remains to be elucidated.

The inhibitory effect of A20 on endogenous NURRI transcriptional activity may reflect the
situation in a normal joint, where NURRI levels are not raised. Transfection of CMX-NURR1
into the cells is equivalent to introducing ectopic NURRI, which is reflective of the inflammatory
state (McEvoy et al. 2002). Therefore, the ability of A20 to dampen overexpressed NURRI
transactivation reveals a possible means by which NURRI may be modulated in an inflamed

situation, such as an RA joint.

Studies have found that overexpression of NURRI induces transactivation of the
proinflammatory chemokine IL-8. Co-expression of NURRI and the NF-kB subunit p65 lead to
increased IL-8 induction. NURRI co-operates with p65 to induce IL-8 transactivation in a
mechanism which is independant of NURRI binding to DNA (Aheme et al. 2009). Therefore,
the effect of A20 on NURRI’s ability to induce IL-8 expression on its own and in the presence of
p65 was investigated. This was carried out by co-transfecting an IL-8 human promoter luciferase
reporter construct and a NURRI expression vector with and without p65 and assessing the effect

of A20 overexpression on IL-8 reporter transactivation.

IL-8 is a proinflammatory chemokine that has been identified as being significantly upregulated
in RA joints. It attracts polymorphonuclear neutrophils into the joint, heightening the immune
response. IL-8 also induces angiogenesis, enabling further inflammatory mediators to enter the
joint (Slavic et al. 2005). In the K4 IM synoviocytes, there was a consistent inhibitory effect by
A20 on the ability of overexpressed and endogenous NURRI to transactivate the IL-8 promoter
in the absence of p65 (Fig. 5.11). The ability of A20 to suppress NURRI activation of the IL-8
promoter was not always significant (p < 0.05), however. Co-expression of NURRI and p65 did
display a slight synergistic effect on IL-8 promoter activity. Aherne et al. (2009) obtained strong
synergistic increases in IL-8 promoter transactivation by NURRI and p65 in the same cell type.
Aherne et al. (2009) used 400-800 ng of CMX-NURR1 plasmid in their experiments compared to
200 ng of CMX-NURR1 in this study, however. Nonetheless, the same pattern of NURRI and
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p65-induced activation of the IL-8 promoter was observed. Variable results were obtained for the
K4 IM cells in assessing the effect of A20 on p65 transactivation of the IL-8 promoter and on
A20’s effect on the combined transcriptional activity of NURR1 and p65 (data not shown).
Again, this may be due to the lower transfection efficiency of the transfection reagent Turbofect
for this cell type or due to differences in the cell cycle between experiments. Alternatively, the
effects of A20 on the transcriptional activity of NURR1 and p65 may be variable in the K4 IM
cells. It may be that A20-interacting proteins such as ABIN-I/ABIN-2 or others are affecting the
ability of A20 to modulate the transcriptional activity of NURRL1 in K4 IM cells. This may
explain why some variable results were obtained for the NBRE-luciferase assay for this cell type

also.

A consistent enhancing effect was observed by A20 on the ability of NURR1 to transactivate the
IL-8 promoter in the SW 1353 chondrocyte cells. Similarly, A20 had an enhancing effect on the
ability of p65 to induce IL-8-luciferase activity. In addition, A20 expression appeared to increase
the combined transcriptional activity of NURR1 and p65 on the IL-8 promoter (Fig. 5.12). It
appears that A20 positively modulates NURRI’s transcriptional activation of the human IL-8
promoter in human chondrocyte cells. However, there was not always a statistically significant
(p < 0.05) increase in NURR1 activation of the IL-8 promoter by A20. A stronger synergistic
effect by the co-expression of NURR1 and p65 on IL-8 transcriptional activity was observed in

the SW 1353 cells compared to the K4 IM cell line.

Previous studies carried out by Aherne et al. (2009) found that upregulation of IL-8 by NURR1
was independent of NURR1 binding to the IL-8 promoter and did not involve interaction with the
RXR receptor. The IL-8 promoter does not contain the NBRE binding site (Aherne et al. 2009).
Therefore, it appears that modulation of NURR1 by A20 is NBRE independent. In order to
control the transcriptional activity of NURR1, A20 may not interact with the NBRE site,
blocking or enhancing transcription of IL-8, depending on the cell context. Instead, it appears
that A20 may directly modulate the actions of NURR1 through protein-protein interactions or

indirectly, via intermediate proteins.

The results from the IL-8-luciferase assays indicate that A20 may have a functional effect on the
ability of NURRL1 to transactivate target genes and that this effect may be cell type specific. The

results also suggest that A20 may positively modulate NF-kB target genes, a role not previously
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identified with this protein. Furthermore, results suggest that A20 may be involved in the
regulation of NR4A target genes such as IL-8, in addition to those activatd by NF-kB. This

indicates a novel role of A20 in the regulation of inflammation.

5.7 Conclusions

Transient transfection experiments and luciferase assays have revealed that A20 may play a role
in modulating the transcriptional activity of the NR4A member NURRI in the context of
inflammatory arthritis. In K4 IM synoviocytes and SW 1353 cells, A20 inhibited transactivation
of ihe NR4A transcription factor binding site. Results indicate that transcriptional activation of
the NR4A target gene IL-8 by NURRI may be influenced by A20 and that the type of modulation

may be cell type specific.
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6. Summary

The aims of this investigation were to elucidate the potential interaction between A20 and the
NR4A subfamily of nuclear receptors in the context of RA and to determine the effects of the
inflammatory cytokine TNF-a on the expression of A20, ABIN-1, ABIN-2 and Cezanne in
the multicellular environment of RA. Bioinformatic analysis of A20 and the A20-related
genes ABIN-1, ABIN-2 and Cezanne identified the NR4A transcriptional binding site, the
NBRE site, within the promoter region of these genes. Further bioinformatic analysis
indicates that the NBRE sites found in ABIN-1 and Cezanne may be functionally significant,
suggesting that the NR4A subfamily members may regulate expression of these A20-related

genes.

Human K4 IM synoviocytes and SW 1353 chondrocytes were stimulated with the
inflammatory cytokine TNF-a. RT-PCR analyses of the resulting RNA indicate that A20,
ABIN-1 and ABIN-2 were upregulated in response to TNF-a treatment in both cell models of
RA. Differential expression of Cezanne was not detected following stimulation with TNF-a
in these cell types. gPCR analyses of chondrocytes treated with this cytokine over a 24 hr
period confirmed the end-point PCR results obtained for this cell type and illustrated that, in
the timeframe investigated, maximum A20 mRNA expression was after stimulation with

TNF-a for 1 hr, while maximum ABIN-1 mRNA expression was after 24 hr stimulation.

Co-transfection experiments and luciferase assays were carried out on synoviocyte and
chondrocyte cells to investigate the effect of A20 on the transcriptional activity of NURRL1.
The results obtained imply that A20 may inhibit the ability of NURR1 to transactivate the
NBRE binding site in both cell types. Further results suggest that A20 may regulate the
transcriptional activity of NURR1 independent of the NBRE site, since A20 overexpression
modulated the ability of this nuclear receptor to induce the NR4A target gene IL-8, a gene
which does not contain the NBRE site. Results indicate that modulation of NURR1 by A20

may be cell context dependent.

From the results of this study, it appears that A20 may play a previously unknown role in

regulating the transcriptional activity of the NR4A nuclear receptor NURRL1.
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APPENDIX A



Appendix A

Solutions for DNA Manipulations

50X TAE

242 ¢ Tris

57.1ml Acetic Acid

100 ml 0.5 M EDTA (pH 8.0)

Adjusted to | L with ultrapure H:O.

Solutions for DNA Miniprep

Solution |

50 mM Glucose

25 mM Tris.Cl (pH 8.0)
10 mM EDTA (pH 8.0)

J 4f

Solution Il (Freshly Prepared)
0.2 M NaOH
1% (w/v) SDS

Solution 111

60 ml 5 M Potassium Acetate
11.5 ml Glacial Acetic Acid
28.5 ml Ultrapure H:0

The resultant solution is 3 M with respect to potassium and 5 M with respect to acetate.

50% (v/v) Glycerol
25 ml Ultrapure H.O
25 ml Glycerol

Autoclaved and stored al room temperature.



Reagents for RNA Extraction and Analysis

0.1 % DEPC-treated H2
One millilitre of diethylpyroearbonate (DEPC) was added to 1L ultrapure H20 and mixed. This

was incubated at room temperature for 16 hr with a loose cap and autoclaved.

1 % Formaldehyde Gel
Zero point five grams of agarose were added to 43.5 ml DEPC-treated H.O and melted in the

microwave. The following reagents were added in the fume hood:

5.0ml 10X MOPS Running Buffer
1.5 ml Formaldehyde (50%)

The gel was poured in the fume hood and allowed to set for 30 min. After electrophoresis, the
RNA was visualised by staining in a solution of approximately 400 ml of ultrapure H.0
containing 0.03 mg ethidium bromide for 1 hr. The gel was then destained in DEPC-treated H.O

for 10 min and viewed using a gel imaging system.

IX MOPS Running Buffer
The 10X MOPS running buffer was diluted one part buffer to nine parts DEPC-treated H-O.

Bacterial Growth Media

LB Agar plus Selective Antibiotic

The selective antibiotic was added to a final concentration of 100 |Jg/ml to autoclaved LB agar
(50°C), mixed and poured into sterile petri dishes. The agar was left to set for 30 min and stored
at4°C.

LB Broth plus Selective Antibiotic
The selective antibiotic was added to a final concentration of 100 (ig/ml to autoclaved LB broth

(50°C) and stored at 4°C.



Ampicillin and Kanamycin Stock Solutions (100 mg/ml)
One hundred milligams of ampicillin or kanamycin were dissolved per ml of sterile ultrapure
H20. The solutions were filtered using a 0.45 (im filter to sterilize and stored in sterile

eppendorfs at -20°C.

Cell Culture Reagents

Supplemented RPMI Medium (500 ml)

440 ml RPMI 1640

50 ml Fetal Bovine Serum (Heat Inactivated)

5ml L-glutamine (2 mM/ml)

5ml Penicillin (10,000 U/ml) Streptomycin (10 mg/ml)

Phosphate Buffered Saline (PBS)

One PBS tablet (Oxoid) was dissolved in 100 ml ultrapure H20 and autoclaved to sterilize.

Luciferase Assay Reagents

I X Passive Lysis Buffer

The 5X Passive Lysis Buffer (Promega) was diluted one part buffer to four parts ultrapure H20.

Stop and Glo Reagent (Freshly prepared)
The Stop and Glo substrate (Promega) was diluted one part substrate to 50 parts Stop and Glo
buffer (Promega).



