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Abstract

Astaxanthin is produced in a wide range of organisms, its extractability from the native

Irish brown crab (Cancer pagurus) was carried out using glacial acetic acid. The

extractable natural astaxanthin yield is quantified using High performance liquid

chromatography. In this research the possibility of yielding extractable astaxanthin

from crustacean waste was examined to provide a natural source of the xanthophyll.

Astaxanthin is popular in demand by the nutraceutical market due to its high radical

scavenging activity. The question stands does this ability withstand the biochemical

reactions undergone following ingestion. In order to assimilate these reactions

examination of complex formation with transition metal salt were carried out a three

temperatures of 20°C, 37 °C and 78 °C. Complexation with copper chloride proved

successful at a higher activation energy (78 °C) as significant changes were confirmed

in electronic spectra and cyclic voltammograms. Cobalt chloride proved unsuccessful

in the formation of complexes with astaxanthin as no changes were observed apart from

a stabilisation effect in cyclic voltammograms providing a two electron oxidation

transfer. Astaxanthin is a natural powerful antioxidant but the involvement of the

radical scavenging sites in biochemical reactions can hinder or improve it effects as

proven in this research the metal chlorides exhibit a stabilisation effect on the molecules

antioxidant activity but also changed the aggregation of the molecule when complexed

with copper chloride at a higher temperature causing a more tight H-type packing.

These effects require further examination before marketing this molecule as a

nutraceutical as these reactions may negate it intake.
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Chapter 1

Introduction

1.0 Introduction

Over the last quarter of a century the nutraceuticals market has expanded into a multi-

billion euro industry with the forecast of continued growth within the emerging global

markets (Frost and Sullivan 2011). Nutraceuticals is a term that combines “nutrition”

and “pharmaceutical”, and is used to describe a food that functions in maintaining the

wellbeing and health enhancement of an individual thus preventing and treating specific

disease (Ramaa et al. 2006). There are numerous reasons for the continued growth in

this sector but in essence the industry is catering for the consumer concern regarding

traditional synthetic additives and the trend has been towards incorporating more natural

substitutes which are viewed as a healthier alternative to traditional additives into food

products. One particular area which has gained considerable attention is the role played

by antioxidants within food products (Shahidi 2000) and also the preventative role these

additives may play as free radical scavengers within the human body post consumption
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(Capelli and Cysewki 2007). While numerous synthetic compounds have been used to

achieve these goals in the past, the white paper by Frost and Sullivan (2011) predicts a

push towards the development of natural nutraceuticals for the consumer market. The

logic behind this driving force is the somewhat perceived notion that there is a lower

risk of side effects associated with natural products while at the same time being

potentially more bioavailable. Within this group of naturally occurring antioxidants the

carotenoids represent a commercially important class of molecules.

1.1 Antioxidant Activity

On a daily basis the human body is exposed to free radicals whether it is from the

surrounding environment (sun rays and pollutants) or through food intake. Irrespective

of the source these free radicals can cause damage and the envisaged role of any

ingested antioxidant is to eliminate these radicals and restore the cell to a normal state.

Indeed many consumer foods are now marketed based on a products inherent natural

antioxidants and their potential for antioxidant activity within the body. However the

relative effectiveness of these natural antioxidants can and does vary considerably

(Capelli and Cysewki 2007). But in such a consumer driven market products containing

additives with the highest anti-oxidant activity will inevitably perform better from a

commerical point of view. Recent studies have shown that in terms of antioxidant

capacity astaxanthin out performs commercially available naturally occurring

antioxidants which are well known and a popular choice amongst consumers. A few of

which include vitamin E, based on singlet oxygen quenching tests astaxanthin proved

550 times stronger (Shimidzu et al. 1996) and Vitamin C studies based on oxygen free

radical scavenging astaxanthin proved to be 64.9 times stronger (Bagchi 2001).

While there does exist a popular movement towards incorporating greater amounts

antioxidants into food products it would be prudent to recognise the fact there is still

some uncertainty regarding the potential to which these antioxidant molecules are

assimilated through the intestinal wall (Alexandropoulou et al. 2005, Hu et al. 2000).

However given the structural similarity of astaxanthin to the -carotene molecule, a

molecule that is known to be bio-assimilated by the human body it is not unreasonable

to assume that astaxanthin may be absorbed through a similar metabolic process.
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Irrespective of this assumption it is recognised that free radicals produced within the

body can cause damage and play a role in the development of chronic diseases which

are life limiting such as cataracts, cancer and rheumatism through disruption of the

cell’s regular state (Pham-Huy et al. 2008). Thus it is this potential to prevent this type

of free radical damage that has driven much of the research interest into these free

radical terminators.

Mechanisms of scavenging free radicals involve electron transfer reactions, the transfer

of a hydrogen atom and radical addition. Carotenoids possess the ability to either

donate or accept electrons for free radical scavenging purposes. In combating oxygen

(O2) free radicals dioxi-carotenoids can take up electrons and these mechanisms suggest

that there is direct reaction between the antiradical and the free radical. The chelating of

metals by molecules can have an indirect effect and inhibit the formation of free

radicals. Studies have shown the Cu2+ chelating capacity of carotene and astaxanthin’s

capability of forming metal ion complexes with metal cations (Hernández-Marin et al.

2012).

Figure 1.1: A stick model depicting the molecular structure of astaxanthin and the associated delocalised
electron cloud.

These interactions can induce changes on the distinctive spectroscopic absorption

characteristics of astaxanthin, i.e. there is a shift in the maximum absorption band of

astaxanthin, usually a red shift (Hernández-Marin et al. 2012). These changes are of

interest as they can induce changes on the efficiency of astaxanthin as a potential

nutraceutical. Natural astaxanthin is of particular importance to the nutraceuticals

sector but these benefits are intrinsically linked to the bioavailability of the unbound

molecule. Any interactions between astaxanthin and metal ions inherently present

within the digestive system has the potential to reduce this bioavailability and thus

decrease its potential as a natural antioxidant, e.g. copper and cobalt. The metal cobalt
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may be introduced into the digestive system as part of Vitamin B12 complex (Smith and

Gropper 2012) and copper can be introduced through a large variety of different dietary

intakes including meat, dried fruits, nuts and cocoa, mainly in the form of copper

sulphate (Kamberg 2010, Smith and Gropper 2012). This metal binding capacity of

astaxanthin may also represent an efficient way to preserve its antioxidant capabilities

by providing a route for drug delivery.

1.2 Carotenoids

The carotenoids represent a large class of naturally occurring fat soluble molecules.

These coloured pigments are found in both the plant and animal kingdoms and can vary

from blue to red in colour. The carotenoid family includes over 800 individual

molecules which is divided into two major groups: Carotenes and Xanthophylls. The

essential difference between the carotenes and xanthophylls is the additional presence of

oxygen atoms in the xanthophyll molecules. Both classes are structurally similar

molecules based on a repeating isoprene subunit. This repeating isoprene subunit results

in a conjugated sp2 hybridised carbon backbone. This hybridised system results from

unfilled p-orbitals which overlap with adjacent unfilled p-orbitals on neighbouring

carbon atoms. These hybridised orbitals interact and allow for electron movement. In

fact the carbon backbone can act as an electronic conductor and electrons are free to

migrate along the molecules backbone (Palanna 2009). It is this hybridised orbital

which is responsible for the interesting electronic properties of this molecule.

The colour of the of the particular carotenoid is due to the presence of the conjugated

double bond system within the molecule and the greater the degree of conjugation the

further red shifted the primary absorption band will be. A minimum of seven conjugated

double bonds is required before a carotenoid molecule exhibits a visible yellow hue

(DeMan 1999). In addition each double bond may exist in either the “cis” or “trans”

form although the majority of the carotenoids found in food products are in the “trans”

form. Irrespective of the stereo-isomeric configuration the inherent highly unsaturated

nature of the carotenoids means that they are highly susceptible to oxidative damage

and photodecomposition. While the bound molecules as they are found in natural

systems are relatively stable, the purified molecules must be stored under controlled
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conditions so as to minimise their exposure to oxygen and light. Failure to limit the

exposure to these conditions normally results in the formation of breakdown products

like monoesters of the parent carotenoids molecules (Siems et al 1999). The degree to

which the formation of these breakdown products has occurred can be monitored using

chromatographic techniques such as high performance liquid chromatography (HPLC).

Figure 1.2 :( a) Basic Isoprene subunit with double bond conjugation, (b) Lycopene (generated using
Chemsketch software)

Various different carotenoids have been shown to be extremely effective nutraceuticals

in numerous studies, e.g. lycopene has been associated with the decreased risk of

cardiovascular diseases and chronic cancer (Rao and Agarwal 2000) and lutein can

reduce the risk of lung and breast cancer (Ribaya-Mercado and Blumberg 2004).

1.3 Astaxanthin potential as a nutraceutical

The most important and widely used xanthopyhlls is astaxanthin; it has many

applications within the pharmaceutical, food and cosmetic industries. This pinkish-red

pigment can be found in a variety of foods and some common examples of the natural

occurrence of astaxanthin include salmon, seaweeds and crustaceans. The majority of

these organisms with the notable exceptions of algae and bacteria cannot produce

astaxanthin directly and it is thus introduced through their diet (Capelli and Cysewski

2007). Once it is absorbed it can have different effects on the organism’s body, a few

include: pigmentation, the ability to oxidise essential fatty acids and immunological

reactions (Capelli and Cysewski 2007).

The consumer demand for commercial astaxanthin has resulted in a dramatic increase in

the market in recent years. Natural astaxanthin is in great demand because of its
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benefits including antioxidant activity, antimicrobial activity and anti-inflammatory

activity (Capelli and Cysewski 2007). Until recently the main application for

astaxanthin usage had been in fish farming where astaxanthin was added to the salmon’s

diet in order for the fish flesh to develop its popular pink/red pigmentation. It also had

the additional benefit of conferring protection (cellular) from oxidation (Baker and

Günther 2004).

The wide variety of benefits associated with astaxanthin gives it the potential to be a

powerful nutraceutical. Studies have shown that ingestion of astaxanthin may confirm

benefits such as antioxidant and anti-inflammatory activity (Bagchi et al. 2010). Further

studies by Nagendraprabhu and Sudhandiran 2011 on rat colon carcinogenesis showed

that astaxanthin exhibits anti-cancer and anti-inflammatory effects. In 7,12-

Dimethylbenz(a)anthracene (DMBA)-induced hamster buccal pouch carcinogenesis

astaxanthin has been found to have a chemo-preventative effect as it disrupts the NF-κ 

B and Wnt/ß-catenin signalling pathways through inhibiting phosphorylation of kinases

and transcription factors (Kavitha et al. 2013). However these antioxidant and anti

inflammatory functions can be disrupted through the formation of complexes with other

atoms within the digestive system, e.g. transition metals (cobalt, copper, etc.). Recent

research has shown the that the cyclohexane ring of a astaxanthin molecule can chelate

metal to from complexes with Ca2+ and Zn2+ ions at low salt concentrations (Polyakov

et al. 2010). The formation of similar complexes involving copper and chloride and

their stability will be examined further during this research.

1.4 Sources of Astaxanthin

While astaxanthin can be obtained from numerous sources each with its own benefits

the majority of commercially available astaxanthin is extracted from Haematococcus

pluvialis flakes; an algae which is known to have the largest concentration of the

pigment in nature. While a synthetic form of the molecule is available the natural form

of the molecule has been found to have a greater bio-availability and thus more research

has been placed into finding improved methods of its extraction from natural sources.

Other sources of astaxanthin which have been exploited include red yeast
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(Xanthophyllomyces dendrorhous), green algae (Haematococcus pluvialis) and oil

extracted from krill (Dore and Cysewski 2003).

1.4.1 Algal sources

The algae are a primitive class of organism which inhabit both freshwater and saltwater

aquatic ecosystems (Graham and Wilcox 2000). They are photosynthetic organisms

which are less complex in structure when compared to land plants. Even so the algae

represent the one of the largest marine sources for astaxanthin (Graham and Wilcox

2000). Within certain algae cells large accumulations of astaxanthin can occur after the

cell has been subjected to high levels of sunlight. A similar effect can also be induced

by varying the nutrient supply levels to the cell e.g. by altering the amount of available

nitrogen. The accumulation of the astaxanthin occurs within the extra-chloroplastic

lipid droplets where astaxanthin is considered to reduce cellular damage and photo-

inhibition (Sigee 2005).

Figure 1.3: A 90 acre microalgae farm owned by Cyanotech on the coast of Hawaii (Capelli and
Cysewski 2007).

An example of this protective effect in nature can be found in Snow algae

(Chlamydomonas Nivalis), where in once the snow melts the algae cells are exposed to

sunlight, which results in the algae producing astaxanthin as a protective agent. This is

observed as a red coloured snow which can be found usually in open exposures on the
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snow (Graham and Wilcox 2000). The commercial production of astaxanthin exploits

this defensive mechanism for manufacturing purposes whereby cultures of algae are

grown and then submitted to high levels of irradiation and once astaxanthin has been

accumulated within the cell then the algae is harvested and the pigment is extracted

from the cell and purified (Dore and Cysewski 2003).

1.4.1.1 Seaweed sources

The seaweeds are a group of algae but unlike simpler algae the seaweeds are autotrophic

and multicellular in nature. They are similar in appearance to terrestrial plants and

exhibit stems, roots and leaf analogues. Worldwide about 8 million tonnes of wet

seaweed is harvested annually and recently its nutritional benefits have gained

worldwide interest, due to the presence of proteins, vitamins, minerals and

carbohydrates (Banerjee et al. 2009). Astaxanthin is also found in various red seaweeds

(e.g. Catenella repens) and studies have demonstrated the effect of seasonal variations

on the biomass of the seaweed along with ecological factors, population structure, water

salinity and nutrient availability. Some of these seasonal variations can also effect the

production of astaxanthin within the seaweed e.g. high temperature and lack of nutrients

etc. (Banerjee et al. 2009). It was found that astaxanthin concentrations varied in India

in pre-monsoon, monsoon and post-monsoon conditions with the highest concentration

been found in pre-monsoon seaweed samples (which was probably attributed to the

higher temperature) and the lowest in monsoon samples (Banerjee et al. 2009). This

information can help in developing the conditions in which seaweed produces optimum

levels of astaxanthin which can then be applied and used in astaxanthin manufacture.

1.4.1.2 Microalgae Haematococcus pluvialis

The microalgae Haematococcus pluvialis is a single celled chlorophyte which is found

worldwide. It is noteworthy because it yields the highest concentration of astaxanthin

from amongst all the algal sources. Under optimal growth conditions Haematococcus

pluvialis normally exhibits a green coloration but when it is placed under an

environmental stress the chlorophyte enters into a defensive mode hastily producing

spores and accumulating astaxanthin. Environmental stresses like strong sunlight, lack

of nutrients or dehydration can induce pigment production to form a barrier against the
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harmful UV rays (Dore and Cysewski 2003). This stress induced pigment production is

shown in figure 1.4 where the cell changes it structure into spore production. These

spores can later hatch after dormancy, which can last for a number of years, back into

free green swimming cells when reintroduced to an environment which exhibit suitable

growth conditions.

Figure 1.4: (a). Haematococcus pluvialis vegetative cell, (b). Haematococcus pluvialis astaxanthin rich
spores (Stressed) (c). Haematococcus pluvialis algae pond ready for harvest (Capelli and Cysewski 2007).

The cultivation of these algae is a relatively straight forward process although care has

to be taken to ensure the avoidance of contamination from wild algae and protozoa

which can make their way into the culture medium. Although Haematococcus pluvialis

algae is a potentially abundant source for natural astaxanthin and in the future it may

replace the synthetic form especially in aquaculture feeds, it still suffers from

disadvantages associated with its production. Some of these issues include the

expensive extraction process, the slow algae growth rates, astaxanthin purity and low

yields. Thus when compared to the production of the synthetic form its cost

effectiveness suffers (Acton 2013, Dore and Cysewski 2003).
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1.4.2 Echinoderms sources

Echinoderms intake various carotenoid precursors through their diet, they feed on the

phytodetritus material deposited on the sea bed and play an important role in recycling

the nutrients within this material (Gilpin 2006). The phytodetritus has been linked to

reproduction and growth seasonal patterns in the benthic biomass. Several marine

animals such as echinoderms accumulate the carotenoids within their integuments

assisting in camouflage, protection and signalling (e.g. colour during breeding) (Maoka

2011). Research has shown that the carotenoid content of echinoids from different

sampling sites is larger than that of holothurians (sea cucumbers), this can be due to the

difference in diet intake as holothurians feed lower in the sediment rather than the phyto

detrital layer (Wigham et al. 2008). Also numerous starfish species were also found to

primarily contain the carotenoids astaxanthin, 7,8,7',8'-didehydroastaxanthin and 7,8-

didehydroastaxanthin (Maoka 2011).

1.4.3 Crustacean sources

The crustaceans are part of the arthropods phylum and all the species of this phylum

have an exoskeleton made up of protein, carotenoids and chitin. With over 40,000

individual species the malacostraca are the largest of the six crustacean classes (Bernie

and Wislon 2001). Many species within the class are highly coloured due to the

presence of various proteins bound to the carotenoid molecules within the exoskeleton.

Indeed the actual amount of rare and unusual carotenoids within some of these species

can result in them acting as a viable source of carotenoids for commercial usage once

freed from the shell (Khanafari et al. 2007, Sachindra et al. 2005). Numerous

astaxanthin extraction methods have been developed which can vary from a straight

forward microbial digestion to numerous complex wet chemical extraction methods.

Indeed both types of extraction procedure have been applied to the recovery of

astaxanthin from Persian Gulf shrimp waste (Penaeus Semisulcatus) (Khanafari et al.

2007). Various studies have focused on optimising the extraction conditions by varying

the choice of extraction solvents and extraction conditions (Khanafari et al. 2007,

Sachindra et al. 2005, Vilasoa-Martínez et al. 2008). The major pigments found in this
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species of shrimp were found to be dominantly astaxanthin and its esters. Astaxanthin

recovery from waste shrimp shell has also been performed using microbial extraction

methods with even greater effectiveness when compared to solvent extraction

techniques (Khanafari et al. 2007). In a study on a marine crab (Charybdis cruciata)

astaxanthin and its esters were also found to be predominant at concentrations of 65.5

g/100g of the total carotenoids extracted (Sachindra et al. 2005). The same results were

found when testing the Snow Crab (Chionoecetes Opilio) shell from the North Atlantic

as astaxanthin was the primary carotenoid along with smaller concentration of its esters

(Vilasoa-Martínez et al. 2008).

1.4.4 Astaxanthin extraction techniques

Irrespective of the source material removing the astaxanthin from its bound matrix is

intrinsically important commercially and the choice of purification strategy is an

essential step in the recovery of a usable astaxanthin source. There are a number of

astaxanthin extraction methods available, these include various acid treatments, organic

solvent extraction and microbial extraction. Finding a suitable solvent system for an

extraction is of key commercial importance. Like most carotenoids the backbone of

astaxanthin is hydrophobic in nature but unlike most other carotenoids both of the

cyclohexane ends (heaxatomic) of the molecule possess hydrophilic functional groups.

This solubility character duality confers some unusual characteristics upon the molecule

compared to other carotenoids and consequently astaxanthin exhibits an ability to

solubilise in both aqueous (polar) and non-aqueous (non-polar) systems alike (Yuan et

al. 2008).

One of the most popular solvents used in astaxanthin extraction is acetone primarily due

to its higher solubility in the organic solvents (Yuan et al. 2008). Various extractions

have been employed together for optimisation and production of the largest astaxanthin

yield, e.g. Elumalai et al. (2014) employed a mixture of organic solvent extraction, acid

treatments and dimethyl sulfoxide (DMSO) in the extraction of astaxanthin from

Haemotococcus pluvialis. Khanafari et al. (2007) compared both chemical and

microbial extraction of astaxanthin from shrimp (Penaeus semisulcatus) waste. In wet
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chemical extractions both hexane and DMSO were used in combination whereas in the

microbial extraction Lactobacillus sp. culture was used for fermentation and the

collected culture was then subjected to chemical extraction using a 3:1 ratio of hexane

to acetone. The results showed the microbial extraction proved to be more effective

than the chemical extraction yielding 23 mg more astaxanthin per gram of starting

material (Khanafari et al. 2007). Chunhua et al. (2013) employed an additional acid

wash step in the organic solvent extraction from Phaffia rhodozyma. This step was

employed to eliminate the cell wall and membrane to improve the efficiency of the

solvent extraction increasing the astaxanthin yield by threefold. The use of different

organic solvents has also been examined to determine the best ratio of polar and non-

polar extracting solvent, which were found to be acetone and hexane respectively

(Sachindra et al. 2006). A binary mixture of both a polar and non-polar solvent was

found to be most effective as it resulted in a 60% increase in yield when compared to

the use of a single solvent. Given the nature of the raw material to be utilised in the

initial stages of this work the astaxanthin extraction from brown crab (Cancer pagurus)

shell, starfish (Asterias rubens) and algae may prove difficult due to the presence of

matrix effects and an acid washing step to free the astaxanthin may be added as an extra

step to help improve the recoverable yields.

1.5 Astaxanthin chemical structure

The molecular formula for astaxanthin is C40H52O4 and the molecule consists if two

carbon hexagon cages connected by an alternating series of nine carbon- carbon single

and double bonds. The IUPAC name for astaxanthin is (3S,3’S)-3,3’dihydroxy-β, β-

carotene-4, 4’-dione) and it consists of a long hydrocarbon chain terminated in two

cyclohexane rings, both of which contain hydroxyl (OH) and carbonyl functional

groups (C=O). These presences of these two groups with their electronegative oxygen

atoms give astaxanthin its unique functional abilities. A few of these abilities include

bonding to muscle tissue, antioxidant activity and colouration (Naguib 2000). These

functions have been the object of interest in an increasing number of studies as they

have been found to help in the treatment and prevention of certain ailments such as

cancer (Khanafari et al. 2007.
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Figure 1.5: The Structure of Astaxanthin (C40H52O4) showing the Hydroxyl “OH” ,Carbonyl group “O”

groups and the non-polar / polar functionalities (molecular structure of astaxanthin generated using

Chemsketch software.

The structure of astaxanthin is similar to lycopene except that it is cyclized at both ends.

The alternating double bonds along the backbone of the molecule form a polyene chain

which gives this and other similar like molecules their unique properties. The

alternating sequence of single and double bonds allow for the possibility of a number of

geometrical isomers to exist, with the number of possible steric forms exceeding over a

thousand possible structures. However this number is greatly reduced when steric

hindrance is taken into account (Britton et al 1996). In nature most carotenoids exist in

the all trans configuration and in this regard astaxanthin is no exception. Exposure to

light is known to isomerise parent carotenoid molecules, which can affect the shape of

the molecule with the trans form being structurally more rigid. This change in

confirmation can affect the solubility and absorbability of the molecule. The trans

forms of the carotenoids also tend to crystalize or aggregate more easily and thus are

less easily absorbed.

The end groups and the degree of oxygenation of these groups also effect the carotenoid

properties. Most carotenoids are hydrophilic and are only soluble in organic non polar

solvents (Yuan et al. 2008). Astaxanthin however is an exception and it possess the

ability to solubilise itself in both polar and non-polar solvents. The presence of the

conjugated double bond system with its associated delocalised π electrons provide

carotenoid molecules like astaxanthin their unique electrochemical properties. These

highly delocalised electrons only require a small amount of energy to promote them into

an excited state. As a result visible light is sufficiently energetic enough to bring about

an electronic transition with the molecule. Carotenoids like astaxanthin are susceptible
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to oxidative dehydration during storage and processing and as such care has been taken

when handling to prevent photobleaching and oxidative damage (Miao et al. 2013,

Ahmed et al. 2015).

1.6. Transition metal complexes

Within the transition metals series, the d-block contains a number of elements which are

of interest due to their presence in numerous biological systems. A prime example is

the metal cobalt which is an essential constituent of the vitamin B12 which functions as a

catalyst in numerous biochemical reactions (Mahaffy et al. 2014). The inherent

properties of these metals which make them uniquely suitable for these types of

biochemical applications are governed by their loosely bound d-electrons. Depending

on the electron configuration of the 3d and 4s sub-shells these transition metals are able

to exhibit various oxidation states and this affords them the opportunity to form many

ionic or partially ionic compounds. Chromium and copper differ from the other

transition metals by possessing only one electron in their respective 4s orbitals. Various

coordination complexes can be formed in solution between metal salts and halides with

neutral molecules.

The type of complexes formed and their stability to spontaneous decomposition is

dependant not only on the metal ion but also on the type and number of ligands attached

to it. Ligands are molecules or ions possessing at least one electron pair which can be

donated. There are two main classes; classical and non-classical. Classical ligands act

as an electron pair donor and forms complexes with metal ions and all types of Lewis

acids. Non-classical ligands are formed with transition metal atoms through π-bonding,

π-ligands include aromatic hydrocarbons, cyanide, carbon monoxide and unsaturated

hydrocarbons. Transition metals possess d orbitals with can be used in bonding, the

ligand possess both donor and acceptor orbitals. The coordination of a ligand can

further subdivide it into a monodentate (A single atom donor) and Multidentate (several

donor atoms) (Mahaffy et al. 2014, Cotton and Wilkinson 1988).
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Figure 1.6: (a) Electron configuration of two of the transitional metals; Cobalt (Co) and Copper (Cu),

demonstrating the difference in the 4s sub shell, (b) splitting of the ‘d’ degenerate orbitals in an

octahedral and tetrahedral fields.

In transition metals with a perfectly octahedral coordination the five d orbitals are split

into three subset orbitals of dxy, dyx and dzx. These three are the basis of the t2g and two

orbital subsets named dz2 and dx2-y2arethe basis to the eg orbital. The orbitals of t2g are

non-bonding and hence occupy a lower energy level than that of the eg anti-bonding

orbital (Leipoldt and Coppens 1973). In tetrahedral complexes there are also two levels

e and t2, the lower level e is doubly degenerate and the upper level t2 is triply

degenerate, demonstrated in figure 1.6 (b). The energy between the two levels is

referred to as Δo, this is governed by the nature of the metal ion and ligand, the

oxidation state of the metal (Janes and Moore 2004). Electron-electron repulsion is an

added consideration in systems containing more than one d electron. An example with

iron is the addition of six d electrons, if the electron to electron repulsion is greater than

10 Dq then the electrons will enter the orbitals in accordance with Hund’s rule resulting

in a high spin 5T2g (t2g
4eg2) ground state, whereas if the repulsion is lower the electrons

will pair up in the t2g orbitals resulting in a low spin 1A1g (t2g
6) ground state, this is

demonstrated in figure 1.7 (Gütlich and Goodwin 2004).

Figure 1.7: Electron configuration of six d electrons of a possible Iron complex in a weak and strong

field
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In ligand metal complexes back bonding interactions are of a particular importance to

ligands with unfilled π* orbitals, these are ideal for secondary nM→ πL* interactions

with filled metal d orbitals. In these cases the ligand acts as both a strong π- acceptor

(acid) and a σ- donor (base) (Weinhold and Landis 2005). An example of back boning

is demonstrated in figure 1.8 (b), the metal form a complex with the ligand through π-

back bonding of the metal ion to the CO group. Two modes of π-back bonding and two

types of π-acceptor ligands are available; longitudinal acceptor e.g. carbon monoxide

and perpendicular acceptor e.g. alkynes (Hegedus 1999).

Studies have shown a stabilisation effect on the transition metal in complexes, e.g.

copper (I) protection with novel oligotriazole ligands, cyclic voltammetry confirmed the

tight attachment of the ligand to copper (I) and stabilising the oxidation state of the

transition metal (Chan et al. 2004).

Figure 1.8: (a) d atomic orbitals dxz, dzy, dyz, dx
2
-y

2 and dz
2, (b) back bonding of metals and ligand (CO)

through π bonding.

The metal ion in a complex is under the influence of the electric field from the

surrounding ligand which causes changes in the nature of the metal ion and vice versa.

For examples if a transition metal ion is placed in a solution with a surrounding

negatively charged ligand then an increase in the energy of the five d orbitals will

follow due to the repulsion between the metal ions electron density and the negatively

changed ligand field (Sathyanarayana 2001). The electronic field can have an effect on

the bonding of the ligand and metal complexes either by attraction or repulsion of the

two different fields.
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1.6.1 Astaxanthin-metal chelates

Interactions of carotenoids with other systems, either atoms or molecules can occur and

result in alterations to the bioavailability and/or bio-effectiveness of the astaxanthin.

Interactions with proteins are of particular importance in nature, this allows the

hydrophobic carotenoids to exist, function and be transported in an aqueous

environment. An added feature can be the modification of the carotenoids light

absorption and in turn its colour and photochemistry. Examples of these proteins

bonding can occur in plants where a chlorophyll-carotenoid-protein complex is used

during photosynthesis and astaxanthin binding to the muscle protein in salmon (Britton

et al. 2008). Astaxanthin possess two adjacent oxygen atoms in the form of a keto

group and hydroxyl group on the cyclohexane rings. These oxygen atoms permit the

formation of complexes with the metal ions. The cyclohexane ring structure is similar

to that of many hydroxyl quinones and α-hyrdoxy- ketones, these have high biological

activity including the capability to form chelate complexes with metal ions (Polyakov et

al. 2010). This ability has been proven to be beneficial in some studies, e.g.

Astaxanthin protecting porcine lens from oxidative damage by calcium ion-activate

protease (Calpain), the astaxanthin interacts with calcium ions thus blocking the

activation of the protease calpain (Wu et al. 2006). This chelating ability can modify

the physicochemical properties of astaxanthin and can be examined using a wide range

of techniques; these include infra-red spectroscopy, nuclear magnetic resonance (NMR)

and cyclic voltammetry.

Hernández-Marin et al (2012) studied the interaction of astaxanthin and a number of

metals e.g. Ca2+, Pb2+, Zn2+, Cd2+ and Hg2+ etc. These interactions were coordinated

through two oxygen atoms and their presence was crucial for the formation of the

astaxanthin-metal complexes. These complexes resulted in a bathochromic (red) shift.

The electron acceptor and donor capacity of astaxanthin effect the electron transfer

capacity and this in turn alters its free radical scavenging ability. A number of possible

configurations of metal chelate complexes are shown below in figure 1.9 with a cobalt

salt. These complexes can also play an essential role in the photoprotective action of

astaxanthin and they have been shown to broaden the absorption spectra which can

provide additional lights absorption in the visible region (Polyakov et al 2010).
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Figure 1.9: Possible structure of astaxanthin metal complexes with cobalt generated using Chemsketch

software, a. 1:1 ratio in which the astaxanthin chain coils up and the two cyclohexane rings are linked

together with a [ASTA-CoCl2]
2+ molecule, b. 1:1 ratio of astaxanthin to [ASTA-CoCl4]

2+ through an

attachment to the oxygen atoms in the cyclohexane ring on one end of the chain and c. 1:2 ratio of

astaxanthin to [ASTA-2CoCl4]
2+ through an attachment to the oxygen atoms in the cyclohexane ring at

each end of the chain.

The stoichiometry of complexes formed in figure 1.9 represent a number of possible

complexes but their actual existence can be confirmed through using a variety of

methods, e.g. Job's continuous variation method, Mole ratio method and the Slope ratio

method. Job's method involves the preparation of solutions of the metal cations and

ligand, both with identical concentrations. The technique involves mixing the two

solutions together while keeping the total molarity constant, thus the relative

concentration of the metal and ligand are varied. The absorbance of the solution is

recorded and is plotted versus the mole ratio (Trimm and Hunter 2011).The slope ratio

method differs in that one of the solutions concentrations is held constant while the

concentration of the second is varied, a break in the slope of the curve corresponds to

the mole ratio of ligand to mole of metal cation (Dash 2011).

Figure 1.10: Plots investigating the stoichiometry of the astaxanthin chelate complexes using (a) Job’s
continuous variation method and (b) the Slope ratio method.
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Astaxanthin metal chelate complexes have been previously examined using Hydrogen

Nuclear Magnetic Resonance (H-NMR). H-NMR spectra of astaxanthin and metal ions

(Ca2+ and Zn2+) complexes in ethanol revealed a large chemical shift of the 3-CH proton

nearest to the hydroxyl (OH) group, a small shift in the 2-CH and 5-CH3 protons in the

cyclohexane ring. Optical studies of astaxanthin in the presence of a metal salts

(Fe(ClO4)2) revealed a large shift in the maximum absorption spectra from 480 nm to

492 nm, this was similarly found with Ca and Zn complexes. The solvent chosen also

proved to have an effect on the complexes as the use of acetonitrile decreased the

stability of astaxanthin when compared to the use of ethanol. The positively charged

metal ion electron withdrawing effect in the complexes decreases the electron density of

the cyclohexane ring. The capability of astaxanthin to from metal chelate complexes

can prove beneficial in the case of excess metal ions, e.g. Ca2+, Fe2+ and Zn2+. These

metal ions can prove harmful and have a negative health effect, e.g. Fe2+ producing OH

radicals (Polyakov et al. 2010).

1.7 Electronic Spectroscopy

1.7.1 Absorption spectroscopy

An obvious characteristic of most carotenoids is the inherent range of colours associated

with this class of molecule. Consequently the use of electronic spectroscopy provides a

convenient means to probe the underlying electronics of these molecules. Absorption

spectroscopy involves electronic transitions from the ground state (low lying state) to an

excited state. Electron transitions involve promoting an electron from a low energy

orbital to a higher energy orbital or vice versa. The excitation from the ground state

occurs through the promotion of an electron from the highest occupied molecular orbital

(HOMO) to the lowest unoccupied molecular orbital (LUMO), this transition is subject

to selection rules which are determined by symmetry considerations. The absorption of

light by carotenoid molecules occurs in the visible region of the electromagnetic

spectrum, e.g. astaxanthin, β-carotene and violaxanthin. Absorption of these long chain

polyenes in the visible region also accounts for their ability to act as an absorption

centre or chromophore in diverse photosynthetic systems. The absorption of yellow,

orange and red pigmented carotenoids occur between 400 to 550 nm. These shifts in
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the absorption spectra of carotenoids can occur after binding to other molecules and

they are the basis of biological coloration, e.g. astaxanthin in the carapace of a lobster

(Britton et al. 2008).

Figure 1.11: (a) Jablonski diagram demonstrating the transitions between the electronic states with
intersystem crossing, abs is absorption, F is fluorescence and P is phosphorescence (b) Frank-Codon
energy principle diagram demonstrating the change in the vibrational level.

Molecular aggregates have the ability to bridge the gap between the physics of single

molecules and structurally ordered crystals. In biological systems molecular self-

assembly is highly precise self-directed process and fundamentally important in living

organisms for correct functioning (Britton et al. 2008). In 1936 molecular aggregation

was first examined by Jelley, E.E., in a study examining dyes. A bathochromic (red)

shift was observed upon supramolecular self-organization (aggregation) (Jelley 1936).

This red shift to a higher wavelength according to the molecular excitation model is an

indication of a loose type association (J- or head to tail), while a hypsochromic (blue)

shift of absorption spectral band to a lower wavelength demonstrates a tight association

called H-type or card- pack aggregate. These shifts can help gain a better understanding

of the conjugation undergone by astaxanthin during complexation with metals centres

(Simonyi et al. 2003, Yadav 2005).
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Figure 1.12: (a) J-type aggregate with a head to tail orientation, (b) H-type aggregate involving a face to

face arrangement (i.e. parallel)

Absorption bands are designated by the electronic transition type but more than one

band may be produced due to the same type of electronic transition thus letters were

designated to distinguish between them. There are four bands; K-band (Conjugate)

originating from π (bonding orbital) to π*(anti-bonding orbital) transitions in a

conjugated system compound (π-π), R-band (radical-like) produced by a single

chromophoric group transition from n→π*, B-Bands (Benzenoid) brought about by

transitions from π → π* in aromatic or heteroaromatic compounds and E-bands

(Ethylenic) originating from ethylenic bonds transition from π→ π* in aromatic ring. E-

bands are also a characteristic of aromatic and heteroaromatic compounds (Yadav

2005).

Figure 1.13: Absorbance spectra of β-carotene with the corresponding to their electronic transition bands
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Carotenoids are limited by their solubility as they are highly hydrophobic, the majority

are lipophilic molecules. Thus majority of studies are carried out using organic solvents

or mixtures, e.g. water and ethanol. The solvent chosen can have an effect on the

absorption of astaxanthin (Yuan et al. (2012) examined the absorbance spectrum of

astaxanthin in methanol and observed four peaks with a maximum absorption at 478

nm, this K-band absorption was attributed to the transition of the large conjugated

molecule from π → π* orbital. The other two K-band absorptions at 203 and 250 nm

were produced by the transitions of the C=C and C=O conjugated system from π→ π*

in the hexatomic ring and absorption of the hexatomic ring on a whole respectively.

The fourth R-band absorption at 295 nm was generated of the carbonyl group transition

from n → π* and is the carbonyl compound characteristic peak (Yadav 2005). A

number of factors influence the maximum absorption of astaxanthin in an aqueous

solvent; these include the acidity, the mediums refractive index and salt concentration.

An investigation of the effect of added salts with both hard and salt anions on an

aqueous ethanolic dispersion of astaxanthin yielded a hypsochromic shift giving a band

at around 400 nm (yellow colour) along with the ratio of the absorbance at 407 and 475

nm being more pronounced (Britton et al. 2008).

Structurally different aggregates of different stabilities of astaxanthin may be formed

simply through changing either the temperature or the solvent shell. In a mixture of

water and acetone astaxanthin forms H-aggregates and these rearrange to J-aggregates

with an increase in acetone concentration. When astaxanthin is placed in a 10% acetone

and 90% water solvent mixture the maximum absorption occurs at a wavelength of 478

nm and once the acetone concentration is increased to 40% the absorption peak changes

into a double peak at 520 and 562 nm. This behaviour demonstrates clearly that the

orientation of the hydroxy group is crucial in determining the particular aggregate type

and presence of this group is helpful in aggregate formation. Assumption of different

free energies of the H- and J- aggregates and the monomers explains the temperature

dependence of the formation of aggregate mixtures (Britton et al. 2008). In UV-Visible

spectroscopic studies on complexes formed with metals, the maximum absorption band

of astaxanthin showed a bathochromic shift towards the red portion of the spectrum.

Astaxanthin metal chelates complexes formed with iron (Fe), calcium (Ca) and Zinc

(Zn) also demonstrated a bathochromic shift from 480 nm to 492 nm and the
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appearance of a new shoulder between 520-600 nm (Polyakov et al 2010). This was also

observed by Chen et al. (2007) during studies on the interactions of astaxanthin and

calcium complexes. The absorption band at 480 nm shifted to 492 nm possibly

suggesting an improvement in the conjugated system of the polyene backbone possibly

due to the formation of the metal complex whereas studies with copper ions resulted in

a hypsochromic or blue shift from 480 nm to 373 nm in ethanol possibly due to

accelerated isomerisation. Absorption spectroscopy can be used to probe the

stoichiometry of the astaxanthin and the transition metal complexes and to analyse any

band shifts or decreases in oscillator strength thus assisting in the characterisation of the

complexes examined in this study.

Figure 1.14: (a) Structure of conjugated β-carotene, (b) structure of astaxanthin showing the two

functional groups hydroxyl and carbonyl at each end & (c) normalized absorbance spectra of astaxanthin

(red) and β- carotene in acetone demonstrating the difference in the maximum K absorption band.
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The absorbance spectrum of β-carotene as reported in figure 1.13 reveals the presence

of three distinct bands. The first of the transitions, the B- band is a result of the π → π*

transition in aromatic ring at both ends of the molecule. The two K- bands resulted

from the large conjugated molecule transition from π → π* and the transitions of the

C=C from π→ π* in the hexatomic ring respectively. β- Carotene and astaxanthin are

similar in the polyene chain length (C40) but they differ in the presence of the function al

groups hydroxyl and carbonyl functional groups. The presence of these differences

alter and shift the absorbance bands but altering the electronic band structure of the

molecule.

1.7.2 Fluorescence spectroscopy

Fluorescence spectroscopy is a type of luminescence which involves the emission of

light from a substance during its excited state (Lakowicz 1999). Fluorescence emission

is accompanied by the electronic transition from LUMO to HOMO (Britton et al, 2008).

This technique can be used along with absorption spectroscopy for a better

understanding of the character of an excited carotenoid molecule. Fluorescence

spectroscopy is inherently sensitive but there are technical difficulties which can

prohibit the measurement of molecules fluorescence. These difficulties may be due to

small impurities or the inherent low emission from carotenoids and longer polyenes

(Valeur and Berberan-Santos 2012). One of the characteristics of emission spectra is

that they are Stoke’s shifted (difference between position of the maximum absorption

band and the maximum emission band) and the emission energies are typically lower

than those of the corresponding absorption. Hence emission spectra occur at lower

energies and they are independent of the excitation wavelength. They are typically

mirror images of absorption spectra and are governed by the Frank-Condon factor. The

frank codon principle states that all electronic transitions are vertical, because the

electronic transitions occurring mostly without a change in the nuclei position

(Lakowicz 1999). The mirror image rule can have exceptions as indicated in figure

1.15, these are due to a different geometric arrangement of the nuclei in an excited state

in comparison with the ground state (Lakowicz 1999). Quenching of fluorescence can

occur by different mechanisms of which are collisional quenching (contact with another
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molecule “quencher” in solution and deactivation of excited-state fluorophore), static

quenching (involves the formation of non-fluorescent complexes with quenchers in a

grounded state) and a fluorophore attenuation of the incident light (Valeur and

Berberan-Santos 2012).

Figure 1.15: Comparison of absorption and fluorescence bands, (a) the mirror image rule applied and (b)

exception to the mirror image rule.

Fluorescence bands of carotenoids are often broad and featureless; this can present

complications in assigning spectral regions. Gillbro and Cogdell (1989) first

demonstrated the fluorescence of carotenoids, a comparison of β-carotene, rhodephin

and spheroidene. The results for β-carotene showed an almost identical match between

the absorption and excitation spectra, an overlap between the excitation and emission

spectra, the emission spectrum is an almost mirror image of absorption along with a

small stock’s shift and the fluorescence quantum yield was especially low. The

fluorescence of the carotenoid depends on the number of conjugated double bonds

rather than its origin from an S1→S0 or S2→S0, i.e. chain length. Four all trans-

spheroidenes fluorescence spectra containing 7 to 10 conjugated double bonds were

compared and it was determined that a systematic crossover occurred from S1→S0

emission to S2→S0 emission as the π-electron conjugation increased (Britton et al. 2008,

Ke 2001).Astaxanthin fluorescence in acetone resulted in a maximum excitation at 350

nm and emission at 570 nm, the emission measurement was found to change to 675 nm

intracellularly (X. dendrorhous) by Ukibe at el (2008). Fluorescence spectroscopy will

assist in understanding the characteristics of the excited state of the astaxanthin metal

complex.
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1.8 Vibrational spectroscopy

1.8.1 Infra-Red (IR) spectroscopy

The bond between two atom centres can be consider to behave as a spring that oscillates

or resonates at particular frequency which is dependent upon the mass of the individual

atoms involved in the bond. By changing the mass of one or both of the atoms the

frequency at which the two atoms vibrate relative to each other will change. More over

these vibrations are characteristics of the type of atom(s) involved in the bond and thus

the frequency at which they vibrate can be used as a diagnostic tool to identify the

atoms involved in the bond. The amount of energy required to induce a vibration

between two atoms is quite small and thus the absorption of energy, as a result of

resonance matching between the fundamental harmonic of the bond of to the

wavelength of energy from the red region of the spectrum is generally sufficient to

induce a vibration. Molecules like astaxanthin contain numerous different bonds which

can vibrate in many ways each of which is termed as vibrational mode. For an

astaxanthin molecule bond’s to be infrared active there needs to be a change in the

dipole moment associated with the bond during the vibrate. Infrared spectroscopy is a

powerful tool to help identify molecules with in a sample mixture. Smith (2011),

Griffiths and De Haseth (2007) have previously used IR spectroscopy for the

characterisation of astaxanthin.

The characteristic infrared vibrational modes of astaxanthin are C=O stretching between

1540 cm-1 and 1870 cm-1, C=C stretching between 1640 cm-1and 1670 cm-1, C-H stretch

between 2850 cm-1 and 2980 cm-1, OH stretch between 2500 cm-1 to 3300 cm-1 and ring

vibration between 1585 cm-1 and 1600 cm-1 (sharp) or 1400 cm-1 and 1500 cm-1 (sharp)

(Mahaffy et al. 2014). These assignments were confirmed in the subsequent literature

where the C=O stretching mode at 1654 cm-1 was confirmed. Additionally the C=C

stretching mode in the hexatomic ring was detected at 1552 cm-1 and an absorption band

at 974 cm-1 also indicated the presence of a C-H in C=C conjugate system (Yuan et al

2012). The presence of a methyl group was also confirmed in the aliphatic chain and

aromatic rings at 1385 cm-1 and bends in the aromatic rings at 572 cm-1 and 783 cm-1

(Elumalai et al. 2014).Variations were found in the spectra of astaxanthin once placed in

an inclusion complex with hydroxypropyl-β-cyclodextrin (HPCD). The mode at 1654
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cm-1disappears or shifts to a lower wavenumber indicating the restriction if the C=O

stretching vibration following the inclusion complex formation. This was accompanied

by a reduction in the band at 1552 cm-1 indicating the inclusion of the majority of

hexatomic ring in the complex (Yuan et al 2012, Yuan et al 2005 ).

1.8.2 Raman spectroscopy

Raman is a form of vibrational spectroscopy and is used for the identification of

molecular compounds through their inelastic scattering. The raman effect can be

described as a change in light frequency of scattered radiation by a monochromatic

radiation, which occurs due to an exchange of energy between the photon and the

scattering molecule (Frank et al. 1999). Raman scattering involves a series of Raman

shifts each corresponding to the characteristic frequencies of the molecules different

vibrational modes. These modes correspond to the promotion of an electron from a

vibrational energy level in the ground state of the molecule to a virtually excited state

induced by the high intensity radiation. Upon relaxation the photo-excited electron

returns to either there original vibrational energy or a nearby vibrational energy level

wither higher or lower in energy. This provides information on energy spacing in the

ground state of the molecule (Landrum 2011). In raman spectroscopy the molecule is

irradiated with monochromatic radiation using a laser and the scattered light is

measured after passing through a notch filter (Ferraro et al. 2003). There are two types

of scattered light, the first is Rayleigh scattering (strong and the same frequency as the

incident beam Vo), the other is called raman scattering (very weak and the frequencies

Vo ± Vm [Vm vibrational frequency of molecule]) (Ferraro et al. 2003). Raman

scattering is further divided into two types stokes (Vo - Vm) and anti-stokes (Vo + Vm ),

stokes raman scattering is the result of the molecule initially in the ground vibrational

state whereas anti-stokes scattering is a result of a molecule relaxing back to an energy

state lower in energy than the original state and anti-stokes scattering is the relaxation of

a molecule back into a higher vibrational energy state (Larkin 2009).

A Raman spectrum of a molecule consists of the combination frequencies and the

relative intensities. Raman has been employed in non-invasive detection of carotenoids

in living tissue, the energy level structure and optical pumping cycle of a carotenoid



Chapter 1 Introduction

28

molecule is unique (Landrum 2009). Characteristic Raman bands of carotenoids

include C-C and C=C stretching and C-H bending (frequencies) (De Oliveira et al.

2010). The stretching vibration of C=C occurs between 1400- 1600 cm-1 and the C-C

stretching is between 1100- 1200 cm-1 (Withnal et al. 2003). In astaxanthin the C=C

and C-C stretching vibrations occur at 1512 cm-1 and 1157 cm-1 respectively (Kaczor et

al. 2011). The C=C stretching bands in carotenoids is reported to be sensitive to the

degree of conjugation of the polyene chain. The relationship between the number of

conjugated double bonds in the skeletal structure of the polyene chain and the

wavenumber of the raman modes can help in providing information on the structure.

This can assist in studying the formation of astaxanthin and metal complexes (Sasic

2008). Even though carotenoids are a large family with a diverse number of chemical

structures producing extraordinarily similar resonance raman spectra, one of the

dissimilarities was found to be the stretching conjugated C=C band as this was found to

be dependent on the length of the polyene chain and decreases along with it (Frank et al.

1999). The C=C stretching vibration is a sensitive indicator of the chemical structure

of the carotenoid (Kaczor et al. 2011). Aggregates of carotenoids have exhibited a shift

in the raman bands, e.g. an astaxanthin J-aggregate shifts the C=C stretching band from

1527 cm-1 (monomer) to 1516 cm-1 (red shift), whereas the H- aggregates were found to

exhibit a lower red shift to 1522 cm-1 (Britton et al. 2008). These variations may be a

result of either the difference in the geometry of the carotenoid or an alteration in the

total molecular force field (Britton et al. 2008).

1.9 Electrochemical analysis

Electrochemistry is a term used to describe the various chemical reactions that are

induced by the passage of an electrical current through a system. In electrochemistry

the movement or transfer of an electron from one species to another is referred to as an

oxidation-reduction reaction or more simply a redox reaction. When a chemical species

undergoes oxidation it losses an electron from its outer electron shell. Similarly when a

chemical species is reduced it gains an electron into its valence shell. Both of these

reactions results in either an increase or decrease to the oxidation state of the element or

molecule. In its simplest form an electrochemical cell is a device which utilises this

electron transfer between two chemical species to either generate electricity or to drive a
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non-spontaneous chemical reaction forward to completion. Electrochemical cells

normally comprise of two conductive or semi-conductive electrodes known as the anode

where oxidation takes place and the cathode where reduction of the chemical species

takes place. The electrodes joined together by an external wire are immersed in a

conductive electrolyte. This electrolyte contains ions which can move freely and thus

prevent charge build-up on the respective anode and cathodes. These electrochemical

cells form the basis for more complex electrochemical techniques like cyclic

voltammetry that can be used to characterise various physical chemical systems.

1.9.1 Cyclic Voltammetry

Cyclic voltammetry involves the application of a potential to the working electrode

which varies with time. The current flowing between the working electrode and the

counter electrode is recorded and plotted as a function of the applied potential. A

typical cyclic voltammetry setup consists of an electrochemical cell comprising of three

electrodes; a working, reference and counter electrode. These are connected to a

potentiostat and are immersed in a liquid containing a supporting electrolyte. The

potential difference between the reference and working electrode is controlled by the

potentiostat while current flow between the working electrode and the counter electrode

is monitored.

The selection of the starting voltage depends on the oxidation and reduction of the

analyte. The potential is swept from the start voltage (E1) to the end voltage (E2) in a

linear manner at which the direction of the scan is reversed back. There are practical

considerations when performing cyclic voltammetry, one of which is the selection of the

potential range (E1 to E2) across which the scan is measured. It is important to ensure

that within this range all the features of the analyte are recorded for analysis; this is

determined by comparison with previous literature works and experiment investigation.

Another consideration is the choice of electrodes, most common reference electrodes

are a silver/silver chloride (Ag/AgCl) or calomel half-cell, a counter electrode which

ideally possess a large non-reactive surface area (e.g. platinum wire) and a working

electrode commonly used are inlaid disc electrode (e.g. gold, graphite, glassy carbon

etc.) (Scholz and Bond 2005, Compton and Banks 2011). Astaxanthin is known for its
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powerful antioxidant activity, this can be electrochemically examined using cyclic

voltammetry. This is an efficient technique in determining redox potentials and

assessing the kinetics of electron transfer within the molecule.

Figure 1.16: (a) A Cyclic voltammetry waveform between the start (E1) and end (E2) potential, (b) Cyclic

voltammogram demonstrating the cathodic scan and the anodic scan.

Carotenoids possess low oxidation potentials which makes them good electron donors.

Changes in the structure of carotenoids can lead to variations in redox potentials, e.g.

the electron withdrawing strength depends on the difference in oxidation potentials, an

increase in the electron withdrawing strength in turn increases the separation between

oxidation waves. Reversible cyclic voltammetry can be difficult with carotenoids, this

is due to the formation of less stable radical cations and dications. The type of

electrolyte and working electrode influence the reversibility along with moisture and air.

In previous electrochemical studies of the carotenoid astaxanthin by Focsan et al. (2014)

two peaks appear in each of the anodic and cathodic scan, which reveals a two electron

transfer oxidation. In the anodic scan the astaxanthin carotenoid is oxidised and radical

cations and dications are formed, these two peaks correspond to the oxidation of neutral

carotenoid species and radical cations. In the cathodic scan the radical dications and

cations are reduced. Ferrocene was used as a reference for the potentials and the

potentials were further standardised to 0.528 V. The normalized oxidation potential of

astaxanthin cations, dications and neutral radicals were found to be 0.7678 V, 0.9828 V

and 0.0792 V respectively (Britton et al. 2008).
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Cyclic voltammetry can also be implemented in measuring the effect of metal chelate

complexes on astaxanthin. The stability of the astaxanthin metal chelate compounds

have been studied using cyclic voltammetry, e.g. Polyakov et al. (2010) and from their

finding it thought that the stability constant of an astaxanthin Ca2+ complex decreases

by a factor of eight in acetonitrile compared to ethanol. This ascribed to the solvent

incorporation into the complex. The presence of the salt Ca(ClO4)2 lowered the

oxidation potential of astaxanthin thus lowering its radical scavenging capability (i.e.

antioxidant activity). The metal salt also affects the stability of the astaxanthin radical

cations and dications negatively by decreasing it and increasing the neutral radicals’

lifetime.

1.10 Conclusion

The xanthophyll astaxanthin possess a wide range of electronic, vibrations and

electrochemical characteristics. Its long hydrocarbon chain and functional ketone and

hydroxyl groups in the cyclohexane rings at both ends attribute to its increasing

popularity. The recent growth in the nutraceutical industry has increased it demand due

to its proven powerful antioxidant activity (Shimidzu et al. 1996 and Bagchi 2001).

There are numerous sources as previously mentioned including crustaceans,

echinoderms and algae, the waste generated by consumption of these organisms can be

used as a given possible source, however in this project only crustaceans will be

examined. The possibility of this carotenoid reacting with other molecules within the

body are high, its structure makes it perfect candidate to perform as a ligand in

complexes, e.g. with transition metals. These interactions can incur an effect on its

electronic and vibrational characteristics and in turn it’s potential. These interactions

will be further examined using a wide range of techniques within this project to

diagnose the changes on a molecular and electronic level.
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Chapter 2
Experimental Methodology

2.0 Introduction

The purpose of this chapter is to detail the various methodologies used during this work.

A range of different techniques were utilised ranging from solvent extraction to

spectroscopic characterisation. The initial stages of the project involved the isolation

and purification of the carotenoid molecule, astaxanthin from brown crab (Cancer

pagurus). Astaxanthin is then subjected to a number of spectroscopic and

electrochemical characterisation techniques. Astaxanthin is one of the most powerful

antioxidants (Baghi 2001, Shimidzu et al. 1996), its effectiveness can vary considerably

with reactions carried out within the human body following consumption. The structure

of astaxanthin nominates it as a suitable ligand candidate promoting complex formation.

Within the digestive system are transition metals, these are renowned for their affinity

to form metal chelate complexes. The formation of these ligand metal complexes can
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incur a negative effect on the radical scavenging activity of the astaxanthin thus

negating its intake.

2.1 Chemicals and materials

All chemicals were used as purchased without further purification. The following is a

list of the chemicals used throughout the research: acetone (Sigma Aldrich), acetonitrile

(Fisher Scientific), ethanol (Sigma Aldrich), methanol (Sigma Aldrich), glacial acetic

acid (Sigma Aldrich), diethyl ether (Fisher Scientific), sodium hydroxide (Fisher

Scientific), ammonium acetate (BDH, AnalaR), cobalt chloride hexahydrate

(CoCl2.6H2O) (Sigma-Aldrich), copper chloride dihydrate (CuCl2.2H2O) (Sigma-

Aldrich), astaxanthin standard 98.5% (Dr.Ehrenstorfer GmbH, Germany),

tetrabutylammonium tetrafluoroborate (TBA TFO, Sigma-Aldrich) and brown crab

(Cancer pagurus, LYIT).

2.2 Instruments

A wide range of instruments were used throughout this project for preparation purposes,

these include: analytical scales (Sartorius AG TE214S, Germany), ultrasonic Cleaner

(VWR), Orbital incubator (Stuart S1500, United Kingdom), Concentrator Plus

(Eppendorf), Centrifuge 5810 (Eppendorf) Hotbox oven (Gallenhamp, UK), Heating

block (TechneDri-block DB-3D, UK), Dessicator (Jencons Hemel Hempstead,England),

Heating mantel (BI Barnstead electro thermal, UK), Masterflex console drive 7518-00

(Cole-Parmer Instruments, USA), Osciallting electric fan G12DFAN (GET, UK),

AstecMonair recirculating fume cabinet (AGB scientific ltd., Ireland) and Chemflow

CSC fume hood (Chemical systems control ltd., Ireland).

2.3 Astaxanthin solvent extraction

2.3.1 Brown Crab (Cancer pagurus) Shell

The method used for the extraction of astaxanthin from the crab shell was adapted from

a method by Sachindra et al. (2006). The solvent extraction was performed using

glacial acetic acid (100%) in a fume hood. The brown crab shell was weighed out and
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glacial acetic acid was added at a ratio of 2.5ml to 1g. The extraction was allowed to

take place over 24 hrs in an orbital incubator (200 RPM) at room temperature (22°C).

Subsequently the sample was centrifuged at 4000 RPM for 3 mins to separate the

pigmented glacial acetic. Given the corrosive nature of glacial acetic acid the extract

required separation into a second non-corrosive different solvent, in this case diethyl

ether was chosen for this task. An equal amount of Diethyl ether was added to the

coloured glacial acetic acid. Next an equal amount of 5M Sodium Hydroxide was

added, this was performed in an ice bath due to the exothermic reaction between the

acetic acid and the 5M NaOH as astaxanthin is temperature sensitive (Pacheco et al.

2009). The mixture was then centrifuged at 4000 RPM for 3 mins to help the different

layers settle into place as shown in figure 2.1, the colour had transferred into the diethyl

ether top layer. The coloured diethyl ether was then collected.

Figure 2.1: A flow diagram outlining the steps involved in the solvent extraction procedure of
astaxanthin from brown crab using glacial acetic acid (GAA).
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The extract was then transferred into a 1.5 ml micro-centrifuge tube. The extract was

concentrated at 30 °C for approximately 10 hrs. A flow diagram representing the

different steps is demonstrated in figure 2.1, this includes acid extraction to release the

xanthophyll from the crab shell, transfer into diethyl ether and concentration into a dry

powder. The concentrated extract was then weighed, suspended in 1 ml of acetone,

filtered through a 2 micron filter and sonicated for HPLC detection.

2.4 Astaxanthin detection

2.4.1 High Performance Liquid Chromatography (HPLC)

A HPLC (Shimadzu, Japan) system was used in this project and consisted of a number

of components. The system was controlled by a shimadzu SCL-10Avp with parameters

of a time program of 0.01- 9999.9 min, analysis of 20 files and a fraction collector of 10

files. Setting files include an auto injector sequence, sample and pre-treatments. A

SIL-10ADvp shimadzu auto injector was used to load the sample, this consists of a

sample injection system with a range of 1- 500 µl. The pump used to control the mobile

phase flow was a shimadzu LC-10ATvp pump with dual piston tandem flow providing

consistent solvent delivery from 0.001- 9.9999 ml/min, a flow range of 0.001-5.000 mL/

min A FCV-10ALvp mixing chamber was used with an inbuilt fan preventing

overheating of switching valve. A DGU-14A shimadzu degasser was used, this

provided a capacity of up to four solvents, this four in-line channel in line degasser

maintains a strong vacuum and maintains a dissolved oxygen concentration of <2 ppm

at flow rates up to 3 ml min-1 and a maximum flow rate of 20 ml min-1 per flow line. To

control the temperature of the column a CTO-10ACvp shimadzu column oven was

used, it is a forced air circulation type oven, temperature control range of -10 – 80 °C

and a control precision of ± 0.1 °C. the detector chosen was a shimadzu SPD-M10AV

diode array detector, the light source consisted of a deturertium lamp. The wavelength

ranged from 190- 800 nm, with an accuracy of ± 1 nm and a reproducibility of ± 0.1

nm. The cell optical path length was 10 mm with a pressure of 4.9 MPa. An XTerra

MS C18 column (Waters, Ireland) was used for analysis, the column held a carbon load

of 15.5 %, an inner diameter of 4.6 mm, length of 150 mm, a revered phase mode, a
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particle size of 5 µm, a pore size of 125Å and a pH range of 1- 12.The detection and

quantification of astaxanthin in the extracts was performed using the aforementioned

HPLC instrument. The method used was adapted from different methods as follows:

two mobile phases were used and prepared; Mobile phase A: 50:50 0.5M Ammonium

acetate and Methanol, Mobile Phase B: 20:20:60 Methanol, Acetone and Acetonitrile

(Schmid and Stich 1995, Li et al. 2002, Vidussi et al. 1996, de Azevedo-Meleiro and

Rodriguez-Amaya 2009). The instrument parameters were set to: a flow rate of

1ml/min, mobile phase A: mobile Phase B (35:65), oven temperature 35°C, detection at

470 nm and run time 20mins. The Astaxanthin standards were prepared in acetone

using astaxanthin Standard (98.5%). The standards were filtered, sonicated and run on

the instrument, retention times were expected between 9-10 mins. Next the astaxanthin

extracts (in 1ml of Acetone) were run on the instrument, retention time and peak area

measured.

2.5 Preparation of Ligand metal complexes:

2.5.1 Preparation in solution at room temperature

In order to prepare the complexes Jobs method of continuous variation was employed.

This involves the preparation of solutions of the metal cations and ligand, both with

identical concentrations (Trimm and Hunter 2011). The two solutions are mixed

together varying the concentration of the metal and ligand while holding the total

molarity of the mixture constant at 0.04 mM. The metal chloride salts cobalt chloride

hexahydrate (CoCl2.6H2O) and copper chloride dihydrate (CuCl2.2H2O) were placed in

an oven at 100°C overnight to remove moisture. Stock solution of 0.04 mM copper

chloride was prepared in ethanol at room temperature and five solutions of varying

metal ligand ratios were prepared as per table 2.1.

Table 2.1: Sample preparation of astaxanthin and copper chloride complexes in ethanol

Ratio (ligand: metal) 1:3 2:1 1:1 1:2 3:1

Astaxanthin Concentration (mM) 0.010 0.015 0.020 0.025 0.030

Copper chloride concentration

(mM)
0.030 0.025 0.020 0.015 0.010
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Initial testing revealed a high difference in absorption between astaxanthin and cobalt

chloride, hence the method used for this metal was changed to Benesi-Hildebrandt as

used by Polyakovet al (2010). Stock solution of 8 mM Cobalt chloride and 0.04 mM

astaxanthin were prepared in ethanol as per table 2.2. This method involved the

preparation of solutions with one component increasing awhile the next is held constant

across the dilutions.

Table 2.2: Sample preparation of astaxanthin and cobalt chloride complexes in ethanol

2.5.2 Reflux of complexes

Following initial testing at room temperature the astaxanthin and metal complexes were

refluxed at 37°C and 78°C. Initial refluxes on cobalt chloride and astaxanthin were

carried out using the traditional setup as in figure 2.2 (a). This was then later changed

due to the large number of samples and time constraints; the set-up is demonstrated in

figure 2.2 (b). Polypropylene PP conical centrifuge flasks were used as the reaction

vessel, volumetric pipettes (20 ml) used as the condenser, alcohol thermometer for

temperature control and the use of a fan as an air condenser.

Figure 2.2: (a) Traditional Reflux set up in a round bottom flask on a heating mantle (Barnstead Electro
thermal, U.K.) with a water condenser, (b) reflux set up in Polypropylene PP conical centrifuge flasks (15
ml) using a heating block (Techne, U.K.), volumetric pipette (20 ml), alcohol thermometer and a Fan.
The fan acts as an air condenser recycling back the evaporated solvent back into the reaction tube.

Solution no. 1 2 3 4 5

Astaxanthin Concentration (mM) 0.010 0.012 0.016 0.020 0.024

Cobalt chloride concentration (mM) 3
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2.6 Electronic spectroscopy

2.6.1 UV- Vis spectroscopy

All electronic spectra were recorded using a Shimadzu UV-Vis spectrophotometer UV-

2450 (Shimadzu, Japan) double beam instrument with a direct ratio system. The

wavelength of the instrument is from 190 – 900 nm, accompanied by a wavelength

accuracy of ± 0.3 nm, a repeatability of ± 0.1 nm and a scan rate of about 900 ~

160nm/min. The available excitation sources include a 50 W halogen lamp and a

deuterium lamp, interchangeable at a wavelength between 282-393 nm. This instrument

employs a single monochromator with a high-performance blazed holographic grating

in aberration corrected Czemy Turner mounting. A detector consisting of a

photomultiplier R-928 with a red sensitive spectral range of 185- 900 nm was used.

The absorbance spectra of the complexes were both measured at room temperature and

refluxed at 37 °C and 78 °C. The instrument was set to scan a range of between 900 to

200 nm, using a medium scan speed and a 1 nm sample interval with a slit width of 1

nm. Sample absorbencies were recorded using loaded into quartz cuvette (10 mm).

Using Jobs method of continuous variation the mole fraction versus the absorbance was

plotted and the maximum absorbance point corresponds to the combining ratio of the

complex.

Using the Benesi- Hildebrand method a plot of 1/[A0] versus the D0 /Abs was generated.

Where D0 is the concentration of donor (fixed) and A0 is the concentration of the

acceptor (varied) (Benesi 1949). The shape of the plot determines the ratio of the

complex. A straight line plot represents a 1:1 ratio and a two line intersection

represents a 2:1 ratio (Polyakov et al. 2010).

2.6.2 Fluorescence spectroscopy

All fluorescence spectra were recorded using a Perkin Elmer flourescence spectrometer

(Perkin Elmer LS45, USA) was used, this is a computer controlled luminesce

spectrometer with the capability of measuring fluorescence, phosphorescence,

chemiluminescence and bioluminescence. The source of the instrument consisted of a
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Xenon discharge lamp (equivalent to 20 KW for 8 µs duration) with a pulse width at

half height < 10 µs. A gated photomultiplier detector is employed with a modified S5

response for operation up to around 650 nm, the reference electrode consist of a

photodiode (operates up to 900 nm). Monochromator included a Monk- gillieson type

monochromators covering the different ranges as follow: excitation 200-800 nm (zero

order selectable), emission 200-658 nm (standards photomultiplier with zero order

selectable) and 200- 900nm (with optional R928 photomultiplier). Synchronous

scanning is available with constant wavelength, wavelength accuracy of ± 1.0 nm and

reproducibility of ± 0.5 nm. The excitation and emission slits are pre-set to a nominal

of 10 nm. A scanning speed in increments of 1 nm can be selected for 10- 150 nm/ min.

The sensitivity of the instrument is 500:1 r.m.s. (raman band of water, excitation at 350

nm, excitation and emission bandpass 10 nm).

A Pre scan on the full range was run and from it the maximum excitation and emission

scans were recorded. An emission scan was run to measure the fluorescence of the

astaxanthin complexes at the maximum excitation wavelength.

2.7 Vibrational spectroscopy

2.7.1 Infrared spectroscopy

All Infrared vibrational spectra were recoded using a Perkin Elmer (Spectrum BX).

This instrument can operate in ratio, single, beam or interferogram mode. It possess an

optical system that gives data collection over a total range of 7800 to 100 cm-1, with a

max OPD resolution of 1 cm-1. It includes a dual level optical module that is sealed and

desiccated. The system uses a mid-infrared detector of DTGS (deuterated triglycine

sulphate) and uses spectrum software to allow the control and manipulation of data.

The ligand metal complexes were drop cast onto the surface of a sodium chloride

(NaCl) window (~500 µl) and allowed to dry at room temperature in the dark. The

instrument recorded the percent transmittance across the a wavelength range of 4000-

350 cm-1, using an average of 3 scans with a 2 cm-1 resolution and a 1 cm-1 data interval.

A blank NaCl window was used to run a background scan.
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2.7.2 Raman spectroscopy

All raman spectra were recorded using a Raman systems R-3000. This features an fully

integrated system including an all a diode laser, CCD-array spectrometer, fiber optic

probe and operating software. The attached fibre optic probe is flexible class 3b laser

with interchangeable accessory caps for different samples. The R-3000 a 500 mW solid

state diode laser with a 785 nm excitation wavelength. The instrument allows for

collection of multiple spectra across a wavelength range of 200- 2700 cm-1. The laser

emerging from the laser output probe is a class 3b laser; this produces visible and

invisible laser radiation.

Figure 2.3: Raman system R-3000 setup including the laser mounted onto the holder (allowing

repositioning) and the sample mount.

For all raman measurements a quartz supersil window was used. In general 500 µl of

the samples complex in acetone was dropped onto the surface and allowed to dry at

room temperature in the dark. The laser was pre-set to 90 mW excitation (allowed to

warm for 10 mins). All spectra were recorded using an integration time of 90 sec and a

frame size of 30 sec.
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2.8 Electrochemical analysis

2.8.1 Cyclic Voltammetry

All cyclic voltammetry measurements were performed using an electrochemical

analyser 600A (CH instruments, US) and a Picoamp booster and faraday cage (CH

instruments, US). The potential control range is ±10 V with a sampling rate of 5 MHz

and a scan rate of 20,000 V/s. The current range is ±250 mA, with a low current

measurability of 1 pA. The high speed and high resolution data acquisition channels

allow a simultaneous sampling of both current and potential at a rate of 1 MHz. The

instrument is dynamic and offers a wide range of experimental time scales, with cyclic

voltammetry for example a scan rate of up to 1000 V/S with a 0.1 mV potential

increment or 5000 V/s with a 1 mV potential increment. It is designed to work with a

three electrode cell, ensuring all current flow between the counter and working

electrodes while controlling the potential of the working electrode with respect to the

reference electrode. Figure 2.4 demonstrating a schematic of the three electrode setup

connected to the potentiostat.

Figure 2.4: (a) Schematic of a three cell voltammetry system consisting of a working (Glassy carbon),

reference (Ag/ AgCl) and a counter (platinum wire) electrode with a nitrogen purging line, (b) cyclic
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voltammetry set up with a reference Ag/ AgCl electrode, a glassy carbon working electrode and counter

platinum wire electrode immersed in electrolyte solution with an N2 purge line for degassing purposes.

The working electrode chosen was a standard glassy carbon electrode (working

electrode) with a surface internal diameter of 3 mm (ALS, Japan). A platinum wire

with a diameter of 0.5 mm and a length of 50 mm (ALS, Japan) was selected as a

counter electrode. The role of the reference electrode was carried out using silver silver

chloride saturated sodium chloride (Ag/AgCl/ saturated KCl, ALS, Japan) was chosen

with a ceramic junction and a diameter of 6 mm.

An adaptation of Focason et al (2014) was employed, following initial tests the best

electrolyte and supporting electrolyte was concluded to be acetonitrile and 0.1 M

tetrabutylammonium tetrafluoroborate. The complexes were reduced at 45 °C and re-

suspended in 0.1 M TBA TFO Dichloromethane. The glassy carbon electrode was

polished using 0.5 micro aluminium powder on a damp polishing pad and the sample

was purged with nitrogen. The potentiometer was set a scan rate of 0.1 (V/s), segments

of 10 and a sample interval of 0.01 (V). Alterations to the potential range and

sensitivity with the different complexes were applied; copper complex at -0.5- 1.5 (V)

& sensitivity of 1 x 10-6 and cobalt complex at a potential range of -1 to 1.5 (V) & a

sensitivity of 2 x 10-5.
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Chapter 3
Astaxanthin extraction and
characterisation

3.0 Astaxanthin characterisation

This chapter provides an insight into the extraction and subsequent spectroscopic and

electrochemical characterisation of astaxanthin. A combination of cyclic voltammetry

and various electronic and vibrational spectroscopic techniques were employed to help

understand the unique properties of this molecule. The characterisation of the

astaxanthin molecule will not only assist in identifying the xanthopyll in the crustacean

waste extract but also help understand it properties and behaviour under experimental

conditions. This in turn will aid in gaining a better understanding of the changes in the

dynamics of the molecule incurred during the synthesis of novel astaxanthin and metal

complexes. The difficulties associated with the stability of astaxanthin have hindered
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the characterisation of this molecule in previous studies. Its sensitivity to a wide range

of factors including high oxygen levels and excessive temperatures can result in a

reduction in the stability of astaxanthin esters (Miao et al. 2013, Ahmed et al. 2015).

3.1 Astaxanthin extraction and detection

3.1.1 Solvent extraction of Astaxanthin from brown crab (Cancer pagurus)

In order to extract the astaxanthin from the crab shell waste a number of organic

solvents were assessed for their suitability for the extraction procedure. These solvents

were chosen so as to cover both extremes of the eluotropic series and they ranged in

eluotropic strength from the non-polar hexane to the polar glacial acetic acid. The

extractions into non polar hexane resulted in poor recoverable yields whereas the trial

extractions into glacial acetic acid proved to be the most effective in terms of

recoverable yield of the crustacean astaxanthin. This visually can be seen in figure 3.1

as the fraction with the greatest pigmentation. This solubilising preference for a more

polar solvent can be understood in terms of the chemical structure of astaxanthin which

possesses a number of polar functionalities on both ends of the molecule which act to

solubilise the molecule. Aside from the inherent polar nature of glacial acetic acid the

corrosive nature of the acid may also have helped in releasing the bound astaxanthin

from the protein-calcium carbonate matrix by dissolving the calcium carbonate thus

releasing the astaxanthin.

Figure 3.1: Brown crab shell in organic solvent (72 hrs at room temperature), from left to right glacial
acetic acid, methanol, Isopropanol/ hexane (50:50), acetone & hexane.
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Due to the high acidity associated with glacial acetic acid the extract was then

transferred in diethyl and neutralised using sodium hydroxide, which was then followed

by concentration of the extract. This orange concentrated extract is identified and

quantified using HPLC.

3.1.2 Astaxanthin detection in brown crab (Cancer pagurus) extract using HPLC

An extremely useful technique in the separation and detection of carotenoids is high

performance liquid chromatography, (HPLC), which can be used for both qualitative

and quantitative purposes. A series of astaxanthin standards 98.5% (Dr. Ehrenstorfer

GmbH, Germany) were prepared for chromatographic calibration curve. The

astaxanthin standard elutes from the column after 9.7 minutes. Due to the

environmentally sensitive nature of astaxanthin, degradation products can from on

exposure to sunlight and oxygen (Ahmed et al 2015). The presence of these breakdown

products can be easily detected as monoester and diesters which elute from the column

at a later time.

Figure 3.2: HPLC chromatogram of astaxanthin standard 5 µg/ml (red) and astaxanthin extract from
brown crab (Cancer pagurus) (black) in acetone at a flow rate of 1 ml/min. Inset concentrated pigment
after extraction showing a pink/red pigmentation matching that of the carotenoid astaxanthin, 1 in 2.5
dilution.
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These breakdown products also result decrease the total peak area associated with the

astaxanthin standard. The astaxanthin monoesters degrade at a faster rate than diesters

(Miao et al 2013) and the two peaks between 14-15 minutes were identified as the

astaxanthin diesters and monoesters respectively.

Once calibrated the system it was utilised to both confirm the presence of astaxanthin in

the extract and also to quantify the amount of astaxanthin present. Inspection of the

extracts chromatogram shows the presence of both the monoester and diester

breakdown products which are identical to those found in the commercial standard.

Also present in the extracted sample is the presence of an as yet unidentified component

at 11.7 minutes

From the chromatographic analysis there is a strong correlation between the increase in

concentration of the astaxanthin standard and the increase in each standards integrated

peak areas. This was in close agreement with Beer’s law and the inset of figure 3.3

shows the astaxanthin linear calibration curve which was used to determine the

concentration of astaxanthin in the extracts from the marine source.

Figure 3.3: HPLC chromatogram of astaxanthin standards in acetone at 470 nm and a flow rate of 1
ml/min, inset astaxanthin calibration curve in acetone.
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From the standard calibration data the astaxanthin concentration is determined to be

18.5 mg/100g of brown crab shell. This yield of the extractable astaxanthin obtained is

at a much higher concentration than those previously reported by Vilasoa-Martínez et

al. (2008), which utilised acetone solely as the extracting solvent. Although vilasoa

ultilised a different species of crab (Chionoecetes opilio) as the source material they

only reported and extraction efficiency of 1.79±1.03 mg/100 g of crab. Thus in

comparison the small increase of 16 mg in recoverable material may prove to be

attractive enough in terms of profitability for future commercial interest.

3.2 Astaxanthin characterisation

3.2.1 Electronic spectroscopy

The electronic spectrum of the long polyene chain astaxanthin exhibits three peaks with

the maximum absorption occurring at a wavelength of 478 nm. Inspection of figure 3.4

shows the highest K-band absorption is generated by the transition of the large

conjugated molecule from the π bonding orbital to the π* anti-bonding orbital. The R-

band absorption at 294 nm is a characteristic carbonyl peak, which is generated by the

transition of the carbonyl group from n→ π* (Yuan et al. 2012).

Figure 3.4: Electronic spectrum of astaxanthin standard (0.04 mM) in ethanol with the maximum
absorbance K0 band at 478 nm.
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The third K- band absorption at 249 nm from the hexatomic ring absorption (Yuan et al.

2012, Yadav 2005). From literature it is known that this maximum absorbance band can

shift depending on the solvent effects and the K-band reveals different maximum

absorption peaks in several different organic solvents and mixtures. To examine these

shifts of the maximum absorption band the xanthophylls was prepared in different

solvent of acetonitrile, dichloromethane, ethanol, methanol and acetone, as shown in

figure 3.5.

Figure 3.5: Astaxanthin normalized in different organic solvents: acetonitrile (blue) at 475 nm,
dichloromethane (red) at 487 nm, ethanol (green) at 478 nm, acetone (yellow) at 470 nm, and methanol
(black) at 476 nm

The maximum K- band absorption of astaxanthin shifted in both the hypsochromic and

bathormic directions. In dichloromethane the astaxanthin maximum absorption peak

shifted in the bathormic (red) direction to a higher wavelength of 487 nm, the 9 nm shift

was caused by the attachment of an auxochrome (a covalently saturated group) to the

C=C conjugated system (Mohan 2004, Yadav 2005). The organic solvent acetonitrile,

acetone and methanol caused a hypsochromic (blue) shift to a lower absorption of 475,

470, and 476 nm respectively. The blue shift is caused by either a change in the polarity
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of the solvent or the removal of conjugation (Yadav 2005). The 2 nm shift in methanol

can be attributed to the increased polarity of the solvent and n→π* transitions

undergoing a hypsochromic shift (Mohan 2004).

In order to fully characterise the electronic states of astaxanthin metal complexes it was

necessary to choose a suitable solvent, one which would provide both a high degree of

solubilisation and also offer a wide spectral window. The solvent ethanol was deemed

to meet these requirements and was subsequently use for all the electronic spectroscopic

work on the astaxanthin metal complexes.

3.2.2 Infrared spectroscopy (IR)

Probing the unaltered vibrational structure of astaxanthin was essential so as to provide

reference against which the as formed complexes could be compared to. To facilitate

this comparative analysis it is important to identify the functional groups involved in the

formation of the complexes. Solid astaxanthin samples were prepared in potassium

bromide (KBr) and the characteristic functional groups were assigned in the infra-red

spectrum as shown in figure 3.6. As described in chapter 1 the characteristic functional

groups associated with astaxanthin are with carbonyl and hydroxyl groups located on

the hexatomic rings at both ends of the molecule.

Figure 3.6: Infra-red spectrum of astaxanthin in KBr at a resolution of 2cm-1 measuring percent
transmittance and the vibration of the functional groups.
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These two groups allow astaxanthin to perform its functional abilities, e.g. antioxidant

activity and solubility in both aqueous and non-aqueous solvents. Inspection of the

infra-red vibrational spectra reveals the presence of both functional groups with a sharp

vibrational mode at 1660 cm-1 which is a result of the C=O stretching and the mode at

3470 cm-1 is the result of the OH stretching. The hexatomic ring frequency at 1560cm-1,

changes during the synthesis of complexes which can be an indication of the inclusion

of the ring in the complex formation ( Yuan et al. 2005). The vibration mode at 971 cm-

1 indicates aromatic C-H bending and the mode at 2920 cm-1 band is a result of a C-H

stretch (Mahaffy et al. 2014, Yuan et al. 2005). The presence of the aforementioned

modes agrees with the literature sources and the structure of the molecule.

3.2.3 Raman spectroscopy

In addition to the vibrational information afforded by the infra-red spectroscopic

analysis the interpretation of the raman spectra of astaxanthin offers another source of

information which complements the infra-red and aids in the complete characterisation

of the molecule. Exposure of astaxanthin to the high intensity laser radiation perturbs

the vibrational states of the molecule and results in Raman scattering involving a series

of shifts, each of these shifts corresponding to characteristic frequencies.

Figure 3.7: Raman spectra of astaxanthin vibrational Raman shifts, each frequency corresponding to

functional group.
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In carotenoids the characteristic Raman frequencies that are observed are those of the C-

C stretching at 1100- 1200 cm-1 and C=C stretching at 1400- 1600 cm-1(De Oliveira et

al. 2010). Inspection of figure 3.7 clearly confirms the presence of these aforementioned

modes. The Astaxanthin Raman spectra were recorded on dry using the lowest power

setting of 90 mW from a 785 nm laser. The spectra in figure 3.7 reveals the presence of

the Raman modes at frequencies of 1155 and 1510 cm-1, the two peaks are a product of

C-C and C=C stretching respectively. A third peak at 1004 cm-1 is a C=CH stretch

corresponding the polyene chain (Parab and Tomer 2012). The aforementioned three

bands are common among carotenoids and will be examined closely in the synthesised

ligand and metal complexes to determine the changes in the structure and help gain

knowledge on the groups involved in the complex formation.

3.2.4 Cyclic voltammetry

Cyclic voltammetry is a widely used technique for the detection of the antioxidant

activity and it allows for the determination of the redox potentials and can also be used

to assess the electron transfer kinetics. The reversibility of the cyclic voltammograms

has previously proven difficult when studying carotenoids.

Figure 3.8: Cyclic voltammogram of astaxanthin in 0.1 M TBA TFO dichlormethane at a scan rate of 0.1
V/s and a sensitivity of 1x 10-6 A/V
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These difficulties are a result of the less stable radical cations and dications being

produced. Reproducing a reversible cyclic voltammogram requires careful control of

solvent moisture content. The choice of solvent, electrolyte and working electrode were

also essential in detecting astaxanthin as initial tests revealed dichloromethane,

Tetrabutylammonium tetrafluoroborate (TBA TFO) and a glassy carbon electrode

yielded the best results. The cyclic voltammogram in figure 3.8 reveals a single peak on

each of the anodic and cathodic scans. The initial peak at a potential of 0.76 V,

corresponding to the oxidation of the neutral astaxanthin species and the return cathodic

scan a single peak is observed at a 0.72 V, identified as the radical cations (Focsan et al.

2014). The voltammogram reveals a one electron transfer oxidation as opposed to the

literature revealing a two electron transfer oxidation, as mentioned previously in chapter

1the stability of the radical cations and dications proves problematic. In order to obtain

a double peak stronger controls are needed including moisture control. The choice of

the solvent and electrolyte may also be a factor as they may be the best available at hand

but may be presenting a non-stable environment.

The solvent used is altered to acetonitrile to observe the changes brought about as

studies have revealed the destabilisation of complexes including astaxanthin due to the

incorporation of the solvent within complexes (Polyakov et al. 2010).

Figure 3.9: Cyclic voltammogram of astaxanthin in 0.1 M TBA TFO acetonitrile at a scan rate of 0.1 V/s
and a sensitivity of 5x 10-7 A/V

One of the significant differences between the two cyclic voltammograms is the

increased gap between the two scans even with the sensitivity increase. The one
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electron transfer oxidation remained with a single peak remained present on each of the

scan. In the anodic scan an oxidation peak of the neutral astaxanthin species at 0.70 V

and a reduction peak of the radical cations at 0.65 V (Focsan, et al 2014). The

difficulties in detecting these peaks are a result of the sensitivity of the molecule.

Stronger moisture controls are required but due to the lack of equipment available this

was unfeasible.

The astaxanthin molecule was characterised using a range of techniques, this was

carried out in order to determine the changed brought about through complexation with

molecules in the surrounding medium. In this case metal chloride salts are used. The

changes are examined on an electronic, vibrational and electrochemical level.

Electronic in order to examine the shifts caused through the aggregation of the

complexes, vibrational to identify the responsible functional groups for complexation

and electrochemical to examine the effect on the significant antioxidant activity of the

molecule.
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Chapter 4
Copper chloride and astaxanthin
complex

4.0 Introduction

As discussed in chapter 1 copper differs from most other transition metals in the

possession of one electron in the 4S orbital as opposed to two. This electronic

arrangement results in it being one of the strongest binding transition metals and copper

binds to many different chelating agents and ligands both natural and synthetic

(Cornelias et al. 2005). The polarizability and outer shell asymmetry of copper allow

the metal to interact with most ligands (Martell and Smith 1974). This metal is a

perfect candidate for the formation of metal chelate complexes with astaxanthin and this

in turn can disrupt the efficacy of the xanthophyll upon intake and negating its powerful

antioxidant activity. Copper can be introduced to the digestive system through a

number of dietary intakes including dried fruit, meat, nuts, mushrooms, clams, legumes

and grains (Kamberg 2010). The synthesis of astaxanthin and a copper salt and its



Chapter 4 Copper chloride and astaxanthin complex

55

characterisation will be examined using a number of spectroscopic and electrochemical

techniques. Also in order to replicate possible processing conditions, the complexes

mixtures were subjected to higher temperature regimes.

4.1 Synthesis of astaxanthin and copper chloride complexes

During the initial study utilising Job’s method, the reaction mixtures were maintained at

room temperature. It is apparent that little or no complexation had taken place due to

the slight changes in the absorbance bands as indicated in figure 4.2. In order to mimic

the possible reaction conditions experienced during the metabolism of astaxanthin

following consumption, the complexes were refluxed at a temperature of 37 °C. In

additionally as means of ensuring sufficient activation energy in addition to body

temperature refluxes, a series of mixtures were also refluxed the boiling point of ethanol

at 78 °C

In order to prepare the stable copper chloride and astaxanthin complexes job's method

of continuous variation is utilised. The method involves maintaining the molarity of the

solution mixture at 0.04 mM while systemically changing the concentration of each. As

a general observation the astaxanthin and copper complexes did not exhibit a colour

change upon complexation at room temperature. However upon refluxing at 37 °C

there is an observable increase in the intensity of the astaxanthin orange pigmentation

while at 78 °C the mixture changed dramatically, this can be observed in figure 4.1 (c).

At lower astaxanthin concentrations the solution transformed into a pale green and at

higher concentrations a yellow/pale green colour. The refluxed complexes also

exhibited no noticeable thermochromism effect across all three reaction temperatures.

Figure 4.1: Astaxanthin increase & CuCl2 decreasing from left to right, (a) at room temperature (20 °C),
(b) refluxed at 37 °C for 30 mins and (c) refluxed at 78 °C for 30 mins.
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4.2 Characterisation of astaxanthin and copper chloride complexes

4.2.1 Electronic spectroscopy

4.2.1.1 Absorption spectroscopy

The complexes were initially synthesised at room temperature in ethanol and the

electronic spectra revealed no shift in the maximum absorption peak of astaxanthin at

478 nm, as revealed in figure 4.2. At lower concentrations of copper chloride an

absorption peak is observed at 277 nm, following the complex formation the metal

chloride peak shifted slightly to 279 nm, this bathormic shift may have been a result of

the complex formation. In accordance with the molecular excitation model this is an

indication of loose type association (J- or head to tail) (Yadav 2005).

Figure 4.2: Electronic spectra of astaxanthin and CuCl2 complexes synthesised at room temperature 20
°C in ethanol (normalized), astaxanthin (0.04 mM) (dashed dark red) and CuCl2 (0.04 mM) (dashed dark
green). Inset of astaxanthin concentration (mM) versus absorbance at 478 nm demonstrating a deviation
of beer lamberts law.

J- type aggregates are a one dimensional molecular assembly involving the individual

monomers dipole moments aligning parallel to the line joining their centres (end – end

arrangement) (Johal et al. 2011). In J- aggregates the arrangement of the monomers to
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each other extends the chain length, assuming that the motion of the electron is along

the dipole then the motion is considered delocalised along the entire length of the

aggregate. The length of the aggregate is greater than the individual monomer, hence

∆E is small and inversely proportional to the wavelength resulting in a higher 

wavelength in comparison with the monomer (Johal et al. 2011).

In figure 4.2 the maximum K- band absorption peak (π → π*) of astaxanthin increases

constantly up to the higher concentrations of 0.02 and 0.025 mM, at which the

absorption peaks increase at a slower rate causing a dip in the curve and a deviation of

beer law (figure 4.2 inset). The deviation from the linear relationship can be attributed

to one of either the interference of the metal salt at higher concentrations (chemical

deviation) or the decreases solubility of astaxanthin at higher concentrations in ethanol

at room temperature. The change in the CuCl2 absorption can be observed in job's plot

in figure 4.3.

Figure 4.3: Job's plot of CuCl2 in the astaxanthin metal chloride metal complex in ethanol at room
temperature (20 °C). Inset of predicted astaxanthin and copper chloride complex generated at room
temperature.

The maximum absorption of the CuCl2 occurs at a mole fraction of 0.5 and this

corresponds to the combining ratio of 1:1 (metal: ligand). From the plot we can

determine the binding ratio of metal to ligand at 1:1 and a J-type aggregate, (head to

tail) this can suggest an attachment of the copper chloride molecule (head) to the tail of
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the astaxanthin molecule. The Bathormic shift indicates a loose J- type association

hence inspection of the electronic spectra determines that the structure of the

astaxanthin and copper chloride complex synthesised at room temperature is off an

astaxanthin polyene chain with a copper chloride attachment at either end of the

molecule through the carbonyl and hydroxyl groups (figure 4.3 inset).

Figure 4.4: Electronic spectra of astaxanthin and CuCl2 complexes refluxed at 37 °C in ethanol
(normalized), astaxanthin (0.04 mM) (dashed dark red) and CuCl2 (0.04 mM) (dashed dark green). Inset
Job's plot of CuCl2 in the astaxanthin metal chloride metal complex refluxed at 37 °C.

In spectra of the complexes refluxed at 37 °C revealed that there is a large increase in

the maximum absorption band of astaxanthin (hyperchromic shift) and the elevated

temperature also increased the solubility of the carotenoid in ethanol. This

accompanied a small hypsochromic shift of 1 nm to 476 nm. A large hypochromic

effect had been exhibited on the CuCl2 peak originally centred at 277 nm and a

bathormic shift to a higher wavelength of 296 nm. A red bathormic shift is an

indication of a loose type association (head to tail) (Yadav 2005) as seen with the

complex synthesised at room temperature. The inset of figure 4.4 show job's plot of

CuCl2. The overall shape of the curve leads to an estimation of 0.5 mole fraction and in
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turn a 1: 1 ratio of astaxanthin to copper chloride as with the synthesis at room

temperature.

The final set of reaction complexes were refluxed at 78 °C (boiling point of ethanol),

these complexes experienced large changes in the maximum absorbance peak. In figure

4.5 the astaxanthin K-band shifted largely in the blue region (hypsochromic) to 369 nm,

this shift of 109 nm proves a more tight association called a card- pack aggregate or H-

type (Simonyi et al. 2003).

Figure 4.5: Electronic spectra of astaxanthin and CuCl2 complexes refluxed at 78 °C in ethanol,
astaxanthin (0.04 mM) (dashed dark red) and CuCl2 (0.04 mM) (dashed dark green).

H-type aggregates are also a one dimensional array, these involve the parallel alignment

of the dipole moments to each other but as opposed to the J- type aggregates these are

perpendicular to the line joining their centres (face to face arrangement) (Johal et al.

2011). H-aggregates possess a shorter conjugation length and hence a larger ∆E which 

in turn leads to the blue shift into a shorter wavelength than the monomer (Johal et al.

2011). The copper chloride peak reverted back to the original wavelength of 277 nm

and increased with astaxanthin concentrations. Determination of the ratio of complex

formation proved difficult as the astaxanthin absorbance appeared to mask that of the

copper chloride. The tight H- type aggregates may be a cause of interference in the
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copper chloride absorption bands. Due to the previous synthesis results of a 1: 1 ratio

complexes it will be assumed that a similar ratio occurred at the elevated temperature of

78°C but with a different packing of H-aggregates.

A comparison of the absorbencies varying with the different complexes is listed in table

4.1. These were plotted in the previous figures versus the copper chloride mole

fraction. The increase and decrease pattern is consistent with the first two synthesised

complexes at 20 °C and 37 °C whereas the final complex synthesised at a higher

temperature is found to increase consistently.

Table 4.1: Absorbencies of copper chloride in metal and ligand complexes synthesised at different
temperatures.

Figure 4.6: Electronic spectra comparing shift between complexes of astaxanthin and copper chloride
(normalized) astaxanthin (0.04 mM) (dashed dark red), CuCl2 (0.04 mM) (dashed dark green),
astaxanthin and CuCl2 complexes (1:1) synthesised at 20 °C (black), astaxanthin and CuCl2 complexes
(1:1) refluxed at 37 °C (red), astaxanthin and CuCl2 complexes (1:1) refluxed at 78 °C (blue).

Synthesis temperature (°C) 20 37 78

CuCl2 mole fraction
Absorbance at 279 nm (AU)

± 0.001

Absorbance at 296 nm (AU)

± 0.001

Absorbance at 277 nm (AU)

± 0.001

0.250 0.115 0.195 0.824

0.375 0.120 0.208 0.722

0.500 0.122 0.206 0.578

0.625 0.120 0.208 0.451

0.750 0.117 0.197 0.376
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A more clear demonstration of the shift of the maximum astaxanthin k-band can be seen

in figure 4.6. A ratio of 1:1 is used as an example of the synthesised complexes at the

three varying temperature of 20 °C, 37°C and 78 °C as this is found to be the binding

ratio of the ligand and metal in complexes.

Refluxing the metal ligand complex at 78°C resulted in a more tight packed assembly as

opposed to the previous two syntheses at room temperature and 37 °C. The

characteristic high absorption of astaxanthin presented difficulties in detecting the

changes of the metal chloride salt, to perform job’s plot of continuous variation the

overall molarity of the solution is to remain constant, the low absorption of the metal

chloride salts at these concentrations proved problematic. The electronic spectra of the

synthesised complexes at room temperature, refluxed at 37 °C and 78 °C helped gain a

better understanding of the changes incurred by the complex formation and the

optimum ratio for the astaxanthin and copper chloride binding. These interactions

induced changes in the distinct absorption characteristic of astaxanthin.

The interest into the carotenoid astaxanthin is driven by its powerful antioxidant

activity; this involves a direct reaction between the radical and antiradical. The

assumption of the bioassimilation of astaxanthin in the body is supported by the results,

copper can be found in many components of a diet, e.g. metal and dried fruit. The

interaction to form a metal ligand complexes can cause interferences in the antioxidant

activity thus defeating its purpose of ingestion. The normal body temperature at rest is

37 °C (Goyal 2013), at which refluxing astaxanthin and the metal chloride complex

resulted in complex formation (J- aggregates).

The electronic studies of the complex in solution were followed by the concentration of

the complexes at 45 °C; the complexes were examined for crystal precipitate on a quartz

window at a magnification of 10x. The complex precipitate revealed a separation

between the astaxanthin and copper chloride. The increase in astaxanthin concentration

is accompanied by an increase in the crystallisation of the carotenoid at the edge of the

quartz window. The centre exhibited a more green hue; this is attributed to the copper

chloride. Crystallization of the astaxanthin and copper chloride complex is not

observed.
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Figure 4.7: Solid state astaxanthin and CuCl2 complex refluxed at 37°C on quartz window at 10x (edge),
(a) astaxanthin and copper chloride in a 3:1 ratio and (b) a reversed 3:1 ratio.

The precipitate of the complex refluxed at 78 °C revealed a more unified pattern, with

the increase in astaxanthin the orange pigmentation intensified. Crystallisation of the

complex is not observed in the dry state. Larger quantities may have been required of

the complex to observe a detectable crystallised structure.

Figure 4.8: Solid state astaxanthin and CuCl2 complex refluxed at 78°C on quartz window at 10x (edge),
(a) astaxanthin and copper chloride in a 3:1 ratio and (b) a reversed 3:1 ratio.

Figure 4.9: Electronic spectra of solid state astaxanthin and CuCl2 complexes on quartz window
(normalized), (a) refluxed at 37 °C and (b) refluxed at 78 °C (normalized). Astaxanthin and copper
chloride concentrations: 1:3 (black), 1:2 (red), 1:1 (green), 2:1 (yellow) and 3:1 (blue).
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Electronic spectra were recorded on both dry state complexes and a large shift in the

baseline is observed which presented difficulties in determining the pattern of changes

in absorption even following normalization. The maximum absorption bands of copper

chloride are present at 890 nm in both refluxed complexes, whereas the astaxanthin

peak shifts. In the complex refluxed at 37 °C and 78 °C the absorption maximum

occurred at 258 nm and 355 nm respectively. The maximum absorption of astaxanthin

on quartz is detected at a wavelength of 509 nm.

Figure 4.10: Electronic spectra comparison of solid state astaxanthin (0.04 mM) (red), astaxanthin and
copper chloride complex refluxed at 37 °C (black) and refluxed at 78 °C (blue) (normalized), the ratio of
astaxanthin and copper chloride in complexes (3:1).

The maximum absorption band of astaxanthin in the dry state refluxed complexes

shifted in the hypsochromic (blue) direction to a shorter wavelength suggesting H- type

aggregation. In both the solution and solid states electronic spectra a large

hypsochromic shift of over 100 nm is observed. In contrast the corresponding shift of

the refluxed complex at 37 °C is in an opposite direction, as in solution it exhibited a

bathormic shift as opposed to the hypsochromic shift of the solid state over 200 nm.

The result of the electronic spectra of the solid state complex proved inconclusive and

further investigation is required.
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4.2.1.2 Fluorescence spectroscopy

Since the fluorescence lifetimes of carotenoid like molecules occur in the picosecond

range (Bautista et al. 1999), instrumental limitations restricted the fluorescence

spectroscopic analysis to as formed complexes. The fluorescence spectra of the

astaxanthin and copper chloride complexes produced at room temperature and refluxed

at 37 °C in ethanol revealed no observable fluorescence indicating that in fact at these

temperatures no true bonding occurs between copper and the astaxanthin. However the

copper and astaxanthin complexes formed at 78 °C did fluoresce when excited at 498

nm.

This is not the case with the complexes refluxed at 78 °C as fluorescence spectra

obtained at an excitation wavelength of 498 nm revealed a double peak absorbing at 587

and 607 nm. The captured fluorescence indicates an alteration in the characteristics of

the astaxanthin molecule as the lifetime measurement speed decreases into detectable

milliseconds. Due to the absence of the fluorescence spectra of the astaxanthin a band

shift is undetermined.

Figure 4.11: Fluorescence emission spectra of astaxanthin and copper chloride complex refluxed at 78 °C
in ethanol, Astaxanthin and copper chloride concentrations: 1:3 (black), 1:2 (red), 1:1 (green), 2:1
(yellow) and 3:1 (blue).

Fluorescence spectra proved the formation of a complex which can be detected at a

slower speed of milliseconds, the metal ligand complexes appeared to have an impact
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on the speed of the fluorescence lifetime measurements further proving complexation

with an increased activation energy.

Table 4.2: fluorescence intensity of astaxanthin in ligand copper chloride complexes synthesised at

different temperatures.

Figure 4.12: Electronic and flourescence spectra of refluxed astaxanthin and copper chloride complex

refluxed at 78 °C, ratio of ligand to metal 3:1.

A comparison of the absorbance and fluorescence spectra reveals an exception to the

mirror image rule, this in accordance with the literature is due to geometric changes of

the nuclei in the excited state when compared with the ground state (Lakowicz 1999).

The shape of the peaks differ, as the fluorescence band is a double peak whereas the

absorbance is separated into two individual peaks. The maximum absorbance band

occurs at 369 nm and the reverse fluorescence occurs at 607 nm, separating the peaks by

a distance of 238 nm.

Synthesis temperature (°C) 78

CuCl2 mole fraction
Fluorescence intensity at 607 nm (AU) ±

0.001

0.250 336.9

0.375 247.6

0.500 286.2

0.625 341.7

0.750 466.6



Chapter 4 Copper chloride and astaxanthin complex

66

4.2.2 Vibrational spectroscopy

4.2.2.1 Infrared spectroscopy

To gain insight into the changes in the type of bonding between the astaxanthin and

copper, the vibration spectra of formed complexes were examined using infrared

spectroscopy. The complexes were dried onto sodium chloride windows and run on the

infrared for % transmittance measurements at a resolution of 2 cm-1 with interval of 1

cm-1and between 4000- 350 cm-1. The low concentration of the complexes proved

problematic in the detection of the vibrational changes.

Figure 4.13: Infrared spectra of astaxanthin and complexes formed with copper chloride (normalized),
Astaxanthin and copper chloride concentrations: 1:3 (black), 1:2 (red), 1:1 (green), 2:1 (yellow) and 3:1
(blue). Corresponding functional groups labelled.

Characteristic frequencies of astaxanthin are at 980 cm-1 , 1680 cm-1 and 3050 cm-1 ,

these correspond to aromatic C-H bending, C=O stretching and OH stretching,

respectively (Mahaffy et al. 2014, Yuan et al. 2005). In figure 4.13 of the Infrared

spectra it is evident that the complex concentration is too low and close to the detection

limit, this required a further magnification to examine the spectra closely and identify

the peaks. The C=O stretch at 1640 cm-1 shifted largely from it original frequency of

2860 cm-1 (chapter 3), this is an indication of the involvement of the carbonyl functional
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group in the complex. The hexatomic ring at 1280 cm-1and aromatic C-H bending at

820 cm-1 were present. The OH stretch at 3400 cm-1 is also detected with a large

decrease. A peak at 680 cm-1 appeared in three of the complexes and shifted to 480 cm-

1, these peaks in accordance with literature correspond to C-Cl stretch (Varsányi 2012),

this peak shifted at an increased ligand to metal ratio and is not detected at the highest

ratio confirming that decrease in the copper chloride concentration. Although the C-Cl

peak appeared to increase with the decreasing metal chloride concentrations before its

absence in the final ratio of 3:1 (ligand to metal). The small peaks proved problematic

in examining a decrease pattern while examining the spectra as the determination of the

changes in the vibration of the functional group is difficult. The involvement of the

carbonyl group in the astaxanthin and copper chloride complex is confirmed.

4.2.2.2 Raman spectroscopy

The vibrational changes associated with the functional groups involved in the

complexation were also probed using raman spectroscopy. The complex intensity is

measured at an integration time of 90 sec and frame size of 30 sec. Of particular note

are the characteristic carotenoid bands centred at 1150 cm-1 associated with the C-C

stretching and the C=C stretching between 1400- 1600 cm-1(De Oliveira et al. 2010,

Parab and Tomar 2012).

Figure 4.14: Raman spectra of solid state astaxanthin and copper chloride complex (normalized), Ratio
of astaxanthin and copper chloride in complexes 1:3 (black), 1:2 (red), 1:1 (green), 2:1 (yellow) and 3:1
(blue). Astaxanthin (98%) (dashed dark red).
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Astaxanthin raman bands were found at frequencies of 1155 cm-1 and 1510 cm-1, the

two peaks are a product of C-C and C=C stretching respectively. A third peak present

at 1010 cm-1 is a result of the C=CH stretch (Parab and Tomar. 2012). The complexes

exhibited the three characteristic frequencies of C=C, C-C and C=CH at 1550 cm-1,

1284 cm-1 and 900 cm-1 respectively. The modes were at a rather low intensity, the

highest intensity corresponding to the highest concentration of 0.03 mM.

The raman signal obtained proved poor this is again reflective of the lower

concentrations of the complexes. The C-C stretch frequency had shifted to 1280 cm-1,

this shift can be an indication of the involvement of functional group in the binding of

the ligand and metal. A CH3 asymmetric stretch is detected at a frequency of 1410 cm-1,

this new feature may have been detected due to the lower intensity of the peaks. The

C=CH and C=C stretch at 1010 and 1510 1410 cm-1 respectively remained in positon.

Another notable changes is the difference in peak height between the C=C and C-C

modes, whereas in chapter 3 (figure 3.7) the two modes are predominant and only differ

slightly in height. This decrease can be an indication of the involvement of the C=C in

complexation.

Vibrational spectroscopy proved difficult at the lower concentrations of the complexes,

the characteristic functional groups peak had decreased dramatically hindering the

detection of changes. The notable changes discovered included a C-Cl stretch in

infrared, C-C stretch shift to a higher frequency of 1280 cm-1 and a CH3 asymmetric

stretch in raman.

4.2.3 Electrochemical analysis

4.2.3.1 Cyclic voltammetry

Cyclic voltammetry is implemented to measure the effect of the metal chelate complex

on radical scavenging abilities of the xanthophyll astaxanthin. In figure 4.15 of the

complex refluxed at 37 °C, the initial anodic scan revealed two features at a potential of

0.64 V and 1.25 V these correspond to the oxidation of the neutral carotenoid and

radical cations and dications formed (Britton et al. 2008, Focsan et al. 2014). In the
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reverse cathodic reduction scan two peaks were observed at 0.76 and 0.25 V

corresponding to the radical dications and cations reduction. Reversible cyclic

voltammograms are difficult to obtain in carotenoid studies due to the naturally low

stability of the formed radicals (Focsan et al. 2014). The decreased stability accounts

for the small features. Higher concentrations of copper chloride resulted in an increased

peak height, i.e. increased stability. This is reflective of the stabilisation effect of

copper chloride on the astaxanthin molecule.

Figure 4.15: Cyclic voltammograms of refluxed astaxanthin and copper chloride complex refluxed at 37
°C in 0.1 M TBA TFO acetonitrile. Ratio of astaxanthin and CuCl2 in complexes 1:3 (black), 1:2 (red),
1:1 (green), 2:1 (yellow) and 3:1 (blue).

Complexes refluxed at 78 °C produced two peaks in both the anodic and cathodic scan,

proving again a more stable complex. In the anodic scan oxidation of the neutral

carotenoid and production of radicals occurred at 0.69 V and 1.1 V respectively.

Reduction peaks detected at 1.24 V and 0.82 V, resultants of radical dications and

cations. The reversed ratio of 2 ligand: 1 metal chloride produced a single peak in both

anodic and cathodic scans setting it apart from the other complexes. The oxidation peak

at 0.93 V and reduction peak at 0.85 V, both are an indication of the alteration of

astaxanthin two electron oxidation transfer into a single oxidation transfer hence

altering the antioxidant activity. All apart from one of the complexes refluxed at 78 °C
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exhibited a stabilisation effect. This is compared to the single electron oxidation

transfer recorded in the previous characterisation of astaxanthin in chapter 3 as only a

single notable peak is detected in each scan. Shifting of the peaks is reflective of the

electrode condition as the scan rate remained constant.

Figure 4.16: Cyclic voltammograms of refluxed astaxanthin and copper chloride complex refluxed at 78
°C in 0.1 M TBA TFO acetonitrile. Ratio of astaxanthin and CuCl2 in complexes 1:3 (black), 1:2 (red),
1:1 (green), 2:1 (yellow) and 3:1 (blue).

Overall the complex formation with copper chloride altered the characteristics of

astaxanthin, each technique revealing an alteration assisting in gaining a better

understanding of the metal chelate complex formed. Temperature plays an important

role in the arrangement of the monomers in the aggregates, lower temperatures

producing J- type and higher temperatures producing a more tight packed H- type

aggregate. The results obtained through electronic, vibrational and electrochemical

studies demonstrated changes in the characteristics of the monomer astaxanthin

involved in a complex with copper chloride. The electronic spectroscopy revealed a 1:1

ratio in the complexes, both J-type and H-type aggregates and detectable fluorescence

bands. Vibrational spectroscopy presented a large decrease in the OH stretch, a C-Cl

stretch and C=C decrease Electrochemical studies present a more stable complex.

Accumulation of the data collected over this chapter predicted two possible structures of

the astaxanthin and copper chloride complexes, these differ in the synthesis
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temperature. The complexes are presented in figure 4.17. The J-type aggregate

formation at a room temperature of 20 °C and a body temperature of 37 °C.

Figure 4.17: Predicted astaxanthin and copper chloride complexes formed in solution at varying

temperatures, (a) J- type aggregate (head to tail) and (b) H-Type aggregate (face to face), generated

through chemsketch software.

The complex synthesised at 78 °C is of a H-type aggregate exhibiting a more tight

packing, the assembly of this complex is assumed as the binding of the two ends of the

astaxanthin monomer to cobalt chloride complex through the carbonyl and OH groups.

This assembly is implied by the electronic spectra of the complex as the astaxanthin

appeared to mask the absorbance of the copper chloride peak.
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Chapter 5
Cobalt chloride and astaxanthin
complex

5.0 Introduction

Cobalt is one of the most common transition metals, it is found in many food

supplement and naturally in vitamin B12 which functions as a catalyst in biochemical

reactions (Mahaffy et al. 2014). Cobalt conforms to the norm of the transition metals by

possessing two electrons in the 4S orbital. This metal is chosen due to its suitability in

biochemical application and dietary intake therefore its formation of complexes with

astaxanthin during the digestion is feasible. The current movement of greater

antioxidants intake has increased the popularity of astaxanthin but it is questionable

whether this powerful radical scavenging ability withstands the biochemical reaction

incurred following ingestion or not. A biochemical reaction will be assimilated between
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the carotenoid and cobalt chloride in the following chapter and the resultant complexes

characterised.

5.1 Synthesis of astaxanthin and cobalt chloride complexes

The absorption difference between astaxanthin and cobalt chloride proved problematic

using jobs plot method as it is essential to hold the overall concentration of the mixture.

At the lower concentrations (<0.04 mM) the cobalt chloride maximum absorption peak

at 657 nm is not detected. A different method by Benesi-Hildebrandt is implemented

this involved the preparation of solutions with one component increasing and the next

held constant. The astaxanthin and cobalt complexes were synthesised at room

temperature (20 °C), this is followed by a reflux at a body temperature of 37 °C and 78

°C. A reflux at higher temperatures is to examine the effect of higher activation energy

on the binding of the ligand and metal. As a general observance the astaxanthin and

cobalt chloride complexes exhibited a colour change following refluxing at higher

temperatures, this is more so at 78 °C as seen in figure 5.1. Another change is observed

during the storage of the complexes at a lower astaxanthin preserving temperature of -

20 °C, the colour of the complex in solution transforms into a more pigmented pink/ red

colour, shown in figure 5.1. This colour change is attributed to thermochromism.

Figure 5.1: Cobalt chloride and astaxanthin complex in ethanol before and following refluxing at 37 °C
and 78 °C, (a) CoCl2 increase from left to right and astaxanthin constant 0.02 mM, (b) Astaxanthin
increase from left to right and CoCl2 constant 3 mM
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Thermochromism of the complex in solution originates from the changes of the ligand

coordination number, this phenomenon occurs largely with transition metal complexes

involving cobalt and nickel (Seeboth and Lötzsch 2013). This change is also exhibited

during the reflux of the complex at an elevated temperature of 78 °C, the complex had

changed into a green colour, figure 5.2 outlines the stages of the complex colour

reverting from green (78 °C) to a dark orange (20 °C). Unfortunately a closer

examination of the effect on the absorbance of the complex is unfeasible in this project

due to absence of a temperature controlled UV-Vis spectrophotometer.

Figure 5.2:Thermochormism with heat of astaxanthin (0.024 mM) and CoCl2 (3 mM) complex in
ethanol, (a) precipitate during reflux at 78°C, (b) astaxanthin and metal complex at 78 °C (green) & (c)
astaxanthin and metal complex at room temperature (dark orange).

5.2 Characterisation of astaxanthin and cobalt chloride complexes

5.2.1 Electronic spectroscopy

5.2.1.1 Absorption spectroscopy

The absorbance of astaxanthin increased linearly with the increase in concentration

unaffected by the presence of cobalt chloride, conforming to beer’s law. Whereas the

constant cobalt chloride peak height changed alongside the increase in astaxanthin. The

R-band absorption of astaxanthin at 294 nm is a carbonyl characteristic peak generated

by the transition of the carbonyl group from n→ π* (Yuan et al. 2012), this appeared

less distinctive following complex synthesis. The R- band represents the carbonyl

group thus an assumption of its involvement in the binding of the complex is founded

confirming its complexation role.
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Figure 5.3: Electronic spectra of astaxanthin and CoCl2 complexes synthesised at room temperature (20
°C ) in ethanol (normalized), astaxanthin increasing concentrations and CoCl2 held constant at 3 mM,
astaxanthin (0.02 mM) (dashed dark red) and CoCl2 (3 mM) (dashed dark blue) normalized. Inset of
Benesi Hildebrand plot of 1/ [A0] versus D0 / Abs at 487 nm.

The electronic spectra of the ligand and metal complex revealed a shift of only one of

the two components, the maximum K- band absorption peak (π → π*) of astaxanthin

shifted 9 nm in the bathormic direction. The bathormic shift is in accordance with the

molecular excitation model an indication of a loose type association (J- or head to tail)

(Yadav 2005). This J- type one dimensional molecular assembly joining monomer

centre end to end increases the length resulting in a higher wavelength (Johal et al.

2011). The inset of Benesi hildebrands plot in figure 5.3 is linear demonstrating a 1: 1

binding ratio of the ligand to metal (Polyakov et al. 2010).

Next the complexes synthesised at higher temperatures were examined, the first being at

37 °C matching that of body temperature. The bathormic shift presented itself again but

this time a smaller shift of 5 nm is recorded.
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Figure 5.4: Electronic spectra of astaxanthin and CoCl2 complexes refluxed at 37 °C in ethanol
(normalized), astaxanthin increasing concentrations and CoCl2 held constant at 3 mM, astaxanthin (0.02
mM) (dashed dark red) and CoCl2 (3 mM) (dashed dark blue) normalized. Inset of Benesi Hildebrand
plot of 1/ [A0] versus D0 / Abs at 483 nm.

This shift suggested a J-type aggregate forming between the astaxanthin and cobalt

chloride. From the inset of benesi hildebrands plot in figure 5.4 it can be determined

that the ratio of ligand to metal is that of 1:1. Shifts in the complexes formed have only

been observed on the astaxanthin maximum K-band absorption while the cobalt

chloride band remains at the original wavelength of 662 nm. Astaxanthin appears to

favour a J- type aggregation at lower temperatures as also observed with the copper

chloride in chapter 4.

The complexes formed at the highest temperature of 78 °C demonstrated a varied result

as the peak appeared un-changed at the original wavelength of 478 nm, but through a

closer examination a slight shift of 2 nm is detected, shown in figure 5.5. The

interesting difference in these complexes refluxed at 78 °C is the presences of two shifts

of 2 nm, one in the bathormic direction (1:3, 1:2 and 1:1) and the other in the

hypsochromic direction (2:1 and 3:1). The shift in itself is but a small 2 nm but the
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different direction can prove that the concentrations of the ligand and metal can impact

the complex formation as opposed to the higher activation energy alone.

Figure 5.5: Electronic spectra of astaxanthin and CoCl2 complexes refluxed at 78 °C in ethanol
(normalized), astaxanthin increasing concentrations and CoCl2 held constant at 3 mM, astaxanthin (0.02
mM) (dashed dark red) and CoCl2 (3 mM) (dashed dark blue) normalized. Inset of Benesi Hildebrand
plot of 1/ [A0] versus D0 / Abs at 476 nm.

In the inset of figure 5.5 it can be seen that the plot the two lines intersecting shows a

2:1 binding ratio of the ligand to metal (Polyakov et al. 2010). In the plot the

absorbance of astaxanthin begins to level off following a concentration of 0.02 mM this

is assumed a result of aggregation of astaxanthin and cobalt chloride. The complexes

formed at different temperatures with cobalt chloride demonstrated very little changes

in the electronic spectra of the complex at room temperature. An interesting feature to

examine would be the thermochromism distinctly shown in figure 5.1, unfortunately

due to instrumentation limitations this is unattainable in this research.

In figure 5.6 the spectra of the complexes formed at different temperatures are

accumulated to allow a more general comparison. Once again the cobalt chloride peaks

remained strong at 662 nm as opposed to the copper chloride peak shifting in complex

formation. One can argue that no changes in the wavelength of the metal chloride could
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be an indication of the absence of complex formation and the astaxanthin k-band shifts

were a result of the changes impacted by the metal chloride on the surrounding

environment. As demonstrated in chapter 3 during the characterisation of the

carotenoid that the placement of the absorbance bands are sensitive to the solvent used

and previous research has shown the sensitivity of astaxanthin to the addition of salts

(Britton et al. 2008).

Figure 5.6: Electronic spectra comparing shift between complexes of astaxanthin and cobalt chloride
(normalized) astaxanthin (0.04 mM) (dashed dark red), astaxanthin and CoCl2 complexes synthesised at
room temperature (black), refluxed at 37 °C (red) and refluxed at 78 °C (blue).

Table 5.1: Absorbencies of astaxanthin in all three synthesised complexes at 20, 37 and 78 °C

The J- type (head to tail) aggregates were formed across the three complexes, the only

difference is observed in the final refluxed complex at 78 °C which demonstrated a

Synthesis temperature (°C) 20 37 78

Astaxanthin Concentration (mM)
Absorbance at 487 nm (AU)

± 0.001

Absorbance at 483 nm (AU)

± 0.001

Absorbance at 476 nm (AU)

± 0.001

0.010 0.280 9.547 0.350

0.012 0.330 0.590 0.390

0.016 0.430 0.590 0.750

0.020 0.520 0.674 1.200

0.024 0.600 0.781 1.400
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different shifts between different concentrations of astaxanthin. The large difference in

the absorption of astaxanthin and cobalt chloride caused difficulties in the preparation of

the complexes, as the large absorbencies can in some cases veil the smaller changes.

Next the dry state complexes were examined on quartz cells to detect any crystalline

formation under a microscope at a power of 10x.

Figure 5.7: Dry state astaxanthin and CoCl2 complex refluxed at 37 °C on quartz window at 10x (edge)
of the highest and lowest concentrations of astaxanthin (a) 0.01 mM and (b) 0.024 mM while CoCl2

constant at 3 mM.

The crystal structure appearing on the surface of the glass window is that of astaxanthin

and increases in colour alongside the concentration. Between the two complexes in

figure 5.7 and 5.8 barely any difference can be seen apart from the increased

characteristic pigmentation of the higher astaxanthin concentration of 0.024 mM.

Figure 5.8: Dry state astaxanthin and CoCl2 complex refluxed at 78 °C on quartz window at 10x (edge)
of the highest and lowest concentrations of astaxanthin (a) 0.01 mM and (b) 0.024 mM while CoCl2

constant at 3 mM.
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Figure 5.9: Electronic spectra of dry state astaxanthin and CoCl2 complexes on quartz window
(normalized), (a) refluxed at 37 °C and (b) refluxed at 78 °C (normalized). Astaxanthin concentrations
0.01 mM (black), 0.012 mM (red), 0.016 mM (green), 0.020 mM (yellow) and 0.024 mM (blue).

The Electronic spectra collected from the dry state complexes proved very weak in

signal and an absorption band in the green region of 900 nm is observed. This is

similarly found in the copper complexes. The absorption band weakness is caused by

the non-uniform coating of the sample on the surface as seen in figures 5.7 and 5.8 the

complexes were concentrated in certain area causing inaccuracies in the spectra. The

comparison of the complexes absorption in solution and dry states is not feasible, an

instrument capable of covering a smaller surface area is required for dry state complex

examination.

5.2.1.2 Fluorescence spectroscopy

The fluorescence spectra revealed no bands as discussed previously the fluorescence

lifetime measurement of carotenoid like molecules occur in picoseconds range (Bautista

et al. 1999) whereas the instrument limitations of the Perkin elemer LS45 measures in

milliseconds restricting the fluorescence spectroscopic analysis of the formed

complexes. The formation of the astaxanthin and cobalt chloride complexes did not

have a reducing effect on the speed of the electrons as with the astaxanthin and copper

chloride complexes hence detection of the changes were unattainable in this instance.

The absence of spectra can be an indication of the absence of complexes synthesised at

the three temperatures of 20 °C, 37 °C and 78 °C
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5.2.2 Vibrational spectroscopy

5.2.2.1 Infrared spectroscopy

In an attempt to determine the function al groups involved in the complex formation

between the ligand and the metal salt infrared spectroscopy is employed. Dry state

examination on sodium chloride windows confirms the characteristic functional groups

associated with astaxanthin. These include a carbonyl stretching mode at 1660 cm-1 and

a hydroxyl stretch at 3400 cm-1 (Mahaffy et al. 2014, Yuan et al. 2005).

Figure 5.10: Infrared spectra of astaxanthin and complexes formed with cobalt chloride (normalized),
concentration of astaxanthin 0.01 mM (black), 0.012 mM (red), 0.016 mM (green), 0.020 mM (yellow)
and 0.024 mM (blue). Corresponding functional groups labelled.

Frequencies of 3170 cm-1 and 1270 cm-1 correspond to a C-H stretch and aromatic C-H

bending. The C-Cl stretch is present at a frequency of 670 cm-1, its presence varies with

the concentration of astaxanthin and no exact pattern is deducted. The frequency with

the largest shift is determined the OH group, this can assist in predicting the structure of

the complex. The slight if any changes imply the absence of ligand and metal

complexes.
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5.2.2.2 Raman spectroscopy

Raman is employed to detect the vibration changes of the functional groups involved in

the complexation of the astaxanthin and metal complexes. The raman shift is measured

at an integration time of 90 sec and frame size of 30 sec. Noteworthy characteristic

peaks of carotenoids occur at frequencies of 1550 cm-1 associated with the C-C

stretching and the C=C stretch between 1400 – 1600 cm-1 (Deoliveira et al. 2010, Parab

and Tomar 2012). These are detected in the raman spectra, matching that of the

previous complex.

Figure 5.11: Raman spectra of astaxanthin and complexes formed with cobalt chloride (normalized),
astaxanthin concentrations 0.01 mM (black), 0.012 mM (red), 0.016 mM (green), 0.020 mM (yellow) and
0.024 mM (blue). Corresponding functional groups labelled.

The characteristic frequencies of C-C and C=C are present at 1285 and 1600 cm-1 with

little or no shifting. Similarly as with in the copper complex the cobalt complex C-C

and C=C modes varied largely in peak height as opposed to the spectra of astaxanthin

alone in figure 4.14. CH3 asymmetric stretching is present at 1400 cm-1 and C=CH

stretching at 1000 cm-1. The weakness in the signal detected can prove problematic in

assessing the structure in greater detail. Vibrational spectroscopy overall revealed slight

changes in the detectable functional groups of the ligand.
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5.2.3 Electrochemical analysis

5.2.3.1 Cyclic voltammetry

In assessment of the antioxidant activity of astaxanthin in the complex cyclic

voltammetery is carried out. Originally in chapter 3 on the characterisation of

astaxanthin a one electron oxidation transfer is observed in electrolyte 0.1 M TBA TFO

(in acetonitrile), whereas in figure 5.12 a two electron oxidation transfer system is

observed.

Figure 5.12: Cyclic voltammograms of refluxed astaxanthin and cobalt chloride complex refluxed at 37

°C in 0.1 M TBA TFO acetonitrile. Astaxanthin concentrations 0.01 mM (black), 0.012 mM (red), 0.016

mM (green), 0.020 mM (yellow) and 0.024 mM (blue).

In the initial anodic scan the complex refluxed at 37 °C oxidation revealed two peaks at

a potential of 1.1 V and 1.35 V, these in accordance with the literature correspond to the

neutral carotenoid and radical cations and dications formed (Britton et al. 2008, Focsan

et al. 2014). In the cathodic scan the two characteristic peak resulting in the reduction

of the astaxanthin radical dications and cations (Focsan et al. 2014) are present at 1.12

V and 1.35 V respectively.

Next the complexes refluxed at 78 °C presented similar results as a two electron

oxidation transfer is revealed. A difference is observed in the anodic scan as the first
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peak of the oxidation of the neutral astaxanthin is found weak in signal and undetected

at certain concentrations.

Figure 5.13: Cyclic voltammograms of refluxed astaxanthin and cobalt chloride complex refluxed at 78

°C in 0.1 M TBA TFO acetonitrile. Astaxanthin concentrations 0.01 mM (black), 0.012 mM (red), 0.016

mM (green), 0.020 mM (yellow) and 0.024 mM (blue).

On the other hand the two peaks on the return cathodic scan reveal a strong signal of the

reduction of the astaxanthin radical dications and cations (Focsan et al. 2014) at

potentials of 1.2 V and 0.85 V respectively. The stabilisation of the astaxanthin cobalt

is demonstrated in the cyclic voltammogram as reversibility is achieved, this effect can

be a result of the complexation of astaxanthin and cobalt chloride or the stabilisation of

the surrounding environment in the presence of the metal salt. An additional peak in the

cathodic scan is identified as oxygen and peak shifting is resultant of the condition of

the electrode.

The data collected over the variety of electronic, vibration spectroscopy and

electrochemical techniques reveal an absence in significant changes to imply the

formation of a cobalt chloride and astaxanthin complex. The minor shift presented in

the electronic spectra give the impression of a J-type formation as in figure 5.14.
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Figure 5.14: Predicted astaxanthin and cobalt chloride complexes formed in solution in a J-type

arrangement (head to tail), generated through chemsketch software.

One of the significant changes presented is the stabilisation of the astaxanthin molecule.

This can prove beneficial during digestion as the astaxanthin molecule can carry out its

radical scavenging abilities during digestion while the cobalt helps in providing a more

stable surrounding environment. The cobalt transition metal proved unreactive with the

ligand astaxanthin and complexation is little if any.
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Chapter 6
Summary discussion and conclusion

6.1 Summary discussion

The xanthophyll astaxanthin is proven extractable from the native Irish brown crab

(Cancer pagurus). This is achieved using the polar solvent glacial acetic acid and a

yield of 18.5 mg of extractable astaxanthin of 100g of crab shell. The choice of the

solvent proved favourable in comparison with results of Vilasoa-Martínez et al. (2008)

where acetone is chosen as the extracting solvent for snow crab and only a yield of

1.79± 1.03 mg/100 g of snow crab is obtained.

The characterisation of astaxanthin followed, this enlisted the use of a range of

electronic, vibrational and electrochemical techniques. Each technique examined a

different characteristic of the carotenoid. In electronic spectra three bands are observed,
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these include a K-band generated by the transition of the large conjugated molecule

from π→π*, R-band a characteristic carbonyl peak generated by the transition of the

carbonyl group from n→ π* and the third K- band absorption as a results of the

hexatomic ring absorption. The peak of interest during the synthesis of complexes is

the maximum K-band absorption as any shifting assists in determining the formation of

the complexes. Vibrational spectroscopy using Infrared and raman confirmed

characteristic carotenoid modes. In infrared spectra the functional groups OH and C=O

were detected at 3470 cm-1 and 1660 cm-1. In raman spectra the characteristic three

modes C=C,C-C and C=CH were detected at 1510 cm-1,1155 cm-1and 1004 cm-1

respectively. The establishment of these characteristics allowed a close examination of

the changes in the structure of the carotenoid and the functional groups responsible for

the complexation with the transition metals. As a final technique cyclic voltammetry is

applied to assess the electron transfer kinetics in the carotenoid before and following

complexation. The electrochemical investigation of astaxanthin revealed a one electron

transfer oxidation as opposed to the literature of a two electron transfer oxidation

(Focsan, et al 2014), this variation is attributed to the sensitivity of the molecule.

The synthesis of the complexes follows and is carried out using two metal chloride

these include copper chloride dehydrate (CuCl2.2H2O) and cobalt chloride hexahydrate

(CoCl2.6H2O). The complexes were formed at three temperatures 20 °C, 37 °C and 78

°C. Body temperature is examined to attempt and replicate the temperature at which

reactions would occur within the body following ingestion. The elevated temperatures

at 78 °C is applied in an attempt to apply sufficient activation energy. Previously

employed characterising techniques are applied to formed complexes. Successful

complexation occurred with copper chloride as opposed to cobalt chloride proving

futile. The electronics spectra proved insightful into the formation of the aggregates.

Cobalt yielded very little change whereas copper exhibited a large hypsochromic shift in

complexed refluxed at 78 °C proving an H-type aggregation. The large shift is also

accompanied by a masking effect of the copper chloride absorbance band by that of the

astaxanthin proving problematic in jobs plot and in turn the estimation of the binding

ratio.

One of the main differences between the copper and cobalt complexes is the

fluorescence life time measurements. As previously mentioned the fluorescence spectra
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of astaxanthin are undetectable due the instrumental limitations as fluorescence lifetime

measurement of carotenoid molecules are in picoseconds (Bautista et al. 1999). The

complexes refluxed at 78 °C alone presented fluorescence bands, this is an indication of

complexation. A plot of the absorbance and fluorescence bands revealed an exception

to the mirror rule with a change in the peak shape. This change is attributed to

geometric changes in the nuclei in the excited state in comparison to the ground state

(Lakowicz 1999).

Vibrational spectroscopy yielded weak signals and very little changes were detected.

Characteristic modes of astaxanthin are detected. The copper complex in comparison

with that of the cobalt produced smaller peaks indicating complexation. Infrared

spectra detected a C-Cl stretch peak corresponding to the metal chlorides. Raman

spectra also revealed no significant changes as the sample concentrations proved too

low.

Electrochemical investigation of the complexes revealed an overall stabilisation effect

brought about by the metal salts. A two electron transfer oxidation is obtained in

accordance with the literature (Focsan et al. 2014). Initial testing of the astaxanthin

revealed a single electron transfer due to the production of the less stable radical cations

and dications. This stabilisation effect can prove beneficial during the assimilation of

astaxanthin improving its potential.

The synthesis of an astaxanthin and copper chloride complexes proved effective as

changes are observed. An astaxanthin and cobalt chloride complex proved unfeasible as

no significant changes are observed. Hence the assumption that astaxanthin is absorbed

through metabolic reactions within the human body is founded. Further investigation of

the exploiting these changes can be applied in industry. The wide variety of benefits

associated with astaxanthin gives it the potential to be a powerful nutraceutical, these

benefits include antioxidant and anti-inflammatory activity (Bagchi et al. 2010). The

interferences within the digestion of the xanthophyll can improve or hinder these

abilities.



Chapter 6 Summary discussion and conclusion

89

6.2 Conclusion

Astaxanthin is a proven powerful antioxidant and anti-inflammatory. However the

reactions the molecule undertakes following consumption can impair or hinder these

abilities. Its extractability using glacial acetic acid, a high eutrophic strength solvent is

proven effective. Characterisation of the molecule using a range of electronic,

vibrational and electrochemical techniques provided a comparison platform for the

changes incurred by the molecule following complexation. The formation of

astaxanthin and metal complexes proved successful with the reactive copper as opposed

to the unsuccessful cobalt chloride. Significant changes were recorded in the electronic

spectra with a large maximum absorption band shift and life time fluorescence

measurements. These occurred with the copper complexes refluxed at 78 °C

demonstrating a need for a higher activation energy. The cobalt proved unreactive in

this instance with astaxanthin and no detectable changes were recorded. The possibility

of the use of astaxanthin as powerful nutraceutical must incorporate the changes during

their assimilation across the intestinal wall before proving effective, as these

biochemical reaction can hinder its activity or promote it through a stabilisation effect.
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