
 
 

 

LETTERKENNY INSTITUTE OF TECHNOLOGY 

 

A thesis submitted in partial fulfilment of the requirements for the Master of 

Science in Computing in Systems and Software Security at Letterkenny Institute of 

Technology 

 

SEARCHABLE SYMMETRIC ENCRYPTION (SSE): A 

MECHANISM FOR SEARCHING SYMMETRICALLY 

ENCRYPTED DATA STORED IN THE CLOUD 

 

Author: Supervisor: 

Shaun Mc Brearty B.Sc. Mr.  William Farrelly M.Sc., B.Sc. 

 

 

 

Submitted to Higher Education and Training Awards Council (HETAC) August 2015 



1 
 

Declaration 

I hereby certify that the material, which I now submit for assessment on the 

programme of study leading to the award of Master of Science in Computing in 

Systems and Software Security, is entirely my own work and has not been taken 

form the work of others except to the extent that such work has been cited and 

acknowledged within the text of my own work.  No portion of the work contained 

in this thesis has been submitted in support of an application for another degree or 

qualification to this or any other institution. 

 

Signature of Candidate:      

_______________________ 

Date:     

________________ 

 

  



2 
 

Acknowledgements 

First and foremost, the author would like to thank supervisor Mr. Billy Farrelly for 

his advice and support throughout the duration of this dissertation.  After my initial 

dissertation topic proved to be infeasible in the allocated time, Billy suggested a 

number of alternative topics to me, including the topic I ultimately opted for: 

Searchable Encryption.  As a complete newcomer to the topic of Searchable 

Encryption (and Cryptography in general), I often struggled when it came to 

communicating my ideas and thoughts on the topic, particularly in my writings; 

however Billy’s ability to interpret my ramblings and his ability to phrase these 

ideas in a manner much more clear and concise than my own was abundantly 

helpful.   

Outside of this dissertation, I would like to place on record my sincere thanks to 

Billy for everything he has done for me in my career thus far.  Billy was instrumental 

in helping me secure my first two employments after completing my undergraduate 

education, as well as pointing me in the direction of numerous other lucrative 

employment and educational opportunities in the last three years. 

I would also like to thank my instructors on the taught portion of the course: Mr. 

Nigel McKelvey, Mr. John Mc Garvey, Mr. John O’Raw, Ms. Ruth Lennon and Dr 

Mark Leeney.  They are five of the finest educators I have ever encountered and 

their devotion to their work and their willingness to help their students in any 



3 
 

manner necessary goes well beyond that which can reasonably be expected from 

people with such busy schedules. 

Although I have never met the man, I will be forever grateful to Seny Kamara of 

Microsoft Research.  Being completely new to the topic of Searchable Encryption, I 

struggled greatly with a lot of the initial material I encountered; however Seny’s 

blog postings on Searchable Encryption1 – written for those who are completely 

new to the concept – simplified this process greatly. 

To my family – John (Dad), Tina (Mum) and Kevin (Brother) – I thank you from the 

bottom of my heart for all your help and support over the past three years.  All 

three of you helped to provide me with a home environment that allowed me to 

focus on my studies almost exclusively.  For the last three years I’ve managed to 

avoid brushing the dog, making my own bed, cooking a dinner and washing my own 

clothes – all in the name of attaining my Master’s Degree.  Now that this process is 

almost at an end, I have no doubt I will spend the next month trying to find a new 

and improved excuse to avoid same.  In terms of finance, a massive thank you to 

both my parents for covering the costs associated with the course.  Neither of you 

batted an eye lid or moaned and groaned whenever Bank Giro’s arrived in the post 

at various times over the last three years, and for that I am eternally grateful.  

Although I don’t say it very often, I love all three of you very much. 

                                                      

 

1
 www.outsourcedbits.org 



4 
 

I would also like to thank my partner Louise for her constant support, love and 

understanding over the past few years.  Louise has had to endure me during many a 

dissertation/exam induced bad mood during our time together and for that I am 

very sorry.  In addition, her understanding and acceptance of my excessive 

workload these past few years has been nothing short of remarkable.  Not once did 

she make an issue about the numerous hours I spent with my head in a 

book/laptop, or the tiredness and bad moods that were associated with it.  Thank 

you for putting up with me - I love you more than you will ever know.  I would also 

like to take this opportunity to promise you that never again will I proceed to talk 

about Searchable Encryption during Keeping up with the Kardashians. 

Lastly, I would like to thank my electric kettle and Tetley’s Tea Bags.  Caffeine 

played an essential part in the making of this dissertation.   

  



5 
 

Glossary of Terms 

Please note that the following definitions have been formulated in the context of 

text based Information Retrieval (IR) and Searchable Symmetric Encryption (SSE). 

Collection: A set of Documents  (Manning et al., 2008, p.4).  The term Corpus or 

Database is sometimes used as an alternative to Collection (Song et al., 2000; 

Manning et al., 2008, p.4).  

Document: A digital text file.  For Example:  PDF, DOC, DOCX, TXT, HTML. 

Document Relevance: A Document is considered Relevant if it contains information 

of value in relation to a person’s Information Need (Manning et al., 2008, p.5). 

Dictionary: ‘A […] resource containing […] the Words of a language, giving 

information about their meanings, pronunciations, etymologies, inflected forms, 

derived forms, etc.’ (Dictionary.com, 2015a). 

Free Text Query: A Query expressed in a natural language (For Example: English) 

without the use of formal operators (For Example:  Boolean Operators)  (Manning et 

al., 2008, p.14).  A Free Text Query consists of one or more Terms. 

Information Need: A topic about which a person wishes to learn/know more about 

(Manning et al., 2008, p.5).  An Information Need is typically conveyed as a Query. 

Information Retrieval (IR): The act of locating Documents from within a Collection 

that satisfies a person’s Information Need (Manning et al., 2008, p.1). 



6 
 

Information Retrieval Operation: The act of using an Information Retrieval System. 

Information Retrieval System: A software system that performs Information 

Retrieval (Manning et al., 2008, p.2).  In order to use an Information Retrieval 

System, a person must first input their Information Need in to the system in the 

form of a Query.  In turn, the Query is utilised by the Information Retrieval System 

to determine the Relevance of the Documents contained within the Collection (with 

respect to the specified Query).  Once the contents of the Collection have been 

examined, the set of Documents considered Relevant; that is, the Search Results, 

are returned to the user of the system.  Internet Search Engines and Operating 

System File Search Functions are particularly prevalent example of Information 

Retrieval Systems (Manning et al., 2008, p.5).   

Query: One or more Terms chosen to convey a person’s Information Need 

(Manning et al., 2008, p.5), typically in the form of a Free Text Query (Manning et 

al., 2008, p.14). 

Query Term: An individual, unspecified Term that occurs within the text associated 

with a Free Text Query. 

Search: See Information Retrieval.  Used Interchangeably. 

Searchable Encryption: Information Retrieval performed on a Collection consisting 

of encrypted text Documents.  The Documents within the Collection remain 

encrypted at all times, while the Query specified by the user is encrypted prior to 

being utilised in the Information Retrieval Operation that follows (Song et al., 2000). 



7 
 

Search Operation: See Information Retrieval Operation.  Used Interchangeably. 

Search Result: The set of Documents (from within a Collection) considered Relevant 

after Information Retrieval has been performed. 

Search String: See Free Text Query.  Used interchangeably. 

Term: The individual space delimited text units that make up the contents of both 

Documents and Free Text Queries.  Given that it is commonplace for Documents 

and Free Text Queries to contain text not classified as Words (For Example:  K-9, 

Blink-182), Term is used instead to describe the individual space delimited text units 

that make up the contents of both Documents and Free Text Queries.  It should be 

noted that all Words are classified as Terms, but not all Terms are classified as 

Words (Manning et al., 2008, p.3-4).  For Example:  ‘the’ is both a Word and a Term; 

‘asdfg’ is a Term, but not a Word. 

Word: An individual unit of a given language (Dictionary.com, 2015b) (For Example:  

‘a’, ‘the’, ‘from’, etc.), listed as an entry in the Dictionary of the associated language 

(Manning et al., 2008, p.3-4).   

 

 

 



8 
 

Abbreviations List 

CSP: Cloud Service Provider 

DS: Data Set 

ESS: Encrypted Search String 

FHE: Fully Homomorphic Encryption 

IND-CKA2: Indistinguishable Against Adaptive Chosen Keyword Attacks 

IR: Information Retrieval 

ORAM: Oblivious RAM 

RAM: Random Access Memory 

SSE: Searchable Symmetric Encryption 

TDF: Term-Document Frequency 

  



9 
 

Table of Contents 

Declaration ................................................................................................................... 1 

Acknowledgements ...................................................................................................... 2 

Glossary of Terms ......................................................................................................... 5 

Abbreviations List ......................................................................................................... 8 

Table of Contents ......................................................................................................... 9 

Table of Figures .......................................................................................................... 15 

1. Introduction ....................................................................................................... 18 

1.1 Purpose ...................................................................................................... 18 

1.2 Overview .................................................................................................... 18 

1.3 Outline of Dissertation ............................................................................... 28 

2. Literature Review ............................................................................................... 30 

2.1 Searchable Encryption: An Overview ......................................................... 31 

2.2 Information Retrieval and the Inverted Index ........................................... 34 

2.2.1 Inverted Index Construction ................................................................ 36 

2.2.2 Querying an Inverted Index ................................................................. 42 

2.3 Searchable Symmetric Encryption (SSE) .................................................... 43 

2.3.1 Information Leakage ............................................................................ 44 



10 
 

2.3.1.1 A Basic Overview ........................................................................... 44 

2.3.1.2 Information Leakage in Searchable Symmetric Encryption ......... 46 

2.3.1.3 Security Definitions ....................................................................... 50 

2.3.2 SSE Inverted Index Construction .......................................................... 51 

2.3.2.1 Lexicon .......................................................................................... 52 

2.3.2.2 Postings List .................................................................................. 53 

2.3.2.3 Documents .................................................................................... 58 

2.3.2.4 Key Management .......................................................................... 58 

2.3.3 Querying an SSE Inverted Index ........................................................... 58 

2.3.4 Implementations of SSE ....................................................................... 60 

2.3.4.1 Kamara et al. (2012) Implementation .......................................... 60 

2.3.4.2 Cash et al. (2013) Implementation ............................................... 64 

2.3.4.3 Critical Analysis of Existing Implementations ............................... 67 

2.4 Research Question(s) ................................................................................. 74 

2.4.1 RQ1: Sub-Questions and Hypothesis ................................................... 76 

2.4.1.1 SSE Inverted Index Construction................................................... 77 

2.4.1.2 SSE Inverted Index Querying ........................................................ 79 

2.4.2 RQ2: Sub-Questions and Hypothesis ................................................... 80 

2.4.2.1 Plaintext IR Uploading Vs. SSE Uploading ..................................... 81 

2.4.2.2 Plaintext IR Querying Vs. SSE Querying ........................................ 82 



11 
 

3. Software Requirements Specification ................................................................ 83 

3.1 Introduction ............................................................................................... 83 

3.1.1 Purpose ................................................................................................ 83 

3.1.2 Project Scope........................................................................................ 83 

3.1.3 Overview .............................................................................................. 86 

3.2 Functional Requirements ........................................................................... 87 

3.2.1 PlainTXT Storage and Search Engine .................................................... 87 

3.2.2 CipherTXT Storage and Search Engine ................................................. 87 

3.3 Non-Functional Requirements ................................................................... 88 

4. Software Design ................................................................................................. 89 

4.1 Introduction ............................................................................................... 89 

4.2 High Level Design ....................................................................................... 89 

4.2.1 Use Case Descriptions .......................................................................... 89 

4.2.1.1 PlainTXT Storage and Search Engine ............................................ 90 

4.2.1.1.1 PFR-001: Upload TXT Document(s) To Server Use Case .......... 91 

4.2.1.1.2 PFR-002: Retrieve TXT Documents Containing Specified Search 

String Use Case ........................................................................................... 93 

4.2.1.1.3 Use Case Summary (Activity Diagram) ..................................... 94 

4.2.1.2 CipherTXT Storage and Search Engine .......................................... 95 



12 
 

4.2.1.2.1 CFR-001: Encrypt and Upload TXT Document(s) To Server Use 

Case 96 

4.2.1.2.2 CFR-002: Retrieve TXT Documents Containing Encrypted 

Search String Use Case ............................................................................... 98 

4.2.1.2.3 CFR-003: Decrypt Encrypted TXT Documents Retrieved From 

Server Use Case. ....................................................................................... 100 

4.2.1.2.4 Use Case Summary (Activity Diagram) ................................... 102 

4.2.2 Detailed Activity Diagram .................................................................. 104 

4.2.2.1 PlainTXT Storage and Search Engine .......................................... 105 

4.2.2.2 CipherTXT Storage and Search Engine ........................................ 106 

4.2.3 User Interface Design ......................................................................... 107 

4.2.3.1 PlainTXT Storage and Search Engine .......................................... 107 

4.2.3.1.1 Home Page (Includes Search Bar) .......................................... 108 

4.2.3.1.2 Upload Page ........................................................................... 109 

4.2.3.2 CipherTXT Storage and Search Engine ........................................ 110 

4.2.3.2.1 Home Page (Includes Search Bar) .......................................... 111 

4.2.3.2.2 Upload Page ........................................................................... 112 

4.2.3.2.3 Decrypt Page .......................................................................... 113 

4.3 Low Level Design ...................................................................................... 114 

4.3.1 Sequence Diagrams ............................................................................ 114 



13 
 

4.3.1.1 PlainTXT Storage and Search Engine .......................................... 114 

4.3.1.1.1 PFR-001: Upload TXT Document(s) To Server ........................ 115 

4.3.1.1.2 PFR-002: Retrieve TXT Documents Containing Specified Search 

String 118 

4.3.1.2 CipherTXT Storage and Search Engine ........................................ 119 

4.3.1.2.1 CFR-001: Encrypt and Upload TXT Document(s) To Server ... 119 

4.3.1.2.2 CFR-002: Retrieve TXT Documents Containing Encrypted 

Specified Search String Use Case ............................................................. 123 

4.3.1.2.3 CFR-003: Decrypt Encrypted TXT Documents Retrieved From 

Server 124 

5. Implementation ............................................................................................... 125 

5.1 Tokeniser.JAVA and Inverted_Index.JAVA ........................... 126 

5.2 Crypto_Methods.JAVA .................................................................... 127 

5.3 Generate_SSE_Inverted_Index() Method, 

SSE_Inverted_Index.JAVA, Encrypted_Array_Node.JAVA , and 

Randomised_Encrypted_Array.JAVA. .................................................. 131 

5.4 Retrieve() Method ............................................................................ 133 

6. Testing .............................................................................................................. 135 

6.1 Test Environment ..................................................................................... 135 

6.2 Test Data .................................................................................................. 136 

6.3 Experimental Results ................................................................................ 138 



14 
 

6.3.1 SSE Inverted Index Construction ........................................................ 138 

6.3.1.1 IR Inverted Index Construction ................................................... 140 

6.3.1.2 SSE Inverted Index Construction................................................. 142 

6.3.1.3 Document Collection Encryption ................................................ 144 

6.3.1.4 SSE Inverted Index Upload .......................................................... 146 

6.3.1.5 Encrypted Document Collection Upload .................................... 148 

6.3.1.6 Aggregate Results ....................................................................... 150 

6.3.2 SSE Inverted Index Querying .............................................................. 152 

6.3.2.1 ESS Generation ........................................................................... 152 

6.3.2.2 Identifying and Decrypting Matching Postings ........................... 154 

6.3.2.3 Aggregate Results ....................................................................... 156 

6.3.3 Performance of SSE vs. Plaintext Information Retrieval (IR) ............. 158 

6.3.3.1 Plaintext Information Retrieval (IR) Uploading vs. SSE Uploading

 158 

6.3.3.2 Plaintext Information Retrieval (IR) Querying vs. SSE Querying 160 

7. Evaluation ......................................................................................................... 161 

8. Conclusions and Further Research ................................................................... 167 

8.1 Conclusions .............................................................................................. 167 

8.2 Further Research ...................................................................................... 170 

9. References ........................................................................................................ 174 



15 
 

Table of Figures 

Figure 1: Efficiency Vs.  Security Trade-off For Various Searchable Encryption 

Schemes (Kamara 2013). ............................................................................................ 27 

Figure 2: Original Description of Searchable Encryption ........................................... 31 

Figure 3: Sample Lexicon. ........................................................................................... 37 

Figure 4: Sample Lexicon (Including Postings/Posting Lists). .................................... 37 

Figure 5: Tabular Visualisation of an Inverted Index (Luenberger 2006, p.287). ...... 38 

Figure 6: Inverted Index Visualisation (Including Data Structures and Memory 

Management). ............................................................................................................ 41 

Figure 7: Potential Storage Leakage in SSE (Including Trivial Leakage and Non-Trivial 

Leakage). .................................................................................................................... 48 

Figure 8: Potential Query Leakage in SSE (Including Trivial Leakage and Non-Trivial 

Leakage). .................................................................................................................... 48 

Figure 9: Linked List Data Structure (→ Denotes A Pointer to the Next Link in the 

Linked List). ................................................................................................................ 54 

Figure 10: Postings Stored In an Array. ...................................................................... 54 

Figure 11: SSE Lexicon Node. ..................................................................................... 55 

Figure 12: Postings Array Node. ................................................................................. 55 

Figure 13: Postings Array Node (Including Decryption Key Storage)......................... 57 

Figure 14: “PlainTXT Storage and Search Engine” Use Case Diagram. ...................... 90 



16 
 

Figure 15: “PlainTXT Storage and Search Engine” Activity Diagram (Use Case 

Description Summary). ............................................................................................... 94 

Figure 16: “CipherTXT Storage and Search Engine” Use Case Diagram. ................... 95 

Figure 17: “CipherTXT Storage and Search Engine” Activity Diagram (Use Case 

Description Summary). ............................................................................................. 103 

Figure 18: PlainTXT Storage and Search Engine - Detailed Activity Diagram. ......... 105 

Figure 19: CipherTXT Storage and Search Engine - Detailed Activity Diagram. ....... 106 

Figure 20: PlainTXT Storage and Search Engine - Home Page Design. .................... 108 

Figure 21: PlainTXT Storage and Search Engine - Upload Page Design. .................. 109 

Figure 22: CipherTXT Storage and Search Engine - Home Page Design................... 111 

Figure 23: CipherTXT Storage and Search Engine - Upload Page Design. ................ 112 

Figure 24: CipherTXT Storage and Search Engine - Decrypt Page Design................ 113 

Figure 25: PFR-001 Sequence Diagram (Client Side). .............................................. 116 

Figure 26: PFR-001 Sequence Diagram (Server Side). ............................................. 117 

Figure 27: PFR-002 Sequence Diagram. ................................................................... 118 

Figure 28: CFR-001 Sequence Diagram (Client Side – With 

Genereate_SSE_Inverted_Index() Details Omitted). ............................................... 120 

Figure 29: Generate_SSE_Inverted_Index() Sequence Diagram. ............................ 121 

Figure 30: CFR-001 Sequence Diagram (Server Side). ............................................. 122 

Figure 31: CFR-002 Sequence Diagram. ................................................................... 123 

Figure 32: CFR-003 Sequence Diagram. ................................................................... 124 

Figure 33: Information Retrieval (IR) Inverted Index Construction Time vs. Number 

of Terms in Collection. ............................................................................................. 140 



17 
 

Figure 34: SSE Inverted Index Construction Time vs. No of Postings in IR Inverted 

Index. ........................................................................................................................ 142 

Figure 35: Document Collection Encryption Time vs. Number of Terms in Collection.

 .................................................................................................................................. 144 

Figure 36: SSE Inverted Index Upload Time vs. Size of SSE Inverted Index. ............ 146 

Figure 37: Encrypted Document Collection Upload Time vs. Encrypted Document 

Collection Size. ......................................................................................................... 148 

Figure 38: SSE Inverted Index Construction Composite. ......................................... 150 

Figure 39: Encrypted Search String (EES) Generation Time vs. Number of Terms in 

Document Collection. ............................................................................................... 152 

Figure 40: SSE Search Time vs. Number of Matching Postings in SSE Inverted Index.

 .................................................................................................................................. 154 

Figure 41: Data Set Size vs. Search and Download Time. ........................................ 156 

Figure 42: Plaintext IR Uploading vs. SSE Uploading. .............................................. 158 

Figure 43: Plaintext IR Querying vs. SSE Querying. .................................................. 160 

Figure 44: Java Heap Memory Usage and Garbage Collection Statistics for SSE 

Inverted Index Construction. ................................................................................... 162 

  



18 
 

1. Introduction 

1.1 Purpose 

This Document represents the author’s thesis submitted in partial fulfilment of the 

requirements for the Dissertation module of the Master of Science in Computing in 

Systems and Software Security at Letterkenny Institute of Technology. 

1.2 Overview 

The concept of Cloud computing is now an accepted philosophy for computing.  As 

of 2014, 19% of all enterprises within the European Union utilise Cloud computing 

in some form or another (Eurostat, 2014), with industry forecasts indicating 

significant growth in the sector over the coming years (Columbus, 2015).  

The benefits of Cloud computing are significant: reduced costs, high reliability, as 

well as the immediate availability of additional computing resources as and when 

needed.  Despite such advantages, Cloud Service Provider (CSP) consumers need to 

be aware that the Clouds poses its own set of unique risks that are not typically 

associated with storing and processing one’s own data internally using privately 

owned infrastructure (Hashizume et al., 2013).   

Perhaps the most severe risk facing CSP consumers at present is the threat of data 

disclosure or data loss (OWASP, 2013).  Recent years have seen a number of such 

incidents occur, whereby organisations customer data – hosted on the Cloud - has 



19 
 

been leaked online (for hacktivism or vandalism purposes) or stolen for criminal 

purposes.  Victims of such attacks include large organisations such as Sony (Sony, 

2014), Adobe (Arkin, 2013) and Apple (Kerris and Muller, 2014). 

Cloud computing is made possible through the use of many technologies, including 

internet access, virtualisation and third party data centres.  As a result, Cloud 

computing has a much broader attack surface than that associated with storing and 

processing data internally using privately owned infrastructure.  The storing of 

consumer data online makes such information – potentially - accessible to anyone 

with a web browser, while the use of virtualisation technology has the potential to 

allow CSP consumers to gain access to other CSP consumer’s private data and/or 

applications (Zhang et al., 2012; Hashizume et al., 2013).  In addition, the use of 

third party data centres poses a number of potential risks, including employees of 

the CSP (both current and former) gaining access to private consumer data (either 

physically or via software) (Claycomb and Nicoll, 2012; Hashizume et al,. 2013; 

Intermedia.net, 2014; Nguyen et al., 2014). 

As a countermeasure to such attacks, various access controls are utilised:  In the 

case of online access to the CSP, such access controls typically take the form of 

usernames and passwords; In the case of virtualisation, such access controls 

typically take the form of logical data separation; and in the case of third party data 

centres, such access controls typically take the form of physical access controls (For 

Example: Locks, Keypads) (as well as software based access control) that prevent 

unauthorised CSP personnel from gaining access to user data (Hashizume et al., 



20 
 

2013).  In principle, all of the aforementioned access controls are sound; however in 

practice, such controls have been circumvented. 

In the event that any of the aforementioned access controls are compromised 

maliciously, the chances of a data breach occurring are high.  Should a data breach 

occur and the associated data is retrieved in encrypted form, the data is essentially 

useless to an attacker (unless the encryption algorithm utilised is weak and/or the 

attacker has some foreknowledge of the associated decryption key) (Zhang et al., 

2012; Hashizume et al, 2013); however, in the event that a data breach occurs and 

the associated data is retrieved in plaintext form, an organisations worst nightmare 

has become a reality.  What follows is typically a slew of press releases, negative 

publicity, damaged business reputations, and fines under various data protection 

laws (ICO, 2014; ICO, 2015; Levick.com, 2015). 

To reduce the impact of potential data breaches (and to provide privacy for CSP 

consumer data) CSPs typically employ the use of cryptography.  In a Cloud 

environment, cryptography is typically utilised for two purposes: security while data 

is at rest; and security while data is in transit.  Unfortunately the Cloud cannot 

guarantee the security of data during processing as the current limitations of 

cryptography prevent data from being processed in encrypted form. 

Given the fact that data is processed in unencrypted form, it is quite common for 

attackers to target data in use, rather than targeting data which is encrypted during 

storage and transit (Hashizume et al., 2013; OWASP, 2013). 



21 
 

At the time of writing2, an entity wishing to store its data within the Cloud must 

choose one of the following options: 

1. Store Data in Encrypted Form (Two Options Exist) 

A. Disclose Decryption Key(s) to Cloud Service Provider (CSP) OR 

B. Keep Decryption Key(s) Private 

2. Store Data in Unencrypted Form 

Option 1A requires encrypted data owners to disclose their decryption key(s) to 

CSPs.  This is due to the fact that data cannot be searched or operated on while in 

encrypted form.  In order to provide CSP customers with such functionality, CSPs 

require access to the necessary decryption key(s).  

Option 1B (Keeping Decryption Key(s) Private) represents the most secure sub-

option; however, as previously mentioned, CSP customers lose the ability to search 

or operate on their data while it is in encrypted form.  In order to utilise such 

functionality using Option 1B, CSP customers must download their data, decrypt it, 

and only then can it be searched and/or operated on.  While this approach may be 

fine for small amounts of data, it becomes increasingly inefficient and unwieldy as 

the amount of data increases.  In addition, should any changes be made to the data 

after it has been downloaded; the customer must then re-encrypt and re-uploaded 

the entire dataset to the Cloud.   

                                                      

 

2
 September 14

th
 2015 



22 
 

Option 2 avoids the use of encryption for data security.  Rather than relying on 

cryptography for data security; that is, the traditional approach to data security, 

this approach utilises the aforementioned approach of logically separating data 

(Mather et al., 2009, p.62). 

Evidently, none of the options available at present provide an adequate balance of 

data security and functionality.  Option 1A and Option 2 offer full functionality at 

the expense of data security, while Option 1B provides data security at the expense 

of any and all functionality (Mather et al., 2009, p.66).   

The ideal solution to achieving an optimal balance of data security and functionality 

within the Cloud involves the CSP having the ability to search and operate on data 

while it is in encrypted form – without having any knowledge of the associated 

decryption key(s), or the associated plaintext(s)  (Mather et al., 2009, p.62-63, 69). 

Two forms of encryption do in fact exist at present that make the above a reality.  

The first, known as Fully-Homomorphic Encryption (FHE) allows data to be operated 

on3 while in encrypted form (Gentry, 2009). The second, known as Searchable 

                                                      

 

3
 Given two single digit binary numbers N1 and N2, that is, 0 or 1, an encryption scheme is said to be 

Fully Homomorphic if it satisfies the following property: N1⊕ N2 = N3; E
PK

(N1) ⊕ E
PK

(N2) = E
PK

(N3); 
D

SK
(E

PK
(N3)) = N3, where ⊕ denotes both binary multiplication and binary addition, i.e. mod 2.   

 
An encryption scheme that satisfies the above property can be used to derive a software based 
NAND Logic Gate (which can in turn be used to derive the set of all other Boolean Logic Gates).  
Given the full set of Boolean Logic Gates, any Boolean Logic Circuit can be derived; therefore 
allowing encrypted data to be arbitrarily operated on in the exact same manner as plaintext data 
(albeit plaintext data is operated on at a hardware level; not a software level as is the case with Fully 
Homomorphic Encryption).  



23 
 

Encryption, allows for data to be searched while in encrypted form (see Information 

Retrieval (Page 5)) (Song et al., 2000). 

While being impressive in terms of its functionality and capabilities, FHE remains 

extremely slow when implemented in software (Gentry et al., 2015).  As such, its 

mass deployment and usage within the Cloud appears to be some way off. 

Searchable Encryption on the other hand has been shown to be sufficiently efficient 

on the few occasions that it has been implemented in software.  Despite being a 

relatively obscure form of Cryptography, a number of researchers in the area hold 

the opinion that Searchable Encryption is now at the point that it can be deployed 

and used within the Cloud (Kamara et al., 2012; Cash et al,. 2013).  

Given its superior efficiency, the author has chosen to focus on the topic of 

Searchable Encryption for this dissertation.  The author’s decision to do so is 

motivated by the Clouds lack of support for true data security using encryption, as 

well as the Clouds lack of support for searching encrypted data.   

Used in the Cloud, Searchable Encryption has the ability to allow CSP customers to 

store their data in encrypted form, while retaining the ability to search that data 

without disclosing the associated decryption key(s) to CSPs (Song et al., 2000), that 

is, without compromising data security on the Server.   

Searchable Encryption is a diverse subject that exists in many forms.  While there 

are several methods of carrying out Searchable Encryption, two general techniques 

dominate the literature: Searchable Symmetric Encryption (SSE); that is, Searchable 

Encryption using Symmetric Key Cryptography and Public Key Encryption with 



24 
 

Keyword Search (PEKS); that is, Searchable Encryption using Public Key 

Cryptography (Boneh et al., 2004; Curtmola et al,. 2006; Bosch et al., 2014).  Neither 

SSE nor PEKS natively supports Searchable Encryption as it was originally envisioned 

by Song et al. (2000) (see Section 2.1).  Instead, the literature has focussed on 

adapting various forms of Indexes; that is, Data Structures that support efficient 

searching by pre-computing and mapping Search Terms to the Documents they 

occur in (and vice versa), for use with Information Retrieval (IR) over encrypted 

Documents (Bosch et al., 2014). 

Two forms of Indexes are discussed in the Searchable Encryption literature: 

Forward Indexes and Inverted Indexes (see Section 2.2).  While both Indexes store 

the exact same information, each Index is optimised for different forms of 

searching.  In the case of the Forward Index, it is optimised for searching specific 

Documents for the presence of Search Strings (Luenberger, 2006, p.285), while the 

Inverted Index is optimised for searching an entire Document Collection for the 

presence of Search Strings (Luenberger, 2006; p.286; Manning et al., 2008, p.6).  

Early work on the topic of Searchable Encryption focussed on the use of Forward 

Indexes almost exclusively (Goh, 2003; Chang and Mitzenmacher, 2005); however, 

subsequent work on the topic has focussed on the use of Inverted Indexes (due to 

its ability to efficiently search an entire Document Collection, as opposed to specific 

Documents) (Curtmola et al., 2006; Van Liesdonk et al., 2010; Kamara et al., 2012; 

Cash et al., 2013). 



25 
 

Aside from SSE and PEKS, two other forms of encryption exist at present that 

support Searchable Encryption: Fully-Homomorphic Encryption (FHE) (Gentry, 

2009) and Oblivious RAM (ORAM) (Goldreich and Ostrovsky, 1992).   

As mentioned previously, Fully-Homomorphic Encryption supports computations 

over data in encrypted form, including Searchable Encryption as it was originally 

envisioned by Song et al (2000); nonetheless efficient Fully-Homomorphic 

Encryption remains someway off (Gentry et al., 2015).   

Used in isolation, ORAM does not support Searchable Encryption.  Essentially, 

ORAM is a Client-Server communication protocol designed to obfuscate memory 

access patterns on the Server side of a given transaction.  In its simplest form, 

ORAM consists of two operations: The Client storing data on the Server; that is, 

writing, and the Client retrieving Data from the Server; that is, reading.  In an effort 

to obfuscate memory access patterns on the Server, each Write operation is also 

accompanied by an associated Read operation, and each Read operation is 

accompanies by an associated Write operation.  In addition, each Read/Write 

operation accesses numerous memory locations on the Server instead of just a 

single memory location (in an effort to further obfuscate memory access patterns; 

that is, false positives) (Goldreich and Ostrovsky, 1992).  In the context of 

Searchable Encryption, ORAM is typically combined with SSE and PEKS Searchable 

Encryption schemes to improve their security.  SSE and PEKS Searchable Encryption 

schemes Leak Information to the Server a number of ways (see Section 2.3.1).  By 

combining such schemes with ORAM, such Information Leakage can be eradicated; 

nonetheless, the search efficiency of schemes utilising ORAM is severely hindered 



26 
 

due to the amount of work involved in obfuscating memory access patterns using 

ORAM (Stefanov et al., 2013; Hahn and Kerschbaum, 2014). 

In relation to search efficiency, both SSE and PEKS achieve optimal search time 

when used in conjunction with an Inverted Index; that is, search time is linear in the 

number of Documents matching the Search String; however in terms of security, SSE 

is vastly superior to PEKS (Bosch et al., 2014).  Given that PEKS is a form of Public 

Key encryption, an adversary can easily mount an attack on such a Searchable 

Encryption scheme given the associated Public Key and a dictionary of chosen 

Terms (Boneh et al., 2004).  In the case of SSE, all associated keys are kept private 

(Curtmola et al., 2006). 

As part of this dissertation, the author has chosen to focus on the topic of SSE using 

the Inverted Index.  The author’s decision to do so is due to the fact that SSE 

represents the most efficient form of Searchable Encryption (see Figure 1) at the 

time of writing4.  The author readily acknowledges that SSE is rather unorthodox in 

its working, particularly when compared to other Searchable Encryption solutions; 

nonetheless, SSE represents one of the few forms of Searchable Encryption that is 

achievable using established standardised encryption algorithms.  Alternative forms 

of Searchable Encryption require the use of non-standardised, special purpose 

encryption algorithms (Gentry, 2009).  As regards security, the author also 

                                                      

 

4
 September 14

th
 2015. 



27 
 

acknowledges that SSE is considered one of the least secure forms of Searchable 

Encryption (see Figure 1); primarily due to Information Leakage.  Solutions exist to 

eradicate and obfuscate all forms of Information Leakage in SSE; however existing 

solutions have a significant effect on the search efficiency of SSE (Stefanov et al., 

2013; Hahn and Kerschbaum, 2014).  Evidently, the challenge for researchers is to 

improve the security of SSE while maintaining its superior search efficiency. 

 
Figure 1: Efficiency Vs.  Security Trade-off For Various Searchable Encryption Schemes 

(Kamara, 2013). 

Figure 15 lists all known solutions to the problem of searching on encrypted data; 

that is, symmetrically encrypted data, as well as public key encrypted data.  The y-

axis of Figure 1 lists all Searchable Encryption solutions with respect to their 

efficiency, while the x-axis lists all solutions with respect to security.  As regards 

                                                      

 

5
 FEnc/IBE represent extensions of PEKS Searchable Encryption, while PPE/DET refers to Searchable 

Encryption schemes that utilise Symmetric Key Encryption or Public Key Encryption exclusively (SSE 
utilises a combination of Symmetric Key Encryption and Hash Functions; hence SSE being classified 
as a separate form of Searchable Encryption).   



28 
 

efficiency, the SSE literature defines efficiency as the time-complexity associated 

with finding a given Encrypted Search String (ESS) within a body of encrypted data 

(expressed in Big O Notation).  In terms of security, the SSE literature defines 

security as the amount of Information Leakage associated with using a given 

Searchable Encryption scheme; that is, what the Server learns (or can deduce) about 

the ciphertext by searching over it (expressed in Terms of the numerous categories 

of Information Leakage) (Kamara, 2013). 

1.3 Outline of Dissertation 

Chapter 2 constitutes the Literature Review conducted as part of this dissertation.   

The Literature Review begins with a brief overview of the concept of Searchable 

Encryption (Section 2.1).  As part of this overview, the author identifies the major 

reasons why symmetrically encrypted ciphertext cannot be searched in the same 

manner as plaintext data, before briefly discussing Searchable Symmetric 

Encryption (SSE) – the solution to searching same.    

In its most basic form, SSE is nothing more than an Inverted Index – a mechanism 

that has been used in plaintext Information Retrieval (IR) for decades - that has 

been modified and adapted for use with ciphertext.   

To familiarise the reader with the concept and operation of an Inverted Index, 

Section 2.2 provides an in-depth discussion of the Inverted Index as used in 

plaintext IR.  This is followed by a discussion of the how the Inverted Index has been 



29 
 

adapted and modified for use with ciphertext; that is, SSE, in Section 2.3, as well as 

a brief discussion and critical analysis of two closed source implementations of SSE. 

At the conclusion of the Literature Review, the following Research Questions are 

identified: 

 RQ1: How Efficient Is Searchable Symmetric Encryption (SSE) When 

Implemented And Deployed In A Cloud Environment? 

 RQ2: What Is The Performance Cost Of Preserving Data/Query Privacy Using 

Searchable Symmetric Encryption (SSE) When Compared To Plaintext 

Information Retrieval (IR)? 

With a view to providing an answer to the aforementioned Research Questions, the 

author developed two software artefacts: ‘PlainTXT Stroage and Search Engine’ – an 

implementation of a plaintext IR System, and ‘CipherTXT Storage and Search 

Engine’ – an implementation of an SSE system. 

Chapter 3 outlines the Software Requirements Specification for both software 

artefacts produced as part of this dissertation; Chapter 4 outlines the Design details 

of same, while Chapter 5 outlines the Implementation details of same.   

Chapter 6 comprises the Test Results obtained from both software artefacts, while 

Chapter 7 constitutes an evaluation of both the software artefacts and their 

associated Test Results. 

Chapter 8 comprises the set of Conclusions derived from this dissertation, as well as 

areas of potential future Research.  



30 
 

2. Literature Review 

This Chapter introduces the concept of Searchable Encryption in the context of a 

Literature Review. 

Searchable Symmetric Encryption (SSE) has its roots in plaintext searching, although 

symmetrically encrypted ciphertext cannot be searched in the same manner; 

nonetheless, many of the principles that apply to plaintext searching also apply to 

SSE. 

In its most basic form, SSE is nothing more than an Inverted Index – a mechanism 

that has been used in plaintext Information Retrieval (IR) for decades - that has 

been modified and adapted for use with ciphertext.   

Initial discussions of the Inverted Index centre on an explanation of its application 

to plaintext Information Retrieval.  This is followed by a discussion of the how the 

Inverted Index has been adapted and modified for use with ciphertext.   

Consider the following example application in the context of plaintext:  

A Client has outsourced storage of a Document Collection to a Server.  Should the 

Client wish to retrieve those Documents from the Server that contain a specific 

Search String, the Client simply forwards the Search String in question to the Server.  

In turn, the Server processes the Search String against the Document Collection and 

responds to the Client with those Documents that contain the specified Search 

String; that is, Search Results.   



31 
 

2.1 Searchable Encryption: An Overview 

Fifteen years ago, Song et al.  (2000) first proposed the concept of Searchable 

Encryption.  When explaining the basic operation of Searchable Encryption, Song et 

al. (2000) did so using an example whereby the content of symmetrically encrypted 

Documents were sequentially searched; that is, character-by-character, word-by-

word, for the presence of a user specified Search String.  Prior to the Search taking 

place, the Search String specified by the user was first encrypted using the same key 

used to encrypt the Documents being searched, with the resulting value – referred 

to as the Encrypted Search String (ESS) – being the value Searched for within the 

encrypted Documents.  Those encrypted Documents deemed to contain the ESS 

were then returned to the user as part of the subsequent Search Results (see Figure 

2). 

 
Figure 2: Original Description of Searchable Encryption 

 

While this explanation successfully communicated the basic premise of Searchable 

Encryption – in a manner relatively similar to plaintext Information Retrieval (IR); 

that is, plaintext searching - it nonetheless ignored the fact that modern symmetric 

ciphers do not support Searchable Encryption as described by Song et al.  (2000).  



32 
 

Specifically, modern symmetric ciphers implement Shannon’s Confusion and 

Diffusion principles (through the use of Substitution-Permutation networks) to 

counter cryptanalysis (Stallings, 2014, p.66-67).  As a consequence, Searchable 

Encryption - as described by Song et al. (2000) - is not feasible6. 

The description of Searchable Encryption provided by Song et al. (2000) operates on 

the assumption that a given Term - whether in plaintext form or encrypted form - is 

located in the same position in both the plaintext version of the Document and the 

encrypted version of the same Document.  For Example:  Given a plaintext 

Document beginning with the Term ‘The’, the description provided by Song et al.  

(2000) assumes that the first three characters of both the plaintext version of the 

Document and the encrypted version of the Document correspond to the Term ‘The’.  

Essentially this description assumes that symmetric ciphers encrypt data one 

character at a time, when in reality, this is not the case. 

                                                      

 

6
 In their paper, Song et al. (2000) demonstrate that Searchable Encryption can in fact be achieved as 

originally described; albeit only in the case of a single highly unsecure scenario.  The scenario in 
question requires that data be encrypted using Electronic Code Book mode (the use of ECB mode is 
highly discouraged due to its susceptibility to cryptanalysis) and that the author of the Document 
being searched limit the maximum length of plaintext Terms in the Document to the Block Size of 
the associated cipher (8 characters in the case of DES, 16 characters in the case of AES).  In addition, 
the scenario also requires that the author of the Documents ensure that only a single Term is 
contained within each ciphertext Block.   
 
For Example, consider a Document due to be encrypted using AES (16 byte Block Size).  Should the 
Document in question begin with the word ‘The’ (3 characters), the author of the Document would 
have to ensure that 13 whitespaces appeared after the word ‘The’ in order to ensure that only a 
single Term was contained within the first ciphertext block within the Document (16 characters in 
total). 



33 
 

Modern symmetric ciphers encrypt data in blocks of a fixed size, rather than 

character by character (Stallings, 2014, p.62).  The effect of using such ciphers is 

that the ciphertext associated with a given plaintext Term is spread across the 

entire ciphertext block, rather than appearing in the same position as the plaintext 

Term; thus preventing traditional Sequential Searching (Stallings, 2014, p.63).  In 

addition, modern symmetric ciphers typically operate using advanced block cipher 

modes (another mechanism to counter cryptanalysis) which ‘chain’ the ciphertext 

of previously encrypted blocks to the current plaintext block (by means of a bitwise 

XOR operation) (Stallings, 2014, p.183-198); thus further complicating the problem 

of searching ciphertext for the presence of an encrypted version of a plaintext 

Search String6. 

Recognising the inherent difficulty in achieving Searchable Encryption as originally 

described by Song et al. (2000), subsequent work in the area focussed on 

developing solutions to the problem as originally conceived; albeit without actually 

using Sequential Searching (Goh, 2003).  Specifically, researchers focussed on 

adapting the Inverted Index – a mechanism that has been used in plaintext 

Information Retrieval for decades – for use in Searchable Encryption (Curtmola et 

al., 2006).   

In its most basic form, an Inverted Index is a Data Structure that maps Terms to the 

Document(s) they occur in; therefore eradicating the need to Sequentially Search 

Documents (Luenberger, 2006, p.285; Manning et al., 2008, p.6).  When adapted 

for use with an encrypted Document Collection, the resulting Inverted Index is titled 



34 
 

Searchable Symmetric Encryption (SSE) (Curtmola et al., 2006)- the topic of focus 

for this dissertation. 

2.2 Information Retrieval and the Inverted Index 

Unlike searching a Collection of encrypted Documents, searching a Collection of 

plaintext Documents for the presence of a user specified Search String is a trivial 

process.   

The most basic method of doing so, known as Sequential Searching, involves 

examining each Document within a Collection on a Term by Term basis.  As each 

Term within the Document being examined is encountered, the Term in question is 

simply compared to the user specified Search String for equality (assuming the 

Search String in question consists of a single Term).  In the event that a Document 

Term matches the user specified Search String, the associated Document is then 

returned to the user as part of the ensuing Search Results (Manning et al., 2008, 

p.3). 

While Sequential Searching functions effectively, its search efficiency is poor:  

Sequential Searching suffers from the fact that each Document in the Collection 

must be examined; therefore making its search time linear in the number of 

Documents contained within the Collection.  As such, the time taken to search the 

Collection increases as the number of Documents in the Collection expands. 

The poor performance of Sequential Searching can be directly attributed to the fact 

that the set of Terms contained within each Document must be determined at run 



35 
 

time; that is, while the Search is being conducted.  In addition, the set of Documents 

that a Search String occurs in must also be determined at run-time; hence why each 

Document within the Collection must be examined (Manning et al., 2008, p.3-4). 

In an effort to expedite the process of plaintext Information Retrieval (IR), the 

Inverted Index was developed.  Just like a Database Index is designed to speed up 

data retrieval without searching each row of a Database Table, the Inverted Index is 

designed to speed up IR without having to search each Document within a 

Collection. 

In its most basic form, an Inverted Index is a Data Structure that maps each Term 

within a Collection to the Document(s) it occurs in (Luenberger, 2006, p.6). 

The Inverted Index attempts to overcome the shortcomings of Sequential Searching 

by pre-computing the list of all Terms contained within a Document Collection, as 

well as each pre-computing what Document(s) each Term occurs in; that is, in 

advance of a search occurring.  The purpose of pre-computing this list of Terms – 

commonly referred to as the Lexicon of the Collection – is that the list of Terms is 

searched for the presence of the user specified Search String, instead of the 

Document Collection; thus making the search time linear in the number of Terms 

contained within the Collection.   

For improved search efficiency, it is common for the Lexicon to be stored using Data 

Structures that expedite searching, such as Hash Tables (O(1) Search Complexity), 

Binary Search Trees (O(Log N) Search Complexity), B-Trees (O(Log N) Search 

Complexity) or Word Tries (O(Log N) Search Complexity). 



36 
 

Section 2.2.1 outlines how the Inverted Index is constructed for usage in plaintext 

IR, while Section 2.2.2 outlines how same is queried.   

2.2.1 Inverted Index Construction 

Construction of an Inverted Index first requires a Document Collection from which 

the Inverted Index will be built; that is, the Document Collection to be searched.  

Inverted Index construction begins with each Document within the Collection being 

sequentially scanned by the Server7, and a note being made of each Term that 

occurs within each Document.  This process is typically referred to as Document 

Tokenisation (Manning et al., 2008, p.22)).   

Each and every Term encountered during Document Tokenisation is added to a list 

known as the Lexicon (see Figure 3).  Essentially, the Lexicon is the list of all Terms 

that occur in a given Document Collection (Luenberger, 2006, p.285; Manning et al., 

2008, p.6).  In the event of the same Term occurring multiple times in a single 

Document, or the same Term occurring in multiple Documents within the 

Collection– both of which are inevitable - the Term in question appears only once in 

the Lexicon; therefore, each Term contained within the Lexicon is unique 

(Luenberger, 2006, p.286-287; Manning et al., 2008, p.22).   

                                                      

 

7
 In SSE, the Client is responsible for constructing the Inverted Index; not the Server as is the case 

with plaintext Information Retrieval (IR). 



37 
 

 
Figure 3: Sample Lexicon. 

 

Throughout the process of Document Tokenisation, each and every Document that 

a given Term occurs in is also noted; that is, the Document ID is noted8 (see Figure 

4).  The noting of a given Term occurring in a given Document is referred to as a 

Posting, while the list of all Documents; that is,  Document ID’s, where a given Term 

occurs is referred to as a Posting List (Manning et al., 2008, p.6). 

 
Figure 4: Sample Lexicon (Including Postings/Posting Lists). 

 

                                                      

 

8
 As part of the process of Inverted Index Construction, each Document within the Collection is 

assigned a unique identifier known as a Document ID. 



38 
 

 
Figure 5: Tabular Visualisation of an Inverted Index (Luenberger, 2006, p.287). 

 

Figure 5  depicts a simple tabular visualisation of an Inverted Index.  The Lexicon for 

the Document Collection is listed in the left most column of the table, while the list 

of Documents within the Collection; that is, Documents IDs is listed along the top 

row of the table.  The intersection of each row and column contains a value 

denoting whether or not the Term associated with the row in question occurs 

within the Document associated with the column in question, with ‘1’ denoting the 

occurrence of the Term within the Document; that is,  a Posting, and ‘0’ denoting 

the absence of the Term from the Document9 (Luenberger, 2006, p.285-286; 

Manning et al., 2008, p.3-4).   

  

                                                      

 

9
 In reality, a fully functioning IR System would only record the occurrence of a Term within a 

Document, and not the non-occurrence of a Term (doing so would be hugely wasteful in terms of 

memory).  The inclusion of non-occurrence information in the table in Figure 5 is merely for 

explanatory purposes. 



39 
 

Regarding implementation details, an Inverted Index can be implemented in a 

number of ways: 

 As mentioned previously, the Lexicon can be implemented and stored using 

a number of different Data Structures.  This dissertation assumes that the 

Data Structure used is a Hash Table (due to its efficiency; that is, O(1)). 

 Due to their list-like nature, Posting Lists are typically implemented using a 

Linked List Data Structure.  Alternative Data Structures, such as Arrays, can 

be used; however the dynamic nature of Posting Lists often makes the 

Linked List Data Structure the preferred choice. 

 In relation to Document storage, Documents can be stored in a number of 

ways.  Primarily, Documents are either stored using the native file system of 

the Server they are stored on, or alternatively, as Rows within a Database 

Table (with their designated Document ID acting as their Primary Key value). 

In term of memory management, the Lexicon of an Inverted Index is typically 

loaded into Random Access Memory (RAM) at all times.  Given that the Lexicon 

contains the information to be searched whenever an Inverted Index is queried; it is 

therefore common that a significant amount of RAM be allocated to same. 

Regarding memory management for Posting Lists and Documents, both sets of 

information are typically stored in secondary memory.  This is due to the fact that 

both Posting Lists and Documents are only ever retrieved whenever their 

associated Terms are searched for. 



40 
 

For improved performance, it is common for the first Link of a Postings List Linked 

List to be stored alongside its associated Term in the Lexicon Data Structure; that is, 

in RAM.  This is due to the fact that the first Link in a Linked List is required to 

access all subsequent Links in the Linked List; that is,  all subsequent Postings 

(stored in secondary memory) (Luenberger, 2006, p.289; Manning et al., 2008, p.7).   

Figure 6 provides a simple visualisation of the Inverted Index as typically utilised in 

plaintext Information Retrieval (IR).  Incorporated within the Figure is the Data 

Structures commonly used to store the three data sets that make up the Inverted 

Index, as well as what form of computer memory is typically used to store each 

Data Structure. 



 

 
 

 
Figure 6: Inverted Index Visualisation (Including Data Structures and Memory Management).



 

42 
 

 

2.2.2 Querying an Inverted Index 

Performing a Query against the Inverted Index structure described in Section 2.2.1 

is relatively simple.   

Given a Search String, the Lexicon Data Structure is examined to determine the 

presence or absence of the Search String within the Lexicon.   

In the event that the Search String is present in the Lexicon, the first Posting 

associated with the matching Term is retrieved from RAM.  In turn, this Link is then 

used to retrieve all subsequent Links in the Linked List (stored in secondary 

memory); thus retrieving all Postings for the Search String in question.  Once the 

Posting List has been retrieved in full, the associated Document IDs are then used to 

retrieve the actual Documents – from secondary memory – that contain the Search 

String.  Once all Documents are retrieved, they are then forwarded to the Client; 

that is, Search Results. 

In the event that a Search String is not present in the Lexicon, this denotes that the 

Search String in question is not present in any Documents contained within the 

Collection (Luenberger, 2006, p.293; Manning et al., 2008, p.10).   

  



 

43 
 

2.3 Searchable Symmetric Encryption (SSE) 

To ensure clarity, the author refers to the Inverted Index structure used in plaintext 

Information Retrieval (IR) as the IR Inverted Index, while its SSE counterpart is 

referred to as the SSE Inverted Index. 

As the name suggests, the SSE Inverted Index borrows heavily from the IR Inverted 

Index.  All information presented previously in relation to the IR Inverted Index 

remains true for the SSE Inverted Index; however the reader should be aware that 

SSE and the SSE Inverted Index differ from IR and the IR Inverted Index in the 

following ways: 

The topic of Information Leakage forms an Integral part of SSE.  When the idea of 

Searchable Encryption was first proposed, one of its founding principles was the 

assumption that the Server storing the encrypted Document Collection is an 

adversary that is actively working on subverting the security of the Document 

Collection it possesses (with the ultimate goal of gaining access to the Document 

Collection in plaintext form) (Song et al., 2000).  As such, the SSE Inverted Index is 

constructed and operates in a manner that takes significant steps to reduce the 

Leakage of potentially useful Information to the Server.  In practice, this involves 

the use of encryption for the Document Collection, the Lexicon, Posting Lists and 

Search Strings; as well as the use of Data Structures that hinder the Servers efforts 

in achieving its malicious goals (Goh, 2003; Chang and Mitzenmacher, 2005; 

Curtmola et al., 2006). 



 

44 
 

Responsibility for creating the SSE Inverted Index is offloaded to the Client.  In order 

for the Server to construct the SSE Inverted Index, decryption keys must be 

disclosed to the Server (as mentioned previously, this is undesirable from a data 

security perspective).  Rather than reveal sensitive information to the Server, SSE 

delegates responsibility of constructing the SSE Inverted Index to the Client.  Given 

that the Client is responsible for constructing the SSE Inverted Index, it is therefore 

expected that the Client forwards the SSE Inverted Index to the Server along with 

the encrypted Document Collection whenever the latter is forwarded to the Server 

for storage (Goh, 2003).   

Subsection 2.3.2 provides an overview of how the SSE Inverted Index is constructed, 

while Subsection 2.3.3 provides an overview of how same is queried10.  Prior to the 

discussing both, a brief overview of Information Leakage is first given in Subsection 

2.3.1. 

2.3.1 Information Leakage 

2.3.1.1 A Basic Overview 

A significant portion of the Searchable Encryption literature has focussed on 

determining what Information Leakage results from a) The Server being in 

                                                      

 

10
 The SSE scheme discussed throughout this dissertation is that presented in Kamara et al. (2012), 

with the exception that support for updates to the Document Collection and the associated SSE 
Inverted Index are not included in this dissertation. 



 

45 
 

possession of the encrypted Document Collection, and b) The Server carrying out 

searches on same; that is, a Client ordering the Server to perform a Search, or the 

Server itself carrying out searches covertly.  The purpose of studying such 

Information Leakage is to determine whether or not any and all Information Leaked 

by various Searchable Encryption schemes is useful to the Server in terms of 

achieving its malicious goal(s)11.    

Ideally, no Information Leakage should occur as a result of utilising Searchable 

Encryption; however, like all ideal scenarios, realising it is not without its 

challenges.  The two most secure forms of Searchable Encryption at present; that is, 

Oblivious RAM (RAM) and Fully Homomorphic Encryption-2 (FHE-2) (see Figure 1), 

achieve zero Information Leakage; however both do so at the expense of efficiency.  

In both solutions, this poor efficiency can be directly attributed to the Information 

Leakage countermeasures utilised (Chunsheng, 2011; Stefanov et al., 2013; Hahn 

and Kerschbaum, 2014). 

In an effort to improve the overall efficiency of Searchable Encryption, several 

researchers have examined the prospect of relaxing the zero-tolerance approach to 

Information Leakage in Searchable Encryption (Goh, 2003; Chang and 

Mitzenmacher, 2005; Curtmola et al., 2006; Kamara et al., 2012; Cash et al., 2013).  

Specifically, researchers have attempted to determine what Information Leakage is 

                                                      

 

11
 All SSE schemes – with the exception of Song et al. (2000) – included full discussions of 

Information Leakage, as well as full Proofs of Security (Bosch, 2014). 



 

46 
 

acceptable in Searchable Encryption (sometimes referred to as Trivial Information 

Leakage); that is, Information that in no ways aids the Server in achieving its goal of 

subverting the encrypted Document Collection.  Evidently, the goal of this Research 

was to identify which Information Leakage countermeasures are absolutely 

necessary in Searchable Encryption; therefore allowing researchers to focus on 

creating search efficient schemes that conform to this baseline measure of 

Information Leakage (at a minimum) . 

2.3.1.2 Information Leakage in Searchable Symmetric Encryption  

In the case of Searchable Symmetric Encryption (SSE), it is the SSE Inverted Index 

that is searched by the Server, instead of the encrypted Document Collection.  As 

such, the SSE literature instead focusses on determining what Information Leakage 

results from the Server being in possession of the SSE Inverted Index, as well as 

what Information Leakage results from the Client (or the Server itself) querying 

same. 

In terms of Information Leakage in SSE, such Information Leakage is typically broken 

into three categories: Storage Leakage; that is, what the Server can learn (or 

deduce) from the SSE Inverted Index by simply storing it (that is, without the SSE 

Inverted Index actually being queried), Query Leakage; that is, what the Server can 

learn (or deduce) from the SSE Inverted Index by querying it itself (covertly) , or 

observing the SSE Inverted Index being queried by Client(s), and Update Leakage; 

that is, what the Server can learn (or deduce) whenever the SSE Inverted Index is 

updated (such as when Documents within the Collection are edited/deleted, or 



 

47 
 

when new Documents are added to the Collection) (Curtmola et al., 2006; Chase and 

Kamara, 2010; Kamara et al., 2012; Kamara, 2013). 

As part of this dissertation, the author has attempted to produce an all-

encompassing list of Information that can potentially be Leaked by SSE, as well as 

highlighting what Information Leakage is classified as Trivial and Non-Trivial by the 

Searchable Encryption literature (Curtmola et al. 2006, Cash et al. 2013).  Figure 7 

presents potential Storage Leakage by an SSE scheme (including an indication of 

whether or not such Information is classified as Trivial Information Leakage or Non-

Trivial Information Leakage), while Figure 8 presents potential Query Leakage by an 

SSE scheme.   

Note that potential Storage Leakage is presented in terms of the three inter-related 

data sets that make up an SSE Inverted Index; that is, the Lexicon, Postings and the 

associated encrypted Document Collection, while potential Query Leakage is 

presented in terms of the Search Pattern; that is, the Encrypted Search String (ESS) 

received by the Server (and whether or not the ESS was utilised before), and the 

Access Pattern; that is, those encrypted Document(s) deemed to contain the ESS, 

their associated memory location(s) and their Document ID(s). 

In the description of SSE that follows in Section 2.3.2 and Section 2.3.3, all 

Information classified as Non-Trivial in Figure 7 (Potential Storage Leakage) and 

Figure 8 (Potential Query Leakage) is Leaked to the Server. 



 

48 
 

 
Figure 7: Potential Storage Leakage in SSE (Including Trivial Leakage and Non-Trivial 

Leakage). 

 

 
Figure 8: Potential Query Leakage in SSE (Including Trivial Leakage and Non-Trivial 

Leakage). 

 

From examining Figure 7 and Figure 8, it is evident that Leaking Information to the 

Server in ciphertext form is considered Trivial Information Leakage by the SSE 



 

49 
 

Literature – irrespective of whether such ciphertext is Leaked to the Server as part 

of Setup Leakage or Query Leakage. 

As regards plaintext Information Leakage, such Leakage is generally considered 

Non-Trivial Information Leakage by the SSE Literature; however, a notable 

exception to this rule is Document IDs.  From Figure 7 (Postings Section), it is 

noticeable that the Leakage of Document IDs in plaintext form is considered Non-

Trivial Information Leakage in the case of Setup Leakage; while the exact same 

Information is classified as Trivial Information Leakage in the case of Query Leakage 

(Figure 8 – Access Pattern). 

In addition to considering Information Leakage in the context of plaintext 

Information and ciphertext Information, the literature also considers Information 

Leakage from a statistical point of view; that is, those statistics that be derived from 

Information, irrespective of whether the underlying Information is in plaintext form 

or ciphertext form.   

Generally, the SSE literature classifies statistical Information Leakage as Trivial 

Information Leakage; however one exception does exist.  The statistic in question – 

known as Term-Document Frequency (TDF); that is, the number of Documents 

containing a given Term - is classified as Non-Trivial Information Leakage in the case 

of Setup Leakage (see Postings in Figure 7); and Trivial Information Leakage in the 

case of Query Leakage (see Access Pattern in Figure 8) (much like Document IDs as 

discussed previously). 



 

50 
 

Admittedly, the decision to label certain Information Leakage as Non-Trivial for 

Setup Leakage and the decision to label the exact same Information Leakage as 

Trivial for Query Leakage appears bewildering.  Nonetheless, this can be explained 

by the conservative approach to Information Leakage taken by researchers in the 

area.  Generally, where certain Information Leakage is considered unavoidable (and 

the Information in question is classified as Trivial Information Leakage), researchers 

take the approach of allowing such information to be Leaked; however, rather than 

Leak such Information immediately; that is,  Storage Leakage, researchers will 

typically guard such Information up to the point where its Leakage is absolutely 

necessary and therefore unavoidable (otherwise known as Controlled Disclosure); 

that is,  Query Leakage (Curtmola et al., 2006; Chase and Kamara, 2010; Cash et al., 

2013). 

2.3.1.3 Security Definitions 

A number of security definitions have been proposed for Searchable Encryption, the 

most prevalent of which is IND-CKA2 (Indistinguishable Against Adaptive Chosen 

Keyword Attacks) (Curtmola et al., 2006; Bosch et al., 2014).   

Essentially, IND-CKA2 security requires that an adversary (in this case, the Server) 

learn nothing about the underlying Document Collection/SSE Inverted Index beyond 

the Search String - in ciphertext form - and the associated Search Results - in 

ciphertext form; that is, Trivial Information Leakage, even when the SSE scheme 

can be adaptively queried by the Server.  Numerous SSE schemes have been 



 

51 
 

developed that adhere to the IND-CKA2 notion of security (including the SSE 

discussed in Section 2.3.2 and Section 2.3.3) 

Stronger definitions of Security do exist in the literature (Shen et al., 2008); 

however such schemes are typically inefficient due to their refusal to allow 

Information Leakage in any form (Shen et al., 2008; Bosch et al., 2012). 

2.3.2 SSE Inverted Index Construction 

The steps involved in constructing an SSE Inverted Index are exactly the same as 

those involved in constructing an IR Inverted Index, albeit the Client has 

responsibility for generating the SSE Inverted Index, and various forms of 

encryption are applied to each dataset after they have been compiled; that is, the 

Document Collection, the Lexicon and the Postings List (Goh, 2003).   

In addition to the use of encryption, a different Data Structure – namely, an Array - 

is utilised to store Postings instead of a Linked List (as is used in the IR Inverted 

Index) (Curtmola et al., 2006). 

  



 

52 
 

2.3.2.1 Lexicon 

Rather than storing Lexicon Terms in plaintext form, SSE requires that a keyed-

hash12 of each Term be stored instead (Chase and Kamara, 2010; Kamara et al., 

2012).   

The use of a keyed hash function for this purpose - instead of traditional reversible 

encryption - may seem curious at first; however researchers have successfully 

argued that the Lexicon’s sole purpose within the Inverted Index is to provide the 

Client with the ability to carry out searches and nothing more.  Given that the 

Lexicon is unlikely to be downloaded to the Client (and is therefore unlikely to be 

decrypted - unlike the actual Documents), the use of reversible encryption for 

encrypting Lexicon Terms has largely been abandoned (Chase and Kamara, 2010; 

Kamara et al., 2012).   

  

                                                      

 

12
 The use of a Keyed Hash function for this purpose implicitly limits the number of Lexicon Terms to 

the maximum number of unique Hash Values produced by the associated Hash function.  Should the 
number of Lexicon Terms exceed the maximum number of Hash Values, a Hash Collision will most 
definitely occur (and may even occur before this point is reached), leading to a scenario whereby 
two distinct plaintext Lexicon Terms have the same Hash Value; therefore leaving the Server unable 
to distinguish which Lexicon Term is being searched for.  While Hash Collisions are unlikely for small 
data sets, they remain a distinct possibility for large data sets.  



 

53 
 

Aside from the aforementioned reasons, the use of a keyed hash function for this 

purpose has a number of advantages in terms of reduced Information Leakage and 

improved data security, including the following (Stallings, 2014, p.368-372): 

 First and foremost, the use of a hash function (keyed or non-keyed) ensures 

that all encrypted Lexicon Terms within the SSE Inverted Index are of equal 

length (a hash function produces a Hexadecimal String of fixed length); 

therefore masking the length of all underlying plaintext Lexicon Terms.   

 Secondly, the use of a hash function (again, keyed or non-keyed) ensures 

that an adversary has no means of decrypting the encrypted Lexicon Term 

back to its plaintext form.   

 Thirdly, ensuring that a keyed hash function is used – instead of a traditional 

non-keyed hash function – protects SSE from Rainbow Table Attacks; that is, 

pre-computed Hash Values of common Dictionary Words. 

As regards keyed-hash algorithms, the SSE literature states that any standardised 

secure algorithm can be utilised for Lexicon Encryption (For Example: HMAC-MD5, 

HMAC-SHA256) (Chase and Kamara, 2010; Kamara et al., 2012; Cash et al., 2013).  

2.3.2.2 Postings List 

The use of Linked Lists for Posting List storage is abandoned in SSE due to Setup 

Leakage resulting from their modus operandi; that is, sequential memory access, 

with Arrays being preferred instead (Curtmola et al., 2006). 



 

54 
 

Specifically, given the first Link in a Linked List, it is a trivial process to examine all 

subsequent Links due to the fact that each Link in a Linked List contains a pointer to 

the next Link (see Figure 9).  Given that each Term in an IR Inverted Index has its 

own dedicated Linked List to store Postings; it is therefore a trivial process to derive 

the Term-Document Frequency (TDF) for each Term in the Lexicon in advance of the 

associated Term being searched for (Recall from Subsection 2.3.1.2 that TDF 

Leakage is considered Non-Trivial Information Leakage for Storage Leakage) 

(Luenberger, 2006, p.243; Chase and Kamara, 2010).  

 
Figure 9: Linked List Data Structure (→ Denotes A Pointer to the Next Link in the Linked 

List). 
 

Rather than using one Array for each Term in the Lexicon (doing so would also 

result in TDF Storage Leakage; that is, the size of the Array would be equivalent to 

the TDF), SSE utilises a single one dimensional Array to store all Postings for all 

Terms (see Figure 10).  Utilising this approach, Setup Leakage amounts to the total 

number of Postings for the entire Lexicon; that is, trivial Leakage. 

 
Figure 10: Postings Stored In an Array. 

 

Given that all Postings are now stored in a single one dimensional Array, some 

mechanism to keep track of what Postings belong to what Terms is therefore 

required.  The solution to this problem is –ironically enough – relatively similar to a 



 

55 
 

Linked List, albeit the solution involved does not utilise pointers (as is the case with 

Linked Lists). 

In order to keep track of what Postings are associated with a given Term, SSE 

requires that the Document ID of the first Posting associated with a given Term is 

stored alongside the keyed-hash of the Term in the Lexicon Hash Table (in RAM) 

(For Example: Doc ID 1).  Alongside this Document ID (in the Lexicon Hash Table) is 

an Array Index denoting the location of the second Posting associated with the 

Term (see Figure 11) (For Example: 94).  At the Array Index in question is the 

Document ID of the 2nd Posting, as well as the Array Index denoting the location of 

the third Posting (For Example: 79) (see Figure 12) 13.   

 
Figure 11: SSE Lexicon Node. 

 

 
Figure 12: Postings Array Node. 

 

Rather than storing all Postings sequentially within the Array, SSE requires that all 

Postings be shuffled to random locations within the Postings Array.  As such, the 

                                                      

 

13
 Essentially, the first Posting is stored alongside its associated Term in RAM, with all other 

subsequent Postings being stored in the Postings Array.  Alongside each Posting is the Array Index 
denoting the location of the next Posting. 



 

56 
 

second Posting for a Term may be located at Array Index 1000, while the third 

Posting may be located at Array Index 1. 

Despite utilising Arrays and arranging Postings in non-sequential order, the fact 

remains that the Information stored at each Index of the Postings Array is in 

plaintext form.  As such, it is still a trivial process for the Server to calculate the TDF 

for each Term in the Lexicon in advance of the Term being searched for (as was the 

case previously with Linked Lists).   

As a solution to this problem, SSE requires that each Document ID within the 

Postings Array be encrypted, as well as each ‘Next Posting Location’; therefore 

preventing the Server from deducing this Information by merely being in possession 

of the SSE Inverted Index; that is, Storage Leakage.   

Rather than encrypting all Postings using the same key, SSE requires that each 

Posting be encrypted using a different key.  In an effort to reduce the number of 

keys the Client has to remember in order to utilise SSE, the literature recommends 

the following guidelines for encrypting the Posting Array: 

1. The encryption/decryption key for the first Posting associated with each 

Term should be derived by passing its associated plaintext Term through a 

keyed hash function (the key utilised within the keyed hash function is a 

master key known only to the Client). 

2. All subsequent Postings in the Array; that is, 2nd Posting, 3rd Posting, 4th 

Posting, etc., are to be encrypted/decrypted using randomly generated 

encryption keys. 



 

57 
 

3. The key required to decrypt a given Posting (with the exception of the first 

Posting) is to be stored in the previous Posting associated with the Term in 

question (see Figure 13)14. 

 
Figure 13: Postings Array Node (Including Decryption Key Storage). 

 

As regards encryption algorithms, the SSE literature states that any standardised 

secure symmetric algorithm can be utilised for Posting/Posting List Encryption (For 

Example: AES, Triple DES) (Curtmola et al., 2006; Chase and Kamara, 2010; Kamara 

et al., 2012; Cash et al, 2013). 

                                                      

 

14
 The decision to store Posting decryption keys on the Server side may seem obscure at first 

however the reader should recall that all Postings associated with a given Lexicon Term are ‘chained 
together’ throughout the Postings Array.   
 
The first Posting in a Posting List is encrypted using a key generated by the Client, i.e. Posting List 
Encryption - Step 1.  Whenever the Client searches for the associated Lexicon Term, the Client must 
also forward the key necessary to decrypt the first Posting, i.e. Posting List Encryption - Step 1.  
Decrypting the first Posting then reveals the key necessary to decrypt the following Posting, i.e. 
Posting List Encryption – Step 2 and Step 3.  Without knowledge of the key required to decrypt the 
first Posting associated with a given Lexicon Term (Step 1), the Server is unable to decrypt 
subsequent Postings associated with the same Lexicon Term (Step 2 and Step 3).  
 



 

58 
 

2.3.2.3 Documents 

As regards encryption algorithms, the SSE literature states that any standardised 

secure symmetric algorithm can be utilised for Document Encryption (For Example: 

AES, Triple DES) (Curtmola et al., 2006; Chase and Kamara, 2010; Kamara et al., 

2012; Cash et al., 2013). 

2.3.2.4 Key Management 

SSE requires the use of three encryption keys for SSE Inverted Index Construction 

and Querying.  They are: 

 One key for Lexicon Encryption/Searching (used to generate a keyed hash of 

each Lexicon Term/Search String) 

 One master key used to derive encryption/decryption keys for the first 

Posting associated with each Lexicon Term. 

 One key for Document Collection encryption/decryption (Curtmola et al., 

2006; Chase and Kamara, 2010; Kamara et al., 2012; Cash et al., 2013).   

2.3.3 Querying an SSE Inverted Index 

There are two types of SSE Schemes: Interactive; that is, the Client and the Server 

exchange numerous messages before the Server responds with a set of Search 

Results, and non-Interactive; that is, the Client issues a Search String to the Server 

and the Server responds immediately with a set of Search Results (Bosch et al., 



 

59 
 

2014).  The following description of querying an SSE Inverted Index covers the 

latter. 

Given that the Lexicon of the SSE Inverted Index consists of a keyed-hash of each 

Term within the Document Collection, the Client is therefore required to generate a 

keyed-hash of their Search String in order to Query the Lexicon.  The resulting 

Search String; that is, an Encrypted Search String (ESS), is then forwarded to the 

Server (Chase and Kamara, 2010; Kamara et al., 2012; Cash et al., 2013).  In addition 

to forwarding the ESS to the Server, the Client must also forward the decryption key 

necessary to decrypt the first Posting associated with the ESS (Curtmola et al., 2006; 

Kamara et al., 2012; Cash et al., 2013).  

In the event that the ESS is present in the Lexicon, the first Posting associated with 

the ESS is retrieved.  The Server then proceeds to decrypt this information revealing 

the ID of the first Document containing the ESS, the Index Location of the second 

Posting, as well as the decryption key necessary to decrypt the information stored 

in the second Posting.  This process then repeats until all Postings associated with 

the ESS have been retrieved and decrypted.  Following this, the associated 

Document IDs are then used to retrieve the actual encrypted Documents – from 

secondary memory – that contain the ESS (Curtmola et al., 2006; Kamara et al., 

2012; Cash et al., 2013).  Once all Documents are retrieved, they are then 

forwarded to the Client; that is, Search Results (Song et al., 2000). 



 

60 
 

In the event that an ESS is not present in the Lexicon, this denotes that the ESS in 

question is not present in any Documents contained within the Collection 

(Luenberger, 2006, p.293; Manning et al., 2008, p.10). 

2.3.4 Implementations of SSE 

Despite its efficiency, the fact remains that working implementations of SSE are few 

and far between.  As part of this Literature Review, the author encountered a total 

of two papers discussing working implementations of SSE (Kamara et al., 2012; Cash 

et al., 2013); neither of which are available in the public domain. 

Section 2.3.4.1 discusses the implementation of SSE developed by Kamara et al. 

(2012), while Section 2.3.4.2 discusses the implementation of SSE developed by 

Cash et al. (2013).  This is followed by a critical analysis of both implementations in 

Section 2.3.4.3. 

2.3.4.1 Kamara et al. (2012) Implementation 

The implementation of SSE developed by Kamara et al. (2012) is a non-interactive, 

single Query Term SSE protocol.  When compared to the description of SSE 

provided previously, the implementation by Kamara et al. (2012) is almost identical 

with the exception of the following: 

 The implementation supports the addition and deletion of documents from 

the Document Collection (and therefore the SSE Inverted Index) – The 

description of SSE previously assumed that the underlying Document 



 

61 
 

Collection was static (updates to the SSE Inverted Index were not discussed 

as they were deemed beyond the scope of this dissertation). 

 The implementation stores the entire Inverted Index; that is, Lexicon and 

Posting Lists, in RAM at all times. 

In terms of programming languages, the implementation of SSE by Kamara et al. 

(2012) was developed using Microsoft C++.NET.  Any and all cryptographic 

functionality associated with implementation employed the use of the Microsoft 

CNG library of cryptographic algorithms. 

In relation to Data Structures, the exact Data Structure used for Lexicon Storage is 

not disclosed by Kamara et al. (2012).  In the theoretical description of their 

scheme, Kamara et al. (2012) endorse the use of a ‘Dictionary’ Data Structure for 

Lexicon Storage; however the exact Data Structure used in the resulting 

implementation is not disclosed.  Given that a number of Data Structures fall under 

the category of Dictionary Data Structures15, the author can only speculate as to the 

exact Data Structure used.  In terms of Posting List storage, Kamara et al. (2012) 

employ the use of a single one dimensional ‘Array’ Data Structure (as was the case 

with the description of SSE provided previously).  

In terms of algorithms, the SSE implementation by Kamara et al. (2012) utilises 128 

bit AES-CBC for Posting encryption, while HMAC-SHA256 is used for keyed hashing 

                                                      

 

15
 A Hash Tree Data Structure is classified as a Dictionary Data Structure. 



 

62 
 

of Lexicon Terms.  The exact algorithm used for Document encryption is not 

disclosed. 

In relation to Test Data, Kamara et al. (2012) tested their SSE implementation 

against three separate Test Data Sets: a subset of the Enron E-Mail Collection 

(16MB in size with approximately 1.5 million Postings), a collection of Microsoft 

Office Documents used by one of Microsoft’s Business Groups (500MB in size with 

approximately 650,000 Postings), and a collection of Media Files (For Example: 

MP3, WMA, JPG) (500MB in size – number of postings not disclosed). 

In terms of Research Results, the work of Kamara et al. (2012) focussed on two 

separate aspects of SSE:  constructing the SSE Inverted Index, and querying the SSE 

Inverted Index.   

For SSE Inverted Index construction, it should be noted that the Results presented 

by Kamara et al. (2012) only take into account the process of converting a pre-

existing IR Inverted Index into an SSE Inverted Index and encrypting the associated 

Document Collection – the Results do not include the amount of time taken to 

generate the initial IR Inverted Index; nor do they take into account the time 

associated with transferring the SSE Inverted Index and the encrypted Document 

Collection from the Client to the Server. For the Enron E-Mail Test Data Set, 

constructing the associated SSE Inverted Index and encrypting the associated 

Document Collection took 52 seconds.  For the Microsoft Office Document 

Collection Test Data Set, constructing the associated SSE Inverted Index and 

encrypting the associated Document Collection took approximately 33 seconds. 



 

63 
 

For SSE Inverted Index searching, it should be noted that the Results presented by 

Kamara et al. (2012) only take into account the process of retrieving and decrypting 

matching Postings from within an SSE Inverted Index that is permanently resident in 

RAM16– the Results do not include the amount of time taken to retrieve the SSE 

Inverted Index from secondary memory and loading it into RAM, nor do they 

include the amount of time taken to retrieve matching Documents from disk and 

returning them to the Client.  In relation to SSE search time, it should be noted that 

search time is dependent on the number of matching documents associated with 

the search Term; that is, the more frequent the Search Term appears in the 

Document Collection, the longer the associated Search operation will take.  As such, 

a common performance measure for the SSE Inverted Index is the amount of time 

taken to retrieve and decrypt the set of all Postings associated with the most 

commonly occurring Term within the Lexicon.  In relation to the Enron E-Mail Test 

Data Set, retrieving the set of all Postings associated with the most commonly 

occurring Lexicon Term took 53 microseconds (µs), while identifying same took 

approximately 8 microseconds (µs) for the Microsoft Office Document Collection 

Test Data Set.  

                                                      

 

16
 On average, generating a keyed hash of a single Lexicon Term (either for SSE Inverted Index 

generation or searching an SSE Inverted Index) took 35 microseconds (µs) using the implementation 
developed by Kamara et al. (2012). 



 

64 
 

As regards hardware, the experiments conducted by Kamara et al. (2012) were 

performed on a Windows Server 2008R2 machine with an Intel Xeon L5520 

Processor (2.26GHZ). 

2.3.4.2 Cash et al. (2013) Implementation 

The implementation of SSE developed by Cash et al. (2013) is a non-interactive, 

multiple Query Term SSE protocol.  When compared to the description of SSE 

provided previously, the implementation by Cash et al. (2013) is almost identical 

with the exception of the following: 

 The implementation supports Conjunctive and Boolean Queries – The 

description of SSE previously assumed that all Queries consisted of a single 

Term (Conjunctive/Boolean Queries were not discussed as they were ruled 

beyond the scope of this dissertation). 

 The implementation stores the entire Inverted Index; that is, Lexicon, 

Posting List and Document Collection, in secondary memory at all times (due 

to the fact the implementation is designed to scale to extremely large Data 

Sets). 

 The implementation includes a RAM resident Data Structure known as an X-

Set that works in combination with the Inverted Index Data Structure to aid 

with the execution of Conjunctive/Boolean queries. 

In terms of programming languages, the implementation of SSE by Cash et al. 

(2013) was  developed using the C programming language.  Any and all 



 

65 
 

cryptographic functionality associated with implementation employed the use of 

the OpenSSL library of cryptographic algorithms. 

In relation to Data Structures, a single Data Structure known as a T-Set is used to 

store both the Lexicon and the Postings in the implementation presented by Cash et 

al. (2013).  In essence, a T-Set is a modified Hash Table that can store a fixed 

number of values, instead of a single value (as is the case with a standard Hash 

Table); that is, Key => Value 1, Value 2, …, Value N (T-Set) instead of Key => Value 

(Hash Table).  When stored on disk, the T-Set is subdivided into a number of smaller 

Hash Tables, with the size of each individual Hash Table based on the characteristics 

of the underlying Operating System and storage medium. 

In terms of algorithms, the SSE implementation by Cash et al. (2013) utilises AES-

FFX for Posting encryption, while AES-HMAC or AES-CMAC is used for keyed hashing 

of Lexicon Terms17.  The exact algorithm used for Document encryption is not 

disclosed. 

In relation to Test Data, Cash et al. (2013) tested their SSE implementation against 

three separate Test Data Sets: the entire Enron E-Mail Collection18 (1.5 million 

Documents consisting of 1.2 million distinct Lexicon Terms), a 100,000 record 

Database generated from census data, and a number of subsets of the ClueWeb09 

                                                      

 

17
 The associated paper does not specify whether AES-HMAC or AES-CMAC was used during program 

execution.  The paper simply states that the chosen algorithm depends on platform characteristics. 
18

 The work of Kamara et al. (2012) – discussed previously – employed the use of a subset of the 
Enron E-mail Collection – not the entire Collection as is the case with Cash et al. (2013). 



 

66 
 

collection of crawled web pages (the largest of which was 410GB in size (13,284,801 

HTML Files) with approximately 2.7 billion Postings). 

In terms of Research Results, the work of Cash et al. (2013) focussed on querying 

the SSE Inverted Index using both single Term Queries and Conjunctive/Boolean 

Queries19.  As was the case with Kamara et al. (2012), the Results presented by Cash 

et al. (2013) only take into account the process of retrieving and decrypting 

matching Postings from within the SSE Inverted Index itself– the Results do not 

include the amount of time taken to retrieve matching Documents from disk and 

returning said Documents to the Client.  Identifying and decrypting those Postings 

associated with the most frequently occurring Lexicon Term for the Enron E-Mail 

Test Data Set (690,492 Postings) took approximately 70 seconds (approximately 100 

microseconds (µs) per Postings).  Unlike, Kamara et al. (2012), Cash et al. (2013) 

does not disclose the amount of time taken to generate an ESS. 

As regards hardware, the experiments conducted by Cash et al. (2013) were 

performed on an IBM Blade HS22 running a Linux operating system, with all 

secondary memory provided by a Storage Attached Network (SAN) device. 

  

                                                      

 

19
 Given that this dissertation is only concerned with single Term SSE Queries, only the Results of 

single Term SSE Queries – and not Conjunctive/Boolean SSE Queries - are discussed here. 



 

67 
 

2.3.4.3 Critical Analysis of Existing Implementations 

From the Research Results presented by Kamara et al. (2012) and Cash et al. (2013), 

it is apparent that the search time associated with SSE is impressive – to the point 

that one could argue SSE is efficient enough to be deployed in a Cloud environment. 

In addition, the work of Cash et al. (2013) proves that SSE does indeed scale to large 

Data Sets whilst maintaining its search efficiency, and also has the ability to support 

Boolean/Conjunctive Queries in an efficient manner whilst maintaining Data/Query 

Privacy. 

Despite such impressive Results, the author believes both papers focussed on the 

performance of a single component of SSE; that is, searching an SSE Inverted Index, 

and not SSE as a whole.  Specifically, the author feels that both papers have glossed 

over the topic of SSE Inverted Index Construction.  Given that constructing an SSE 

Inverted Index is a necessary pre-requisite to searching an SSE Inverted Index; the 

author feels the topic deserves significantly more attention than that which it has 

been given in the published literature thus far.  Kamara et al. (2012) cover the topic 

briefly in their work; however as indicated previously, the Results presented are 

somewhat skewed by the fact they only include the Results of converting a pre-

existing IR Inverted Index into an SSE Inverted Index – the Results do not include 

the time taken to generate the initial IR Inverted Index.  Cash et al. (2013) make no 

mention of the time taken to generate the SSE Inverted Index used in their work. 

In addition to largely ignoring the process of constructing an SSE Inverted Index, 

both papers have also ignored the process of transferring the SSE Inverted Index 



 

68 
 

and the encrypted Document Collection from the Client to the Server.  As Kamara et 

al. (2012) correctly points out, the time taken to transfer both the SSE Inverted 

Index and the encrypted Document Collection from the Client to the Server will vary 

depending on the underlying system (Kamara et al. (2012) failed to cover this part 

of SSE for this reason); however the author personally feels that the same can also 

be argued in relation to cryptographic operations (which are of course reported on 

in detail in both implementations). 

When discussing their Results in relation to searching an SSE Inverted Index, both 

Kamara et al. (2012) and Cash et al. (2013) readily acknowledge that their Results 

only cover searching the SSE Inverted Index and decrypting the Postings associated 

with the Lexicon Term being searched – their Results do not include the time 

associated with retrieving and forwarding matching Documents to the Client – 

another essential component of SSE. 

In addition to their failure to examine SSE as a whole, the author is also somewhat 

disappointed in the quality of information relating to the Test Data Sets and 

findings of both papers. 



 

69 
 

In relation to Test Data, Table 1 summarises the Test Data statistics published (and 

not published) in both papers20.   

Information Disclosed Kamara et al. (2012) Cash et al. (2013) 

Number of Documents In Data Set No Yes 

Number of Terms In Data Set No No 

Number of Unique Terms In Data Set  No Yes (Enron Data 
Set Only) 

Number of Postings In Data Set  Yes (Postings In Media 
File Data Set Not 
Disclosed) 

Yes (Postings In 
Census Data Set 
Not Disclosed) 

Number of Postings Associated With 
Highest Frequency Lexicon Term  

No Yes (Not Disclosed 
For Media File 
Data Set) 

Size of Test Data Set Yes Yes (Size Of 
Census Data Set 
Not Disclosed) 

Table 1: Test Data Statistics 

 

The total number of Terms in the Data Set is relevant in that it dictates the amount 

of work needed to be performed during Document Tokenisation; that is, IR Inverted 

Index Construction, the number of unique Terms in the Data Set is relevant in that it 

dictates the number of Terms contained within the Inverted Index (both the IR 

Inverted Index and the SSE Inverted Index),  while the number of Postings in the 

Data Set is relevant in that it dictates the number of Postings contained within the 

Inverted Index (both the IR Inverted Index and the SSE Inverted Index). The number 

of Postings associated with the highest frequency Lexicon Term is relevant in that 

                                                      

 

20
 Please note that table cells highlighted in Red denote information that has not been disclosed, 

table cells highlighted in Orange denote information that has only been partially disclosed, while 
table cells highlighted in Green denote information that has been fully disclosed. 



 

70 
 

the Term in question is typically used to measure the worst case scenario of 

searching an SSE Inverted Index, while the size of the Test Data Set is relevant in 

terms of transmitting the Document Collection to the Server from the Client.  As 

can be seen from Table 1, a number of these statistics are not disclosed (or are only 

partially disclosed) by the respective authors; therefore making it difficult to give 

context to the associated experiment results. 

 In relation to Inverted Index Construction statistics, Table 2 summarises the Test 

Data statistics published (and not published) in both papers20.  

Information Disclosed Kamara et al. (2012) Cash et al. (2013)  

Time Taken To Generate IR Inverted 
Index 

No No 

Size Of IR Inverted Index No No 

Time Taken To Convert IR Inverted 
Index To SSE Inverted Index 

Yes No 

Size of SSE Inverted Index No Yes 

Time Taken To Encrypt Document 
Collection 

Yes No 

Table 2: Inverted Index Construction Statistics 

 

The time taken to generate the IR Inverted Index is significant in that the processing 

time is linear in the number of Terms contained within the Document Collection.  

The time taken to generate the SSE Inverted Index is significant in that the 

processing time is linear in the number of Postings contained within the IR Inverted 

Index, while the size of the SSE Inverted Index is relevant in terms of transmitting 

the SSE Inverted Index to the Server from the Client. 



 

71 
 

As can be seen in Table 2, neither Kamara et al. (2012) or Cash et al. (2013) disclose 

any information in relation to IR Inverted Index Construction.  When reporting the 

Results of converting their IR Inverted Index to an SSE Inverted Index, Kamara et al. 

(2012) choose to do so by charting their Results against the size of the Test Data Set 

(in MB)21.  Personally the author feels this information would be much more 

informative if it were charted against the number of Postings in the Test Data Set, 

given that the size of the underlying Data Set in no way reflects the number of 

unique Terms or Postings in the Data Set.  For Example: a 10MB DOCX file may 

contain the same Term repeated over and over again; that is, one unique Term => 

one Posting.  In addition, the author feels that the use of the Document Collection 

size here is a poor choice given the fact that different file formats can contain the 

same number of words, but differ greatly in size (such a TXT Files and DOCX Files)21. 

In relation to Inverted Index Querying statistics, Table 3 summarises the Test Data 

statistics published (and not published) in both papers20.   

  

                                                      

 

21
 It should be noted that the chart in question also includes encrypting the associated Document 

Collection (which is of course dependant on the size of the underlying Document Collection); 
however the time associated with executing this portion of the task represents only a fraction of the 
time associated with generating the SSE Inverted Index. 



 

72 
 

Information Disclosed Kamara et al. (2012) Cash et al.  (2013) 

Time Taken To Generate 
ESS 

Yes No 

Time Taken To Search SSE 
Inverted Index For Highest 
Frequency Lexicon Term 
(Including Decryption Of 
Postings) 

Yes Yes 

Table 3: Inverted Index Querying Statistics. 

 

As can be seen from Table 3, both Kamara et al. (2012) and Cash et al. (2013) have 

disclosed the time taken to search the SSE Inverted Index and to identify and 

decrypt the Postings associated with the highest frequency Lexicon Term. 

Unfortunately Kamara et al. (2012) did not publish the number of Postings 

associated with the highest frequency Lexicon Term; instead the amount of time 

associated with the search was published.  Without the number of Postings 

associated with the highest frequency Lexicon Term, it is difficult to place into 

context the significance of the Results published.  In the case of Cash et al. (2013), 

both the search time and the number of Postings associated with the highest 

frequency Lexicon Term were published, therefore providing readers with the 

ability to estimate the amount of time required to decrypt a single Posting22.  In 

relation to the time taken to generate an ESS, only Kamara et al. (2012) have 

published their Results for this area.  While Cash et al. (2013) have not revealed 

                                                      

 

22
 In the case of Cash et al. (2013), approximately 700,000 Postings were identified and decrypted in 

approximately 70 seconds for the highest frequency Lexicon Term (approximately 100 microseconds 
per Posting). 



 

73 
 

their statistics for this part of SSE Search, the author feels it is safe to assume that 

the cost of producing an ESS is miniscule given that the implementation developed 

by Kamara et al. (2012) does so in 35 microseconds  (µs). 

In relation to Test Environment statistics, Table 4 summarises the statistics published 

(and not published) in both papers20.  

Information Disclosed Kamara et al. (2012) Cash et al. (2013) 

Operating System Yes Yes 

Processor Yes No 

RAM No No 

Hard Disk Size No No 
Table 4: Test Environment Statistics. 

 

Given the fact that both authors acknowledge the effect that the underlying system 

can have on the experiment Results produced, the author is somewhat 

disappointed in the relation to the lack of information disclosed in both papers 

regarding the underlying Test Environments (see Table 4) 20. 

In an effort to determine the performance cost of preserving Data/Query privacy 

using SSE, Cash et al. (2013) opted to perform a performance comparison between 

their implementation of SSE and a MySQL Server comprising a plaintext database. 

Personally, the author believes a comparison between an equivalent plaintext 

Information Retrieval (IR) system would be a much more appropriate comparison to 

make when determining the performance cost of SSE (given the fact that plaintext 

searching is the universally accepted method of IR); nonetheless, the author 

believes that the decision to perform a comparison against MySQL can be explained 

by the fact that their implementation of SSE is optimised for searching large Data 



 

74 
 

Sets stored in secondary memory and not primary memory (as is the case with all 

Database Servers – including MySQL).   

2.4 Research Question(s) 

From Section 2.3.4.3 (Critical Analysis of Existing Implementations), it is apparent 

that the author has identified a number of issues with the information available 

regarding existing implementations of SSE.  In addition, the author has also 

identified that exiting Research in the area of SSE has almost exclusively focussed 

on the topic of searching in SSE, while largely ignoring the topic of SSE Inverted 

Index Construction.   

As part of this dissertation, it is the author’s intention to contribute towards the 

areas of weakness identified previously.  With this in mind, the author has 

identified the following Research Question for their dissertation: 

 RQ1: How Efficient Is Searchable Symmetric Encryption (SSE) When 

Implemented And Deployed In A Cloud Environment? 

 RQ2: What Is The Performance Cost Of Preserving Data/Query Privacy Using 

Searchable Symmetric Encryption (SSE) When Compared To Plaintext 

Information Retrieval (IR)? 

As indicated previously in Section 2.3.4.3, the existing SSE literature has failed to 

cover the whole spectrum of activities associated with SSE (see Table 5); hence RQ1.  

Additionally, the existing published literature has yet to examine the usage of SSE 

when deployed in a Cloud computing environment. 



 

75 
 

Activity Covered In Existing 

Published Literature 

SSE Inverted Index Construction  

IR Inverted Index Generation By Client No 

SSE Inverted Index Generation By Client Yes 

Document Collection Encryption By Client Yes 

Uploading Of SSE Inverted Index To Server No 

Uploading Of Encrypted Document Collection To Server No 

SSE Inverted Index Searching  

ESS Generation By Client Yes 

Identifying And Decrypting Matching Postings Yes 

Returning Matching Documents To Client No 

Table 5: SSE Activities Covered By Existing Literature. 

 

In relation to RQ2, the existing published literature has only compared the 

performance of SSE with a Database Server, and not a traditional plaintext IR 

system that utilises an Inverted Index (Cash et al., 2013). 

Sub-Questions and Hypothesis emanating from RQ1 can be found in Section 2.4.1, 

while Sub-Questions and Hypothesis emanating from RQ2 can be found in Section 

2.4.2. 

  



 

76 
 

2.4.1 RQ1: Sub-Questions and Hypothesis 

Regarding RQ1, SSE can be divided into two distinct operations: SSE Inverted Index 

Construction (RQ1.1) and SSE Inverted Index Querying (RQ1.2).  

Section 2.4.1.1  presents Sub-Questions and Hypothesis relating to SSE Inverted 

Index Construction, while Section 2.4.1.2 presents Sub-Questions and Hypothesis 

relating to SSE Inverted Index Querying. 



 

77 
 

2.4.1.1 SSE Inverted Index Construction 

Table 6 presents Sub-Questions and Hypothesis emanating from RQ1 relating to SSE Inverted Index Construction. 

RQ# Sub-Question Hypothesis 

1.1.1 How Long Does It Take To Construct An IR Inverted Index? The time taken to construct an IR Inverted Index will be 

proportional to the number of Terms contained within the 

underlying Document Collection. 

1.1.2 How Long Does It Take To Convert An IR Inverted Index Into An SSE 

Inverted Index? 

The time taken to convert a pre-existing IR Inverted Index into 

an SSE Inverted Index will be proportional to the number of 

Lexicon Terms and Postings contained within the IR Inverted 

Index. 

1.1.3 How Long Does It Take To Encrypt a Document Collection? The time taken to encrypt a Document Collection will be 

approximately equivalent to the number of Terms in the 

underlying Document Collection. 



 

78 
 

1.1.4 How Long Does It Take To Upload An SSE Inverted Index To The 

Server? 

The time taken to upload an SSE Inverted Index to the Server 

will be proportional to the size of the SSE Inverted Index. 

1.1.5 How Long Does It Take To Upload an Encrypted Document Collection 

to the Server? 

The time taken to upload an Encrypted Document Collection to 

the Server will be proportional to the size of the Encrypted 

Document Collection. 

Table 6: Sub-Questions And Hypothesis For RQ1 Relating To SSE Inverted Index Construction. 

  



 

79 
 

2.4.1.2 SSE Inverted Index Querying 

Table 7 presents Sub-Questions and Hypothesis emanating from RQ1 relating to SSE Inverted Index Querying. 

RQ# Sub-Question Hypothesis 

1.2.1 How Long Does It Take To Generate An Encrypted Search String 

(ESS)? 

The time taken to generate an ESS will be proportional to the size of 

the plaintext Search String. 

1.2.2 How Long Does It Take To Search An SSE Inverted Index? The time take to Search an SSE Inverted Index will be proportional to 

the number of Postings associated with the Lexicon Term searched for. 

1.2.3 How Long Does It Take To Return All Matching Documents To 

The Client? 

The time taken to return all matching Documents to the Client will be 

proportional to the size of the matching Document Collection 

Table 7: Sub-Questions And Hypothesis For RQ1 Relating To SSE Inverted Index Querying. 

  



 

80 
 

2.4.2 RQ2: Sub-Questions and Hypothesis 

Regarding RQ2, SSE and plaintext IR can be divided into two distinct operations: Document Collection Uploading (RQ2.1) and Inverted Index 

Querying (RQ2.2). 

Section 2.4.2.1 presents Sub-Questions and Hypothesis relating to Document Collection Uploading, while Section 2.4.2.2 presents Sub-

Questions and Hypothesis relating to Inverted Index Querying. 

  



 

81 
 

2.4.2.1 Plaintext IR Uploading Vs. SSE Uploading 

Table 8 presents Sub-Questions and Hypothesis emanating from RQ2 relating to Document Collection Uploading. 

RQ# Sub-Question Hypothesis 

2.1.1 How Long Does It Take To Upload A Document Collection Using SSE, When Compared 

With Traditional Plaintext Information Retrieval (IR)? 

Uploading a Document Collection using 

SSE will take longer when compared to 

plaintext IR due to the requirement of the 

Client to generate an SSE Inverted Index 

(and upload it to the Server), as well as 

the requirement that the Client will 

encrypt the associated Document 

Collection prior to uploading it to the 

Server. 

Table 8: Sub-Questions and Hypothesis for RQ2 Relating To Document Collection Uploading 



 

82 
 

2.4.2.2 Plaintext IR Querying Vs. SSE Querying 

Table 9 presents Sub-Questions and Hypothesis emanating from RQ2 relating to Inverted Index Querying. 

RQ# Sub-Question Hypothesis 

2.2.1 How Long Does It Take To Query An SSE Inverted Index, When Compared To 

Traditional Plaintext Information Retrieval (IR) Inverted Index Querying? 

Querying an Inverted Index using SSE will take 

longer when compared to plaintext IR due to the 

requirement of the Server to decrypt SSE Postings. 

Table 9: Sub-Questions and Hypothesis for RQ2 Relating To Inverted Index Querying 



 

83 
 

3. Software Requirements Specification 

3.1 Introduction 

3.1.1 Purpose 

This Chapter provides a detailed description of the Software Requirements for the 

initial prototypes of the “PlainTXT Storage and Search Engine” and “CipherTXT 

Storage and Search Engine“ applications developed as part of this dissertation. 

3.1.2 Project Scope 

Both software artefacts produced as part of this dissertation have been developed 

with a view to providing answers to the Research Questions identified previously in 

Chapter 2.  Both artefacts are examples of personal file hosting applications.  Like 

all file hosting applications, the objective of both the “PlainTXT Storage and Search 

Engine” and “CipherTXT Storage and Search Engine“ is to allow service users to 

store their files in the Cloud, and to access/retrieve those files as and when needed 

(via a web browser). 

In the case of the “PlainTXT Storage and Search Engine” application, users will be 

able to store their personal files in plaintext form, as well as having the ability to 



 

84 
 

search and retrieve those files by forwarding queries to the application in plaintext 

form. 

In the case of the “CipherTXT Storage and Search Engine” application, users will be 

provided with the exact same functionality as the “PlainTXT Storage and Search 

Engine” application, with the exception that both user’s files and queries are 

encrypted prior to being forwarded to the application for storage/usage. 

Given the prototype status of both applications, a number of standard features and 

functionality typically associated with personal file hosting services have been 

classified as out of scope for the initial version of both software artefacts.  Features 

and functionality considered out of scope for both applications can be seen in Table 

10: 

No Support for Multiple Users The initial prototype(s) will be designed 

and implemented with a single user in 

mind.  Support for this feature may be 

added in future editions. 

No Support for User Authentication The initial prototype(s) will be designed 

and implemented without user 

authentication.  Simply accessing the 

application(s) at their specified URLs will 

provide the user with access to the full 

functionality of the application(s) (no 

username/password will be necessary).  

Support for this feature may be added in 

future editions. 

  



 

85 
 

  

Limited File Format Support The initial prototype(s) will only allow 

for TXT files to be uploaded to the 

application(s).  Support for additional 

file formats may be added in future 

editions. 

No Support for Viewing List of 

Documents Uploaded Previously 

The user will be unable to view the list of 

files they have uploaded to the 

application(s) previously.  Support for 

this feature may be added in future 

editions. 

No Support for Viewing File Contents 

Online 

The user will be unable to view the 

contents of files online; that is, within 

the browser, irrespective of its file 

format.  Instead, users will have to 

download files to a client machine in 

order to view them.  Support for this 

feature may be added in future editions. 

No Support for Document Collection 

Updates 

Once a Document Collection has been 

uploaded to the Server, the user will be 

unable to update that Document 

Collection; that is, add an additional 

Document to the Collection, edit an 

existing Document within the Collection 

or delete an existing Document within 

the Collection.  Essentially, the 

Document Collection will be non-

modifiable unless the Document 

Collection is overwritten with a newly 

uploaded Document Collection.  Support 



 

86 
 

for this feature may be added in future 

editions. 

Limited Query Support The initial prototype(s) will only allow 

for single Term Queries (as was the case 

with the Literature Review).  Support for 

multi-Term Queries and other advanced 

forms of Querying may be added in 

future editions. 

No Support For Document ID 

Generation 

The initial prototype(s) will not support 

the generation of unique Document IDs 

for TXT Documents uploaded to the 

Server.  Instead, the initial prototype(s) 

assumes the user has chosen a unique 

numeric name for each TXT Document, 

prior to being uploaded to the Server.  

Support for this feature may be added in 

future editions. 

Table 10: Features Considered Out Of Scope For Software Artefacts. 

3.1.3 Overview 

Section 3.2.1 presents the Functional Requirements for the “PlainTXT Storage and 

Search Engine” application, while Section 3.2.2 presents the Functional 

Requirements for the “CipherTXT Storage and Search Engine” application. 

Section 3.3 presents a set of Non-Functional Requirements that apply to both 

applications. 

  



 

87 
 

3.2 Functional Requirements 

3.2.1 PlainTXT Storage and Search Engine 

The following are the Functional Requirements for the “PlainTXT Storage and 

Search Engine” application: 

 PFR-001: Upload TXT Document(s) To Server. 

 

 PFR-002: Retrieve TXT Documents Containing Specified Search String. 

 

3.2.2 CipherTXT Storage and Search Engine 

The following are the Functional Requirements for the “CipherTXT Storage and 

Search Engine” application: 

 CFR-001: Encrypt and Upload TXT Document(s) To Server. 

 

 CFR-002: Retrieve TXT Documents Containing Encrypted Search String. 

 

 CFR-003: Decrypt Encrypted TXT Documents Retrieved From Server. 

  



 

88 
 

3.3 Non-Functional Requirements 

The following are the Non-Functional Requirements for both the “PlainTXT Storage 

and Search Engine” application and the “CipherTXT Storage and Search Engine” 

application: 

 NFR-001: The software shall be Efficient. 

 

 NFR-002: The software shall be Robust. 

 

 NFR-003: The software shall be Maintainable. 

 

 NFR-004: The software shall be Reliable. 

 

 NFR-005: The software shall be Usable. 

 

 NFR-006: The software shall be Secure. 

 

   



 

89 
 

4. Software Design 

4.1 Introduction 

This Chapter provides the Design details for the “PlainTXT Storage and Search 

Engine” and “CipherTXT Storage and Search Engine” applications developed as part 

of this dissertation.  Section 4.2 incorporates the High-Level Design details of both 

applications; that is, Use Case Descriptions, Detailed Activity Diagrams and User 

Interface Design, while Section 4.3 incorporates the Low-Level Design of both 

applications; that is, Sequence Diagrams. 

4.2 High Level Design 

Section 4.2.1 denotes the Use Case Descriptions associated with both the “PlainTXT 

Storage and Search Engine” application as well as the “CipherTXT Storage and 

Search Engine” application.  Section 4.2.2 denotes the Detailed Activity Diagrams 

associated with same, while Section 4.2.3 denotes the User Interface Design 

diagrams associated with same. 

4.2.1 Use Case Descriptions 

Section 4.2.1.1 denotes the Use Case Descriptions associated with the ‘PlainTX 

Storage and Search Engine’ application, while Section 4.2.1.2 denotes the Use Case 

Descriptions associated with the ‘CipherTXT Storage and Search Engine’ application. 



 

90 
 

4.2.1.1 PlainTXT Storage and Search Engine 

Section 4.2.1.1.1 outlines the Use Case Description for PFR-001; Section 4.2.1.1.2 

outlines the Use Case Description for PFR-002, while Section 4.2.1.1.3 provides a 

graphical summary (in the form of an Activity Diagram) of both Use Case 

Descriptions. 

Figure 14 outlines the Use Case Diagram associated with the “PlainTXT Storage and 

Search Engine” application. 

 

Figure 14: “PlainTXT Storage and Search Engine” Use Case Diagram. 

  



 

91 
 

4.2.1.1.1 PFR-001: Upload TXT Document(s) To Server Use Case 

Use Case Upload TXT Document(s) To Server. 

Objective To Upload One Or More TXT Files To The Server. 

Pre-Condition 1. Server Is Running. 

2. User Has Connected To Application. 

Main Flow 1. User Selects ‘Upload File(s)’ Button. 

 2. Application Displays A Dialog Box Consisting Of Two 

 Buttons – One Titled ‘Choose Files’ (To Select Which Files 

 To Upload) – And Another Titled ‘Upload’ (Which 

 Forwards The Chosen Files To The Server For Storage). 

3. User Selects ‘Choose Files’ Button. 

 4. Application Displays A File Chooser Dialog Box (Options: 

 Open, Cancel). 

5. User Chooses TXT File(s) To Be Uploaded To Server. 

6. User Chooses ‘Open’. 

 7. File Chooser Dialog Box Closes. 

8. User Selects ‘Upload’ Button. 

 9. Application Displays ‘Upload Successful’. 

Alternative 

Flow 

1A. User Fails To Select ‘Upload File(s)’ Button. 

2A. Dialog Box Fails To Display. 

3A. User Fails To Select ‘Choose File(s)’ Button. 

4A. File Chooser Dialog Box Fails To Display. 



 

92 
 

5A. User Fails To Select Any Files To Upload. 

6A. User Chooses ‘Cancel’ Button. 

7A. File Chooser Dialog Box Fails To Close. 

8A. User Fails To Select ‘Upload’ Button. 

9A. Application Displays ‘Upload Failed’. 

Post Condition Users Files Have Been Uploaded To Server. 

Table 11: PFR-001: Upload TXT Document(s) To Server Use Case Description. 

  



 

93 
 

4.2.1.1.2 PFR-002: Retrieve TXT Documents Containing Specified Search 

String Use Case 

Use Case Retrieve TXT Document(s) Containing Specified Search String. 

Objective To Retrieve Those Files From The Server That Contain A Specified 

Search String. 

Pre-Condition 1. Server Is Running. 

2. User Has Connected To Application. 

3. TXT Files Have Been Uploaded To Server Previously. 

Main Flow 1. User Enters Search String Into ‘Search’ Text Field. 

2. User Selects ‘Search’ Button. 

 3. Application Transmits ZIP File To User Containing All TXT 

 Files Containing Specified Search String. 

Alternative 

Flow 

1A. User Fails To Enter Search String Into ‘Search’ Text Field. 

2A. User Fails To Select ‘Search’ Button. 

3A. No TXT Files Contain Specified Search String. 

Post Condition User Receives ZIP File From Server Containing All TXT Files 

Matching Specified Search String. 

Table 12: PFR-002: Retrieve TXT Documents Containing Specified Search String Use Case 
Description. 

  



 

94 
 

4.2.1.1.3 Use Case Summary (Activity Diagram) 

The following Activity Diagram summarises the steps involved in each Use Case for the “PlainTXT Storage and Search Engine” application. 

 
Figure 15: “PlainTXT Storage and Search Engine” Activity Diagram (Use Case Description Summary). 



 

95 
 

 

4.2.1.2 CipherTXT Storage and Search Engine 

Section 4.2.1.2.1  outlines the Use Case Description for CFR-001; Section 4.2.1.2.2 

outlines the Use Case Description for CFR-002; Section 4.2.1.2.3 outlines the Use 

Case Description for CFR-003, while Section 4.2.1.2.4 provides a graphical summary 

(in the form of an Activity Diagram) of all three Use Case Descriptions.  

Figure 16 outlines the Use Case Diagram associated with the “CipherTXT Storage and 

Search Engine” application. 

 
Figure 16: “CipherTXT Storage and Search Engine” Use Case Diagram. 

 

  



 

96 
 

4.2.1.2.1 CFR-001: Encrypt and Upload TXT Document(s) To Server Use Case 

Use Case Encrypt and Upload TXT Document(s) To Server. 

Objective To Encrypt One Or More TXT Files And Upload Them To The 

Server (In Encrypted Form). 

Pre-Condition 1. Server Is Running. 

2. User Has Connected To Application. 

Main Flow 1. User Selects ‘Upload File(s)’ Button. 

 2. Application Displays A Dialog Box Consisting Of Three 

 Text Fields And Two Buttons. 

 Text Fields: 

  ‘Lexicon Password’ (Password To Encrypt Inverted 

  Index Lexicon With). 

  ‘Postings Password’ (Master Key Used To Generate 

  Posting Passwords). 

  Document Password (Password To Encrypt  

  Documents With). 

 Buttons: 

   ‘Choose Files’ (To Select Which Files  To Upload) 

  ‘Upload’ (Forwards Chosen Files To The Server For 

  Storage). 

3. User Enters Lexicon Password Into ‘Lexicon Password’ Text 

Field. 

4. User Enters Master Postings Password Into ‘Postings Password’ 

Text Field. 

5. User Enters Document Password Into ‘Document Password’ 

Text Field. 

6. User Selects ‘Choose Files’ Button. 

 7. Application Displays A File Chooser Dialog Box (Options: 



 

97 
 

 Open, Cancel). 

8. User Chooses TXT File(s) To Be Uploaded To Server. 

9. User Chooses ‘Open’. 

 10. File Chooser Dialog Box Closes. 

11. User Selects ‘Upload’ Button. 

 12. Application Displays ‘Upload Successful’. 

Alternative 

Flow 

1A. User Fails To Select ‘Upload File(s)’ Button. 

2A. Dialog Box Fails To Display. 

3A. User Fails To Enter Lexicon Password Into ‘Lexicon Password’ 

Text Field. 

4A. User Fails To Enter Master Postings Password Into ‘Postings 

Password’ Text Field. 

5A. User Fails To Enter Document Password Into ‘Document 

Password’ Text Field. 

6A. User Fails To Select ‘Choose File(s)’ Button. 

7A. File Chooser Dialog Box Fails To Display. 

8A. User Fails To Select Any Files To Upload.  

9A. User Selects ‘Cancel’ Button. 

10A. File Chooser Dialog Box Fails To Close. 

11A. User Fails To Select ‘Upload’ Button. 

12A. Application Displays ‘Upload Failed’. 

Post Condition Users TXT Files Have Been Encrypted And Uploaded To Server. 

Table 13: CFR-001: Encrypt and Upload TXT Document(s) To Server Use Case Description.  



 

98 
 

4.2.1.2.2 CFR-002: Retrieve TXT Documents Containing Encrypted Search 

String Use Case 

Use Case Retrieve TXT Document(s) Containing Encrypted Search String. 

Objective To Retrieve Those Files From The Server That Contain A Specified 

Encrypted Search String. 

Pre-Condition 1. Server Is Running. 

2. User Has Connected To Application. 

3. TXT Files Have Been Uploaded To Server Previously. 

Main Flow 1. User Enters Search String Into ‘Search’ Text Field. 

2. User Enters Lexicon Password Into ‘Lexicon Password’ Text 

Field. 

3. User Enters Postings Password Into ‘Postings Password’ Text 

Field. 

4. User Selects ‘Search’ Button. 

 5. Application Transmits ZIP File To User Containing All TXT 

 Files Containing Encrypted Search String. 

Alternative 

Flow 

1A. User Fails To Enter Search String Into ‘Search’ Text Field. 

2A. User Fails To Enter Lexicon Password Into ‘Lexicon Password’ 

Text Field. 

2B. User Enters Incorrect Lexicon Password Into ‘Lexicon 

Password’ Text Field. 

3A. User Fails To Enter Postings Password Into ‘Postings 



 

99 
 

Password’ Text Field. 

3B. User Enters Incorrect Postings Password Into ‘Postings 

Password’ Text Field. 

4A. User Fails To Select ‘Search’ Button. 

5A. Valid Lexicon Password Used – Valid Postings Password Used -

No TXT Files Contain Encrypted Search String. 

5B. Invalid Lexicon Password Used - Valid Postings Password Used 

- No TXT Files Contain Encrypted Search String. 

5C. Valid Lexicon Password Used – Invalid Postings Password Used 

-No TXT Files Contain Encrypted Search String. 

5D. Invalid Lexicon Password Used - Invalid Postings Password 

Used - No TXT Files Contain Encrypted Search String. 

Post Condition User Receives ZIP File From Server Containing All TXT Files 

Matching Encrypted Search String. 

Table 14: CFR-002: Retrieve TXT Documents Containing Encrypted Search String Use Case 
Description. 

  



 

100 
 

4.2.1.2.3 CFR-003: Decrypt Encrypted TXT Documents Retrieved From Server 

Use Case.   

Use Case Decrypt Encrypted TXT Documents Retrieved From Server. 

Objective To Decrypt Encrypted TXT Documents Received From Server 

(Contained Within ZIP File). 

Pre-Condition 1. Server Is Running. 

2. User Has Connected To Application. 

3. The User Possess A ZIP File Comprising Encrypted TXT 

Documents. 

Main Flow 1. User Selects ‘Decrypt’ Button. 

 2. Application Displays A Dialog Box Consisting Of One 

 Text Field And Two Buttons. 

 Text Fields: 

  Document Password (Password To Decrypt  

  TXT Documents With). 

 Buttons: 

   ‘Choose ZIP File’ (To Select ZIP File Containing 

  TXT Documents) 

  ‘Unzip/Decrypt Files’ (To Decrypt TXT Files  

  Contained Within Designated ZIP File Using  

  Specified Password). 

3. User Enters Document Password Into ‘Document Password’ 



 

101 
 

Text Field. 

4. User Selects ‘Choose ZIP File’ Button. 

 5. Application Displays A File Chooser Dialog Box 

 (Options: Open, Cancel). 

6. User Chooses ZIP File Containing Encrypted TXT Documents. 

7. User Chooses ‘Open’. 

 8. File Chooser Dialog Box Closes. 

9. User Selects ‘Unzip/Decrypt Files’ Button. 

 10. Application Generates A Folder (In The Same 

 Location As The ZIP File Selected) Containing All TXT 

 Files In Plaintext Form. 

Alternative Flow 1A. User Fails To Select ‘Decrypt Files’ Button. 

2A. Dialog Box Fails To Display. 

3A. User Fails To Enter Document Password Into ‘Document 

Password’ Text Field. 

3B. User Enters Incorrect Document Password Into ‘Document 

Password’ Text Field. 

4A. User Fails To Select ‘Choose ZIP File’ Button. 

5A. File Chooser Dialog Box Fails To Display. 

6A. User Fails To Choose ZIP File.  

6B. User Chooses Incorrect ZIP File.  For Example: a ZIP File 

Containing No Encrypted TXT Documents. 

7A. User Selects ‘Cancel’ Button. 



 

102 
 

8A. File Chooser Dialog Box Fails To Close. 

9A. User Fails To Select ‘Unzip/Decrypt Files’ Button. 

10A. Application Unable To Decrypt TXT Files – Incorrect 

Password Entered. 

Post Condition User Possesses Folder Containing TXT Files In Plaintext Form 

(Having Previously Been In Ciphertext Form). 

Table 15: CFR-003: Decrypt Encrypted TXT Documents Retrieved From Server Use Case 
Description. 

4.2.1.2.4 Use Case Summary (Activity Diagram) 

The Activity Diagram overleaf summarises the steps involved in each Use Case for 

the “CipherTXT Storage and Search Engine” application.



 

103 
 

 
Figure 17: “CipherTXT Storage and Search Engine” Activity Diagram (Use Case Description Summary).



 

104 
 

4.2.2 Detailed Activity Diagram 

The Activity Diagrams encountered previously in Section 4.2.1 simply listed the 

steps involved in each Use Case from the end users perspective.  Neither diagram 

outlined the processing steps to be carried out as part of each Use Case, nor did 

they designate what processing is performed by the Client and what processing is 

performed by the Server.  

Section 4.2.2.1 denotes the Detailed Activity Diagram for the “PlainTXT Storage and 

Search Engine” application, while Section 4.2.2.2 denotes the Detailed Activity 

Diagram for the “CipherTXT Storage and Search Engine” application.  In both 

Diagrams, user actions are highlighted in Green; processing carried out by the Client 

is highlighted in Blue; while processing carried out by the Server is highlighted in 

Red. 



 

105 
 

4.2.2.1 PlainTXT Storage and Search Engine 

 
Figure 18: PlainTXT Storage and Search Engine - Detailed Activity Diagram. 

  



 

106 
 

4.2.2.2 CipherTXT Storage and Search Engine 

 
Figure 19: CipherTXT Storage and Search Engine - Detailed Activity Diagram.  



 

107 
 

4.2.3 User Interface Design 

Section 4.2.3.1 denotes the User Interface Design for the “PlainTXT Storage and 

Search Engine” application, while Section 4.2.3.2 denotes the User Interface Design 

for the “CipherTXT Storage and Search Engine” application. 

4.2.3.1 PlainTXT Storage and Search Engine 

Section 4.2.3.1.1 denotes the User Interface Design of the Home Page for the 

“PlainTXT Storage and Search Engine” application, while Section 4.2.3.1.2 denotes 

the User Interface Design of the Upload page for same.  



 

108 
 

4.2.3.1.1 Home Page (Includes Search Bar) 

Figure 20 denotes the User Interface Design of the Home Page for the “PlainTXT Storage and Search Engine” application. 

 
Figure 20: PlainTXT Storage and Search Engine - Home Page Design. 

  



 

109 
 

4.2.3.1.2 Upload Page 

Figure 21 denotes the User Interface Design of the Upload Page for the “PlainTXT Storage and Search Engine” application. 

 
Figure 21: PlainTXT Storage and Search Engine - Upload Page Design. 



 

110 
 

4.2.3.2 CipherTXT Storage and Search Engine 

Section 4.2.3.2.1  denotes the User Interface Design of the Home Page for the 

“CipherTXT Storage and Search Engine” application, Section 4.2.3.2.2 denotes the 

User Interface Design of the Upload page for same, while Section 4.2.3.2.3 denotes 

the User Interface Design of the Decrypt page for same also. 



 

111 
 

4.2.3.2.1 Home Page (Includes Search Bar) 

Figure 22 denotes the User Interface Design of the Home Page for the “CipherTXT Storage and Search Engine” application. 

 
Figure 22: CipherTXT Storage and Search Engine - Home Page Design. 

  



 

112 
 

4.2.3.2.2 Upload Page 

Figure 23 denotes the User Interface Design of the Upload Page for the “CipherTXT Storage and Search Engine” application. 

 
Figure 23: CipherTXT Storage and Search Engine - Upload Page Design. 

  



 

113 
 

4.2.3.2.3 Decrypt Page 

Figure 24 denotes the User Interface Design of the Decrypt Page for the “CipherTXT Storage and Search Engine” application. 

 
Figure 24: CipherTXT Storage and Search Engine - Decrypt Page Design.



 

114 
 

4.3 Low Level Design 

Section 4.3.1 denotes the Sequence Diagrams associated with both the “PlainTXT 

Storage and Search Engine” application as well as the “CipherTXT Storage and 

Search Engine” application. 

4.3.1 Sequence Diagrams 

Section 4.3.1.1 denotes the Sequence Diagrams associated with the various Use 

Cases of the “PlainTXT Storage and Search Engine” application, while Section 4.3.1.2 

denotes same for the “CipherTXT Storage and Search Engine” 

Components highlighted in red in the following Sequence Diagrams denote 

Components residing on the Client-Side of the associated functionality, while 

Components highlighted in blue denote Components residing on the Server-Side of 

the associated functionality. 

4.3.1.1 PlainTXT Storage and Search Engine 

Section 4.3.1.1.1 denotes the Sequence Diagram associated with PFR-001, while 

Section 4.3.1.1.2 denotes the Sequence Diagram associated with PFR-002. 



 

115 
 

4.3.1.1.1 PFR-001: Upload TXT Document(s) To Server 

Due to the size of the Sequence Diagram associated with PFR-001, the author has 

had to split the Sequence Diagram in to two separate Diagrams.  The first half of the 

Sequence Diagram denotes the functionality from the perspective of the Client (see 

Figure 25), while the second half of the Sequence Diagram denotes the functionality 

from the perspective of the Server (see Figure 26). 

In relation to the POST(PT_FILE_UPLOAD_URL) and 

POST(PT_GENERATE_INVERTED_INDEX_URL) interactions between the 

PT_Client_To_Server and Web_Server components in Figure 25, the reader 

should be aware that the Server Side functionality associated with both interactions 

has been abbreviated in Figure 25, but is expanded upon in detail in Figure 26.



 

116 
 

 
Figure 25: PFR-001 Sequence Diagram (Client Side). 



 

117 
 

 
Figure 26: PFR-001 Sequence Diagram (Server Side). 



 

118 
 

4.3.1.1.2 PFR-002: Retrieve TXT Documents Containing Specified Search String 

Figure 27 denotes the Sequence Diagram associated with PFR-002. 

 
Figure 27: PFR-002 Sequence Diagram.



 

119 
 

 

4.3.1.2 CipherTXT Storage and Search Engine 

Section 4.3.1.2.1 denotes the Sequence Diagram associated with CFR-001, Section 

4.3.1.2.2  denotes the Sequence Diagram associated with CFR-002, while Section 

4.3.1.2.3 denotes the Sequence Diagram associated with CFR-003. 

4.3.1.2.1 CFR-001: Encrypt and Upload TXT Document(s) To Server 

Due to the size of the Sequence Diagram associated with CFR-001, the author has 

had to split the Sequence Diagram in to three separate Diagrams.  The first third of 

the Sequence Diagram denotes the functionality from the perspective of the Client 

(see Figure 28); however the reader should be aware that a number of details 

associated with the Generate_SSE_Inverted_Index() method have been 

abbreviated for readability purposes (these details can however be seen in Figure 29 

– the second third of the Diagram).  In addition, a number of details associated with 

both the POST(CT_FILE_UPLOAD_URL) and POST(CT_ 

INVERTED_INDEX_UPLOAD_URL) interactions between the 

CT_Client_To_Server and Web_Server components in Figure 28  have been 

abbreviated, however these are expanded upon in detail in Figure 30 which denotes 

the functionality from the perspective of the Server (the final third of the Diagram).



 

120 
 

 
Figure 28: CFR-001 Sequence Diagram (Client Side – With Genereate_SSE_Inverted_Index() Details Omitted).



 

121 
 

 
Figure 29: Generate_SSE_Inverted_Index() Sequence Diagram. 



 

122 
 

 
Figure 30: CFR-001 Sequence Diagram (Server Side).



 

123 
 

4.3.1.2.2 CFR-002: Retrieve TXT Documents Containing Encrypted Specified Search String Use Case 

Figure 31  denotes the Sequence Diagram associated with CFR-002. 

 
Figure 31: CFR-002 Sequence Diagram. 



 

124 
 

4.3.1.2.3 CFR-003: Decrypt Encrypted TXT Documents Retrieved From Server 

Figure 32 denotes the Sequence Diagram associated with CFR-003. 

 
Figure 32: CFR-003 Sequence Diagram.



 

125 
 

5. Implementation 

Both the “PlainTXT Storage and Search Engine” and “CipherTXT Storage and Search 

Engine“ applications developed as part of this dissertation were implemented using 

the Java Programming Language.  All Client-Side functionality associated with both 

applications was implemented in the form of Java Applets, while all Server-Side 

functionality was implemented in the form of Java Servlets. 

The SSE scheme underlying the “CipherTXT Storage and Search Engine” application 

is the scheme described previously in the Literature Review (Chapter 2); that is, 

Kamara et al. (2012).  As such, all Data Structures and Security measures outlined 

previously in Section 2.3 have been applied and utilised in the implementation of 

SSE developed as part of this dissertation. 

The core functionality of the “CipherTXT Storage and Search Engine” application is 

contained within the following Java Classes and Java Methods: 

 Tokeniser.JAVA (see Section 5.1) 

 Inverted_Index.JAVA (see Section 5.1) 

 Crypto_Methods.JAVA (see Section 5.2) 

 Generate_SSE_Inverted_Index() Method (Contained Within 

Inverted_Index.JAVA - see Section 5.3) 



 

126 
 

 SSE_Inverted_Index.JAVA (see Section 5.3) 

 Encrypted_Array_Node.JAVA (see Section 5.3) 

 Randomised_Encrypted_Array.JAVA (see Section 5.3) 

 Retrieve() Method (Contained Within 

SSE_Inverted_Index.JAVA - see Section 5.4) 

 

5.1 Tokeniser.JAVA and 

Inverted_Index.JAVA 

The Tokeniser Class is responsible for Document Tokenisation in both the 

“PlainTXT Search and Storage Engine” and “CipherTXT Storage and Search Engine” 

applications developed as part of this dissertation. 

An array of File Objects (representing the chosen Document Collection) is first 

passed into the Tokenise_Collection() method of the Tokeniser Class, 

which then proceeds to tokenise each Document on a one-by-one basis.   

The individual Terms contained within each TXT file are retrieved using the 

Scanner Class and its next() Method.  Each Term encountered during 



 

127 
 

Document Tokenisation is passed to an Inverted_Index Object (which 

comprises a HashMap<String, HashSet<Integer>> Object)23. 

Before a given Term is added into the underlying HashMap Object, the HashMap 

is first examined to determine whether or not the Term was added to the 

HashMap previously24.  In the event that a Term was not added to the HashMap 

previously, the Term is simply inserted directly in to the HashMap along with a 

HashSet Object comprising the DocID of the Document currently being tokenised.  

In the event that the Term was present in the HashMap previously, the Terms 

associated HashSet is instead retrieved from the HashMap and then updated to 

include the ID of the Document currently being tokenised (before then being re-

inserted into the HashMap). 

 

5.2 Crypto_Methods.JAVA 

 All cryptographic functionality associated with the “CipherTXT Storage and Search 

Engine” application is contained within the Crypto_Methods.JAVA Class. 

The Crypto_Methods.JAVA Class comprises the following methods: 

 Keyed_Hash() 

                                                      

 

23
 String => Lexicon Term; HashSet<Integer> => Posting List associated with Lexicon Term. 

24
 Simply adding the Term directly to the HashMap will overwrite the existing entry (if any) 

(including the set of Document IDs associated with the Term previously). 



 

128 
 

 Generate_Random_Postings_Key() 

 Encrypt_UTF8() 

 Decrypt_UTF8() 

 Encrypt_Encryption_Key() 

 Decrypt_Decryption_Key() 

 Derive_Key() 

 Encrypt_Files() 

 Decrypt_Files() 

The Keyed_Hash()method of the Crypto_Methods.JAVA Class comprises 

an instance of the built in Java Mac Class.  The Mac Object is configured to generate 

keyed hash values using the HMAC-MD5 algorithm.  The Keyed_Hash()method 

is used for two purposes in the implementation of SSE developed as part of this 

dissertation: 1) To generate a keyed hash for each Lexicon Term within the SSE 

Inverted Index, and 2) To generate the encryption/decryption key used to 

encrypt/decrypt the first Posting associated with each Lexicon Term.  The method 

returns a Base64 encoded String representation of the keyed hash value 

generated. 

The Generate_Random_Postings_Key()method of the 

Crypto_Methods.JAVA Class comprises an instance of the built in Java 

SecureRandom Class.  The SecureRandom Object is configured to generate a 

randomised 128 bit value which can be used to encrypt the second (and all 



 

129 
 

subsequent) Posting associated with a given Lexicon Term.  The method returns a 

Base64 encoded String representation of the key generated. 

The Encrypt_UTF8()and Decrypt_UTF8() methods of the 

Crypto_Methods.JAVA Class comprise two instances of the built in Java 

Cipher Class.  The Cipher Object in the Encrypt_UTF8()Method is 

configured to encrypt UTF8 encoded Strings into Base64 encoded Strings 

using AES/CBC/PKCS5Padding encryption, while the Cipher Object in the 

Decrypt_UTF8()Method is configured to decipher encrypted Base64 encoded 

Strings into plaintext UTF8 encoded Strings using same.  The 

Encrypt_UTF8() and Decrypt_UTF8() Methods are used to encrypt and 

decrypt Postings and Posting Pointers in the implementation of SSE developed as 

part of this dissertation. 

The Encrypt_Encryption_Key()and Decrypt_Decryption_Key() 

methods of the Crypto_Methods.JAVA Class comprise two instances of the 

built in Java CipherInputStream Class.  The CipherInputStream Object in 

the Encrypt_Encryption_Key() Method is configured to convert Base64 

encoded Strings into encrypted Base64 encoded Strings using 

AES/CBC/PKCS5Padding encryption, while the CipherInputStream Object in 

the Decrypt_Decryption_Key()Method is configured to convert encrypted 

Base64 encoded Strings into plaintext Base64 encoded Strings using same.  

The Encrypt_Encryption_Key() and Decrypt_Decryption_Key() 



 

130 
 

Methods are used to encrypt and decrypt Posting keys generated by the 

Generate_Random_Postings_Key() Method outlined previously. 

The Derive_Key()method of the Crypto_Methods.JAVA Class comprises 

an instance of the built in Java SecretKeyFactory Class.  The 

SecretKeyFactory Object is configured to generate a secret key value using 

the PBKDFHMAC-SHA1 algorithm.  The Derive_Key()method of the 

Crypto_Methods.JAVA Class is used to derive encryption/decryption keys for 

TXT file encryption in the implementation of SSE developed as part of this 

dissertation. 

The Encrypt_Files()and Decrypt_Files() methods of the 

Crypto_Methods.JAVA Class comprise two instances of the built in Java 

Cipher Class.  The Cipher Object in the Encrypt_Files() Method is 

configured to convert plaintext TXT files into encrypted TXT files using 

AES/CBC/PKCS5Padding encryption, while the Decrypt_Files()Method is 

configured to convert encrypted TXT files into plaintext TXT files using same.   

  



 

131 
 

5.3 Generate_SSE_Inverted_Index() 

Method, SSE_Inverted_Index.JAVA, 

Encrypted_Array_Node.JAVA , and 

Randomised_Encrypted_Array.JAVA. 

The Generate_SSE_Inverted_Index() Method of the Inverted_Index 

Class is responsible for converting an IR Inverted Index into an SSE Inverted Index in 

the implementation of SSE developed as part of this dissertation. 

As part of the process of generating an SSE Inverted Index, the 

Generate_SSE_Inverted_Index() Method first iterates over all entries 

within the HashMap<String, HashSet<Integer>> Object underlying the 

Inverted_Index. 

For each Lexicon Term contained within the plaintext IR HashMap, a 

Keyed_Hash() is generated for the Term, along with a password which will be 

used later to encrypt the first Posting associated with the Lexicon Term (also 

generated using the Keyed_Hash() method; albeit with a different password). 

Following this, the set of all Posting associated the Lexicon Term are then retrieved 

and iterated over; that is, the HashSet<Integer> Object contained within the 

IR HashMap Object. 



 

132 
 

For each Posting encountered, the associated Document ID is then encrypted and 

added to an Encrypted_Array_Node Object.  In the case of the first Posting, 

the Posting is encrypted using the second Keyed_Hash() value generated from 

its associated Lexicon Term, while all subsequent Postings are encrypted using keys 

generated using the Generate_Random_Postings_Key() Method of the 

Crypto_Methods Class (Note that each Encrypted_Array_Node Object is 

encrypted using a different randomised key) . 

The Encrypted_Array_Node Object associated with the first Posting is stored 

alongside its associated Lexicon Term within the HashMap<String, 

Encrypted_Array_Node> Object contained with the 

SSE_Inverted_Index, while all subsequent Postings are stored within the 

Randomised_Encrypted_Array Object contained with the 

SSE_Inverted_Index. 

In addition to storing encrypted Postings, each Encrypted_Array_Node Object 

also stores the location of the next Encrypted_Array_Node Object associated 

with the Lexicon Term in question, as well as the key necessary to decrypt the 

contents of the next Encrypted_Array_Node Object.  As such, whenever a 

new Encrypted_Array_Node Object is created, its associated encryption key is 

then stored in the Encrypted_Array_Node Object that preceded it in the list 

of Postings (with the exception of the first Encrypted_Array_Node Object 

associated with a Lexicon Term - SSE requires the user to be able to manually 

generate this key as and when needed).  In addition, whenever an 



 

133 
 

Encrypted_Array_Node Object is inserted into the 

Randomised_Encrypted_Array Object, the randomised Array Index assigned 

to the Encrypted_Array_Node Object is then stored in the 

Encrypted_Array_Node Object that preceded it in the list of Postings. 

5.4 Retrieve() Method 

The Retrieve() Method of the SSE_Inverted_Index  Class is responsible 

for searching25 the SSE Inverted Index associated with the implementation of SSE 

developed as part of this dissertation. 

Prior to executing the Retrieve() Method, the user must first generate a 

Keyed_Hash() of their Search Term, as well as the Postings Password associated 

with their Search Term (again, generated using the Keyed_Hash() Method). 

The Keyed_Hash() associated with the users Search Term is then used to lookup 

the HashMap<String, Encrypted_Array_Node> Object contained with 

the SSE_Inverted_Index Class. 

Should the Search Term be present in the HashMap, the associated 

Encrypted_Array_Node Object is then returned from the HashMap and 

decrypted using the Postings Password generated by the user. 

                                                      

 

25
 Note that searching the SSE Inverted Index also included identifying and decrypting all Postings 

associated with the Lexicon Term searched for. 



 

134 
 

Decrypting the Encrypted_Array_Node reveals three pieces of information: 

 The Document ID associated with the Posting,  

 The index location of the next Encrypted_Array_Node Object 

associated with the Search Term (contained within the 

Randomised_Encrypted_Array associated with the 

SSE_Inverted_Index). 

 The key required to decrypt the next Encrypted_Array_Node. 

The process then repeats until a Randomised_Encrypted_Array Node is 

found that contains no index location for a next Posting.  At this point, the set of all 

Postings associated with the Search Term have been identified and decrypted. 

  



 

135 
 

6. Testing 

Section 6.1 denotes the details associated with the hardware/software used during 

Testing, Section 6.2 denotes the details associated with the Data Sets used during 

Testing, while Section 6.3 denotes the Experimental Results obtained during 

Testing. 

6.1 Test Environment 

Table 16 denotes the details associated with the pertinent software utilised during 

application Testing, while Table 17 denotes the details associated with the hardware 

utilised during application Testing.  

Operating System: Windows Ultimate 64-Bit SP1 

Java Development Kit (JDK): 

Java Runtime Environment (JRE): 

Java Version: 8 

Update: 51 

Build: 16 

Web Server (Localhost): Apache Tomcat 7.0.56 

Included As Part Of XAMMP 5.6.8 Package 

Table 16: Test Environment - Pertinent Software Details. 

 

 

 



 

136 
 

Device Type: Laptop 

Processor: Intel Core i7 4900MQ @2.8GHz 

Quad Core 

Motherboard: Notebook W35xSS_370SS Motherboard 

RAM: 24GB RAM (3 X 8GB KINGSTON DDR3 @ 800MHz) 

 

Hard Disk: 925GB SSHD 

RAID: RAID 1 (Software Based RAID) 

Table 17: Test Environment - Hardware Details. 

All tests were conducted using the default Java Virtual Machine (JVM) - no 

additional runtime parameters were configured. 

6.2 Test Data 

All experiments conducted as part of this dissertation were performed on the ’20 

Newsgroups’ Data Set (Rennie, 2008). 

In its original form, the ’20 Newsgroups’ Data Set consists of 18,828 files, 

subdivided into 20 folders.  Initially, each file in the Data Set has a numeric file 

name between 4 and 6 digits in length26 with no file extension. 

                                                      

 

26
 Recall previously from the Software Requirements Specification that it is assumed that each file in 

the Test Data Set has a unique numeric name assigned to it. 



 

137 
 

Prior to being used in the experiments, the author first attempted to move all files 

in the Data Set into a single folder; however at this point the author noted that the 

names of all files in the Data Set are not unique (the contents of each file are 

unique however (Rennie, 2008)).  In an effort to avoid duplicate file names, the 

author randomly assigned an 8 digit numeric name to each file in the Data Set26.  In 

addition, the author also appended the TXT file extension to each file in the Data 

Set. 

As part of Testing, the author tested each aspect of SSE with Data Sets that 

increased in size by an order of magnitude.  As such, it was necessary to derive 

smaller subsets from the full ’20 Newsgroups’ Test Data Set.  In total, 5 subsets 

were derived (DS1 – DS5).  The details associated with each subset – and the full 

Data Set (DS6) – can be seen in Table 18.  



 

138 
 

Data Set Name DS1 DS2 DS3 DS4 DS5 DS6 

# of Docs 1 10 100 1,000 10,000 18,828 

# of Terms 320 2,612 33,611 281,363 2,738,580 5,130,520 

# of Unique 
Terms  

206 1,297 10,996 52,134 258,463 377,880 

# of Postings In 
Data Set  

206 1,650 19,838 168,768 1,672,576 3,138,449 

# of Postings 
Associated 
With Highest 
Frequency 
Lexicon Term  

1 
 
All Terms 

10 
 
And 

100 
 
Subject: 

1,000 
 
From: 

10,000 
 
Subject: 

18,828 
 
Subject: 

Size 1.9KB 16.1 
KB 

215KB 1.7MB 17.3MB 32.3MB 

Table 18: Test Data Set Statistics27. 

6.3 Experimental Results 

Section 6.3.1 denotes the Experimental Results associated with SSE Inverted Index 

Construction, Section 6.3.2 denotes the Experimental Results associated with SSE 

Inverted Index Searching, while Section 6.3.3 denotes the Experimental Results 

associated with the comparison of SSE and plaintext Information Retrieval (IR). 

Please note that all Results presented in this dissertation represent average values 

obtained over ten executions of each experiment. 

6.3.1 SSE Inverted Index Construction 

Section 6.3.1.1 denotes the Experimental Results associated with generating a 

plaintext Information Retrieval (IR) Inverted Index and Section 6.3.1.2 denotes the 

                                                      

 

27
 The statistics shown in Table 18 were generated by executing the Stat_Counter.java 

program on each Data Set. 



 

139 
 

Experimental Results associated with converting an IR Inverted Index into an SSE 

Inverted Index.  Section 6.3.1.3 denotes the Experimental Results associated with 

encrypting an entire Document Collection, while Section 6.3.1.4 and Section 6.3.1.5  

denote the Experimental Results associated with uploading both the encrypted 

Document Collection and the SSE Inverted Index to the Server.  Section 6.3.1.6 

presents a set of aggregate Experimental Results (from Section 6.3.1.1 – Section 

6.3.1.5) covering the set of all activities associated with constructing an SSE 

Inverted Index. 



 

140 
 

6.3.1.1 IR Inverted Index Construction 

 
Figure 33: Information Retrieval (IR) Inverted Index Construction Time vs. Number of Terms in Collection. 

 

Figure 33 denotes the Experimental Results associated with generating a plaintext Information Retrieval (IR) Inverted Index for each Test Data 

Set outlined previously.  Figure 33 compares the time taken to generate the IR Inverted Index against the number of Terms in the Document 



 

141 
 

Collection; that is, the Test Data Set, from which the IR Inverted Index is being generated.  As can be seen in Figure 33, the time associated with 

constructing an IR Inverted Index appears to increase linearly as the number of Terms in the underlying Document Collection increases.  In 

relation to Test Data, an IR Inverted Index was generated for Test Data Set 6 (approximately 5 million Terms) in approximately 7.6 seconds. 

The Results shown in Figure 33 were obtained by executing IR_Inverted_Index_Construction_Time.java on each Data Set 

outlined previously. 

  



 

142 
 

6.3.1.2 SSE Inverted Index Construction 

 
Figure 34: SSE Inverted Index Construction Time vs. No of Postings in IR Inverted Index. 

 

Figure 34 denotes the Experimental Results associated with converting a plaintext Information Retrieval (IR) Inverted Index into an SSE Inverted 

Index for each Data Set outlined previously.  Figure 34 compares the time taken to generate the SSE Inverted Index against the number of 



 

143 
 

Postings in the IR Inverted Index from which the SSE Inverted Index is generated.  For the first four Test Data Sets (DS1 – DS4), the time 

associated with constructing an SSE Inverted Index appears to increase linearly as the number of Postings in the underlying IR Inverted Index 

increases; however the time taken to generate an SSE Inverted Index for DS5 and DS6 increases dramatically (when compared to the number 

of Postings in the underlying IR Inverted Index).  In relation to Test Data Sets, an SSE Inverted Index was generated for Test Data Set 4 (281,363 

Postings – approximately 3.2 Postings per Lexicon Term) in 1.5 seconds.  For Test Data Set 5 (1,672,576 Postings – approximately 6.5 Postings 

per Lexicon Term), an SSE Inverted Index was generated in 4 minutes 48 seconds.  For Test Data Set 6 (3,138,449 Postings – approximately 8.3 

Postings per Lexicon Term), an SSE Inverted Index was generated in 24 minutes 34 seconds. 

The Results shown in Figure 34 were obtained by executing SSE_Inverted_Index_Construction_Time.java on each Data Set 

outlined previously. 

  



 

144 
 

6.3.1.3 Document Collection Encryption 

 
Figure 35: Document Collection Encryption Time vs. Number of Terms in Collection. 

 

Figure 35 denotes the Experimental Results associated with encrypting the Document Collections comprising each of the Test Data Sets.  Figure 

35 compares the time taken to encrypt each Document Collection against the total number of Terms contained within each Document 

Collection.  As can be seen in Figure 35, the time associated with encrypting the Document Collection appears to increase linearly as the 



 

145 
 

number of Terms in the underlying Document Collection increases.  In relation to Test Data Sets, the Document Collection associated with Test 

Data Set 6 was encrypted in 40 seconds. 

The Results shown in Figure 35 were obtained by executing File_Encryption_Time.java on each Data Set outlined previously. 

 

  



 

146 
 

6.3.1.4 SSE Inverted Index Upload 

 
Figure 36: SSE Inverted Index Upload Time vs. Size of SSE Inverted Index. 

 

Figure 36 denotes the Experimental Results associated with uploading an SSE Inverted Index (generated from each Test Data Set) to the Server.  

Figure 36 compares the time taken to upload the SSE Inverted Index to the Server against the size of the SSE Inverted Index.  As can be seen in 

Figure 36, the time associated with uploading the SSE Inverted Index to the Server appears to increase linearly as the size of the SSE Inverted 



 

147 
 

Index increases.  In relation to Test Data, the SSE Inverted Index associated with Test Data Set 6 (325MB) was uploaded to the Server in 47.5 

seconds. 

The reader should be aware that the Experimental Results presented in Figure 36 includes the time taken to upload the SSE Inverted Index to 

the Server, as well as the time taken to serialise the SSE Inverted Index to disk (once the SSE Inverted Index has been received by the Server). 

The Results shown in Figure 36 were obtained by executing SSE_Upload_Timer.java. 

 

  



 

148 
 

6.3.1.5 Encrypted Document Collection Upload 

 
Figure 37: Encrypted Document Collection Upload Time vs. Encrypted Document Collection Size. 

 

Figure 37 denotes the Experimental Results associated with uploading an encrypted Document Collection (generated from each Test Data Set) 

to the Server.  Figure 37 compares the time taken to upload the encrypted Document Collection to the Server against the size of the encrypted 

Document Collection.  As can be seen in Figure 37, the time associated with uploading the encrypted Document Collection to the Server 



 

149 
 

appears to increase linearly as the size of the encrypted Document Collection increases.  In relation to Test Data, the encrypted Document 

Collection associated with Test Data Set 6 (32.5MB) was uploaded to the Server in 46.8 seconds. 

The reader should be aware that the Experimental Results presented in Figure 37 include the time taken to upload the encrypted Document 

Collection to the Server, as well as the time taken to store the encrypted Document Collection on disk (once the encrypted Document 

Collection has been received by the Server). 

The Results shown in Figure 37 were obtained by executing SSE_Upload_Timer.java; that is, the same software as used in Section 6.3.1.4 

previously. 

 

  



 

150 
 

6.3.1.6 Aggregate Results 

 
Figure 38: SSE Inverted Index Construction Composite. 

 



 

151 
 

Figure 38 denotes the total time taken to create an IR Inverted Index, convert it to an SSE Inverted Index, encrypt the associated Document 

Collection and upload both the SSE Inverted Index and the encrypted Document Collection to the Server for each Test Data Set outlined 

previously. 

In relation to Test Data, the whole process of constructing an SSE Inverted Index and uploading all associated data to the Server took 10.5 

seconds for Test Data Set 4.  To carry out the same work on Test Data Set 5 took 5 minutes 50 seconds, while carrying out the same work on 

Test Data Set 6 took 26 minutes 56 seconds. 

  



 

152 
 

6.3.2 SSE Inverted Index Querying 

Section 6.3.2.1 denotes the Experimental Results associated with generating an 

Encrypted Search String (ESS) for SSE, while Section 6.3.2.2 denotes the 

Experimental Results associated with searching an SSE Inverted Index.  Finally, 

Section 6.3.2.3  denotes the Experimental Results associated with searching the SSE 

Inverted Index and downloading all matching Documents to the Client (in ZIP File 

Format). 

6.3.2.1 ESS Generation 

 
Figure 39: Encrypted Search String (EES) Generation Time vs. Number of Terms in 

Document Collection. 

 

Figure 39 denotes the Experimental Results associated with generating Encrypted 

Search Strings (ESS) for SSE.   



 

153 
 

For each Lexicon Term within the Test Data Sets outlined previously, an ESS; that is, 

a keyed hash, was generated.  As can be seen in Figure 39, the time taken to 

generate an ESS is by no means constant.  The Experimental Results appear to show 

that the more ESS that are generated, the faster the execution time of the 

underlying Keyed_Hash() Method. 

The Results shown in Figure 37 were obtained by executing 

ESS_Generation_Time.java. 

 



 

154 
 

6.3.2.2 Identifying and Decrypting Matching Postings 

 
Figure 40: SSE Search Time vs. Number of Matching Postings in SSE Inverted Index. 

 

Figure 40 denotes the Experimental Results associated with searching an SSE Inverted Index and identifying (and decrypting) the Postings 

associated with the most frequently occurring Lexicon Term within the underlying Document Collection.  Figure 40 compares the time taken to 



 

155 
 

search the SSE Inverted Index against the number of Postings associated with the most frequently occurring Lexicon Term within the 

underlying Document Collection. 

In relation to Test Data, the SSE Inverted Index associated with Test Data Set 6 was searched and all Postings associated with the most 

frequently occurring Lexicon Term (18,828 Postings) were identified in 432 milliseconds. 

  



 

156 
 

6.3.2.3 Aggregate Results 

 
Figure 41: Data Set Size vs. Search and Download Time. 

 

Figure 41 denotes the Experimental Results associated with searching an SSE Inverted Index for the most frequently occurring Lexicon Term 

within the underlying Document Collection and returning all matching Documents to the Client.  Figure 41 compares the time taken to search 

the SSE Inverted Index and return all matching Documents against the size of the Document Collection returned.   



 

157 
 

The reader should be aware that the Experimental Results presented in Figure 41 also include the time taken to encapsulate the set of all 

matching Documents within a ZIP File, which is then returned to the Client. 

In relation to Test Data, the set of matching Document associated with the most frequently occurring Lexicon Term contained within Test Data 

Set 6 was searched and all Documents returned to the Client (32.5 MB) in 2 minutes 7 seconds.



 

158 
 

6.3.3 Performance of SSE vs. Plaintext Information 

Retrieval (IR) 

Section 6.3.3.1 denotes the Experimental Results associated with the comparison of 

plaintext Information Retrieval (IR) uploading and SSE uploading, while Section 

6.3.3.2 denotes the Experimental Results associated with the comparison of 

plaintext IR Inverted Index querying and SSE Inverted Index querying. 

6.3.3.1 Plaintext Information Retrieval (IR) Uploading vs. SSE 

Uploading 

 
Figure 42: Plaintext IR Uploading vs. SSE Uploading. 

 

Figure 42 denotes the Experimental Results associated with the comparison of 

traditional plaintext Information Retrieval (IR) uploading and SSE uploading.  Those 

values associated with IR uploading in Figure 42 represent the time taken to upload 

the Document Collection associated with each Test Data Set from the Client 

machine to the Server.  Those values associated with SSE uploading in Figure 42 



 

159 
 

represent the time taken to generate the SSE Inverted Index, encrypt the associated 

Document Collection, and uploading both the Inverted Index and encrypted 

Document Collection to the Server.  From Figure 42, it is immediately obvious that 

the amount of time necessary for SSE uploading increases in a non-linear manner 

when compared to the amount of time necessary for plaintext IR uploading. 

  



 

160 
 

6.3.3.2 Plaintext Information Retrieval (IR) Querying vs. SSE 

Querying 

 
Figure 43: Plaintext IR Querying vs. SSE Querying. 

 

Figure 43 denotes the Experimental Results associated with the comparison of 

traditional plaintext Information Retrieval (IR) querying and SSE querying.   

The Experimental Results presented in Figure 43  consist of the time taken to 

identify the set of all Postings associated with the most frequently occurring 

Lexicon Term in the underlying Document Collection, and encapsulating the set of 

all matching Document within a ZIP File which is then returned to the Client.   

As was the case with Figure 42 previously, it is immediately obvious from Figure 43 

that the amount of time necessary for SSE querying increases in a non-linear 

manner when compared to the amount of time necessary for plaintext IR querying. 

 



 

161 
 

7. Evaluation 

In relation to searching an SSE Inverted Index, the Research Results provide 

additional proof of the efficiency of SSE when implemented in software.  The 

implementation of SSE developed as part of this dissertation was able to identify 

and decrypt a single Posting associated with a given Lexicon Term in approximately 

22 microseconds (μs).  This performance is comparable with the implementations 

of SSE developed by Kamara et al. (2012)28 and Cash et al. (2013) 29 previously.  

Regarding the efficiency of constructing an SSE Inverted Index, the Research Results 

are somewhat inconclusive.  Given the five steps involved in constructing an SSE 

Inverted Index30, each step in the implementation of SSE produced as part of this 

dissertation performed as expected with the exception of the second step: 

Converting an IR Inverted Index to an SSE Inverted Index.  For Test Data Set 1 (DS1) 

through Test Data Set 4 (DS4), an SSE Inverted Index was generated from an 

existing IR Inverted Index in a time linear to the number of Postings stored in the IR 

Inverted Index; however, for DS5 and DS6, this apparent linear performance 

decreased dramatically.  Despite investigating the problem at length, the author has 

                                                      

 

28
 7.3 Microseconds (μs) per Posting. 

29
 100 Microseconds (μs) per Posting. 

30
 1) Generating an IR Inverted Index, 2) Converting IR Inverted Index to SSE Inverted Index, 3) 

Encrypting Document Collection, 4) Uploading SSE Inverted Index to Server and 5) Uploading 
Encrypted Document Collection to Server. 



 

162 
 

been unable to diagnose the exact cause of this performance degradation.  The 

author feels this decrease in performance can be attributed to a combination of 

one or more of the following: 1) The Java Virtual Machines (JVM) Garbage 

Collection functionality, 2) Insufficient Java Heap memory, 3) The use of String 

Objects in the Encrypted_Array_Node Class, 4) The size of the SSE Inverted 

Index, and 5) The requirement of the HashMap iterator() Method to store 

an additional copy of the IR Inverted Index HashMap on the Java Heap while the 

SSE Inverted Index is being constructed. 

Regarding the first and second point, the author dynamically analysed the 

‘CipherTXT Storage and Search Engine’ application using both the Java Mission 

Control and Java Flight Recorder applications.  In both cases, the author noted that 

the JVM Garbage Collector was extremely active (eradicating up to 2GB of Objects 

from the Java Heap on a regular basis) (see Figure 44).   

 
Figure 44: Java Heap Memory Usage and Garbage Collection Statistics for SSE Inverted 

Index Construction. 

 

Regarding points one, two and three, it is evident that a significant number of 

Objects are being stored on the Java Heap as the implementation of SSE converts 

the IR Inverted Index to an SSE Inverted Index.  The author feels that one possible 



 

163 
 

explanation for this is the use of String Objects in the 

Encrypted_Array_Node Class.  String Objects are used in the 

Encrypted_Array_Node Class to store encrypted Document IDs, encrypted 

Indexes of subsequent Postings, as well as keys required to encrypt/decrypt 

subsequent Postings.  Given that String is a form of Object - and not a primitive 

data type – all String Objects are therefore stored in the Heap area of the Java 

Virtual Machines (JVM) memory (Oracle, 2015a). 

Regarding points one, two and four, the author noted that the SSE Inverted Index 

associated with DS5 was 171MB in size, while the SSE Inverted Index associated 

with DS6 was 325MB in size.  When compared to their plaintext equivalent, the DS5 

IR Inverted Index is 25MB in size (146MB smaller than its SSE counterpart), while 

the DS6 IR Inverted Index is 42.8MB (282.2MB smaller than its SSE counterpart).  

Evidently the SSE Inverted Index associated with both DS5 and DS6 occupy a 

significant amount of memory.  The presence of such large Objects in the Java Heap 

obviously reduces the amount of space available for subsequent Objects; therefore 

increasing the frequency of Garbage Collection (Oracle, 2015a). 

Regarding points one, two and five, the iterator() method of the HashMap 

Class may also be a factor in the performance degradation associated with DS5 and 

DS6.  As part of the process of converting the IR Inverted Index to an SSE Inverted 

Index, the IR Inverted Index must first be loaded into the Java Heap, with each entry 

in the IR Inverted Index then being examined and subsequently added to the SSE 

Inverted Index.  In order to examine each entry in the IR Inverted Index, the 



 

164 
 

iterator() method must be executed on the HashMap Object underlying the 

IR Inverted Index (the HashMap Class does not support iteration in any other way).  

In order to operate,   the iterator() method create must first create an exact 

replica of the IR Inverted Index HashMap on the Heap (that supports iteration); 

therefore doubling the amount of Heap space associated with the IR Inverted Index 

(Oracle, 2015c).  As indicated previously, the IR Inverted Index associated with DS5 

is 25MB in size (increasing to 50MB during SSE Inverted Index Construction as a 

result of using the iterator() method), while the IR Inverted Index associated 

with DS6 is 42.8MB (increasing to 85.6MB during SSE Inverted Index Construction as 

a result of using the iterator() method).  As mentioned previously, the 

presence of such large Objects on the Java Heap reduces the amount of space 

available for additional Objects and also has the effect of increasing the frequency 

of Garbage Collection (Oracle, 2015a). 

The author has identified two other potential causes of the performance 

degradation associated with DS5 and DS6: 1) Hash Collisions Occurring As A Result 

Of Inserting Keys Into The SSE Inverted Index HashMap Object, and 2) The Natural 

Performance Degradation Associated With An Ever Expanding HashMap Object; 

however the authors Research appears to have ruled both potential causes out. 

Regarding Hash Collisions in a HashMap, the author noted that the location of an 

Object within a HashMap is determined by the value resulting from executing the 

hashCode() method associated with the Object being inserted into the 

HashMap.  In the event that two Objects produce the same hashCode() value, 



 

165 
 

the HashMap Class must then execute the compare() method associated with 

both Objects to determine whether or not both Objects are in fact equivalent to 

each other (Oracle, 2015c).  Personally, the author does not feel that Hash 

Collisions are an issue in theis implementation of SSE as the hashCode() method 

associated with the String Class produces a 32 bit hash value (approximately 4.3 

billion different Hash Values) (Oracle, 2015e); therefore making Hash Collisions 

highly unlikely for data sets the size of DS5 and DS6. 

Regarding the natural performance degradation associated with an ever expanding 

HashMap, the author has noted that a Java HashMap Object must be created with 

a specified initial capacity; that is, number of expected entries, and a specified 

expected load; that is, the percentage of the initial capacity that must be used 

before the capacity of the HashMap is increased.  In the event that that the load 

specified for the HashMap is exceeded, a new HashMap Object must then be 

constructed (this is done automatically by the HashMap Class).  The process of 

constructing a new HashMap Object requires that each entry in the existing 

HashMap Object be retrieved, re-hashed, and inserted into the new – larger – 

HashMap Object (Oracle, 2015c).  Personally, the author does not feel this is an 

issue that affects this implementation of SSE as the author has taken the initial 

capacity and load factor of the SSE HashMap into consideration and constructed 

the HashMap in a manner that does not require the HashMap to be expanded. 

Regarding Research Results relating to upload speeds and download speeds, the 

reader should be aware that a localhost web server was used during Testing; as 



 

166 
 

such, the time associated with uploading and downloading data may appear 

significantly faster than those which are achievable using a live system. 

  



 

167 
 

8. Conclusions and Further Research 

Section 8.1 presents the Conclusions derived from the authors work on this 

dissertation, while Section 8.2 discusses potential further Research. 

8.1 Conclusions 

Given the similarity between Searchable Symmetric Encryption (SSE) and plaintext 

Information Retrieval (IR), it is inevitable that comparisons will be made between 

the two.  While having a number of goals and functions in common, the fact 

remains that the primary goal of SSE is to provide Data and Query Privacy.  Given 

this – as well as the fact that SSE operates in a manner that differs greatly from 

plaintext IR - the author is of the option that SSE should be viewed as a separate 

paradigm in the context of Information Retrieval, and not an extension of plaintext 

IR.   

In order to provide Data and Query Privacy, SSE requires a significant amount of 

additional processing time to carry out a task when compared to the processing 

time associated with carrying out the same task using plaintext IR.  In terms of the 

performance overhead of using SSE, the Research Results show that little or no 

correlation exists between the time associated with carrying out a task using 

plaintext IR, and carrying out the same task using SSE (see Section 6.3.3).  In 

general, the Research Results have shown that the time taken to carry out a task 

using SSE is greater than the time taken to carry out the same task using plaintext 



 

168 
 

IR; nonetheless, this is to be expected given that the process of uploading a 

Document Collection to the Server using SSE requires the Client to first generate an 

SSE Inverted Index, encrypt the underlying Document Collection and then upload 

both to the Server, as well as the need for the Sever to decrypt Postings as part of 

SSE querying. 

The Research Results show that carrying out a task using SSE is directly proportional 

to the amount of information involved.  In the case of constructing an IR Inverted 

Index, the Research Results show that the time taken to generate an IR Inverted 

Index is directly proportional to the number of Terms contained in the underlying 

Document Collection (see Section 6.3.1.1).  Converting the same IR Inverted Index 

to an SSE Inverted Index is directly proportional to the number of Postings 

contained within the IR Inverted Index31 (see Section 6.3.1.2), while the time taken 

to encrypt the underlying Document Collection is directly proportional to the 

number of Terms contained within the Document Collection (see Section 6.3.1.3).  

In relation to searching in SSE, the time taken to identify and decrypt the set of 

Postings associated with a given Lexicon Term is directly proportional to the 

number of Postings (see Section 6.3.2.2).  

                                                      

 

31
 With the exception of Test Data Set 5 and Test Data Set 6 – see Section 7 and Section 8.2 for 

further explanation. 



 

169 
 

Regarding the question of whether or not SSE is efficient enough to be deployed in 

a Cloud environment, the author if of the opinion that the answer to this question is 

context dependant. 

If deployed in an environment whereby Search Results only have to be returned to 

the user in small quantities (such as an Internet Search Engine (For Example: ten 

results at a time)), then SSE would be more than efficient, irrespective of the size of 

the underlying Data Set (due to the fact that only a small number of Postings would 

need to be decrypted at a given time). 

If deployed in an environment whereby all Search Results must be returned at once 

(as was the case with the implementation of SSE developed as part of this 

dissertation, as well as the implementations developed by Kamara et al. (2012) and 

Cash et al. (2013), the author is of the opinion that SSE would only be suitable for 

small and medium sized Data Sets.  When applied to large Data Sets, SSE querying 

can become inefficient as its search time is directly proportional to the number of 

matching Postings (which is likely to be significant for large Data Sets). 

Regarding the possible commercialisation of SSE, the success of such a product 

would undoubtedly hinge on the knowledge of those people using the product.  

Users of such a product would need to be aware that SSE provides Data/Query 

Privacy in exchange for the efficiency associated with plaintext IR, and that an SSE 

Inverted Index – while slow to construct for large Data Sets – is designed to achieve 

efficient search speeds whilst maintaining Data Privacy. 

   



 

170 
 

8.2 Further Research 

Regarding the Literature Review carried out as part of this dissertation, the author 

would like to acknowledge that the description of the Inverted Index provided in 

Section 2.2 constitutes the Inverted Index in its most basic form; that is, denoting 

whether or not a Term is contained within a Document Collection, as well as support 

for single Term Queries only; nonetheless, the description provided is sufficient 

enough to cover the usage of the Inverted Index in SSE.  Manning et al. (2008) 

provides a comprehensive overview of the Inverted Index as it is used in plaintext 

IR, including numerous extensions to the description provided in this dissertation.  

Furthermore, the author would also like to acknowledge that the topic of Update 

Leakage; that is, Information Leakage resulting from changes being made to the SSE 

Inverted Index and the underlying Document Collection, was not covered in the 

Literature Review as it was deemed beyond the scope of this dissertation.  Kamara 

et al. (2012) and Van Liesdonk et al. (2010)  give a comprehensive overview of the 

topic. 

Regarding improvements to the Implementation of SSE developed as part of this 

dissertation, the author would like to diagnose and rectify the performance issues 

encountered when generating an SSE Inverted Index for large Data Sets.  In 

addition, the author would also like to apply secure coding practices to the 

implementation of SSE developed as part of this dissertation. 



 

171 
 

In relation to the aforementioned performance issue, the author feels the 

performance degradation associated with generating an SSE Inverted Index for 

large Data Sets is due to the use of String Objects for storing ciphertext.  

All built-in cryptographic methods of the Java library output ciphertext in byte[] 

array form initially (Oracle, 2015b; Oracle, 2015d).  In the Crypto_Methods Class 

utilised as part of the authors implementation of SSE, each byte[] array produced 

as part of a cryptographic operation is converted to a Base64 encoded String 

Object before being returned to the calling component.  The decision to use 

String Objects to store ciphertext – instead of byte[] arrays - was taken by the 

author with a view to simplifying the process of debugging cryptographic 

operations.   

In hindsight, the author now realises that each item of ciphertext produced by the 

Crypto_Methods Class exists in two forms on the Java Heap: In byte[] array 

form, and String form.  Evidently this represents a significant amount of Heap 

space wastage.  For this reason alone, the author feels it may be a worthwhile 

exercise re-developing the implementation of SSE using byte[] arrays instead of 

String Objects with a view to improving performance when dealing with larger 

Data Sets; that is, DS5, DS6. 

In addition to the use of String Objects, another potential cause of the 

aforementioned performance degradation may be the applications reliance on 

automated memory management.  At no point during the implementation of the 

‘CipherTXT Storage and Search Engine’ application was manual memory 



 

172 
 

management utilised; that is, manual de-allocation of memory.  All memory 

management associated with the application is managed by the Java Virtual 

Machine and automated calls to the Java Garbage Collector.  Given this, the author 

feels it may be a worthwhile exercise re-engineering the application with manual 

memory management in mind, with a view to improving the performance of the 

application when generating an SSE Inverted Index for large Data Sets. 

In relation to secure coding, the author readily admits that no secure coding 

principles were applied during the development of both the ‘PlainTXT Storage and 

Search Engine’ and ‘CipherTXT Storage and Search Engine’ applications.  Given that 

‘CipherTXT Storage and Search Engine’ is a data security application, the author 

would like to apply secure coding principles to the application at some point in the 

future. 

Regarding extending the functionality of the Implementation of SSE developed as 

part of this dissertation, the author would like to investigate the feasibility of 

incorporating support for multiple term queries (as demonstrated by Cash et al. 

(2013)), as well as including support for adding and deleting Documents from the 

underlying Document Collection (and updating the SSE Inverted Index appropriately 

– on the Server side - as demonstrated by Kamara et al. (2012) and Van Liesdonk et 

al. (2010). 

Furthermore, given the size of the Inverted Indexes produced by the 

implementation of SSE produced as part of this dissertation, the author believes 



 

173 
 

that the topic of Inverted Index compression may also be worth researching 

(Luenberger, 2006, p.290). 

 

  



 

174 
 

9. References 

Arkin, B. (2013) IMPORTANT CUSTOMER SECURITY ANNOUNCEMENT [online], 

available: http://blogs.adobe.com/conversations/2013/10/important-

customer-security-announcement.html [accessed 13/09/2015]. 

 

Boneh, D., Crescenzom, G. D., Ostrovsky, R. and Rersiano, G. (2004) 'Public Key 

Encryption With Keyword Search', in Cachin, C. and Camenisch, J. L., eds., 

International Conference on the Theory and Applications of Cryptographic 

Techniques, Interlaken, Switzerland, Berlin/Heidelberg: Springer, 506-522. 

 

Bosch, C., Hartel, P., Jonker, W. and Peter, A. (2014) A Survey of Provably Secure 

Searchable Encryption [online], available: 

http://eprints.eemcs.utwente.nl/24788/01/a18-bosch.pdf [accessed 

18/04/2015]. 

 

Bosch, C., Tang, Q., Hartel, P. and Jonker, W. (2012) Selective Document Retrieval 

from Encrypted Database [online], available: 

http://core.ac.uk/download/pdf/11483856.pdf [accessed 13/09/2015]. 

 

http://blogs.adobe.com/conversations/2013/10/important-customer-security-announcement.html
http://blogs.adobe.com/conversations/2013/10/important-customer-security-announcement.html
http://eprints.eemcs.utwente.nl/24788/01/a18-bosch.pdf
http://core.ac.uk/download/pdf/11483856.pdf


 

175 
 

Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M. C. and Steiner, M. (2013) 

Highly-Scalable Searchable Symmetric Encryption with Support for 

Boolean Queries [online], available: https://eprint.iacr.org/2013/169.pdf [accessed 

13/09/2015]. 

 

Chang, Y.-C. and Mitzenmacher, M. (2005) Privacy Preserving Keyword Searches on 

Remote Encrypted Data [online], available: 

http://www.eecs.harvard.edu/~michaelm/postscripts/acns2005.pdf 

[accessed 13/04/2015]. 

 

Chase, M. and Kamara, S. (2010) Structured Encryption and Controlled Disclosure 

[online], available: http://eprint.iacr.org/2011/010.pdf [accessed 

17/03/2015]. 

 

Chunsheng, G. (2011) New Fully Homomorphic Encryption over the Integers [online], 

available: https://eprint.iacr.org/2011/118.pdf [accessed 13/09/2015]. 

 

Claycomb, W. R. and Nicoll, A. (2012) Insider Threats to Cloud Computing: 

Directions for New Research Challenges [online], available: 

https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_52385.pdf 

[accessed 14/09/2015]. 

https://eprint.iacr.org/2013/169.pdf
http://www.eecs.harvard.edu/~michaelm/postscripts/acns2005.pdf
http://eprint.iacr.org/2011/010.pdf
https://eprint.iacr.org/2011/118.pdf
https://resources.sei.cmu.edu/asset_files/WhitePaper/2012_019_001_52385.pdf


 

176 
 

 

Columbus, L. (2015) Roundup Of Cloud Computing Forecasts And Market Estimates, 

2015 [online], available: 

http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-

cloud-computing-forecasts-and-market-estimates-2015/ [accessed 

13/09/2015]. 

 

Curtmola, R., Garay, J., Kamara, S. and Ostrovsky, R. (2006) Searchable Symmetric 

Encryption: Improved Definitions and Efficient Constructions [online], 

available: http://eprint.iacr.org/2006/210.pdf [accessed 12/02/2015]. 

 

Dictionary.com (2015a) Dictionary [online], available: 

http://dictionary.reference.com/browse/Dictionary?s=t [accessed 

02/03/2015]. 

 

Dictionary.com (2015b) Word [online], available: 

http://dictionary.reference.com/browse/word [accessed 03/02/2015]. 

 

Eurostat (2014) Cloud computing - statistics on the use by enterprises [online], 

available: http://ec.europa.eu/eurostat/statistics-

explained/index.php/Cloud_computing_-

_statistics_on_the_use_by_enterprises [accessed 13/09/2015]. 

http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-computing-forecasts-and-market-estimates-2015/
http://www.forbes.com/sites/louiscolumbus/2015/01/24/roundup-of-cloud-computing-forecasts-and-market-estimates-2015/
http://eprint.iacr.org/2006/210.pdf
http://dictionary.reference.com/browse/Dictionary?s=t
http://dictionary.reference.com/browse/word
http://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises
http://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises
http://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-_statistics_on_the_use_by_enterprises


 

177 
 

 

Gentry, C. (2009) A Fully Homomorphic Encryption Scheme, unpublished thesis 

(PhD), Stanford University. 

 

Gentry, C., Halvei, S. and Smart, N. P. (2015) Homomorphic Evaluation of the AES 

Circuit (Updated Implementation) [online], available: 

https://eprint.iacr.org/2012/099.pdf [accessed 04/05/2015]. 

 

Goh, E. (2003) Secure Indexes [online], available: 

http://crypto.stanford.edu/~eujin/papers/secureindex/secureindex.pdf 

[accessed 12/05/2015]. 

 

Goldreich, O. and Ostrovsky, R. (1992) Software Protection and Simulation on 

Oblivious RAMs [online], available: [accessed 08/05/2015]. 

 

Hahn, F. and Kerschbaum, F. (2014) Searchable Encryption with Secure and Efficient 

Updates [online], available: http://fkerschbaum.org/ccs14b.pdf [accessed 

13/09/2015]. 

 

Hashizume, K., Rosado, D. G., Fernández-Medina, E. and Fernandez, E. B. (2013) An 

analysis of security issues for cloud computing [online], available: 

https://eprint.iacr.org/2012/099.pdf
http://crypto.stanford.edu/~eujin/papers/secureindex/secureindex.pdf
http://fkerschbaum.org/ccs14b.pdf


 

178 
 

http://www.jisajournal.com/content/pdf/1869-0238-4-5.pdf [accessed 

14/09/2015]. 

 

ICO (2014) Monetary Penalty Notice: Ministry of Justice [online], available: 

https://ico.org.uk/media/action-weve-taken/mpns/2656/ministry-of-

justice-monetary-penalty-notice-26082014.pdf [accessed 14/09/2015]. 

 

ICO (2015) Monetary Penalty Notice: Staysure.co.uk Limited [online], available: 

https://ico.org.uk/media/action-weve-taken/mpns/1043368/staysure-

monetary-penalty-notice.pdf [accessed 14/09/2015]. 

 

Intermedia.net (2014) The Ex-Employee Menace [online], available: 

https://www.intermedia.net/Reports/RogueAccess [accessed 14/09/2015]. 

 

Kamara, S. (2013) How To Search On Encrypted Data [online], available: 

http://research.microsoft.com/en-

us/um/people/senyk/slides/encryptedsearch-full.pdf [accessed 

25/04/2015]. 

 

Kamara, S., Papamanthou, C. and Roeder, T. (2012) Dynamic Searchable Symmetric 

Encryption [online], available: https://eprint.iacr.org/2012/530.pdf 

[accessed 04/05/2015]. 

http://www.jisajournal.com/content/pdf/1869-0238-4-5.pdf
https://ico.org.uk/media/action-weve-taken/mpns/2656/ministry-of-justice-monetary-penalty-notice-26082014.pdf
https://ico.org.uk/media/action-weve-taken/mpns/2656/ministry-of-justice-monetary-penalty-notice-26082014.pdf
https://ico.org.uk/media/action-weve-taken/mpns/1043368/staysure-monetary-penalty-notice.pdf
https://ico.org.uk/media/action-weve-taken/mpns/1043368/staysure-monetary-penalty-notice.pdf
https://www.intermedia.net/Reports/RogueAccess
http://research.microsoft.com/en-us/um/people/senyk/slides/encryptedsearch-full.pdf
http://research.microsoft.com/en-us/um/people/senyk/slides/encryptedsearch-full.pdf
https://eprint.iacr.org/2012/530.pdf


 

179 
 

 

Kerris, N. and Muller, T. (2014) Apple Media Advisory - Update to Celebrity Photo 

Investigation [online], available: 

http://www.apple.com/pr/library/2014/09/02Apple-Media-Advisory.html 

[accessed 13/09/2014]. 

 

Levick.com (2015) DATA SECURITY & PRIVACY [online], available: 

http://levick.com/experience/specialty/data-security-privacy [accessed 

14/09/2015]. 

 

Luenberger, D. G. (2006) 'Information Science' in, Princeton, New Jersey: Princeton 

University Press, 284-300. 

 

Manning, C. D., Raghavan, P. and , S., H. (2008) Introduction to Information 

Retrieval, Cambridge, England: Cambridge University Press. 

 

Mather, T., Kumaraswamy, S. and Latif, S. (2009) Cloud Security and Privacy, 

California: O'Reilly. 

 

Nguyen, M., Chau, N., Jung, S. and Jung, S. (2014) A Demonstration of Malicious 

Insider Attacks inside 

http://www.apple.com/pr/library/2014/09/02Apple-Media-Advisory.html
http://levick.com/experience/specialty/data-security-privacy


 

180 
 

Cloud IaaS Vendor [online], available: http://www.ijiet.org/papers/455-F028.pdf 

[accessed 14/09/2015]. 

 

Oracle (2015a) Chapter 2. The Structure of the Java Virtual Machine [online], 

available: https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html 

[accessed 09/08/2015]. 

 

Oracle (2015b) Cipher [online], available: 

http://docs.oracle.com/javase/8/docs/api/javax/crypto/Cipher.html 

[accessed 09/08/2015]. 

 

Oracle (2015c) HashMap [online], available: 

https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html 

[accessed 09/08/2015]. 

 

Oracle (2015d) Mac [online], available: 

http://docs.oracle.com/javase/8/docs/api/javax/crypto/Mac.html [accessed 

09/08/2015]. 

 

Oracle (2015e) String [online], available: 

http://docs.oracle.com/javase/8/docs/api/java/lang/String.html [accessed 

09/08/2015]. 

http://www.ijiet.org/papers/455-F028.pdf
https://docs.oracle.com/javase/specs/jvms/se7/html/jvms-2.html
http://docs.oracle.com/javase/8/docs/api/javax/crypto/Cipher.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html
http://docs.oracle.com/javase/8/docs/api/javax/crypto/Mac.html
http://docs.oracle.com/javase/8/docs/api/java/lang/String.html


 

181 
 

 

OWASP (2013) Top 10 2013-A6-Sensitive Data Exposure [online], available: 

https://www.owasp.org/index.php/Top_10_2013-A6-

Sensitive_Data_Exposure [accessed 14/09/2015]. 

 

Rennie, J. (2008) The 20 Newsgroups Data Set [online], available: 

http://qwone.com/~jason/20Newsgroups/ [accessed 03/08/2015]. 

 

Shen, E., Shi, E. and Waters, B. (2008) Predicate Privacy in Encryption Systems 

[online], available: https://eprint.iacr.org/2008/536.pdf [accessed 

13/09/2015]. 

 

Song, D. X., Wagner, D. and Perrig, A. (2000) 'Practical Techniques For Searches On 

Encrypted Data', in Titsworth, F. M., ed., IEEE Symposium on Security and 

Privacy, 2000, Berkeley, California, 14-17 May 2000, Washington, D.C.: IEEE 

Computer Society, 44-55. 

 

Sony (2014) Message for current and former Sony Pictures employees and 

dependants, and for production employees [online], available: 

http://www.sonypictures.com/corp/notification/SPE_Cyber_Notification.pd

f?#zoom=100 [accessed 13/09/2014]. 

 

https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
https://www.owasp.org/index.php/Top_10_2013-A6-Sensitive_Data_Exposure
http://qwone.com/~jason/20Newsgroups/
https://eprint.iacr.org/2008/536.pdf
http://www.sonypictures.com/corp/notification/SPE_Cyber_Notification.pdf?#zoom=100
http://www.sonypictures.com/corp/notification/SPE_Cyber_Notification.pdf?#zoom=100


 

182 
 

Stallings, W. (2014) Cryptography and Network Security: Principles And Practices, 

New Jersey: Pearson Education. 

 

Stefanov, E., Papamanthou, C. and Shi, E. (2013) Practical Dynamic Searchable 

Encryption 

with Small Leakage [online], available: https://eprint.iacr.org/2013/832.pdf 

[accessed 13/09/2015]. 

 

Van Liesdonk, P., Sedghi, S., Doumen, J., Hartel, P. and Jonker, J. (2010) 

'Computationally Efficient Searchable Symmetric Encryption', in Jonker, W. 

and Petković, M., eds., Proceedings of the 7th VLDB conference on Secure 

data management, Singapore, Springer, 87-100. 

 

Zhang, Y., Reiter, M. K., Juels, A. and Ristenpart, T. (2012) Cross-VM Side Channels 

and Their Use to Extract 

Private Keys [online], available: 

http://www.cs.unc.edu/~reiter/papers/2012/CCS.pdf [accessed 13/09/2015]. 

 

 

https://eprint.iacr.org/2013/832.pdf
http://www.cs.unc.edu/~reiter/papers/2012/CCS.pdf

