— = Institivid Letterkenny
Teicneolaiochta i
l lt Le loc Institute
% Leitir Ceanainn of Technology

Computing Department, Letterkenny Institute of Technology, Port Road, Letterkenny, Co.
Donegal, Ireland.

A comparison between Cloud Solutions with focus
on DevOps tooling

Author: Marcelo Rodrigues Costa
Supervised by: Ruth Lennon

A thesis presented for the award of Master of Science in
Computing in Enterprise Application Development

Submitted to Quality and Qualifications Ireland (QQI) May 2015

Declaration

| hereby certify that the material, which | now submit for assessment on the
programmes of study leading to the award of Master of Science in Computing in
Enterprise Application Development, is entirely my own work and has not been taken
from the work of others except to the extent that such work has been cited and
acknowledged within the text of my own work. No portion of the work contained in this
thesis has been submitted in support of an application for another degree or

qualification to this or any other institution.

Signature of candidate: Date:

Acknowledgements

| dedicate this work to my beloved wife Ana Karolina who was kind, patient and
supported me during my absence and many sleepless nights. To my son Heitor, my
daughter Anabela, my family in Brazil: my brother Bruno, his wife Beatriz, my niece
Cecilia, my sister Larissa, her fiance Hiury and, specially my parents: Paulo and Ozelia,
for believing and investing so much in me, | am truly glad to know that, despite the

distance, they are proud of me and doing well.

A Special thanks to Marcelo Beckmann for assisting me with my academic research.
Thanks to Pramerica Systems Ireland for letting me be part of an amazing team of
Systems Engineers for two wonderful years in Donegal, also thanks for bringing me and
my family to this country where | found so many interesting opportunities. Thanks to
IBM, my current employer, which gives me a dynamic work environment where | learn

something new every single day.

| would also like to express my deepest appreciation to my advisor Ruth Lennon, who
guided me through this difficult, yet, enlightening path to produce this research and
open doors to ambitious opportunities, thanks to my other lecturers: Mark Leeney,
William Farrelly, Gerard McCloskey and Thomas D Devine. Thanks to Dr. Averil
Meehan for her brief, yet brilliant, talk about memory management in the Java Virtual
Machine. Many thanks to Thomas Dowling for the amazing opportunity to study in this
institution, LYIT is a great learning environment and it expanded my academic

knowledge in ways | never thought would be possible.

Abstract

The DevOps philosophy keeps gaining popularity due to its practices that allow
companies to quickly deliver software changes to their customers. Along with this
advent, Cloud Solutions continue to expand their customer base for
Infrastructure-As-A-Service (laaS) and Platform-As-A-Service (PaaS) offerings. The
amalgamation of these two concepts result in an opportunity to significantly reduce the
risks of managing the integration and delivery processes involved in the Software
Development Life Cycle, by relying on agile practices and the abstraction of complex

infrastructure elements.

This study illustrates how a Cloud-based DevOps environment can bring benefits to
Enterprise level development teams through the comparison of two Cloud solutions:
Google Cloud Platform and IBM Bluemix, by assembling a Deployment Pipeline on

each one and exploring additional features that support DevOps tooling.

Keywords: Cloud, DevOps, Continuous Integration, Continuous Delivery, Google,
Google Cloud, IBM, IBM Bluemix, laaS, PaaS, Agile, Cloud Computing.

1.

N o

Contents

Acknowledgements

Abstract
Contents

Introduction

1.1.
1.2.

Brief overview of DevOps.
Cloud Solutions.

Literature Survey

2.1. The relevance of DevOps and Cloud Solutions

2.2. Security considerations for DevOps practices in the
Cloud

2.3. Continuous Integration in the Cloud

2.4. Continuous Delivery in the Cloud

2.5. Comparison of Cloud Solutions from the DevOps
perspective

Methodology

3.1. The evaluation framework - DOMICloud
3.1.1. The DOMICloud Scorecard

3.2. The Deployment Pipeline

Results

4.1. Interacting with Google Cloud Platform

4.2. Google Cloud as a DevOps services provider

4.3. Interacting with IBM Bluemix

4.4. IBM Bluemix as a DevOps services provider

Conclusions

5.1. Context

5.2. Theresult

5.3. Challenging old paradigms

5.4. Limitations

5.5. Final Considerations

Bibliography

Appendices

A. Continuous Integration

B. Continuous Delivery

C. Building a Deployment Pipeline with Google Cloud
Platform

D. Building a Deployment Pipeline with IBM Bluemix

E. Combined DOMICloud Scorecard

iv

11
13
19
21
23
28
28
34
35
42
44
44
45
46
46
48
49
53
53
55

56
77
98

1. Introduction

This research focuses on the evaluation of two different services from the point of
view of productivity, such services allow the user to interact with the
infrastructure of the companies that offer them so they can create their own
solutions to run in the "cloud", which means, the infrastructure is abstracted to
the end-user and they can focus on the development of their application and
generating value to their customers. However, even by abstracting most of the
non-functional elements, that, as Mark Cade, et al. (2010, p.20) describe, are
comprised by "performance, scalability, reliability, availability, extensibility,
maintainability, manageability, and security", developing the software itself with
the functional requirements also presents its challenges and it is pointless to
have a mature reliable infrastructure if the application itself is susceptible to
failures and the process to deliver code changes is not efficient.

Based on this context, this research analyzes two main points: Cloud Solutions
and DevOps tools, with focus on two specific options: Google Cloud Platform and
IBM Bluemix, so, to proceed with the research, it is necessary to understand
what is DevOps and review some concepts involving Cloud-based services.

1.1. Brief Overview of DevOps

Strongly aligned with Lean and Agile concepts, DevOps is an idea that involves
cultural changes to break "silos", which means, eliminate red tape barriers
between teams in the IT Department and allow more collaboration that results in
more effective and efficient processes, this collaboration supports practices to
integrate and deliver software through automation. Enterprise level applications
might be comprised of dozens of components and, even with the abstraction of
many complex services that mature commercial middleware offers, such as,
Transaction Management, Messaging or Secure communication through
Cryptography, a single failure on the application side might affect the entire
orchestration of a critical use case, assuming a reliable architecture, this failure
can only happen due to some code that is committed to the Source Control
Management (SCM) system that is not properly tested, or some component that
is erroneously deployed to a "Production environment" through manual tasks and
it is missing some dependencies, which could be another artifact or some
configuration that was not applied correctly, the solution for such scenarios is a
combination of two practices known as Continuous Integration (CI) and
Continuous Delivery (CD).

1.2. Cloud Solutions

Cloud computing is leveraged in the IT Industry due to its power to handle high
demand requests and the abstraction of the low-level architectural components,
such as Servers, Network configuration and Load Balancing tools, with different
subscription models, users can benefit from Cloud Solutions to achieve more
reliable and cost-effective services. To mention some of the popular Cloud
Solutions found in the market: DropBox provides storage in the Cloud, Google
Application Engine allows the users to deploy Web applications written in Java or
Python to a high-available and scalable application server, Amazon EC2
provides a self-service Virtual Machine provisioning platform, Microsoft Azure
also allows the users to deploy Web Application to an Application Server
instance that is hosted in the Cloud; these services and vendors might be slightly
different but they are all trying to help their users by relieving the burden of
dealing with the actual infrastructure and the complexity associated to it.

These Cloud services are categorized as Infrastructure-As-A-Service (laaS),
Platform-As-A-Service (PaaS) and Software-As-A-Service (SaaS). Starting from
the most low-level option: laaS provides Virtual Machines, storage and a network
that is fully configured to connect and manage each one of these servers, in
other words, a set of Infrastructure components that are available to the end-user
without exposing all the details about the actual architecture, including the
automated provisioning underneath the administration control panel. A PaaS
system raises the level of abstraction by providing a mechanism for the user to
deploy any Web Application and rely on the hosting Platform to respond to the
clients demand, it reacts automatically to guarantee non-functional requirements
like scalability, availability and security. The last cloud service category, SaasS, is
basically a fully-developed Web Application that offers some value for the end
user whereas all its internal configuration and architecture details are completely
abstracted, the user usually pays some subscription fee and consumes the
services provided by the application without any access to backend services like
Application Servers, Storage and Databases.

The adoption of Cloud Solutions should, depending on the proper evaluation of
the options mentioned above, eliminate most of the requirements of an ideal
“Operations” criteria, but not all of them. The application that is deployed to the
Cloud still dictates some of the guidelines of its own maintainability. The
developers should not abstract the tasks that will be performed against the
application once it is already deployed. The Development and the Operations
team need to collaborate so the application can be designed with these

2

considerations in mind, unfortunately, it is not always the case, as Thomas A.
Limoncelli (2014, p.31) mentions, “This is in contrast to strategies where
operations is an after-thought and operations engineers are forced into a position
of ‘running what other people build’. That’s the outdated way”.

By leveraging Cloud Solutions, most of the Operations objectives of the
application can be achieved with the PaaS solutions available in the market, such
solutions accommodate capabilities like Monitoring, Graceful degradation,
Redundancy and Software upgrades.

In this research, two Cloud Solutions were analyzed from the DevOps
perspective, an evaluation framework was elaborated to guide the comparison
and evidence which one presents the most ideal set of non-siloed tools and
services for Continuous Integration (Cl) and Continuous Delivery (CD). The
author verified the interfaces provided to interact with the solutions’ components,
ran an experiment involving the creation of a Deployment Pipeline by leveraging
both PaaS and laaS elements of each Cloud solution, deployed a sample
application and changed its code to simulate a Development environment.
Additional features like monitoring and bug tracking were also verified to check if
the solutions facilitate tasks that fall in the scope of an Operations team.

This research aims to answer the following question: “Which Cloud Solution
offers the best tooling for the support of DevOps?”.

2. Literature Survey

Cloud services can be presented through different components: Software,
Platform and Infrastructure, all these services can be leveraged to facilitate the
process of developing software, to name a few examples: a secure bug tracking
system can keep all the users stories in the Cloud in a cost-effective way, a
scalable Web Application that receives thousands of requests every day or even
a reliable Cloud Storage that can be used by another application to host a large
set of documents, for such services, different Key Performance Indicators (KPls)
can be defined to create evaluation frameworks that help users decide which
vendor provides the best Cloud Solution that is more aligned with their needs.

In a scenario where the Software evolves, it is necessary to make sure that the
integration of the components of the end product and its delivery to the
customers happen in a smooth way. There are other relevant points beyond the
abstraction of non-functional requirements that the Cloud offers, the tools offered
by each Cloud Solution can also be evaluated to verify how a development
environment can be assembled and how the changes can be integrated and
delivered effectively and efficiently, such tools must be aligned with DevOps
practices.

Cloud-Based solutions that can align their offerings with DevOps practices have
not been widely explored and, based on the advantages of such combination,
this is a valuable information for the IT industry. Such Cloud Solutions need to be
properly evaluated from the DevOps optic to gather a better understanding of
which features would be a better fit to hire a service that supports a
highly-productive Software Development Life Cycle (SDLC).

2.1. The relevance of DevOps and Cloud Solutions

DevOps introduces a new paradigm towards efficient Software Delivery
Life-Cycle (SDLC), according to Thomas A. Limoncelli (2014, p.172): “DevOps is
an emerging field in operations. The practice of DevOps typically appears in web
application and cloud environments, but its influence is spreading to all parts of
all industries”, whereas cloud solutions continue to evolve into a reliable
cost-effective set of services that can allow companies of different dimensions to
reduce on-premises assets, JIA Xiaojing (2010) says that "No doubt, cloud
computing is the most popular topic of the IT industry in 2009. Google, Amazon,
Yahoo and other Internet service providers, as well as IBM, Microsoft and other
IT companies have proposed their own cloud computing strategy”, therefore, the
amalgamation of both ideas is surely relevant to the IT Industry as it lets the team
focus more on the end product that they want to present to their customers, they
can achieve the right abstraction of non-functional requirements with the
assistance of Cloud Services and high-quality stable builds and deployments
produced by DevOps practices and tools.

To reinforce how wide the scope of DevOps is, Soon K. Bang, et al. (2013)
define the idea as "a combination of development and operations” and it is stated
that “’diverse stakeholders are involved in DevOps, including business analysts,
software developers, software testers, and quality assurance personnel for
development, and system administrators, database administrators, network
administrators, web masters, and security officers for operations”, this
emphasizes how valuable cloud-based DevOps services can be for an
organization, with the right set of tools, they can be leveraged throughout
different departments.

Cloud Solutions’ offerings grow substantially and opportunities arise to leverage
them to improve the Quality of Service (QoS) of existing applications, to illustrate
the benefits of the Cloud adoption, Daniel Cukier (2013, p.1) describes how he
successfully moved a Web Application to a Cloud infrastructure and connected
other cloud-based services to improve the non-functional aspects like storage,
email, load balancing and enhancing the ease of Operations responsibilities:
"Today, we are running using more than 20 virtual servers. We use memcached
servers to store user browser session data, Amazon S3 to store products photos
and static assets.”, he even mentions some adoption of DevOps practices: “"We
have a test and staging environment with continuous integration and deployment
software”, however, without further details about the configuration of this
development and staging environments.

In his article, he presents the rationale of each decision involving the Cloud
Services they have chosen to solve a specific problem. They developed a “HTML
as a Service” system that allows their users to interact, in an automated fashion,
with the Brazilian Post Office website and retrieve a posting code through
Selenium operations that run in background, although that seems to be more
involved with a functional requirement than with the development of the
application itself, automation is a very important practice within the DevOps
paradigm.

There are a few “patterns” he illustrates that do not really touch the main
characteristics of DevOps (Continuous Integration and Continuous Delivery),
reinforcing the need for more studies involving DevOps services in the cloud.
Instead of describing patterns to leverage DevOps tooling to improve the
Software Development process, he presents the chosen Cloud services based
on specific needs involving the application use cases: files storage, messaging
queue, PaaS and email. It demonstrates that the application’s use-cases were
improved, not only by the Cloud services themselves, but the smooth integration
and automated deployment that is supported by such services. The DevOps
elements could have been more emphasized considering the title of the article.
One other pattern described in his article, “Load Balancing Application Server
with memcached user sessions”, presented a good practice for a distributed
architecture, which is to store user sessions’ data in a way that makes the
application redeployment more resilient. This idea connects really well with
Continuous Delivery since it prevents any disruption of service and allows more
automation on the deployment side.

The last patterns discussed in Daniel's article focus on both Logging and
Monitoring, which is also one of the pillars of DevOps, Juan F. Pérez, et al.
(2105, p.1) describe how important is the visualization of the application’s data
from the DevOps perspective: “Recent years have seen the rise of the DevOps
approach for software development, which aims at closing the gap between
development and operations, providing timely feedback to the application
developer to speed-up the development cycle.”. The collaboration results in
greater knowledge sharing involving the application and the infrastructure
requirements. Several examples of Real User Monitoring solutions are
presented, for example, Zabbix, Statsd and Pingdom, all these recommendations
are valuable pieces of information when it comes to assemble a DevOps-focused
development environment.

The author agrees with the statement from Daniel Cukier’s conclusion (2013,
p.10) where it is mentioned that he “did not cover very important topics like
continuous delivery, deployment, configuration management, software quality
process and tests. These are some issues that could complement this catalog to

form a Pattern Language with DevOps practices to scale web-based business
using the cloud.”, however, from the scalability point of view the selected services
serve as a good reference for the integration of existing on-premises applications
with Cloud solutions.

2.2. Security considerations for DevOps practices in the Cloud

Security is also a fundamental concern that is mostly handled within the
Operations scope, however, the idea of introducing DevOps to the enterprise
software development process revolves around the elimination of the “silos”
between teams, security engineers and developers must work together to share
knowledge and solve technical debts on both sides to achieve a cooperation that
results in changes that will not affect the stability of the system and keep the
compliances involving security.

To illustrate some of the security concerns and elaborate how they are handled
within enterprise-level vendors, the author analyzed the issues presented by
cloud services that were built on top of Open Source systems. According to Rao
(2003), in her white paper for the SANS Institute, the usage of open source
software for enterprise requirements is associated with risks because it presents
“‘Absence of meticulous evaluation”, “Spurious open source” and “Lack of
sponsorship”. Once the open source system is used as a foundation for the
elaboration of a larger proprietary solution, it expected that the companies behind
such development should mitigate the risks by setting the appropriate security
policies within the elements of the infrastructure and verify the source code for
any Common Vulnerabilities and Exposures (CVE), reducing, this way, the risks
introduced to enterprise level applications.

The creation of a cloud-based Deployment Pipeline can be aligned with security
standards, such as, the Payment Card Industry (PCl), through the introduction of
measures like: strict authorization and authentication management solutions to
handle multi-tenant component, firewall configuration of the elements hosted in
the cloud and even encryption mechanisms for the customer data. Some Cloud
Solutions also offer “Private Cloud” environments that would still present the
benefits of the abstraction of infrastructure elements and allow the provisioning of
the DevOps tools. The usage of fictitious data in the development pipeline is also
an option for mitigate the friction of introducing any changes to the application,
this is one alternative that can be leveraged but different solutions can always be
implemented as knowledge sharing and experimentation for continuous
improvement are some of the pillars of the DevOps paradigm, although the
cultural change and collaboration between teams must be discussed to drive this
initiative in an enterprise-level environment.

2.3. Continuous Integration in the Cloud

Continuous Integration or Cl is the practice of having a centralized place for
testing and building Software artifacts, eliminating any inconsistencies associated
with builds that are produced in a developer's machine, many PaaS solutions
offer a “Push-to-Deploy” service that automatically deploys the application
package to an Application Server once the code is committed to the source-code
repository (such service is used in cloud platforms like Google Application
Engine, IBM Bluemix and Heroku), this exercise of Continuous Integration is very
aligned with the adoption of Cloud Services as it relies on an abstraction of the
infrastructure associated with the source-code repository, the build machine and
the Application Server to where the application is deployed, some of these
solutions even offer a Development Pipeline, which not only trigger the
deployment “on demand” but also allow the user to set up a scheduled build to
increase the quality of the software through constant testing and verification of its
use-cases.

The biggest advantages of implementing CI in the Cloud are related to the
availability of the build servers and, specially, the scalability of them, Gopularam,
et al. (2012, p.4) illustrate an interesting experiment in their article where they
demonstrate how to run a high amount of test cases in a shorter time-frame by
introducing more Virtual Machines to share the workload of the Selenium tests,
they state the following: “The time taken gradually decreases with addition of a
greater number of testbeds. The time taken for running 324 Firefox test cases is
54 minutes with 10 testbeds and where as it is 15 minutes with 30 testbeds.”, this
reveals the advantage of the combination of Cloud Computing and DevOps
practices.

60

50 -

40 -

30 4 e 1() WM 5
20 VMs

20 / e 30 VM 5

45 130 324

Figure 2.1. Test cases executed with multiple VMs.

Another concept that was absorbed during this research concerns the abstraction
of the additional components required for proper Continuous Integration tests,
assuming that a given functionality relies on a virtual machine, a database or a
Lightweight Directory Access Protocol (LDAP) server, it is interesting to design
the Cloud-Based solution so it will base the provision of such components on the
Topology and Orchestration Specification for Cloud Applications (TOSCA), which
basically turns them into “service topologies”. According to Johannes Wettinger,
et al. (2012, p.4): “The result is a self-contained, portable, and executable service
model that can be used to deploy and manage service instances in the Cloud ”,
the author also checks if the cloud platforms evaluated in this research follow
such concept.

With such specification, it is reinforced the abstraction of the infrastructure and
focus on the interaction between each entity within the Cloud-Based Solution,
always considering services as opposed to nodes. Following the same paradigm,
it is possible to leverage the elasticity of the build server and seize the
opportunity to “fan out” the workload of the Unit and Ul testing to different “slave”
machines that can build and test the desired Software.

2.4. Continuous Delivery in the Cloud

Continuous Delivery or CD can be translated as Automated Deployment that
comprises all the dependencies and settings required for a given application to
produce value to its end-users, it follows the paradigm of “Infrastructure as Code”
so it facilitates the consistency between different environments since the
application is deployed against a topology whose nodes are provisioned
programmatically.

Another article from Johannes Wettinger, et al. (2013, p.1) focus on both DevOps
and Cloud services, describing the motivation and elaboration of a framework to
perform automated deployment of the application utilizing DevOps tools: Chef
and Puppet, to install the required middlewares of the application, which implies
a preference for the usage of laaS over PaaS because they are "geared towards
deploying whole application stacks in Virtual Machine images (VMs), following
the laaS model that has been dominant in the Cloud service market”, this leads
to a discussion involving the tread-off of abstracting the infrastructure
configuration, PaaS solutions are indicated if the application does not require a
high level of customization on the Operational System (OS) or the Application
Server side, laaS allows the user to perform more low-level changes specific to
the application, however, if the PaaS Solution allows the user to apply such
configurations without compromising the factor of low complexity and
auto-scalability, it should be the preferable option.

Other articles present interesting opinions around the Cloud Services evaluated
in this research, on his paper, Tudor Alexandru (2014, p.19) talks about some
peculiarities of PaaS and specifically mentions some details about Google
Application Engine, unlike Daniel Cukier, he advocates the adoption of laaS over
PaaS by exemplifying that "the application code must conform to specific APIs.
Google App Engine, one of the most successful products in this setting, supports
only applications written in Java and Python and in the Java code, threads are
not allowed", this raises some awareness involving the limitations that are
introduced by the PaaS Application Servers.

The advantage of laaS over PaaS, considering the level of flexibility, is very
clear, however, it should be a requirement for enterprise level applications with
specific points of complexity. In this research, laaS is leveraged purely to enable
the Continuous Integration environment, assembling Jenkins and Selenium Hub
Virtual Machines, and only when this is necessary, in IBM BlueMix, per instance,
Jenkins is made available through Software-As-A-Service (SaaS), so, it works for
the conventional Continuous Integration scenario to assemble a Development
pipeline, on top of that, BlueMix was built on top of Cloud Foundry, which is an

10

open-source technology that works with multiple laaS back-ends, it is very
flexible and facilitates the configuration of different technology stacks (NodedS,
Java, Python, Ruby), it is also extensible and allows the user to customize the
configuration of the Application Server hosted in the cloud.

2.5. Comparison of Cloud Solutions from the DevOps Perspective

The research within this specific perspective did not result in many articles,
among the few articles that were gathered, the one that better connects the
previously-mentioned topics (DevOps and Cloud Solutions), was written by
Daniel Cukier but, as it was stated in his own conclusion, there were important
topics associated with Continuous Integration and Continuous Delivery that were
not addressed in his research, he presented many Cloud Services that were
connected to his application along with alternatives, resulting in an interesting
case study that also presents multiple candidates for a successful Cloud
integration. However, while focusing on the comparison of different Cloud
Solutions, Saurabh Kumar Garg, et al. (2013, p.2) state that: “it is not sufficient to
just discover multiple Cloud services but it is also important to evaluate which is
the most suitable Cloud service. In this context, the Cloud Service Measurement
Index Consortium (CSMIC) has identified metrics that are combined in the form
of the Service Measurement Index (SMI), offering comparative evaluation of
Cloud services”, the article documents the creation of a framework named as
Service Measurement Index for the Cloud (SMICloud), which evaluates Cloud
Solutions based on metrics and criteria that focus on Service Level Agreement
(SLA), the measurement index is a pragmatic approach to analyze and compare
services, once it is provided as a framework, it helps the user to properly
evaluate services so the right decision can be made.

The comparison of Cloud Solutions is also explored in a white paper published
by Chris Haddad (2011, p.5), where he even mentions the “DevOps Tooling” as
one of the criteria for the evaluation of the best vendor for Cloud Services, he
elaborates some of the characteristics of DevOps tools in the following way:
“‘PaaS offerings often support DevOps practices, which include self-service,
automated provisioning, continuous integration, and continuous delivery”, these
practices act like valuable criteria points to indicate which Cloud Solution can
provide services that facilitates user operations.

The approach selected by Saurabh Kumar Garg, et al. is very interesting as itis
based on an actual consortium that received support from CA Technologies,
Accenture and universities like University of Melbourne and City University
London; the Cloud Services Measurement Initiative Consortium (CSMIC)
separates their evaluation points in the following topics: Accountability, Agility,

11

Assurance, Financial, Security and Privacy, Performance and Usability. In
addition to that, the criteria selected by Haddad covers the DevOps tooling and
the basic Cloud characteristics, the characteristics are documented by the
National Institute of Standards and Technology, also known as NIST (2012), they
are: On-demand self-service, Broad network access, Resource pooling, Rapid
elasticity and Measured service; this list presents a good set of capabilities for
Cloud Solutions. The objective of this research is to use such evaluation
frameworks as a reference and adjust its criteria to achieve a method that can
verify which solution offers the tools that best align with the DevOps paradigm.

12

3. Methodology

The main goals of this research are the successful configuration of a Deployment
Pipeline on both Cloud platforms and the analysis of the capabilities for
comparison purposes. This experiment answers the following questions related
to the Cloud Solutions under analysis:

e Which one contains the best set of offerings to build and test a Web
Application?

e Which one provides the best set of tools to help the user to quickly deliver
a change to a Production environment without affecting the quality of the
application?

e Which one offers the best set of monitoring tools to support decisions
involving additional changes and operations?

e Which one has the best set of components to assemble a Deployment
Pipeline, including testing tools and laaS elements, such as virtual
machines?

e Which one presents a cost-effective model to provision a Deployment
Pipeline and Virtual Machines?

The purpose of this research is to analyze Cloud Solutions and point out which
one would provide appropriate features to achieve better integration with DevOps
practices. For this analysis, two of these solutions were chosen: Google Cloud
Platform, that allows you to “build and run applications on Google's infrastructure”
(Google, 2014), and IBM Bluemix, whose main objective is to “simplify the
delivery of an application by providing services that are ready for immediate use
and hosting capabilities to enable internal scale development” (IBM, 2014).

IBM Bluemix should present an advantage over Google Cloud Platform due to its
awareness of the modern needs of Software Development and its strong
offerings involving DevOps services.

Through this research, a couple of evaluation frameworks and scorecards were
mapped to be used as reference to the comparison between these two Cloud
Solutions, the author deploys a sample application through the pipeline and
verifies several points of the Software Development Life-Cycle, considering the
DevOps tooling of both Google Cloud Platform and IBM Bluemix.

The results of this research should present a tangible example of how to explore
the features of such PaaS solutions and point the one that stands out among the
evaluated options.

The selection of these two specific solutions was based on key similarities, such
as, the strong brands associated with both solutions (Google and IBM), the

13

the DevOps alignment presented by both companies and the focus on their Java
Enterprise Edition PaaS offerings: Google Application Engine started with
Python but, a year later, Google met the demand from Java developers and
released a version of GAE for Java, whereas IBM Bluemix was released with a
Websphere Liberty Profile option among its supported technologies.

There are other strong candidates that could have been included in this research:
Microsoft Azure, Salesforce, Amazon Beanstalk, Heroku (Which was acquired by
Salesforce in 2010) and Red Hat's OpenShift, all these Cloud Solutions are
associated with industry leaders and were adopted by a substantial number of
users, they can be found the latest Gartner's Magic Quadrant reports (Figures
3.1 and 3.2) for laaS (Gartner, 2014) and PaaS (Cloud Computing, 2014). Some
of them do not show up in both quadrants as they are focused exclusively on the
PaaS Model, which is the case of the Salesforce solution. The other ones fall in a
different category of Cloud Solutions that allow the users to leverage both laaS
and PaaS offerings.

Amazon Web Services

@ Microsoft
o CenturyLink
Rackspace o
Virtustream (@)) @ 18M (SoftLayer)
Verizon Terremark
@ Google
Dimension Data (@) VMware
Joyent @ @ Fujitsu
Gocrid @ @

ABILITY TO EXECUTE

Figure 3.1. Gartner’s Magic Quadrant for laaS 2014, (Gartner, 2014).

14

salesforce.com o

Microsoft
Google o @

Engine Yardo
CloudBees
NTT Cummunicationso °

Progress

Mendixo o Software AG
cluudCOntrulo o SAP
Red Hat
e 00 @By

O Docker MIOsoft

AppPoint Software Sulutionso Indra gnubila
CenturyLink-Tier 3‘ o Wso02

ABILITY TO EXECUTE

COMPLETENESS OF VISION As of January 2014

Figure 3.2. Gartner’s Magic Quadrant for PaaS 2014 (Gartner, 2014).

Google Cloud Platform was selected due to its popularity, which is mostly
concentrated on Google Application Engine. This PaaS Solution has been in the
market since 2008 and it attracted users from multidimensional companies, it is
among the fastest and cheapest options according to online cloud comparison
articles. Peter Wayner (Computerworld, 2014) conducts a benchmarking
exercise with Virtual Machines provided by three different Cloud Solutions:
Amazon EC2, Google Compute Engine and Microsoft Azure, this exercise was
performed with the DaCapo benchmarks, elaborated by Stephen M Blackburn, et
al. (2006, p.1), which is “a set of general purpose, realistic, freely available Java
applications” elaborated by the Open-Source community, in the ComputerWorld
article, this benchmark approach is used to run instances of Java Virtual
Machines in the cloud-provisioned machines, among the description of the
results it was stated that “a Google machine had the fastest time in 13 of the 14
tests. A Windows Azure machine had the fastest time in only one of the
benchmarks. Amazon was never the fastest.”, another section describes the
results based on the pricing criteria in the following way: “A Google machine was
the cheapest option in eight of the 14 tests. A Windows Azure instance was
cheapest in five tests. An Amazon machine was the cheapest in only one of the
tests.”, although Google Cloud Platform have not been pointed as the top-leader
in Gartner’s Magic Quadrant for laaS or PaaS, such analyses reinforce how it still
presents itself as a strong candidate in the Cloud Computing world.

15

In the DevOps perspective, Google has also adopted and established
Continuous Integration and Continuous Delivery practices within the Company,
their Engineering Director (Melody Meckfessel 2014) stated the following: “we do,
internally, each day: 800 thousand builds, 2 Petabytes of build outputs, 100
Million Test Cases and 30 thousand Changelists; the rate of code generation, it's
not about the number of changes, I'm trying to indicate how quickly the iteration
cycle could be and how fast, for me, my mission is how fast | can make it for an
engineer to take that idea and get it out reliably to the user community”. The
same paradigm is applied to their l1aaS and PaaS offerings, Google Cloud
Platform offers a Release Pipeline that automates builds, test and deployment
operations. They also offer a monitoring feature to accelerate the troubleshooting
and the act of resuming the correct state of the application and the services
supply for end-users.

Google Cloud Platform also offers Cloud services associated with Big Data, in his
article, Stefano Bellasio (Cloud Academy, 2014) says that “today Google has
some of the most advanced labs in the world about data mining, machine
learning and, of course, Artificial Intelligence”. Based on the potential of Big Data
services, Google Cloud tends to reach higher ranks in the overall evaluation of
Cloud Solutions and gain a wider market adoption. The collection of large
amounts of data is particularly interesting if leveraged to improve the interaction
with the infrastructure by learning more about anomalies such as network
outages or slowness. This can be achieved by parsing log entries, the
improvement of services through knowledge sharing and monitoring is aligned
with DevOps practices.

IBM Bluemix is one of the latest Cloud Solutions introduced in the market (it was
released in February 2014), it was strongly advertised as “a set of DevOps
services”, Jason Verge (Datacenterknowledge, 2014) presents Bluemix as a
solution “based on IBM’s Open Cloud Architecture and Cloud Foundry, with
SoftLayer acting as the underpinning of the platform. Bluemix provides DevOps
in the cloud. After selecting a variety of open source technologies and back-ends,
Bluemix provisions the entire environment in the cloud”, this association with the
DevOps practices makes the Cloud Solution the perfect candidate for this
research.

In Bluemix PaaS, Java applications are deployed to the Websphere Liberty
Profile runtime. Liberty is a lightweight Java Application Server that is easily
configured and allows Java applications to be deployed seamlessly. According to
Alex Mulholland’s article (DeveloperWorks, 2014), Liberty Profile is the ideal
Application Server to host Cloud applications, she mentioned that “The Liberty
runtime is available through the Liberty build-pack, which can automatically bind
your application to many of the Bluemix services, so they are quick and easy to

16

use.”. This easy decoupling of components facilitates the usage of such
Application Server. Bluemix is built on top of Cloud Foundry, the open-source
PaaS Solution, it provides an abstraction of runtime engines and it can
accommodate all technologies (Java, PHP, Python, Ruby, Node JS), it also work
with custom “buildpacks” that allow the developers to package the entire
application server and push it to the Cloud, increasing the flexibility of the Cloud
offerings.

Microsoft's Azure was pointed as one of the top choices in Gartner's Magic
Quadrant for both laaS and PaaS in 2014 (as seen in Figures 3.1 and 3.2). Itis a
robust Cloud Solution that supports multiple technologies and even offers a
Continuous Integration pipeline in its Online Visual Studio management console.
According to Keith Mayer (Blogs.technet.com, 2014), Microsoft's Senior
Technical Evangelist, “Together with Microsoft Azure, Visual Studio Online
promotes a consistent, cloud-enabled approach to delivering reliable enterprise
solutions throughout all development and operations phases”. However, beyond
its wide adoption from .NET developers and Microsoft enthusiasts, Windows
Azure is still enhancing its Java support. According to one of Microsoft's News
from Central and Eastern Europe (Openness CEE, 2014): “Azul Systems, the
award-winning leader in Java runtime scalability and Microsoft have partnered
last year on a Windows distribution build of the community-driven open source
Java™ implementation, known as OpenJDK™, for Windows Server on the Azure
platform”, based on that the author decided to evaluate Google and IBM
solutions only.

Amazon Web Services (including its PaaS offering, Elastic Beanstalk, also
known as “EB”) is also among the leaders of laaS Solutions. However, AWS are
often associated with high investments and management overhead (decreases
the abstraction in its PaaS model and requires configuration of underlying
components like the Application Server and the Network). This complex
management aspects are not very aligned with the DevOps paradigm, so it is not
ideal for the objectives of this research.

Google Cloud Platform and IBM Bluemix present a cloud services model that
leverages both PaaS and laaS offerings: Bluemix has a special focus on its PaaS
Model with a wide variety of services in its catalogue, whereas Google offers
additional laaS provisioning options, such as Google Storage. Both companies
provide a solid and reliable infrastructure and, as per the practices mentioned
previously, are known DevOps evangelists, such similarities reinforce the
decision towards these two vendors.

In this research, the evaluation of Cloud Solutions’ DevOps Tooling is conducted
through 3 stages:

17

1) Deployment Pipeline

In order to empirically explore the offerings of each Cloud Solution from the
DevOps perspective, the author assembled a Deployment Pipeline (combining
Continuous Integration and Continuous Delivery concepts) in both Google Cloud
Platform and IBM Bluemix.

The application's code is subject to a Development Pipeline that performs Unit
Testing and produces continual builds to increase quality assurance (Continuous
Integration). The application is then deployed to its respective PaaS (Google
Application Engine, also known as GAE, or IBM Bluemix's Websphere
Application Server Liberty Profile) automatically. As part of the Continuous
Delivery evaluation, the source-code stream and versioning were configured to
properly identify the builds that, based on the automated testing against the
sample application's interface, became eligible for Production deployment, this
eligibility is set by Tagging builds.

Each Cloud Solution was also evaluated based on the flexibility of their
deployment mechanisms, security aspects and the presence of tools dedicated
to assist with Release Management and Defect Tracking.

2) Analysis of results

As discussed in the Literature Survey, there are two evaluation tools whose
format is aligned with the analysis proposed in this research. The first is the
framework created by Saurabh Kumar Garg, et al. (2013), based on the Cloud
Service Measurement Index Consortium (CSMIC), which was named as “Service
Measurement Index Cloud framework” (SMICloud). The second is the “PaaS
Scorecard” created by Chris Haddad (2011). Based on the criteria presented by
these tools, the author defined a set of capabilities to evaluate the components of
each Cloud Solution from the DevOps perspective, this set of capabilities
represent a new evaluation framework that is discussed in the next section of this
chapter.

3) Reporting
The report is composed of scorecards to illustrate the gathered metrics followed
by a description of results, strong facilitation points and challenges related to

specific capabilities, the last section is related to the overall conclusions.

In order to measure the qualitative capabilities, the author sets a specific score
for each of the DevOps capabilities on each Cloud Solution, similar to the “PaaS

18

Scorecard”, where Chris Haddad (2011) describe the process stating that “PaaS
offerings score high (10) when they are well integrated with preferred software
development life-cycle tooling across all application life-cycle phases. PaaS
offerings score low (1) when they deliver a disconnected and siloed design,
development, deployment, and management experience”. The author decided to
use this range for the scores (1-10), each capability will be classified according to
its level of compliance with the DevOps practices. Beyond the qualitative points,
the elapsed time to build and deploy the app should also be analyzed, including
the “Pricing” based on the projection of costs that is provided by each Cloud
Solution.

The data was obtained through empirical exercises with both Cloud Solutions,
the results are mostly based on a sampling approach involving a Java EE
Application, a substantial set of libraries and a relational database interaction.
The author performed multiple tests by delivering code changes through the
pipeline to check the performance of each operation that is carried out in the
Cloud environment.

3.1. The evaluation framework - DOMICloud

As mentioned previously, the approach for this research is to utilize two
already-existing evaluation tools as reference to create a new one that shall
focus on the DevOps components, these evaluation tools are: the “Service
Measurement Index Cloud framework” (SMICloud) and the “PaaS Scorecard”.

These tools were chosen because they contain a well-organized list of Key
Performance Indicators (KPIs) and were elaborated specifically for the evaluation
of Cloud Solutions, this is aligned with the concepts that are explored in this
research: DevOps and Cloud Solutions. By using these measurement indexes
and criteria categories as a reference, the author defined a new set of criteria
points based on the experiments conducted in both Cloud Platforms. It was
necessary to create a new framework because these two tools do not cover the
full scope of the elements being analyzed in this research, SMICloud analyzes
Cloud Solutions from the services point of view, without a more specialized
analysis of the DevOps aspects of the actual platform, whereas, the “PaaS
Scorecard”, although it presents some focus on DevOps, it is limited to the
aspects of PaaS solutions and disregards the laaS elements, it does not focus on
the evaluation of Cloud solutions from the point of view of both laaS and PaaS,
the white paper also does not present any details about how the evaluation data
were obtained from the cloud platforms.

The SMICloud is composed of Accountability, Agility, Assurance, Financial,
Security and Privacy, Performance and Usability; based on these points the
author mapped a set of qualitative and quantitative items, this set of capabilities

19

should be referred to, from now on, as DevOps Measurement Index for the
Cloud (DOMICloud) framework. Each item of the DOMICloud reflects one of
more items of the CSMIC, creating a layer of specialization that is more
DevOps-oriented, they are 6 items: Friendly, Simple, Automated, Operable,
Fast and Cost-Effective. Each item is listed below to illustrate how they are
correlated with the CSMIC categories, the list also includes a description of the
capability and the rationale behind the data gathering methods.

DOMICloud’s qualitative capabilities are comprised of the following items:

e Friendly

o

o

Description: Bootstrapping. The ease of subscribing to the Cloud
service and creating a simple application.

How can it be determined: The author describes his initial
experience with both Cloud Solutions and analyzes the
bootstrapping process based on the official documentation of each
vendor.

e Simple

o

Multiple offerings for similar objectives with different features, low
level of complexity involving the specific requirements to deploy on
the PaaS.

How can it be determined: By checking the effort to refactor the
sample application code according to the requirements of the PaaS
where it will be deployed, checking if the provisioning of services
does not present too many obstacles, identifying siloed
components.

e Automated

o

(@]

The set-up process of a Deployment Pipeline, create and bind
services with the application, create Virtual Machines automatically.
How can it be determined: By evaluating the creation of the
Deployment Pipeline and its dependencies based on the official
documentation and presents evidence to support which option has
more out-of-the-box Self-Service mechanisms.

e Operable

o

(¢]

Focused on Operations’ tasks, options within the Administration
Dashboard (Auditing and logs).

How can it be determined: By explores the features related to the
visualization of data produced by the Deployment Pipeline and the
application itself, considering scenarios of a simple release, log
analysis, PaaS monitoring and patch deployment.

e Cost-Effective

o

Good storage and services quotas even on basic packages, better
pricing.

20

o How can it be determined: By checking, at the end of the exercises
on both Cloud Platforms, the billing details presented on their
management console, analyzing and comparing the data to attest
which one offers the best investment based on DevOps tools.

Whereas one quantitative capabilities is defined as:

e Speed

o Description:

m Elapsed time to perform Deployment Pipeline operations:

commit
build

test

deploy

GUI Testing

m Elapsed time to:

Create PaaS Infrastructure for new applications
Provision Virtual Machine

o How can it be determined: By triggering the deployment through the
pipeline and taking note of the time spent on each transaction
(commit, build, test, deploy, GUI Testing); this can be mapped in
the Deployment Pipeline’s logs (Maven build logs). By verifying how
fast new applications and Virtual Machines are provisioned
verifying, when possible, the logs of the respective command line
utilities provided by each vendor.

These are the capabilities defined by the DOMICloud evaluation framework, it is
a framework to guide the evaluation of the DevOps offerings and interpret results
of empirical exercises with Cloud Solutions.

3.1.1. The DOMICloud Scorecard

The score utilized for the interaction with the tools of each platform, as described
previously, is based on the “PaaS Scorecard”, this method was elaborated to
classify the operations. For the specific comparison proposed in this research,
the evaluation plan is composed of the following interactions:

1. Subscribe to the service
2. Learn how to operate the management dashboard

21

3. Set up Command-Line Interface (CLI) utilities locally and prepare “off-line”
development environment through the configuration of a J2EE Application
Server and a local database instance

4. Adjust the settings of the sample web application to match the specific
requirements of the PaaS J2EE container

oo

Bind and configure a Cloud Database service
Create the Deployment Pipeline, making sure that the sample web

application is working as expected
7. Create Virtual Machines to set up Graphic User Interface (GUI) automated
tests and link it with the sequence of the steps within the pipeline

8. Evaluate additional

features offered by each platforms, such as:

Monitoring tools, logging and Bug Tracking solutions.

The author analyzed each these steps and took screenshots to gather evidence
of the results of each operation, the points granted to each operation are
classified from (1), for non-satisfactory criteria, to (10), for results aligned with the
DOMICloud capabilities, each classification is described in the table below.

No critical impact to any

Points | User Experience Technical Components
1-2 Complex. Not automated and involves excessive
configuration
This score is associated
with operations that | The platform does not provide any tool to
present a high level of | facilitate the configuration or provisioning of a
“friction”. They are not | given component of the application development
performed efficiently. lifecycle, the features associated with its
enhancement and maintainability are also
included in the classification, for example,
absence of Bug Tracking system among the
tools offered in the Cloud platform.
3-5 Sensitive. It is either partially automated or does not
offer orchestration with other components
Operations that introduce | The platform provides automated methods to
some complexity, either | install dependencies of a given component but
through non-intuitive or | not the component itself, there is still need for
unnecessary steps. manual interaction to achieve the objective. Per
instance: a component for GUI Tests that cannot
be linked to the good builds tagging.
6-7 Average. Automated but presents strictly limited

configuration.

The component can be automatically

22

interaction with the

provisioned and posses an interface to

interface or the | communicate with other components, however,
configuration of its | due to the nature of its automatic configuration,
services. it affects the objective of the overall automation,
per instance, a Jenkins VM that is automatically
provisioned but only runs a set of predefined
jobs.
8-10 Ideal Fully automated with ideal abstraction of

Very intuitive and helps
the user to achieve all
objectives efficiently and
effectively.

configuration.

The component is activated and all the basic
configuration is applied seamlessly, but the user
is still allowed to customize it and leverage its
features to improve the application development
lifecycle. For example: a Deployment Pipeline
that is created along with the application and is

still open to extensibility.

Table 3.1. DOMICloud Scores and their respective characteristics.
In order to perform all of these operations, the author allocated two weeks to set
up and verify the results on each Cloud Solution. That included assembling the
Deployment Pipeline and the configuration of the sample Web Application. All
steps are performed with constant consulting of the Google Cloud Platform and
IBM Bluemix official documentations.

Regarding the limitations of the methodology: the research conducted here was
performed with a limited financial investment, so the scalability aspects of the
Pipeline could not be explored as the computation of the activities incur in high
expenses.

3.2. The Deployment Pipeline

The pipeline is composed of steps that produce the application’s artifacts and
deliver them in a way that they can be consistently consumed by the end-users,
this consistency is achieved through testing and automation, tests should flag
any issues introduced by any change, stop the flow of the software delivery and
notify the team responsible for such change, the automation makes the
deployment less error-prone and accelerates the overall set of tasks, in
real-world scenarios, multiple environments are created to verify all these steps
and even perform some environment-specific operations to increase the quality
of the final version that is delivered to the end-users, to name some of these
environments.:

23

abhwp=

Development
Quality Assurance
Performance Testing
Staging

Production

The common practice is explained through the diagram below (Figure 3.3). The
initial environment (Environment 1) is the main development environment, its
pipeline might be executed every night, on demand or scheduled to run every N
hours. Normally, this environment’s pipeline is not associated with any manual
task and it must redeploy very often to make sure that each change can be safely
accommodated into the next part of the release, the steps are normally
comprised of:

1.

Build/Test: pulls the code from the GIT Source Control Management
(SCM) system, run static analysis, unit test and produce packages that
should be deployed.

Deploy: interact with the application server in order to install the application
so it will be available within that given environment.

Graphic User Interface (GUI) Test: automates the verification of the
application’s interface, along with its functionality, it is usually performed by
tools that automate operations in a browser, simulating users’ actions.

Tag Good Build: Once the changes are successfully processed by the
other steps of the pipeline, the practice is to either run a specific SCM
command should create a logical grouping of the code files (build tagging),
or just “tag” the actual artifacts produced by the build using some other tool
that manages such artifact.

Manual Tests: Human-based testing is required to ensure that the builds
are not being validated erroneously by some problem with the automation.
This is usually performed in other environments like Quality Assurance or
User Acceptance Tests. Multiple environments might exist to accommodate
this objective (ENVIRONMENT 1*N).

Load Tests: To ensure that the application will also operate consistently in
different performance scenarios, a set of tests introduce some work load to
the application so it can be monitored and produce reports that will help the
teams involved to make decisions regarding required changes, this should
indicate adjustments that need to be applied to the application or even
re-engineering of the architecture, there are different kinds of tests: Load
tests, Stress tests and Capacity tests. This kind of task can also be
performed in multiple environments, with different components and different
set of test cases (ENVIRONMENT 1*Z).

24

ENVIRONMENT 1

] o~y
& el 5
Build / Test Deploy GUI Test Tag Good Build
o

E: l Tag Good
=3 Build
4
QA Engineer

Continuous [:Laad Tests Tag Gors
Improvement Build

a

Available to
end-users

ENVIRONMENT 1°N

o

ENVIRONMENT 1*Z

ENVIRONMENT FINAL

Figure 3.3. Basic diagram illustrating pipelines in multiple environments.

There are alternatives that involve just a subset of these steps: some
development teams work with a simple pipeline that just produces the artifacts,
perform a manual deployment against a Test environment and then wait until the
QA team finishes their tests, verify the QA report. The application is then
deployed to the Production environment by documenting steps and delegating
the deployment to the “Operations” team, based on the requirements of the
release, several other teams also need to follow a set of steps to assist with the
deployment of the application (Network configuration, Database updates,
Application Server adjustments). This practice presents itself as an inefficient
approach for the following reasons:
° Presence of manual operations that can be automated (Tests,
configuration, deployment)
° Silos between teams
° Lack of environments to evaluate different kinds of tests and perform
adjustments

The Deployment Pipeline is in the center of the evaluation conducted in this
research, the author created a pipeline in both platforms to compare and contrast
the steps of the setup process and the tools associated with it considering the
capabilities described in the DOMICloud framework. For the purposes of this
research, the pipeline should contain the basic steps expected in a Development
environment (ENVIRONMENT 1): Build, Test, Deploy, GUI Test and Build
Tagging. The diagrams below illustrate the components of the pipelines created
in both platforms.

25

The Google Cloud Platform offers a “Release Pipeline” that automatically
provisions a subset of the required steps (build, test and deploy), however, due
to the lack of a GUI Testing service and to a compatibility problem between the
artifacts produced by the build and the Java support in the GAE (refer to Chapter
4), the author decided to leverage the laaS provisioning features of the Google
Compute Engine (GCE). To do this two Virtual Machines were created: one of
them with a Jenkins instance and the other one running a Selenium Hub to
facilitate the GUI Test, the tool was configured to build, test, deploy the
application to GAE and trigger the GUI Test through Selenium.

Even though the Continuous Integration server could not be fully configured
seamlessly through automation, the official Google Cloud documentation (2015)
provides full guidance to “set up an App Engine application so that is deployed
automatically whenever you push your code to your connected Git repository. It
uses Jenkins to configure and manage automatic build and deployment.”, so the
Google Cloud pipeline (Figure 3.4) was configured based on these steps,
including the provisioning of a Google SQL database that is used by both the
Unit Tests and the application itself, this configuration is further elaborated in the
“‘Results” chapter.

GAE GCE - Selenium Hub
;: Je
— GUI Test
Google Cloud Platform GCE - Jenkins
| oy
& o

Build / Test Deploy Tag Good Build

GIT |

=

Google
saL

Figure 3.4. Deployment Pipeline in Google Cloud Platform.

In IBM Bluemix, once the user creates a GIT repository, it will automatically
provision a basic Deployment Pipeline containing the build, test and deploy
steps, the author identified one issue related to a specific component of the
sample application: the presence of the Spring framework libraries. That was
solved by configuring a custom version of the Liberty Profile application server

26

(Refer to Appendix D), a new step had to be added to the pipeline to perform the
GUI Test, this was performed through the creation of a Virtual Machine within
Bluemix’s laaS and the configuration of a Selenium Hub to allow the execution of
Selenium test cases triggered by the Pipeline.

A database service was selected to support the sample application’s
functionalities and the Unit Tests within the pipeline. At the time of this research,
ClearDB MySQL was the only valid MySQL Database option that would be
similar to the Google SQL database. The Bluemix Pipeline (Figure 3.5) presents
a considerable level of abstraction of the underlying technology and complexity of
the infrastructure, but it still allows the user to perform some configuration on
each stage.

Bluemix VM (SoftLayer)

Liberty Profile

:: 0%
— GUI Test

IBM Bluemix Bluemix Build & Deploy Pipeline
O jeh
Build / Test Deploy Tag Good Build
=
GIT |
ClearDB
MySQL

Figure 3.5. Deployment Pipeline in IBM Bluemix.

Once the Deployment Pipelines are fully configured, the author tested them by
creating code changes to modify the interface and backend functionality of the
sample application. Each step was observed and analyzed through the criteria
points established by the DOMICloud evaluation framework, scoring high (10) or
low (1) according to how it responded to the exercise.

27

4. Results

This chapter presents the results of the experiments with both Google Cloud
Platform and IBM Bluemix (the steps taken to assemble the deployment pipelines
are located in appendices C and D respectively), including the analysis from the
point of view of the DOMICloud qualitative points and the reports followed by
scorecards, as elaborated previously.

4.1. Interacting with Google Cloud Platform

The service subscription (Table 4.1) presented some friction since it presented a
form containing numerous fields and based on the strict dependency associated
with the credit card, the integration with a service like Google Wallet could turn
that into a more seamless operation.

Interaction Capabilities Score Weighting
Service Friendly 7 7
Subscription
Simple 5 10
Automated - 0
Operable - 0
Fast 6 5
Cost-Effective - 0

Summary Score: 5.86

Table 4.1. DOMICloud score for Service Subscription with Google Cloud.

Google Cloud Platform offers a variety of services in an organized and intuitive
interface, the Dashboard (Table 4.2) presents an adequate amount of
configuration options and it is supported by clear instructions found on each
page, it would have been ideal if the Deployment Pipeline could be monitored
and configured within the same area, the DevOps Services are placed in a
separate web context.

28

Interaction Capabilities Score Weighting
Management Friendly 8 10
Dashboard
Simple 8 8
Automated - 0
Operable 5 8
Fast 7 7
Cost-Effective - 0
Summary Score: 7.06

Table 4.2. DOMICloud score for Management Dashboard with Google Cloud.

The Command Line Interface utilities (Table 4.3) are easy to use and, for some
operations, they are preferred over the web interface as it facilitate operations
such as the network configuration to allow communication through specific ports
and the Virtual Machine provisioning, the embedded Google Application Engine
instance that is integrated with the Google Cloud SDK is very useful since it
allows the user to verify any compatibility issues prior to the deployment to the
cloud.

Interaction Capabilities Score Weighting
Client-side Friendly 7 4
Utilities
Simple 8 6
Automated 8 10
Operable 9 8
Fast 8 7
Cost-Effective - 0
Summary Score: 8.11

Table 4.3. DOMICloud score for Client-side Utilities with Google Cloud.

The GAE Application presented some issues, the most critical ones were the
compatibility issues with the JSPs compiled with the JDK version 8 and the
limitations associated with the Java libraries that could not be deployed to the

29

Application Server container (See Appendix C), however, the embedded GAE
instance that is available in Google SDK facilitates the testing on the local
development environment, also the deployment to the cloud GAE has proven
itself to be very fast, once the first deployment is performed, the subsequent
changes are quickly integrated into the application.

Interaction Capabilities Score Weighting
PaaS Friendly 5 4
J2EE Container
Simple 8 6
Automated 6 10
Operable 5 9
Fast 9 7
Cost-Effective 8 5
Summary Score: 6.73

Table 4.4. DOMICloud score for PaaS J2EE Container with Google Cloud.

The services binding was verified, mainly, by provisioning a MySQL Database
service in the Google Cloud platform and linking it with the GAE application, the
initial configuration of the Google SQL instance involved the creation of the
database, the user management operations and the network access control
adjustments, however, this special Google SQL database acts as a custom layer
on top a regular MySQL 5.5. Database, this requires a special JDBC driver that is
only created once the application is deployed to the cloud, this special
requirement demands database connection properties changes that are
particular to Google SQL, resulting this way in a “vendor lock-in” scenario.

30

Interaction Capabilities Score Weighting
Services Friendly 7 5
configuration and
binding Simple 4 6
Automated 5 9
Operable 7 9
Fast 8 7
Cost-Effective 8 8
Summary Score: 6.52

Table 4.5. DOMICloud score for Services configuration and binding with Google

Cloud.

The creation of the Deployment Pipeline demanded numerous manual steps and
the “Release Pipeline” offering presented problematic results due to the lack of
support on GAE for the JDK version 8 (refer to Appendix C). The Jenkins server
was assembled easily by leveraging the existing Bitnami image but all the
remaining steps and plugins had to be configured manually, this lack of

comprehensive automation impacted on the final score.

Interaction Capabilities Score Weighting
Deployment Friendly 7 7
Pipeline
Simple 5 9
Automated 5 10
Operable 7 8
Fast 7 7
Cost-Effective 6 8
Summary Score: 6.06

Table 4.6. DOMICloud score for Deployment Pipeline with Google Cloud.

The author could not identify any Bitnami image available with a pre-assembled
Selenium Hub, although there is a web page that collects feedback from users
regarding the plan to release such image (Bithami, 2015). It is not available as

31

yet so a Virtual Machine had to be configured from its initial state. The
provisioning of VMs is facilitated by the Command Line Interface tool (gcloud),
however, the configuration of the service itself took numerous manual steps.
Further, the Windows Server environment provided by the VM had various
security restrictions. It was necessary to add several domains to the list of trust
sites in Internet Explorer in order to be able to download the JDK 7 and Mozilla
Firefox.

Interaction Capabilities Score Weighting

Virtual Machines | Friendly

Simple

Automated

Operable

© | N |]Oor | o | N

Fast

N | N[00 | © | oo N

Cost-Effective 8

Summary Score: 6.71

Table 4.7. DOMICloud score for Virtual Machines with Google Cloud.

The monitoring for Google Compute Engine VMs and the Google Application
Engine instances is particularly interesting as, although it presents a simple
interface, it can be changed to present different types of data, such as CPU,
Memory and Network traffic. The “Overview” page presents a good summary of
all the activity in both GAE and GCE. Beyond that, the “Logs” page presents a
comprehensive log aggregation solution where the user can filter the log entries
and search for any word, this is really helpful for troubleshooting.

Google Cloud Platform does not offer any bug tracking system for the user. One
could be configured within a new GCE Virtual Machine but would also involve a
number of manual steps, the author did not identify any similar feature among the
offerings of Google Cloud Platform.

32

Interaction Capabilities Score Weighting

Additional Friendly 6 7

features .

(Monitoring, Simple 6 9

Logging and Bug

Tracking) Automated 7 8
Operable 7 8
Fast 7 5
Cost-Effective 7 6

Summary Score: 6.62

Table 4.8. DOMICloud score for Additional Features with Google Cloud.

To support the scoring for the “Cost-Effective” criteria in all the interactions
analyzed previously, the billing report below was verified while approaching the
end of the trial period (Figure 4.1). The cost of running such experiments on
Google Cloud Platform for thirty days consumed approximately one third of the
value that was granted to the user within the trial period of sixty days ($300). The
services were not used constantly throughout this period and the initial tests
demanded numerous redeployments and adjustments to the application’s code,
with the proper knowledge of the overall configuration the value of this
investment could be substantially decreased.

Credit remaining

($19.37)

Make a payment

Date 7 Description

Jan 1, 2015 - Jan 28, 2015

Jan 26, 2015

(Project:Marcelo Test)

Estimated tax of $0.00 has been deducted

Transaction history for Google Cloud Platform

How you pay
Visa ..
Mo backup

Monthly automatic payments

All transact tions + Defailed ~ Export 5 |7 Last 3 months ~

Jan 1, 2015 - Cloud SQL IP address idling - hour: 575 hour (Project:Marcelo Test)

Jan 1, 2015 - Cloud SQL IP address idling - hour: 575 hour [Creditld: 00A434-55E8D1-
Jan 26, 2015 083B66::FreeTrial:2014-12-07T00:00:00.000-08:00 Credit: PROMOTION]

Manage

Profile

Marcelo
Dublin
reland
Debits (§) Credits ($) Balance ($) 7
$118.73 (5137.78)
5.75
(5.75)

Manage

(619.37)

{19.37)

(25.12)

Figure 4.1. Billing report from Google Cloud Platform.

4.2. Google Cloud as a DevOps services provider

The following table presents the summary DOMICloud Scorecard that was
assigned to the key interactions with the Google Cloud Platform solution. The
justification of each score is based on the analysis presented in the previous
sections.

Interaction Score
Service subscription 5.86
Management Dashboard 7.06
Client-side Utilities (Application server, Command-Line 8.11

Interface tool and Plugins)

PaaS J2EE Container 6.73
Services configuration and binding 6.52
Deployment Pipeline (Build, Tests and Deployment) 6.06
Virtual Machines 6.71
Additional features (Monitoring, Logging and Bug Tracking) 6.62
TOTAL 53.67

Table 4.9. DOMICloud score for Google Cloud Platform.

The research work conducted with Google Cloud Platform indicates that the
platform has reliable offerings. There was no disruption of services during any of
the exercises, reinforcing once more that the solution has been available in the
market long enough to have reached a good level of maturity. It presents friendly
interfaces (both Web-based and CLI-based). It does not exhibit a critical level of
complexity for the configuration of its services. Although it could improve its
offerings regarding the automation of a Deployment Pipeline. It offers good
monitoring and logging capabilities but it does facilitate any cloud-based bug
tracking system. The speed is very satisfactory in every aspect: Application
server, VM provisioning, build, tests and deployment. Regarding the cost, the
investment involved in the experiments is certainly reasonable considering the
infrastructure and computing power allocated for all the tasks.

34

4.3. Interacting with IBM Bluemix

To sign up for the trial period of thirty days in Bluemix, a credit card is not
required. With the IBM ID in place the free trial limits the applicant to the “free

tier” options available for the services in the catalogue.

Interaction Capabilities Score Weighting
Service Friendly 8 7
subscription
Simple 9 10
Automated - 0
Operable - 0
Fast 7 5
Cost-Effective - 0
Summary Score: 8.22

Table 4.10. DOMICloud score for Service subscription with IBM Bluemix.

The dashboard presented a good separation of Applications, Services,
Containers and Virtual Machines, it also helps the user understand what is the
overall state of all the applications through the “App Health” monitor and keep
track of the number of services allocated to the account, one negative point is
that the “Horizon Dashboard” is part of a completely different console and the
configuration of the laaS components is not very intuitive, although it did not
present any critical impact in the configuration of the virtual machine.

35

Interaction Capabilities Score Weighting
Management Friendly 9 10
Dashboard
Simple 8 8
Automated - 0
Operable 5 8
Fast 7 7
Cost-Effective - 0
Summary Score: 7.36

Table 4.11. DOMICloud score for Management Dashboard with IBM Bluemix.

The Cloud Foundry Command Line Interface tool allows the user to perform
management operations involving Bluemix applications, such as, create
applications, create and bind services, and check logs. During the research, the
tool was used in one specific operation, to “push” the application’s deployment
artifact to the cloud and install the custom instance of the Liberty Profile
Application Server through the community buildpack, however, while trying to
interact with the laaS components, the author could not find any CLI tool to
manage virtual machines and its network access, the installation of the local
instance of the Application Server was not facilitated through the CLI utility either.

Interaction Capabilities Score Weighting
Client-side Friendly 5 4
Utilities
Simple 6 6
Automated 5 10
Operable 4 8
Fast 7 7
Cost-Effective - 0
Summary Score: 5.34

Table 4.12. DOMICloud score for Management Dashboard with IBM Bluemix.

36

Applications that are deployed to Websphere Liberty Profile do not require any
special configuration (no “vendor lock-in"), the only change that had to be
performed was related to a rendering issue with the SiteMesh framework (which
was replaced later by Apache Tiles), however, there are no limitations related to
specific application resources, all the Java classes within the sample application
were deployed to the cloud. The ability to use Community Buildpacks is an
interesting feature that allows a high level of customization and extensibility,
however, the fact that the default instance is consistently failing based on the
presence of Spring JAR packages is a negative point.

Interaction Capabilities Score Weighting
PaaS J2EE Friendly 7 4
Container
Simple 8 6
Automated 9 10
Operable 9 9
Fast 7 7
Cost-Effective 8 5
Summary Score: 8.19

Table 4.13. DOMICloud score for PaaS J2EE Container with IBM Bluemix.

The process to bind services to the application is very straight-forward, although
it requires a restart of the Liberty Profile instance for the re-staging operation.
The specific database service that was targeted for this research was in
Experimental Mode so the ClearDB MySQL database (hosted outside Bluemix’s
infrastructure) was used as an alternative, the author could not identify an online
interface to perform any configuration against the database instance. The limited
number of connections (4 active connections) in the “free tier” model caused an
impact during the Unit Tests so some of the tests had to be disabled. Bluemix
offers a Cloud Foundry mechanism (CloudFoundry Documentation, 2015) to
facilitate the connection with the database and other services. Once the services
are bound to the application, a JSON object is appended to the value of a
variable called “VCAP_SERVICES”. It can be retrieved and parsed by the
application code so it can interact with the service. Although it is an interesting
feature to leverage in runtime, it impacts the configuration phase due to the lack
of a friendly interface.

37

Interaction Capabilities Score Weighting
Services Friendly 7 5
configuration and [
binding Simple 8 6
Automated 8 9
Operable 6 9
Fast 8 7
Cost-Effective 8 8
Summary Score: 7.47
Table 4.14. DOMICloud score for Services configuration and binding with IBM
Bluemix.

The creation of the Deployment Pipeline presented itself as a smooth process,
the basic stages (Build and Deploy) were already pre-assembled and ready to
use with Ant, they just had to be adjusted and connected to additional stages to
achieve the Deployment Pipeline that was idealized. There were connectivity
issues that were preventing any communication with the database server and the
Selenium Hub, this impacted the configuration and tests that were being
processed in the pipeline, the issue was corrected in the latest stages of the
research and that allowed further testing within the pipeline. One issue that
remained unresolved is the conditional trigger based on the status of the GUI
Test, the author could not identify any mechanism that could invoke different
stages based on the result of the tests, however, the overall configuration of the
pipeline was performed very quickly and intuitively, the interface is also a good
asset to visualize all the stages in action and check any problems related to the
release.

38

Interaction Capabilities Score Weighting
Deployment Friendly 9 7
Pipeline
Simple 9 9
Automated 9 10
Operable 7 8
Fast 7 7
Cost-Effective 8 8
Summary Score: 8.22

Table 4.15. DOMICloud score for Deployment Pipeline with IBM Bluemix.

Both containers and Virtual Machines are still in BETA mode, so the utilities to
interact with them are limited at the moment. The creation of SSH keys could
have been done seamlessly via command line utilities. Some of the operations
available in the Horizon Dashboard could be performed on the actual “cover
page” of the VM itself. The “free tier” model, once more, caused a negative
impact since it does not offer VMs with a desktop to facilitate the configuration of
the Selenium Hub. Several steps had to be performed on the Linux VM to
configure the GUI Test service. The offering needs improvement to relieve the
friction for the users, however, the potential of such technologies is relevant for
the adoption of the platform. The provisioning of cloud nodes in SoftLayer and
the components can be easily achieved through solutions like Docker, which
leverages Linux Containers (LXC) to deploy software more efficiently against
specific environments. Regarding pricing: Virtual Machines are still in Beta mode
so they can be used free of charge until they move to the General Availability
(GA) stage.

39

Interaction Capabilities Score Weighting
Virtual Machines | Friendly 6 7
Simple 5 8
Automated 7 9
Operable 9 8
Fast 8 7
Cost-Effective 8 7
Summary Score: 7.15

Table 4.16. DOMICloud score for Virtual Machines with IBM Bluemix.

The application monitoring that is presented in Bluemix’s dashboard is limited to
a summary of the memory usage and the overall application health. To gather
more detailed information about the application activities, the “NewRelic” service
(Figure 4.2) can be bound to it, the “free tier” model of this service offers some
monitoring options, such as:

e JVM Performance analyzer

e \Web transactions

e Database call response time and throughput

e FErrors
Type Web TopSyvve"b’lramsactwgns‘a'
Most time consuming
/secure (GET) 23.4%
/user/**/user/savetext (POST) 23.1%
/logout (GET) 20.2%
/mve 19.8%
/springSecurityFilterChain 11% m m m S Te M 26 P : \
/login (GET) 2.08% Juser/**/user/savetext (POST) | [I/IGGOUECGED)| /mvc

Figure 4.2. Monitoring of the sample application in NewRelic.

The Liberty Profile logs are available in the “Files and Logs” section of the
application overview page. It presents an extensive list of folders and files and,
based on the investigation of the issues faced during the experiments conducted
in this research, the majority of them are not relevant for a more directed
troubleshooting. The Application Server’s log is under “logs/messages.log” so
perhaps the interface could give more emphasis on this one and move the other

40

files to another section of the interface, in case some other information is
necessary to investigate different issues.

IBM Bluemix offers a “Plan and Track” solution as part of its DevOps Services.
This allows the creation of “tickets” that can be distributed to a number of
developers and organize the tasks and defects for them. It associates these
items with “story” work items. As part of the Agile methodology, it would be
interesting to automatically create defects for any build or GUI test failures that
occur in the Deployment Pipeline but the author could not find any configuration
to link these features. It is still a valuable feature as it concentrates more aspects
of the development lifecycle within the same platform.

Interaction Capabilities Score Weighting

Additional Friendly 8 7

features .

(Monitoring, Simple 7 9

Logging and Bug

Tracking) Automated 9 8
Operable 8 8
Fast 8 5
Cost-Effective 8 6

Summary Score: 7.97

Table 4.17. DOMICloud score for Additional Features.

IBM Bluemix has a wide range of options in its services catalogue, but for the
objective of this research, only 3 services were utilized: Community buildpacks,
ClearDB MySQL and NewRelic monitoring, the last two are free so the focus of
the billing is on the Liberty Profile instance that is running on the cloud. In IBM
Bluemix, the user is charged based on “GB-Hour” (Bluemix, 2015), which means,
the cost of the services is based on how many gigabytes of RAM are allocated to
the application, the number of application instances and hours of activity (Total
GB/App x Number of App Instances x Total Hours running). The estimate
provided by Bluemix states that, in a month, the cost should be $ 54.15 (Figure
4.3), however, according to the website, the first 375 GB-hours are free every
month, based on that, it is considered a reasonable investment.

41

2 items | $54.15 monthly

Community buildpacks

Default

« Run one or more apps free for 30 days (375 $0.07 USD / GB-Hour
GB-hours free, shared across Bring Your

Buildpack and Community runtimes) Instances]

Memory 1GB

Figure 4.3. Billing report from IBM Bluemix.

4.4. IBM Bluemix as a DevOps services provider

The following table presents the DOMICloud Scorecard that was assigned to the
key interactions with IBM Bluemix:

Interaction Score
Service subscription 8.22
Management Dashboard 7.36
Client-side Utilities (Application server, Command-Line 5.34

Interface tool and Plugins)

PaaS J2EE Container 8.19
Services configuration and binding 7.47
Deployment Pipeline (Build, Tests and Deployment) 8.22
Virtual Machines 7.15
Additional features (Monitoring, Logging and Bug Tracking) 7.97
TOTAL 59.92

Table 4.2. DOMICloud score for IBM Bluemix.

The experiments performed with IBM Bluemix presented positive results even
though it is one of the latest Cloud Solutions (with both PaaS and laaS offerings)
to be released into the market. It is a competitive option and it leverages
third-party technologies, connecting them through its own service catalogue and
making the DevOps Services features available to the users. It is a friendly
solution that facilitates the creation of applications and binding of services. It
does not present considerable friction to provision and configure most of its

42

services and components (Simple), it facilitates the integration of services that
improve the monitoring and logging considerably. The community buildpack
deployment introduces some delay to the actual deployment operation. Despite
this the Liberty Profile J2EE container is very fast and its local instance exposes
all the configuration for any adjustments that might be necessary. The billing
model is fair and the initial quota that is offered is helpful to assist new users not
to allocate too many resources while they are still adapting.

43

5. Conclusions

5.1. Context

The IT Industry presents a growing adoption of DevOps practices, however, the
initiatives normally target on-premises infrastructures. There is an opportunity to
explore how the same practices can be implemented by leveraging Cloud
Solutions. Due to the popularity of Cloud Services and the increasing struggle to
improve the software development process, it was identified a need to map which
Cloud offerings in the market could mitigate this problem by, not only allowing the
user to abstract the non-functional requirements like scalability and availability,
but to improve the actual software delivery process by quickly provisioning a
development environment with cloud-based DevOps tools.

In this research, two Cloud Solutions were analyzed from the DevOps
perspective, an evaluation framework was elaborated to guide the comparison
and evidence which one presents the most ideal set of non-siloed tools and
services for Continuous Integration (Cl) and Continuous Delivery (CD). The
author verified the interfaces provided to interact with the solutions’ components,
ran an experiment involving the creation of a Deployment Pipeline by leveraging
both PaaS and laaS elements of each Cloud solution, deployed a sample
application and changed its code to simulate a Development environment.
Additional features like monitoring and bug tracking were also verified to check if
the solutions facilitate tasks that fall in the scope of an Operations team.

The research was conducted by subscribing to both services and exploring the
features to assemble a Deployment Pipeline: the author installed and configured
several tools, adjusted the code of the sample application, provisioned databases
and virtual machines and verified the flow of the pipeline to deliver the application
to the PaaS J2EE Containers. For all the operations involved, the evaluation was
guided by a framework, the DevOps Measurement Index for the Cloud
(DOMICloud). It defines capabilities for each cloud solution: checking if a given
interface is user-friendly, does not present complicated configuration steps and
offers automatic provisioning. It can be monitored and it does not require a high
investment. The author also documented two DOMICloud scorecards to illustrate
the performance of each cloud solution by mapping specific operations, such as,
creating a Deployment Pipeline or provisioning a virtual machine, points were
given according to the compliance with the capabilities of the DOMICloud
framework.

44

5.2. The Result

At the end of this research, it was discovered that IBM Bluemix was the choice
that presented the best alignment with the DevOps paradigm, proper
combination of PaaS and laaS elements, strategic partnership with third-party
services to improve the interaction with the application and the creation of the
Build and Deploy Pipeline. Bluemix presented itself as a competitive option. Both
vendors (Google and IBM) offer valuable services but Bluemix introduces a more
adequate level of extensibility and customization. Refer to Appendix E for a
combined scorecard.

An enterprise-level application can benefit from such combination of tools as it
will substantially mitigate the friction of assembling a Continuous Integration and
Continuous Delivery environment even if it is leveraged to support only a portion
of its components. By reducing the management overhead involved in build and
test servers, including the maintenance of Cl systems or GUI Test solutions the
development team can rely on the “Service” model to abstract the underlying
maintenance around these elements. The model also enables the automation of
the provisioning of a Deployment Pipeline, allowing the verification of separate
components of the enterprise application through the pipeline before they are all
connected and ready to be promoted to the next step of Quality Control.

Bluemix was pointed out as a more recommended option for the enterprise due
to the following points:

e No vendor lock-in

e The presence of DevOps Services out-of-the-box (Git, Build, Deploy
Pipeline). Including an adequate level of laaS and PaaS elements to
achieve a custom Deployment Pipeline

e Built on top of Cloud Foundry (Open source cloud computing PaaS)

e Offers Agile Planning and Bug Tracking mechanisms

As enterprise-level applications normally present multiple components and a
certain level of complexity, Bluemix stands out as it has the flexibility offered by
Cloud Foundry’s management options and the capability to bind multiple
third-party services to its applications, this facilitates the orchestration with other
tools that can even be introduced to its service catalogue in the future.

The Deployment Pipeline from Google Cloud Platform was created successfully
but it was not possible to leverage all the automatic features introduced by the
platform. The “Release Pipeline” feature can still be used to assemble a
simplified version of a proper Deployment Pipeline comprised of the build, test
and deploy steps. Another option would be to have a hybrid Deployment Pipeline

45

that would execute part of the steps locally and some other steps on the cloud. It
could trigger the deployment to the cloud through a GIT commit operation and
delegate the basic steps (Build, test and deploy), then it could rely on some
Google SDK CLI command to retrieve GAE logs, confirm the version was
deployed and trigger the “GUI Test” and “Tag Build” operations.

5.3. Challenging old paradigms

It was expected that, Google, as a more mature platform, would have more
DevOps focused offerings in its catalogue, some technologies provided are
aligned with the concepts of DevOps, such as: the automatic provisioning of
Application Servers, Virtual Machines and Databases, however, the interaction
between these tools, from the point of view of a Deployment Pipeline, still needs
to be improved. Cloud Solutions can leverage more opportunities to facilitate the
development process by helping the user to connect tests, deployment and code
stream management, which involves the separation of source-code that resides
in the Development workflow from code that is promoted to a QA or Stabilization
environment, including Production.

This research indicates the need for more sophisticated cloud offerings involving
Cl and CD features that can improve the quality of the software that is being
developed and delivered to the PaaS servers, by improving their service
catalogue and increasing the consistency of the deliverables of a project through
the DevOps tooling. The abstraction of the infrastructure and the automated
provision of tools for testing and management of software artifacts, including
monitoring components, are valuable features that allow a software development
team to focus on delivering more value to their customers instead of allocating
efforts to manage and connect components to achieve a proper orchestration of
DevOps tools, the study of such features is what makes this research significant.
The elaboration of DOMICloud is a starting point to analyze, measure and
correlate DevOps features offered by Cloud Solutions and assist users to make
decisions regarding which service should be hired.

5.4. Limitations

This research was affected by some limitations involving financial investment and
time. One exercise that was not conducted due to financial limitations refers to an
experiment involving multiple Development Pipelines, similar to the test
conducted by Bhanu Prakash, et al. (2012) with multiple Virtual Machines
running Selenium test cases. They showed that by increasing the number of
Virtual Machines, a higher number of test cases could be performed in a shorter

46

time-frame. A similar test could be done with multiple Development Pipelines
reproducing a scenario where a given change could block the pipeline due to an
error that would be deliberately committed into the source-code repository and
other Development Pipelines would work in parallel without the offending
code-change to validate other commits that are delivered through a simulation by
different developers. That would present an interesting vision of how multiple
Development Pipelines could allow developers to continue leveraging an
instance of the Development environment while another developer that delivered
some code that “broke” the environment would allocate some time to work on the
issue and fix the bug. The author also did not explore the elasticity of the
components in the Deployment Pipeline to present metrics regarding availability
and scalability, such test with a high workload incurs in more expenses and it is
not properly conducted with a trial package with basic quota services.

One other exercise that could not be conducted is related to a simulation of the
development cycle of a complex application that integrates multiple components.
The main application would be comprised of different web contexts, a separate
API that would be included in a JAR package (perhaps even some orchestration
with a different runtime languages like Python or Ruby), the unit tests could
involve more dependencies: connecting to a Messaging Queue (MQ) solution
and a Lightweight Directory Access Protocol (LDAP) server. This exercise would
improve the evaluation of the DevOps tooling by experimenting with an
application that would simulate more enterprise-level components and, it could
also point out more compatibility issues, any impacts to the configuration of the
Deployment Pipeline could be a negative point for the Cloud Solution under
evaluation, that would confirm which Cloud Solution provides better compatibility
between its services.

One last material that the author could not integrate to the work performed in this
analysis was a qualitative research to gather the impressions towards the
DevOps tooling of both platforms, due to time constraints, it was not possible to
organize a research population and elaborate a questionnaire. That would
reinforce the results of the comparison, specially for the DOMICloud capabilities
“Friendly” and “Simple”.

47

5.5. Final considerations

This research is a starting point that should foment the study of different aspects
of Cloud Computing, while PaaS and laaS are commonly leveraged for
non-functional requirements that support the state of the already-assembled
application, there are elements of the development process itself that also
require their own infrastructure and collaboration with other tools and services.
This introduces an opportunity to the vendors to offer new services, allowing
users to abstract the non-functional requirements of the assets involved in their
Development process, improving the quality of the functional requirements
implemented in the application, an example of that would be the elaboration of a
Deployment-Pipeline-as-a-Service (DPaaS) solution.

48

10.

11.

12.

13.

Bibliography

Mark Cade and Humphrey Sheil, 2010. Sun Certified Enterprise Architect
for Java™ EE Study Guide, Second Edition. Prentice Hall.

Paul M. Duvall, with Steve Matyas and Andrew Glover, 2007. Continuous
integration: improving software quality and reducing risk. Addison-Wesley
Professional.

Jez Humble, David Farley, 2011. Continuous delivery: reliable software
releases through build, test, and deployment automation. Addison-Wesley
Professional.

Kent Beck, 2003. Test-driven Development: By Example. Addison-Wesley
Professional. Preface.

Google, 2015. What Is Google App Engine? [online] Available at:
<https://cloud.google.com/appengine/docs/whatisgoogleappengine>
[Accessed 19 November 2014].

IBM, 2015. Bluemix Overview. [online] Available at:
<https://www.ng.bluemix.net/docs/#overview/overview.html#overview>
[Accessed 19 November 2014].

Limoncelli, T., Chalup S. and Hogan C., 2014) The Practice of Cloud
System Administration. United States: Addison-Wesley Professional.
Soon K. Bang, Sam Chung, Young Choh, Marc Dupuis, 2013. A
Grounded Theory Analysis of Modern Web Applications - Knowledge,
Skills, and Abilities for DevOps. RIIT '13 Proceedings of the 2nd annual
conference on Research in information technology.

JIA Xiaojing. (2010). Google Cloud Computing Platform Technology
Architecture and the Impact of Its Cost. 2010 Second WRI World
Congress on Software Engineering.

Daniel Cukier. (2013). DevOps Patterns to Scale Web Applications using
Cloud Services. Proceedings of the 2013 companion publication for
conference on Systems, programming and applications: software for
humanity.

Johannes Wettinger, Vasilios Andrikopoulos, Steve Strauch, Frank
Leymann. (2013). Enabling Dynamic Deployment of Cloud Applications
Using a Modular and Extensible PaaS Environment. Cloud Computing
(CLOUD), 2013 IEEE Sixth International Conference on.

Saurabh Kumar Garg, Steve Versteeg and Rajkumar Buyya. (2013). A
framework for ranking of cloud computing services. Future Generation
Computer Systems 29 (2013) 1012-1023.

Chris Haddad, 2011. Selecting a Cloud Platform : A Platform as a Service
Scorecard. [online] Available at:

49

https://cloud.google.com/appengine/docs/whatisgoogleappengine

14.

15.

16.

17.

18.

19.

20.

21.

22.

<http://wso2.com/whitepapers/selecting-a-cloud-platform> [Accessed 22
March 2015].

Gianluigi Zavattaro, 2010. Automatic Deployment of Applications in the
Cloud. Alma Mater Studiorum - Universita di Bologna. 10.

NIST, 2012. . [pdf] National Institute of Standards and Technology.
Available at:
<http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pd
f> [Accessed 27 April 2015].

Google, 2012. Jenkins, meet Google App Engine. [online] Available at:
<http://googlecloudplatform.blogspot.ie/2012/10/jenkins-meet-google-app-
engine.html> [Accessed 6 December 2014].

Computerworld, 2014. Amazon vs. Google vs. Windows Azure: Cloud
computing speed showdown . [online] Available at:
<http://www.computerworld.com.au/article/539633/amazon_vs_google_vs
_windows_azure_cloud_computing_speed_showdown/> [Accessed 4
April 2015].

Blackburn, S. M., Garner, R., Hoffman, C., Khan, A. M., McKinley, K. S.,
Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S. Z., Hirzel,
M., Hosking, A., Jump, M., Lee, H., Moss, J. E. B., Phansalkar, A,
Stefanovic, D., VanDrunen, T., von Dincklage, D., and Wiedermann, B.,
2006. The DaCapo Benchmarks: Java Benchmarking Development and
Analysis. OOPSLA '06: Proceedings of the 21st annual ACM SIGPLAN
conference on Object-Oriented Programing, Systems, Languages, and

Applications.
Cloud Academy, 2014. 5 reasons why Google Compute Engine will be the
next cloud choice. [online] Available at:

<http://cloudacademy.com/blog/5-reasons-why-google-compute-engine-wi
lI-be-the-next-cloud-choice/> [Accessed 4 April 2015].

Gartner, 2014. Magic Quadrant for Cloud Infrastructure as a Service.
[online] Available at:
<http://www.gartner.com/technology/reprints.do?id=1-1UM9419&ct=14052
9&st=sb> [Accessed 4 April 2015].

Melody Meckfessel, 2014. How DevOps and the Cloud Changed Google

Engineering. [video online] Available at:
<http://www.infoq.com/presentations/google-devops-cloud> [Accessed 4
April 2015].

Cloudcomputing.info, 2014. Windows Azure now Leader in Gartner Magic
Quadrant for Enterprise Application Platform as a Service. [online]
Available at:
<http://cloudcomputing.info/en/news/2014/01/windows-azure-now-leader-i
n-gartner-magic-quadrant-for-enterprise-application-platform-as-a-service.
html> [Accessed 4 April 2015].

50

http://wso2.com/whitepapers/selecting-a-cloud-platform
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf
http://googlecloudplatform.blogspot.ie/2012/10/jenkins-meet-google-app-engine.html
http://googlecloudplatform.blogspot.ie/2012/10/jenkins-meet-google-app-engine.html
http://www.computerworld.com.au/article/539633/amazon_vs_google_vs_windows_azure_cloud_computing_speed_showdown/
http://www.computerworld.com.au/article/539633/amazon_vs_google_vs_windows_azure_cloud_computing_speed_showdown/
http://www.computerworld.com.au/article/539633/amazon_vs_google_vs_windows_azure_cloud_computing_speed_showdown/
http://www.computerworld.com.au/article/539633/amazon_vs_google_vs_windows_azure_cloud_computing_speed_showdown/
http://cloudacademy.com/blog/5-reasons-why-google-compute-engine-will-be-the-next-cloud-choice/
http://cloudacademy.com/blog/5-reasons-why-google-compute-engine-will-be-the-next-cloud-choice/
http://www.gartner.com/technology/reprints.do?id=1-1UM9419&ct=140529&st=sb
http://www.gartner.com/technology/reprints.do?id=1-1UM9419&ct=140529&st=sb
http://www.infoq.com/presentations/google-devops-cloud
http://cloudcomputing.info/en/news/2014/01/windows-azure-now-leader-in-gartner-magic-quadrant-for-enterprise-application-platform-as-a-service.html
http://cloudcomputing.info/en/news/2014/01/windows-azure-now-leader-in-gartner-magic-quadrant-for-enterprise-application-platform-as-a-service.html
http://cloudcomputing.info/en/news/2014/01/windows-azure-now-leader-in-gartner-magic-quadrant-for-enterprise-application-platform-as-a-service.html

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Blogs.technet.com, 2014. Accelerating DevOps with the Cloud using
Microsoft Azure and Friends: The Series. [online] Available at:
<http://blogs.technet.com/b/keithmayer/archive/2014/05/01/accelerating-d
evops-with-the-cloud-using-microsoft-azure-and-friends-part-1.aspx>
[Accessed 4 April 2015].

Opennes CEE, 2014. Java on Azure — Contribution to OpendDK, Java
SDK for Azure Management and Resources. [online] Available at:
<http://www.opennessatcee.com/post/101155515004/java-on-azure-contri
bution-to-openjdk-java-sdk> [Accessed 4 April 2015].

Data Center Knowledge, 2014. With Blue Mix, IBM Services Meet the
SoftLayer Cloud. [online] Available at:
<http://www.datacenterknowledge.com/archives/2014/03/27/blue-mix-ibm-
services-meet-softlayer-cloud/> [Accessed 5 April 2015].

Techworld, 2011. IBM offers free Jazz Hub cloud development tool.
[online] Available
at:<http://www.techworld.com/news/apps/ibm-offers-free-jazz-hub-cloud-d
evelopment-tool-3284711/> [Accessed 10 April 2015].

DeveloperWorks, 2014. Why Liberty profile is the best Java runtime for
the cloud. [online] Available at:
<https://developer.ibm.com/wasdev/docs/liberty-profile-best-java-runtime-
cloud/> [Accessed 10 April 2015].

Google, 2015. The JRE Class White List. [online] Available at:
<https://cloud.google.com/appengine/docs/javal/jrewhitelist> [Accessed 14
April 2015].

Googleappengine, 2015. Issue 9537: Java 8 support. [online] Available
at: <https://code.google.com/p/googleappengine/issues/detail?id=9537>
[Accessed 14 April 2015].

Bitnami, 2015. What is Bithami? [online] Available at:
<https://bitnami.com/learn_more> [Accessed 14 April 2015].

Google, 2015. Push-to-Deploy. [online] Available at:
<https://cloud.google.com/tools/repo/push-to-deploy> [Accessed 14 April

2015].
Google, 2015. Logging into a Windows virtual machine instance. [online]
Available at:

<https://cloud.google.com/compute/docs/operating-systems/windows#rdp-
manual> [Accessed 18 April 2015].

Bitnami, 2015. Selenium Cloud Hosting, Selenium Hosting - Installers and
VM. [online] Available at: <https://bithami.com/stack/selenium>. [Accessed
18 April 2015].

IBM Developer Works dW Answers, 2015. Spring 2.4.2 App at Bluemix.
[online] Available at:
<https://developer.ibm.com/answers/questions/167743/spring-242-app-at-
bluemix.html> [Accessed 18 April 2015].

51

http://blogs.technet.com/b/keithmayer/archive/2014/05/01/accelerating-devops-with-the-cloud-using-microsoft-azure-and-friends-part-1.aspx
http://blogs.technet.com/b/keithmayer/archive/2014/05/01/accelerating-devops-with-the-cloud-using-microsoft-azure-and-friends-part-1.aspx
http://www.opennessatcee.com/post/101155515004/java-on-azure-contribution-to-openjdk-java-sdk
http://www.opennessatcee.com/post/101155515004/java-on-azure-contribution-to-openjdk-java-sdk
http://www.datacenterknowledge.com/archives/2014/03/27/blue-mix-ibm-services-meet-softlayer-cloud/
http://www.datacenterknowledge.com/archives/2014/03/27/blue-mix-ibm-services-meet-softlayer-cloud/
http://www.techworld.com/news/apps/ibm-offers-free-jazz-hub-cloud-development-tool-3284711/
http://www.techworld.com/news/apps/ibm-offers-free-jazz-hub-cloud-development-tool-3284711/
http://www.techworld.com/news/apps/ibm-offers-free-jazz-hub-cloud-development-tool-3284711/
http://www.techworld.com/news/apps/ibm-offers-free-jazz-hub-cloud-development-tool-3284711/
http://www.techworld.com/news/apps/ibm-offers-free-jazz-hub-cloud-development-tool-3284711/
https://developer.ibm.com/wasdev/docs/liberty-profile-best-java-runtime-cloud/
https://developer.ibm.com/wasdev/docs/liberty-profile-best-java-runtime-cloud/
https://cloud.google.com/appengine/docs/java/jrewhitelist
https://code.google.com/p/googleappengine/issues/detail?id=9537
https://bitnami.com/learn_more
https://cloud.google.com/tools/repo/push-to-deploy
https://cloud.google.com/compute/docs/operating-systems/windows#rdp-manual
https://cloud.google.com/compute/docs/operating-systems/windows#rdp-manual
https://bitnami.com/stack/selenium
https://developer.ibm.com/answers/questions/167743/spring-242-app-at-bluemix.html
https://developer.ibm.com/answers/questions/167743/spring-242-app-at-bluemix.html
https://developer.ibm.com/answers/questions/167743/spring-242-app-at-bluemix.html
https://developer.ibm.com/answers/questions/167743/spring-242-app-at-bluemix.html

35.

36.

37.

38.

WasDev, 2014. Download just the Liberty profile runtime. [online]
Available at:
<https://developer.ibm.com/wasdev/downloads/liberty-profile-using-non-ec
lipse-environments/> [Accessed 18 April 2015].

Cloud Foundry Documentation, 2015. Cloud Foundry Environment
Variables. [online] Available at:
<http://docs.cloudfoundry.org/devguide/deploy-apps/environment-variable.
html> [Accessed 18 April 2015].

IBM, 2015. Pricing Calculator - IBM Bluemix. [online] Available at:.
<https://console.ng.bluemix.net/?ace_base=true#/pricing> [Accessed 18
April 2015].

Sreenivasa Rao Vadalasetty, 2003. Security Concerns in Using Open
Source Software for Enterprise Requirements. [online] Available at:
<http://www.sans.org/reading-room/whitepapers/awareness/security-conc
erns-open-source-software-enterprise-requirements-1305> [Accessed 24
May 2015].

52

https://developer.ibm.com/wasdev/downloads/liberty-profile-using-non-eclipse-environments/
https://developer.ibm.com/wasdev/downloads/liberty-profile-using-non-eclipse-environments/
https://console.ng.bluemix.net/?ace_base=true#/pricing

7.

Appendices

Appendix A - Continuous Integration

Cl aims to improve quality assurance by eliminating inconsistencies in the build
and testing phase, the most common one being, the scenario where a developer
would state that the latest change "is working on his machine". That introduces a
risk as, at that point, it is not confirmed how that new change set will behave
once it is deployed to a real environment.

Cl is achieved by assembling a flow where the Development code stream is
pulled by a centralized service that tests new code and build the deployable
software artifacts, Paul M. Duvall, et al. (2007, p.40) describe the general idea of
Cl by stating that the steps in a Cl scenario will typically go something like thisl

1.

First, a developer commits code to the version control repository.
Meanwhile, the Cl server on the integration build machine is polling this
repository for changes (one approach is to perform the check every few
minutes).

Soon after a commit occurs, the Cl server detects that changes have
occurred in the version control repository, so the Cl server retrieves the
latest copy of the code from the repository and then executes a build
script, which integrates the software.

The CI server generates feedback by e-mailing build results to specified
project members.

The CIl server continues to poll for changes in the version control
repository.

Figure 1 illustrates the elements of the Cl system.

53

:ﬁ Feedback

Mechanism
Developer Generate

Commit Changes

Build Script

a— Commit Changes —)— Poll

Developer
Compile Source Code,

Commit Changes ~ Subversion Cl Server Integrate Database,
l/ Version Control Integration Build Run Tests,
Repository Machine Run Inspections,
.ﬁ Deploy Software
Developer

Figure A.1. The components of a Cl system.

Cl aims to automate and constantly repeat operations that are considered risky
(error-prone), set up a centralized service to handle all changes and, mostly
important, Testing. These tests can be comprised of Static Analysis (Checking
for Code conventions issues, compilation problems or anticipating runtime
exceptions by verifying variables that are not being handled properly) and Unit
Tests, which is a practice aligned with Test-Driven-Development (TDD).

The TDD practice combined with the continual centralized build approach of ClI
improves the consistency of the tests and produces more robust software, it
prevents the accumulation of bugs and, as each build cycle handles a small set
of change sets, it is easier to troubleshoot and unblock the development pipeline,
achieving, this way, a scenario where the team would have more time to invest
being proactive instead of reactive.

54

Appendix B - Continuous Delivery

CD focuses on facilitating the deployment of the application by turning a manual,
time-consuming, error-prone process into a stable and automated operation. This
helps developers to efficiently turn ideas and changes into real value for their
customers. It involves the development life-cycle of the application, focusing on
improving the process of the deployment of the artifacts that are generated by
the build phase into a “Production” environment. The deployable artifacts should
be initially deployed to a "Development Environment". After they are deployed
and the application is available, there is another round of automated tests that
should simulate the operations performed by the end-users. This practice is very
important to make the Software Development Life Cycle faster and more
consistent. It achieves this by eliminating manual tasks and mitigating the
deployment risks, the application is “Production-ready” if the resulting
deployment matches the criteria of a functional application and it is able to deliver
the services required by the end-users.

The most important concept within CD is the Deployment Pipeline (Figure B.1),
Jez Humble, et al. (2011, p.38) state that “Every change that is made to an
application’s configuration, source code, environment, or data, triggers the
creation of a new instance of the pipeline. One of the first steps in the pipeline is
to create binaries and installers. The rest of the pipeline runs a series of tests on
the binaries to prove that they can be released. Each test that the release
candidate passes gives us more confidence that this particular combination of
binary code, configuration information, environment, and data will work. If the
release candidate passes all the tests, it can be released”. This flow is illustrated
in Figure B.1.

Commit stage Manual testin
Compile Automated Automated Showcases 9
Unit test —»| acceptance [capacity —» — Release
) . . Exploratory
Analysis testing testing .
S testing
Build installers

Figure B.1. The Deployment Pipeline.

The advantages introduced by CD comprise:
e More reliability in the deployment process through automation
e Elimination of risks by properly separating development, staging and
production environments
e Effective understanding of the elements of the same through Configuration
Management and control of such elements with version-control
mechanisms

55

It also focuses on auditing through recorded operations and logging so the
results of each deployment can be verified and even enhanced through
continuous improvement.

Appendix C - Building a Deployment Pipeline with Google
Cloud Platform

The following section describe how to create a Deployment Pipeline by
leveraging laaS and PaaS options from Google Cloud Platform.

The sign-up procedure was simple, when this research was being elaborated,
Google was offering a 60-day free trial with a $300 credit (Figure C.1) that allows
one to explore the services and evaluate some of its features. The access to the
Developer Console can be enabled after linking a Google Account and providing
Credit Cards details, this information is mandatory even for the free trial access.

F) Google Cloud Platform

Why Google Products Solutions Pricing Customers Documentation Support

Build at the speed of Google

Get $300 in credit towards a 60-day free trial.
This trial is absolutely free and you will not be billed
unless you decide to upgrade to a paid account.

Start your free trial or See the FAQ

Figure C.1. Google Cloud Platform home page.

C.1 The Developers Console

Once the sign up is completed, the user is presented to the Developers Console,
this section is comprised of an initial menu that is used to manage projects and
change general account configurations, including billing. A project is created
through the "Create Project" button, it only requires a name and a Project ID
(Figure C.2).

56

Google
(=

Projects Create Project

Billing FROJECT NAME FROJECT IC
Account settings

API Project
Meed help? |

Privacy & terms A .
! arcelo Test marcelotestapp

Figure C.2. Creating a Google Cloud project.

By accessing a specific project, the console expanded the menu showing all the
services available to the project, it also presents a monitoring dashboard which
includes data related to App Engine, Compute Engine, Errors, Disk IO and APIs
(Figure C.3).

(:‘.uuuglc Upgrade your account. Only $237.99
c
Projects Project ID: marcelotestapp Project Number: 674672185965
Marcelo Test etivity for the last 4 dave ; 2
Activity for the last 4 days 1 hour 6 hours 12 hours
Ov
Permissions App Engine Compute Engine
Billing & settings
APIs & auth Summary CPU
Monitoring

Source Code
Compute
Networking
Storage

Big Data *
o

Requests: 0 CPU:1.487

Figure C.3. Project’'s menu and monitoring dashboard.

The console, at first glance, was overwhelming due to the amount of options but,
for the purposes of this research, 4 main services were analyzed:

1. Monitoring:
o Logs: For troubleshooting purposes. To check GAE logs.
2. Compute:
o App Engine: Application Server instances to run the application
that was deployed.
Compute Engine: Virtual Machines to support additional tasks
related to the pipeline.

3. Storage:
o Cloud SQL: MySQL Instance that was used with the test
application.

4. Source Code:
57

o Browse: To read and edit the source-code that was committed
through Git, used for small configuration changes.
Releases: This feature was explored in this research but later
abandoned due to a misconfiguration that causes compatibility
problems with GAE.

More details about each one of these services are shared in the sections
documented below.

C.2 Google Application Engine (GAE)

In order to proceed with the evaluation of the DevOps tools, it was necessary to
prepare the integration and delivery mechanisms to illustrate the Software
Development Life Cycle within the Google Cloud Platform environment, a vital
part of this process is the actual component that manages the application once it
is deployed, that is the Google Application Engine (GAE). The GAE represents
the Platform-as-a-Service portion of the services provided by Google Cloud, it is
seen as an abstraction of an application server that supports different
technologies like Java, Python or PHP, beyond hosting the application, it also
covers important non-functional requirements with features like Automatic
Scaling and Load Balancing, including the integration with other Google Cloud
Services and APIs. As per Google’s official documentation (2015), “Google App
Engine makes it easy to build and deploy an application that runs reliably even
under heavy load and with large amounts of data”.

The console presents several "Quick Start" options within each category, in order
to gather some understanding about the deployment steps and the expected
template of a GAE Application, the author followed the instructions to "Set up
your local dev environment" (Figure C.4), which is found within the "Compute —
App Engine — Dashboard" section:

Compute

App Engine Dashboard

App Engine

Dashboard

Set up your local dev environment

The Google Cloud SDK lets you locally develop, preview and

Search Download the SDK

Settings

Figure C.4. Setting up local Development environment.

58

The instructions are comprised of 3 steps: "Install Cloud SDK", "Get Started with
Google Cloud Platform Service" and "Submit Questions and give us feedback".
The first step (Install Cloud SDK) is very straight forward, in this research, the
"GoogleCloudSDKInstaller.exe"file was downloaded and installed on a Windows
workstation after selecting the "App Engine SDK for Java" option in the
installation wizard (Figure C.5). This step installs the client-side libraries for all
the Google Cloud API calls that are used to interact with the services
programmatically, it must also install some sort of security mechanism, like
Secure Shell (SSH) Keys, that allows this particular workstation to invoke such
operations through the command-line.

5] Google Cloud SDK Setup = =

I) C()()glt‘ Cloud Platform

Check the components you want to install and uncheck the components you don't want to
install. Click Install to start the installation.

Select components to install: ++| Cloud SDK, Care Libraries and Tools

=14 Google App Engine

Lo [] app Engine SDK for Python and PHP
App Engine SDK for Java

[] app Engine SDK for Go (54-hit)
|:| Developer Preview Commands

Space required: 159, 2MB

< Back Install Cancel

Figure C.5. Google Cloud SDK Setup wizard.

The second step (Get Started with Google Cloud Platform Service) involves
many suggestions involving all services, in this research the "Try Google App
Engine Now" link was chosen. In this next page, the user follows a sequence of
quick instructions to prepare a small sample application, run it locally and deploy
it to the App Engine. This sample application is called "appengine-try-java.zip"
and it is available for download on the same page, the structure of this
application is very similar to any regular Maven web application
("maven-archetype-webapp"), except for the presence of an additional
Deployment Descriptor (DD) found in the "src/main/webapp/WEB-INF" directory:
"appengine-web.xml".

This additional file, appengine-web.xml, is used to "specify the app's registered
application ID and the version identifier of the latest code", it also defines system
properties, environment variables, configure Secure URLs (SSL) and manages
other pieces of web-related configurations.

59

Based on this examination of the sample app, the initial structure of the test
application was created using Maven's webapp archetype generation command.

mvn archetype:generate -Dgroupld=com.themarcelor.calmlywriting -Dartifactld=CalmlyWriting
-DachetypeArtifact=maven-archetype-webapp -DinteractiveMode=false

Code listing C.1: Maven command to build the basic structure of the app.

The project was then populated with the source-code of the sample Web
Application, the pom.xml file was edited with the main components used by the
Java application, the Project Object Model file is used by Maven to manage the
project dependencies and the other steps of its building and deploying lifecycle.

The project was imported to Eclipse to facilitate the adjustments to the
source-code and the "pom.xml" file, some dependencies had to be adjusted
based on the restrictions associated with GAE (Google, 2015), which only allows
certain Java Library classes to be loaded into its JVM. For every dependency
that is removed from the "pom.xml", it is recommended to re-create the project's
classpath within Eclipse to avoid any compilation issues on the Integrated
Development Environment (IDE) interface, this is done through the following
Maven command: "mvn eclipse:eclipse".

In order to test the application locally, the following command is used: "mvn
appengine:devserver -DskipTests", with this approach, the Unit Tests are
skipped to conduct an initial evaluation of the local GAE development server. The
database connection details are not properly configured so the sample
application is not fully functional at this point.

[INFO]

[INFO] Google App Engine Java SDK - Running Development Server

[INFO]

[INFO] Retrieving Google App Engine Java SDK from Maven

Downloading: https://oss.sonatype.org/content/repositories/comgoogleappengine-10
04/com/google/appengine/appengine-java-sdk/1.9.17/appengine-java-sdk-1.9.17.zip
Downloading: https://repo.maven.apache.org/maven2/com/google/appengine/appengine
-java-sdk/1.9.17/appengine-java-sdk-1.9.17.zip

15728/166765 KB

Code listing C.2: Downloading GAE Development Server through Maven.

The application's code also needs to be changed so it won't require any Web
Context, this was done to follow the expected URL mapping of the GAE. After
running this command, the application is accessed locally through the following
URL.: "http://localhost:8080".

60

http://localhost:8080/

The Maven build process triggers the Unit Test classes by default so, since the
sample application is using "JUnit" to test the common operations against the
database (create, read, update, delete, list items), the "-DskipTests" system
property was used to skip this step, allowing this way, the initial deployment
against the local instance of GAE that is installed along with the Google Cloud
SDK. This system property that skips the Unit Tests is no longer necessary once
the MySQL Database is configured and the application tables are created, this
approach was used just as a sanity check to verify if the application can be
deployed against the local GAE instance.

To publish the application to Google Cloud and automatically provision an
instance of GAE, the following command is used: "mvn clean appengine:update
-DskipTests". This command deploys the application's main deployable artifact,
which, in this case is a ".war" package that is produced by the Maven build. This
approach uploads the packaged application to the GAE without involving any
source-code repository. The “appengine:update” command builds the artifact and
exceptionally, the first time it is executed, it prompts the user for an OAuth token.
This token is an authorization code that allows this client to upload the
application package to the cloud. This is a security check triggered by the
command line operation, it opens an instance of the default browser, prompts the
user to login with a Google account (Figure C.6) and asks the user to authorize
the local GAE Configuration to manage applications in the Google Cloud platform
through Open Authentication (OAuth). once the user accepts it, a code is
presented on the browser interface and the same must be copied and pasted into
the command line interface, this operation creates a file under the user’'s home
directory (.appcfg_oauth2_tokens java) to allow all subsequent requests to
update the application in Google Cloud.

61

& 2

~ Google App Engine appcfg would like to:

View and manage your applications deployed on
= Google App Engine

View and manage your data across Google Cloud
(= .
Platform services

By clicking Accept. you allow this app and Google to use your information in
accordance with their respective terms of service and privacy policies. You can
change this and other Account Permissions at any time.

Figure C.6. Authorizing local GAE Configuration to manage cloud applications.

Once the OAuth token is provided in the command-line interface, the Maven
build process is completed and the GAE dashboard in the Developers Console
becomes available (Figure C.7), it presents a dropdown with several monitoring
options:
e Requests by type
Latency
Loading latency
Error details
Traffic
Utilization
Instances
Memory Usage
Memcache Operations
Memcache Compute Units
Memcache Traffic
Memcache Total Cache Size
Memcache Hit Ratio

At the bottom, it shows a summary of Instances, Billing Status, Current Load,
Server Errors and Client Errors, on the top-right corner it shows the URL of the
recently-deployed application.

62

CalmlyWritingApp ~ de your 1t. Only $300.00 and 55 days remain in your free trial & ﬁ

Version 1 (default) ~ calmlywritingapp.appspot.com

Traffic ~ 1hour 6hours 12 hour lday 2days 4days 7days | 14days 30 days

Traffic

Apr 18, 2:45 PM Apr18,3:00 PM Apr18,3:15PM Apr 18, 3:33 PM

Instances

p Engine Release Totallnstances ~ Average aps Average Latency Average Memory

Figure C.7. Google Application Engine dashboard.

That is result of the newly created GAE instance that is automatically provisioned
once the “appengine:update” command is executed. From this point onwards, the
Google Cloud platform automatically provisions additional instances of the GAE
server depending on the workload within the application.

C.3 Storage — Cloud SQL

The sample application is only functional on the Google Cloud environment if it
can connect to a database, so an instance of the Cloud SQL component was
created to accommodate this need. To create a Cloud SQL instance, the user
needs to navigate to the Developers Console, select the option "Cloud SQL"
under the "Storage" section of the menu and click on the "New Instance" button
(figure C.8).

Storage i
Cloud Storage

Cloud Datastore
INSTANCE ID TIER IP ADDRESS STORAGE USED
Cloud SQL

Big Data marcelotestapp:testsqldb D1 — 512 MB RAM 173.194.226.85 274.3 MB of 250 GB

Figure C.8. Creating Cloud SQL instance.

In the “Create Cloud SQL Instance” page, it asks the user to specify an “Instance
ID”, region (Make sure the same region that hosts the GAE instance is selected),
tier (the default is “D1 - 512MB” of RAM) and options involving the backup
schedules and the “Activation policy”, the latter specifies how the database
system is activated, the default option is “On Demand”, which means, the
database is activated as soon as it receives any incoming requests and it
shutdown automatically after a few minutes of inactivity.

63

This provisions an instance of MySQL 5.5 by default in Google Cloud’s
infrastructure, the next steps are the creation of the “root” user associated with
the “%” client host (the percentage symbol allows connections from any client)
and the creation of the actual database object, which was named as
“calmlywritingdb” (Figure C.9).

New MySQL Database

Creating a database with New Database is the same as connecting to the
instance and using the CREATE DATABASE SQL statement. Learn more.

Name

Meeds to follow the MySQL schema object name rules

calmlywritingdb

Character Set
utf8

Collation

Default collation

Add Close

Figure C.9. Creating database instance for the sample application.

Once the database is created it is necessary to authorize the existing Google
Application Engine application to access the database, this is done by clicking on
the database instance, navigating to the “Access Control” tab and adding the
Application ID in the “Authorized App Engine Applications” section.

Google Cloud's database is a special MySQL Database instance that requires a
special driver when applications are deployed to GAE. For the purposes of this
research, the Cloud SQL database was configured remotely by using a SQL
Client called "Squirrel SQL Client" (Figure C.10), a connection alias containing a
MySQL Driver was created and the SQL scripts were executed to create the
proper tables required by the sample application.

64

& SQuirrel SQL Client Version 3.6

File Aliases Plugins Windows Help

Connec’[to:lCIoud S0L - marcelotestapp |v| & | & | Active Session:

Aliases =B
< & | # ®| |
Cloud SQL - marcelotestapp :

Aliases

& Change Alias: Cloud SQL - marcelotestapp

Change Alias: Cloud SQL - marcelotestapp

g MName: |Cloud SOL - marcelotestapp |
z Driver: |\/ MySQL Driver |v|| New |
URL: idbc:mys ql1173.194.226.85:3306/calmlywritingdb ?user=rq
User Name: |r00t |

Password: |o.oooo.o |

Auto logon [] Connect at Startup

Figure C.10. Using SQuirrel SQL Client to configure the application’s database.

The Spring MVC configuration file (mvc-servlet.xml) defines how the Java
Database Connectivity (JDBC) Connection Pool is generated, it basically loads a
properties file that is placed in the application's "resource" folder and, based on
its data, it creates the proper connection to the database instance.

<!l-- database -->
<bean
id="dataSource"
class="org.apache.commons.dbcp.BasicDataSource"
destroy-method="close" >
<property name="driverClassName" value="${jdbc.driverClassName}" />
<property name="url" value="${jdbc.url}" />
<property name="username" value="${jdbc.username}" />
<property name="password" value="${jdbc.password}" />
</bean>

Code listing C.3: Spring JDBC Connection Pool configuration.

Each environment has its own properties file containing the connection details for
its own MySQL Server instance, the "Development" environment has local
connection information and credentials to the local database instance whereas,
the "Production" (GAE) environment, is different based on the special
requirements demanded by Google's Cloud SQL database instance, within the
Google Developers Console, it is possible to specify which applications have
access to a given Cloud SQL instance so no password is necessary when
connecting to the Cloud SQL database from the GAE environment. GAE should
inject the required Google Driver into the application once it is deployed into
GAE, another requirement that is described by the documentation is that the
"Connector J" (Special connector for MySQL) needs to be defined in the
application's "appengine-web.xml", this connector is defined by adding

65

"<use-google-connector-j>true</use-google-connector-j>" to Google Application Engine's
deployment descriptor.

S MySQL Configuration — Development.properties
HHERHHH I A

jdbc.driverClassName=com.mysq|.jdbc.Driver
jdbc.url=jdbc:mysql://localhost:3306/calmlywritingdb

jdbc.username=root

jdbc.password=root

jdbc.dialect=org.hibernate.dialect. MySQLDialect

Code listing C.4: JDBC properties for local deployment.

e e MySQL Configuration - AppEngine.properties
S e e

jdbc.driverClassName=com.mysql.jdbc.GoogleDriver
jdbc.url=jdbc:google:mysql://marcelotestapp:testsqgldb/calmlywritingdb?user=root
jdbc.username=root

jdbc.password=

jdbc.dialect=org.hibernate.dialect. MySQLDialect

Code listing 4.5: JDBC properties for App Engine deployment.

In this research, the steps were elaborated to try to automate everything as much
as possible, therefore, in order to avoid any changes to the source-code to
specify the properties file, the Spring MVC configuration was adjusted to load the
name of the properties file from an environment variable called "ENV_SYSTEM",
the default value of this configuration property is "AppEngine" so, if the
environment variable is not defined, the application is deployed loading the data
from "AppEngine.properties”. In order to test the application locally, it is
necessary to run the command "export ENV_SYSTEM='Development” tO define the
variable before starting the unit tests and deploy the application to the local GAE
instance with "mvn appengine:devserver".

<context:property-placeholder location="classpath:${ENV_SYSTEM:AppEngine}.properties” |>

Code listing C.6: Spring MVC configuration to load environment-specific JDBC
connection data (Default option: AppEngine).

This configuration is revisited when the Continuous Integration environment is
assembled, a third properties file is created to store database connections details
specific to the Google Cloud SQL database.

C.4 Source Code — Release management

Google Cloud also offers a Source Code Management (SCM) system called
"Git", which manages the application's source-code in the Cloud, this repository

66

is used for the "Push-and-Deploy" approaches that are offered by the Google
Cloud Platform: "Automatic Releases pipeline" and "The GCE Jenkins VM".

The “ service automatically creates a Deployment Pipeline and connects it to the
source-code so it can build, test and deploy the package to the GAE instance.
The proposal of the feature is to provide this basic Continuous Integration
environment with minimal configuration effort.

In order to configure the releases’ pipeline in the Google Cloud Platform, the user
needs to navigate to the Google Developers Console and select the option
"Releases" under the "Source Code" section. A form (Figure C.11) is presented
so the user can specify some options involving the pipeline, for this research,
"Build and Test" was selected along with the "Java: Use Maven to build, test and
deploy" option (Figure C.12).

Source Code

Release Pipeline

Browse

Configure Release Pipeline
Developer tools N

Your proj release pipel

Compute
(L EED RELEASE PIPELINE NAME

Marcelo Test

CHOOSE PIPELINE TASKS
Deploy source only (Python, PHP)

Build and test

B Figure C.11. Configuration of the automatic Release Pipeline.

This option is presented two major issues, the first one is that the access to
Jenkins is limited and none of the build steps can be configured, the second
issue is related to a Java compilation problem that was identified during the
research, the automatic configuration creates, by default, a Jenkins VM within the
Google Compute Engine (GCE) Infrastructure-as-a-Service (laaS) environment,
this VM uses a Java Development Kit (JDK) version 8 to compile the application
code and the GAE does not support Java Server Pages (JSPs) compiled with
this particular version, only the ones compiled with JDK 7 or earlier versions, a
workaround to change the JDK version within the service was not identified, the
issue was already identified by a number of users and it is being tracked in a bug
report (Googleappengine, 2015).

67

Dec 23, 2014, 9:00:21 PM themarcelor test pipeline with grante . Oz G O
Dec 23, 2014, 8:39:15 PW 4 734 themarcelor specify databse on jdbe u L 0T 1 Log

Dec 23,2014, 8:34:30 PN themarcelor vsf, using mysql driveri .. Qouild @ Tes

Figure C.12. Google Cloud’s Release Pipeline.

Currently, there is no solution for this problem as the VM is automatically
configured and the access to the Jenkins management console is limited. This
issue delayed the evaluation of the Continuous Integration and Continuous
Delivery components as an alternative had to be considered.

C.5 Creation of GCE Jenkins VM

This approach involves the creation of a Jenkins VM through the Google Cloud
Command Line Interface (CLI) component, followed by its configuration and, in
addition to the first approach, as the access to the Jenkins management console
is now available, it also includes the creation of a second GCE VM that hosts a
Selenium Hub, allowing a pipeline that involves build, Unit Testing, deploy to
GAE and Graphic User Interface (GUI) tests through the Selenium server. This
approach also comprises a conditional build tagging mechanism that is added to
the end of the pipeline, builds that are successfully deployed and provide
expected results on user interface tests to indicate which build needs to be
tagged properly to be eligible for promotion to the next environments.

The creation of the Jenkins VM is done through the CLI tool called "gcloud" and
its mechanism to automatically load Bithami images, according to their online
page (Bitnami, 2015), “Bitnami is a library of popular server applications and
development environments that can be installed with one click, either in your
laptop, in a virtual machine or hosted in the cloud. We take care of compiling and
configuring the applications and all of their dependencies (third-party libraries,
language runtimes, databases) so they work out-of-the-box”. The “gcloud” tool
easily controls the services provided by the Google Cloud Platform, the
command to provision the Jenkins VM (Figure C.13) contains details like user
credentials and Virtual Machine's metadata.

68

C:\tech\google\cloud_apps\marcelotestapp>gcloud compute instances create bithami
-jenkins --project "marcelotestapp" --image-project bithami-launchpad --image bi
tnami-jenkins-1-587-0-linux-debian-7-x86-64-image --zone us-central1-a --machine
-type n1-standard-1 --metadata "bitnami-base-password=*********" "hitnami-def
ault-user=user" "bitnami-key=jenkins" "bitnami-name=Jenkins" "bitnami-version=1-
587-0" "bitnami-url=//bitnami.com/stack/jenkins" "bitnami-description=Jenkins."
"startup-script-url=https://dl.google.com/dl/jenkins/p2dsetup/setup-script.sh" -
-scopes "https://www.googleapis.com/auth/userinfo.email" "https://www.googleapis
.com/auth/devstorage.full_control" "https://www.googleapis.com/auth/projecthosti

ng" "https://www.googleapis.com/auth/appengine.admin" --tags "bithami-launchpad"

Code listing C.7: Creating Jenkins Bitnami VM through the "gcloud" command.

Congratulations!

You are now running Bitnami

Figure C.13. Bitnami Jenkins provisioned through the Google Cloud Platform.

The configuration of the Jenkins jobs is done through the Jenkins management
console, for the purposes of this research, four jobs were created to assemble
the Continuous Integration and a basic Continuous Delivery pipeline (Figure
C.14):

Build_test_deploy

GUIl_Test

Tag_build

Create_defect

hoON=

€ > C []146.14894.51/jenkins/

Jenkins

= New Item
All CalmlyWriting Pipeline +
& People
— S w Name | Last Success
= Build History
-
Create_defect 25d -#1
Manage Jenkins reate_gelec ays -El
Fe "
4. Credentials g @ GUI_Test 25 days - #6
‘ My Views Q Marcelotestapp_build_test_deploy 25 days - #13
i P H HA
Build Queue = ’Q y Tag_build 25 days - #4
No builds in the queue. lcon: SML

Figure C.14 Jenkins interface showing Deployment Pipeline jobs.

69

1) Build_test_deploy: This step connects to the Git repository, retrieves the
code, run the required Unit Tests and builds the web application package (.war)
so that it can be deployed to GAE. It has a downstream Jenkins project called
"GUI_Test" that is triggered only if this initial steps are completed successfully.
The Maven command used in this step specifies only Unit Tests (Figure C.15)
and it skips the test cases declared under the “selenium” package (clean
-Dtest=com.calmlywriting.junit.**/* test package). A second step is added to
perform the deployment operation, the following “Shell Script” command was
used: “gcloud --project=calmlywritingapp preview app deploy
target/CalmlyWriting” (without the .war extension).

Build

Invoke top-level Maven targets (7]

Goals clean “-Dtest=com.calmlywriting.junit. ™/*' test package L

Advanced...

Figure C.15. Jenkins build configured with Maven goals.

In order to properly configure the access to the Cloud SQL database and allow
the Unit Tests to run, a third properties file was created (Pipeline.properties) to
be consumed exclusively by Unit Tests executed in the Jenkins build step. This is
done through the configuration of the "ENV_SYSTEM" environment variable
under the Slave machine that is used by this Jenkins Bitnami VM (Under the
configuration of the "cloud-dev-java" slave, there is a "config" option that leads to
a form that allows the user to add environment variables). Another dependency is
related to “Access Control” within the Google SQL instance, the user needs to
authorize the communication between the Jenkins Pipeline and the Database
server, this is done by navigating to the Google SQL access configuration page
and adding the IP Address of the Jenkins Bitnami VM (Figure C.16).

Allowed Networks

Only external networks on IPs addresses listed here will be allowed to connect to
your Cloud SQL instance. Note that this is only applied when they are connecting
using your instance IPv4 or IPv6 address

Name Network Expires
My Laptop 86.42.27.204 never
Jenkins Pipeline 104.197.10.151 never
| + |

Figure C.16. Google SQL Access Control.

70

With this additional configuration applied, the “Build_test deploy” project is
almost ready to be executed, however, the initial trigger of the pipeline needs to
be automated, this is achieved by configuring the project once more and select
the “Poll SCM” option under the “Build Triggers” section, the official
documentation suggests the “H/5 * * * *” for the configuration for the scheduled
task, this performs a check on the GIT repository for any new commits every 5
minutes.

The Jenkins Bitnami image is provisioned with the JDK 8 by default and Google
Application Engine is not compatible with JSPs compiled with this version, to
solve this problem the author had to adjust Jenkins configuration by navigating to
the “Manage Jenkins > Configure System” page and adding the JDK 7 (Figure
C.17), the Oracle credentials must be provided and once the configuration is
saved, the job configuration page presents a drop-down so the user can select
the new JDK, this is the workaround to prevent compilation failures while trying to
deploy the application package to GAE.

JDK
JOK installations JDK

Name JDK 7

Install automatically @

Install from java.sun.com
Version | Java SE Development Kit 7u80

| agree to the Java SE Development Kit License Agreement

Delete Installer

Figure C.17. JDK 7 must be installed to solve JSP compilation issues in GAE.

2) GUIL_Test: This step executes the Selenium Classes that validate the
interactions with the sample application's interface (using the following Maven
command: -Dtest=com.calmlywriting.selenium.** test), it is triggered by a
successful execution of the previous project (Build_test_deploy). The Selenium
classes need to connect to a Selenium Hub that delegates the test processing to
a Remote WebDriver, based on this need, a second GCE Virtual Machine was
created to host both the Selenium Hub and the Web Driver to run a Firefox
browser for each "GUI_Test" build. The creation of this VM is discussed in the
next section.

3) Tag_build: The last two Jenkins projects are also conditional, if the
"GUI_Test" build fails, it should create a defect, if it is executed successfully, it
should tag this build within the GIT repository so the files associated with this
package of the web application are marked as eligible to be promoted to the next
code stream and environment.

71

Before the build can be tagged, Jenkins needs to configure the global user for
the GIT system, this is done in “Manage Jenkins > Configure System”, within the
“GIT Plugin” section, the author provided a username and an email address to
satisfy this dependency (Figure C.18).

Git plugin

[
Global Config user.name Value marcelo

il
Global Config user.email Value marcelo@mail com

Create new accounts base on author/committer's email

Figure C.18. Global user name configured in Jenkins’ GIT Plugin.

The tagging is configured through a post-build action configured within the
Jenkins project (Figure C.19), the Git Publisher option allows the user to create
tags within the GIT repository to create a logical snapshot of the changeset that
was committed, since multiple builds are processed throughout the development
cycle, the tags were named as “Good_build_${BUILD ID}", the “BUILD_ID”
variable is appended to the number of the “Tag_build” iteration to the tag name,
therefore, each tag is unique.

Post-build Actions

Git Publisher @
Push Only If Build Succeeds ()
Merge Results (@)

If pre-build merging is configured, push the result back to the erigin
Force Push

Add force option to git push
Tags

Tag to push Good_build_${BUILD_ID}

Tag message

4
- (2)
Create new tag = -

Figure C.19. Create tags in the GIT repository.

4) Create_defect: This step should, ideally, create an entry in a bug tracking
system if the GUI Test fails. It can trigger an Application Programming Interface
(API) call to a Bugzilla or JIRA and assign to the author of the class associated
with the feature that was being tested. Since there is no orchestration available
with a bug tracking service, the author just placed a Shell Command to print a
message, just for testing purposes.

To automatically trigger the last two projects (“Tag_build” and “Create_defect”)

conditionally, the author used the “Parameterized Build” plugin (Figure C.20) and
adjusted the “GUI_Test” project to invoke each build based on the status of its

72

job, builds are tagged when the tests are executed successfully, whereas defects
are reported if something fails.

Post-build Actions

Trigger parameterized build on other projects

Build Triggers
Projects to build Tag_build
Trigger when build is Stable v @
Trigger build without parameters @

Add Parameters =

Delete

Projects to build Create_defact,

Trigger when build is Failed

®

Trigger build without parameters [

®

Add Parameters =

Figure C.20. Configuration of conditional builds.

To help the user visualize the flow of the Deployment Pipeline, a plugin called
“Delivery Pipeline Plugin” was installed, the plugin installation does not require a
restart and it is done through the “Manage Jenkins” page, the author specified all

four projects in the plugin configuration and created a new Jenkins view (Figure
C.21).

CalmlyWriting Pipeline +

Build
Build_test_deploy #27 GUI_Test Create_defect #27
E!und test deploy % _) ICreate defect
&m ago
Tag_build #25
e ITag build
days ago 6 sec

Figure C.21. The CalmlyWriting Pipeline hosted in Google Cloud.

The pipeline was tested by applying a small change to the text on the index
page, the author modified the contents of the page and committed the code
through GIT, then the Deployment Pipeline reacts to the change (as per the SCM
Polling that was configured in Jenkins) and process the testing flow to validate
the change, a build is tagged at the end of the process as a result of a good
build.

73

C6 Creation of GCE Selenium Hub VM

The Selenium VM was also created with the "gcloud" CLI tool, however, there is
no image with a Selenium Hub pre-installed. The author could not identify a more
efficient way to provision a GUI Test service automatically. This VM is necessary
to allow the invocation of the Firefox browser from the Selenium Web Driver that
runs the sample application’s JUnit test cases. A Windows Server 2008 Virtual
Machine was created (Figure C.22) to facilitate the configuration of the
components. The instructions were taken from the “Logging into a Windows
virtual machine instance” page (Google, 2014).

MAME ZONE DISK NETWORK | USE BY EXTERMAL IP
@& bitnami-jenkins us-centrall-a bitnami-jenkins default 146.148.94.51

& windows-grid us-centrall-a windows-grid default 130.211.152.221

Figure C.22. The Jenkins server and the Selenium Hub GCE VMs.

The VM was created with the command below, it specifies details like the name
of the image, the region and it defines the VM user’s password based on the
contents of a separate text file.

C:\tech\google\cloud_apps\marcelotestapp>gcloud compute instances create windows-selgrid
--image windows-server-2008-r2-dc-v20141120 --image-project windows-cloud --zone
us-central1-a --metadata gce-initial-windows-user=marcelorjava --metadata-from-file
gce-initial-windows-password=password.txt

Code listing C.8: Windows Server VM creation through the "gcloud" command.

Once the VM was created, the access through the Microsoft Terminal Services
Client (MSTSC) became available (The credentials are also defined as metadata
parameters of the "gcloud" command) but, before the Selenium test cases can
access, it is necessary to create a Firewall Rule in Google Cloud’s network to
allow the connection from the local machine to perform tests through local builds.

C:\tech\google\cloud_apps\marcelotestapp>gcloud compute firewall-rules create selenium --allow
tcp:4444 --source-ranges 86.42.30.226

Created [https://www.googleapis.com/compute/v1/projects/marcelotestapp/global/fi
rewalls/selenium].

NAME NETWORK SRC_RANGES RULES SRC_TAGS TARGET_TAGS

selenium default 86.42.30.226 tcp:4444

Code listing C.9: Creation of a Firewall Rule to allow Selenium test cases to
connect from local machine.

74

When the VM access was obtained, the following steps were executed in order to
prepare the Selenium Hub:

a. Install JDK 7: This is a dependency to run the Java components
associated with the Selenium Hub and the Web Driver.

b. Install Firefox: So it can be invoked by Selenium to test the sample
application's interface.

c. Download ‘"selenium-server-standalone-*.jar" package from
"www.seleniumhq.org", place it in a specific folder and prepare two
batch files to start the required components: “startHub.bat” and
“startNode.bat”.

java -jar selenium-server-standalone-2.44.0.jar -role hub -timeout=20
-browserTimeout=60

Code listing C.10: Contents of startHub.bat.

java -jar selenium-server-standalone-2.44.0.jar -role node -hub
http://localhost:4444/grid/register

Code listing C.11: Contents of startNode.bat.

Once both components are started, there is one final step that is required in
order to allow the access between the Jenkins VM and the Selenium VM, once
again, the "gcloud" CLI tool is used to create a new Firewall Rule that allows that
communication between the Jenkins "GUI_Test" build and the Selenium Hub on
port 4444,

C:\tech\google\cloud_apps\marcelotestapp\default>gcloud compute firewall-rules c
reate seljenkins --allow tcp:4444 --source-ranges 146.148.94.51

Created [https://www.googleapis.com/compute/v1/projects/marcelotestapp/globalffi
rewalls/seljenkins].

NAME NETWORK SRC_RANGES RULES SRC_TAGS TARGET_TAGS
seljenkins default 146.148.94.51 tcp:4444

Code listing C.12: Creating Firewall Rule to allow access between the Jenkins
and Selenium VMs.

At the end of this process, the Selenium VM is ready to start accepting requests
and execute Firefox interactions against the sample application (Figure C.23).

75

http://www.seleniumhq.org/
http://localhost:4444/grid/register

130.211.152.221 - Remote Desktop Connection

Launching a lenium grid server T——
4.421 :INFO:0 Server:jetty—"7.x.y—SHAPSHOT ‘;\ Jv| = Computer = Local Disk (C:) - selenium
-ContextHandler:started o.s.j.s.Serv lethntextl =
COrganize * Open Print Mew folder
LI Mame «
4 Libraries ; l
= - -5t -2.44.0,
Started HttpContext[sselenium—server. selenium—server j Documents L= setenium-server-standalone jar
Started HttpContext[/./1 J Music startHub. bat
Started org.openga.jetty.jetty.servlet.ServletHandler@24biH h
b= Pictures
Pict

Started HttpContext [ud, wdl

SocketListener on 8.0.0. B videos

org.openga.jetty
using the js we H N
conf iguratio egis rue, g 1% Camputer
-openga.grid.selenium.proxy.DefaultRemoteProxy Ficd i .

Cycle":5088, "huh &y Local Disk (C)
€l Netwark x|
Seleni .
it et e i i "] startModebat Date modiied: 12/27/2014 12:008M Da
. | 5 windows Batch File Size: 129 bytes

S T Y. WL N0 A P L A2

1y ul es o
R Mt Y 1 R AAC Address: 4201 OAFOEFT
demory: 3840 MB

INFO — Registering the node to hub :http:/~vlocalhost:4444 /grid-/reyi]

-l

Figure C.23. GCE Virtual Machine with Selenium Hub.

The Java code is prepared so it can point to the correct Remote WebDriver, the
Selenium VM's IP Address is specified within the code so the GUI Testing can
happen during the build process.

public class SimplelnterfaceTest {
private RemoteWebDriver driver;

@Before

public void firefoxSetUp() throws MalformedURLException {
DesiredCapabilities capability = DesiredCapabilities.firefox();
driver = new RemoteWebDriver(new URL("http://130.211.152.221:4444/wd/hub"), capability);
driver.manage().timeouts().implicitlyWait(20, TimeUnit. SECONDS);

Code listing C.13: Java code containing the definition of the RemoteWebDriver,
which points to the GCE Selenium VM.

76

Appendix D - Building a Deployment Pipeline with IBM Bluemix

In IBM Bluemix, as opposed to Google Cloud Platform, in order to sign up for the
30-day trial period, the user does not require a credit card for the initial
subscription, only an email address that is used for the creation of an IBM ID that
allows the user access to the dashboard, the user just needs to follow the
instructions on Bluemix website (Figure D.1).

L (D IBM Bluemix CATALOG DOCS COMMUNITY

IBM Bluemix

The Digital Innovation

Weather Means
Business™
IBM and the Weather Company to

P | a tfo rm make weather data available via
new Bluemix service.

GET STARTED FREE Learn more

EXTEND INTEGRATE FEATURED

Figure D.1. IBM Bluemix home page.

D.1 The Dashboard

The dashboard menu is composed of four options: CF Apps (Cloud Foundry
applications), Services, Containers and Virtual Machines (Figure D.2), the
applications’ section presents the technologies available in the Bluemix PaaS
and allows the user to automatically provision one of the available platforms and
deploy an application, the Services page shows the full Service Catalogue
(discussed in upcoming sections) and the last two options are related to Bluemix
laaS offerings: IBM Containers (also known as Docker Containers), which is in
Beta version and Virtual Machines that are already available for some users.

77

DASHBOARD SOLUTIONS CATALOG

Development

Deploy your app the way
yo t [

; I
CLOUD FOUNDRY IBM CONTAINERS VIRTUAL MACHINES

Figure D.2. The Bluemix Dashboard.

In the applications pages, there is a report showing the Memory Usage, the
Application Health and the binded Services (Figure D.3), this facilitates the
monitoring of the overall resources provisioned Bluemix. In order to create an
application, the user clicks on the “Create an App” button and then it follows a
wizard to set up the type of the application that is created.

APP HEALTH

Applications

Figure D.3. Applications page.

The user must select between a “Web” or a “Mobile” app and then the technology
that is used, Bluemix offers options like: Liberty for Java, SDK for Node.js, Go,
PHP, Python and Ruby. For the purposes of this research, a Java Web
Application was created. The PaaS technology associated with this choice is the
Websphere Liberty Profile.

D.2 Websphere Liberty Profile

Websphere Liberty Profile is a lightweight application server that supports a
subset of the technologies specified on the Java Enterprise Edition (JEE) 6 stack,
it is fast and easily configurable, its main configuration file (server.xml) is very
short and simple, this application server is the default option for Java applications
that are deployed to Bluemix.

78

Once the user creates an application (clicking on the “Create an App” button), the
application name must be defined, in this exercise, the application was named as
“CalmlyWritingApp”, after that, the system starts to provision the underlying
infrastructure immediately and presents three different methods to start working
with the new web application (Figure D.4), all these methods offer an option to
download a “Starter Code”, which is a simple application containing a “Hello
World” page in a standard structure of a Java Enterprise Edition application, the
three options are:

e Eclipse tools for Bluemix: Involves a plugin in the Integrated
Development Environment (IDE) that allows the developer to upload a
packaged Websphere Liberty Profile server and the application package
to Bluemix.

e Cloud Foundry: The user installs a Command Line Interface (CLI) tool
and executes commands to log into the Cloud Platform and “push” the
application to the PaaS server.

e GIT: It leverages the Source-Code Management service to create an
online version-control repository which can also be used as a web-based
IDE, this option also offers a live-sync service where the developer can
make changes to the code locally and the changes are immediately
reflected in the online repository.

<) Your application is staging. hitp://calmlywritingapp. mybluemix.net

How do you want to start coding?

Eclipse Tools for Bluemix 4. CF Command Line Interface GIT

Develop, integrate, and push I:T;_
applications to Bluemix using =
Eclipse.

| Run your code locally. i ‘.: Deploy your app with the Git CLI,
~— Manually push to Bluemix. or use Bluemix DevOps Services.

Start coding with Cloud Foundry command line interface

Figure D.4. Application provisioning and initial coding options.

In order to prepare the local configuration to upload the sample application to
Bluemix’s Liberty Profile, the Cloud Foundry CLI was installed (Figure D.5), this
command line tool manages applications and services in Bluemix (Similar to
Google SDK). The “Starter Code” package was also downloaded.

79

15! Setup - Cloud Foundry CLT =) X

Welcome to the Cloud Foundry CLI
Setup Wizard

This will install 6.10.0 on your computer,

ltis recommended thatyou close all other applications before
continuing.

Click Nextto continue, or Cancel to exit Setup

Figure D.5. Installing Cloud Foundry CLI.

To proceed with the creation of the application leveraging the same SCM offering
from Google Cloud, the “GIT” option was selected and, after reading the
instructions, the author was directed to the application’s overview page (Figure
D.6), this page is comprised of a set of status information related to the
application, a small icon that represents a Websphere Liberty Profile application,
the URL of the Bluemix-hosted application, the number of instances, memory
quota, available memory, an “APP HEALTH” report with options to restart the
application, buttons to bind Services and “APIs” and an “Activity Log” section with
the latest changes applied to the application.

CalmlyWritingApp —
Routes: P
APP HEALTH RESTART
512.0 MB @ Your app s running.

LIBERTY FOR JAVA™

ACTIVITY LOG

started CalmlyWritingApp app

ADD A SERVICE OR API BIND A SERVICE OR AFI

updated CalmlyWritingApp app
« changed routes

Figure D.6. Application overview page.

In order to test Websphere Liberty Profile locally to verify if the application is fully
compatible with it, the author followed the instructions from the “Download just
the Liberty profile runtime” page, which is part of the Liberty Profile
documentation (WasDev, 2014), the following steps were applied to install a local
instance of the application server:

1. Download the Liberty profile runtime.

2. Run the following command then follow the prompts to install the Liberty
profile runtime:

80

java -jar wip-runtime-8.5.5.5.jar

3. From the wip/bin directory in your Liberty profile runtime installation, run
the following command to create a new server:

server create server-name

The new server is created in wip/usr/servers/server-name.
4. Run the following command to start the server:

server start server-name

5. To deploy an application, copy the .war file to the server’s dropins
directory:

usr/servers/server-name/dropins
There is no need to restart the server.

Based on these steps the author was able to deploy the sample application to the
local instance of Liberty Profile, however, it failed to present the expected
interface(it did not render the background image and other Ul elements), some
investigation was performed but the root cause was not identified, in order to
progress with the experiment it was necessary to replace OpenSymphony’s
SiteMesh, which was the content presentation framework being used in the
sample application, with Apache Tiles, which is an alternative that works with the
“Composite View” pattern, as opposed to the “Decorator” pattern used in
SiteMesh, after replacing the frameworks and refactoring the code the application
interface was successfully rendered in Liberty Profile.

The deployment artifact was produced by the command “mvn clean install
-DskipTests” (it was necessary to skip the tests since the database had not been
configured at this point), the “.war” package was then copied to the “dropins”
directory of the Liberty Profile instance installed locally, no automation was
applied for this step.

To deploy the same artifact to the Liberty Profile instance that is running on the
cloud, the user needs a “manifest.yml” file, which is Cloud Foundry’s deployment
descriptor to “push” the Web Application package to the cloud and the Cloud
Foundry CLI that must be installed on the local machine. To obtain a
“‘manifest.yml” file, the user can analyze the contents of the “Starter Code”

81

package downloaded previously to edit the parameters and adapt the values to
the sample application’s configuration.

applications:

- disk_quota: 1024M
host: calmlywritingapp
name: CalmlyWritingApp
path: CalmlyWritingApp.war
domain: mybluemix.net
instances: 1
memory: 512M

Code listing D.1: Changes applied to manifest.yml to deploy the sample
application to Bluemix.

Once the “manifest.yml” file is modified, the following command is used to “push”
the application to the Liberty Profile instance in Bluemix: “cf push -p
target/CalmlyWritingApp.war”, the “-p” parameter refers to the path where the
deployment artifact is located, there is an alternative that allows the user to
‘push” without the “manifest.yml” file, which is the command “cf push
CalmlyWritingApp -p CalmlyWritingApp.war”, by specifying the name of the
application, it eliminates the need to prepare a “manifest.yml” file, however, this
deployment descriptor is needed if the configuration of the Liberty Profile
Application Server needs to be customized, this was elaborated in the upcoming
sections.

D.3 Binding and configuring the Database service

The Bluemix catalogue offers a variety of services, with a free-tier option on each
one of them, the services’ categories are found on the left-side menu of the
“Catalogue” page, below the main categories, the “Support” section gathers other
categories like IBM, Third Party, Community, Experimental and Beta. Here are
the categories:
e Watson
Mobile
DevOps
Web and Application
Integration
Data Management
Big Data
Security
Business Analytics
Internet of Things

82

To keep a point of similarity with the Google Cloud solution, that also offers its
own custom MySQL database, the author considered two options from the “Data
Management” section of Bluemix’s services catalogue: the Experimental MySQL
and the ClearDB MySQL Database (Figure D.7), to avoid any tests with
“‘Experimental” services, the latter was selected and binded to the sample
application. ClearDB MySQL is a third party service that hosts a fault-tolerant
MySQL database instance.

Add Service

ClearDB is a reliable, fault tolerant, geo-distributed database-as-a-service for your MySQL powered App
applications ‘ Selectan application -
Service name

Pick a plan Monthly prices shown are for country or region: Ireland ‘ ClearDB MySQL Database-hb
ClearDB MySQL

Database

Plan Features Price Selected Plan:

Price: FREE!

02018 DB size: up to 5MB ‘ Spark DB -
Connections: 4
vPE /0 Performance: Low
Service Daily Backups P
Perfect for proof-of-concept and initial development.

VIEW DOCS

F‘ig‘ure D.7. Creating the ClearDB MySQL service.

In order to prepare the database to interact with the sample application
(CalmlyWriting), a client was used to run the SQL code that creates the tables
and insert the required data to create the users, roles and some initial content.
Following the same approach applied in the evaluation of Google Cloud Platform,
the author used SQuirrel SQL (Figure D.8) to create the connection to the
MySQL instance.

 squinel soL Cientversion 36 I T

Eile Drivers Aliases Pluging Session Windows Help

onnectto: |Bluemix_DB || | &2 | & | Active Session:|4—ElIuemix_DEl(ad_SMchB... |v|c9g » ® r‘jﬁ

f % [] 4-Bluemix_DB (ad_6b4bc828b%eT1d14) as bbb135f17dc5c6 | |

Catalog: |ad_6b4b::88b9e71d14|V| E @§? :f{

Objects

Aliases

@ﬂ: Info | Content | Row Count | Columns [PrimaryKey | Exported Key:

¢ E Bluemix_DB J| WRITER_ROL... |WRITER_. AUTHORITY
o [@ information_schema HE 1 ROLE_USER
¢ [@ ad_6b4bcaBbleT1d14 2 2 RDLE_USER

o [F] LOCAL TEMPORARY ©
¢ [TABLE i
[textversions
[writers

[writers_roles
o [VIEW
o [&| PROCEDURE

o K3 UDT

Figure D.8. Connecﬁng to the ClearDB MySQL database .

83

The application’s database connection properties (LibertyProfile.properties) were
edited to test the artifact against the PaaS platform, the configuration data
includes the name of the database, the hostname, port number, username and
password, this information is exposed in the application dashboard (the
Application Overview page), each service has a “Show Credentials” link that
presents a sliding section containing all the configuration of the service in
Javascript Object Notation (JSON) format. Once the service is binded to the
application, the interface presents a dialog stating that the it needs to “re-stage”
so it can apply the changes, the application is then restarted and all the services
become active.

AR MySQL Configuration - DEV (Bluemix) #HHHEHHHHHHHHHHHHEHHHHHHHE
jdbc.driverClassName=com.mysql.jdbc.Driver
jdbc.url=jdbc:mysql://us-cdbr-iron-east-02.cleardb.net:3306/ad_6b4bc88b9e71d14
jdbc.username=bbb135f17dc5c6
jdbc.password=******
jdbc.dialect=org.hibernate.dialect. MySQLDialect

Code listing D.2: Database properties file to be loaded by the Spring
configuration file.

With the database fully configured with all the application tables, the author
moved forward with the adjustments around the application code, more
specifically, the Spring configuration file (mvc-servlet.xml), which was modified to
consume the “LibertyProfile.properties” file in the absence of the
“‘ENV_SYSTEM” environment variable, so all local builds require the declaration
of the variable specifying the Development environment, resulting in a connection
to a local instance of MySQL (export ENV_SYSTEM="'Development’).

<context:property-placeholder location="classpath:${ENV_SYSTEM:LibertyProfile}.properties" |>

Code listing D.3: Spring MVC configuration to load environment-specific JDBC
connection data (Default option: LibertyProfile).

With these adjustments in place, the Development environment is ready to
accommodate code changes, Unit Tests involving operations on the local MySQL
database instance and the deployment to the both instances of Liberty Profile
(local and cloud).

D.4 DevOps Services

This section presents the steps taken to configure the Source Control
Management (SCM) system and the Deployment Pipeline within Bluemix, it also
presents an overview of the main features associated with the DevOps services:

84

The options to interact with the code, GIT online components, the Agile planning
tool and the Build and Deployment interface.

In the Application Overview page, the “ADD GIT” button presented on the
top-right corner initializes the source-code repository for the application, by
clicking on it, the user is presented with a dialog that requests the creation of a
new account, this time, a “Jazz ID” account, this account is linked with the IBM ID
so the user can work with the Source Code Management system, the dialog
presents additional instructions stating that the application is deployed every time
any code is committed and pushed into the repository (the Push-and-Deploy
approach), it also contains a checkbox to enable the addition of the “Starter
Code” application to the version-control system, this is offered to assist new
users that want to evaluate the code changes in a test application and check the
changes right away.

After a few minutes, the GIT repository is ready and this action enables a new
“Edit Code” button, also on the top-right corner of the application overview page,
this button redirects the user to the “Jazz Hub” page (Figure D.9).

TRACK & PLAN | [BUILD &DEPLOY | ¥

OVERVIEW

CalmlyWritingApp

Owner:

pd © ‘ FORK PROJECT ‘

X

Members (1 of 1)
arceloc | CalmlyWritingApp

Last commit by Marcelo Costa 12 minutes ago .
. Add starter application packa 12 minutes ago
mir

About this project

Figure D.9. The Jazz Hub page.

In an online article (Techworld, 2011), Ellen Messmer defines the Jazz Hub as a
cloud-based software development service that “is based on IBM's software
development tool Rational Team Concert. Particularly aimed at use by college
students, Jazz Hub is an idea from IBM to encourage a new generation of
software developers to work more collaboratively and in the cloud.”, this area is
where the developer can visualize the application’s files, manage projects and
invite other users to join the development. The menu at the top of the page
presents three buttons: “Edit Code”, “Track and Plan” and “Build and Deploy”, the
first one provides an interface for code editing, along with options to show GIT
branches and deployment of the application based on the files currently placed in
the workspace (Figure D.10).

85

IBM Bluemix DevOps Services

CalmlyWritingApp Root/marceloc | CalmlyWritingApp

File Edt View @ CalmlyWritingApp (running: normal) > e 2 =R

‘¥ marceloc | CalmlyWritingApp
> git
> i » README.md
» bin
» depjar
» launchConfigurations
» sic https://hub.jazz. net/igivmarceloc/Calmly WritingApp/
» WebContent
[crignore

[classpath

D) giignore v marceloc | CalmlyWritingApp

[project B3 git 10/0412015 21:13-15

Figure D.10. The code editing page.

The second button, “Track and Plan”, presents instructions to enable this tool in
the Project Settings page, this is a tool for agile project planning that manages
“sprints” and ”"scrums” by allowing the user to create “Stories”, “Tasks” and
“‘Defects”, these are known as “Work Items” or “Tickets” and they are used to

organize the work that is performed on the application (Figure D.11).

MY WORK

CalmlyWritingApp
2

Y Filter work items by keyword

OPEN EB L

E=mcc 2 B8 2 CANCEL

Recently Created

E 86917: Build 1st version of CalmlyWriting

(9]

© 2,

Figure D.11. The Agile Planning page.

The “Build and Deploy” button takes the user to the “Build and Deploy Pipeline”
page, this area is comprised of “Stages”, steps that are defined in the
deployment pipeline in order to prepare and deliver the application to the Cloud,
this interface illustrates the flow of the build and deployment phases so the
developer can track the operations involved in the code delivery (Figure D.12), it
also presents the results and exposes any failures that might occur during each
of these phases to facilitate the troubleshooting.

86

Your project workspace has outgoing changes. Go to the to commit and push your changes if you want to include them in your deployed application.

Pipeline: All Stages

Build Stage ® = Deploy Stage

INPUT & Git URL INPUT

Last Input: Not yet run Stage: Build Stage / Job: Build
Last Input: Not yet run

View logs and history JOBS View logs and history

Build Deploy to Development

LAST EXECUTION RESULT LAST EXECUTION RESULT

No results No results

Figure D.12. The Build and Deploy Pipeline page.

Each stage is configurable and can be adjusted for the particular needs of each
application (Figure D.13), this is done by clicking on the “configuration” icon at
the top-right corner of each “Stage” element, for example: the “Build Stage”
presents options to define the “Input” data, which, in this case, is the source-code
from the SCM Repository (GIT) and sets the “trigger” for such action (the entry
point of the pipeline), the “Jobs” tab allows the user to configure or add
operations related to the “build” itself, it provides the following options:

e Simple: Package the original files for deployment with no changes.
Ant: Build using Apache Ant.
Grunt: Build using Grunt.
Gradle: Build using Gradle.
Maven: Build using Apache Maven.
npm: Install dependencies with node package manager.
Shell Script: Run a UNIX shell script.
IBM Container Service on Bluemix: Build a Docker Image from a
Dockerfile using the IBM Container Service Build Service on Bluemix.

The last tab, “Environment Properties”, allows the user to create custom
variables that can be used by the build process or by the next “Stage” of the
pipeline.

87

Buid Stage

INPUT JOBS ENVIRONMENT PROPERTIES

(&) ®

ADD JOB

Delivery Pipeline is free up to 60 minutes of build time per month.

To use the Delivery Pipeline beyond 60 minutes of build time per month, and to avoid interruptions to the

builds, to the Bluemix space configured in this

Buld

Build Configuration

Builder Type

Maven -

Build Command

#!/bin/bash
mvn -B package

Working Directory

Build Archive Directory

target

[] Enable Test Report

Figure D.13. Customizing one of the stages.

Once the first set of changes is committed and pushed by the user, it
automatically triggers the deployment pipeline and each “Stage” presents some
visual feedback with the progress of the operation (Figure D.14).

Pipeline: All Stages

Build Stage ® Deploy Stage

INPUT o Git URL INPUT

Last commit by Marcelo Costa just now Stage: Build Stage / Job: Build
First commit Last Input: Build 1

JOBS View logs and history JOBS View logs and history

JOBS COMPLETED SUCCESSFULLY JOBS RUNNING. ..

@ Build succeeded {} Deploy to Development Runnin...

LAST EXECUTION RESULT LAST EXECUTION RESULT

o Build 1

Mo results

Figure D.14. Pipeline in action.

88

This simple Deployment Pipeline is automatically created to illustrate how the
“Starter Code” application is built and deployed, in case the build presents any
failures, the user can click on the job and check the error message in the build
log, similar to the Jenkins interface, the log entries show up in real time as the
build progresses (Figure D.15).

Build Stage

JOB EXECUTION ORDER

Build

¥ Build 5 {} Build 5 Running 0%
- oadin 29 seconds
(X) Build 4
() Build 3
() Build 2

(&) Build 1

LOGS CHANGES ARTIFACTS

[INFO] Scanning for projects...

Figure D.15. Checking build results.

This section presented some of the features that aggregate more value to the
Software Development Lifecycle: Agile planning tool and the Jazz Hub. Including
a basic introduction of the Build and Deployment Pipeline, the next section
illustrates the steps to configure the “Build and Deploy” pipeline with the sample
application prepared for this research.

D.5 Build and Deploy Pipeline

To configure the “Build and Deploy” Pipeline with the sample application
(CalmlyWriting), four stages were defined: Build, Deploy, GUI Test and Build
Tagging, these stages were created based on the basic set of steps of a
Development environment’s Deployment Pipeline (Figure D.16). The author
could not identify any conditional configuration that could trigger a fifth stage to
create a “Bug Report” in case of any failures.

89

Pipeline: All Stages

Build and Test Stage (O Deploy Stage ® & GUI Test ® & ® &

Build Tagging

INPUT o Git URL INPUT & Git URL INPUT & Git URL

Stage: Build and Test Stage / Job: Build
Last Input: Build 46

INPUT

Last cor

JOBS

/iew logs and history
JOBS COMPLETED SUCCESSFULLY

@ Build succesded

JOBS Vieur logs and history

JOBS COMPLETED SUCCESSFULLY

@ Deploy Succeeded

JOBS View logs and history
JOBS COMPLETED SUCCESSFULLY
@) Buid succeetes

JOBS View logs and history
JOBS COMPLETED SUCCESSFULLY
ded

@ Taggoodb... Succeeded

LAST EXECUTION RESULT

LAST EXECUTION RESULT LAST EXECUTION RESULT

£ Buid 10

LAST EXECUTION RESULT

& Buid 46 5 24 Tag good build 6 -

tingApp
qapp. mybluemix net

£ Build 46

Figure D.16. Pipeline in action.

The first stage (Build) was configured with the “CalmlyWritingApp” code
repository as the process input, the only job assigned to it is a Maven command
that compiles the code and executes the Unit Tests against a specific package
(com.calmlywriting.junit.*).

mvn clean test package -Dtest=com.calmlywriting.junit.**/*

Code listing D.4: Maven command to run Unit Tests and build the application
package.

The author has identified an issue with the deployment where the Liberty Profile
instance is unable to initialize the application successfully, the error message is:
“NoClassDefFoundError:org.springframework.context.ApplicationContextlnitializer”,
after some research, the author discovered more details about the default Liberty
Profile instance that is hosted in Bluemix, according to Jarek Gawor in his
answer from the developer’s forum (dW Answers, 2014), this issue happens
while deploying a Spring application to Bluemix because “the Spring auto
configuration is triggered when the buildpack finds a spring-core* jar file in your
application”, so he suggests the customization the Cloud Foundry buildpack as a
workaround, in order to prepare this buildpack, the author forked the
“ibm-websphere-liberty-buildpack” from the Cloud Foundry Github repository and
edited the “configs/components.yml” to remove the line containing *“-
LibertyBuildpack::Framework::SpringAutoReconfiguration”, once this is done, the
Deploy stage can be executed with the Cloud Foundry CLI, the command must
specify the parameter “-b” to specify the custom buildpack.

cf push "${CF_APP}" -b https://github.com/themarcelor/ibm-websphere-liberty-buildpack.git -p
CalmlyWritingApp.war

Code listing D.5: Command to deploy the application to Bluemix’s Liberty
Profile.

90

containers:
- "LibertyBuildpack::Container::JavaMain"
- "LibertyBuildpack::Container::Liberty"
jres:
- "LibertyBuildpack::Jre::IBMJdk"
- "LibertyBuildpack::Jre::OpenJdk"
frameworks:
- "LibertyBuildpack::Framework::Env"
- "LibertyBuildpack::Framework::JavaOpts"
- "LibertyBuildpack::Framework::NewRelicAgent"
- "LibertyBuildpack::Framework::JRebelAgent"

Code listing D.6: Custom components.yml file edited for custom buildpack.

One final requirement related to “buildpacks” is related to IBM JVM and IBM
Liberty licenses, the license codes can be retrieved from links found in the Cloud
Foundry Liberty Profile “readme” page, when the licenses are gathered they
need to be included into the application’s “manifest.yml” (As discussed previously
in “4.3.2 Websphere Liberty Profile”, the “manifest.yml” is required for such

customization).

env:
IBM_JVM_LICENSE: <jvm license code>
IBM_LIBERTY_LICENSE: <liberty license code>

Code listing D.7: License parameters that need to be added to manifest.yml.

The GUI Test stage connects to a Selenium Hub that is hosted in a Bluemix
Virtual Machine, the Maven command associated with this stage is similar to the
one used in the Build stage, it just specifies the test classes under the Selenium
folder.

mvn -Dtest=com.calmlywriting.selenium.** test

Code listing D.8: Maven command to run Unit Tests and build the application
package.

If the GUI Test stage returns a positive result, the build must be tagged, so the
next stage was created to address this need, in the “Build Tagging” stage, the
configuration was performed with two steps: Configuring the “Username” and
“Password” variables, which is done in the Environment Properties tab of the
stage configuration (Figure D.17) and the addition of git commands to tag the
build, the credentials variables are appended to the command and the number of
the build (represented by the $BUILD_NUMBER variable) is appended to the
name of the tag.

91

Stage Configuration

Build Tagging

NPUT JOBS ENVIRONMENT PROPERTIES

+ ADD PROPERTY

: USERNAME marceloc@ie.ibm.com

& PASSWORD

Figure D.17. Setting variables to store Git credentials.

#!/bin/bash

git tag -f Good_build_$BUILD_NUMBER

git remote set-url origin
https://$USERNAME:$PASSWORD@hub.jazz.net/git/marceloc/CalmlyWritingApp
git push --tags origin

Code listing D.9: Git commands to tag build within the pipeline.

With the Deployment Pipeline in place, the code changes are verified through
Unit Tests, packaged into a deployment artifact and deployed to Bluemix’s
Liberty Profile, then the application’s interface is automatically verified and the
build is tagged in the version control system in case the changes are successfully
validated.

D.6 Creation of VM in SoftLayer Infrastructure

In order to execute the GUI Test through the Deployment Pipeline, the author
had to follow an approach similar to the one applied to Google Cloud Platform,
which means, to create a Virtual Machine and install the Selenium Hub on it. At
the time of this research, the author could not identify any option in Bluemix’s
service catalogue that offers GUI Tests capabilities, so the VM was created to
receive requests from the Maven job running within the “GUI Test” stage in the
Build and Deploy Pipeline.

To create a Virtual Machine in Bluemix, the user needs to navigate to the main
dashboard, find the “Virtual Machines” section and click on the “Create Virtual
Machines” button, currently the Virtual Machines and the “IBM Containers”
offerings are in BETA mode so the user might need to wait until the access is
enabled. Once the access to Virtual Machines is enabled, a new interface
presents a form (Figure D.18) so the user can specify the required data to create
the VM, that includes:

e The Image to launch

e Name of the VM

92

e VM Size
e Security Key
e Network

Create a Virtual Machine

O Virtual machines can be connected to public or private clouds.
Image to launch
Select the VM Cloud to use:
Ubuntu 14.04
W C i
1BM Cloud Public IBM image default user ID: ibmcloud
Name your VM group:
Size Memory CPUs Disk ‘
VM Sizes Available cwseleniumvm
m1.medium 3GB 2 CPUs 20 GB

m1.small

No Key

Network: (i)

private

Figure D.18. Creating VM in Bluemix.

According to the Bluemix documentation, these are the images available for
Virtual Machines:

e Red Hat Enterprise Linux 6.5 x86_64

e Red Hat Enterprise Linux 7.0 x86_64

e CentOS 6.5 x86_64

e CentOS 7.0 x86_64

e Ubuntu Server 12.04 LTS x86_64

e Ubuntu Server 14.04 LTS x86_64

e SUSE Linux Enterprise Server 11 SP3 x86_64
e Windows Server 2008 R2 SP1 Standard

e Windows Server 2008 R2 SP1

e Enterprise Windows Server 2008 R2 SP1

e Datacenter Windows Server 2012 R2

e Standard Windows Server 2012 R2 Datacenter

In BETA mode only the Linux images can be selected.

The VM name defined for this research was “cwseleniumvm”. The VM size
represents the resources (CPU, RAM, Disk) allocated for this particular image, in
BETA mode the images sizes are limited to basic options, 2 or 3 gigabytes of

93

RAM and 1 or 2 CPUs. There is only one option available for the “Network” field,
which is the “private” network. The Security Key is the Public Key from an RSA
key pair that is used to SSH into the VM, in this research, the keys were
generated by using a tool called “Puttygen” (Figure D.19), this tool creates a pair
of unique RSA keys (Public and Private keys). The user can configure the public
key prior to the creation of the VM and be able to connect to it through Putty
using the private key.

EP PuTTY Key Generat_ * - I@
File Key Conversions Help
Key
Please generate some randomness by moving the mouse overthe blank area
Actions
Generate a public/private key pair Generate
i Load an existing private key file Load i
II Save the generated key Save public key Save private key |

Figure D.19. Creating RSA Key Pair through Puttygen.

Once the keys are created, save both the public key and the private key in the
local disk and load the public key with Puttygen once more by using the “Load
existing private key file”, when the private key is loaded it presents the public key
in a non-editable text area (Figure D.20), the contents of this field must be copied
and pasted into the dialog that is presented in the “Create a Virtual Machine”
page, the key is associated with the VM so the user can proceed with the
creation of the VM by pressing “Next”.

Key

Public key for pasting into OpenSSH authorized_keys file:

ssh-rsa
AAAAB3INzaClyc2EAAAABJOAAAQEANZBZIKOAKTNsWCbhEHDzmPzhuZudilckDDP8ZBem
RESYNEfBIDSvUMwuWBgbl1GxkBfC 7JnjNclffpuS/dPOHSn2amLkKayTWPKOHkinj31LvLSK
UGRMd2hwgQ&plinkYRg.JgIMNONIFEHsb TkomkLUiws2ZMEn-+y

+IKUjgn4 X ImzVGQpCMgF geeBW e3P SGLKotY 1BYFilaZ QdxSPuasZEG/EcoFnCkgk1/

1| »

1

Key fingerprint ssh-rsa 2048 e9:ce:d3:abel:bb:83fa:85:a3:13:37:1a:43 be:da

Figure D.20. Copying Public key from Puttygen.
The VM should be provisioned automatically in a few minutes and update the
main dashboard with a new Virtual Machine instance, the VM details (the IP
94

Address) can be found by clicking on the VM. To connect to the VM and start the
configuration of the Selenium Hub, the author had to create a new Putty session
with the VM IP Address and place the private key under the “Connection > SSH
> Auth”, more specifically, in the “private key for authentication” field. While
connecting with Putty, it prompts for the username, according to the official
documentation, the default user for the VMs is “ibmcloud”, which does not have a
password, in order to facilitate the configuration within the VM, the author
redefined the password for this user with the command “sudo passwd ibmcloud”.
With the connection properly set, the following commands were used to configure
the required tools.

sudo apt-get update

sudo apt-get install --no-install-recommends ubuntu-desktop

sudo shutdown -r now

sudo apt-get install firefox

sudo apt-get install xfce4-terminal

sudo apt-get install java7-jdk

download selenium jar using the browser

java -jar selenium-server-standalone-2.45.0.jar -role hub

sudo java -jar selenium-server-standalone-2.45.0.jar -role node -hub
http://localhost:4444/grid/register

Code listing D.10: Commands executed to prepare the VM to host the Selenium
Hub.

The initial command updates the package management system, then it installs
the “ubuntu-desktop” so the VM has a proper interface to facilitate the
visualization of the tests that should be triggered by the Selenium Test Cases,
after the machine is restarted, the VM desktop interface can be visualized
through the “Horizon Dashboard”, this is a special laaS Management Console
built on top of OpenStack (Open-source cloud computing management platform)
that allows the user to manage the VM instances created within Bluemix. To
access the “Horizon Dashboard”, the user needs to navigate to the “Manage
Organizations” page (by clicking on the icon on the top-left corner of the
Dashboard page) and click on “Manage Infrastructure BETA”, the credentials can
be found in the JSON-formatted data that is presented when the user clicks on
the “Show Credentials” link of the instance of the IBM Cloud (Figure D.21), then
the user needs to click on the configuration icon to reveal the link to “Launch
Horizon Dashboard”.

95

http://localhost:4444/grid/register

Manage Infrastructure

+ Add Private Cloud

VM Cloud
IEM Cloud Fublic Object Storage

T, Upload Image Show Credentials

"auth_url": "https://keystone_ open.ibmcloud.com”,
“tenant": " 26¢c1-3365-450e-a9e8-189021a9328",
"credentials”:
"usemame”": "marcelo @ mail .com”,
"pa‘;swurd"i R

Figure D.21: Finding credentials to access the Horizon Dashboard.

The “Horizon Dashboard”, which is also known as OpenStack console, exposes
some configuration of the laaS elements that are provisioned through Bluemix,
the menu is divided in 4 categories: Compute, Network, Object Store and
Orchestration (Figure D.22).

IBM Cloud OpenStack Public 8b34

PROJECT Ove rVI ew

Compute

Limit Summary

Overview

Instances ' ' '

Volumes

Images

Instances VCPUs RAM
Access & Security Used1of 8 Used1of 8 Used 1.5GB of 12GB
Network
Object Store
Orchestration
Volumes Volume Storage
Used 0 of 10 Used 0Bytes of 200GB

Figure D.22. Bluemix’s Horizon Dashboard (OpenStack).

The most relevant section for this research is found in the “Instances” page, by
clicking on the VM that was recently provisioned and changing to the “Console”
tab, the browser renders a remote desktop interface that facilitates the access to

96

the actual OS Desktop component. The remaining commands from Code Listing
D.10 can be used to start the Selenium Hub (Figure D.23).

Terminal

(<] /bin/bash

®
@
%

r

&

Figure D.23. Ubuntu VM running Selenium Hub.

Due to the same connectivity limitations that impacted the Unit Tests, it was not
possible to run the Selenium Test Cases against the Selenium Hub installed in
the VM, the lack of authorized outbound connections in the build machines brings
a negative impact to the automation within the Deployment Pipeline.

97

Appendix E - Combined DOMICloud Summary ScoreCard

Here is a combined DOMICloud summary scorecard comparing both Google
Cloud and IBM Bluemix, it is based on the evaluation of the interactions with the
DOMICloud capabilities and their respective weighting:

Interaction Google Score | IBM Score

Service subscription 5.86 8.22
Management Dashboard 7.06 7.36
Client-side Utilities (Application server, 8.11 5.34
Command-Line Interface tool and Plugins)
PaaS J2EE Container 6.73 8.19
Services configuration and binding 6.52 7.47
Deployment Pipeline (Build, Tests and 6.06 8.22
Deployment)
Virtual Machines 6.71 7.15
Additional features (Monitoring, Logging and Bug 6.62 7.97
Tracking)

TOTAL 53.67 58.92

Table E.1. Combined DOMICloud summary scorecard.

98

	Msc.EAD-Coverand1stpages.odt (7)
	Msc.EAD-MAINVERSION-Allchapters.odt (7)

