
1

LETTERKENNY INSTITUTE OF TECHNOLOGY

A thesis submitted in partial fulfilment of
The requirements for the Master of Science in Computing in

Information Systems and Software Security
Letterkenny Institute of Technology

__

An Implementation and Evaluation of PCI

DSS 3.0 for E-Commerce in a Testing

Environment

Author: Supervisor:

Kelly McWeeney Mr. John McGarvey

Submitted to Quality and Qualifications Ireland (QQI) Dearbhú Cáilíochta agus Cáilíochtaí
Eireann) March 2015

2

Declaration

I hereby certify that the material, which I now submit for assessment on the programmes of

study leading to the award of Master of Science in Computing in Enterprise Application

Development, is entirely my own work and has not been taken from the work of others

except to the extent that such work has been cited and acknowledged within the text of my

own work. No portion of the work contained in this thesis has been submitted in support of

an application for another degree or qualification to this or any other institution.

Signature of candidate: __________________ Date: _________________

3

Acknowledgments

This thesis would not have been possible without the support of many people at the

Letterkenny Institute of Technology. The author would like to acknowledge and express her

sincere gratitude to her supervisor John McGarvey for his guidance and support. The author

would also like to extend her gratitude to the Head of Computing Department Mr. Thomas

Dowling, and all the staff in Letterkenny Institute of Technology. Finally the author would

also like to thank Sean McWeeney, Darina McWeeney, Shane McWeeney, Enda Cassidy,

Gary Cassidy and Anthony Caldwell for their support.

4

Abstract

Threats to personal payment card information are continually on the rise. To implement a

formal process for protecting this information PCI DSS was created. However credit card

fraud is still rising. This leads to the question of whether or not PCI DSS is effective in

protecting this data. This dissertation implements the 12 PCI DSS 3.0 requirements and tests

the effectiveness in regard to the complexity of implementation.

While there are clearly issues within the standard: existing ambiguities, speed of adapting to

industry findings: the main issue with the standard is not with the standard itself but with a

failure to comply and still accepting electronic payments. The self-assessment options as

found in testing would have left many network vulnerabilities that would remain

undiscovered without full standard implementation.

5

Table of Figures

Figure 1: PCI Security Standards Council (2010) requirements evolution 15

Figure 2: Data Breach Statistics (Sullivan, 2013) ... 20

Figure 3: Full Network Design for PCI DSS 3.0 Compliance Testing... 26

Figure 4: Network Switches ... 31

Figure 5: Ubuntu Hard Disk Partitions ... 31

Figure 6: Removal of Default PhpMyAdmin Users .. 32

Figure 7: Audit Ubuntu Server Checklist (Center of Internet Security, 2015) 33

Figure 8: Apache Server Confirmation ... 34

Figure 9: CIS Audit Apache Server Checklist (Centre of Internet Security, 2012) 34

Figure 10: ClearOS Interfaces... 35

Figure 11: Smoothwall Configuration and Logging Options .. 36

Figure 12: Implementation of RSA SSL... 37

Figure 13: TLS v1.2 configuration... 37

Figure 14: Successful MySQL SSL configuration .. 38

Figure 15: php.ini configuration .. 39

Figure 16: Comodo Installation .. 40

Figure 17: Self-Assessment Versions ... 40

Figure 18: Wireshark TLS handshake ... 41

Figure 19: HTTPS Communications .. 42

Figure 20: Nikto Configuration... 42

Figure 21: Scan for Wireless Routers ... 43

Figure 22: De-Authorisation Packet Injection .. 44

Figure 23: Wireshark capture of AES keys ... 44

Figure 24: Failed Aircrack Attack ... 45

Figure 25: PCI DSS Requirement 11.3 .. 47

6

Table of Acronyms

Acronym Meaning Acronym Meaning

ACL Access Control Lists NAT Network Address Translation

AES Advanced Encryption Standard NIC Network Interface Controller

CDE Card Data Environment NIST National Institute of Standards

and Technology

CIS Centre for Internet Security OS Operating System

DMZ De-Militarised Zone PCI Payment Card Industry

DPA Data Protection Act PCI DSS Payment Card Industry Data

Security Standard

EAPOL Extensible Authentication Protocol over

LAN

SHA Secure Hash Algorithm

GUI Graphical User Interface SDLC Systems Development Life Cycle

IDS Intrusion Detection Systems SSL Secure Sockets Layer

IP Internet Protocol TLS Transport Layer Security

ISO International Organization for

Standardization

VLAN Virtual Local Area Network

IEC International Electro-Technical

Commission

VM Virtual Machine

MD5 Message Digest Algorithm WPA Wi-Fi Protected Access

7

Table of Contents

Acknowledgments.. 3

Abstract .. 4

Table of Figures .. 5

Table of Acronyms ... 6

1. Introduction .. 12

1.1 Purpose ... 12

1.2 Background ... 13

1.3 Outline of Report .. 13

1.4 Research Question .. 13

1.5 Research Objectives .. 13

2. Literature Review ... 14

2.1 Introduction .. 14

2.2 The History and Evolution of PCI DSS ... 14

2.2.1 The Founding and Early Conceptions of the PCI Model .. 14

2.2.2 PCI DSS 2.0 .. 15

2.2.3 PCI DSS 3.0 .. 16

2.3 The Importance of the Payment Card Industry Data Security Standard 17

2.3.1 Protecting Data ... 17

2.3.2 Implications of Non-Compliance ... 18

2.3.3 Lack of Understanding .. 18

2.4 PCI DSS and Legislation ... 19

2.5 Data Breaches ... 19

2.6 Implementing the Standard .. 20

2.7 PCI DSS and the Security Community ... 21

2.8 PCI DSS 3.0 and Security Education .. 22

2.9 The Future of PCI DSS.. 24

8

2.10 Conclusion ... 24

3. Requirements Specification .. 25

3.1 Introduction .. 25

3.2 Network Design ... 25

3.3 Network Tools ... 26

3.3.1 VSphere ... 26

3.3.2 Client, Server and Database OS .. 27

3.3.3 Firewalls .. 27

3.3.4 Router ... 27

3.4 Website Implementation .. 27

3.5 Compliance Testing ... 28

3.6 Testing of the Standard ... 28

3.6.1 Kali ... 28

3.7 Summary ... 29

4. Methodology .. 30

4.1 Introduction .. 30

4.2 Virtual Network ... 30

4.3 CDA and DMZ Initial Configuration ... 31

4.4 Database Server .. 32

4.5 Web Server Configuration... 33

4.6 ClearOS Setup ... 35

4.7 Smoothwall Setup ... 35

4.8 Security Protocols ... 36

4.9 Wireless Security ... 38

4.10 Database Encryption ... 38

4.11 Secure Programming ... 39

4.12 Anti-Virus .. 39

4.13 Self-Assessment .. 40

9

5 Testing .. 41

5.1 Secure Network Communications .. 41

5.2 Vulnerability Scanning .. 42

5.2.1 Findings ... 43

5.3 Wireless Testing .. 43

5.3.1 Aircrack ... 43

5.3.2 Findings ... 45

5.4 Penetration Testing ... 45

5.4.1 Ubuntu Servers Findings ... 46

5.4.2 ClearOS Findings ... 46

5.4.3 Smoothwall Findings ... 46

5.5 Results Conclusion .. 47

5.5.1 SAQ A v3.0 ... 48

5.5.2 SAQ A-EP v3.0.. 48

5.5.3 SAQ for Payment Terminals .. 48

6 Conclusion .. 49

6.1 Slow to Adapt .. 50

6.2 PCI DSS 3.0 Ambiguities .. 50

6.3 Self-Assessment .. 51

6.4 Failure to comply .. 51

6.5 PCI DSS 3.1 .. 52

6.5 Restrictions ... 52

6.6 Further Work ... 52

Bibliography ... 53

Appendix A - VCG Source Code Scan Results ... 59

Open Cart Scan Results ... 59

Commercial Site1 Scan Results ... 64

10

Commercial Site2 Scan Results ... 65

Appendix B - PhpmyAdmin configuration files .. 66

Appendix C - Ubuntu CIS Audit Configurations.. 68

Fstab - Partition Rules ... 68

Sysctl.conf – Set Routing to Disabled per CIS Guidelines ... 69

Auditd.conf – Configure System for Logging .. 70

Audit .rules – Set Rules for Audit Log Files ... 71

Password Implementation .. 73

Login.defs - Logging Incorrect Attempts and Setting Password LifeCycle 73

Pam.d - Set Passwords to Required ... 75

Shadow Configuration Sets Password Attempts Limits ... 76

Appendix D - Apache CIS Audit Configuration ... 78

000-default.conf - Local Host Sites Configuration File .. 78

Default-ssl.conf - HTTPS Local Host Configuration File ... 79

Appendix E – MySQL Security Protocols .. 80

My.Conf enforcing TLS certifactes to communicate with WebServer .. 80

Appendix E - ClearOS Configurations ... 82

IP Tables .. 82

Intrusion Detection System .. 83

Appendix F – SmoothWall Iptables .. 87

Appendix G - Metasploit Scans .. 88

Ubuntu Server Metasploit Results .. 88

ClearOS Metasploit Results ... 91

SmoothWall Metasploit Results.. 91

Appendix H – Nikto Vulnerability Scan .. 94

Appendix I – Table of Requirements .. 95

Build and Maintain a Secure Network and Systems ... 95

11

Protect Cardholder Data ... 95

Maintain a Vulnerability Management Program .. 95

Implement Strong Access Control Measures .. 95

Regularly Monitor and Test Networks .. 96

Maintain an Information Security Policy .. 96

12

1. Introduction

Key trend indicators from industrial sources have tracked the progressive escalation in

security incidents worldwide (Trustwave, 2013; Verizon, 2013; PWC, 2014; Ponemon, 2014).

Both the domestic end-user and contemporary computing professional are faced with

persistent threats to their personal data in today's Internet enabled world. The existing

principles about which security is oriented such as confidentiality, integrity and availability

face considerable challenges. From its inception, the Payment Card Industry Data Security

Standards (PCI DSS) was established as a means of securing payment card information and

there has been considerable debate as regards the effectiveness. With the continual rise of

security breaches drawing attention to PCI DSS, the effectiveness of the standard is under

much debate. With many large companies such as Target suffering security breaches the

level of protection offered by the standard has come under question (Plato, 2014)

Malicious attacks of increasing sophistication and complexity are hampering today’s security

professionals and while no single methodology, technology or attitude shift will ensure

security, it is recommended that a defence in-depth strategy is adopted. Central to this

strategy is the PCI DSS framework which, if properly implemented, can offer an

organization, institution or end-user a much needed layer of support to help mitigate for the

scale of attacks currently experienced. This thesis offers considerable insight into the

application of PCI DSS by testing its strength on an experimental but compliant network

built to accept secure payment card information. The literature review focuses on the

history of PCI DSS and why it is a necessary and progressive component of today’s

contemporary security infrastructures.

1.1 Purpose

The strengths and weaknesses of PCI DSS 3.0 will be tested with a view to proposing some

potential mitigation techniques. While PCI DSS 3.0 aims to provide a further level of clarity

than its predecessors, ambiguity in its communication can have a detrimental impact

particularly as regards its implementation which is critical in successfully obtaining

compliance. Therefore, the primary focus of this thesis is to assess the effectiveness of the

standard with special reference to the complexity of the implementation process.

13

1.2 Background

When a business accepts credit card payments, whether online or in a physical environment

the retailer is required to be PCI DSS compliant. PCI DSS was originally developed by Visa,

MasterCard, American Express and JBC to help protect sensitive payment card information.

Since the standards original release in 2004 data breaches and credit card fraud have been

rapidly increasing. The effectiveness for PCI DSS 3.0 is essential to protect sensitive

information.

With the standard being of such importance an evaluation of its strengths, weaknesses and

implementation process is necessary. With the threat of data breaches continuously on the

rise (Sullivan, 2013) it is not enough to blindly trust a security standard; therefore the

standard requires in-depth review and assessment.

1.3 Outline of Report

Chapter 2 Literature review

Chapter 3 Requirements design

Chapter 4 Methodology

Chapter 5 Testing

Chapter 6 Conclusion, limitations and suggestions for further research

1.4 Research Question

Is PCI DSS 3.0 an effective method of protecting cardholder data? Is the rise of data

breaches due to weaknesses in the standard or to a lack of implementation?

1.5 Research Objectives

 Build and secure a network with web server to accept payment card information

 Test the security measures in place with penetration tests

 Assess and secure any weaknesses found

 Evaluation of the strength of PCI DSS 3.0

14

2. Literature Review

2.1 Introduction

Considerable debate surrounding the effectiveness of the PCI DSS has highlighted the

importance of clarity regarding documentation and implementation procedures (Kedgley,

2014). Since the release of PCI DSS 3.0 in 2013 there is a dearth of information in this

respect. What follows is a review of the history and evolution of PCI DSS, its importance and

data breaches.

2.2 The History and Evolution of PCI DSS

2.2.1 The Founding and Early Conceptions of the PCI Model

Prior to the release of PCI DSS, payment card industries comprising of Mastercard, Visa,

American Express, JCB and Discover relied upon individual policies regarding the safe

processing and storage of payment card data. This created significant challenges as regards

an integrated approach to the issues surrounding PCI. Prior to the initial release of the

standard the Payment Card Industry Security Standards Council was founded, the PCI

Security Standards Council combined these individual policies resulting in the release of PCI

DSS version 1.0 in December 2004 (Roebuck, 2012). As a result, procedures were put in

place to mitigate for sensitive payment card data being breached by ensuring merchants

who accept this data are both aware of and enforce the necessary security measures

(Chuvakin & Williams, 2011).

Early documentation from the American Bar Association (2008) and some more recent

research from Chuvakin and Williams (2011) and Bakay et al, (2014) suggested that a

climate of growing concern surrounding the protection of sensitive credit card data led to

the PCI DSS being devised by MasterCard and Visa to alleviate concerns surrounding the

safe handling of cardholder data in a practical step by step process (American Bar

Association, 2008, Bakay et al, 2014). An important feature driving the initial stages of the

standard’s creation was the need for compliance and the importance of clarity within its

process and documentation. This early phase of the standards creation contained

numerous flaws subsequently rectified by version 1.2.1, version 1.2.1 had many

requirement additions to address these issues, providing more guidance on wireless

15

technologies, virtualisation and encryption methods, resulting in a higher level of security

than its predecessor (Bhargav, 2014). However, PCI DSS version 2 became the industry

standard in active use until December 2014.

2.2.2 PCI DSS 2.0

In 2010, PCI DSS 2.0 was released and became the industry standard in 2011. While PCI DSS

2.0 did not introduce major changes from PCI DSS 1.2.1, it contained more subtle and

practical enhancements which more appropriately dealt with technological advances and

how security should be approached. Research by Chuvakin and Williams (2011)

documented these differences, highlighting important changes particularly as regards

wireless networks such as WEP authentication which was no longer deemed acceptable, the

introduction of virtualization and a significant change in outlook as regards the

implementation of risk management. Figure 1 below shows an example of how the PCI

Security Standards Council charted the evolution of the standard from PCI DSS 1.2.1 to PCI

DSS 2.0.

Figure 1: PCI Security Standards Council (2010) requirements evolution

16

As useful as this standard was in its initial stages, weaknesses in PCI DSS 2.0 began to

emerge that may be still be prevalent in the updated standard. For example, Blackwell

(2008) noted the importance of auditing in organizations and warns that it may be bypassed

via physical access which employees have to many critical systems. Responding to this, PCI

Security Standards Council included important guidelines for requirements and resources

that may be used when determining potential weaknesses (PCI Security Standards Council,

2013). For those companies that are compliant with PCI DSS 2, these guidelines, while

welcome, lack details as regards implementation and other sources are required. For

example, the standard highlights those areas prone to security breaches along with aiding

merchants to adapt their systems so that implementation is more readily achieved to gain

compliance. While the PCI Security Standards Council (2013) effectively describes the aims

of PCI DSS they do not provide sufficient research or merchant feedback on the success

levels of these aims.

2.2.3 PCI DSS 3.0

PCI DSS 3.0 was released in November 2013 but will not be in full effect until 1st of January

2015. Due to the fact that PCI DSS 3.0 is not yet in full effect, information on the

effectiveness of very limited. However, Chuvakin and Williams (2014) while providing

insights into all previous versions also stay up to date with the standard releasing an

updated edition of ‘PCI Compliance’ to take into account the implementation changes in the

new standard. Keeping the same structure as the other editions previously mentioned, this

provides a useful guide for measuring the scope of PCI DSS 3.0 and provides useful

implementation techniques.

While Shihab and Misdianti (2014) do not focus on implementing PCI DSS 3.0 from the

beginning like Chuvakin and Williams (2014), they do provide recommendations on updating

network from a previous PCI version to PCI DSS 3.0. Shihab and Misdianti (2014) further

their research by providing a break-down of the requirement changes, providing a list of

requirements that are necessary when updating to the new standard. This is very useful as it

separates out clarifications and evolving requirements, providing a concise list of changes

that will need to be made to network to update to PCI DSS 3.0.

17

Identified Problems with PCI DSS 3.0

Kedgley (2014) states there are no stark contrasts between PCI DSS 3.0 and its predecessor.

While PCI compliance is a requirement for merchants taking credit card payments data

breaches are still increasing, Kedgley (2014) asks are the subtle changes in PCI DSS 3.0

enough to reduce online credit card fraud? This is reiterated by explaining that the

clarifications in the new standard seem to be of greater importance than strengthening

mitigation techniques and that more than clarifications must be implemented to

successfully protect card holder data. While Kedgley (2014) does provide a document that

offers a well detailed standpoint on the new standard, as there currently is still a dearth of

information on PCI DSS 3.0 there is little documentation to concrete or dispute this view.

While the argument made by Kedgley is logical there is no data to back up the hypothesis.

PCI DSS 3.0 is a clarification on PCI DSS 2.0 as can be seen from the list provided by the PCI

Security Standards Council (2013), however this does not mean that there are no changes

between the standards, and it may be premature to write off the effectiveness of the

standard at such an early stage.

While implementing PCI DSS 3.0 involves technical complexity it is not the only issue facing

businesses implementing the standard. Lovric and Sedinic (2013) also evaluate the financial

implications of gaining PCI DSS compliance. A network is built for a fictitious company ‘The

First Company Inc.’ and a study on implementing PCI DSS as well as ISO/IEC 2700 is

undertaken for the methodology. Lovric and Sedinic (2013) also outline the specifications of

the First Company Inc. stating that it processes more than 1 million credit card transactions

per annum. The findings show that to achieve compliance would have a financial impact of

up to $250,000. This provides a severe financial impact, and for smaller industries may be

unfeasible. This document is particularly useful as it takes a different angle of research by

not studying effectiveness or efficiency but rather the financial implications which is of great

importance to merchants.

2.3 The Importance of the Payment Card Industry Data Security Standard

2.3.1 Protecting Data

Recent research from Atay et al (2014) and Grobler et al (2014) highlighted the prevalence

and rapid adoption of credit card payments online with the concordant importance of how

18

the payment card industry has dealt with the protection of cardholder data. Of significant

concern were the growing incompatibilities between the PCI standard and the diversity of

vendors’ systems and networks. While there is continuing research being conducted to

mitigate for data breaches in both the public and private sector, PCI DSS remains the only

officially implemented standard to specifically protect credit card holder data (Grobler et al,

2014). Highlighting the importance of effective security to protect cardholder data, Kedgley

(2014) reported that while the total value of card payment transactions exceeds $21trillion

annually, this is unfortunately overshadowed by losses in excess of $11billion due to

fraudulent transactions. This emphasises the importance of the PCI DSS standards since, to

date, this is the only payment security standard enforced today. Therefore, its effectiveness

is paramount if the protection of cardholders’ data is to be a priority. Non-compliance to

these standards faces considerable financial penalties.

2.3.2 Implications of Non-Compliance

PCI DSS is not only important in terms of protecting data; there are consequences for non-

compliance. Kidd (2008) discusses the effects of non-compliance where vendors who are

found to be non-compliant after a breach are subject to fines and/or the implementation of

restrictions as regards taking further credit card payments online. An important matter is

highlighted in this respect since not only can non-compliance result in fines of up to

$500,000 for each individual breach (Douthit and Huang, 2008), the loss of consumer

confidence can have a significant negative impact upon the reputation of a firm to be found

non-compliant. Beyond the standards, requirements and recommendations there are legal

and regulatory frameworks already in place to deal with data protection.

2.3.3 Lack of Understanding

Contrary to the importance of the standard, there is a lack of understanding for the need of

PCI compliance among merchants and their employees, particularly in regards to previous

versions. As industry research shows (Trustwave, 2013; Verizon, 2013; PWC, 2014;

Ponemon, 2014) non-compliance is the main cause of data breaches, and lack of awareness

and understanding seemed to be the main factor in regards to non-compliance. However

PCI DSS 3.0 aims to alleviate this confusion by enforcing training methods for staff in the

updated requirements (Mehta, 2014). This awareness is essential for improving security

when handling sensitive payment card data.

19

2.4 PCI DSS and Legislation

Accepting the PCI DSS requirements, merchants must also by aware of other legislation

which may have an impact on their implementation. Andress (2014) goes to considerable

efforts to note that the necessary legislation may be divided by jurisdiction thus providing

the merchant an easier means of identifying those which are most important for their

particular business. Of some value then is the Governance, Risk Management and

Compliance (GRC) framework which takes an international perspective surrounding the

enforcement of measures to ensure all required standards and legislations are met along

with legal implications (Gordon, 2015). For example in Ireland, the framework provides a

mechanism to take into consideration the Data Protection Act (DPA) (2011) and furthermore

at a European level via the ‘Electronic Communications Networks and Services Privacy and

Electronic Communications Regulations’ which stipulates that consumers are made aware

and give permission to allow their data to be stored (Morgan & Boardman, 2012).

Within the context of increasing security trends indicating the escalation of data breeches

specifically targeting consumer data (Trustwave, 2013; Verizon, 2013; PWC, 2014; Ponemon,

2014) it is important to recognise the importance of the 2011 DPA when building and an e-

commerce website within compliance regulations.

2.5 Data Breaches

The data gathered by Sullivan (2013) from 2005 to 2010 regarding the prevalence of attacks

leveraged against organisations storing sensitive payment card data reveals the heavy

financial impact of data breaches (see Figure 2). While the statistics are dated as only take

into account up until 2010, Sullivan (2013) provides great detail on the financial impact that

incurs from a data breach, but furthermore shows details of many high-level breaches like

that of TJX that spurred changes in the standard. Of some concern is the worrying trend to

sell the information extracted to perpetrate fraud. The cost of a data breach outweighs the

cost of compliance and with credit card breaches. On this basis, it is important to note that

PCI DSS 3.0 must provide comprehensive assurance to merchants and consumers alike.

20

Figure 2: Data Breach Statistics (Sullivan, 2013)

While Sakharova (2012) does not provide the in-depth statistics provided by Sullivan (2013),

there are figures provided on the use of credit cards. While these are based in the U. S. it

does show the rise of debit and credit cards use. Sakharova (2012) utilises figures released

from the U.S. Census Bureau which state that in 2008 there were approximately 176 million

credit card users and 181 million debit card holders, with these numbers constantly rising.

This illustrates the need for effective security standards given the volume of payment card

data, highlighting the impact that payment card fraud has on industry costing $8.6 billion

per annum and rising.

2.6 Implementing the Standard

Aside from the standard requirements released by the PCI Security Standards Council there

is a lack of literature on the implementation process for PCI DSS 3.0. Bhargav (2014)

provides a guide on implementing PCI DSS 3.0 with information on each requirement and

how to effectively implement these to achieve compliance. Due to the lack of information

on PCI DSS 3.0 this guide is a well-written and concise resource that provides a walk through

guide to the implementation process.

While Johnson (2014) does not aim to provide a definitive guide on the implementation of

PCI DSS 3.0 he does provide insight into the more difficult issues of the implementation

process. Johnson (2014) details the difficulty of network segmentation as required by the

21

new standard. Another difficulty highlighted by Johnson (2014) is the added complexity of

the encryption standards necessary, as in PCI DSS 3.0 it is required to also encrypt sensitive

information at rest. This is a valuable resource that will be utilised when evaluating the

complexity of the implementation process. Johnson also provides a clear guide on IT

security best practices and is a valuable resource as many of these best practices are used in

the implementation process for PCI DSS 3.0.

Chuvakin and Williams (2011) discuss the implementation process for PCI DSS 2.0 which will

no longer be in effect from 1st of January 2014. Despite this, a checklist is provided for

business which is particularly useful for the planning stages of the compliance process.

Chuvakin and Williams (2011) detail the importance of training staff to reduce the likelihood

of a data breach to ensure that compliance can be maintained at all managerial and

administrative levels of an organisation. While this document was published for PCI DSS 2.0

the point that is made is still valid as education will always be a form of data breach

mitigation.

PCI DSS 3.0 requirements 6.5.1 to 6.5.10 do not directly reference the Owasp top ten, this

list provides an extensive resource on how to implement these PCI DSS 3.0 standards.

Owasp (2014) provides mitigation techniques for these top ten weaknesses but many other

techniques that should be considered good practice. Owasp is invaluable as it provides clear

descriptions of the weaknesses, how these weaknesses can be targeted and mitigation

techniques for data breaches and attacks. The Owasp top ten list provides in depth details

on injection attacks, session authentication and management, cross-site scripting, direct

object referencing, security misconfiguration, data exposure, function level access controls,

CSRF attacks, component vulnerabilities and un-validated redirects and forwards (Owasp,

2014). Owasp is a vital resource and provides mitigation techniques for the listed attack

types across a range of coding disciplines recommended for not only PCI DSS 3.0 but

implementing best practiced for secure coding techniques.

2.7 PCI DSS and the Security Community

As shown, the evolution and progression of PCI DSS has been well documented, there is an

area of research that has been yet to be addressed, the debate on the effectiveness and

22

reliability of the standard. While it is clear that the need for such a standard is paramount,

there are those who believe that the state of the current standard is not enough.

Jeffrey Hall (2014) highlights issues within the standard, many obtaining compliance for

compliance sake, rather than focusing on obtaining an adequate layer of security. While not

negating the importance of the standard, or what it aims to achieve, the main obstacle is

the human element. The implementation complexity can lead to unreliable testing

procedures and monitoring. However, Hall (2014) does provide a balanced argument,

security is not absolute, it is mitigation. For PCI DSS to provide a higher mitigation level an

active approach to security needs to be undertaken, going beyond the minimal scope of the

standard.

Shier (2014) iterates this point further, providing views both on the successes and failures of

the standard the defining point made is that PCI DSS is not a failsafe security standard.

When storing sensitive data, merely achieving compliance is not enough. Shier (2014) states

that PCI DSS should be used as a security baseline and not be seen as the holy grail of

security. Another integral point is the self-assessment element. Should a company that is

being trusted by the consumer to store their private data be the ones that determine the

effectiveness of the security measures they have in place?

While Hulme (2009) presents a well-grounded article on the PCI DSS it is based on the

predecessor to PCI DSS 3.0, however the points made are still relevant. The argument

presented like both Hall (2014) and Shier (2014) is not dismissive of the standard. It is clear

that a standard to protect sensitive information needs to be implemented, however the

issue that Hulme (2009) presents is that compliance is not security. In contrast to building a

service and then trying to enforce compliance it is essential that companies instead enforce

security during the build. Comprehensive coding, testing and logging should be developed.

PCI DSS should not be the overall aim; instead as part of a secure builds PCI DSS should

naturally be implemented.

2.8 PCI DSS 3.0 and Security Education

In the research conducted by Coburn (2010) the importance of education to not only

achieve but also maintain compliance is well documented. The importance of education as a

culture is also discussed, while this importance is mainly discussed as part of PCI DSS

23

lifecycle it is also recommended to create a culture of education for all security and

technological needs. Coburn (2010) effectively shows how vital training is, as once

compliance has been achieved it also needs to be maintained, educating employees in

acceptable procedures and best practice techniques is integral for compliance.

PCI DSS 3.0 introduces a more education focused approach to security. While not focused

on PCI DSS education, NIST successfully highlights the importance of education frameworks

in the entirety of IT security. The outlook on education is not only provided from an IT

perspective but also from a business perspective, not only for protecting consumers’ details,

but company resources, information and reputability. NIST goes even further in depth,

providing education frameworks that focus on understanding based education. It is not

simply enough to inform staff about security practices. For security to be implemented

effectively security professionals must not only understand the implementation but also the

purpose (Guttman and Roback, 1995). Even though published in 1995 and in such a fast

paced and evolving industry, the importance of a progressive and continuous education

model is recommended by many contemporary security professionals.

Kamala et al (2012) further the point made by Hall (2014) previously, that the human factor

and poor understanding lead to vulnerabilities. However, Kamala et al (2014) also provide

business justification for education. Both education and security are expensive, but with the

growing threat of sensitive data being compromised the loss of business due to reputation

and re-configuration post breach is even more detrimental. While constant training can not

only be a monetary issue, it can also be tedious for staff. A study on different business

sectors showed that the most effective methodology for maintaining successful training

programs is an environment of reward and results based encouragement.

While this source does not directly refer to PCI DSS and the standards educational

requirements, it does provide an extensive analysis of education in the IT security industry

as a whole. Alshomrani (2012) discusses the vital need for security education in the IT

industry. This is partly due to the fact that many coding experts may not be aware of

potential security risks that may be introduced into source code, but also as the security

industry needs evolve at such a high rate it is imperative that IT professionals be aware of

emerging threats. Alshomrani (2012) also provides resources that can be utilised to ensure

24

security education, many of which directly influence PCI DSS, such as network and coding

security certifications.

2.9 The Future of PCI DSS

PCI DSS is constantly evolving, with new revisions and version being constantly updated

through its lifecycle. PCI DSS follows a three year lifecycle, meaning that the longest time

one version of the standard will be in full effect for is a three year period (Chuvakin &

Williams, 2014; PCI Security Standards Council, 2010). As technologies rapidly evolve PCI DS

will need to address these. For example, with the growth of mobile technologies PCI DSS 3.0

does make greater reference to mobile to its predecessor, however these are still minor

references in requirements 1 and 11. As these technologies grow PCI DSS may have to

further and adapt the scope of the standard to allow for this (Chuvakin & Williams, 2014).

At the moment, PCI DSS is not legislation, even though there are penalties for non-

compliance, one opinion is that PCI DSS will evolve to become law, so when a merchant

decides to take payment card information they will be legally obliged to enforce the

standard (Carpenter, 2010). Given the link between PCI DSS and the both EU and US privacy

legislations this is a logical step in the evolution of the standard.

2.10 Conclusion

PCI DSS was developed to aid in alleviating growing concerns for private data utilised for

credit card payments and as noted by Grobler et al (2014) it is important that these

standards be highly effective given that they are the only existing formal standard in place

for protecting credit card holder data. On this basis, PCI DSS 3.0 needs to be a significant

deterrent to malicious intent and effectively protect sensitive data. The importance of the

standard and documentation of its evolution is well written and can be easily accessed,

however, Sullivan (2013) does show the rise of online credit card fraud and the economic

impact of data breaches. This shows that even though PCI DSS is a required standard, either

it is not being fully enforced or the standard is not effective enough to mitigate for data

breaches. The key value of the work presented here is the in-depth study of PC DSS which

represents a significant contribution to the field of PCI DSS 3.0 compliance.

25

3. Requirements Specification

3.1 Introduction

The primary focus of this thesis is to assess the effectiveness of the PCI DSS 3.0 standard,

given the lack of research regarding an effective implementation method to achieve

compliance; the methodology and implementation process will provide an important

contribution to the literature surrounding PCI compliance. Coburn (2010) and Alshomrani

(2012) emphasised the need for effective security training and while Kedgley (2014) noted

that there were no significant differences PCI DSS 3.0 and its predecessor, this should not

prevent a continuing education programme from developing. Considerable difficulties are

faced by the security professional as regards PCI DSS implementation given the diversity of

organizational activities, the products and services offered and their awareness of security

processes. To date, no automated solutions exist which might make the job of PCI

compliance more efficient; however PCI DSS may not lend itself to automation. This section

will outline the specification requirements necessary to build a PCI DSS 3.0 compliant

network for testing. The requirements for this network include a switch, web server, router

and multiple firewalls for DMZ implementation. This will be followed by the integration of a

fully functioning e-commerce website linked to the host web server as a testing platform to

establish the efficacy of PCI DSS 3.0.

3.2 Network Design

To establish a baseline for compliance and to rigorously test the effectiveness of PCI DSS 3.0,

it is necessary to test on a compliant network and website. It is important to note that for

PCI DSS 3.0 network compliance, segregation is key. To accomplish this the network design

is that of a switched network which will consist of three separate switches to achieve the

level of segregation necessary. One switch will host the internal LAN, another for the CDE

and another for the DMZ. The LAN switch will host three separate business units which are

set up on their own separate VLANs simulating a small/medium business. The access

granted on any network should be the minimum necessary to fulfil the functions of its users.

In this regard, the LAN design here consists of admin, sales and production with

administrative users having a higher level of access. There will also be an Apache web server

implemented that will be contained in the DMZ and protected via firewall. The database

26

server that will contain the sensitive payment information will be hosted on the CDE switch

also protected with configured firewalls. For network connectivity each switch via routers,

the CDE and LAN will both connect to the outside world via the DMZ but will have no

contact with each other. Figure 3 below details the full network design with the IP

addressing; the DMZ and CDE are to be configured with minimal hosts per subnet to aid in

preventing exploitation of open ports.

Figure 3: Full Network Design for PCI DSS 3.0 Compliance Testing

With a network design established testing the network will require the use of specialised

tools to capture the network state for further analysis.

3.3 Network Tools

3.3.1 VSphere

Due to financial constraints the acquisition of all the physical hardware necessary for full

network implementation is unfeasible. The network build will be completed utilising

VSphere and VMWare Workstation 11. There are considerable advantages associated with

VSphere such as the ability to set up virtualised networking including switch configuration

and implementation, the prioritization of access to network resources based on business

rules and load balancing features. The primary feature of significant value to this work is the

network snapshot component which captures the network state and can be used for

reverting or comparing previous development states.

27

3.3.2 Client, Server and Database OS

Both the server and database will utilize Ubuntu Server with Apache as the web server

combined with a MySQL database server for storing of sensitive data. This configuration

allows full Lampp stack implementation or installing single aspects. This aspect is useful as

the web and database server functionality can be segregated without taking up valuable

resources. Due to resource limitations, the open source client desktop images in the

business unit VLANs will be implemented as Linux Ubuntu desktops.

3.3.3 Firewalls

Standard guides surrounding PCI DSS compliance requires the implementation of firewalls

(Chuvakin and Williams, 2011; Bhargav, 2014; Johnson 2014). Using these

recommendations as a baseline, ClearOS will be utilised as an external facing firewall with

Smoothwall configured with router and firewall functionality in the internal LAN and CDE.

Best practices indicate that a combination of supporting systems is a more robust solution

rather than a singular source, in this respect different firewall systems will be deployed in

this network so that limitations in one firewall are overcome by advantages in other.

3.3.4 Router

ClearOS as well as offering Firewall functionality can also be used as a network router.

ClearOS also supports VLAN routing so allows communication between VLANs but also

allows ACLs to be applied to the communications. ClearOS also has the capability to link

virtualised network to physical ISP routers, providing the network with internet access.

3.4 Website Implementation

Due to code complexity the network build and the time constraints of the project the

website build will consist of obtaining an ecommerce website. To choose the code base that

would be utilised for the project, two commercial code bases are tested along with one

open source code base, Opencart (2015) version 2.0.2.0. The code base for each cart is

tested with a static code scan; see Appendix A for full scan results. While the two

commercial projects were advertised as PCI DSS compliant many weaknesses were found in

the code base, all three contained MD5 hashing algorithms along with insecure php coding

techniques. While OpenCart also had these weaknesses, it is an open source code base that

is permissive of modification and was chosen for the ecommerce functionality. The code

28

base for OpenCart will be secured in the methodology section of the dissertation. When

utilising open source in industry there are implications that must be considered. Some

license types like the MIT and Free BSD License are very permissive, allowing redistribution

and modification, however some other license types referred to as copyleft license types

contain a clause that if modification and distribution occur all code must be donated back to

the open source community (Yingkui , et al., 2010).

3.5 Compliance Testing

The systems development life cycle (SDLC) is widely used throughout the IT industry and

while considerable debate surrounding its configuration will continue (McMurtrey, 2013) its

ability to adapt and evolve in established and some emergent environments makes it an

ideal choice to integrate full compliance testing. While the network will be built utilising a

SDLC to ensure security is kept at the forefront of the project, upon completion of the

network build and implementation of the website full compliance will be tested.

3.6 Testing of the Standard

3.6.1 Kali

Maintained and funded by Offensive Security Ltd, Kali is a digital forensics and penetration

testing suite that offers over 700 penetration tools accumulating in a powerful testing suite

(Binder and Broad, 2003). The issue met was narrowing down the available options

provided by Kali to a concise list including:

1. Metasploit - an open source software that offers many features that will be utilized in

the testing phase. As it can be used on networks, devices and web applications it will be

valuable during penetration testing.

2. Nikto - this is a powerful vulnerability scanning tool that will be utilised to assess

vulnerabilities on the webserver and hosted site. Nikto is continually updated so

contains details of new means of network exploitation.

3. Nmap - a versatile tool that will assist in assessing many of the aspects of PCI DSS 3.0.

Nmap will be utilized to assess the strength of firewall configurations and any IP filters

that may be on the network. Furthermore Nmap can gain vital information about the

physical network. This tool has the ability to port scan and gain data on operating

systems and network protocols.

29

4. Aircrack specializes in accessing WLAN data and breaking WEP and WPA keys. This is a

very useful tool when attempting to infiltrate a network. Aircrack uses ARP packets to

gain information on both WEP and WPA keys.

5. Wireshark – Wireshark is a network packet analyser which captures network packets

and displays packet data as detailed as possible; in particular, the ability to capture live

network traffic combined with filtering systems that will be useful to focus on specific

protocols such as SSL and aid in decryption. Vandeven (2013) successfully shows how

Wireshark can be utilised to test encryption methods and traffic flows via a network.

Secure data flow and encryption methods are necessities for compliance.

These tools have been chosen as they are recommended to assist in testing each aspect of

PCI DSS (Koster, 2012; Chuvakin & Williams, 2011), while there are alternatives which are

more user friendly, they do not provide they comprehensive level of testing offered by the

tools selected (Koster, 2012; Chuvakin & Williams, 2011). They will assist in evaluating the

strength of the standard from attacks both inside and outside the network. To assess the

effectiveness of PCI DSS 3.0 these tools will be used to perform high level penetration tests

on the network, server and traffic from the web application. As the goal of a malicious user

is to gain access to sensitive data, the aim of the testing method is to do the same. If the

data is breached PCI DSS 3.0 will be assessed by comparing the complexity of the breach

with the information that has been obtained.

3.7 Summary

The network topology, tools and testing strategy presented here represent a comprehensive

plan to gather data on the efficacy of a PCI compliant network. While standard guidelines

have been used a series of progressive tools and techniques have been leveraged together

to augment the current PCI compliance strategies available.

30

4. Methodology

4.1 Introduction

The project implementation explains the necessary steps taken to build a PCI DSS 3.0

compliant network for testing. The first step is the network build, the layout of the network

as highlighted in the planning section, showing the segregation of the network. This

segregation will be implemented in network development and as a result fulfilling

requirements 1.3.1-1.3.3 and 1.3.7

4.2 Virtual Network

The first step in configuring the network is setting up the network switches. To implement

the high level of segregation the switches for the LAN, DMZ and CDE are implemented

within vSphere. The switches are configured as separate networks and all communications

will be restricted via router and firewall configurations. Unlike physical switches rather than

configuring VLAN IDs and IP subnetting via serial port the virtual network requires the IP

ranges and subnets to be configured upon set-up and then the VMs can be added to the

appropriate VLANs. The CDE has a stricter set of subnetting rules to restrict the number of

devices enabled on a switch and avoiding open ports as shown in Figure 4. VSphere allows

for simple scalability as if more active ports are required it does not require a full-network

configuration but rather only an adjustment of the properties tab meaning a higher of level

of security as negating the need for unnecessary open ports.

31

Figure 4: Network Switches

4.3 CDA and DMZ Initial Configuration

Ubuntu Server is being implemented as the CDE and DMZ servers. Two new virtual

machines are created and the Ubuntu Server image is chosen as the OS. The country,

language and keyboard layout are chosen appropriately once prompted. At this point the

server is configured to comply with the first CIS audit (Center of Internet Security, 2015)

requirements, while this is requirement is part of PCI DSS requirement 2, this aspect of the

CIS audit is easier to configure during the installation process due to disk partitioning. The

partitions are set up as can be seen in Figure 5. This implements segregates application and

OS information, however in production these disk spaces would be much larger due to

building many VMs for the testing environment resources are applied sparingly.

Figure 5: Ubuntu Hard Disk Partitions

32

The remaining CIS audit techniques will be configured post-server installation due to access

limitations post-audit. This initial configuration is utilised for both the web server and

database server on the network.

4.4 Database Server

For the database server in the CDE PhpMyAdmin and MySql-Server are installed. On

installation PhpMyAdmin and MySql require passwords to be set. This is competed on the

prompt screen. The next step is to log into PhpMyAdmin with the default root username

and password. For PCI DSS default log in credentials must be removed, PhpMyAdmin has

three default user accounts. To remove the default login settings new users will first have to

be created. This is completed by selecting new user and adding a new username and

password. For the database server two users are assigned as shown in Figure 6, one for

administration and one for maintenance.

Figure 6: Removal of Default PhpMyAdmin Users

The administration user is granted administrative privileges in the database. The second

user maintenance will be utilised for removing non-required data after 6 months, this user is

granted no write privileges only delete, to ensure that this is done only as required the

resource limits are set accordingly .The resource settings limits the frequency one user can

connect and how many queries they can enter in a period of time. The phpMyAdmin

configuration files can be viewed in Appendix B. To implement the SQL tables to interact

with OpenCart a new database is created within phpMyAdmin. The SQL provided with

OpenCart is loaded into the database to create the fields required. Upon completion of the

33

database set up the remaining CIS Ubuntu audit (Center of Internet Security, 2015)is

completed to secure the OS, Figure 7 shows all of the areas secured by this audit.

Implementing the CIS audit on Ubuntu virtual Machines fulfils requirement 2.2 of PCI DSS

3.0 and provides a higher level of OS security as the audit techniques harden the systems OS

to industry standard.

Task Status

Patching and Software Updates Completed

File System Configuration Completed

Secure Boot Settings Completed

Additional Process Hardening Completed

OS Services Completed

Special Purpose Services Completed

Network Configuration and Firewalls Completed

Logging and Auditing Completed

System Access and Authorisation Completed

User Accounts and Environments Completed

Warning Banners Completed

Verify System File Permissions Completed

Review User Group and Settings Completed

Figure 7: Audit Ubuntu Server Checklist (Center of Internet Security, 2015)

 The CIS audit as outlined in PCI DSS requirement 2.2 on the servers also implements many

other of the standards requirements. Logging, file integrity management, user groups and

password requirements are all configured on the server via the audits guidelines and full

configuration files can be viewed in Appendix C. While these guidelines do enforce logging,

IDS and file integrity, this is only implemented on a host level, further security measures will

be implemented on a network level in the firewall configurations.

4.5 Web Server Configuration

After the Initial OS installation as explained previously, apache2 is installed on the server by

entering sudo apt-get install apache2. The functionality of the server is then tested by

34

entering localhost into the browser window and the below page appears confirming the

successful installation of Apache2

Figure 8: Apache Server Confirmation

PhpMyAdmin is also installed on this server to allow communication to the CDE server by

entering sudo apt-get install phpmyadmin. After successful installation the php

configuration settings need to be updated. The ‘phpmyadmin/conf.inc.php’ file is edited to

connect to the database server located at 192.168.40.10 rather than the default of 12.0.0.7.

This means that all sensitive information will be located in the CDE rather than on a MySQL

server within the DMZ. PhpMyAdmin default users are removed using the same process as

used with the database server.

The server is also hardened to comply with the CIS Apache audit (Center of Internet

Security, 2012), areas of security that are added to the server are represented in Figure 9.

The apache2 affected configuration files are located in Appendix D.

Task Notes Status

Planning Checklist Will be completed with IDS and Firewall Pending

Minimize Apache Modules Completed

Permission and Ownership Configuration Completed

Access Control Configuration Completed

Minimize Features and Options Completed

Logging Monitoring and Maintenance Completed

Use SSL/TLS Completed

Information Leakage Completed

DDOS Mitigation Completed

Request Limits Completed

Figure 9: CIS Audit Apache Server Checklist (Centre of Internet Security, 2012)

35

4.6 ClearOS Setup

To allow communications between the Virtual Network and the ISP router ClearOS is

installed as the external facing network router. Clear OS is configured with three NICs one

with a NAT address to allow communications to the physical ISP router and the other two

are the host only NICs, one for the LAN and the other the CDE. To allow for ClearOS to

successfully communicate between the internal and external network a static IP from the

ISP is required and assigned to eth0. The new virtual machine is created with the three NICs

and ClearOS is selected as the disk image. Once the virtual disk is configured with the OS the

router and firewall can be modified. The initial step is to ensure ClearOs is set in gateway

mode so traffic is filtered. ClearOS automatically assigned the NICs correctly with eth0

external and eth1 and eth2 internal as shown in Figure 10.

Figure 10: ClearOS Interfaces

To further protect the network both firewall and IDS configurations are applied on ClearOS

via the marketplace GUI. The ClearOS firewall utilises iptables for firewall protection and

Snort for IDS. These are implemented via the ClearOS guidelines for firewall (ClearCentre,

2014a) and IDS (ClearCentre, 2015b) integration.

The last thing required for the firewall is to configure logging. The ClearOS firewall comes

with logging viewer installed; to implement the feature log viewer is activated. This keeps

files of all the firewall logs and also provides a filter system for system administrators, for

easier log management. Clear OS configuration files are located in Appendix E.

4.7 Smoothwall Setup

As the network design also requires firewall routers for communications, two further

routers are configured on the network. Smoothwall also requires two NICs one facing the

internal network and one facing the DMZ. This regulates the flow of traffic so everything

from the internal LAN flows through the Smoothwall routers and is forwarded to Clear OS

36

router. As there is no external facing NICs Smoothwall unlike the Smoothwall configuration

they are not automatically assigned so are chosen manually again with eth0 as external

facing the DMZ and eth1 internal facing the LAN on the first router and on the second

Smoothwall router eth1 faces the CDE. As Smoothwall is a Linux distribution it also utilises

iptables, the full configuration can be seen in Appendix F.

Figure 11: Smoothwall Configuration and Logging Options

4.8 Security Protocols

To allow for secure communications from the servers OpenSSL is installed by entering sudo

apt-get install openssl. Due to the known weaknesses with SSL, the PCI Security

Standards Council are releasing an updated version of PCI DSS v3 to remove SSL as a

compliant protocol. So these changes won’t affect the network it is configured with TLS. This

step is completed by entering the command sudo nano /etc/ssl.conf and locating the

line that says Protocols All. This line is changed to: Protocols +TLSv1.2, +TLSv.1. In the

ssl.conf file the cipher suite values are also ensured that no weak encryption ciphers are

utilised. For the apache server to communicate using this method encrypted keys need to

be created and imported into the apache2 SSL folder, the keys are created as shown in

Figure 12.

37

Figure 12: Implementation of RSA SSL

To ensure that the TLS protocol has been successfully applied to the localhost a connection

to the localhost is tested with the command openssl s_client – connect localhost:

443. The output as shown in Figure 13 shows the successful configuration of TLS on the

server.

Figure 13: TLS v1.2 configuration

While this will secure all communications via https to the localhost, communications

between the web server and database in the CDE also need to be secure. To complete this,

a SSL certificate is created on the CDE database in the same manner as completed with the

apache server. When the key is created the SQL configuration file my.conf is altered to

38

utilise this cert for secure communications. To ensure MySQL SSL configurations are

successful the SSL variables are verified as shown in Figure 14.

Figure 14: Successful MySQL SSL configuration

4.9 Wireless Security

The ISP router providing connectivity is set to use WPA2 secured connections as default. The

encryption method used was AES which. The username and passwords are changed from

the default setting as required by entering the routers IP address into the address bar of a

connected device. The password set is a 16 character alpha-numeric password that contains

no dictionary words to increase the level of security on the router

4.10 Database Encryption

OpenCart enables the sensitive data (payment and password information) being passed

through the website to be salted and hashed, so sensitive data entering the database is

already encrypted, however this was an issue in each website scanned, the hashing

algorithms utilised in the code base are MD5. As PCI DSS 3.0 requires using strong

cryptographic algorithms in the PHP files responsible for applying the hash values the

algorithm used is changed to SHA256 for stronger encryption. The SALT is created with the

open-ssl random number generator. While using SALT on the password does have

performance implications is does add a much higher level of security as brute forcing of

password attacks on passwords become much more complex due to the randomly

generated values appended to the passwords, therefore the level of security outweighs the

performance issues that will be encountered.

39

4.11 Secure Programming

While the report from the static code scan showed many lines of secure coding weaknesses,

many of the results were for the same issues: shell commands, cross site scripting from non-

sanitised input and the utilisation of MD5 and pseudo-random number generators. Before

the website is connected to the server these vulnerabilities are mitigated for. The MD5

hashing algorithms are changed to use the stronger sha256 hashing algorithm and the

00random number generator mt_rand() is replaced with the more secure open-ssl random

number generator as the generated values are less predictable.

The code base is secured further by editing the php.ni file on the Apache server to disallow

shell commands to be executed.

Figure 15: php.ini configuration

The remaining vulnerability is mitigated for by changing register_globals from the default

ON to OFF. For an extra level of security the Toolkit package is downloaded. This is an open

source library to help in the securing of php and it includes libraries for escape

management. This is successfully added by downloading the toolkit and linking to the php

code base.

4.12 Anti-Virus

To fulfil the PCI DSS 3.0 requirement Comodo anti-virus software for Linux systems is

installed on the network devices. As Comodo is designed to be used on Linux OS it can be

applied to both servers and desktops. Unlike other anti-virus software available for Linux

platforms Comodo has the ability to quarantine affected files to a folder on the system for

analysis, meaning that the affected files will not have access to system files, further securing

network devices.

40

Figure 16: Comodo Installation

4.13 Self-Assessment

While this methodology successfully implements the full PCI DSS 3.0 standard there are also

many self-assessment options available as shown in Figure 17. Many of these do not require

the full implementation of all twelve PCI DSS 3.0 requirements. The testing section will not

only test the network for weaknesses but along with this any found weaknesses will be

compared to the to the self-assessment options to verify the strength of these alternative

compliance options.

Figure 17: Self-Assessment Versions

41

5 Testing

The testing methodologies that are explained below are based on the NIST SP 800-15 (Cody,

et al., 2008) standard. Initially focusing on network communications then wireless access

points, vulnerability scanning and finally penetration testing. The order completed testing

the network from the outside inwards, as to initially harden the network from malicious

outside traffic.

5.1 Secure Network Communications

To ensure communications via the web server are secure Wireshark is utilised on the

webserver. To start the capture the loopback connection for the localhost server is selected

as the target connection, once this is selected localhost is entered into a browser window

and the capture is started. On the website an item is added to the shopping cart and the

payment process is started.

Upon completion the Wireshark capture is stopped and the capture file of the transaction is

opened. Figure 23 shows the successful implementation of TLS for secure encrypted

communications. The TLS handshake is initiated before any transactions between the web

server and client are undertaken.

Figure 18: Wireshark TLS handshake

While this shows the initial TLS handshake to ensure all communications are secured the

protocols for the entire transaction are captured. As highlighted in Figure 24 all packets to

and from the server were completed using https for secure communications. All data sent to

42

and from the server is using this secure communication technique, mitigating for sensitive

data being sniffed in clear text from the network communications.

Figure 19: HTTPS Communications

5.2 Vulnerability Scanning

Nikto is utilised to assess vulnerabilities on the web server. To initiate the vulnerability scan

the Nikto configuration file first needs to be edited to enable scans of localhost proxies. This

is completed by removing the comments from the proxy configuration in the Nikto

config.text file as show in Figure 22.

Figure 20: Nikto Configuration

Once the changes above have been completed the scan is completed by inserting the

command nikto –h localhost.

43

5.2.1 Findings

Weaknesses were discovered in the web server utilising Nikto, please refer to Appendix H

for the outputted Nikto scan results. Seven vulnerabilities were returned by the scanner, all

of which are cross site scripting weaknesses

1. phpimageview.php located in PHP Image View 1.0 is vulnerable to Cross Site Scripting

2. links.php in myphpnuke is vulnerable to Cross Site Scripting

3. modules.php in Post Nuke 0.7.2.3-Phoenix is vulnerable to Cross Site Scripting

4. members.asp in Web Wiz Forums 7.01 and below is vulnerable to Cross Site Scripting

5. forum_members.asp in Web Wiz Forums 7.01 and below is vulnerable to Cross Site

Scripting

5.3 Wireless Testing

Kali is utilised to test the wireless security on the network. Kali comes with Aircrack already

installed and this piece of software will be utilised in an attempt to hack into the wireless

network.

5.3.1 Aircrack

To utilise in Aircrack in Kali a wireless network adapter must be installed on the virtual

machine. To initiate the testing iwconfig is entered to ensure the virtual machine

successfully recognised the wireless network adapter, furthermore to ensure wlan0 is active

the command airmon-ng start wlan0 is entered. This command also creates a mon0

testing interface. The next step is to scan for wireless interfaces. This is completed with the

command airodump-ng mon0. This returns a screen as shown in Figure 18 that shows the

name of the wireless router, the encryption protocols utilised and the channel.

Figure 21: Scan for Wireless Routers

44

Aircrack injects packets to force a client to reconnect to the wireless router. To be able to

capture this process a Wireshark file of the process is required to be captured. To complete

this airodump-ng –bssid 90:EF:68:3E:7F:4E –channel 3 write wificapture mon0.

This creates a Wireshark file to store the data of the packet injection. To insert the packets

aireplay-ng -0 3 –a 90:EF:68:3E:7F:4E –c FC:0F:E6:D9:3A:DD mon0 is entered

into the terminal. Figure 19 shows the successful injection of the de-authorisation packets

between the two devices.

Figure 22: De-Authorisation Packet Injection

The wireshark file is filtered by the EAPOL protocol to ensure the packet injection was

successful. This files show the re-authentication of the client to the wireless router. The

packet injection was successful and the communications are encrypted via AES.

Figure 23: Wireshark capture of AES keys

45

To attempt to crack the password on the router a password cracker is run through aircrack,

this compares encrypted values to the AES encryption values. To complete this darkc0de.lst

is downloaded, it contains a comprehensive password list to compare to the Wireshark

encryption values. To run the password cracking the command aircrack-ng wificapture

–w /usr/share/wordlists/darkc0de.lst.

5.3.2 Findings

As illustrated in Figure 21 the WPA2 cracking attempt was unsuccessful, both dictionary and

alpha-numeric values were entered as password values. As the wireless access key is

comprised of a 14 characters, is alpha-numeric with no dictionary values the complexity of

the password was not able to be cracked showing utilising this method.

Figure 24: Failed Aircrack Attack

5.4 Penetration Testing

Armitage and Metasploit are used together from the Kali virtual machine to penetration test

all network devices. Armitage and Metasploit are used in the same manner on all devices on

the network. To initiate the penetration testing Metasploit and PostgreSQL are started on

the virtual machine and when both applications have successfully loaded armitage is

entered into the terminal. To determine the operating system being utilised on the target

machine it is selected in the Armitage window and an Nmap OS scan is completed.

Nmap successfully detects the operating system of the client and Metasploit uses this data

to customise the exploits to the host OS. To see the available exploits show payloads is

entered into the terminal, this shows all available payloads on the target system. To verify if

the host machine is vulnerable the check command can be utilised to verify this. While the

46

process of finding exploits on each target machine is the machine, the results vary based on

the OS. The full Metasploit scan findings can be viewed in Appendix G.

5.4.1 Ubuntu Servers Findings

While the servers were secured to comply with both CIS audits and PCI DSS 3.0 before

testing, there were still vulnerabilities found on both machines. Both servers returned the

same vulnerabilities with no result differences.

Cuteflow File Upload Exploit

This exploit was found on both Ubuntu servers as is a component that is automatically

installed upon mounting operating system. This exploit required no credentials and allows

the attacker to upload php files into the system and run them as executables, this is very

dangerous as will allow these files to gain access to all information installed on host

machine.

Skybluecanvas Exec Exploit

This vulnerability also does not require any login credentials for execution it allows attackers

to execute shell commands via php editing database credentials when the PID value is equal

to 4. The php.ini file on both servers has been configured to disallow shell commands aiding

to mitigate for this type of attack, however to further secure systems the functionality

should be assessed and removed if not required.

5.4.2 ClearOS Findings

Tectia Password Change Request Exploit

This vulnerability is found in UNIX systems that utilise Tectia Server for SSH functionality.

The exploit allows an attacker to brute force the username, once this has been found a

password reset request is sent and accepted by the server. This allows the attacker to

change login credentials to ones of their own choosing and therefore after gaining access

change the firewall rules to maintain network access.

5.4.3 Smoothwall Findings

Gitorious Graph Exploit

Metasploit successfully found and exploited the gitorious graph vulnerability on the

Smoothwall firewall. This vulnerability exists in the gitorious component pre-installed on the

47

Smoothwall ISO. This allows for an attacker to enter un-validated input to start a command

line session and gain control of the system.

5.5 Results Conclusion

While the network was configured with security in mind, the testing phase still successfully

uncovered vulnerabilities in the network. In both the CDE and DMZ servers the functionality

of cuteflow and skybluecanvas are not required so the files are purged from the systems.

The same is the case for the SmoothWall firewall and vulnerable files are purged. For

ClearOS as the user name was brute forced and no password was required, to mitigate for

this the username is updated to comply with password best practices, utilising numbers

letters and special characters.

While this form of testing is required on full implementation of the standard this not the

case for all SAQ options. Furthermore, the issue with lack of guidance on testing frameworks

provided may result in a network that is only as strong as the research carried out by the

tester on other suitable frameworks. To highlight this particular issue with the standard,

requirement 11.3 of PCI DSS 3.0 requires penetration testing be completed on the network.

Figure 25 shows that framework NIST SP800-115 may be used however no others are listed

for comparison.

Figure 25: PCI DSS Requirement 11.3

For example on the network built in the methodology section if only CDE connections were

tested vulnerabilities in firewalls and servers would remain. The vulnerabilities that would

have remained would allow bypassing of external firewall due to password exploitations and

the server would vulnerable to malicious php that could then be executed on the server.

Not only do many of the self-assessments fail to uncover the issues as outlined above there

is a vast difference between the security levels enforced when comparing the full standard

48

and the SAQs. While network and code weaknesses in this implementation would have

successfully uncovered these weaknesses pre-production only fulfilling SAQ requirements

may lead to weak coding and networking practices.

5.5.1 SAQ A v3.0

This self-assessment version while only requires requirement 9 and 12 to be fulfilled the

prerequisite for this self-assessment is that all payment information is fully outsourced to a

third party, requirement 12 does require that a contract is in place so the third party

vendors accept responsibility for ensuring their products are secured to the full standard,

therefore the merchant is not responsible for any weaknesses that would have been

uncovered in both the methodology and testing procedures.

5.5.2 SAQ A-EP v3.0

SAQ-EP v3 while covers all twelve of the PCI DSS requirements to be fulfilled, not every

aspect of each requirement are necessary. The documentation of user privileges, access and

information security are not required as per the full standard, meaning in the event of a

breach inside from inside the network assisting documentation to assist in finding the

source is severely limited.

5.5.3 SAQ for Payment Terminals

SAQ B v3.0, SAQ B-IP v3.0 and AQ P2PE-HW v3.0 self-assessment options are available for

card payment machines and are not an option for e-commerce payment applications,

however with these options for payment card machines there is a lack of required

documentation for physical access to devices. With physical tampering of devices being a

high risk, a secure network build and documentation of access should have a higher

implementation requirement than covered by these self-assessment versions.

49

6 Conclusion

At its core, PCI DSS v3.0 represents best practice guidelines which, if followed, mitigate the

risk from many cyber threats. Its implementation and methodological approach to

hardening the security profile of an organisation offer considerable benefits. Indeed,

recognizing the protection of privacy and civil liberties has come to engender the central

issue regarding trust between the general public and organisations. However, ‘one-size-

fits-all’ will not work given the diversity of company objectives and practices. Added to this,

the security professional is faced with considerable challenges from given the sophisticated

nature of new threats (Trustwave, 2013; Verizon, 2013; PWC, 2014; Ponemon, 2014).

Despite the wealth of experience and lessons learned by security professionals, more work

is needed. Existing defences can be improved by developing the most appropriate security

posture for an organisation which may be aimed at preventing common types of attack

from damaging the business assets. Recently, the National Institute of Standards and

Technology (NIST) published the “Framework for Improving Critical Infrastructure

Cybersecurity,” (NIST, 2014) and represents a valuable tool to help organizations assess and

improve their security systems. In conjunction with this, security training and certification

are required and may be implemented relatively quickly so that any gaps in knowledge may

be filled. Benefits to organizations include, but are not limited to, increased customer

confidence, standardized sharing and storage of sensitive information and the simplification

of practices and operations across international regimes. The work presented offers a

progressive and reasonable addition to security education, since there is a dearth of

research into the advantages of PCI DSS 3.0 implementation the table provided in Appendix

I provides an in-depth review on how each implementation step fulfilled each requirement.

On this basis, several areas which are worthy of consideration for those intent on

implementing PCI DSS v3.0 from a compliance perspective, the perceptions of industry, the

importance of third party tools, how delays in adoption and subsequent adaptation are

costly, the importance of self-assessment, some inherent ambiguities in the standard that

could be changed and the current restrictions of the standard.

50

6.1 Slow to Adapt

The emergence of Heartbleed and POODLE PCI DSS has prompted the revision of the

standard. However Heartbleed was discovered in April 2014 after which POODLE came to

light in October 2014, the PCI Security Standards Council stated in February 2015 that a

revised standard will be released ending the acceptance of SSL as secure. This comes ten

months after the initial vulnerability has come to light. In comparison Chokhani et Al (2014)

released the NIST guide to TLS in April 2014. This document states that SSL is not an

approved means of encryption and updated this standard to TLS. This shows a vast gap in

both re-action times and standard strength. NIST tested and adapted within a month,

however PCI DSS have only just formally released version 3.1 a full year later and are also

giving merchants another year to update their systems. While PCI DSS 3.0 has officially been

retired, the updated requirements of 3.1 will not be fully enforced until June 2016 (PCI

Security Standards Council, 2015).

6.2 PCI DSS 3.0 Ambiguities

While PCI DSS 3.0 does provide a more secure implementation and testing guideline than its

predecessor there is still vagueness in certain aspects of the standard. PCI DSS 3.0 does

require that many aspects like penetration testing, implementing cryptographic algorithms

be completed to industry best practice, there is very little information given on the industry

best practice guidelines to be followed. It is understood why this is left vague as if a new

vulnerability is found, an outlined practice may be outdated quickly, but rather than leaving

room for interpretation these aspects should be more specific. Stating that penetrations

should be completed to an industry framework such as NIST or another industry framework

leaves ambiguity to which testing standard can be utilised. Providing a guideline such as

systems should be tested utilising the most recent NIST framework, means the framework

will stay up to date and there is no ambiguity as to which industry framework should be

utilised.

The same issue exists in the cryptographic section, it is required that strong hashing

algorithms be utilised with no explanation of a strong hashing algorithm. It is well known

that MD5 is broken and should not be used, so updating the standard to be more specific

and require that SHA256 and above be utilised for hashing data leaves much less room for

interpretation and therefore implementation errors. This was highlighted during the static

51

code scan of all code bases, each code base while being advertised as PCI DSS 3.0 compliant

utilised MD5 hashing algorithms.

6.3 Self-Assessment

It is clear that enforcing security is an expensive task and the self-assessment procedures

have been enforce to aid smaller business enforce security without the expense of a full

audit. If a business chooses to handle consumers sensitive information, having that business

itself assess the security measures in place is not good enough. While the self-assessment

document is utilised for when card holder is not stored, if the data is being taken from the

consumer communicated across the network, surely the network communications and

security levels would be tested to the same extent as when the data is being stored. Data

breaches are not just confined to storage breaches, but man in the middle breaches are just

as severe and all communications with sensitive data should be protected and evaluated to

the same extent. As Figure 17 showed previously there are many security requirements

that would not be implemented with the self-assessment options. Requirement 11 helped

secure the network further, using common attack tools a variety of weaknesses were

uncovered which would remain in self-assessment versions resulting in a vulnerable

infrastructure.

6.4 Failure to comply

The largest issue with PCI DSS 3.0 is not with the standard itself rather than a lack of

compliance, or understanding of the standard. While the standard cannot 100% guarantee

that a breach will not happen, no security standard or compliance document can, Verizon

(2015) does show there is a large gap in compliance, with all post-breach companies

assessed by Verizon in 2014 being found to be non-compliant and only 33% of QSA found to

pass the testing requirement.

When a company makes the decision to accept and store cardholder information PCI DSS

should be a pre-requisite not a choice. While there are fines for breaches and non-

compliance this does not seem to be enough to encourage companies to enforce security

measures. With sensitive and private data at risk the standard needs to be enforced from

the start.

52

6.5 PCI DSS 3.1

PCI DSS is constantly evolving with many iterations of a standard being issued throughout its

lifetime. Close to the completion of this dissertation PCI DSS 3.1 was released implementing

new guidelines and clarifications on PCI DSS 3.0. However this dissertation focused on

ground up approach to security, therefore remaining valid for PCI DSS 3.1. As can be seen in

the guidelines submitted by the PCI Security Standards Council (2015) the revised version

mainly focus on standard clarifications, the only requirements change is the removal of SSL

as a secure communications method.

6.5 Restrictions

While further tests with alternative hardware and software configurations would have

yielded data for comparison, this was restricted by financial and time issues. However,

given that the tests were performed on a relatively common setup further work could be

carried out using industry grade platforms and tools.

6.6 Further Work

There is much further work that can be initiated to further the work of this dissertation. This

dissertation focused assessing the standard in a testing environment. To assess the standard

even further the next step would be to move the network to a physical environment and

assess any differences in the findings that may come to light. Furthermore the full network

and site can be further assessed in a live production environment.

To further evaluate any ambiguities and testing issues in regard to requirement 11, further

testing is required on the network with varying testing frameworks to evaluate their

strengths and weaknesses. This will aid in discovering the varying levels of security that the

different frameworks provide.

With the new PCI DSS 3.1 being released in April, assessing the changes, how they further

the security that PCI compliance enforces. The major change being enforced in this standard

is how data in transit is secured. Since Heartbleed and POODLE have been discovered as

large weaknesses in SSL communications, PCI DSS have updated the standard to try and

mitigate this by enforcing the move from SSL to TLS. Further work would be to enforce this

change on a network utilising SSL and fully assess the TLS standard itself. As well as

assessing any further changes that may be enforced in the revised standard.

53

Bibliography

Alshomrani, M., 2012. The Importance and Dilemmas of Security Education in Information

System. WIAR '2012; National Workshop on Information Assurance Research, 1(1), p. 1-5.

American Bar Association, 2008. Data Security Handbook. 1st ed. Chicago: ABA Publishing.

Atay, L., Bahtiyar, S. & Gur, G., 2014. Security Assessment of Payment Systems under PCI

DSS Incompatibilities. CT Systems Security and Privacy Protection, 428(2), p. 395-402.

Bakay, O., Dudykevych, V. & Lakh, Y., 2013. Investigation of Payment Cards Systems

Information Security Control. IEEE International Conference on Intelligent Data Acquisition

and Advanced Computing Systems, 2(651-654), p. 7.

Bhargav, A., 2014. PCI Compliance: The Definitive Guide. 1st ed. Florida: CRC Press.

Blackwell, C., 2008. The Management of Online Credit Card Data using the Payment Card

Industry Data Security Standard. Digital Information Management, 3(840-842), p. 3.

Carpenter, T., 2010. SQL Server 2008 Administration. 1st ed. New Jersey: John Wiley & Sons.

Center of Internet Security, 2012. Security Configuration Benchmark for Apache HTTP Server.

[Online]

Available at:

https://benchmarks.cisecurity.org/tools2/apache/CIS_Apache_HTTP_Server_Benchmark_v3

.1.0.pdf

[Accessed 2 February 2015].

Center of Internet Security, 2015. CIS Ubuntu 14.04 LTS Server Benchmark. [Online]

Available at:

https://benchmarks.cisecurity.org/tools2/linux/CIS_Ubuntu_14.04_LTS_Server_Benchmark_

v1.0.0.pdf

[Accessed 02 February 2015].

Chokhani, S., McKay, K. & Polk, T., 2014. Guidelines for the Selection, Configuration, and Use

of Transport Layer Security (TLS) Implementations. NIST Special Publication, 1(1), p. 9-67.

54

Chuvakin, A. & Williams, B., 2011. PCI Compliance: Understand and Implement Effective PCI

Data Security Standard Compliance. 3rd ed. Massachusetts: Syngress Publishing.

Chuvakin, A. & Williams, B., 2014. PCI Compliance: Understand and Implement Effective PCI

Data Security Standard Compliance. 4th ed. Massachusetts: Syngress Publishing.

Clear Center, 2014a. Clear Center. [Online]

Available at:

http://www.clearcenter.com/support/documentation/clearos_enterprise_5.2/user_guide/c

ustom_firewall

[Accessed 10 February 2015].

Clear Center, 2014b. Clear Center. [Online]

Available at:

http://www.clearcenter.com/support/documentation/user_guide/intrusion_detection

[Accessed 10 February 2014].

Coburn, A., 2010. Fitting PCI DSS Within a Wider Governance Framework.. Computer Fraud

& Security, 9(2), p. 11-13.

Cody, A., Orebaugh , A., Scarfone, K. & Souppaya , M., 2008. NIST. [Online]

Available at: http://csrc.nist.gov/publications/nistpubs/800-115/SP800-115.pdf

[Accessed 21st May 2015].

Creti, A. & Verdie, M., 2014. Fraud, investments and liability regimes in payment platforms.

International Journal of Industrial Organization, 35(7), p. 84-93.

Douthit, P. & Huang, K., 2008. ST&E is the Most Effective Measure to Comply with Payment

Card Industry (PCI) Data Security Standard. Financial Cryptography and Data Security,

12(18), p. 321-322.

Fernandes, J. J., 2014. Get ready for PCI DSS 3.0 with real-time monitoring. Computer Fraud

& Security, 2015(2), p. 17-18.

Grobler, M., Li, C. & Mouhtaropoulos, A., 2014. Digital Forensic Readiness: Are We There

Yet?. Journal of International Commercial Law and Technology, 9(3), p. 173-179.

55

Guttman, B. & Roback, E., 1995. An Introduction to Computer Security: the NIST Handbook. 1

ed. Gaithersburg: National Institute of Standards & Technology.

Hall, J., 2014. PCI Guru. [Online]

Available at: https://pciguru.wordpress.com/2014/08/01/the-dilemma-of-pci-scoping/

[Accessed 12 November 2014].

Hulme, G., 2009. Dark Reading. [Online]

Available at: http://www.darkreading.com/risk-management/the-death-of-pci-dss-dont-be-

silly/d/d-id/1076031?

[Accessed 13 November 2014].

Johnson, R., 2014. Security Policies and Implementation Issues. 2nd ed. Massachusetts:

Jones & Bartlett Publishers.

Kedgley, M., 2014. PCI DSS Version 3.0: new standard, but same problems?. Computer Fraud

& Security, 2(1), pp. 5-9.

Kidd, R., 2008. Counting the cost of non-compliance with PCI DSS. Computer Fraud &

Security, 11(6), p. 13-14.

Koster, J., 2012. The SANS Insititute. [Online]

Available at: http://www.sans.org/reading-room/whitepapers/compliance/in-house-

penetration-testing-pci-dss-33930

[Accessed 22 May 2015].

Li, C. & Thornton, B., 2013. The applicability of network management systems in small

businesses. IEEE Joint International Computer Science and Information Technology

Conference, 13(2), p. 1-7.

Lovric, Z. & Sedinic, I., 2013. Influence of Established Information Security Governance and

Infrastructure on Future Security Certifications. Information & Communication Technology

Electronics & Microelectronics, 36(4), p. 1112-1115.

56

McMurtrey, M., 2013. A Case Study of the Application of the Systems Development Life

Cycle (SDLC) in 21st Century Health Care: Something Old, Something New?. Journal of the

Southern Association for Information Systems, 1(1-3), p. 1.

Mehta, L., 2014. Infosec. [Online]

Available at: http://resources.infosecinstitute.com/pci-dss-3-0-key-drivers/

[Accessed 21st May 2015].

Morgan, R. & Boardman, R., 2012. Data Protection Strategy: Implementing Data Protection

Compliance. 2nd ed. Andover: Sweet & Maxwell.

OpenCart, 2015. OpenCart. [Online]

Available at: http://www.opencart.com/index.php?route=common/home

[Accessed 31st March 2015].

PCI Security Standards Council, 2010. PCI Security Standards. [Online]

Available at:

https://www.pcisecuritystandards.org/pdfs/pci_lifecycle_for_changes_to_dss_and_padss.p

df

[Accessed 22 May 2015].

PCI Security Standards Council, 2010. Summary of Changes from PCI DSS Version 1.2.1 to

2.0. [Online]

Available at:

https://www.pcisecuritystandards.org/documents/pci_dss_v2_summary_of_changes.pdf

[Accessed 14 October 2014].

PCI Security Standards Council, 2013. Requirements and Security Assessment Procedures.

[Online]

Available at: https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf

[Accessed 28 September 2014].

PCI Security Standards Council, 2014. PCI Security Standards. [Online]

Available at: https://www.pcisecuritystandards.org/documents/PCI_DSS_v3.pdf

[Accessed 3rd October 2014].

57

PCI Security Standards Council, 2015. PCI Security Stadards. [Online]

Available at: https://www.pcisecuritystandards.org/documents/PCI_DSS_v3-

1_Summary_of_Changes.pdf

[Accessed 15 April 2015].

Ponemon, 2014. Ponemon Institute Releases 2014 Cost of Data Breach: Global Analysis.

[Online]

Available at: http://www.ponemon.org/blog/ponemon-institute-releases-2014-cost-of-data-

breach-global-analysis

[Accessed 26th January 2015].

Roche, T., 2014. File Integrity AIDE. [Online]

Available at: https://help.ubuntu.com/community/FileIntegrityAIDE

[Accessed 2 Febuary 2015].

Sakharova, I., 2012. Payment Card Fraud: Challenges and Solutions. Intelligence and Security

Informatics, 1(2), p. 227-234.

Shier, J., 2014. Naked Security. [Online]

Available at: https://nakedsecurity.sophos.com/2014/04/23/pci-dss-why-it-fails/

[Accessed 12 November 2014].

Shihab, M. R. & Misdianti, F., 2014. Moving towards PCI DSS 3.0 compliance: A case study of

credit card data security audit in an online payment company. Advanced Computer Science

and Information Systems (ICACSIS), 34(1), p. 151 - 156.

Sullivan, R., 2013. The US Adoption of Computer-Chip Payment Cards: Implications for

Payment Fraud. 2013(1), 101-127.. Economic Review: Federal Reserve Bank of Kansas City,

13(1), p. 101-127.

TrustWave, 2014. TrustWave Global Security Report. [Online]

Available at:

https://www2.trustwave.com/rs/trustwave/images/2014_Trustwave_Global_Security_Repo

rt.pdf

[Accessed 28th January 2015].

58

Verizon, 2013. Verizon Annual Report. [Online]

Available at: http://www.verizon.com/about/sites/default/files/2013_vz_annual_report.pdf

[Accessed 25th January 2015].

Verizon, 2015. Verizon PCI Report. [Online]

Available at: http://www.verizonenterprise.com/resources/reports/rp_pci-report-

2015_en_xg.pdf

[Accessed 2 March 2015].

Yingkui , Z., Jing, Z. & Liye, W., 2010. Justification of Free Software and Its Enlightenment.

WRI World Congress on Software Engineering, 2010(2), p. 171-173.

59

Appendix A - VCG Source Code Scan Results

Open Cart Scan Results

Result Findings

Severity Title Description File Name

Medium Application Variable Used

on System Command Line

The application appears to allow the use of an

unvalidated variable when executing a command.

ebay_settings.php

Medium Application Variable Used

on System Command Line

The application appears to allow the use of an

unvalidated variable when executing a command.

ebay_settings.php

Medium Application Variable Used

on System Command Line

The application appears to allow the use of an

unvalidated variable when executing a command.

ebay_settings.php

Medium Application Variable Used

on System Command Line

The application appears to allow the use of an

unvalidated variable when executing a command.

openbay.php

Medium md5 MD5 Hashing algorithm. cba.php

Medium md5 MD5 Hashing algorithm. cba.php

60

Medium md5 MD5 Hashing algorithm. cba.php

Medium md5 MD5 Hashing algorithm. confirm.php

Medium md5 MD5 Hashing algorithm. document.php

Medium md5 MD5 Hashing algorithm. paymate.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

amazon_checkout.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

amazon_login_pay.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

confirm.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

download.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

paymate.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

pp_express.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

pp_express.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

pp_pro_iframe.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

pp_pro_iframe.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

sagepay_direct.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

sagepay_server.php

Medium mt_rand The application uses pseudo-random number

generation that is not cryptographically secure.

worldpay.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

amazon.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

amazonus.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

amazonus_product.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

amazonus_product.php

61

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

amazonus_product.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

amazon_product.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

amazon_product.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

amazon_product.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

bluepay_hosted.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

bluepay_hosted.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

bluepay_hosted.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

bluepay_redirect.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

bluepay_redirect.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

bluepay_redirect.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

cba.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

cba.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

cba.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

realex.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

realex.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

realex.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

realex_remote.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

realex_remote.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

realex_remote.php

62

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

response.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

sagepay_direct.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

sagepay_direct.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

sagepay_direct.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

sagepay_server.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

sagepay_server.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

sagepay_server.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

securetrading_pp.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

securetrading_pp.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

securetrading_pp.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

securetrading_ws.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

securetrading_ws.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

securetrading_ws.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

securetrading_ws.php

Medium Potential XSS The application appears to reflect data to the screen

with no apparent validation or sanitisation.

worldpay.php

Standard exec This function allows execution of commands. It is

dangerous when used with user controlled

parameters and may facilitate direct attacks against

the web server.

cli_install.php

Standard preg_replace This function will evaluate PHP code. It is dangerous

when used with user controlled parameters and may

facilitate direct attacks against the web server.

action.php

Standard preg_replace This function will evaluate PHP code. It is dangerous

when used with user controlled parameters and may

address.php

63

facilitate direct attacks against the web server.

Standard preg_replace This function will evaluate PHP code. It is dangerous

when used with user controlled parameters and may

facilitate direct attacks against the web server.

download.php

Standard system This function allows execution of commands. It is

dangerous with user controlled parameters and may

facilitate direct attacks against the web server.

ebay_settings.php

Standard system This function allows execution of commands. It is

dangerous with user controlled parameters and may

facilitate direct attacks against the web server.

openbay.php

Standard Use of Deterministic

Pseudo-Random Values

The resulting values are predictable and may be

enumerated by a skilled and determined attacker,

although this is partly mitigated by a seed that does

not appear to be time-based.

confirm.php

Standard Use of Deterministic

Pseudo-Random Values

The resulting values are predictable and may be

enumerated by a skilled and determined attacker,

although this is partly mitigated by a seed that does

not appear to be time-based.

download.php

Standard Use of Deterministic

Pseudo-Random Values

The resulting values are predictable and may be

enumerated by a skilled and determined attacker,

although this is partly mitigated by a seed that does

not appear to be time-based.

paymate.php

Low Variable Used as

FileName

The application appears to use a variable name in

order to define a filename used by the application. It

is unclear whether this variable can be controlled by

the user

action.php

Low Variable Used as

FileName

The application appears to use a variable name in

order to define a filename used by the application. It

is unclear whether this variable can be controlled by

the user

amazon_checkout.php

Low Variable Used as

FileName

The application appears to use a variable name in

order to define a filename used by the application. It

is unclear whether this variable can be controlled by

the user

backup.php

64

Commercial Site1 Scan Results

Summary of results

Priority Severity Title Description

3 Medium Potential XSS The application appears to reflect data to the screen with no apparent
validation

3 Medium MD5 MD5 hashing algorithm utilised

3 Medium Unsafe Password Management The application appears to handle passwords in a case in-sensitive
manner

3 Medium Application Variable Used on
System Command Line

The application appears to allow the use of variable within backticks

4 Standard System This function allows execution of commands

4 Standard Preg_replace This function will evaluate PHP code. It is dangerous when used with
user controlled input

4 Standard Create_funtion This function allows execution of commands

5 Low Variable Used as Filename The application appears to use a variable name in order to define a
filename

6 Suspicious Comment indicates potentially
unfinished code

The comment includes some wording which indicates that the
developer regards as unfinished

65

Commercial Site2 Scan Results

Summary of results

Priority Severity Title Description

3 Medium Potential XSS The application appears to reflect data to the screen with no apparent
validation

3 Medium MD5 MD5 hashing algorithm utilised

3 Medium Application Variable Used on
System Command Line

The application appears to allow the use of variable within backticks

3 Medium Mt_rand The function uses pseudo-random number generation that is not
cryptographically secure

4 Standard System This function allows execution of commands

4 Standard Assert This function will evaluate PHP code. It is dangerous when used with
user controlled input

4 Standard Preg_replace This function will evaluate PHP code. It is dangerous when used with
user controlled input

4 Standard Create_funtion This function allows execution of commands

4 Standard Exec This function allows execution of commands

5 Low Variable Used as Filename The application appears to use a variable name in order to
define a filename

6 Suspicious Comment indicates potentially
unfinished code

The comment includes some wording which indicates that the
developer regards as unfinished

66

Appendix B - PhpmyAdmin configuration files

<?php

/**

 * Debian local configuration file

 * This file overrides the settings made by phpMyAdmin interactive setup

 * utility.

 * For example configuration see

 * /usr/share/doc/phpmyadmin/examples/config.sample.inc.php

 * or

 * /usr/share/doc/phpmyadmin/examples/config.manyhosts.inc.php

 * NOTE: do not add security sensitive data to this file (like passwords)

 * unless you really know what you're doing. If you do, any user that can

 * run PHP or CGI on your webserver will be able to read them. If you still

 * want to do this, make sure to properly secure the access to this file

 */

if (!function_exists('check_file_access')) {

 function check_file_access($path)

 {

 if (is_readable($path)) {

 return true;

 } else {

 error_log(

 'phpmyadmin: Failed to load ' . $path

 . ' Check group www-data has read access and open_basedir

restrictions.'

);

 return false;

 }

 }

}

// Load secret generated on postinst

if (check_file_access('/var/lib/phpmyadmin/blowfish_secret.inc.php')) {

 require('/var/lib/phpmyadmin/blowfish_secret.inc.php');

}

// Load autoconf local config

if (check_file_access('/var/lib/phpmyadmin/config.inc.php')) {

 require('/var/lib/phpmyadmin/config.inc.php');

}

/* Server(s) configuration */

$i = 0;

// The $cfg['Servers'] array starts with $cfg['Servers'][1]. Do not use

$cfg['Servers'][0].

// You can disable a server config entry by setting host to ''.

$i++;

/*Read configuration from dbconfig-common */

if (check_file_access('/etc/phpmyadmin/config-db.php')) {

 require('/etc/phpmyadmin/config-db.php');

}

/* Configure according to dbconfig-common if enabled */

if (!empty($dbname)) {

 /* Authentication type */

 $cfg['Servers'][$i]['auth_type'] = 'cookie';

 /* Server parameters */

 if (empty($dbserver)) $dbserver = 'localhost';

67

 $cfg['Servers'][$i]['host'] = $dbserver;

 if (!empty($dbport) || $dbserver != 'localhost') {

 $cfg['Servers'][$i]['connect_type'] = 'tcp';

 $cfg['Servers'][$i]['port'] = $dbport;

 }

 //$cfg['Servers'][$i]['compress'] = false;

 /* Select mysqli if your server has it */

 $cfg['Servers'][$i]['extension'] = 'mysqli';

 /* Optional: User for advanced features */

 $cfg['Servers'][$i]['controluser'] = $dbuser;

 $cfg['Servers'][$i]['controlpass'] = $dbpass;

 $i++;

}

$i++;

$cfg['Servers'][$i]['connect_type'] = 'tcp';

$cfg['Servers'][$i]['extension'] = 'mysql';

$cfg['Servers'][$i]['compress'] = FALSE;

$cfg['Servers'][$i]['auth_type'] = 'config';

$cfg['Servers'][$i]['user'] = 'CDEAdmin';

$cfg['Servers'][$i]['password'] = 'Brainmc7';

/*End of servers configuration */

/*Directories for saving/loading files from server */

$cfg['UploadDir'] = '';

$cfg['SaveDir'] = '';

/* Support additional configurations */

foreach (glob('/etc/phpmyadmin/conf.d/*.php') as $filename)

{

 include($filename);

}

68

Appendix C - Ubuntu CIS Audit Configurations

Fstab - Partition Rules

/etc/fstab: static file system information.

Use 'blkid' to print the universally unique identifier for a

device; this may be used with UUID= as a more robust way to name devices

that works even if disks are added and removed. See fstab(5).

<file system> <mount point> <type> <options> <dump> <pass>

/ was on /dev/sda2 during installation

UUID=644ac70b-6978-4f48-8d20-78784701b807 / ext4

errors=remount-ro 0 1

/home was on /dev/sda6 during installation

UUID=686b06d9-df88-459f-8dfc-9d82b5961a78 /home ext4

defaults,nodev,noexec,nosuid 0 2

/tmp was on /dev/sda7 during installation

UUID=ff8cc2a2-d6c6-4068-bd4c-04ec509adb20 /tmp ext4

defaults,nodev,noexec,nosuid 0 2

/var was on /dev/sda8 during installation

UUID=55674176-0a77-4003-87ff-061166706425 /var ext4

defaults,nodev,noexec,nosuid 0 2

/var/log was on /dev/sda9 during installation

UUID=9ef999e4-9723-4e84-9e81-d2436c4242be /var/log ext4 defaults

0 2

/var/log/audit was on /dev/sda10 during installation

UUID=4fca5fb3-1939-4f69-b08b-d9e25a6bbf6d /var/log/audit ext4 defaults

0 2

swap was on /dev/sda5 during installation

UUID=8bc7e44f-8c17-449f-9395-8477bdc5301f none swap sw

0 0

/dev/fd0 /media/floppy0 auto rw,user,noauto,exec,utf8 0 0

69

Sysctl.conf – Set Routing to Disabled per CIS Guidelines

/etc/sysctl.conf - Configuration file for setting system variables

#kernel.domainname = example.com

Uncomment the following to stop low-level messages on console

#kernel.printk = 3 4 1 3

##3

Functions previously found in netbase

Turn on Source Address Verification in all interfaces to

prevent some spoofing attacks

#net.ipv4.conf.default.rp_filter=1

#net.ipv4.conf.all.rp_filter=1

See http://lwn.net/Articles/277146/

Note: This may impact IPv6 TCP sessions too

#net.ipv4.tcp_syncookies=1

#net.ipv4.ip_forward=1

Enabling this option disables Stateless Address Autoconfiguration

based on Router Advertisements for this host

#net.ipv6.conf.all.forwarding=1

Additional settings - these settings can improve the network

security of the host and prevent against some network attacks

including spoofing attacks and man in the middle attacks through

redirection. Some network environments, however, require that these

settings are disabled so review and enable them as needed.

Do not accept ICMP redirects (prevent MITM attacks)

#net.ipv4.conf.all.accept_redirects = 0

#net.ipv6.conf.all.accept_redirects = 0

or

Accept ICMP redirects only for gateways listed in our default

gateway list (enabled by default)

net.ipv4.conf.all.secure_redirects = 1

Do not send ICMP redirects (we are not a router)

net.ipv4.conf.all.send_redirects = 0

Do not accept IP source route packets (we are not a router)

#net.ipv4.conf.all.accept_source_route = 0

#net.ipv6.conf.all.accept_source_route = 0

Log Martian Packets

#net.ipv4.conf.all.log_martians = 1

70

Auditd.conf – Configure System for Logging

This file controls the configuration of the audit daemon

log_file = /var/log/audit/audit.log

log_format = RAW

log_group = root

priority_boost = 4

flush = INCREMENTAL

freq = 20

num_logs = 5

disp_qos = lossy

dispatcher = /sbin/audispd

name_format = NONE

##name = mydomain

max_log_file = 6

max_log_file_action = keep_logs

space_left = 75

space_left_action = email

action_mail_acct = root

admin_space_left = 50

admin_space_left_action = HALT

disk_full_action = SUSPEND

disk_error_action = SUSPEND

##tcp_listen_port =

tcp_listen_queue = 5

tcp_max_per_addr = 1

##tcp_client_ports = 1024-65535

tcp_client_max_idle = 0

enable_krb5 = no

krb5_principal = auditd

##krb5_key_file = /etc/audit/audit.key

71

Audit .rules – Set Rules for Audit Log Files

This file contains the auditctl rules that are loaded

whenever the audit daemon is started via the initscripts.

The rules are simply the parameters that would be passed

to auditctl.

First rule - delete all

-D

Increase the buffers to survive stress events.

Make this bigger for busy systems

-b 320

-a always,exit -F arch=b64 -S adjtimex -S settimeofday -k time-change

-a always,exit -F arch=b32 -S adjtimex -S settimeofday -S stime -k time-

change

-a always,exit -F arch=b64 -S clock_settime -k time-change

-a always,exit -F arch=b32 -S clock_settime -k time-change

-w /etc/localtime -p wa -k time-change

-w /etc/group -p wa -k identity

-w /etc/passwd -p wa -k identity

-w /etc/gshadow -p wa -k identity

-w /etc/shadow -p wa -k identity

-w /etc/security/opasswd -p wa -k identity

-a exit,always -F arch=b64 -S sethostname -S setdomainname -k system-locale

-a exit,always -F arch=b32 -S sethostname -S setdomainname -k system-locale

-w /etc/issue -p wa -k system-locale

-w /etc/issue.net -p wa -k system-locale

-w /etc/hosts -p wa -k system-locale

-w /etc/network -p wa -k system-locale

-w /etc/selinux/ -p wa -k MAC-policy

-w /var/log/faillog -p wa -k logins

-w /var/log/lastlog -p wa -k logins

-w /var/log/tallylog -p wa -k logins

-w /var/run/utmp -p wa -k session

-w /var/log/wtmp -p wa -k session

-w /var/log/btmp -p wa -k session

-a always,exit -F arch=b64 -S chmod -S fchmod -S fchmodat -F auid>=500 \

-F auid!=4294967295 -k perm_mod

-a always,exit -F arch=b32 -S chmod -S fchmod -S fchmodat -F auid>=500 \

-F auid!=4294967295 -k perm_mod

-a always,exit -F arch=b64 -S chown -S fchown -S fchownat -S lchown -F

auid>=500 \

-F auid!=4294967295 -k perm_mod

-a always,exit -F arch=b32 -S chown -S fchown -S fchownat -S lchown -F

auid>=50$

-F auid!=4294967295 -k perm_mod

-a always,exit -F arch=b64 -S setxattr -S lsetxattr -S fsetxattr -S

removexattr -S \ lremovexattr -S fremovexattr -F auid>=500 -F

auid!=4294967295 -k perm_mod

-a always,exit -F arch=b32 -S setxattr -S lsetxattr -S fsetxattr -S

removexattr$

-a always,exit -F arch=b64 -S creat -S open -S openat -S truncate -S

ftruncate \

-F exit=EACCES -F auid>=500 -F auid!=4294967295 -k acccess

-a always,exit -F arch=b32 -S creat -S open -S openat -S truncate -S

ftruncate \

-F exit=EACCES -F auid>=500 -F auid!=4294967295 -k acccess

-a always,exit -F arch=b64 -S creat -S open -S openat -S truncate -S

ftruncate \

-F exit=EPERM -F auid>=500 -F auid!=4294967295 -k acccess

-a always,exit -F arch=b32 -S creat -S open -S openat -S truncate -S

ftruncate \

72

-F exit=EPERM -F auid>=500 -F auid!=4294967295 -k acccess

-a always,exit -F arch=b64 -S mount -F auid>=500 -F auid!=4294967295 -k

mounts

-a always,exit -F arch=b32 -S mount -F auid>=500 -F auid!=4294967295 -k

mounts

-a always,exit -F arch=b64 -S unlink -S unlinkat -S rename -S renameat -F

auid>=500 \

-F auid!=4294967295 -k delete

-a always,exit -F arch=b32 -S unlink -S unlinkat -S rename -S renameat -F

auid>$

-F auid!=4294967295 -k delete

-w sudoers -p wa -k scope

-w /var/log/sudo.log -p wa -k actions

-w /sbin/insmod -p x -k modules

-w /sbin/rmmod -p x -k modules

-w /sbin/modprobe -p x -k modules

-a always,exit -F arch=b64 -S init_module -S delete_module -k modules

-e 2

73

Password Implementation

Login.defs - Logging Incorrect Attempts and Setting Password LifeCycle

/etc/login.defs - Configuration control definitions for the login

package.

Three items must be defined: MAIL_DIR, ENV_SUPATH, and ENV_PATH.

Modified for Linux. --marekm

REQUIRED for useradd/userdel/usermod

Directory where mailboxes reside, _or_ name of file, relative to the

home directory. If you _do_ define MAIL_DIR and MAIL_FILE,

MAIL_DIR takes precedence.

Essentially:

- MAIL_DIR defines the location of users mail spool files

(for mbox use) by appending the username to MAIL_DIR as defined

below.

- MAIL_FILE defines the location of the users mail spool files as the

fully-qualified filename obtained by prepending the user home

directory before $MAIL_FILE

MAIL_DIR /var/mail

Enable logging and display of /var/log/faillog login failure info.

This option conflicts with the pam_tally PAM module.

FAILLOG_ENAB yes

Enable display of unknown usernames when login failures are recorded.

WARNING: Unknown usernames may become world readable.

See #290803 and #298773 for details about how this could become a

security concern

LOG_UNKFAIL_ENAB no

Enable logging of successful logins

LOG_OK_LOGINS no

SYSLOG_SG_ENAB does the same for newgrp and sg.

SYSLOG_SU_ENAB yes

SYSLOG_SG_ENAB yes

If defined, login failures will be logged here in a utmp format

last, when invoked as lastb, will read /var/log/btmp, so...

FTMP_FILE /var/log/btmp

If defined, the command name to display when running "su -". For

example, if this is defined as "su" then a "ps" will display the

command is "-su". If not defined, then "ps" would display the

name of the shell actually being run, e.g. something like "-sh".

SU_NAME su

If defined, file which inhibits all the usual chatter during the login

sequence. If a full pathname, then hushed mode will be enabled if the

user's name or shell are found in the file. If not a full pathname, then

hushed mode will be enabled if the file exists in the user's home

directory.

HUSHLOGIN_FILE .hushlogin

REQUIRED The default PATH settings, for superuser and normal users.

(they are minimal, add the rest in the shell startup files)

ENV_SUPATH

 PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

74

ENV_PATH PATH=/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games

Login configuration initializations:

ERASECHAR Terminal ERASE character ('\010' = backspace).

KILLCHAR Terminal KILL character ('\025' = CTRL/U).

UMASK Default "umask" value.

ERASECHAR 0177

KILLCHAR 025

UMASK 077

Password aging controls:

PASS_MAX_DAYS Maximum number of days a password may be used.

PASS_MIN_DAYS Minimum number of days allowed between password

changes.

PASS_WARN_AGE Number of days warning given before a password

expires.

PASS_MAX_DAYS 60

PASS_MIN_DAYS 7

PASS_WARN_AGE 7

Min/max values for automatic uid selection in useradd

UID_MIN 1000

UID_MAX 60000

Min/max values for automatic gid selection in groupadd

GID_MIN 1000

GID_MAX 60000

Max number of login retries if password is bad. This will most likely be

overriden by PAM, since the default pam_unix module has it's own built

in of 3 retries. However, this is a safe fallback in case you are using

an authentication module that does not enforce PAM_MAXTRIES.

LOGIN_RETRIES 5

Max time in seconds for login

LOGIN_TIMEOUT 60

Which fields may be changed by regular users using chfn - use

any combination of letters "frwh" (full name, room number, work

phone, home phone). If not defined, no changes are allowed.

For backward compatibility, "yes" = "rwh" and "no" = "frwh".

CHFN_RESTRICT rwh

Should login be allowed if we can't cd to the home directory?

Default in no.

DEFAULT_HOME yes

Enable setting of the umask group bits to be the same as owner bits

(examples: 022 -> 002, 077 -> 007) for non-root users, if the uid is

the same as gid, and username is the same as the primary group name.

If set to yes, userdel will remove the userÂ´s group if it contains no

more members, and useradd will create by default a group with the name

of the user.

USERGROUPS_ENAB yes

Note: It is recommended to use a value consistent with

the PAM modules configuration.

ENCRYPT_METHOD SHA512

75

Pam.d - Set Passwords to Required

/etc/pam.d/common-password - password-related modules common to all

services

This file is included from other service-specific PAM config files,

and should contain a list of modules that define the services to be

used to change user passwords. The default is pam_unix.

As of pam 1.0.1-6, this file is managed by pam-auth-update by default.

To take advantage of this, it is recommended that you configure any

local modules either before or after the default block, and use

pam-auth-update to manage selection of other modules. See

pam-auth-update(8) for details.

here are the per-package modules (the "Primary" block)

Password [success=1 default=ignore] pam_unix.so remember=5 obscure sha512

here's the fallback if no module succeeds

Password requisite pam_deny.so

prime the stack with a positive return value if there isn't one already;

this avoids us returning an error just because nothing sets a success

code since the modules above will each just jump around

Password required pam_permit.so

and here are more per-package modules (the "Additional" block)

Password optional pam_gnome_keyring.so

password required pam_cracklib.so retry=3 minlen=14 dcredit=-1 ucredit=-1

ocredit=-1 lcredit=-1

password sufficient pam_unix.so remember=5

end of pam-auth-update config

76

Shadow Configuration Sets Password Attempts Limits

The PAM configuration file for the Shadow `login' service

Enforce a minimal delay in case of failure (in microseconds).

(Replaces the `FAIL_DELAY' setting from login.defs)

Note that other modules may require another minimal delay. (for example,

to disable any delay, you should add the nodelay option to pam_unix)

auth optional pam_faildelay.so delay=3000000

Outputs an issue file prior to each login prompt

auth required pam_tally2.so onerr=fail audit silent deny=5 unlock_time=900

Disallows root logins except on tty's listed in /etc/securetty

root will not be prompted for a password on insecure lines.

if an invalid username is entered, a password is prompted (but login

will eventually be rejected)

You can change it to a "requisite" module if you think root may mis-type

her login and should not be prompted for a password in that case. But

this will leave the system as vulnerable to user enumeration attacks.

You can change it to a "required" module if you think it permits to

guess valid user names of your system (invalid user names are considered

as possibly being root on insecure lines), but root passwords may be

communicated over insecure lines.

auth [success=ok new_authtok_reqd=ok ignore=ignore user_unknown=bad

default=die] pam_securetty.so

Disallows other than root logins when /etc/nologin exists

(Replaces the `NOLOGINS_FILE' option from login.defs)

Auth requisite pam_nologin.so

SELinux needs to be the first session rule. This ensures that any

lingering context has been cleared. Without out this it is possible

that a module could execute code in the wrong domain.

When the module is present, "required" would be sufficient

session [success=ok ignore=ignore module_unknown=ignore default=bad]

pam_selinux.so close

This module parses environment configuration file(s)

and also allows you to use an extended config

file /etc/security/pam_env.conf.

parsing /etc/environment needs "readenv=1"

Session required pam_env.so readenv=1

locale variables are also kept into /etc/default/locale in etch

reading this file *in addition to /etc/environment* does not hurt

Session required pam_env.so readenv=1 envfile=/etc/default/locale

Standard Un*x authentication.

@include common-auth

This allows certain extra groups to be granted to a user

based on things like time of day, tty, service, and user.

auth optional pam_group.so

Uncomment and edit /etc/security/time.conf if you need to set

time restrainst on logins.

account requisite pam_time.so

Sets up user limits according to /etc/security/limits.conf

(Replaces the use of /etc/limits in old login)

77

Session required pam_limits.so

auth required pam_tally2.so onerr=fail audit silent deny=5 unlock_time=900

Prints the last login info upon succesful login

(Replaces the `LASTLOG_ENAB' option from login.defs)

session optional pam_lastlog.so

Prints the message of the day upon succesful login.

(Replaces the `MOTD_FILE' option in login.defs)

This includes a dynamically generated part from /run/motd.dynamic

and a static (admin-editable) part from /etc/motd.

Session optional pam_motd.so motd=/run/motd.dynamic noupdate

Session optional pam_motd.so

Prints the status of the user's mailbox upon succesful login

This also defines the MAIL environment variable

However, userdel also needs MAIL_DIR and MAIL_FILE variables

in /etc/login.defs to make sure that removing a user

also removes the user's mail spool file.

Session optional pam_mail.so standard

Standard Un*x account and session

@include common-account

@include common-session

@include common-password

SELinux needs to intervene at login time to ensure that the process

starts in the proper default security context. Only sessions which are

intended to run in the user's context should be run after this.

session [success=ok ignore=ignore module_unknown=ignore default=bad]

pam_selinux.so open

78

Appendix D - Apache CIS Audit Configuration

000-default.conf - Local Host Sites Configuration File

<VirtualHost *:80>

The ServerName directive sets the request scheme, hostname and port

that the server uses to identify itself.

This is used when creating redirection URLs. In the context of

virtual hosts, the ServerName specifies what hostname must appear

 # in the request's Host: header to match this virtual host.

 # For the default virtual host (this file) this value is not

 # decisive as it is used as a last resort host regardless.

 # However, you must set it for any further virtual host explicitly.

 #ServerName www.example.com

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/

 ServerName localhost

 Redirect / https://localhost/

 <Directory /var/www/>

 Order allow,deny

 Allow from all

 AllowOverride None

 Options None

 TraceEnable Off

 <LimitExcept GET POST OPTIONS>

 deny from all

 </LimitExcept>

 </Directory>

 # Available loglevels: trace8,trace1, debug, info, notice, warn,

 # error, crit, alert, emerg.

 # It is also possible to configure the loglevel for particular

 # modules, e.g.

 LogLevel notice

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 # For most configuration files from conf-available/, which are

 # enabled or disabled at a global level, it is possible to

 # include a line for only one particular virtual host.

</VirtualHost>

79

Default-ssl.conf - HTTPS Local Host Configuration File

<IfModule mod_ssl.c>

 <VirtualHost _default_:443>

 ServerAdmin webmaster@localhost

 DocumentRoot /var/www/

 LogLevel notice

 ErrorLog ${APACHE_LOG_DIR}/error.log

 CustomLog ${APACHE_LOG_DIR}/access.log combined

 # SSL Engine Switch:

 # Enable/Disable SSL for this virtual host.

 SSLEngine on

 # SSLCertificateFile directive is needed.

 SSLCertificateFile /etc/apache2/ssl/apache.pem

 # Certificate Authority (CA):

 # Set the CA certificate verification path where to find CA

 # certificates for client authentication or alternatively one

 # huge file containing all of them (file must be PEM encoded)

 #SSLCACertificatePath /etc/ssl/certs/

 #SSLCACertificateFile /etc/apache2/ssl.crt/ca-bundle.crt

 # Certificate Revocation Lists (CRL):

 # Set the CA revocation path where to find CA CRLs for client

 # authentication or alternatively one huge file containing

 # all of them (file must be PEM encoded)

 # Note: Inside SSLCARevocationPath you need hash symlinks

 # to point to the certificate files.

 # SSLCARevocationPath /etc/apache2/ssl.crl/

 # SSLCARevocationFile /etc/apache2/ssl.crl/ca-bundle.crl

 # Client Authentication (Type):

 # Client certificate verification type and depth. Types are

 # none, optional, require and optional_no_ca. Depth is a

 # number which specifies how deeply to verify the certificate

 # issuer chain before deciding the certificate is not valid.

 #SSLVerifyClient require

 #SSLVerifyDepth 10

 # SSL Engine Options:

 #SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire

 <FilesMatch "\.(cgi|shtml|phtml|php)$">

 SSLOptions +StdEnvVars

 </FilesMatch>

 <Directory /usr/lib/cgi-bin>

 SSLOptions +StdEnvVars

 </Directory>

 # SSL Protocol Adjustments:

 BrowserMatch "MSIE [2-6]" \

 nokeepalive ssl-unclean-shutdown \

 downgrade-1.0 force-response-1.0

 # MSIE 7 and newer should be able to use keepalive

 BrowserMatch "MSIE [17-9]" ssl-unclean-shutdown

 </VirtualHost>

</IfModule>

80

Appendix E – MySQL Security Protocols

My.Conf enforcing TLS certifactes to communicate with WebServer

The MySQL database server configuration file.

This will be passed to all mysql clients

Remember to edit /etc/mysql/debian.cnf when changing the socket location.

[client]

port = 3306

socket = /var/run/mysqld/mysqld.sock

Here is entries for some specific programs

The following values assume you have at least 32M ram

This was formally known as [safe_mysqld]. Both versions are currently

parsed.

[mysqld_safe]

socket = /var/run/mysqld/mysqld.sock

nice = 0

[mysqld]

* Basic Settings

user = mysql

pid-file = /var/run/mysqld/mysqld.pid

socket = /var/run/mysqld/mysqld.sock

port = 3306

basedir = /usr

datadir = /var/lib/mysql

tmpdir = /tmp

lc-messages-dir = /usr/share/mysql

skip-external-locking

Instead of skip-networking the default is now to listen only on

localhost which is more compatible and is not less secure.

bind-address = 127.0.0.1

* Fine Tuning

key_buffer = 16M

max_allowed_packet = 16M

thread_stack = 192K

thread_cache_size = 8

This replaces the startup script and checks MyISAM tables if needed

the first time they are touched

myisam-recover = BACKUP

#max_connections = 100

#table_cache = 64

#thread_concurrency = 10

* Query Cache Configuration

query_cache_limit = 1M

query_cache_size = 16M

* Logging and Replication

Both location gets rotated by the cronjob.

general_log_file = /var/log/mysql/mysql.log

general_log = 1

Error log - should be very few entries.

log_error = /var/log/mysql/error.log

81

expire_logs_days = 10

max_binlog_size = 100M

* Security Features

ssl-ciper=DHE-RSA-AES256-SHA

ssl-ca=/etc/mysql/ca-cert.pem

ssl-cert=/etc/mysql/server-cert.pem

ssl-key=/etc/mysql/server-key.pem

[mysqldump]

quick

quote-names

max_allowed_packet = 16M

[isamchk]

key_buffer = 16M

* IMPORTANT: Additional settings that can override those from this file!

The files must end with '.cnf', otherwise they'll be ignored.

!includedir /etc/mysql/conf.d/

82

Appendix E - ClearOS Configurations

IP Tables

#Default drop rule

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT ACCEPT

Flush (-F) all specific rules

iptables -F INPUT

iptables -F FORWARD

iptables -F OUTPUT

iptables -F -t nat

#Forward internal network traffic

iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

iptables -A FORWARD -i eth2 -o eth0 -j ACCEPT

#Allow and forward only established connections inbound

iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j

ACCEPT

iptables -A FORWARD -i eth0 -o eth2 -m state --state ESTABLISHED,RELATED -j

ACCEPT

iptables -A INPUT -i eth0 -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -i eth1 -s 0/0 -d 0/0 -j ACCEPT

iptables -A INPUT -i eth2 -s 0/0 -d 0/0 -j ACCEPT

iptables -A INPUT -i lo -s 0/0 -d 0/0 -j ACCEPT

iptables -A POSTROUTING -t nat -o eth0 -j MASQUERADE

#Disallow traffic from external network with spoofed internal ip

iptables -A INPUT -i eth0 -s 192.168.10.0/29-j DROP

iptables -A INPUT -i eth0 -192.168.30.0/30 -j DROP

iptables -A INPUT -i eth0 -s 192.168.20.0/27 -j DROP

iptables -A INPUT -i eth0 -s 127.0.0.0/8 -j DROP

83

Intrusion Detection System

Stop generic decode events:

config disable_decode_alerts

Stop Alerts on experimental TCP options

config disable_tcpopt_experimental_alerts

Stop Alerts on obsolete TCP options

config disable_tcpopt_obsolete_alerts

Stop Alerts on T/TCP alerts

config disable_tcpopt_ttcp_alerts

Stop Alerts on all other TCPOption type events:

config disable_tcpopt_alerts

Stop Alerts on invalid ip options

config disable_ipopt_alerts

Alert if value in length field (IP, TCP, UDP) is greater th elength of

the packet

#config enable_decode_oversized_alerts

Configure IP / TCP checksum mode

config checksum_mode: all

Configure the base detection engine. For more information, see

README.decode

Configure PCRE match limitations

config pcre_match_limit: 3500

config pcre_match_limit_recursion: 1500

Configure the detection engine See the Snort Manual, Configuring Snort -

Includes - Config

config detection: search-method ac-split search-optimize max-pattern-len 20

Configure the event queue. For more information, see README.event_queue

config event_queue: max_queue 8 log 5 order_events content_length

Configure protocol aware flushing

config paf_max: 16000

Configure dynamic loaded libraries.

path to dynamic preprocessor libraries

dynamicpreprocessor directory /usr/lib/snort_dynamicpreprocessor/

Target-based IP defragmentation. For more inforation, see README.frag3

84

preprocessor frag3_global: max_frags 65536

preprocessor frag3_engine: policy windows detect_anomalies overlap_limit 10

min_fragment_length 100 timeout 180

Target-Based stateful inspection/stream reassembly. For more inforation,

see README.stream5

preprocessor stream5_global: track_tcp yes, \

 track_udp yes, \

 track_icmp no, \

 max_tcp 262144, \

 max_udp 131072, \

 max_active_responses 2, \

 min_response_seconds 5

path to base preprocessor engine

dynamicengine /usr/lib/snort_dynamicengine/libsf_engine.so

performance statistics. For more information, see the Snort Manual,

Configuring Snort - Preprocessors - Performance Monitor

preprocessor perfmonitor: time 300 file /var/snort/snort.stats pktcnt

10000

HTTP normalization and anomaly detection. For more information, see

README.http_inspect

preprocessor http_inspect: global iis_unicode_map unicode.map 1252

compress_depth 65535 decompress_depth 65535

preprocessor http_inspect_server: server default \

http_methods { GET POST PUT SEARCH MKCOL COPY MOVE LOCK UNLOCK NOTIFY POLL

BCOPY BDELETE BMOVE LINK UNLINK OPTIONS HEAD DELETE TRACE TRACK CONNECT

SOURCE SUBSCRIBE UNSUBSCRIBE PROPFIND PROPPATCH BPROPFIND BPROPPATCH

RPC_CONNECT PROXY_SUCCESS BITS_POST CCM_POST SMS_POST RPC_IN_DATA

RPC_OUT_DATA RPC_ECHO_DATA } \

 chunk_length 500000 \

 server_flow_depth 0 \

 client_flow_depth 0 \

 post_depth 65495 \

 oversize_dir_length 500 \

 max_header_length 750 \

 max_headers 100 \

 max_spaces 200 \

 small_chunk_length { 10 5 } \

85

ports { 36 80 81 82 83 84 85 86 87 88 89 90 311 383 555 591 593 631 801 808

818 901 972 1158 1220 1414 1533 1741 1830 1942 2231 2301 2381 2809 2980

3029 3037 3057 3128 3443 3702 4000 4343 4848 5000 5117 5250 5600 6080 6173

6988 7000 7001 7071 7144 7145 7510 7770 7777 7778 7779 8000 8008 8014 8028

8080 8081 8082 8085 8088 8090 8118 8123 8180 8181 8222 8243 8280 8300 8333

8344 8500 8509 8800 8888 8899 8983 9000 9060 9080 9090 9091 9111 9290 9443

9999 10000 11371 12601 13014 15489 29991 33300 34412 34443 34444 41080

44449 50000 50002 51423 53331 55252 55555 56712 } \

 non_rfc_char { 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 } \

 enable_cookie \

 extended_response_inspection \

 inspect_gzip \

 normalize_utf \

 unlimited_decompress \

 normalize_javascript \

 apache_whitespace no \

 ascii no \

 bare_byte no \

 directory no \

 double_decode no \

Back Orifice detection.

preprocessor bo

Portscan detection. For more information, see README.sfportscan

preprocessor sfportscan: proto { all } memcap { 10000000 } sense_level {

low }

ARP spoof detection. For more information, see the Snort Manual -

Configuring Snort - Preprocessors - ARP Spoof Preprocessor

preprocessor arpspoof

preprocessor arpspoof_detect_host: 192.168.40.1 f0:0f:00:f0:0f:00

#Configure output plugins

syslog

output alert_syslog: LOG_AUTHPRIV LOG_ALERT

#Customize Rules

include $RULE_PATH/gpl/attack_response.rules

include $RULE_PATH/gpl/chat.rules

include $RULE_PATH/gpl/dns.rules

include $RULE_PATH/gpl/exploit.rules

86

include $RULE_PATH/gpl/ftp.rules

include $RULE_PATH/gpl/imap.rules

include $RULE_PATH/gpl/misc.rules

include $RULE_PATH/gpl/p2p.rules

include $RULE_PATH/gpl/pop3.rules

include $RULE_PATH/gpl/rpc.rules

include $RULE_PATH/gpl/scan.rules

include $RULE_PATH/gpl/shellcode.rules

include $RULE_PATH/gpl/smtp.rules

include $RULE_PATH/gpl/snmp.rules

include $RULE_PATH/gpl/sql.rules

include $RULE_PATH/gpl/tftp.rules

include $RULE_PATH/gpl/web_client.rules

include $RULE_PATH/gpl/web_server.rules

include $RULE_PATH/gpl/web_specific_apps.rules

87

Appendix F – SmoothWall Iptables

#Default drop rule

iptables -P INPUT DROP

iptables -P FORWARD DROP

iptables -P OUTPUT ACCEPT

Flush (-F) all specific rules

iptables -F INPUT

iptables -F FORWARD

iptables -F OUTPUT

iptables -F -t nat

#Allow and forward only established connections inbound

iptables -A FORWARD -i eth0 -o eth1 -m state --state ESTABLISHED,RELATED -j

ACCEPT

iptables -A INPUT -i eth0 -m state --state ESTABLISHED,RELATED -j ACCEPT

iptables -A INPUT -i eth1 -s 0/0 -d 0/0 -j ACCEPT

iptables -A INPUT -i lo -s 0/0 -d 0/0 -j ACCEPT

iptables -A POSTROUTING -t nat -o eth0 -j MASQUERADE

88

Appendix G - Metasploit Scans

Ubuntu Server Metasploit Results

Exploit Result

exploit hagent_untrusted_hsdata [-] No reply from the target, this is not a vulnerable system

exploit cuteflow_fileupload [*] 192.168.20.5:80 - The target appears to be vulnerable.

 Checking unix/webapp/arkeia_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/awstats_configdir_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/awstatstotals_multisort [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/barracuda_img_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/base_qry_common [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/basilic_diff_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/carberp_backdoor_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/coppermine_piceditor [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/datalife_preview_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/egallery_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/flashchat_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/get_simple_cms_upload_exec [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD.

 Checking unix/webapp/google_proxystylesheet_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/graphite_pickle_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/hastymail_exec [-] Check failed: The following options failed to validate:
USER, PASS.

 Checking unix/webapp/havalite_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/horde_unserialize_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/instantcms_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking
unix/webapp/invision_pboard_unserialize_exec

[*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/libretto_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/mambo_cache_lite [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/mitel_awc_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/nagios_graph_explorer [-] Check failed: The following options failed to validate:
PASSWORD.

 Checking unix/webapp/narcissus_backend_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking
unix/webapp/open_flash_chart_upload_exec

[*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/openemr_sqli_privesc_upload [-] Check failed: The following options failed to validate:
USER, PASS.

 Checking unix/webapp/openemr_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/opensis_modname_exec [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD.

 Checking unix/webapp/openx_banner_edit [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD.

 Checking unix/webapp/oscommerce_filemanager [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/php_charts_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/php_vbulletin_template [*] 192.168.20.5:80 - The target is not exploitable.

89

 Checking unix/webapp/php_wordpress_infusionsoft [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/php_wordpress_lastpost [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/php_xmlrpc_eval [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/phpmyadmin_config [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/projectpier_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/projectsend_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/redmine_scm_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking
unix/webapp/simple_e_document_upload_exec

[*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/skybluecanvas_exec [*] 192.168.20.5:80 - The target appears to be vulnerable.

 Checking unix/webapp/sphpblog_file_upload [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/squash_yaml_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/sugarcrm_unserialize_exec [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD.

 Checking unix/webapp/tuleap_unserialize_exec [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD.

 Checking unix/webapp/vbulletin_vote_sqli_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking
unix/webapp/vicidial_manager_send_cmd_exec

[*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/webtester_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/wp_admin_shell_upload [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD.

 Checking
unix/webapp/wp_advanced_custom_fields_exec

[*] 192.168.20.5:80 - The target is not exploitable.

 Checking
unix/webapp/wp_downloadmanager_upload

[*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/wp_platform_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/wp_wptouch_file_upload [-] Check failed: The following options failed to validate:
PASSWORD, USER.

 Checking unix/webapp/xoda_file_upload [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/webapp/zeroshell_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/activecollab_chat [-] Check failed: The following options failed to validate:
USER, PASS.

 Checking multi/http/ajaxplorer_checkinstall_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/apprain_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/auxilium_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/centreon_sqli_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/cisco_dcnm_upload [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/coldfusion_rds [*] 192.168.20.5:80 - The target is not exploitable.

 Checking unix/http/contentkeeperweb_mimencode [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/dolibarr_cmd_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/dreambox_openpli_shell [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/esva_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/extplorer_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/fritzbox_echo_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/glossword_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/horde_href_backdoor [*] 192.168.20.5:80 - The target is not exploitable.

90

 Checking multi/http/kordil_edms_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/linksys_wrt110_cmd_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/log1cms_ajax_create_folder [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/mobilecartly_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/mutiny_subnetmask_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/openx_backdoor_php [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/opmanager_socialit_file_upload [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/oracle_reports_rce [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/pandora_fms_sqli [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/pandora_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/php_cgi_arg_injection [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/phpldapadmin_query_engine [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/phpmoadmin_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/phpscheduleit_start_date [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/phptax_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/polarcms_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/qdpm_upload_exec [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD.

 Checking linux/http/railo_cfml_rfi [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/sflog_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/sit_file_upload [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD.

 Checking linux/http/sophos_wpa_iface_exec [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD.

 Checking multi/http/stunshell_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/sun_jsws_dav_options [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/symantec_web_gateway_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking
linux/http/symantec_web_gateway_file_upload

[*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/symantec_web_gateway_lfi [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/testlink_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/traq_plugin_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/v0pcr3w_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/vbseo_proc_deutf [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/vcms_upload [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/wanem_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking linux/http/webid_converter [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/webpagetest_upload_exec [*] 192.168.20.5:80 - The target is not exploitable.

 Checking multi/http/wikka_spam_exec [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD, PAGE.

 Checking multi/http/x7chat2_php_exec [-] Check failed: The following options failed to validate:
USERNAME, PASSWORD.

 Checking multi/http/zabbix_script_exec [*] 192.168.20.5:80 - The target is not exploitable.

91

ClearOS Metasploit Results

Exploit Result

f5_bigip_known_privkey [-] 192.168.30.17:22 SSH - Failed authentication

loadbalancerorg_enterprise_known_privkey [-] 192.168.30.17:22 SSH - Failed authentication

array_vxag_vapv_privkey_privesc [-] Exploit aborted due to failure: no-access: 192.168.30.17:22 SSH -
Failed authentication

array_vxag_vapv_privkey_privesc [-] Exploit aborted due to failure: no-access: 192.168.30.17:22 SSH -
Failed authentication

quantum_dxi_known_privkey [-] 192.168.30.17:22 SSH - Failed authentication

quantum_vmpro_backdoor [-] 192.168.30.17:22 SSH - Failed authentication

msf exploit(symantec_smg_ssh) > exploit -j [-] 192.168.30.17:22 SSH - Failed authentication

tectia_passwd_changereq [*] 192.168.30.17:22 - Auths that can continue: 51

ssh_login [*] Auxiliary module execution completed

SmoothWall Metasploit Results

Exploit Result

 Checking multi/http/activecollab_chat [-] Check failed: The following options failed to
validate: USER, PASS.

 Checking multi/http/ajaxplorer_checkinstall_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/apprain_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/auxilium_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/cisco_dcnm_upload [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/coldfusion_rds [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/http/contentkeeperweb_mimencode [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/cuteflow_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/dexter_casinoloader_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/extplorer_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/familycms_less_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/freenas_exec_raw [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/gitlab_shell_exec [-] Exploit aborted due to failure: no-access:
192.168.20.9:80 - Login failed

 Checking multi/http/gitorious_graph [*] The server returned: 301 Moved Permanently

 Checking multi/http/glossword_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/ispconfig_php_exec [-] Exploit aborted due to failure: Error getting initial
page.: No reason given

 Checking multi/http/kordil_edms_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/http/lifesize_room [-] Exploit aborted due to failure: not-found: Could not
obtain a Session ID

 Checking multi/http/log1cms_ajax_create_folder [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/mobilecartly_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/mutiny_subnetmask_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/nas4free_php_exec [-] Exploit aborted due to failure: Login failed

 Checking multi/http/op5_license [*] 192.168.20.9:443 - The target is not exploitable.

92

 Checking multi/http/openx_backdoor_php [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/opmanager_socialit_file_upload [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/oracle_reports_rce [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/pandora_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/php_cgi_arg_injection [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/php_volunteer_upload_exec [-] 192.168.20.9:80 - Login failed with
"admin:volunteer"

 Checking multi/http/phpmoadmin_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/phpscheduleit_start_date [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/phptax_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/pmwiki_pagelist [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/polarcms_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/processmaker_exec [-] 192.168.20.9:80 - Authenticating as user 'admin'
failed

 Checking multi/http/qdpm_upload_exec [-] Check failed: The following options failed to
validate: USERNAME, PASSWORD.

 Checking multi/http/rails_secret_deserialization [-] Check failed: The following options failed to
validate: SECRET.

 Checking multi/http/sflog_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/sit_file_upload [-] Check failed: The following options failed to
validate: USERNAME, PASSWORD.

 Checking multi/http/stunshell_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/sun_jsws_dav_options [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/testlink_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/traq_plugin_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/http/twiki_debug_plugins [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/v0pcr3w_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/vbseo_proc_deutf [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/http/vmturbo_vmtadmin_exec_noauth [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/vtiger_php_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/webpagetest_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking multi/http/wikka_spam_exec [-] Check failed: The following options failed to
validate: USERNAME, PASSWORD, PAGE.

 Checking multi/http/x7chat2_php_exec [-] Check failed: The following options failed to
validate: USERNAME, PASSWORD.

 Checking unix/webapp/actualanalyzer_ant_cookie_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/awstats_migrate_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/barracuda_img_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/basilic_diff_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/carberp_backdoor_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/citrix_access_gateway_exec [*] 192.168.20.9:443 - The target is not exploitable.

 Checking unix/webapp/coppermine_piceditor [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/datalife_preview_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/dogfood_spell_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/egallery_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/freepbx_config_exec [*] 192.168.20.9:80 - The target is not exploitable.

93

 Checking unix/webapp/get_simple_cms_upload_exec [-] Check failed: The following options failed to
validate: USERNAME, PASSWORD.

 Checking unix/webapp/google_proxystylesheet_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/graphite_pickle_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/hastymail_exec [-] Check failed: The following options failed to
validate: USER, PASS.

 Checking unix/webapp/havalite_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/horde_unserialize_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/instantcms_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/invision_pboard_unserialize_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/libretto_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/mybb_backdoor [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/narcissus_backend_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/open_flash_chart_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/openemr_sqli_privesc_upload [-] Check failed: The following options failed to
validate: USER, PASS.

 Checking unix/webapp/opensis_modname_exec [-] Check failed: The following options failed to
validate: USERNAME, PASSWORD.

 Checking unix/webapp/openx_banner_edit [-] Check failed: The following options failed to
validate: USERNAME, PASSWORD.

 Checking unix/webapp/php_charts_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/php_vbulletin_template [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/php_xmlrpc_eval [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/phpbb_highlight [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/projectpier_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/redmine_scm_exec [*] The server returned: 301 Moved Permanently

 Checking unix/webapp/seportal_sqli_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/simple_e_document_upload_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/skybluecanvas_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/sphpblog_file_upload [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/squash_yaml_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/sugarcrm_unserialize_exec [-] Check failed: The following options failed to
validate: USERNAME, PASSWORD.

 Checking unix/webapp/tikiwiki_graph_formula_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/tikiwiki_jhot_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/tuleap_unserialize_exec [-] Check failed: The following options failed to
validate: USERNAME, PASSWORD.

 Checking unix/webapp/vbulletin_vote_sqli_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/vicidial_manager_send_cmd_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/webtester_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/wp_admin_shell_upload [-] Check failed: The following options failed to
validate: USERNAME, PASSWORD.

 Checking unix/webapp/wp_platform_exec [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/xoda_file_upload [*] 192.168.20.9:80 - The target is not exploitable.

 Checking unix/webapp/zeroshell_exec [*] 192.168.20.9:80 - The target is not exploitable.

94

Appendix H – Nikto Vulnerability Scan

- Nikto v2.1.4

+ Target IP: 127.0.0.1
+ Target Hostname: localhost
+ Target Port: 80
+ Start Time: 2015-04-26 21:11:04

+ Server: Apache/2.4.7 (Ubuntu)
+ Root page / redirects to: https://localhost/
+ No CGI Directories found (use '-C all' to force check all possible dirs)
+ OSVDB-27071: /phpimageview.php?pic=javascript:alert(8754): PHP Image View 1.0 is vulnerable to Cross
Site Scripting (XSS). http://www.cert.org/advisories/CA-2000-02.html.
+ OSVDB-3931: /myphpnuke/links.php?op=search&query=[script]alert('Vulnerable);[/script]?query=:
myphpnuke is vulnerable to Cross Site Scripting (XSS). http://www.cert.org/advisories/CA-2000-02.html.
+ OSVDB-3931:
/myphpnuke/links.php?op=MostPopular&ratenum=[script]alert(document.cookie);[/script]&ratetype=percent
: myphpnuke is vulnerable to Cross Site Scripting (XSS). http://www.cert.org/advisories/CA-2000-02.html.
+
/modules.php?op=modload&name=FAQ&file=index&myfaq=yes&id_cat=1&categories=%3Cimg%20src=javasc
ript:alert(9456);%3E&parent_id=0: Post Nuke 0.7.2.3-Phoenix is vulnerable to Cross Site Scripting (XSS).
http://www.cert.org/advisories/CA-2000-02.html.
+
/modules.php?letter=%22%3E%3Cimg%20src=javascript:alert(document.cookie);%3E&op=modload&name=M
embers_List&file=index: Post Nuke 0.7.2.3-Phoenix is vulnerable to Cross Site Scripting (XSS).
http://www.cert.org/advisories/CA-2000-02.html.
+ OSVDB-4598: /members.asp?SF=%22;}alert('Vulnerable');function%20x(){v%20=%22: Web Wiz Forums ver.
7.01 and below is vulnerable to Cross Site Scripting (XSS). http://www.cert.org/advisories/CA-2000-02.html.
+ OSVDB-2946: /forum_members.asp?find=%22;}alert(9823);function%20x(){v%20=%22: Web Wiz Forums ver.
7.01 and below is vulnerable to Cross Site Scripting (XSS). http://www.cert.org/advisories/CA-2000-02.html.
+ 6448 items checked: 0 error(s) and 7 item(s) reported on remote host
+ End Time: 2015-04-26 21:11:22 (18 seconds)

+ 1 host(s) tested

https://localhost/
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html
http://www.cert.org/advisories/CA-2000-02.html

95

Appendix I – Table of Requirements

Build and Maintain a Secure Network and Systems

Install and maintain a firewall configuration to protect cardholder data

Implementation and configuration ClearOS and Smoothwall Router/Firewalls at integral network

points.

Network Diagram from planning section.

Firewall configurations ensure no direct access to CDE from outside networks and ensures all traffic

to CDE is only allowed on established connections.

Do not use vendor-supplied defaults for system passwords and other security parameters

Removal of default usernames and passwords on OS installation.

Removal of default usernames and passwords for databases and wireless connections.

Implementation of CIS hardening standards.

Network protocols are limited to only those required for functionality.

Protect Cardholder Data

Protect stored cardholder data

Salting and Hashing of sensitive information stored in database.

Three digit verification number not stored.

Implementation of strong cryptographic keys (RSA). Keys are also given limited lifespan and

rendered useless when expired.

Encrypt transmission of cardholder data across open, public networks

Implementing TLS to secure communications.

Wireless connections secured via WPA2 wireless connections, encrypted with AES.

Maintain a Vulnerability Management Program

Protect all systems against malware and regularly update anti-virus software or programs

Installation of anti-virus and anti-malware software on network.

Develop and maintain secure systems and application

Static code analysis conducted to evaluate weaknesses in the code base.

Code base strengthened by implementing necessary secure coding measures as required by the scan

results.

Implement Strong Access Control Measures

Restrict access to cardholder data by business need to know

Cardholder can only be accessed by two administrative users.

96

These users both have different functionality and do not have the same access levels, so only one

user can complete one task either server maintenance or data removal as required.

Base access control rules implemented to deny all.

Identify and authenticate access to system components

User groups implemented with access levels as required for job functionality

Users automatically assigned a unique ID.

Accounts disabled after 3 month period if not accessed.

Accounts locked out after 5 unsuccessful log in attempts.

Password requirements set to include strength and lifecycle limitations.

Restrict physical access to cardholder data

Could not be implemented due to the nature of the testing environment.

Regularly Monitor and Test Networks

Track and monitor all access to network resources and cardholder data

Logging implemented on all network devices to track access.

Regularly test security systems and processes

Completion of:

Network Communications Testing

Vulnerability Analysis

Wireless Testing

Penetration Testing

Maintain an Information Security Policy

Maintain a policy that addresses information security for all personnel

Authentication required for security personnel.

All devices on the network listed in network diagram.

Wireless access points also listed in network diagram.

