
ISSC 2013, LYIT Letterkenny, June 20–21

Towards Shifted NMF for Improved Monaural
Separation

Rajesh Jaiswal†, Derry Fitzgerald†, Eugene Coyle† and Scott Rickard∗

†Department of Electrical Engineering ∗Department of Electronic Engineering
Audio Research Group University College Dublin

Dublin Institute of Technology

E-mail: rajesh.enc@gmail.com derry.fitzgerald@dit.ie

Abstract — The ability of Non-negative Matrix Factorisation (NMF) to decompose
magnitude spectrogram into meaningful entities has found use in many audio applica-
tions. NMF can be used to factorise audio spectrogram of a music signal into parts
based frequency basis functions which typically corresponds to notes and chords in mu-
sic. However, these pitched basis functions needed to be clustered to their respective
sources. Many clustering algorithms have been proposed to group these basis functions.
Recently, Shifted Non-negative Matrix Factorisation (SNMF) based methods have been
used to reconstruct individual sound sources. Clustering of basis functions using SNMF
uses a Constant Q Transform (CQT) of the frequency basis functions. Here, we argue
that incorporating the CQT into the SNMF model can be used to better the separa-
tion quality of individual sources. An algorithm is presented to estimate sound sources
and is an improvement to the existing techniques. Results are compared to show the
improvement.
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I Introduction

1The process by which the individual music sources
are estimated from a single channel music mixture
is known as Monaural Sound Source Separation
(SSS). A monaural mixture has a complex overlap-
ping of audio signals from different musical instru-
ments in frequency and time. Also, the absence of
stereo space in the monaural mixture makes SSS
a difficult problem. However, the availability of a
method to separate sound sources would help in
analysis, manipulation and re-localisation of au-
dio data which would benefit many audio applica-
tions such as music transcription, pitch modifica-
tion, remixing monophonic sound to 5.1 surround
system.

Recently, Non-negative Factorisation (NMF) [1]
based method have been used in separating sound
sources with considerable success [2, 3]. NMF can

1This work is funded by ABBEST PhD Research Schol-
arship at Dublin Institute of Technology, Dublin, Ireland.

approximately decompose the time-frequency rep-
resentations such as the audio magnitude spectro-
gramX into parts based NMF basis functions such
that the frequency basis functions that typically
represent the spectral envelope of individual notes
or chords present in the mixture. The reduced
rank approximation of the factorised spectrogram
gives factors A and B.

|X| = X ≈ X̂ = AB (1)

where the matrix A is of size n × r and the
matrix B is of size r × m, with r < n, m. X
represents the complex valued spectrogram of the
input signal. In equation 1 the input magnitude
spectrogram X is approximated by X̂. Here, X̂
is a linear combination of the columns of matrix
A, and the corresponding rows of matrix B. Ma-
trix A contains frequency basis functions and ma-
trix B stores the corresponding amplitude basis
functions which gives temporal information that



Figure 1: Block Diagram of the System model

describes when the frequency basis functions are
active within the mixture.
The factorisation can be achieved through vari-

ous techniques. However, a widely used cost func-
tion, the generalised Kullback-Leibler (kl) diver-
gence [1] has been used for this paper. Also, all
the elements in A and B are constraint to be non-
negative.

Dkl(X||X̂) =
∑
i,j

(Xij log
Xij

X̂ij

−Xij + X̂ij) (2)

In general, there are multiple notes per instru-
ment present in the real world audio signals. A
drawback of using NMF is that the number of fre-
quency basis functions obtained are usually greater
in number than the required number of sources.
Therefore, the frequency basis functions need to
be clustered to their respective sources. Many
clustering algorithm have been proposed. A data-
adaptive method to map the separated signals into
sources has been proposed in [7]. In [8], a source-
filter based model was used to determine the pa-
rameters to segregate the frequency basis func-
tions. Here, the clustering is performed in Mel
frequency domain and then the respective sources
are recovered from the clustered basis functions.
Recently, Shifted NMF (SNMF) was proposed

in order to avoid clustering of basic functions [5].
SNMF uses the property of shift invariance in the
frequency basis functions. This solves the prob-
lem of grouping of different notes played by same
musical instrument. It is assumed that all notes
played by a single pitched instrument can be ap-
proximated by translating a single frequency basis
function corresponding to the instrument in ques-
tion. This assumption ensures the shift invariant
property of frequency basis functions. The trans-
lation of the basis functions are done in frequency,
typically using semitone shifts in frequency or inte-
ger divisions thereof. However, to incorporate the
shift invariant property, a logarithmic frequency
resolution is required, such as can be obtained via
a Constant Q transform. This is used to obtain
a mapping from the linear frequency domain to

a logarithmic frequency domain. The CQT spec-
trogram acts as an input to the SNMF model.
Recently, two techniques were proposed [9] to im-
prove clustering obtained by the SNMF algorithm
to reconstruct the sound sources. They are one-to-
one mapping method and the masking technique
to separate the basis functions. We will discuss the
techniques in detail in section V.

A notable shortcoming of using SNMF algo-
rithms is that it uses a log-frequency spectrogram
and has no true inverse of log-frequency spectro-
gram. Despite recent improvements to approxi-
mately map the log-frequency component into lin-
ear domain, there are still room for improvements.
The non-availability of exact inverse of CQT trans-
form adversely affect the separation quality. To
this end, we argue that incorporating the trans-
form from linear to log frequency domains into the
SNMF algorithm can further improve the separa-
tion of the sound sources.

The outline of the paper is as follows. The out-
line of the paper is as follows. Section II gives an
overview of the proposed SNMF clustering algo-
rithm. The detailed description of SNMF model is
discussed in section III. The simulation details are
covered in section VI followed by the discussion of
results.

II Overview

The system model for the proposed algorithm is
shown in figure 1. The magnitude spectrogram
X of the input mixture is obtained by using the
short-time Fourier transform (STFT). Then, the
non-negative factorisation of X results in A and
B. Also a transform matrix Y is calculated us-
ing CQT. This is done by generating a constant
Q filterbank [4]. For musical applications, a con-
stant Q filterbank contains center frequencies that
are geometrically spaced according to equal tem-
pered scale. In general, half-tone spacing is used
i.e. 12

√
2. Then, the frequency basis functions con-

tained in A and CQT coefficients stored in Y are
fed into SNMF model to recover the instrument
basis functions. It can be noted that, the recov-
ered instrument basis functions are in linear do-



main which is different from [9]. A working model
of SNMF is explained in section IV. Thereafter,
the source spectrograms for individual sources are
recovered using two techniques. They are Spec-
tral masking and One-to-one mapping. The re-
construction of the synthetic sound signal corre-
sponding to sources requires the phase information
of the complex valued spectrogram. The SNMF
based algorithm that uses the shift-invariant prop-
erty of the frequency basis function is explained in
the following sections.

III SNMF Algorithm

We will first discuss the notations and parameters
used in SNMF model [5]. The notations are same
as described in [10]. Tensors of any given dimen-
sion can be denoted as calligraphic upper-case let-
ters such as (R). The contracted product of the
two tensors of finite dimension results in a tensor.
However, the dimensions along with the tensors
are multiplied, must be pre-defined. This can be
explained as follows. Let a tensor R be of dimen-
sion I1×· · ·×IS×L1×· · ·×LP and a tensor D be
of dimension I1 × · · · × IS × J1 × · · · × JN . Then,
the contracted tensor multiplication along the first
S modes of R and D can be denoted as:

〈RD〉{1,...,S;1,...,S} =

I1∑
i1=1

· · ·
I1∑

i1=1

R×D = Z (3)

The dimensions, along which the tensors R and
D are multiplied, are specified in curly brack-
ets. The resultant tensor Z will be of dimension
L1 × · · · ×LP × J1 × · · · × JN . A tensor is indexed
using lower case letters, such as i and is denoted
by R(i, j). Operator ⊗ is used to indicate an ele-
mentwise multiplication between tensors.

a) Shifted NMF

As discussed earlier in section I, the SNMF al-
gorithm assumes that the timbre of a note pro-
duced by an instrument does not change for all
the pitches present in music. Therefore, a fre-
quency basis function i.e. the timbre of a note
can be used to characterise an instrument present
in a music mixture. This property holds good due
to the fact that according to the even tempered
chromatic scale, the fundamental frequencies of
adjacent notes are geometrically spaced. Hence, a
translated frequency basis function (note) played
by an instrument can be used to approximate all
the notes corresponding to that instrument. How-
ever, in reality the timbre of a note does change
with pitch for a particular instrument. A solution
for this problem was addressed in [9]. Here, all
the frequency basis functions were used to approx-
imately define all the notes present in the mixture.

Then, the clustering of frequency basis functions
were performed using SNMF model.
Another drawback of using SNMF model is the

need of CQT for log-frequency mapping of linear
frequency NMF basis functions. The use of log-
frequency spectrogram results in a deterioration
of the separation quality of individual sources. In
order to avoid using frequency basis functions in
CQT domain we have incorporated CQT in SNMF
model to improve clustering. This is explained in
next section.

IV Methodology

a) Linear Approximation of SNMF

The proposed SNMF uses matrix A and matrix Y
as an input parameter. Here, matrix A contains
NMF frequency basis functions in linear domain.
The NMF basis functions in A are obtained using
equation 1. Also, the factor matrixA is considered
as a spectrogram of NMF basis functions. Another
input parameter to SNMF, the transform matrix
Y of size f × n contains the CQT coefficients,
where f is the number frequency bins. The trans-
form matrix can be calculated by taking the fourier
transform of a bank of the complex exponentials,
whose centre frequencies are geometrically spaced.
The spectrogram A is then factorised using

SNMF model to approximately determine the in-
strument basis functions as shown in the following
equation:

A ≈ 〈〈PD〉{3,1}H〉{[2:3],[1:2]} (4)

where, P is constant tensor of size n×k×f and
can be obtained using equation 5.

P = 〈YR〉{1,1} (5)

The matrices A and Y are same as tensors A
and Y respectively in equation 4. Here, R is a
translation tensor of dimension f × k × f for k
possible frequency translations. R translates the
instrument basis functions in D up or down in fre-
quency by half a tone to approximately cover all
the notes played by the particular instrument. The
tensor D of size f × s contains instrument basis
functions for each source, where s is the number
of sources. Tensor H of size k × s × r denotes a
time activation function. For example, H(i , j , :)
indicates the time envelope for the ith translation
of the jth source. It gives the temporal informa-
tion about a given note that is being played by a
particular instrument. The cost function used to
obtain tensors D and H is same as used for NMF.
Thus, the SNMF problem using KL divergence can
be defined as



〈L,H〉 = min
L,H≥0

Dkl(A||〈LH〉{2:3,1:2}) (6)

where L denotes

L = 〈PD〉{3,1} (7)

In equation 7, P is a constant tensor. Therefore,
the problem defined in equation 6 is reduced to
minimising the non-negative tensors D and H.

b) Update Equations

The update equations for tensor D and tensor H
are derived using the cost function described in
2. The iterative multiplicative updates used for
the translated frequency basis functions in D are
determined in a similar manner as done in [5]. This
can be formulated as follows:

D ← D ⊗
( 〈〈PA〉{1,1}H〉{[1,3],[1,3]}
〈〈PO〉{1,1}H〉{[1,3],[1,3]}

)
(8)

where O of size n×r is a tensor of all ones. Sim-
ilarly, the multiplicative updates for the activation
functions in H are calculated as follows:

H ← H⊗
( 〈〈PD〉{3,1}A〉{1,1}
〈〈PD〉{3,1}O〉{1,1}

)
(9)

The tensors D and H are constraint to be non-
negative. This is ensured by random positive ini-
tialisation and multiplicative updates. After the
factorisation, the individual instrument basis func-
tions can be roughly reconstructed using the slices
of tensor, D(:, s) and H(:, s, :). This is shown in
equation 10.

As ≈ 〈〈PD(:, s)〉{3,1}H(:, s, :)〉{2:3,1:2} (10)

where As denotes a spectrogram containing in-
strument basis functions for source s.
It is important to note that, this method of

grouping of frequency basis functions is different
from previously proposed methods in [9] because
of the following two reasons. Firstly, the SNMF
model uses the linear domain NMF basis func-
tions as an input and the CQT transform matrix is
fed into the SNMF algorithm to exploit the shift-
invariant property. This is done by using the CQT
transform matrix to map the linear domain NMF
basis functions to the CQT domain before every
iteration until the convergence is achieved. Sec-
ondly, the use of the CQT inside the SNMF model
avoids the need to use the inverse CQT for recov-
ering the NMF basis functions. As a result, the

separated NMF basis functions, contained in As,
are in the linear domain. Thus, the linear approx-
imation of SNMF model can be used to separate
frequency basis functions corresponding to their
respective sources in a given music mixture.

V Signal Reconstruction

Having obtained the instrument basis functions in-
dividual source spectrogram can be reconstructed
by techniques used in [9]. There are two methods
used for the reconstruction of the synthetic sound
sources.

a) One-to-one mapping

The first method of reconstruction is one to one
mapping. Here, the separation of the NMF fre-
quency basis functions is done by reconstructing
the individual source spectrograms As. This is
done as follows. The energy of individual frame
in each spectrogram As for s number of sources
is calculated. Subsequently, the frequency basis
functions in the original NMF matrixA is assigned
to the source that has the highest energy at that
frame. This can be formulated as follows:

E =
n∑

As (11)

where, matrix E of size r × s contains the en-
ergy of each frame of each spectrogram correspond-
ing to the individual sources. The individual basis
function is indexed by δs corresponding to respec-
tive sources. For a particular source s, δs can be
defined by the following equation:

δs(r) = argmaxs (E(r, :)) (12)

The index vector δs is of length r and it contains
0 and 1. The contents of δs are repeated along the
rows and columns to match the number elements
corresponding to A and B. This results in two
matrixes δs1 of size n × r and δs2 of size r × m.
Then, the complex valued source spectrogram, Xs

corresponding to source s is obtained as follows:

Xs = X ·
(
(A · δs1)(δs2 ·B)

AB

)
(13)

Operator · is used to denote an elementwise mul-
tiplication between matrixes. Further, the individ-
ual sources are obtained using inverse STFT.

b) Spectral Masking

The second method of source reconstruction is
that of spectral masking. Having obtained indi-
vidual spectrogram for frequency basis functions
As, the source spectrogram can be reconstructed
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Figure 2: Spectrogram of a input mixture signal

using spectral masking as detailed in [9]. The es-
timated source spectrograms are used to generate
individual source masking filters. The masking fil-
ter is then applied to the frequency basis functions
obtained using NMF. Here, the individual source
filters are created usingAs. Then, the original ma-
trix A is filtered using source filters to reconstruct
the source frequency basis functions Âs. The cal-
culation of Âs is shown in the equation:

Âs = A ·
(

A·2
s∑s
A·2

s

)
(14)

As each row vector in A has a corresponding
column vector in B, clustering of the time activa-
tions is handled automatically. Then, the source
magnitude spectrogram is obtained as follows:

Xs = ÂsBs (15)

The phase information for the source spectro-
grams is retrieved from the original complex val-
ued spectrogram X as shown in equation 16.

Xs = X ·
(

X ·2
s∑s
X ·2

s

)
(16)

where Xs are the complex valued source spec-
trograms. Thereafter, the individual sound sources
can be reconstructed using inverse STFT. In the
following section, we will discuss the details about
the test mixture and simulation setup used for the
experiments detailed in this paper.

VI Simulation setup

The test mixtures consists of a dataset of 25
monaural music mixtures, which were used for all
subsequent evaluations in this paper. The 25 test
signals were the mixtures of 2 instruments. They
were generated by mixing of a large library of or-
chestral samples of notes and chords produced by
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Figure 3: Spectrogram of the separated source 1.
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Figure 4: Spectrogram of the separated source 2

a total of 15 pitched instruments [11]. The sam-
pling rate of the input mixtures were 44.1 kHz and
were of 4 to 8 seconds in length. The notes played
by different instruments in the test mixtures are
in harmony and are overlapping in time and fre-
quency. This ensures that the SNMF algorithms
are tested to separate notes played simultaneously
by pitched instruments. The details, of how the
dataset were mixed together, are listed in [11].
The STFT was used to obtain the magnitude

spectrogram of the input signal with a 75% over-
lapping of commonly used Hann window of 4096
samples in length. The number of basis functions
for NMF basis functions were set to 13 to cover all
the notes played in the mixture.
Matrices A and B and tensors D and H were

randomly initialised. 24 frequency bins per octave
ranging from 55Hz to 22.05kHz were used to de-
termine the transform matrix Y. The number of
sources in the SNMF algorithm was set to 2. The
NMF and SNMF algorithms ran for 300 and 50
iterations respectively. The number of allowable
frequency shifts k, for translating basis functions,
were ranged from 5 to 12.
Figure 2 shows the magnitude spectrogram of a



test signal containing music signals of two pitched
instruments. Figure 3 and figure 4 show the spec-
trogram of reconstructed sound source of a test
mixture. Through visual inspection, it can be con-
cluded that the linear approximation of SNMF can
be used to separate frequency basis functions cor-
responding to sources in monaural mixture. The
performance of the proposed SNMF algorithms is
evaluated in the following section.

VII Results

We will compare the results of the proposed
method i.e. linear approximation of SNMF al-
gorithm (SNMFlmask) with the recently proposed
SNMF algorithms (SNMFmask and SNMFmap) [9].
It is important to note that SNMFmask used spec-
tral masking to reconstruct the original signal and
SNMFmap makes use of one-to-one mapping to re-
cover the source spectrogram. Both SNMFmask

and SNMFmap use log frequency spectrogram of
NMF basis functions as an input to SNMF model.

SNMF algorithm SDR SIR SAR
SNMFmap 7.69 20.61 8.83
SNMFmask 10.25 27.15 10.87
SNMFlmask 11.11 32.13 11.47

Table 1: Mean SDR, SIR and SAR for separated
sound sources using SNMF algorithms.

A summary of the results for all the SNMF al-
gorithms are listed in table 1. The commonly
used quality measures signal-to-distortion ratio
(SDR), the signal-to-interference ratio (SIR), and
the signal-to-artifacts ratio (SAR) are used for the
evaluation of the different SNMF algorithms. SDR
measures the amount of distortion present in the
output signal, SIR calculates the interference of
all the sources present in the separated signal and
SAR determines the artifacts present in the sep-
arated signal. The definition of the quality mea-
sures can be found in more detail in [12]. The re-
sults are calculated by averaging the quality mea-
sures over frequency shifts k and the number of
sources s, present for each mixture in the test
dataset.
From the table 1, we can see that SNMFlmask

outperforms the other listed SNMF algorithms.
We can see that there is a significant improvement
of separation quality with the use of SNMFlmask

over SNMFmap. It can be concluded from the SIR
score that the SNMFlmask performs considerably
better than SNMFmask to remove interference be-
tween the sources in a given mixture. There is
approximately 1 dB improvement on the SAR and
SDR scores but on listening, the separated sound
sources using SNMFlmask were audibly better than
those of SNMFmask. This highlights the fact that

the quality measures do not correlate well with hu-
man perception of separation quality.

VIII conclusion

A SNMF based algorithm has been proposed to
group NMF frequency basis functions correspond-
ing to their respective sources. We have im-
plemented the algorithm to use the NMF fre-
quency basis function in linear domain as an in-
put to SNMF model. This avoids the need of
log-frequency transform (CQT) and thus there is
no need of inverse CQT for the reconstruction of
the synthetic signal. The CQT is incorporated in
SNMF model to obtain the instrument basis func-
tions. The presented SNMF algorithm can po-
tentially be used to separate sound sources of a
monaural music signal.
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